1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMark.inline.hpp"
  30 #include "gc/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc/g1/g1CollectorPolicy.hpp"
  33 #include "gc/g1/g1CollectorState.hpp"
  34 #include "gc/g1/g1HeapVerifier.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1StringDedup.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionRemSet.hpp"
  39 #include "gc/g1/heapRegionSet.inline.hpp"
  40 #include "gc/g1/suspendibleThreadSet.hpp"
  41 #include "gc/shared/gcId.hpp"
  42 #include "gc/shared/gcTimer.hpp"
  43 #include "gc/shared/gcTrace.hpp"
  44 #include "gc/shared/gcTraceTime.inline.hpp"
  45 #include "gc/shared/genOopClosures.inline.hpp"
  46 #include "gc/shared/referencePolicy.hpp"
  47 #include "gc/shared/strongRootsScope.hpp"
  48 #include "gc/shared/taskqueue.inline.hpp"
  49 #include "gc/shared/vmGCOperations.hpp"
  50 #include "logging/log.hpp"
  51 #include "memory/allocation.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "oops/oop.inline.hpp"
  54 #include "runtime/atomic.inline.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/java.hpp"
  57 #include "runtime/prefetch.inline.hpp"
  58 #include "services/memTracker.hpp"
  59 
  60 // Concurrent marking bit map wrapper
  61 
  62 CMBitMapRO::CMBitMapRO(int shifter) :
  63   _bm(),
  64   _shifter(shifter) {
  65   _bmStartWord = 0;
  66   _bmWordSize = 0;
  67 }
  68 
  69 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  70                                                const HeapWord* limit) const {
  71   // First we must round addr *up* to a possible object boundary.
  72   addr = (HeapWord*)align_size_up((intptr_t)addr,
  73                                   HeapWordSize << _shifter);
  74   size_t addrOffset = heapWordToOffset(addr);
  75   assert(limit != NULL, "limit must not be NULL");
  76   size_t limitOffset = heapWordToOffset(limit);
  77   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  78   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  79   assert(nextAddr >= addr, "get_next_one postcondition");
  80   assert(nextAddr == limit || isMarked(nextAddr),
  81          "get_next_one postcondition");
  82   return nextAddr;
  83 }
  84 
  85 #ifndef PRODUCT
  86 bool CMBitMapRO::covers(MemRegion heap_rs) const {
  87   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
  88   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
  89          "size inconsistency");
  90   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
  91          _bmWordSize  == heap_rs.word_size();
  92 }
  93 #endif
  94 
  95 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
  96   _bm.print_on_error(st, prefix);
  97 }
  98 
  99 size_t CMBitMap::compute_size(size_t heap_size) {
 100   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 101 }
 102 
 103 size_t CMBitMap::mark_distance() {
 104   return MinObjAlignmentInBytes * BitsPerByte;
 105 }
 106 
 107 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 108   _bmStartWord = heap.start();
 109   _bmWordSize = heap.word_size();
 110 
 111   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 112   _bm.set_size(_bmWordSize >> _shifter);
 113 
 114   storage->set_mapping_changed_listener(&_listener);
 115 }
 116 
 117 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 118   if (zero_filled) {
 119     return;
 120   }
 121   // We need to clear the bitmap on commit, removing any existing information.
 122   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 123   _bm->clearRange(mr);
 124 }
 125 
 126 // Closure used for clearing the given mark bitmap.
 127 class ClearBitmapHRClosure : public HeapRegionClosure {
 128  private:
 129   ConcurrentMark* _cm;
 130   CMBitMap* _bitmap;
 131   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 132  public:
 133   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 134     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 135   }
 136 
 137   virtual bool doHeapRegion(HeapRegion* r) {
 138     size_t const chunk_size_in_words = M / HeapWordSize;
 139 
 140     HeapWord* cur = r->bottom();
 141     HeapWord* const end = r->end();
 142 
 143     while (cur < end) {
 144       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 145       _bitmap->clearRange(mr);
 146 
 147       cur += chunk_size_in_words;
 148 
 149       // Abort iteration if after yielding the marking has been aborted.
 150       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 151         return true;
 152       }
 153       // Repeat the asserts from before the start of the closure. We will do them
 154       // as asserts here to minimize their overhead on the product. However, we
 155       // will have them as guarantees at the beginning / end of the bitmap
 156       // clearing to get some checking in the product.
 157       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 158       assert(!_may_yield || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 159     }
 160 
 161     return false;
 162   }
 163 };
 164 
 165 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 166   ClearBitmapHRClosure* _cl;
 167   HeapRegionClaimer     _hrclaimer;
 168   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 169 
 170 public:
 171   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 172       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 173 
 174   void work(uint worker_id) {
 175     SuspendibleThreadSetJoiner sts_join(_suspendible);
 176     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 177   }
 178 };
 179 
 180 void CMBitMap::clearAll() {
 181   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 182   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 183   uint n_workers = g1h->workers()->active_workers();
 184   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 185   g1h->workers()->run_task(&task);
 186   guarantee(cl.complete(), "Must have completed iteration.");
 187   return;
 188 }
 189 
 190 void CMBitMap::clearRange(MemRegion mr) {
 191   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 192   assert(!mr.is_empty(), "unexpected empty region");
 193   // convert address range into offset range
 194   _bm.at_put_range(heapWordToOffset(mr.start()),
 195                    heapWordToOffset(mr.end()), false);
 196 }
 197 
 198 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 199   _base(NULL), _cm(cm)
 200 {}
 201 
 202 bool CMMarkStack::allocate(size_t capacity) {
 203   // allocate a stack of the requisite depth
 204   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 205   if (!rs.is_reserved()) {
 206     warning("ConcurrentMark MarkStack allocation failure");
 207     return false;
 208   }
 209   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 210   if (!_virtual_space.initialize(rs, rs.size())) {
 211     warning("ConcurrentMark MarkStack backing store failure");
 212     // Release the virtual memory reserved for the marking stack
 213     rs.release();
 214     return false;
 215   }
 216   assert(_virtual_space.committed_size() == rs.size(),
 217          "Didn't reserve backing store for all of ConcurrentMark stack?");
 218   _base = (oop*) _virtual_space.low();
 219   setEmpty();
 220   _capacity = (jint) capacity;
 221   _saved_index = -1;
 222   _should_expand = false;
 223   return true;
 224 }
 225 
 226 void CMMarkStack::expand() {
 227   // Called, during remark, if we've overflown the marking stack during marking.
 228   assert(isEmpty(), "stack should been emptied while handling overflow");
 229   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 230   // Clear expansion flag
 231   _should_expand = false;
 232   if (_capacity == (jint) MarkStackSizeMax) {
 233     log_trace(gc)("(benign) Can't expand marking stack capacity, at max size limit");
 234     return;
 235   }
 236   // Double capacity if possible
 237   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 238   // Do not give up existing stack until we have managed to
 239   // get the double capacity that we desired.
 240   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 241                                                            sizeof(oop)));
 242   if (rs.is_reserved()) {
 243     // Release the backing store associated with old stack
 244     _virtual_space.release();
 245     // Reinitialize virtual space for new stack
 246     if (!_virtual_space.initialize(rs, rs.size())) {
 247       fatal("Not enough swap for expanded marking stack capacity");
 248     }
 249     _base = (oop*)(_virtual_space.low());
 250     _index = 0;
 251     _capacity = new_capacity;
 252   } else {
 253     // Failed to double capacity, continue;
 254     log_trace(gc)("(benign) Failed to expand marking stack capacity from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 255                   _capacity / K, new_capacity / K);
 256   }
 257 }
 258 
 259 void CMMarkStack::set_should_expand() {
 260   // If we're resetting the marking state because of an
 261   // marking stack overflow, record that we should, if
 262   // possible, expand the stack.
 263   _should_expand = _cm->has_overflown();
 264 }
 265 
 266 CMMarkStack::~CMMarkStack() {
 267   if (_base != NULL) {
 268     _base = NULL;
 269     _virtual_space.release();
 270   }
 271 }
 272 
 273 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 274   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 275   jint start = _index;
 276   jint next_index = start + n;
 277   if (next_index > _capacity) {
 278     _overflow = true;
 279     return;
 280   }
 281   // Otherwise.
 282   _index = next_index;
 283   for (int i = 0; i < n; i++) {
 284     int ind = start + i;
 285     assert(ind < _capacity, "By overflow test above.");
 286     _base[ind] = ptr_arr[i];
 287   }
 288 }
 289 
 290 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 291   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 292   jint index = _index;
 293   if (index == 0) {
 294     *n = 0;
 295     return false;
 296   } else {
 297     int k = MIN2(max, index);
 298     jint  new_ind = index - k;
 299     for (int j = 0; j < k; j++) {
 300       ptr_arr[j] = _base[new_ind + j];
 301     }
 302     _index = new_ind;
 303     *n = k;
 304     return true;
 305   }
 306 }
 307 
 308 void CMMarkStack::note_start_of_gc() {
 309   assert(_saved_index == -1,
 310          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 311   _saved_index = _index;
 312 }
 313 
 314 void CMMarkStack::note_end_of_gc() {
 315   // This is intentionally a guarantee, instead of an assert. If we
 316   // accidentally add something to the mark stack during GC, it
 317   // will be a correctness issue so it's better if we crash. we'll
 318   // only check this once per GC anyway, so it won't be a performance
 319   // issue in any way.
 320   guarantee(_saved_index == _index,
 321             "saved index: %d index: %d", _saved_index, _index);
 322   _saved_index = -1;
 323 }
 324 
 325 CMRootRegions::CMRootRegions() :
 326   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 327   _should_abort(false),  _next_survivor(NULL) { }
 328 
 329 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 330   _young_list = g1h->young_list();
 331   _cm = cm;
 332 }
 333 
 334 void CMRootRegions::prepare_for_scan() {
 335   assert(!scan_in_progress(), "pre-condition");
 336 
 337   // Currently, only survivors can be root regions.
 338   assert(_next_survivor == NULL, "pre-condition");
 339   _next_survivor = _young_list->first_survivor_region();
 340   _scan_in_progress = (_next_survivor != NULL);
 341   _should_abort = false;
 342 }
 343 
 344 HeapRegion* CMRootRegions::claim_next() {
 345   if (_should_abort) {
 346     // If someone has set the should_abort flag, we return NULL to
 347     // force the caller to bail out of their loop.
 348     return NULL;
 349   }
 350 
 351   // Currently, only survivors can be root regions.
 352   HeapRegion* res = _next_survivor;
 353   if (res != NULL) {
 354     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 355     // Read it again in case it changed while we were waiting for the lock.
 356     res = _next_survivor;
 357     if (res != NULL) {
 358       if (res == _young_list->last_survivor_region()) {
 359         // We just claimed the last survivor so store NULL to indicate
 360         // that we're done.
 361         _next_survivor = NULL;
 362       } else {
 363         _next_survivor = res->get_next_young_region();
 364       }
 365     } else {
 366       // Someone else claimed the last survivor while we were trying
 367       // to take the lock so nothing else to do.
 368     }
 369   }
 370   assert(res == NULL || res->is_survivor(), "post-condition");
 371 
 372   return res;
 373 }
 374 
 375 void CMRootRegions::cancel_scan() {
 376   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 377   _scan_in_progress = false;
 378   RootRegionScan_lock->notify_all();
 379 }
 380 
 381 void CMRootRegions::scan_finished() {
 382   assert(scan_in_progress(), "pre-condition");
 383 
 384   // Currently, only survivors can be root regions.
 385   if (!_should_abort) {
 386     assert(_next_survivor == NULL, "we should have claimed all survivors");
 387   }
 388   _next_survivor = NULL;
 389 
 390   {
 391     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 392     _scan_in_progress = false;
 393     RootRegionScan_lock->notify_all();
 394   }
 395 }
 396 
 397 bool CMRootRegions::wait_until_scan_finished() {
 398   if (!scan_in_progress()) return false;
 399 
 400   {
 401     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 402     while (scan_in_progress()) {
 403       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 404     }
 405   }
 406   return true;
 407 }
 408 
 409 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 410   return MAX2((n_par_threads + 2) / 4, 1U);
 411 }
 412 
 413 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 414   _g1h(g1h),
 415   _markBitMap1(),
 416   _markBitMap2(),
 417   _parallel_marking_threads(0),
 418   _max_parallel_marking_threads(0),
 419   _sleep_factor(0.0),
 420   _marking_task_overhead(1.0),
 421   _cleanup_list("Cleanup List"),
 422   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 423   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 424             CardTableModRefBS::card_shift,
 425             false /* in_resource_area*/),
 426 
 427   _prevMarkBitMap(&_markBitMap1),
 428   _nextMarkBitMap(&_markBitMap2),
 429 
 430   _markStack(this),
 431   // _finger set in set_non_marking_state
 432 
 433   _max_worker_id(ParallelGCThreads),
 434   // _active_tasks set in set_non_marking_state
 435   // _tasks set inside the constructor
 436   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 437   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 438 
 439   _has_overflown(false),
 440   _concurrent(false),
 441   _has_aborted(false),
 442   _restart_for_overflow(false),
 443   _concurrent_marking_in_progress(false),
 444   _concurrent_phase_started(false),
 445 
 446   // _verbose_level set below
 447 
 448   _init_times(),
 449   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 450   _cleanup_times(),
 451   _total_counting_time(0.0),
 452   _total_rs_scrub_time(0.0),
 453 
 454   _parallel_workers(NULL),
 455 
 456   _count_card_bitmaps(NULL),
 457   _count_marked_bytes(NULL),
 458   _completed_initialization(false) {
 459 
 460   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 461   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 462 
 463   // Create & start a ConcurrentMark thread.
 464   _cmThread = new ConcurrentMarkThread(this);
 465   assert(cmThread() != NULL, "CM Thread should have been created");
 466   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 467   if (_cmThread->osthread() == NULL) {
 468       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 469   }
 470 
 471   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 472   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 473   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 474 
 475   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 476   satb_qs.set_buffer_size(G1SATBBufferSize);
 477 
 478   _root_regions.init(_g1h, this);
 479 
 480   if (ConcGCThreads > ParallelGCThreads) {
 481     warning("Can't have more ConcGCThreads (%u) "
 482             "than ParallelGCThreads (%u).",
 483             ConcGCThreads, ParallelGCThreads);
 484     return;
 485   }
 486   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 487     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 488     // if both are set
 489     _sleep_factor             = 0.0;
 490     _marking_task_overhead    = 1.0;
 491   } else if (G1MarkingOverheadPercent > 0) {
 492     // We will calculate the number of parallel marking threads based
 493     // on a target overhead with respect to the soft real-time goal
 494     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 495     double overall_cm_overhead =
 496       (double) MaxGCPauseMillis * marking_overhead /
 497       (double) GCPauseIntervalMillis;
 498     double cpu_ratio = 1.0 / (double) os::processor_count();
 499     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 500     double marking_task_overhead =
 501       overall_cm_overhead / marking_thread_num *
 502                                               (double) os::processor_count();
 503     double sleep_factor =
 504                        (1.0 - marking_task_overhead) / marking_task_overhead;
 505 
 506     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 507     _sleep_factor             = sleep_factor;
 508     _marking_task_overhead    = marking_task_overhead;
 509   } else {
 510     // Calculate the number of parallel marking threads by scaling
 511     // the number of parallel GC threads.
 512     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 513     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 514     _sleep_factor             = 0.0;
 515     _marking_task_overhead    = 1.0;
 516   }
 517 
 518   assert(ConcGCThreads > 0, "Should have been set");
 519   _parallel_marking_threads = ConcGCThreads;
 520   _max_parallel_marking_threads = _parallel_marking_threads;
 521 
 522   _parallel_workers = new WorkGang("G1 Marker",
 523        _max_parallel_marking_threads, false, true);
 524   if (_parallel_workers == NULL) {
 525     vm_exit_during_initialization("Failed necessary allocation.");
 526   } else {
 527     _parallel_workers->initialize_workers();
 528   }
 529 
 530   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 531     size_t mark_stack_size =
 532       MIN2(MarkStackSizeMax,
 533           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 534     // Verify that the calculated value for MarkStackSize is in range.
 535     // It would be nice to use the private utility routine from Arguments.
 536     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 537       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 538               "must be between 1 and " SIZE_FORMAT,
 539               mark_stack_size, MarkStackSizeMax);
 540       return;
 541     }
 542     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 543   } else {
 544     // Verify MarkStackSize is in range.
 545     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 546       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 547         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 548           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 549                   "must be between 1 and " SIZE_FORMAT,
 550                   MarkStackSize, MarkStackSizeMax);
 551           return;
 552         }
 553       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 554         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 555           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 556                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 557                   MarkStackSize, MarkStackSizeMax);
 558           return;
 559         }
 560       }
 561     }
 562   }
 563 
 564   if (!_markStack.allocate(MarkStackSize)) {
 565     warning("Failed to allocate CM marking stack");
 566     return;
 567   }
 568 
 569   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 570   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 571 
 572   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 573   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 574 
 575   BitMap::idx_t card_bm_size = _card_bm.size();
 576 
 577   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 578   _active_tasks = _max_worker_id;
 579 
 580   uint max_regions = _g1h->max_regions();
 581   for (uint i = 0; i < _max_worker_id; ++i) {
 582     CMTaskQueue* task_queue = new CMTaskQueue();
 583     task_queue->initialize();
 584     _task_queues->register_queue(i, task_queue);
 585 
 586     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 587     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 588 
 589     _tasks[i] = new CMTask(i, this,
 590                            _count_marked_bytes[i],
 591                            &_count_card_bitmaps[i],
 592                            task_queue, _task_queues);
 593 
 594     _accum_task_vtime[i] = 0.0;
 595   }
 596 
 597   // Calculate the card number for the bottom of the heap. Used
 598   // in biasing indexes into the accounting card bitmaps.
 599   _heap_bottom_card_num =
 600     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 601                                 CardTableModRefBS::card_shift);
 602 
 603   // Clear all the liveness counting data
 604   clear_all_count_data();
 605 
 606   // so that the call below can read a sensible value
 607   _heap_start = g1h->reserved_region().start();
 608   set_non_marking_state();
 609   _completed_initialization = true;
 610 }
 611 
 612 void ConcurrentMark::reset() {
 613   // Starting values for these two. This should be called in a STW
 614   // phase.
 615   MemRegion reserved = _g1h->g1_reserved();
 616   _heap_start = reserved.start();
 617   _heap_end   = reserved.end();
 618 
 619   // Separated the asserts so that we know which one fires.
 620   assert(_heap_start != NULL, "heap bounds should look ok");
 621   assert(_heap_end != NULL, "heap bounds should look ok");
 622   assert(_heap_start < _heap_end, "heap bounds should look ok");
 623 
 624   // Reset all the marking data structures and any necessary flags
 625   reset_marking_state();
 626 
 627   // We do reset all of them, since different phases will use
 628   // different number of active threads. So, it's easiest to have all
 629   // of them ready.
 630   for (uint i = 0; i < _max_worker_id; ++i) {
 631     _tasks[i]->reset(_nextMarkBitMap);
 632   }
 633 
 634   // we need this to make sure that the flag is on during the evac
 635   // pause with initial mark piggy-backed
 636   set_concurrent_marking_in_progress();
 637 }
 638 
 639 
 640 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 641   _markStack.set_should_expand();
 642   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 643   if (clear_overflow) {
 644     clear_has_overflown();
 645   } else {
 646     assert(has_overflown(), "pre-condition");
 647   }
 648   _finger = _heap_start;
 649 
 650   for (uint i = 0; i < _max_worker_id; ++i) {
 651     CMTaskQueue* queue = _task_queues->queue(i);
 652     queue->set_empty();
 653   }
 654 }
 655 
 656 void ConcurrentMark::set_concurrency(uint active_tasks) {
 657   assert(active_tasks <= _max_worker_id, "we should not have more");
 658 
 659   _active_tasks = active_tasks;
 660   // Need to update the three data structures below according to the
 661   // number of active threads for this phase.
 662   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 663   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 664   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 665 }
 666 
 667 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 668   set_concurrency(active_tasks);
 669 
 670   _concurrent = concurrent;
 671   // We propagate this to all tasks, not just the active ones.
 672   for (uint i = 0; i < _max_worker_id; ++i)
 673     _tasks[i]->set_concurrent(concurrent);
 674 
 675   if (concurrent) {
 676     set_concurrent_marking_in_progress();
 677   } else {
 678     // We currently assume that the concurrent flag has been set to
 679     // false before we start remark. At this point we should also be
 680     // in a STW phase.
 681     assert(!concurrent_marking_in_progress(), "invariant");
 682     assert(out_of_regions(),
 683            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 684            p2i(_finger), p2i(_heap_end));
 685   }
 686 }
 687 
 688 void ConcurrentMark::set_non_marking_state() {
 689   // We set the global marking state to some default values when we're
 690   // not doing marking.
 691   reset_marking_state();
 692   _active_tasks = 0;
 693   clear_concurrent_marking_in_progress();
 694 }
 695 
 696 ConcurrentMark::~ConcurrentMark() {
 697   // The ConcurrentMark instance is never freed.
 698   ShouldNotReachHere();
 699 }
 700 
 701 void ConcurrentMark::clearNextBitmap() {
 702   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 703 
 704   // Make sure that the concurrent mark thread looks to still be in
 705   // the current cycle.
 706   guarantee(cmThread()->during_cycle(), "invariant");
 707 
 708   // We are finishing up the current cycle by clearing the next
 709   // marking bitmap and getting it ready for the next cycle. During
 710   // this time no other cycle can start. So, let's make sure that this
 711   // is the case.
 712   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 713 
 714   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 715   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 716   _parallel_workers->run_task(&task);
 717 
 718   // Clear the liveness counting data. If the marking has been aborted, the abort()
 719   // call already did that.
 720   if (cl.complete()) {
 721     clear_all_count_data();
 722   }
 723 
 724   // Repeat the asserts from above.
 725   guarantee(cmThread()->during_cycle(), "invariant");
 726   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 727 }
 728 
 729 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 730   CMBitMap* _bitmap;
 731   bool _error;
 732  public:
 733   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 734   }
 735 
 736   virtual bool doHeapRegion(HeapRegion* r) {
 737     // This closure can be called concurrently to the mutator, so we must make sure
 738     // that the result of the getNextMarkedWordAddress() call is compared to the
 739     // value passed to it as limit to detect any found bits.
 740     // end never changes in G1.
 741     HeapWord* end = r->end();
 742     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 743   }
 744 };
 745 
 746 bool ConcurrentMark::nextMarkBitmapIsClear() {
 747   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 748   _g1h->heap_region_iterate(&cl);
 749   return cl.complete();
 750 }
 751 
 752 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 753 public:
 754   bool doHeapRegion(HeapRegion* r) {
 755     r->note_start_of_marking();
 756     return false;
 757   }
 758 };
 759 
 760 void ConcurrentMark::checkpointRootsInitialPre() {
 761   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 762   G1CollectorPolicy* g1p = g1h->g1_policy();
 763 
 764   _has_aborted = false;
 765 
 766   // Initialize marking structures. This has to be done in a STW phase.
 767   reset();
 768 
 769   // For each region note start of marking.
 770   NoteStartOfMarkHRClosure startcl;
 771   g1h->heap_region_iterate(&startcl);
 772 }
 773 
 774 
 775 void ConcurrentMark::checkpointRootsInitialPost() {
 776   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 777 
 778   // Start Concurrent Marking weak-reference discovery.
 779   ReferenceProcessor* rp = g1h->ref_processor_cm();
 780   // enable ("weak") refs discovery
 781   rp->enable_discovery();
 782   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 783 
 784   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 785   // This is the start of  the marking cycle, we're expected all
 786   // threads to have SATB queues with active set to false.
 787   satb_mq_set.set_active_all_threads(true, /* new active value */
 788                                      false /* expected_active */);
 789 
 790   _root_regions.prepare_for_scan();
 791 
 792   // update_g1_committed() will be called at the end of an evac pause
 793   // when marking is on. So, it's also called at the end of the
 794   // initial-mark pause to update the heap end, if the heap expands
 795   // during it. No need to call it here.
 796 }
 797 
 798 /*
 799  * Notice that in the next two methods, we actually leave the STS
 800  * during the barrier sync and join it immediately afterwards. If we
 801  * do not do this, the following deadlock can occur: one thread could
 802  * be in the barrier sync code, waiting for the other thread to also
 803  * sync up, whereas another one could be trying to yield, while also
 804  * waiting for the other threads to sync up too.
 805  *
 806  * Note, however, that this code is also used during remark and in
 807  * this case we should not attempt to leave / enter the STS, otherwise
 808  * we'll either hit an assert (debug / fastdebug) or deadlock
 809  * (product). So we should only leave / enter the STS if we are
 810  * operating concurrently.
 811  *
 812  * Because the thread that does the sync barrier has left the STS, it
 813  * is possible to be suspended for a Full GC or an evacuation pause
 814  * could occur. This is actually safe, since the entering the sync
 815  * barrier is one of the last things do_marking_step() does, and it
 816  * doesn't manipulate any data structures afterwards.
 817  */
 818 
 819 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 820   bool barrier_aborted;
 821   {
 822     SuspendibleThreadSetLeaver sts_leave(concurrent());
 823     barrier_aborted = !_first_overflow_barrier_sync.enter();
 824   }
 825 
 826   // at this point everyone should have synced up and not be doing any
 827   // more work
 828 
 829   if (barrier_aborted) {
 830     // If the barrier aborted we ignore the overflow condition and
 831     // just abort the whole marking phase as quickly as possible.
 832     return;
 833   }
 834 
 835   // If we're executing the concurrent phase of marking, reset the marking
 836   // state; otherwise the marking state is reset after reference processing,
 837   // during the remark pause.
 838   // If we reset here as a result of an overflow during the remark we will
 839   // see assertion failures from any subsequent set_concurrency_and_phase()
 840   // calls.
 841   if (concurrent()) {
 842     // let the task associated with with worker 0 do this
 843     if (worker_id == 0) {
 844       // task 0 is responsible for clearing the global data structures
 845       // We should be here because of an overflow. During STW we should
 846       // not clear the overflow flag since we rely on it being true when
 847       // we exit this method to abort the pause and restart concurrent
 848       // marking.
 849       reset_marking_state(true /* clear_overflow */);
 850 
 851       log_info(gc)("Concurrent Mark reset for overflow");
 852     }
 853   }
 854 
 855   // after this, each task should reset its own data structures then
 856   // then go into the second barrier
 857 }
 858 
 859 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 860   SuspendibleThreadSetLeaver sts_leave(concurrent());
 861   _second_overflow_barrier_sync.enter();
 862 
 863   // at this point everything should be re-initialized and ready to go
 864 }
 865 
 866 class CMConcurrentMarkingTask: public AbstractGangTask {
 867 private:
 868   ConcurrentMark*       _cm;
 869   ConcurrentMarkThread* _cmt;
 870 
 871 public:
 872   void work(uint worker_id) {
 873     assert(Thread::current()->is_ConcurrentGC_thread(),
 874            "this should only be done by a conc GC thread");
 875     ResourceMark rm;
 876 
 877     double start_vtime = os::elapsedVTime();
 878 
 879     {
 880       SuspendibleThreadSetJoiner sts_join;
 881 
 882       assert(worker_id < _cm->active_tasks(), "invariant");
 883       CMTask* the_task = _cm->task(worker_id);
 884       the_task->record_start_time();
 885       if (!_cm->has_aborted()) {
 886         do {
 887           double start_vtime_sec = os::elapsedVTime();
 888           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 889 
 890           the_task->do_marking_step(mark_step_duration_ms,
 891                                     true  /* do_termination */,
 892                                     false /* is_serial*/);
 893 
 894           double end_vtime_sec = os::elapsedVTime();
 895           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 896           _cm->clear_has_overflown();
 897 
 898           _cm->do_yield_check(worker_id);
 899 
 900           jlong sleep_time_ms;
 901           if (!_cm->has_aborted() && the_task->has_aborted()) {
 902             sleep_time_ms =
 903               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
 904             {
 905               SuspendibleThreadSetLeaver sts_leave;
 906               os::sleep(Thread::current(), sleep_time_ms, false);
 907             }
 908           }
 909         } while (!_cm->has_aborted() && the_task->has_aborted());
 910       }
 911       the_task->record_end_time();
 912       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
 913     }
 914 
 915     double end_vtime = os::elapsedVTime();
 916     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 917   }
 918 
 919   CMConcurrentMarkingTask(ConcurrentMark* cm,
 920                           ConcurrentMarkThread* cmt) :
 921       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
 922 
 923   ~CMConcurrentMarkingTask() { }
 924 };
 925 
 926 // Calculates the number of active workers for a concurrent
 927 // phase.
 928 uint ConcurrentMark::calc_parallel_marking_threads() {
 929   uint n_conc_workers = 0;
 930   if (!UseDynamicNumberOfGCThreads ||
 931       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 932        !ForceDynamicNumberOfGCThreads)) {
 933     n_conc_workers = max_parallel_marking_threads();
 934   } else {
 935     n_conc_workers =
 936       AdaptiveSizePolicy::calc_default_active_workers(
 937                                    max_parallel_marking_threads(),
 938                                    1, /* Minimum workers */
 939                                    parallel_marking_threads(),
 940                                    Threads::number_of_non_daemon_threads());
 941     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
 942     // that scaling has already gone into "_max_parallel_marking_threads".
 943   }
 944   assert(n_conc_workers > 0, "Always need at least 1");
 945   return n_conc_workers;
 946 }
 947 
 948 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
 949   // Currently, only survivors can be root regions.
 950   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 951   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 952 
 953   const uintx interval = PrefetchScanIntervalInBytes;
 954   HeapWord* curr = hr->bottom();
 955   const HeapWord* end = hr->top();
 956   while (curr < end) {
 957     Prefetch::read(curr, interval);
 958     oop obj = oop(curr);
 959     int size = obj->oop_iterate_size(&cl);
 960     assert(size == obj->size(), "sanity");
 961     curr += size;
 962   }
 963 }
 964 
 965 class CMRootRegionScanTask : public AbstractGangTask {
 966 private:
 967   ConcurrentMark* _cm;
 968 
 969 public:
 970   CMRootRegionScanTask(ConcurrentMark* cm) :
 971     AbstractGangTask("Root Region Scan"), _cm(cm) { }
 972 
 973   void work(uint worker_id) {
 974     assert(Thread::current()->is_ConcurrentGC_thread(),
 975            "this should only be done by a conc GC thread");
 976 
 977     CMRootRegions* root_regions = _cm->root_regions();
 978     HeapRegion* hr = root_regions->claim_next();
 979     while (hr != NULL) {
 980       _cm->scanRootRegion(hr, worker_id);
 981       hr = root_regions->claim_next();
 982     }
 983   }
 984 };
 985 
 986 void ConcurrentMark::scanRootRegions() {
 987   // Start of concurrent marking.
 988   ClassLoaderDataGraph::clear_claimed_marks();
 989 
 990   // scan_in_progress() will have been set to true only if there was
 991   // at least one root region to scan. So, if it's false, we
 992   // should not attempt to do any further work.
 993   if (root_regions()->scan_in_progress()) {
 994     GCTraceConcTime(Info, gc) tt("Concurrent Root Region Scan");
 995 
 996     _parallel_marking_threads = calc_parallel_marking_threads();
 997     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
 998            "Maximum number of marking threads exceeded");
 999     uint active_workers = MAX2(1U, parallel_marking_threads());
1000 
1001     CMRootRegionScanTask task(this);
1002     _parallel_workers->set_active_workers(active_workers);
1003     _parallel_workers->run_task(&task);
1004 
1005     // It's possible that has_aborted() is true here without actually
1006     // aborting the survivor scan earlier. This is OK as it's
1007     // mainly used for sanity checking.
1008     root_regions()->scan_finished();
1009   }
1010 }
1011 
1012 void ConcurrentMark::register_concurrent_phase_start(const char* title) {
1013   assert(!_concurrent_phase_started, "Sanity");
1014   _concurrent_phase_started = true;
1015   _g1h->gc_timer_cm()->register_gc_concurrent_start(title);
1016 }
1017 
1018 void ConcurrentMark::register_concurrent_phase_end() {
1019   if (_concurrent_phase_started) {
1020     _concurrent_phase_started = false;
1021     _g1h->gc_timer_cm()->register_gc_concurrent_end();
1022   }
1023 }
1024 
1025 void ConcurrentMark::markFromRoots() {
1026   // we might be tempted to assert that:
1027   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1028   //        "inconsistent argument?");
1029   // However that wouldn't be right, because it's possible that
1030   // a safepoint is indeed in progress as a younger generation
1031   // stop-the-world GC happens even as we mark in this generation.
1032 
1033   _restart_for_overflow = false;
1034 
1035   // _g1h has _n_par_threads
1036   _parallel_marking_threads = calc_parallel_marking_threads();
1037   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1038     "Maximum number of marking threads exceeded");
1039 
1040   uint active_workers = MAX2(1U, parallel_marking_threads());
1041   assert(active_workers > 0, "Should have been set");
1042 
1043   // Parallel task terminator is set in "set_concurrency_and_phase()"
1044   set_concurrency_and_phase(active_workers, true /* concurrent */);
1045 
1046   CMConcurrentMarkingTask markingTask(this, cmThread());
1047   _parallel_workers->set_active_workers(active_workers);
1048   _parallel_workers->run_task(&markingTask);
1049   print_stats();
1050 }
1051 
1052 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1053   // world is stopped at this checkpoint
1054   assert(SafepointSynchronize::is_at_safepoint(),
1055          "world should be stopped");
1056 
1057   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1058 
1059   // If a full collection has happened, we shouldn't do this.
1060   if (has_aborted()) {
1061     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1062     return;
1063   }
1064 
1065   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1066 
1067   if (VerifyDuringGC) {
1068     HandleMark hm;  // handle scope
1069     g1h->prepare_for_verify();
1070     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1071   }
1072   g1h->verifier()->check_bitmaps("Remark Start");
1073 
1074   G1CollectorPolicy* g1p = g1h->g1_policy();
1075   g1p->record_concurrent_mark_remark_start();
1076 
1077   double start = os::elapsedTime();
1078 
1079   checkpointRootsFinalWork();
1080 
1081   double mark_work_end = os::elapsedTime();
1082 
1083   weakRefsWork(clear_all_soft_refs);
1084 
1085   if (has_overflown()) {
1086     // Oops.  We overflowed.  Restart concurrent marking.
1087     _restart_for_overflow = true;
1088     log_develop_trace(gc)("Remark led to restart for overflow.");
1089 
1090     // Verify the heap w.r.t. the previous marking bitmap.
1091     if (VerifyDuringGC) {
1092       HandleMark hm;  // handle scope
1093       g1h->prepare_for_verify();
1094       Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (overflow)");
1095     }
1096 
1097     // Clear the marking state because we will be restarting
1098     // marking due to overflowing the global mark stack.
1099     reset_marking_state();
1100   } else {
1101     {
1102       GCTraceTime(Debug, gc) trace("GC Aggregate Data", g1h->gc_timer_cm());
1103 
1104       // Aggregate the per-task counting data that we have accumulated
1105       // while marking.
1106       aggregate_count_data();
1107     }
1108 
1109     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1110     // We're done with marking.
1111     // This is the end of  the marking cycle, we're expected all
1112     // threads to have SATB queues with active set to true.
1113     satb_mq_set.set_active_all_threads(false, /* new active value */
1114                                        true /* expected_active */);
1115 
1116     if (VerifyDuringGC) {
1117       HandleMark hm;  // handle scope
1118       g1h->prepare_for_verify();
1119       Universe::verify(VerifyOption_G1UseNextMarking, "During GC (after)");
1120     }
1121     g1h->verifier()->check_bitmaps("Remark End");
1122     assert(!restart_for_overflow(), "sanity");
1123     // Completely reset the marking state since marking completed
1124     set_non_marking_state();
1125   }
1126 
1127   // Expand the marking stack, if we have to and if we can.
1128   if (_markStack.should_expand()) {
1129     _markStack.expand();
1130   }
1131 
1132   // Statistics
1133   double now = os::elapsedTime();
1134   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1135   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1136   _remark_times.add((now - start) * 1000.0);
1137 
1138   g1p->record_concurrent_mark_remark_end();
1139 
1140   G1CMIsAliveClosure is_alive(g1h);
1141   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1142 }
1143 
1144 // Base class of the closures that finalize and verify the
1145 // liveness counting data.
1146 class CMCountDataClosureBase: public HeapRegionClosure {
1147 protected:
1148   G1CollectedHeap* _g1h;
1149   ConcurrentMark* _cm;
1150   CardTableModRefBS* _ct_bs;
1151 
1152   BitMap* _region_bm;
1153   BitMap* _card_bm;
1154 
1155   // Takes a region that's not empty (i.e., it has at least one
1156   // live object in it and sets its corresponding bit on the region
1157   // bitmap to 1.
1158   void set_bit_for_region(HeapRegion* hr) {
1159     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1160     _region_bm->par_at_put(index, true);
1161   }
1162 
1163 public:
1164   CMCountDataClosureBase(G1CollectedHeap* g1h,
1165                          BitMap* region_bm, BitMap* card_bm):
1166     _g1h(g1h), _cm(g1h->concurrent_mark()),
1167     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1168     _region_bm(region_bm), _card_bm(card_bm) { }
1169 };
1170 
1171 // Closure that calculates the # live objects per region. Used
1172 // for verification purposes during the cleanup pause.
1173 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1174   CMBitMapRO* _bm;
1175   size_t _region_marked_bytes;
1176 
1177 public:
1178   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1179                          BitMap* region_bm, BitMap* card_bm) :
1180     CMCountDataClosureBase(g1h, region_bm, card_bm),
1181     _bm(bm), _region_marked_bytes(0) { }
1182 
1183   bool doHeapRegion(HeapRegion* hr) {
1184     HeapWord* ntams = hr->next_top_at_mark_start();
1185     HeapWord* start = hr->bottom();
1186 
1187     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1188            "Preconditions not met - "
1189            "start: " PTR_FORMAT ", ntams: " PTR_FORMAT ", end: " PTR_FORMAT,
1190            p2i(start), p2i(ntams), p2i(hr->end()));
1191 
1192     // Find the first marked object at or after "start".
1193     start = _bm->getNextMarkedWordAddress(start, ntams);
1194 
1195     size_t marked_bytes = 0;
1196 
1197     while (start < ntams) {
1198       oop obj = oop(start);
1199       int obj_sz = obj->size();
1200       HeapWord* obj_end = start + obj_sz;
1201 
1202       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1203       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1204 
1205       // Note: if we're looking at the last region in heap - obj_end
1206       // could be actually just beyond the end of the heap; end_idx
1207       // will then correspond to a (non-existent) card that is also
1208       // just beyond the heap.
1209       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1210         // end of object is not card aligned - increment to cover
1211         // all the cards spanned by the object
1212         end_idx += 1;
1213       }
1214 
1215       // Set the bits in the card BM for the cards spanned by this object.
1216       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1217 
1218       // Add the size of this object to the number of marked bytes.
1219       marked_bytes += (size_t)obj_sz * HeapWordSize;
1220 
1221       // This will happen if we are handling a humongous object that spans
1222       // several heap regions.
1223       if (obj_end > hr->end()) {
1224         break;
1225       }
1226       // Find the next marked object after this one.
1227       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1228     }
1229 
1230     // Mark the allocated-since-marking portion...
1231     HeapWord* top = hr->top();
1232     if (ntams < top) {
1233       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1234       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1235 
1236       // Note: if we're looking at the last region in heap - top
1237       // could be actually just beyond the end of the heap; end_idx
1238       // will then correspond to a (non-existent) card that is also
1239       // just beyond the heap.
1240       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1241         // end of object is not card aligned - increment to cover
1242         // all the cards spanned by the object
1243         end_idx += 1;
1244       }
1245       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1246 
1247       // This definitely means the region has live objects.
1248       set_bit_for_region(hr);
1249     }
1250 
1251     // Update the live region bitmap.
1252     if (marked_bytes > 0) {
1253       set_bit_for_region(hr);
1254     }
1255 
1256     // Set the marked bytes for the current region so that
1257     // it can be queried by a calling verification routine
1258     _region_marked_bytes = marked_bytes;
1259 
1260     return false;
1261   }
1262 
1263   size_t region_marked_bytes() const { return _region_marked_bytes; }
1264 };
1265 
1266 // Heap region closure used for verifying the counting data
1267 // that was accumulated concurrently and aggregated during
1268 // the remark pause. This closure is applied to the heap
1269 // regions during the STW cleanup pause.
1270 
1271 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1272   G1CollectedHeap* _g1h;
1273   ConcurrentMark* _cm;
1274   CalcLiveObjectsClosure _calc_cl;
1275   BitMap* _region_bm;   // Region BM to be verified
1276   BitMap* _card_bm;     // Card BM to be verified
1277 
1278   BitMap* _exp_region_bm; // Expected Region BM values
1279   BitMap* _exp_card_bm;   // Expected card BM values
1280 
1281   int _failures;
1282 
1283 public:
1284   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1285                                 BitMap* region_bm,
1286                                 BitMap* card_bm,
1287                                 BitMap* exp_region_bm,
1288                                 BitMap* exp_card_bm) :
1289     _g1h(g1h), _cm(g1h->concurrent_mark()),
1290     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1291     _region_bm(region_bm), _card_bm(card_bm),
1292     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1293     _failures(0) { }
1294 
1295   int failures() const { return _failures; }
1296 
1297   bool doHeapRegion(HeapRegion* hr) {
1298     int failures = 0;
1299 
1300     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1301     // this region and set the corresponding bits in the expected region
1302     // and card bitmaps.
1303     bool res = _calc_cl.doHeapRegion(hr);
1304     assert(res == false, "should be continuing");
1305 
1306     // Verify the marked bytes for this region.
1307     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1308     size_t act_marked_bytes = hr->next_marked_bytes();
1309 
1310     if (exp_marked_bytes > act_marked_bytes) {
1311       if (hr->is_starts_humongous()) {
1312         // For start_humongous regions, the size of the whole object will be
1313         // in exp_marked_bytes.
1314         HeapRegion* region = hr;
1315         int num_regions;
1316         for (num_regions = 0; region != NULL; num_regions++) {
1317           region = _g1h->next_region_in_humongous(region);
1318         }
1319         if ((num_regions-1) * HeapRegion::GrainBytes >= exp_marked_bytes) {
1320           failures += 1;
1321         } else if (num_regions * HeapRegion::GrainBytes < exp_marked_bytes) {
1322           failures += 1;
1323         }
1324       } else {
1325         // We're not OK if expected marked bytes > actual marked bytes. It means
1326         // we have missed accounting some objects during the actual marking.
1327         failures += 1;
1328       }
1329     }
1330 
1331     // Verify the bit, for this region, in the actual and expected
1332     // (which was just calculated) region bit maps.
1333     // We're not OK if the bit in the calculated expected region
1334     // bitmap is set and the bit in the actual region bitmap is not.
1335     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1336 
1337     bool expected = _exp_region_bm->at(index);
1338     bool actual = _region_bm->at(index);
1339     if (expected && !actual) {
1340       failures += 1;
1341     }
1342 
1343     // Verify that the card bit maps for the cards spanned by the current
1344     // region match. We have an error if we have a set bit in the expected
1345     // bit map and the corresponding bit in the actual bitmap is not set.
1346 
1347     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1348     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1349 
1350     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1351       expected = _exp_card_bm->at(i);
1352       actual = _card_bm->at(i);
1353 
1354       if (expected && !actual) {
1355         failures += 1;
1356       }
1357     }
1358 
1359     _failures += failures;
1360 
1361     // We could stop iteration over the heap when we
1362     // find the first violating region by returning true.
1363     return false;
1364   }
1365 };
1366 
1367 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1368 protected:
1369   G1CollectedHeap* _g1h;
1370   ConcurrentMark* _cm;
1371   BitMap* _actual_region_bm;
1372   BitMap* _actual_card_bm;
1373 
1374   uint    _n_workers;
1375 
1376   BitMap* _expected_region_bm;
1377   BitMap* _expected_card_bm;
1378 
1379   int  _failures;
1380 
1381   HeapRegionClaimer _hrclaimer;
1382 
1383 public:
1384   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1385                             BitMap* region_bm, BitMap* card_bm,
1386                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1387     : AbstractGangTask("G1 verify final counting"),
1388       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1389       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1390       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1391       _failures(0),
1392       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1393     assert(VerifyDuringGC, "don't call this otherwise");
1394     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1395     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1396   }
1397 
1398   void work(uint worker_id) {
1399     assert(worker_id < _n_workers, "invariant");
1400 
1401     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1402                                             _actual_region_bm, _actual_card_bm,
1403                                             _expected_region_bm,
1404                                             _expected_card_bm);
1405 
1406     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1407 
1408     Atomic::add(verify_cl.failures(), &_failures);
1409   }
1410 
1411   int failures() const { return _failures; }
1412 };
1413 
1414 // Closure that finalizes the liveness counting data.
1415 // Used during the cleanup pause.
1416 // Sets the bits corresponding to the interval [NTAMS, top]
1417 // (which contains the implicitly live objects) in the
1418 // card liveness bitmap. Also sets the bit for each region,
1419 // containing live data, in the region liveness bitmap.
1420 
1421 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1422  public:
1423   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1424                               BitMap* region_bm,
1425                               BitMap* card_bm) :
1426     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1427 
1428   bool doHeapRegion(HeapRegion* hr) {
1429     HeapWord* ntams = hr->next_top_at_mark_start();
1430     HeapWord* top   = hr->top();
1431 
1432     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1433 
1434     // Mark the allocated-since-marking portion...
1435     if (ntams < top) {
1436       // This definitely means the region has live objects.
1437       set_bit_for_region(hr);
1438 
1439       // Now set the bits in the card bitmap for [ntams, top)
1440       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1441       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1442 
1443       // Note: if we're looking at the last region in heap - top
1444       // could be actually just beyond the end of the heap; end_idx
1445       // will then correspond to a (non-existent) card that is also
1446       // just beyond the heap.
1447       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1448         // end of object is not card aligned - increment to cover
1449         // all the cards spanned by the object
1450         end_idx += 1;
1451       }
1452 
1453       assert(end_idx <= _card_bm->size(),
1454              "oob: end_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1455              end_idx, _card_bm->size());
1456       assert(start_idx < _card_bm->size(),
1457              "oob: start_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1458              start_idx, _card_bm->size());
1459 
1460       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1461     }
1462 
1463     // Set the bit for the region if it contains live data
1464     if (hr->next_marked_bytes() > 0) {
1465       set_bit_for_region(hr);
1466     }
1467 
1468     return false;
1469   }
1470 };
1471 
1472 class G1ParFinalCountTask: public AbstractGangTask {
1473 protected:
1474   G1CollectedHeap* _g1h;
1475   ConcurrentMark* _cm;
1476   BitMap* _actual_region_bm;
1477   BitMap* _actual_card_bm;
1478 
1479   uint    _n_workers;
1480   HeapRegionClaimer _hrclaimer;
1481 
1482 public:
1483   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1484     : AbstractGangTask("G1 final counting"),
1485       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1486       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1487       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1488   }
1489 
1490   void work(uint worker_id) {
1491     assert(worker_id < _n_workers, "invariant");
1492 
1493     FinalCountDataUpdateClosure final_update_cl(_g1h,
1494                                                 _actual_region_bm,
1495                                                 _actual_card_bm);
1496 
1497     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1498   }
1499 };
1500 
1501 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1502   G1CollectedHeap* _g1;
1503   size_t _freed_bytes;
1504   FreeRegionList* _local_cleanup_list;
1505   uint _old_regions_removed;
1506   uint _humongous_regions_removed;
1507   HRRSCleanupTask* _hrrs_cleanup_task;
1508 
1509 public:
1510   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1511                              FreeRegionList* local_cleanup_list,
1512                              HRRSCleanupTask* hrrs_cleanup_task) :
1513     _g1(g1),
1514     _freed_bytes(0),
1515     _local_cleanup_list(local_cleanup_list),
1516     _old_regions_removed(0),
1517     _humongous_regions_removed(0),
1518     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1519 
1520   size_t freed_bytes() { return _freed_bytes; }
1521   const uint old_regions_removed() { return _old_regions_removed; }
1522   const uint humongous_regions_removed() { return _humongous_regions_removed; }
1523 
1524   bool doHeapRegion(HeapRegion *hr) {
1525     if (hr->is_archive()) {
1526       return false;
1527     }
1528     // We use a claim value of zero here because all regions
1529     // were claimed with value 1 in the FinalCount task.
1530     _g1->reset_gc_time_stamps(hr);
1531     hr->note_end_of_marking();
1532 
1533     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1534       _freed_bytes += hr->used();
1535       hr->set_containing_set(NULL);
1536       if (hr->is_humongous()) {
1537         _humongous_regions_removed++;
1538         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1539       } else {
1540         _old_regions_removed++;
1541         _g1->free_region(hr, _local_cleanup_list, true);
1542       }
1543     } else {
1544       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1545     }
1546 
1547     return false;
1548   }
1549 };
1550 
1551 class G1ParNoteEndTask: public AbstractGangTask {
1552   friend class G1NoteEndOfConcMarkClosure;
1553 
1554 protected:
1555   G1CollectedHeap* _g1h;
1556   FreeRegionList* _cleanup_list;
1557   HeapRegionClaimer _hrclaimer;
1558 
1559 public:
1560   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1561       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1562   }
1563 
1564   void work(uint worker_id) {
1565     FreeRegionList local_cleanup_list("Local Cleanup List");
1566     HRRSCleanupTask hrrs_cleanup_task;
1567     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1568                                            &hrrs_cleanup_task);
1569     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1570     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1571 
1572     // Now update the lists
1573     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1574     {
1575       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1576       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1577 
1578       // If we iterate over the global cleanup list at the end of
1579       // cleanup to do this printing we will not guarantee to only
1580       // generate output for the newly-reclaimed regions (the list
1581       // might not be empty at the beginning of cleanup; we might
1582       // still be working on its previous contents). So we do the
1583       // printing here, before we append the new regions to the global
1584       // cleanup list.
1585 
1586       G1HRPrinter* hr_printer = _g1h->hr_printer();
1587       if (hr_printer->is_active()) {
1588         FreeRegionListIterator iter(&local_cleanup_list);
1589         while (iter.more_available()) {
1590           HeapRegion* hr = iter.get_next();
1591           hr_printer->cleanup(hr);
1592         }
1593       }
1594 
1595       _cleanup_list->add_ordered(&local_cleanup_list);
1596       assert(local_cleanup_list.is_empty(), "post-condition");
1597 
1598       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1599     }
1600   }
1601 };
1602 
1603 void ConcurrentMark::cleanup() {
1604   // world is stopped at this checkpoint
1605   assert(SafepointSynchronize::is_at_safepoint(),
1606          "world should be stopped");
1607   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1608 
1609   // If a full collection has happened, we shouldn't do this.
1610   if (has_aborted()) {
1611     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1612     return;
1613   }
1614 
1615   g1h->verifier()->verify_region_sets_optional();
1616 
1617   if (VerifyDuringGC) {
1618     HandleMark hm;  // handle scope
1619     g1h->prepare_for_verify();
1620     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (before)");
1621   }
1622   g1h->verifier()->check_bitmaps("Cleanup Start");
1623 
1624   G1CollectorPolicy* g1p = g1h->g1_policy();
1625   g1p->record_concurrent_mark_cleanup_start();
1626 
1627   double start = os::elapsedTime();
1628 
1629   HeapRegionRemSet::reset_for_cleanup_tasks();
1630 
1631   // Do counting once more with the world stopped for good measure.
1632   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1633 
1634   g1h->workers()->run_task(&g1_par_count_task);
1635 
1636   if (VerifyDuringGC) {
1637     // Verify that the counting data accumulated during marking matches
1638     // that calculated by walking the marking bitmap.
1639 
1640     // Bitmaps to hold expected values
1641     BitMap expected_region_bm(_region_bm.size(), true);
1642     BitMap expected_card_bm(_card_bm.size(), true);
1643 
1644     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
1645                                                  &_region_bm,
1646                                                  &_card_bm,
1647                                                  &expected_region_bm,
1648                                                  &expected_card_bm);
1649 
1650     g1h->workers()->run_task(&g1_par_verify_task);
1651 
1652     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
1653   }
1654 
1655   size_t start_used_bytes = g1h->used();
1656   g1h->collector_state()->set_mark_in_progress(false);
1657 
1658   double count_end = os::elapsedTime();
1659   double this_final_counting_time = (count_end - start);
1660   _total_counting_time += this_final_counting_time;
1661 
1662   if (log_is_enabled(Trace, gc, liveness)) {
1663     G1PrintRegionLivenessInfoClosure cl("Post-Marking");
1664     _g1h->heap_region_iterate(&cl);
1665   }
1666 
1667   // Install newly created mark bitMap as "prev".
1668   swapMarkBitMaps();
1669 
1670   g1h->reset_gc_time_stamp();
1671 
1672   uint n_workers = _g1h->workers()->active_workers();
1673 
1674   // Note end of marking in all heap regions.
1675   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1676   g1h->workers()->run_task(&g1_par_note_end_task);
1677   g1h->check_gc_time_stamps();
1678 
1679   if (!cleanup_list_is_empty()) {
1680     // The cleanup list is not empty, so we'll have to process it
1681     // concurrently. Notify anyone else that might be wanting free
1682     // regions that there will be more free regions coming soon.
1683     g1h->set_free_regions_coming();
1684   }
1685 
1686   // call below, since it affects the metric by which we sort the heap
1687   // regions.
1688   if (G1ScrubRemSets) {
1689     double rs_scrub_start = os::elapsedTime();
1690     g1h->scrub_rem_set(&_region_bm, &_card_bm);
1691     _total_rs_scrub_time += (os::elapsedTime() - rs_scrub_start);
1692   }
1693 
1694   // this will also free any regions totally full of garbage objects,
1695   // and sort the regions.
1696   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1697 
1698   // Statistics.
1699   double end = os::elapsedTime();
1700   _cleanup_times.add((end - start) * 1000.0);
1701 
1702   // Clean up will have freed any regions completely full of garbage.
1703   // Update the soft reference policy with the new heap occupancy.
1704   Universe::update_heap_info_at_gc();
1705 
1706   if (VerifyDuringGC) {
1707     HandleMark hm;  // handle scope
1708     g1h->prepare_for_verify();
1709     Universe::verify(VerifyOption_G1UsePrevMarking, "During GC (after)");
1710   }
1711 
1712   g1h->verifier()->check_bitmaps("Cleanup End");
1713 
1714   g1h->verifier()->verify_region_sets_optional();
1715 
1716   // We need to make this be a "collection" so any collection pause that
1717   // races with it goes around and waits for completeCleanup to finish.
1718   g1h->increment_total_collections();
1719 
1720   // Clean out dead classes and update Metaspace sizes.
1721   if (ClassUnloadingWithConcurrentMark) {
1722     ClassLoaderDataGraph::purge();
1723   }
1724   MetaspaceGC::compute_new_size();
1725 
1726   // We reclaimed old regions so we should calculate the sizes to make
1727   // sure we update the old gen/space data.
1728   g1h->g1mm()->update_sizes();
1729   g1h->allocation_context_stats().update_after_mark();
1730 
1731   g1h->trace_heap_after_concurrent_cycle();
1732 }
1733 
1734 void ConcurrentMark::completeCleanup() {
1735   if (has_aborted()) return;
1736 
1737   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1738 
1739   _cleanup_list.verify_optional();
1740   FreeRegionList tmp_free_list("Tmp Free List");
1741 
1742   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1743                                   "cleanup list has %u entries",
1744                                   _cleanup_list.length());
1745 
1746   // No one else should be accessing the _cleanup_list at this point,
1747   // so it is not necessary to take any locks
1748   while (!_cleanup_list.is_empty()) {
1749     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1750     assert(hr != NULL, "Got NULL from a non-empty list");
1751     hr->par_clear();
1752     tmp_free_list.add_ordered(hr);
1753 
1754     // Instead of adding one region at a time to the secondary_free_list,
1755     // we accumulate them in the local list and move them a few at a
1756     // time. This also cuts down on the number of notify_all() calls
1757     // we do during this process. We'll also append the local list when
1758     // _cleanup_list is empty (which means we just removed the last
1759     // region from the _cleanup_list).
1760     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1761         _cleanup_list.is_empty()) {
1762       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [complete cleanup] : "
1763                                       "appending %u entries to the secondary_free_list, "
1764                                       "cleanup list still has %u entries",
1765                                       tmp_free_list.length(),
1766                                       _cleanup_list.length());
1767 
1768       {
1769         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1770         g1h->secondary_free_list_add(&tmp_free_list);
1771         SecondaryFreeList_lock->notify_all();
1772       }
1773 #ifndef PRODUCT
1774       if (G1StressConcRegionFreeing) {
1775         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1776           os::sleep(Thread::current(), (jlong) 1, false);
1777         }
1778       }
1779 #endif
1780     }
1781   }
1782   assert(tmp_free_list.is_empty(), "post-condition");
1783 }
1784 
1785 // Supporting Object and Oop closures for reference discovery
1786 // and processing in during marking
1787 
1788 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1789   HeapWord* addr = (HeapWord*)obj;
1790   return addr != NULL &&
1791          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1792 }
1793 
1794 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1795 // Uses the CMTask associated with a worker thread (for serial reference
1796 // processing the CMTask for worker 0 is used) to preserve (mark) and
1797 // trace referent objects.
1798 //
1799 // Using the CMTask and embedded local queues avoids having the worker
1800 // threads operating on the global mark stack. This reduces the risk
1801 // of overflowing the stack - which we would rather avoid at this late
1802 // state. Also using the tasks' local queues removes the potential
1803 // of the workers interfering with each other that could occur if
1804 // operating on the global stack.
1805 
1806 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1807   ConcurrentMark* _cm;
1808   CMTask*         _task;
1809   int             _ref_counter_limit;
1810   int             _ref_counter;
1811   bool            _is_serial;
1812  public:
1813   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
1814     _cm(cm), _task(task), _is_serial(is_serial),
1815     _ref_counter_limit(G1RefProcDrainInterval) {
1816     assert(_ref_counter_limit > 0, "sanity");
1817     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1818     _ref_counter = _ref_counter_limit;
1819   }
1820 
1821   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1822   virtual void do_oop(      oop* p) { do_oop_work(p); }
1823 
1824   template <class T> void do_oop_work(T* p) {
1825     if (!_cm->has_overflown()) {
1826       oop obj = oopDesc::load_decode_heap_oop(p);
1827       _task->deal_with_reference(obj);
1828       _ref_counter--;
1829 
1830       if (_ref_counter == 0) {
1831         // We have dealt with _ref_counter_limit references, pushing them
1832         // and objects reachable from them on to the local stack (and
1833         // possibly the global stack). Call CMTask::do_marking_step() to
1834         // process these entries.
1835         //
1836         // We call CMTask::do_marking_step() in a loop, which we'll exit if
1837         // there's nothing more to do (i.e. we're done with the entries that
1838         // were pushed as a result of the CMTask::deal_with_reference() calls
1839         // above) or we overflow.
1840         //
1841         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
1842         // flag while there may still be some work to do. (See the comment at
1843         // the beginning of CMTask::do_marking_step() for those conditions -
1844         // one of which is reaching the specified time target.) It is only
1845         // when CMTask::do_marking_step() returns without setting the
1846         // has_aborted() flag that the marking step has completed.
1847         do {
1848           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1849           _task->do_marking_step(mark_step_duration_ms,
1850                                  false      /* do_termination */,
1851                                  _is_serial);
1852         } while (_task->has_aborted() && !_cm->has_overflown());
1853         _ref_counter = _ref_counter_limit;
1854       }
1855     }
1856   }
1857 };
1858 
1859 // 'Drain' oop closure used by both serial and parallel reference processing.
1860 // Uses the CMTask associated with a given worker thread (for serial
1861 // reference processing the CMtask for worker 0 is used). Calls the
1862 // do_marking_step routine, with an unbelievably large timeout value,
1863 // to drain the marking data structures of the remaining entries
1864 // added by the 'keep alive' oop closure above.
1865 
1866 class G1CMDrainMarkingStackClosure: public VoidClosure {
1867   ConcurrentMark* _cm;
1868   CMTask*         _task;
1869   bool            _is_serial;
1870  public:
1871   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
1872     _cm(cm), _task(task), _is_serial(is_serial) {
1873     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1874   }
1875 
1876   void do_void() {
1877     do {
1878       // We call CMTask::do_marking_step() to completely drain the local
1879       // and global marking stacks of entries pushed by the 'keep alive'
1880       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1881       //
1882       // CMTask::do_marking_step() is called in a loop, which we'll exit
1883       // if there's nothing more to do (i.e. we've completely drained the
1884       // entries that were pushed as a a result of applying the 'keep alive'
1885       // closure to the entries on the discovered ref lists) or we overflow
1886       // the global marking stack.
1887       //
1888       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
1889       // flag while there may still be some work to do. (See the comment at
1890       // the beginning of CMTask::do_marking_step() for those conditions -
1891       // one of which is reaching the specified time target.) It is only
1892       // when CMTask::do_marking_step() returns without setting the
1893       // has_aborted() flag that the marking step has completed.
1894 
1895       _task->do_marking_step(1000000000.0 /* something very large */,
1896                              true         /* do_termination */,
1897                              _is_serial);
1898     } while (_task->has_aborted() && !_cm->has_overflown());
1899   }
1900 };
1901 
1902 // Implementation of AbstractRefProcTaskExecutor for parallel
1903 // reference processing at the end of G1 concurrent marking
1904 
1905 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
1906 private:
1907   G1CollectedHeap* _g1h;
1908   ConcurrentMark*  _cm;
1909   WorkGang*        _workers;
1910   uint             _active_workers;
1911 
1912 public:
1913   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1914                           ConcurrentMark* cm,
1915                           WorkGang* workers,
1916                           uint n_workers) :
1917     _g1h(g1h), _cm(cm),
1918     _workers(workers), _active_workers(n_workers) { }
1919 
1920   // Executes the given task using concurrent marking worker threads.
1921   virtual void execute(ProcessTask& task);
1922   virtual void execute(EnqueueTask& task);
1923 };
1924 
1925 class G1CMRefProcTaskProxy: public AbstractGangTask {
1926   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1927   ProcessTask&     _proc_task;
1928   G1CollectedHeap* _g1h;
1929   ConcurrentMark*  _cm;
1930 
1931 public:
1932   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1933                      G1CollectedHeap* g1h,
1934                      ConcurrentMark* cm) :
1935     AbstractGangTask("Process reference objects in parallel"),
1936     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1937     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1938     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1939   }
1940 
1941   virtual void work(uint worker_id) {
1942     ResourceMark rm;
1943     HandleMark hm;
1944     CMTask* task = _cm->task(worker_id);
1945     G1CMIsAliveClosure g1_is_alive(_g1h);
1946     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1947     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1948 
1949     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1950   }
1951 };
1952 
1953 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
1954   assert(_workers != NULL, "Need parallel worker threads.");
1955   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1956 
1957   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1958 
1959   // We need to reset the concurrency level before each
1960   // proxy task execution, so that the termination protocol
1961   // and overflow handling in CMTask::do_marking_step() knows
1962   // how many workers to wait for.
1963   _cm->set_concurrency(_active_workers);
1964   _workers->run_task(&proc_task_proxy);
1965 }
1966 
1967 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
1968   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
1969   EnqueueTask& _enq_task;
1970 
1971 public:
1972   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
1973     AbstractGangTask("Enqueue reference objects in parallel"),
1974     _enq_task(enq_task) { }
1975 
1976   virtual void work(uint worker_id) {
1977     _enq_task.work(worker_id);
1978   }
1979 };
1980 
1981 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
1982   assert(_workers != NULL, "Need parallel worker threads.");
1983   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1984 
1985   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
1986 
1987   // Not strictly necessary but...
1988   //
1989   // We need to reset the concurrency level before each
1990   // proxy task execution, so that the termination protocol
1991   // and overflow handling in CMTask::do_marking_step() knows
1992   // how many workers to wait for.
1993   _cm->set_concurrency(_active_workers);
1994   _workers->run_task(&enq_task_proxy);
1995 }
1996 
1997 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
1998   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
1999 }
2000 
2001 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2002   if (has_overflown()) {
2003     // Skip processing the discovered references if we have
2004     // overflown the global marking stack. Reference objects
2005     // only get discovered once so it is OK to not
2006     // de-populate the discovered reference lists. We could have,
2007     // but the only benefit would be that, when marking restarts,
2008     // less reference objects are discovered.
2009     return;
2010   }
2011 
2012   ResourceMark rm;
2013   HandleMark   hm;
2014 
2015   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2016 
2017   // Is alive closure.
2018   G1CMIsAliveClosure g1_is_alive(g1h);
2019 
2020   // Inner scope to exclude the cleaning of the string and symbol
2021   // tables from the displayed time.
2022   {
2023     GCTraceTime(Debug, gc) trace("GC Ref Proc", g1h->gc_timer_cm());
2024 
2025     ReferenceProcessor* rp = g1h->ref_processor_cm();
2026 
2027     // See the comment in G1CollectedHeap::ref_processing_init()
2028     // about how reference processing currently works in G1.
2029 
2030     // Set the soft reference policy
2031     rp->setup_policy(clear_all_soft_refs);
2032     assert(_markStack.isEmpty(), "mark stack should be empty");
2033 
2034     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2035     // in serial reference processing. Note these closures are also
2036     // used for serially processing (by the the current thread) the
2037     // JNI references during parallel reference processing.
2038     //
2039     // These closures do not need to synchronize with the worker
2040     // threads involved in parallel reference processing as these
2041     // instances are executed serially by the current thread (e.g.
2042     // reference processing is not multi-threaded and is thus
2043     // performed by the current thread instead of a gang worker).
2044     //
2045     // The gang tasks involved in parallel reference processing create
2046     // their own instances of these closures, which do their own
2047     // synchronization among themselves.
2048     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2049     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2050 
2051     // We need at least one active thread. If reference processing
2052     // is not multi-threaded we use the current (VMThread) thread,
2053     // otherwise we use the work gang from the G1CollectedHeap and
2054     // we utilize all the worker threads we can.
2055     bool processing_is_mt = rp->processing_is_mt();
2056     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2057     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2058 
2059     // Parallel processing task executor.
2060     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2061                                               g1h->workers(), active_workers);
2062     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2063 
2064     // Set the concurrency level. The phase was already set prior to
2065     // executing the remark task.
2066     set_concurrency(active_workers);
2067 
2068     // Set the degree of MT processing here.  If the discovery was done MT,
2069     // the number of threads involved during discovery could differ from
2070     // the number of active workers.  This is OK as long as the discovered
2071     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2072     rp->set_active_mt_degree(active_workers);
2073 
2074     // Process the weak references.
2075     const ReferenceProcessorStats& stats =
2076         rp->process_discovered_references(&g1_is_alive,
2077                                           &g1_keep_alive,
2078                                           &g1_drain_mark_stack,
2079                                           executor,
2080                                           g1h->gc_timer_cm());
2081     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2082 
2083     // The do_oop work routines of the keep_alive and drain_marking_stack
2084     // oop closures will set the has_overflown flag if we overflow the
2085     // global marking stack.
2086 
2087     assert(_markStack.overflow() || _markStack.isEmpty(),
2088             "mark stack should be empty (unless it overflowed)");
2089 
2090     if (_markStack.overflow()) {
2091       // This should have been done already when we tried to push an
2092       // entry on to the global mark stack. But let's do it again.
2093       set_has_overflown();
2094     }
2095 
2096     assert(rp->num_q() == active_workers, "why not");
2097 
2098     rp->enqueue_discovered_references(executor);
2099 
2100     rp->verify_no_references_recorded();
2101     assert(!rp->discovery_enabled(), "Post condition");
2102   }
2103 
2104   if (has_overflown()) {
2105     // We can not trust g1_is_alive if the marking stack overflowed
2106     return;
2107   }
2108 
2109   assert(_markStack.isEmpty(), "Marking should have completed");
2110 
2111   // Unload Klasses, String, Symbols, Code Cache, etc.
2112   {
2113     GCTraceTime(Debug, gc) trace("Unloading", g1h->gc_timer_cm());
2114 
2115     if (ClassUnloadingWithConcurrentMark) {
2116       bool purged_classes;
2117 
2118       {
2119         GCTraceTime(Trace, gc) trace("System Dictionary Unloading", g1h->gc_timer_cm());
2120         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2121       }
2122 
2123       {
2124         GCTraceTime(Trace, gc) trace("Parallel Unloading", g1h->gc_timer_cm());
2125         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2126       }
2127     }
2128 
2129     if (G1StringDedup::is_enabled()) {
2130       GCTraceTime(Trace, gc) trace("String Deduplication Unlink", g1h->gc_timer_cm());
2131       G1StringDedup::unlink(&g1_is_alive);
2132     }
2133   }
2134 }
2135 
2136 void ConcurrentMark::swapMarkBitMaps() {
2137   CMBitMapRO* temp = _prevMarkBitMap;
2138   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2139   _nextMarkBitMap  = (CMBitMap*)  temp;
2140 }
2141 
2142 // Closure for marking entries in SATB buffers.
2143 class CMSATBBufferClosure : public SATBBufferClosure {
2144 private:
2145   CMTask* _task;
2146   G1CollectedHeap* _g1h;
2147 
2148   // This is very similar to CMTask::deal_with_reference, but with
2149   // more relaxed requirements for the argument, so this must be more
2150   // circumspect about treating the argument as an object.
2151   void do_entry(void* entry) const {
2152     _task->increment_refs_reached();
2153     HeapRegion* hr = _g1h->heap_region_containing(entry);
2154     if (entry < hr->next_top_at_mark_start()) {
2155       // Until we get here, we don't know whether entry refers to a valid
2156       // object; it could instead have been a stale reference.
2157       oop obj = static_cast<oop>(entry);
2158       assert(obj->is_oop(true /* ignore mark word */),
2159              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
2160       _task->make_reference_grey(obj, hr);
2161     }
2162   }
2163 
2164 public:
2165   CMSATBBufferClosure(CMTask* task, G1CollectedHeap* g1h)
2166     : _task(task), _g1h(g1h) { }
2167 
2168   virtual void do_buffer(void** buffer, size_t size) {
2169     for (size_t i = 0; i < size; ++i) {
2170       do_entry(buffer[i]);
2171     }
2172   }
2173 };
2174 
2175 class G1RemarkThreadsClosure : public ThreadClosure {
2176   CMSATBBufferClosure _cm_satb_cl;
2177   G1CMOopClosure _cm_cl;
2178   MarkingCodeBlobClosure _code_cl;
2179   int _thread_parity;
2180 
2181  public:
2182   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task) :
2183     _cm_satb_cl(task, g1h),
2184     _cm_cl(g1h, g1h->concurrent_mark(), task),
2185     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2186     _thread_parity(Threads::thread_claim_parity()) {}
2187 
2188   void do_thread(Thread* thread) {
2189     if (thread->is_Java_thread()) {
2190       if (thread->claim_oops_do(true, _thread_parity)) {
2191         JavaThread* jt = (JavaThread*)thread;
2192 
2193         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2194         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2195         // * Alive if on the stack of an executing method
2196         // * Weakly reachable otherwise
2197         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2198         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2199         jt->nmethods_do(&_code_cl);
2200 
2201         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
2202       }
2203     } else if (thread->is_VM_thread()) {
2204       if (thread->claim_oops_do(true, _thread_parity)) {
2205         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
2206       }
2207     }
2208   }
2209 };
2210 
2211 class CMRemarkTask: public AbstractGangTask {
2212 private:
2213   ConcurrentMark* _cm;
2214 public:
2215   void work(uint worker_id) {
2216     // Since all available tasks are actually started, we should
2217     // only proceed if we're supposed to be active.
2218     if (worker_id < _cm->active_tasks()) {
2219       CMTask* task = _cm->task(worker_id);
2220       task->record_start_time();
2221       {
2222         ResourceMark rm;
2223         HandleMark hm;
2224 
2225         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2226         Threads::threads_do(&threads_f);
2227       }
2228 
2229       do {
2230         task->do_marking_step(1000000000.0 /* something very large */,
2231                               true         /* do_termination       */,
2232                               false        /* is_serial            */);
2233       } while (task->has_aborted() && !_cm->has_overflown());
2234       // If we overflow, then we do not want to restart. We instead
2235       // want to abort remark and do concurrent marking again.
2236       task->record_end_time();
2237     }
2238   }
2239 
2240   CMRemarkTask(ConcurrentMark* cm, uint active_workers) :
2241     AbstractGangTask("Par Remark"), _cm(cm) {
2242     _cm->terminator()->reset_for_reuse(active_workers);
2243   }
2244 };
2245 
2246 void ConcurrentMark::checkpointRootsFinalWork() {
2247   ResourceMark rm;
2248   HandleMark   hm;
2249   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2250 
2251   GCTraceTime(Debug, gc) trace("Finalize Marking", g1h->gc_timer_cm());
2252 
2253   g1h->ensure_parsability(false);
2254 
2255   // this is remark, so we'll use up all active threads
2256   uint active_workers = g1h->workers()->active_workers();
2257   set_concurrency_and_phase(active_workers, false /* concurrent */);
2258   // Leave _parallel_marking_threads at it's
2259   // value originally calculated in the ConcurrentMark
2260   // constructor and pass values of the active workers
2261   // through the gang in the task.
2262 
2263   {
2264     StrongRootsScope srs(active_workers);
2265 
2266     CMRemarkTask remarkTask(this, active_workers);
2267     // We will start all available threads, even if we decide that the
2268     // active_workers will be fewer. The extra ones will just bail out
2269     // immediately.
2270     g1h->workers()->run_task(&remarkTask);
2271   }
2272 
2273   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2274   guarantee(has_overflown() ||
2275             satb_mq_set.completed_buffers_num() == 0,
2276             "Invariant: has_overflown = %s, num buffers = %d",
2277             BOOL_TO_STR(has_overflown()),
2278             satb_mq_set.completed_buffers_num());
2279 
2280   print_stats();
2281 }
2282 
2283 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2284   // Note we are overriding the read-only view of the prev map here, via
2285   // the cast.
2286   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2287 }
2288 
2289 HeapRegion*
2290 ConcurrentMark::claim_region(uint worker_id) {
2291   // "checkpoint" the finger
2292   HeapWord* finger = _finger;
2293 
2294   // _heap_end will not change underneath our feet; it only changes at
2295   // yield points.
2296   while (finger < _heap_end) {
2297     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2298 
2299     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
2300 
2301     // Above heap_region_containing may return NULL as we always scan claim
2302     // until the end of the heap. In this case, just jump to the next region.
2303     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2304 
2305     // Is the gap between reading the finger and doing the CAS too long?
2306     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2307     if (res == finger && curr_region != NULL) {
2308       // we succeeded
2309       HeapWord*   bottom        = curr_region->bottom();
2310       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2311 
2312       // notice that _finger == end cannot be guaranteed here since,
2313       // someone else might have moved the finger even further
2314       assert(_finger >= end, "the finger should have moved forward");
2315 
2316       if (limit > bottom) {
2317         return curr_region;
2318       } else {
2319         assert(limit == bottom,
2320                "the region limit should be at bottom");
2321         // we return NULL and the caller should try calling
2322         // claim_region() again.
2323         return NULL;
2324       }
2325     } else {
2326       assert(_finger > finger, "the finger should have moved forward");
2327       // read it again
2328       finger = _finger;
2329     }
2330   }
2331 
2332   return NULL;
2333 }
2334 
2335 #ifndef PRODUCT
2336 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
2337 private:
2338   G1CollectedHeap* _g1h;
2339   const char* _phase;
2340   int _info;
2341 
2342 public:
2343   VerifyNoCSetOops(const char* phase, int info = -1) :
2344     _g1h(G1CollectedHeap::heap()),
2345     _phase(phase),
2346     _info(info)
2347   { }
2348 
2349   void operator()(oop obj) const {
2350     guarantee(obj->is_oop(),
2351               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
2352               p2i(obj), _phase, _info);
2353     guarantee(!_g1h->obj_in_cs(obj),
2354               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
2355               p2i(obj), _phase, _info);
2356   }
2357 };
2358 
2359 void ConcurrentMark::verify_no_cset_oops() {
2360   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2361   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
2362     return;
2363   }
2364 
2365   // Verify entries on the global mark stack
2366   _markStack.iterate(VerifyNoCSetOops("Stack"));
2367 
2368   // Verify entries on the task queues
2369   for (uint i = 0; i < _max_worker_id; ++i) {
2370     CMTaskQueue* queue = _task_queues->queue(i);
2371     queue->iterate(VerifyNoCSetOops("Queue", i));
2372   }
2373 
2374   // Verify the global finger
2375   HeapWord* global_finger = finger();
2376   if (global_finger != NULL && global_finger < _heap_end) {
2377     // Since we always iterate over all regions, we might get a NULL HeapRegion
2378     // here.
2379     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
2380     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2381               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
2382               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
2383   }
2384 
2385   // Verify the task fingers
2386   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2387   for (uint i = 0; i < parallel_marking_threads(); ++i) {
2388     CMTask* task = _tasks[i];
2389     HeapWord* task_finger = task->finger();
2390     if (task_finger != NULL && task_finger < _heap_end) {
2391       // See above note on the global finger verification.
2392       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2393       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2394                 !task_hr->in_collection_set(),
2395                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2396                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2397     }
2398   }
2399 }
2400 #endif // PRODUCT
2401 
2402 // Aggregate the counting data that was constructed concurrently
2403 // with marking.
2404 class AggregateCountDataHRClosure: public HeapRegionClosure {
2405   G1CollectedHeap* _g1h;
2406   ConcurrentMark* _cm;
2407   CardTableModRefBS* _ct_bs;
2408   BitMap* _cm_card_bm;
2409   uint _max_worker_id;
2410 
2411  public:
2412   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2413                               BitMap* cm_card_bm,
2414                               uint max_worker_id) :
2415     _g1h(g1h), _cm(g1h->concurrent_mark()),
2416     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
2417     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2418 
2419   bool doHeapRegion(HeapRegion* hr) {
2420     HeapWord* start = hr->bottom();
2421     HeapWord* limit = hr->next_top_at_mark_start();
2422     HeapWord* end = hr->end();
2423 
2424     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
2425            "Preconditions not met - "
2426            "start: " PTR_FORMAT ", limit: " PTR_FORMAT ", "
2427            "top: " PTR_FORMAT ", end: " PTR_FORMAT,
2428            p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end()));
2429 
2430     assert(hr->next_marked_bytes() == 0, "Precondition");
2431 
2432     if (start == limit) {
2433       // NTAMS of this region has not been set so nothing to do.
2434       return false;
2435     }
2436 
2437     // 'start' should be in the heap.
2438     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
2439     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
2440     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
2441 
2442     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
2443     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
2444     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
2445 
2446     // If ntams is not card aligned then we bump card bitmap index
2447     // for limit so that we get the all the cards spanned by
2448     // the object ending at ntams.
2449     // Note: if this is the last region in the heap then ntams
2450     // could be actually just beyond the end of the the heap;
2451     // limit_idx will then  correspond to a (non-existent) card
2452     // that is also outside the heap.
2453     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
2454       limit_idx += 1;
2455     }
2456 
2457     assert(limit_idx <= end_idx, "or else use atomics");
2458 
2459     // Aggregate the "stripe" in the count data associated with hr.
2460     uint hrm_index = hr->hrm_index();
2461     size_t marked_bytes = 0;
2462 
2463     for (uint i = 0; i < _max_worker_id; i += 1) {
2464       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
2465       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
2466 
2467       // Fetch the marked_bytes in this region for task i and
2468       // add it to the running total for this region.
2469       marked_bytes += marked_bytes_array[hrm_index];
2470 
2471       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
2472       // into the global card bitmap.
2473       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
2474 
2475       while (scan_idx < limit_idx) {
2476         assert(task_card_bm->at(scan_idx) == true, "should be");
2477         _cm_card_bm->set_bit(scan_idx);
2478         assert(_cm_card_bm->at(scan_idx) == true, "should be");
2479 
2480         // BitMap::get_next_one_offset() can handle the case when
2481         // its left_offset parameter is greater than its right_offset
2482         // parameter. It does, however, have an early exit if
2483         // left_offset == right_offset. So let's limit the value
2484         // passed in for left offset here.
2485         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
2486         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
2487       }
2488     }
2489 
2490     // Update the marked bytes for this region.
2491     hr->add_to_marked_bytes(marked_bytes);
2492 
2493     // Next heap region
2494     return false;
2495   }
2496 };
2497 
2498 class G1AggregateCountDataTask: public AbstractGangTask {
2499 protected:
2500   G1CollectedHeap* _g1h;
2501   ConcurrentMark* _cm;
2502   BitMap* _cm_card_bm;
2503   uint _max_worker_id;
2504   uint _active_workers;
2505   HeapRegionClaimer _hrclaimer;
2506 
2507 public:
2508   G1AggregateCountDataTask(G1CollectedHeap* g1h,
2509                            ConcurrentMark* cm,
2510                            BitMap* cm_card_bm,
2511                            uint max_worker_id,
2512                            uint n_workers) :
2513       AbstractGangTask("Count Aggregation"),
2514       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
2515       _max_worker_id(max_worker_id),
2516       _active_workers(n_workers),
2517       _hrclaimer(_active_workers) {
2518   }
2519 
2520   void work(uint worker_id) {
2521     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
2522 
2523     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
2524   }
2525 };
2526 
2527 
2528 void ConcurrentMark::aggregate_count_data() {
2529   uint n_workers = _g1h->workers()->active_workers();
2530 
2531   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
2532                                            _max_worker_id, n_workers);
2533 
2534   _g1h->workers()->run_task(&g1_par_agg_task);
2535 }
2536 
2537 // Clear the per-worker arrays used to store the per-region counting data
2538 void ConcurrentMark::clear_all_count_data() {
2539   // Clear the global card bitmap - it will be filled during
2540   // liveness count aggregation (during remark) and the
2541   // final counting task.
2542   _card_bm.clear();
2543 
2544   // Clear the global region bitmap - it will be filled as part
2545   // of the final counting task.
2546   _region_bm.clear();
2547 
2548   uint max_regions = _g1h->max_regions();
2549   assert(_max_worker_id > 0, "uninitialized");
2550 
2551   for (uint i = 0; i < _max_worker_id; i += 1) {
2552     BitMap* task_card_bm = count_card_bitmap_for(i);
2553     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
2554 
2555     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
2556     assert(marked_bytes_array != NULL, "uninitialized");
2557 
2558     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
2559     task_card_bm->clear();
2560   }
2561 }
2562 
2563 void ConcurrentMark::print_stats() {
2564   if (!log_is_enabled(Debug, gc, stats)) {
2565     return;
2566   }
2567   log_debug(gc, stats)("---------------------------------------------------------------------");
2568   for (size_t i = 0; i < _active_tasks; ++i) {
2569     _tasks[i]->print_stats();
2570     log_debug(gc, stats)("---------------------------------------------------------------------");
2571   }
2572 }
2573 
2574 // abandon current marking iteration due to a Full GC
2575 void ConcurrentMark::abort() {
2576   if (!cmThread()->during_cycle() || _has_aborted) {
2577     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2578     return;
2579   }
2580 
2581   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2582   // concurrent bitmap clearing.
2583   _nextMarkBitMap->clearAll();
2584 
2585   // Note we cannot clear the previous marking bitmap here
2586   // since VerifyDuringGC verifies the objects marked during
2587   // a full GC against the previous bitmap.
2588 
2589   // Clear the liveness counting data
2590   clear_all_count_data();
2591   // Empty mark stack
2592   reset_marking_state();
2593   for (uint i = 0; i < _max_worker_id; ++i) {
2594     _tasks[i]->clear_region_fields();
2595   }
2596   _first_overflow_barrier_sync.abort();
2597   _second_overflow_barrier_sync.abort();
2598   _has_aborted = true;
2599 
2600   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2601   satb_mq_set.abandon_partial_marking();
2602   // This can be called either during or outside marking, we'll read
2603   // the expected_active value from the SATB queue set.
2604   satb_mq_set.set_active_all_threads(
2605                                  false, /* new active value */
2606                                  satb_mq_set.is_active() /* expected_active */);
2607 
2608   _g1h->trace_heap_after_concurrent_cycle();
2609 
2610   // Close any open concurrent phase timing
2611   register_concurrent_phase_end();
2612 
2613   _g1h->register_concurrent_cycle_end();
2614 }
2615 
2616 static void print_ms_time_info(const char* prefix, const char* name,
2617                                NumberSeq& ns) {
2618   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2619                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2620   if (ns.num() > 0) {
2621     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2622                            prefix, ns.sd(), ns.maximum());
2623   }
2624 }
2625 
2626 void ConcurrentMark::print_summary_info() {
2627   LogHandle(gc, marking) log;
2628   if (!log.is_trace()) {
2629     return;
2630   }
2631 
2632   log.trace(" Concurrent marking:");
2633   print_ms_time_info("  ", "init marks", _init_times);
2634   print_ms_time_info("  ", "remarks", _remark_times);
2635   {
2636     print_ms_time_info("     ", "final marks", _remark_mark_times);
2637     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2638 
2639   }
2640   print_ms_time_info("  ", "cleanups", _cleanup_times);
2641   log.trace("    Final counting total time = %8.2f s (avg = %8.2f ms).",
2642             _total_counting_time, (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2643   if (G1ScrubRemSets) {
2644     log.trace("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2645               _total_rs_scrub_time, (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2646   }
2647   log.trace("  Total stop_world time = %8.2f s.",
2648             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2649   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2650             cmThread()->vtime_accum(), cmThread()->vtime_mark_accum());
2651 }
2652 
2653 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2654   _parallel_workers->print_worker_threads_on(st);
2655 }
2656 
2657 void ConcurrentMark::print_on_error(outputStream* st) const {
2658   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2659       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2660   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2661   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2662 }
2663 
2664 // We take a break if someone is trying to stop the world.
2665 bool ConcurrentMark::do_yield_check(uint worker_id) {
2666   if (SuspendibleThreadSet::should_yield()) {
2667     if (worker_id == 0) {
2668       _g1h->g1_policy()->record_concurrent_pause();
2669     }
2670     SuspendibleThreadSet::yield();
2671     return true;
2672   } else {
2673     return false;
2674   }
2675 }
2676 
2677 // Closure for iteration over bitmaps
2678 class CMBitMapClosure : public BitMapClosure {
2679 private:
2680   // the bitmap that is being iterated over
2681   CMBitMap*                   _nextMarkBitMap;
2682   ConcurrentMark*             _cm;
2683   CMTask*                     _task;
2684 
2685 public:
2686   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
2687     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2688 
2689   bool do_bit(size_t offset) {
2690     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2691     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2692     assert( addr < _cm->finger(), "invariant");
2693     assert(addr >= _task->finger(), "invariant");
2694 
2695     // We move that task's local finger along.
2696     _task->move_finger_to(addr);
2697 
2698     _task->scan_object(oop(addr));
2699     // we only partially drain the local queue and global stack
2700     _task->drain_local_queue(true);
2701     _task->drain_global_stack(true);
2702 
2703     // if the has_aborted flag has been raised, we need to bail out of
2704     // the iteration
2705     return !_task->has_aborted();
2706   }
2707 };
2708 
2709 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2710   ReferenceProcessor* result = NULL;
2711   if (G1UseConcMarkReferenceProcessing) {
2712     result = g1h->ref_processor_cm();
2713     assert(result != NULL, "should not be NULL");
2714   }
2715   return result;
2716 }
2717 
2718 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2719                                ConcurrentMark* cm,
2720                                CMTask* task)
2721   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2722     _g1h(g1h), _cm(cm), _task(task)
2723 { }
2724 
2725 void CMTask::setup_for_region(HeapRegion* hr) {
2726   assert(hr != NULL,
2727         "claim_region() should have filtered out NULL regions");
2728   _curr_region  = hr;
2729   _finger       = hr->bottom();
2730   update_region_limit();
2731 }
2732 
2733 void CMTask::update_region_limit() {
2734   HeapRegion* hr            = _curr_region;
2735   HeapWord* bottom          = hr->bottom();
2736   HeapWord* limit           = hr->next_top_at_mark_start();
2737 
2738   if (limit == bottom) {
2739     // The region was collected underneath our feet.
2740     // We set the finger to bottom to ensure that the bitmap
2741     // iteration that will follow this will not do anything.
2742     // (this is not a condition that holds when we set the region up,
2743     // as the region is not supposed to be empty in the first place)
2744     _finger = bottom;
2745   } else if (limit >= _region_limit) {
2746     assert(limit >= _finger, "peace of mind");
2747   } else {
2748     assert(limit < _region_limit, "only way to get here");
2749     // This can happen under some pretty unusual circumstances.  An
2750     // evacuation pause empties the region underneath our feet (NTAMS
2751     // at bottom). We then do some allocation in the region (NTAMS
2752     // stays at bottom), followed by the region being used as a GC
2753     // alloc region (NTAMS will move to top() and the objects
2754     // originally below it will be grayed). All objects now marked in
2755     // the region are explicitly grayed, if below the global finger,
2756     // and we do not need in fact to scan anything else. So, we simply
2757     // set _finger to be limit to ensure that the bitmap iteration
2758     // doesn't do anything.
2759     _finger = limit;
2760   }
2761 
2762   _region_limit = limit;
2763 }
2764 
2765 void CMTask::giveup_current_region() {
2766   assert(_curr_region != NULL, "invariant");
2767   clear_region_fields();
2768 }
2769 
2770 void CMTask::clear_region_fields() {
2771   // Values for these three fields that indicate that we're not
2772   // holding on to a region.
2773   _curr_region   = NULL;
2774   _finger        = NULL;
2775   _region_limit  = NULL;
2776 }
2777 
2778 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2779   if (cm_oop_closure == NULL) {
2780     assert(_cm_oop_closure != NULL, "invariant");
2781   } else {
2782     assert(_cm_oop_closure == NULL, "invariant");
2783   }
2784   _cm_oop_closure = cm_oop_closure;
2785 }
2786 
2787 void CMTask::reset(CMBitMap* nextMarkBitMap) {
2788   guarantee(nextMarkBitMap != NULL, "invariant");
2789   _nextMarkBitMap                = nextMarkBitMap;
2790   clear_region_fields();
2791 
2792   _calls                         = 0;
2793   _elapsed_time_ms               = 0.0;
2794   _termination_time_ms           = 0.0;
2795   _termination_start_time_ms     = 0.0;
2796 }
2797 
2798 bool CMTask::should_exit_termination() {
2799   regular_clock_call();
2800   // This is called when we are in the termination protocol. We should
2801   // quit if, for some reason, this task wants to abort or the global
2802   // stack is not empty (this means that we can get work from it).
2803   return !_cm->mark_stack_empty() || has_aborted();
2804 }
2805 
2806 void CMTask::reached_limit() {
2807   assert(_words_scanned >= _words_scanned_limit ||
2808          _refs_reached >= _refs_reached_limit ,
2809          "shouldn't have been called otherwise");
2810   regular_clock_call();
2811 }
2812 
2813 void CMTask::regular_clock_call() {
2814   if (has_aborted()) return;
2815 
2816   // First, we need to recalculate the words scanned and refs reached
2817   // limits for the next clock call.
2818   recalculate_limits();
2819 
2820   // During the regular clock call we do the following
2821 
2822   // (1) If an overflow has been flagged, then we abort.
2823   if (_cm->has_overflown()) {
2824     set_has_aborted();
2825     return;
2826   }
2827 
2828   // If we are not concurrent (i.e. we're doing remark) we don't need
2829   // to check anything else. The other steps are only needed during
2830   // the concurrent marking phase.
2831   if (!concurrent()) return;
2832 
2833   // (2) If marking has been aborted for Full GC, then we also abort.
2834   if (_cm->has_aborted()) {
2835     set_has_aborted();
2836     return;
2837   }
2838 
2839   double curr_time_ms = os::elapsedVTime() * 1000.0;
2840 
2841   // (4) We check whether we should yield. If we have to, then we abort.
2842   if (SuspendibleThreadSet::should_yield()) {
2843     // We should yield. To do this we abort the task. The caller is
2844     // responsible for yielding.
2845     set_has_aborted();
2846     return;
2847   }
2848 
2849   // (5) We check whether we've reached our time quota. If we have,
2850   // then we abort.
2851   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2852   if (elapsed_time_ms > _time_target_ms) {
2853     set_has_aborted();
2854     _has_timed_out = true;
2855     return;
2856   }
2857 
2858   // (6) Finally, we check whether there are enough completed STAB
2859   // buffers available for processing. If there are, we abort.
2860   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2861   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2862     // we do need to process SATB buffers, we'll abort and restart
2863     // the marking task to do so
2864     set_has_aborted();
2865     return;
2866   }
2867 }
2868 
2869 void CMTask::recalculate_limits() {
2870   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2871   _words_scanned_limit      = _real_words_scanned_limit;
2872 
2873   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2874   _refs_reached_limit       = _real_refs_reached_limit;
2875 }
2876 
2877 void CMTask::decrease_limits() {
2878   // This is called when we believe that we're going to do an infrequent
2879   // operation which will increase the per byte scanned cost (i.e. move
2880   // entries to/from the global stack). It basically tries to decrease the
2881   // scanning limit so that the clock is called earlier.
2882 
2883   _words_scanned_limit = _real_words_scanned_limit -
2884     3 * words_scanned_period / 4;
2885   _refs_reached_limit  = _real_refs_reached_limit -
2886     3 * refs_reached_period / 4;
2887 }
2888 
2889 void CMTask::move_entries_to_global_stack() {
2890   // local array where we'll store the entries that will be popped
2891   // from the local queue
2892   oop buffer[global_stack_transfer_size];
2893 
2894   int n = 0;
2895   oop obj;
2896   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
2897     buffer[n] = obj;
2898     ++n;
2899   }
2900 
2901   if (n > 0) {
2902     // we popped at least one entry from the local queue
2903 
2904     if (!_cm->mark_stack_push(buffer, n)) {
2905       set_has_aborted();
2906     }
2907   }
2908 
2909   // this operation was quite expensive, so decrease the limits
2910   decrease_limits();
2911 }
2912 
2913 void CMTask::get_entries_from_global_stack() {
2914   // local array where we'll store the entries that will be popped
2915   // from the global stack.
2916   oop buffer[global_stack_transfer_size];
2917   int n;
2918   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
2919   assert(n <= global_stack_transfer_size,
2920          "we should not pop more than the given limit");
2921   if (n > 0) {
2922     // yes, we did actually pop at least one entry
2923     for (int i = 0; i < n; ++i) {
2924       bool success = _task_queue->push(buffer[i]);
2925       // We only call this when the local queue is empty or under a
2926       // given target limit. So, we do not expect this push to fail.
2927       assert(success, "invariant");
2928     }
2929   }
2930 
2931   // this operation was quite expensive, so decrease the limits
2932   decrease_limits();
2933 }
2934 
2935 void CMTask::drain_local_queue(bool partially) {
2936   if (has_aborted()) return;
2937 
2938   // Decide what the target size is, depending whether we're going to
2939   // drain it partially (so that other tasks can steal if they run out
2940   // of things to do) or totally (at the very end).
2941   size_t target_size;
2942   if (partially) {
2943     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
2944   } else {
2945     target_size = 0;
2946   }
2947 
2948   if (_task_queue->size() > target_size) {
2949     oop obj;
2950     bool ret = _task_queue->pop_local(obj);
2951     while (ret) {
2952       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
2953       assert(!_g1h->is_on_master_free_list(
2954                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
2955 
2956       scan_object(obj);
2957 
2958       if (_task_queue->size() <= target_size || has_aborted()) {
2959         ret = false;
2960       } else {
2961         ret = _task_queue->pop_local(obj);
2962       }
2963     }
2964   }
2965 }
2966 
2967 void CMTask::drain_global_stack(bool partially) {
2968   if (has_aborted()) return;
2969 
2970   // We have a policy to drain the local queue before we attempt to
2971   // drain the global stack.
2972   assert(partially || _task_queue->size() == 0, "invariant");
2973 
2974   // Decide what the target size is, depending whether we're going to
2975   // drain it partially (so that other tasks can steal if they run out
2976   // of things to do) or totally (at the very end).  Notice that,
2977   // because we move entries from the global stack in chunks or
2978   // because another task might be doing the same, we might in fact
2979   // drop below the target. But, this is not a problem.
2980   size_t target_size;
2981   if (partially) {
2982     target_size = _cm->partial_mark_stack_size_target();
2983   } else {
2984     target_size = 0;
2985   }
2986 
2987   if (_cm->mark_stack_size() > target_size) {
2988     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2989       get_entries_from_global_stack();
2990       drain_local_queue(partially);
2991     }
2992   }
2993 }
2994 
2995 // SATB Queue has several assumptions on whether to call the par or
2996 // non-par versions of the methods. this is why some of the code is
2997 // replicated. We should really get rid of the single-threaded version
2998 // of the code to simplify things.
2999 void CMTask::drain_satb_buffers() {
3000   if (has_aborted()) return;
3001 
3002   // We set this so that the regular clock knows that we're in the
3003   // middle of draining buffers and doesn't set the abort flag when it
3004   // notices that SATB buffers are available for draining. It'd be
3005   // very counter productive if it did that. :-)
3006   _draining_satb_buffers = true;
3007 
3008   CMSATBBufferClosure satb_cl(this, _g1h);
3009   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3010 
3011   // This keeps claiming and applying the closure to completed buffers
3012   // until we run out of buffers or we need to abort.
3013   while (!has_aborted() &&
3014          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
3015     regular_clock_call();
3016   }
3017 
3018   _draining_satb_buffers = false;
3019 
3020   assert(has_aborted() ||
3021          concurrent() ||
3022          satb_mq_set.completed_buffers_num() == 0, "invariant");
3023 
3024   // again, this was a potentially expensive operation, decrease the
3025   // limits to get the regular clock call early
3026   decrease_limits();
3027 }
3028 
3029 void CMTask::print_stats() {
3030   log_debug(gc, stats)("Marking Stats, task = %u, calls = %d",
3031                        _worker_id, _calls);
3032   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3033                        _elapsed_time_ms, _termination_time_ms);
3034   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3035                        _step_times_ms.num(), _step_times_ms.avg(),
3036                        _step_times_ms.sd());
3037   log_debug(gc, stats)("                    max = %1.2lfms, total = %1.2lfms",
3038                        _step_times_ms.maximum(), _step_times_ms.sum());
3039 }
3040 
3041 bool ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
3042   return _task_queues->steal(worker_id, hash_seed, obj);
3043 }
3044 
3045 /*****************************************************************************
3046 
3047     The do_marking_step(time_target_ms, ...) method is the building
3048     block of the parallel marking framework. It can be called in parallel
3049     with other invocations of do_marking_step() on different tasks
3050     (but only one per task, obviously) and concurrently with the
3051     mutator threads, or during remark, hence it eliminates the need
3052     for two versions of the code. When called during remark, it will
3053     pick up from where the task left off during the concurrent marking
3054     phase. Interestingly, tasks are also claimable during evacuation
3055     pauses too, since do_marking_step() ensures that it aborts before
3056     it needs to yield.
3057 
3058     The data structures that it uses to do marking work are the
3059     following:
3060 
3061       (1) Marking Bitmap. If there are gray objects that appear only
3062       on the bitmap (this happens either when dealing with an overflow
3063       or when the initial marking phase has simply marked the roots
3064       and didn't push them on the stack), then tasks claim heap
3065       regions whose bitmap they then scan to find gray objects. A
3066       global finger indicates where the end of the last claimed region
3067       is. A local finger indicates how far into the region a task has
3068       scanned. The two fingers are used to determine how to gray an
3069       object (i.e. whether simply marking it is OK, as it will be
3070       visited by a task in the future, or whether it needs to be also
3071       pushed on a stack).
3072 
3073       (2) Local Queue. The local queue of the task which is accessed
3074       reasonably efficiently by the task. Other tasks can steal from
3075       it when they run out of work. Throughout the marking phase, a
3076       task attempts to keep its local queue short but not totally
3077       empty, so that entries are available for stealing by other
3078       tasks. Only when there is no more work, a task will totally
3079       drain its local queue.
3080 
3081       (3) Global Mark Stack. This handles local queue overflow. During
3082       marking only sets of entries are moved between it and the local
3083       queues, as access to it requires a mutex and more fine-grain
3084       interaction with it which might cause contention. If it
3085       overflows, then the marking phase should restart and iterate
3086       over the bitmap to identify gray objects. Throughout the marking
3087       phase, tasks attempt to keep the global mark stack at a small
3088       length but not totally empty, so that entries are available for
3089       popping by other tasks. Only when there is no more work, tasks
3090       will totally drain the global mark stack.
3091 
3092       (4) SATB Buffer Queue. This is where completed SATB buffers are
3093       made available. Buffers are regularly removed from this queue
3094       and scanned for roots, so that the queue doesn't get too
3095       long. During remark, all completed buffers are processed, as
3096       well as the filled in parts of any uncompleted buffers.
3097 
3098     The do_marking_step() method tries to abort when the time target
3099     has been reached. There are a few other cases when the
3100     do_marking_step() method also aborts:
3101 
3102       (1) When the marking phase has been aborted (after a Full GC).
3103 
3104       (2) When a global overflow (on the global stack) has been
3105       triggered. Before the task aborts, it will actually sync up with
3106       the other tasks to ensure that all the marking data structures
3107       (local queues, stacks, fingers etc.)  are re-initialized so that
3108       when do_marking_step() completes, the marking phase can
3109       immediately restart.
3110 
3111       (3) When enough completed SATB buffers are available. The
3112       do_marking_step() method only tries to drain SATB buffers right
3113       at the beginning. So, if enough buffers are available, the
3114       marking step aborts and the SATB buffers are processed at
3115       the beginning of the next invocation.
3116 
3117       (4) To yield. when we have to yield then we abort and yield
3118       right at the end of do_marking_step(). This saves us from a lot
3119       of hassle as, by yielding we might allow a Full GC. If this
3120       happens then objects will be compacted underneath our feet, the
3121       heap might shrink, etc. We save checking for this by just
3122       aborting and doing the yield right at the end.
3123 
3124     From the above it follows that the do_marking_step() method should
3125     be called in a loop (or, otherwise, regularly) until it completes.
3126 
3127     If a marking step completes without its has_aborted() flag being
3128     true, it means it has completed the current marking phase (and
3129     also all other marking tasks have done so and have all synced up).
3130 
3131     A method called regular_clock_call() is invoked "regularly" (in
3132     sub ms intervals) throughout marking. It is this clock method that
3133     checks all the abort conditions which were mentioned above and
3134     decides when the task should abort. A work-based scheme is used to
3135     trigger this clock method: when the number of object words the
3136     marking phase has scanned or the number of references the marking
3137     phase has visited reach a given limit. Additional invocations to
3138     the method clock have been planted in a few other strategic places
3139     too. The initial reason for the clock method was to avoid calling
3140     vtime too regularly, as it is quite expensive. So, once it was in
3141     place, it was natural to piggy-back all the other conditions on it
3142     too and not constantly check them throughout the code.
3143 
3144     If do_termination is true then do_marking_step will enter its
3145     termination protocol.
3146 
3147     The value of is_serial must be true when do_marking_step is being
3148     called serially (i.e. by the VMThread) and do_marking_step should
3149     skip any synchronization in the termination and overflow code.
3150     Examples include the serial remark code and the serial reference
3151     processing closures.
3152 
3153     The value of is_serial must be false when do_marking_step is
3154     being called by any of the worker threads in a work gang.
3155     Examples include the concurrent marking code (CMMarkingTask),
3156     the MT remark code, and the MT reference processing closures.
3157 
3158  *****************************************************************************/
3159 
3160 void CMTask::do_marking_step(double time_target_ms,
3161                              bool do_termination,
3162                              bool is_serial) {
3163   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3164   assert(concurrent() == _cm->concurrent(), "they should be the same");
3165 
3166   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3167   assert(_task_queues != NULL, "invariant");
3168   assert(_task_queue != NULL, "invariant");
3169   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3170 
3171   assert(!_claimed,
3172          "only one thread should claim this task at any one time");
3173 
3174   // OK, this doesn't safeguard again all possible scenarios, as it is
3175   // possible for two threads to set the _claimed flag at the same
3176   // time. But it is only for debugging purposes anyway and it will
3177   // catch most problems.
3178   _claimed = true;
3179 
3180   _start_time_ms = os::elapsedVTime() * 1000.0;
3181 
3182   // If do_stealing is true then do_marking_step will attempt to
3183   // steal work from the other CMTasks. It only makes sense to
3184   // enable stealing when the termination protocol is enabled
3185   // and do_marking_step() is not being called serially.
3186   bool do_stealing = do_termination && !is_serial;
3187 
3188   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
3189   _time_target_ms = time_target_ms - diff_prediction_ms;
3190 
3191   // set up the variables that are used in the work-based scheme to
3192   // call the regular clock method
3193   _words_scanned = 0;
3194   _refs_reached  = 0;
3195   recalculate_limits();
3196 
3197   // clear all flags
3198   clear_has_aborted();
3199   _has_timed_out = false;
3200   _draining_satb_buffers = false;
3201 
3202   ++_calls;
3203 
3204   // Set up the bitmap and oop closures. Anything that uses them is
3205   // eventually called from this method, so it is OK to allocate these
3206   // statically.
3207   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3208   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
3209   set_cm_oop_closure(&cm_oop_closure);
3210 
3211   if (_cm->has_overflown()) {
3212     // This can happen if the mark stack overflows during a GC pause
3213     // and this task, after a yield point, restarts. We have to abort
3214     // as we need to get into the overflow protocol which happens
3215     // right at the end of this task.
3216     set_has_aborted();
3217   }
3218 
3219   // First drain any available SATB buffers. After this, we will not
3220   // look at SATB buffers before the next invocation of this method.
3221   // If enough completed SATB buffers are queued up, the regular clock
3222   // will abort this task so that it restarts.
3223   drain_satb_buffers();
3224   // ...then partially drain the local queue and the global stack
3225   drain_local_queue(true);
3226   drain_global_stack(true);
3227 
3228   do {
3229     if (!has_aborted() && _curr_region != NULL) {
3230       // This means that we're already holding on to a region.
3231       assert(_finger != NULL, "if region is not NULL, then the finger "
3232              "should not be NULL either");
3233 
3234       // We might have restarted this task after an evacuation pause
3235       // which might have evacuated the region we're holding on to
3236       // underneath our feet. Let's read its limit again to make sure
3237       // that we do not iterate over a region of the heap that
3238       // contains garbage (update_region_limit() will also move
3239       // _finger to the start of the region if it is found empty).
3240       update_region_limit();
3241       // We will start from _finger not from the start of the region,
3242       // as we might be restarting this task after aborting half-way
3243       // through scanning this region. In this case, _finger points to
3244       // the address where we last found a marked object. If this is a
3245       // fresh region, _finger points to start().
3246       MemRegion mr = MemRegion(_finger, _region_limit);
3247 
3248       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
3249              "humongous regions should go around loop once only");
3250 
3251       // Some special cases:
3252       // If the memory region is empty, we can just give up the region.
3253       // If the current region is humongous then we only need to check
3254       // the bitmap for the bit associated with the start of the object,
3255       // scan the object if it's live, and give up the region.
3256       // Otherwise, let's iterate over the bitmap of the part of the region
3257       // that is left.
3258       // If the iteration is successful, give up the region.
3259       if (mr.is_empty()) {
3260         giveup_current_region();
3261         regular_clock_call();
3262       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
3263         if (_nextMarkBitMap->isMarked(mr.start())) {
3264           // The object is marked - apply the closure
3265           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
3266           bitmap_closure.do_bit(offset);
3267         }
3268         // Even if this task aborted while scanning the humongous object
3269         // we can (and should) give up the current region.
3270         giveup_current_region();
3271         regular_clock_call();
3272       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
3273         giveup_current_region();
3274         regular_clock_call();
3275       } else {
3276         assert(has_aborted(), "currently the only way to do so");
3277         // The only way to abort the bitmap iteration is to return
3278         // false from the do_bit() method. However, inside the
3279         // do_bit() method we move the _finger to point to the
3280         // object currently being looked at. So, if we bail out, we
3281         // have definitely set _finger to something non-null.
3282         assert(_finger != NULL, "invariant");
3283 
3284         // Region iteration was actually aborted. So now _finger
3285         // points to the address of the object we last scanned. If we
3286         // leave it there, when we restart this task, we will rescan
3287         // the object. It is easy to avoid this. We move the finger by
3288         // enough to point to the next possible object header (the
3289         // bitmap knows by how much we need to move it as it knows its
3290         // granularity).
3291         assert(_finger < _region_limit, "invariant");
3292         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
3293         // Check if bitmap iteration was aborted while scanning the last object
3294         if (new_finger >= _region_limit) {
3295           giveup_current_region();
3296         } else {
3297           move_finger_to(new_finger);
3298         }
3299       }
3300     }
3301     // At this point we have either completed iterating over the
3302     // region we were holding on to, or we have aborted.
3303 
3304     // We then partially drain the local queue and the global stack.
3305     // (Do we really need this?)
3306     drain_local_queue(true);
3307     drain_global_stack(true);
3308 
3309     // Read the note on the claim_region() method on why it might
3310     // return NULL with potentially more regions available for
3311     // claiming and why we have to check out_of_regions() to determine
3312     // whether we're done or not.
3313     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
3314       // We are going to try to claim a new region. We should have
3315       // given up on the previous one.
3316       // Separated the asserts so that we know which one fires.
3317       assert(_curr_region  == NULL, "invariant");
3318       assert(_finger       == NULL, "invariant");
3319       assert(_region_limit == NULL, "invariant");
3320       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
3321       if (claimed_region != NULL) {
3322         // Yes, we managed to claim one
3323         setup_for_region(claimed_region);
3324         assert(_curr_region == claimed_region, "invariant");
3325       }
3326       // It is important to call the regular clock here. It might take
3327       // a while to claim a region if, for example, we hit a large
3328       // block of empty regions. So we need to call the regular clock
3329       // method once round the loop to make sure it's called
3330       // frequently enough.
3331       regular_clock_call();
3332     }
3333 
3334     if (!has_aborted() && _curr_region == NULL) {
3335       assert(_cm->out_of_regions(),
3336              "at this point we should be out of regions");
3337     }
3338   } while ( _curr_region != NULL && !has_aborted());
3339 
3340   if (!has_aborted()) {
3341     // We cannot check whether the global stack is empty, since other
3342     // tasks might be pushing objects to it concurrently.
3343     assert(_cm->out_of_regions(),
3344            "at this point we should be out of regions");
3345     // Try to reduce the number of available SATB buffers so that
3346     // remark has less work to do.
3347     drain_satb_buffers();
3348   }
3349 
3350   // Since we've done everything else, we can now totally drain the
3351   // local queue and global stack.
3352   drain_local_queue(false);
3353   drain_global_stack(false);
3354 
3355   // Attempt at work stealing from other task's queues.
3356   if (do_stealing && !has_aborted()) {
3357     // We have not aborted. This means that we have finished all that
3358     // we could. Let's try to do some stealing...
3359 
3360     // We cannot check whether the global stack is empty, since other
3361     // tasks might be pushing objects to it concurrently.
3362     assert(_cm->out_of_regions() && _task_queue->size() == 0,
3363            "only way to reach here");
3364     while (!has_aborted()) {
3365       oop obj;
3366       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
3367         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
3368                "any stolen object should be marked");
3369         scan_object(obj);
3370 
3371         // And since we're towards the end, let's totally drain the
3372         // local queue and global stack.
3373         drain_local_queue(false);
3374         drain_global_stack(false);
3375       } else {
3376         break;
3377       }
3378     }
3379   }
3380 
3381   // We still haven't aborted. Now, let's try to get into the
3382   // termination protocol.
3383   if (do_termination && !has_aborted()) {
3384     // We cannot check whether the global stack is empty, since other
3385     // tasks might be concurrently pushing objects on it.
3386     // Separated the asserts so that we know which one fires.
3387     assert(_cm->out_of_regions(), "only way to reach here");
3388     assert(_task_queue->size() == 0, "only way to reach here");
3389     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
3390 
3391     // The CMTask class also extends the TerminatorTerminator class,
3392     // hence its should_exit_termination() method will also decide
3393     // whether to exit the termination protocol or not.
3394     bool finished = (is_serial ||
3395                      _cm->terminator()->offer_termination(this));
3396     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
3397     _termination_time_ms +=
3398       termination_end_time_ms - _termination_start_time_ms;
3399 
3400     if (finished) {
3401       // We're all done.
3402 
3403       if (_worker_id == 0) {
3404         // let's allow task 0 to do this
3405         if (concurrent()) {
3406           assert(_cm->concurrent_marking_in_progress(), "invariant");
3407           // we need to set this to false before the next
3408           // safepoint. This way we ensure that the marking phase
3409           // doesn't observe any more heap expansions.
3410           _cm->clear_concurrent_marking_in_progress();
3411         }
3412       }
3413 
3414       // We can now guarantee that the global stack is empty, since
3415       // all other tasks have finished. We separated the guarantees so
3416       // that, if a condition is false, we can immediately find out
3417       // which one.
3418       guarantee(_cm->out_of_regions(), "only way to reach here");
3419       guarantee(_cm->mark_stack_empty(), "only way to reach here");
3420       guarantee(_task_queue->size() == 0, "only way to reach here");
3421       guarantee(!_cm->has_overflown(), "only way to reach here");
3422       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
3423     } else {
3424       // Apparently there's more work to do. Let's abort this task. It
3425       // will restart it and we can hopefully find more things to do.
3426       set_has_aborted();
3427     }
3428   }
3429 
3430   // Mainly for debugging purposes to make sure that a pointer to the
3431   // closure which was statically allocated in this frame doesn't
3432   // escape it by accident.
3433   set_cm_oop_closure(NULL);
3434   double end_time_ms = os::elapsedVTime() * 1000.0;
3435   double elapsed_time_ms = end_time_ms - _start_time_ms;
3436   // Update the step history.
3437   _step_times_ms.add(elapsed_time_ms);
3438 
3439   if (has_aborted()) {
3440     // The task was aborted for some reason.
3441     if (_has_timed_out) {
3442       double diff_ms = elapsed_time_ms - _time_target_ms;
3443       // Keep statistics of how well we did with respect to hitting
3444       // our target only if we actually timed out (if we aborted for
3445       // other reasons, then the results might get skewed).
3446       _marking_step_diffs_ms.add(diff_ms);
3447     }
3448 
3449     if (_cm->has_overflown()) {
3450       // This is the interesting one. We aborted because a global
3451       // overflow was raised. This means we have to restart the
3452       // marking phase and start iterating over regions. However, in
3453       // order to do this we have to make sure that all tasks stop
3454       // what they are doing and re-initialize in a safe manner. We
3455       // will achieve this with the use of two barrier sync points.
3456 
3457       if (!is_serial) {
3458         // We only need to enter the sync barrier if being called
3459         // from a parallel context
3460         _cm->enter_first_sync_barrier(_worker_id);
3461 
3462         // When we exit this sync barrier we know that all tasks have
3463         // stopped doing marking work. So, it's now safe to
3464         // re-initialize our data structures. At the end of this method,
3465         // task 0 will clear the global data structures.
3466       }
3467 
3468       // We clear the local state of this task...
3469       clear_region_fields();
3470 
3471       if (!is_serial) {
3472         // ...and enter the second barrier.
3473         _cm->enter_second_sync_barrier(_worker_id);
3474       }
3475       // At this point, if we're during the concurrent phase of
3476       // marking, everything has been re-initialized and we're
3477       // ready to restart.
3478     }
3479   }
3480 
3481   _claimed = false;
3482 }
3483 
3484 CMTask::CMTask(uint worker_id,
3485                ConcurrentMark* cm,
3486                size_t* marked_bytes,
3487                BitMap* card_bm,
3488                CMTaskQueue* task_queue,
3489                CMTaskQueueSet* task_queues)
3490   : _g1h(G1CollectedHeap::heap()),
3491     _worker_id(worker_id), _cm(cm),
3492     _claimed(false),
3493     _nextMarkBitMap(NULL), _hash_seed(17),
3494     _task_queue(task_queue),
3495     _task_queues(task_queues),
3496     _cm_oop_closure(NULL),
3497     _marked_bytes_array(marked_bytes),
3498     _card_bm(card_bm) {
3499   guarantee(task_queue != NULL, "invariant");
3500   guarantee(task_queues != NULL, "invariant");
3501 
3502   _marking_step_diffs_ms.add(0.5);
3503 }
3504 
3505 // These are formatting macros that are used below to ensure
3506 // consistent formatting. The *_H_* versions are used to format the
3507 // header for a particular value and they should be kept consistent
3508 // with the corresponding macro. Also note that most of the macros add
3509 // the necessary white space (as a prefix) which makes them a bit
3510 // easier to compose.
3511 
3512 // All the output lines are prefixed with this string to be able to
3513 // identify them easily in a large log file.
3514 #define G1PPRL_LINE_PREFIX            "###"
3515 
3516 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
3517 #ifdef _LP64
3518 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
3519 #else // _LP64
3520 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
3521 #endif // _LP64
3522 
3523 // For per-region info
3524 #define G1PPRL_TYPE_FORMAT            "   %-4s"
3525 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
3526 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
3527 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
3528 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
3529 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
3530 
3531 // For summary info
3532 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
3533 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
3534 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
3535 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
3536 
3537 G1PrintRegionLivenessInfoClosure::
3538 G1PrintRegionLivenessInfoClosure(const char* phase_name)
3539   : _total_used_bytes(0), _total_capacity_bytes(0),
3540     _total_prev_live_bytes(0), _total_next_live_bytes(0),
3541     _hum_used_bytes(0), _hum_capacity_bytes(0),
3542     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
3543     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
3544   G1CollectedHeap* g1h = G1CollectedHeap::heap();
3545   MemRegion g1_reserved = g1h->g1_reserved();
3546   double now = os::elapsedTime();
3547 
3548   // Print the header of the output.
3549   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
3550   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
3551                           G1PPRL_SUM_ADDR_FORMAT("reserved")
3552                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
3553                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
3554                           HeapRegion::GrainBytes);
3555   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3556   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3557                           G1PPRL_TYPE_H_FORMAT
3558                           G1PPRL_ADDR_BASE_H_FORMAT
3559                           G1PPRL_BYTE_H_FORMAT
3560                           G1PPRL_BYTE_H_FORMAT
3561                           G1PPRL_BYTE_H_FORMAT
3562                           G1PPRL_DOUBLE_H_FORMAT
3563                           G1PPRL_BYTE_H_FORMAT
3564                           G1PPRL_BYTE_H_FORMAT,
3565                           "type", "address-range",
3566                           "used", "prev-live", "next-live", "gc-eff",
3567                           "remset", "code-roots");
3568   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3569                           G1PPRL_TYPE_H_FORMAT
3570                           G1PPRL_ADDR_BASE_H_FORMAT
3571                           G1PPRL_BYTE_H_FORMAT
3572                           G1PPRL_BYTE_H_FORMAT
3573                           G1PPRL_BYTE_H_FORMAT
3574                           G1PPRL_DOUBLE_H_FORMAT
3575                           G1PPRL_BYTE_H_FORMAT
3576                           G1PPRL_BYTE_H_FORMAT,
3577                           "", "",
3578                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3579                           "(bytes)", "(bytes)");
3580 }
3581 
3582 // It takes as a parameter a reference to one of the _hum_* fields, it
3583 // deduces the corresponding value for a region in a humongous region
3584 // series (either the region size, or what's left if the _hum_* field
3585 // is < the region size), and updates the _hum_* field accordingly.
3586 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
3587   size_t bytes = 0;
3588   // The > 0 check is to deal with the prev and next live bytes which
3589   // could be 0.
3590   if (*hum_bytes > 0) {
3591     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
3592     *hum_bytes -= bytes;
3593   }
3594   return bytes;
3595 }
3596 
3597 // It deduces the values for a region in a humongous region series
3598 // from the _hum_* fields and updates those accordingly. It assumes
3599 // that that _hum_* fields have already been set up from the "starts
3600 // humongous" region and we visit the regions in address order.
3601 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
3602                                                      size_t* capacity_bytes,
3603                                                      size_t* prev_live_bytes,
3604                                                      size_t* next_live_bytes) {
3605   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
3606   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
3607   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
3608   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
3609   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
3610 }
3611 
3612 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3613   const char* type       = r->get_type_str();
3614   HeapWord* bottom       = r->bottom();
3615   HeapWord* end          = r->end();
3616   size_t capacity_bytes  = r->capacity();
3617   size_t used_bytes      = r->used();
3618   size_t prev_live_bytes = r->live_bytes();
3619   size_t next_live_bytes = r->next_live_bytes();
3620   double gc_eff          = r->gc_efficiency();
3621   size_t remset_bytes    = r->rem_set()->mem_size();
3622   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3623 
3624   if (r->is_starts_humongous()) {
3625     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
3626            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
3627            "they should have been zeroed after the last time we used them");
3628     // Set up the _hum_* fields.
3629     _hum_capacity_bytes  = capacity_bytes;
3630     _hum_used_bytes      = used_bytes;
3631     _hum_prev_live_bytes = prev_live_bytes;
3632     _hum_next_live_bytes = next_live_bytes;
3633     get_hum_bytes(&used_bytes, &capacity_bytes,
3634                   &prev_live_bytes, &next_live_bytes);
3635     end = bottom + HeapRegion::GrainWords;
3636   } else if (r->is_continues_humongous()) {
3637     get_hum_bytes(&used_bytes, &capacity_bytes,
3638                   &prev_live_bytes, &next_live_bytes);
3639     assert(end == bottom + HeapRegion::GrainWords, "invariant");
3640   }
3641 
3642   _total_used_bytes      += used_bytes;
3643   _total_capacity_bytes  += capacity_bytes;
3644   _total_prev_live_bytes += prev_live_bytes;
3645   _total_next_live_bytes += next_live_bytes;
3646   _total_remset_bytes    += remset_bytes;
3647   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3648 
3649   // Print a line for this particular region.
3650   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3651                           G1PPRL_TYPE_FORMAT
3652                           G1PPRL_ADDR_BASE_FORMAT
3653                           G1PPRL_BYTE_FORMAT
3654                           G1PPRL_BYTE_FORMAT
3655                           G1PPRL_BYTE_FORMAT
3656                           G1PPRL_DOUBLE_FORMAT
3657                           G1PPRL_BYTE_FORMAT
3658                           G1PPRL_BYTE_FORMAT,
3659                           type, p2i(bottom), p2i(end),
3660                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3661                           remset_bytes, strong_code_roots_bytes);
3662 
3663   return false;
3664 }
3665 
3666 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3667   // add static memory usages to remembered set sizes
3668   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3669   // Print the footer of the output.
3670   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3671   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3672                          " SUMMARY"
3673                          G1PPRL_SUM_MB_FORMAT("capacity")
3674                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3675                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3676                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3677                          G1PPRL_SUM_MB_FORMAT("remset")
3678                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3679                          bytes_to_mb(_total_capacity_bytes),
3680                          bytes_to_mb(_total_used_bytes),
3681                          perc(_total_used_bytes, _total_capacity_bytes),
3682                          bytes_to_mb(_total_prev_live_bytes),
3683                          perc(_total_prev_live_bytes, _total_capacity_bytes),
3684                          bytes_to_mb(_total_next_live_bytes),
3685                          perc(_total_next_live_bytes, _total_capacity_bytes),
3686                          bytes_to_mb(_total_remset_bytes),
3687                          bytes_to_mb(_total_strong_code_roots_bytes));
3688 }