1  /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentMarkThread.inline.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1CollectorPolicy.hpp"
  29 #include "gc/g1/g1MMUTracker.hpp"
  30 #include "gc/g1/suspendibleThreadSet.hpp"
  31 #include "gc/g1/vm_operations_g1.hpp"
  32 #include "gc/shared/gcId.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "gc/shared/gcTraceTime.inline.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "runtime/vmThread.hpp"
  38 
  39 // ======= Concurrent Mark Thread ========
  40 
  41 // The CM thread is created when the G1 garbage collector is used
  42 
  43 SurrogateLockerThread*
  44      ConcurrentMarkThread::_slt = NULL;
  45 
  46 ConcurrentMarkThread::ConcurrentMarkThread(G1ConcurrentMark* cm) :
  47   ConcurrentGCThread(),
  48   _cm(cm),
  49   _state(Idle),
  50   _vtime_accum(0.0),
  51   _vtime_mark_accum(0.0) {
  52 
  53   set_name("G1 Main Marker");
  54   create_and_start();
  55 }
  56 
  57 class CMCheckpointRootsFinalClosure: public VoidClosure {
  58 
  59   G1ConcurrentMark* _cm;
  60 public:
  61 
  62   CMCheckpointRootsFinalClosure(G1ConcurrentMark* cm) :
  63     _cm(cm) {}
  64 
  65   void do_void(){
  66     _cm->checkpointRootsFinal(false); // !clear_all_soft_refs
  67   }
  68 };
  69 
  70 class CMCleanUp: public VoidClosure {
  71   G1ConcurrentMark* _cm;
  72 public:
  73 
  74   CMCleanUp(G1ConcurrentMark* cm) :
  75     _cm(cm) {}
  76 
  77   void do_void(){
  78     _cm->cleanup();
  79   }
  80 };
  81 
  82 // Marking pauses can be scheduled flexibly, so we might delay marking to meet MMU.
  83 void ConcurrentMarkThread::delay_to_keep_mmu(G1CollectorPolicy* g1_policy, bool remark) {
  84   if (g1_policy->adaptive_young_list_length()) {
  85     double now = os::elapsedTime();
  86     double prediction_ms = remark ? g1_policy->predict_remark_time_ms()
  87                                   : g1_policy->predict_cleanup_time_ms();
  88     G1MMUTracker *mmu_tracker = g1_policy->mmu_tracker();
  89     jlong sleep_time_ms = mmu_tracker->when_ms(now, prediction_ms);
  90     os::sleep(this, sleep_time_ms, false);
  91   }
  92 }
  93 
  94 class GCConcPhaseTimer : StackObj {
  95   G1ConcurrentMark* _cm;
  96 
  97  public:
  98   GCConcPhaseTimer(G1ConcurrentMark* cm, const char* title) : _cm(cm) {
  99     _cm->register_concurrent_phase_start(title);
 100   }
 101 
 102   ~GCConcPhaseTimer() {
 103     _cm->register_concurrent_phase_end();
 104   }
 105 };
 106 
 107 void ConcurrentMarkThread::run() {
 108   initialize_in_thread();
 109   wait_for_universe_init();
 110 
 111   run_service();
 112 
 113   terminate();
 114 }
 115 
 116 void ConcurrentMarkThread::run_service() {
 117   _vtime_start = os::elapsedVTime();
 118 
 119   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 120   G1CollectorPolicy* g1_policy = g1h->g1_policy();
 121 
 122   while (!_should_terminate) {
 123     // wait until started is set.
 124     sleepBeforeNextCycle();
 125     if (_should_terminate) {
 126       _cm->root_regions()->cancel_scan();
 127       break;
 128     }
 129 
 130     assert(GCId::current() != GCId::undefined(), "GC id should have been set up by the initial mark GC.");
 131     {
 132       ResourceMark rm;
 133       HandleMark   hm;
 134       double cycle_start = os::elapsedVTime();
 135 
 136       // We have to ensure that we finish scanning the root regions
 137       // before the next GC takes place. To ensure this we have to
 138       // make sure that we do not join the STS until the root regions
 139       // have been scanned. If we did then it's possible that a
 140       // subsequent GC could block us from joining the STS and proceed
 141       // without the root regions have been scanned which would be a
 142       // correctness issue.
 143 
 144       if (_cm->root_regions()->scan_in_progress()) {
 145         assert(!cm()->has_aborted(), "Aborting before root region scanning is finished not supported.");
 146         GCConcPhaseTimer(_cm, "Concurrent Root Region Scanning");
 147         _cm->scanRootRegions();
 148       }
 149 
 150       // It would be nice to use the GCTraceConcTime class here but
 151       // the "end" logging is inside the loop and not at the end of
 152       // a scope. Mimicking the same log output as GCTraceConcTime instead.
 153       jlong mark_start = os::elapsed_counter();
 154       log_info(gc)("Concurrent Mark (%.3fs)", TimeHelper::counter_to_seconds(mark_start));
 155 
 156       int iter = 0;
 157       do {
 158         iter++;
 159         if (!cm()->has_aborted()) {
 160           GCConcPhaseTimer(_cm, "Concurrent Mark");
 161           _cm->markFromRoots();
 162         }
 163 
 164         double mark_end_time = os::elapsedVTime();
 165         jlong mark_end = os::elapsed_counter();
 166         _vtime_mark_accum += (mark_end_time - cycle_start);
 167         if (!cm()->has_aborted()) {
 168           delay_to_keep_mmu(g1_policy, true /* remark */);
 169           log_info(gc)("Concurrent Mark (%.3fs, %.3fs) %.3fms",
 170                        TimeHelper::counter_to_seconds(mark_start),
 171                        TimeHelper::counter_to_seconds(mark_end),
 172                        TimeHelper::counter_to_millis(mark_end - mark_start));
 173 
 174           CMCheckpointRootsFinalClosure final_cl(_cm);
 175           VM_CGC_Operation op(&final_cl, "Pause Remark", true /* needs_pll */);
 176           VMThread::execute(&op);
 177         }
 178         if (cm()->restart_for_overflow()) {
 179           log_debug(gc)("Restarting conc marking because of MS overflow in remark (restart #%d).", iter);
 180           log_info(gc)("Concurrent Mark restart for overflow");
 181         }
 182       } while (cm()->restart_for_overflow());
 183 
 184       double end_time = os::elapsedVTime();
 185       // Update the total virtual time before doing this, since it will try
 186       // to measure it to get the vtime for this marking.  We purposely
 187       // neglect the presumably-short "completeCleanup" phase here.
 188       _vtime_accum = (end_time - _vtime_start);
 189 
 190       if (!cm()->has_aborted()) {
 191         delay_to_keep_mmu(g1_policy, false /* cleanup */);
 192 
 193         CMCleanUp cl_cl(_cm);
 194         VM_CGC_Operation op(&cl_cl, "Pause Cleanup", false /* needs_pll */);
 195         VMThread::execute(&op);
 196       } else {
 197         // We don't want to update the marking status if a GC pause
 198         // is already underway.
 199         SuspendibleThreadSetJoiner sts_join;
 200         g1h->collector_state()->set_mark_in_progress(false);
 201       }
 202 
 203       // Check if cleanup set the free_regions_coming flag. If it
 204       // hasn't, we can just skip the next step.
 205       if (g1h->free_regions_coming()) {
 206         // The following will finish freeing up any regions that we
 207         // found to be empty during cleanup. We'll do this part
 208         // without joining the suspendible set. If an evacuation pause
 209         // takes place, then we would carry on freeing regions in
 210         // case they are needed by the pause. If a Full GC takes
 211         // place, it would wait for us to process the regions
 212         // reclaimed by cleanup.
 213 
 214         GCTraceConcTime(Info, gc) tt("Concurrent Cleanup");
 215         GCConcPhaseTimer(_cm, "Concurrent Cleanup");
 216 
 217         // Now do the concurrent cleanup operation.
 218         _cm->completeCleanup();
 219 
 220         // Notify anyone who's waiting that there are no more free
 221         // regions coming. We have to do this before we join the STS
 222         // (in fact, we should not attempt to join the STS in the
 223         // interval between finishing the cleanup pause and clearing
 224         // the free_regions_coming flag) otherwise we might deadlock:
 225         // a GC worker could be blocked waiting for the notification
 226         // whereas this thread will be blocked for the pause to finish
 227         // while it's trying to join the STS, which is conditional on
 228         // the GC workers finishing.
 229         g1h->reset_free_regions_coming();
 230       }
 231       guarantee(cm()->cleanup_list_is_empty(),
 232                 "at this point there should be no regions on the cleanup list");
 233 
 234       // There is a tricky race before recording that the concurrent
 235       // cleanup has completed and a potential Full GC starting around
 236       // the same time. We want to make sure that the Full GC calls
 237       // abort() on concurrent mark after
 238       // record_concurrent_mark_cleanup_completed(), since abort() is
 239       // the method that will reset the concurrent mark state. If we
 240       // end up calling record_concurrent_mark_cleanup_completed()
 241       // after abort() then we might incorrectly undo some of the work
 242       // abort() did. Checking the has_aborted() flag after joining
 243       // the STS allows the correct ordering of the two methods. There
 244       // are two scenarios:
 245       //
 246       // a) If we reach here before the Full GC, the fact that we have
 247       // joined the STS means that the Full GC cannot start until we
 248       // leave the STS, so record_concurrent_mark_cleanup_completed()
 249       // will complete before abort() is called.
 250       //
 251       // b) If we reach here during the Full GC, we'll be held up from
 252       // joining the STS until the Full GC is done, which means that
 253       // abort() will have completed and has_aborted() will return
 254       // true to prevent us from calling
 255       // record_concurrent_mark_cleanup_completed() (and, in fact, it's
 256       // not needed any more as the concurrent mark state has been
 257       // already reset).
 258       {
 259         SuspendibleThreadSetJoiner sts_join;
 260         if (!cm()->has_aborted()) {
 261           g1_policy->record_concurrent_mark_cleanup_completed();
 262         } else {
 263           log_info(gc)("Concurrent Mark abort");
 264         }
 265       }
 266 
 267       // We now want to allow clearing of the marking bitmap to be
 268       // suspended by a collection pause.
 269       // We may have aborted just before the remark. Do not bother clearing the
 270       // bitmap then, as it has been done during mark abort.
 271       if (!cm()->has_aborted()) {
 272         GCConcPhaseTimer(_cm, "Concurrent Bitmap Clearing");
 273         _cm->clearNextBitmap();
 274       } else {
 275         assert(!G1VerifyBitmaps || _cm->nextMarkBitmapIsClear(), "Next mark bitmap must be clear");
 276       }
 277     }
 278 
 279     // Update the number of full collections that have been
 280     // completed. This will also notify the FullGCCount_lock in case a
 281     // Java thread is waiting for a full GC to happen (e.g., it
 282     // called System.gc() with +ExplicitGCInvokesConcurrent).
 283     {
 284       SuspendibleThreadSetJoiner sts_join;
 285       g1h->increment_old_marking_cycles_completed(true /* concurrent */);
 286       g1h->register_concurrent_cycle_end();
 287     }
 288   }
 289 }
 290 
 291 void ConcurrentMarkThread::stop() {
 292   {
 293     MutexLockerEx ml(Terminator_lock);
 294     _should_terminate = true;
 295   }
 296 
 297   stop_service();
 298 
 299   {
 300     MutexLockerEx ml(Terminator_lock);
 301     while (!_has_terminated) {
 302       Terminator_lock->wait();
 303     }
 304   }
 305 }
 306 
 307 void ConcurrentMarkThread::stop_service() {
 308   MutexLockerEx ml(CGC_lock, Mutex::_no_safepoint_check_flag);
 309   CGC_lock->notify_all();
 310 }
 311 
 312 void ConcurrentMarkThread::sleepBeforeNextCycle() {
 313   // We join here because we don't want to do the "shouldConcurrentMark()"
 314   // below while the world is otherwise stopped.
 315   assert(!in_progress(), "should have been cleared");
 316 
 317   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
 318   while (!started() && !_should_terminate) {
 319     CGC_lock->wait(Mutex::_no_safepoint_check_flag);
 320   }
 321 
 322   if (started()) {
 323     set_in_progress();
 324   }
 325 }
 326 
 327 // Note: As is the case with CMS - this method, although exported
 328 // by the ConcurrentMarkThread, which is a non-JavaThread, can only
 329 // be called by a JavaThread. Currently this is done at vm creation
 330 // time (post-vm-init) by the main/Primordial (Java)Thread.
 331 // XXX Consider changing this in the future to allow the CM thread
 332 // itself to create this thread?
 333 void ConcurrentMarkThread::makeSurrogateLockerThread(TRAPS) {
 334   assert(UseG1GC, "SLT thread needed only for concurrent GC");
 335   assert(THREAD->is_Java_thread(), "must be a Java thread");
 336   assert(_slt == NULL, "SLT already created");
 337   _slt = SurrogateLockerThread::make(THREAD);
 338 }