1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP
  27 
  28 #include "classfile/javaClasses.hpp"
  29 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  30 #include "gc/g1/heapRegionSet.hpp"
  31 #include "gc/shared/taskqueue.hpp"
  32 
  33 class G1CollectedHeap;
  34 class G1CMBitMap;
  35 class G1CMTask;
  36 class G1ConcurrentMark;
  37 typedef GenericTaskQueue<oop, mtGC>              G1CMTaskQueue;
  38 typedef GenericTaskQueueSet<G1CMTaskQueue, mtGC> G1CMTaskQueueSet;
  39 
  40 // Closure used by CM during concurrent reference discovery
  41 // and reference processing (during remarking) to determine
  42 // if a particular object is alive. It is primarily used
  43 // to determine if referents of discovered reference objects
  44 // are alive. An instance is also embedded into the
  45 // reference processor as the _is_alive_non_header field
  46 class G1CMIsAliveClosure: public BoolObjectClosure {
  47   G1CollectedHeap* _g1;
  48  public:
  49   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  50 
  51   bool do_object_b(oop obj);
  52 };
  53 
  54 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  55 // class, with one bit per (1<<_shifter) HeapWords.
  56 
  57 class G1CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  58  protected:
  59   HeapWord* _bmStartWord;      // base address of range covered by map
  60   size_t    _bmWordSize;       // map size (in #HeapWords covered)
  61   const int _shifter;          // map to char or bit
  62   BitMap    _bm;               // the bit map itself
  63 
  64  public:
  65   // constructor
  66   G1CMBitMapRO(int shifter);
  67 
  68   // inquiries
  69   HeapWord* startWord()   const { return _bmStartWord; }
  70   // the following is one past the last word in space
  71   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  72 
  73   // read marks
  74 
  75   bool isMarked(HeapWord* addr) const {
  76     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  77            "outside underlying space?");
  78     return _bm.at(heapWordToOffset(addr));
  79   }
  80 
  81   // iteration
  82   inline bool iterate(BitMapClosure* cl, MemRegion mr);
  83 
  84   // Return the address corresponding to the next marked bit at or after
  85   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  86   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  87   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
  88                                      const HeapWord* limit = NULL) const;
  89 
  90   // conversion utilities
  91   HeapWord* offsetToHeapWord(size_t offset) const {
  92     return _bmStartWord + (offset << _shifter);
  93   }
  94   size_t heapWordToOffset(const HeapWord* addr) const {
  95     return pointer_delta(addr, _bmStartWord) >> _shifter;
  96   }
  97 
  98   // The argument addr should be the start address of a valid object
  99   inline HeapWord* nextObject(HeapWord* addr);
 100 
 101   void print_on_error(outputStream* st, const char* prefix) const;
 102 
 103   // debugging
 104   NOT_PRODUCT(bool covers(MemRegion rs) const;)
 105 };
 106 
 107 class G1CMBitMapMappingChangedListener : public G1MappingChangedListener {
 108  private:
 109   G1CMBitMap* _bm;
 110  public:
 111   G1CMBitMapMappingChangedListener() : _bm(NULL) {}
 112 
 113   void set_bitmap(G1CMBitMap* bm) { _bm = bm; }
 114 
 115   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 116 };
 117 
 118 class G1CMBitMap : public G1CMBitMapRO {
 119  private:
 120   G1CMBitMapMappingChangedListener _listener;
 121 
 122  public:
 123   static size_t compute_size(size_t heap_size);
 124   // Returns the amount of bytes on the heap between two marks in the bitmap.
 125   static size_t mark_distance();
 126   // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
 127   // mark bitmap corresponds to. This is the same as the mark distance above.
 128   static size_t heap_map_factor() {
 129     return mark_distance();
 130   }
 131 
 132   G1CMBitMap() : G1CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
 133 
 134   // Initializes the underlying BitMap to cover the given area.
 135   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
 136 
 137   // Write marks.
 138   inline void mark(HeapWord* addr);
 139   inline void clear(HeapWord* addr);
 140   inline bool parMark(HeapWord* addr);
 141 
 142   void clearRange(MemRegion mr);
 143 
 144   // Clear the whole mark bitmap.
 145   void clearAll();
 146 };
 147 
 148 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
 149 class G1CMMarkStack VALUE_OBJ_CLASS_SPEC {
 150   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
 151   G1ConcurrentMark* _cm;
 152   oop* _base;        // bottom of stack
 153   jint _index;       // one more than last occupied index
 154   jint _capacity;    // max #elements
 155   jint _saved_index; // value of _index saved at start of GC
 156 
 157   bool  _overflow;
 158   bool  _should_expand;
 159 
 160  public:
 161   G1CMMarkStack(G1ConcurrentMark* cm);
 162   ~G1CMMarkStack();
 163 
 164   bool allocate(size_t capacity);
 165 
 166   // Pushes the first "n" elements of "ptr_arr" on the stack.
 167   // Locking impl: concurrency is allowed only with
 168   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 169   // locking strategy.
 170   void par_push_arr(oop* ptr_arr, int n);
 171 
 172   // If returns false, the array was empty.  Otherwise, removes up to "max"
 173   // elements from the stack, and transfers them to "ptr_arr" in an
 174   // unspecified order.  The actual number transferred is given in "n" ("n
 175   // == 0" is deliberately redundant with the return value.)  Locking impl:
 176   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 177   // operations, which use the same locking strategy.
 178   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 179 
 180   bool isEmpty()    { return _index == 0; }
 181   int  maxElems()   { return _capacity; }
 182 
 183   bool overflow() { return _overflow; }
 184   void clear_overflow() { _overflow = false; }
 185 
 186   bool should_expand() const { return _should_expand; }
 187   void set_should_expand();
 188 
 189   // Expand the stack, typically in response to an overflow condition
 190   void expand();
 191 
 192   int  size() { return _index; }
 193 
 194   void setEmpty()   { _index = 0; clear_overflow(); }
 195 
 196   // Record the current index.
 197   void note_start_of_gc();
 198 
 199   // Make sure that we have not added any entries to the stack during GC.
 200   void note_end_of_gc();
 201 
 202   // Apply fn to each oop in the mark stack, up to the bound recorded
 203   // via one of the above "note" functions.  The mark stack must not
 204   // be modified while iterating.
 205   template<typename Fn> void iterate(Fn fn);
 206 };
 207 
 208 class YoungList;
 209 
 210 // Root Regions are regions that are not empty at the beginning of a
 211 // marking cycle and which we might collect during an evacuation pause
 212 // while the cycle is active. Given that, during evacuation pauses, we
 213 // do not copy objects that are explicitly marked, what we have to do
 214 // for the root regions is to scan them and mark all objects reachable
 215 // from them. According to the SATB assumptions, we only need to visit
 216 // each object once during marking. So, as long as we finish this scan
 217 // before the next evacuation pause, we can copy the objects from the
 218 // root regions without having to mark them or do anything else to them.
 219 //
 220 // Currently, we only support root region scanning once (at the start
 221 // of the marking cycle) and the root regions are all the survivor
 222 // regions populated during the initial-mark pause.
 223 class G1CMRootRegions VALUE_OBJ_CLASS_SPEC {
 224 private:
 225   YoungList*           _young_list;
 226   G1ConcurrentMark*    _cm;
 227 
 228   volatile bool        _scan_in_progress;
 229   volatile bool        _should_abort;
 230   HeapRegion* volatile _next_survivor;
 231 
 232   void notify_scan_done();
 233 
 234 public:
 235   G1CMRootRegions();
 236   // We actually do most of the initialization in this method.
 237   void init(G1CollectedHeap* g1h, G1ConcurrentMark* cm);
 238 
 239   // Reset the claiming / scanning of the root regions.
 240   void prepare_for_scan();
 241 
 242   // Forces get_next() to return NULL so that the iteration aborts early.
 243   void abort() { _should_abort = true; }
 244 
 245   // Return true if the CM thread are actively scanning root regions,
 246   // false otherwise.
 247   bool scan_in_progress() { return _scan_in_progress; }
 248 
 249   // Claim the next root region to scan atomically, or return NULL if
 250   // all have been claimed.
 251   HeapRegion* claim_next();
 252 
 253   void cancel_scan();
 254 
 255   // Flag that we're done with root region scanning and notify anyone
 256   // who's waiting on it. If aborted is false, assume that all regions
 257   // have been claimed.
 258   void scan_finished();
 259 
 260   // If CM threads are still scanning root regions, wait until they
 261   // are done. Return true if we had to wait, false otherwise.
 262   bool wait_until_scan_finished();
 263 };
 264 
 265 class ConcurrentMarkThread;
 266 
 267 class G1ConcurrentMark: public CHeapObj<mtGC> {
 268   friend class ConcurrentMarkThread;
 269   friend class G1ParNoteEndTask;
 270   friend class CalcLiveObjectsClosure;
 271   friend class G1CMRefProcTaskProxy;
 272   friend class G1CMRefProcTaskExecutor;
 273   friend class G1CMKeepAliveAndDrainClosure;
 274   friend class G1CMDrainMarkingStackClosure;
 275   friend class G1CMBitMapClosure;
 276   friend class G1CMConcurrentMarkingTask;
 277   friend class G1CMMarkStack;
 278   friend class G1CMRemarkTask;
 279   friend class G1CMTask;
 280 
 281 protected:
 282   ConcurrentMarkThread* _cmThread;   // The thread doing the work
 283   G1CollectedHeap*      _g1h;        // The heap
 284   uint                  _parallel_marking_threads; // The number of marking
 285                                                    // threads we're using
 286   uint                  _max_parallel_marking_threads; // Max number of marking
 287                                                        // threads we'll ever use
 288   double                _sleep_factor; // How much we have to sleep, with
 289                                        // respect to the work we just did, to
 290                                        // meet the marking overhead goal
 291   double                _marking_task_overhead; // Marking target overhead for
 292                                                 // a single task
 293 
 294   FreeRegionList        _cleanup_list;
 295 
 296   // Concurrent marking support structures
 297   G1CMBitMap              _markBitMap1;
 298   G1CMBitMap              _markBitMap2;
 299   G1CMBitMapRO*           _prevMarkBitMap; // Completed mark bitmap
 300   G1CMBitMap*             _nextMarkBitMap; // Under-construction mark bitmap
 301 
 302   BitMap                  _region_bm;
 303   BitMap                  _card_bm;
 304 
 305   // Heap bounds
 306   HeapWord*               _heap_start;
 307   HeapWord*               _heap_end;
 308 
 309   // Root region tracking and claiming
 310   G1CMRootRegions         _root_regions;
 311 
 312   // For gray objects
 313   G1CMMarkStack           _markStack; // Grey objects behind global finger
 314   HeapWord* volatile      _finger;  // The global finger, region aligned,
 315                                     // always points to the end of the
 316                                     // last claimed region
 317 
 318   // Marking tasks
 319   uint                    _max_worker_id;// Maximum worker id
 320   uint                    _active_tasks; // Task num currently active
 321   G1CMTask**              _tasks;        // Task queue array (max_worker_id len)
 322   G1CMTaskQueueSet*       _task_queues;  // Task queue set
 323   ParallelTaskTerminator  _terminator;   // For termination
 324 
 325   // Two sync barriers that are used to synchronize tasks when an
 326   // overflow occurs. The algorithm is the following. All tasks enter
 327   // the first one to ensure that they have all stopped manipulating
 328   // the global data structures. After they exit it, they re-initialize
 329   // their data structures and task 0 re-initializes the global data
 330   // structures. Then, they enter the second sync barrier. This
 331   // ensure, that no task starts doing work before all data
 332   // structures (local and global) have been re-initialized. When they
 333   // exit it, they are free to start working again.
 334   WorkGangBarrierSync     _first_overflow_barrier_sync;
 335   WorkGangBarrierSync     _second_overflow_barrier_sync;
 336 
 337   // This is set by any task, when an overflow on the global data
 338   // structures is detected
 339   volatile bool           _has_overflown;
 340   // True: marking is concurrent, false: we're in remark
 341   volatile bool           _concurrent;
 342   // Set at the end of a Full GC so that marking aborts
 343   volatile bool           _has_aborted;
 344 
 345   // Used when remark aborts due to an overflow to indicate that
 346   // another concurrent marking phase should start
 347   volatile bool           _restart_for_overflow;
 348 
 349   // This is true from the very start of concurrent marking until the
 350   // point when all the tasks complete their work. It is really used
 351   // to determine the points between the end of concurrent marking and
 352   // time of remark.
 353   volatile bool           _concurrent_marking_in_progress;
 354 
 355   // Keep track of whether we have started concurrent phase or not.
 356   bool                    _concurrent_phase_started;
 357 
 358   // All of these times are in ms
 359   NumberSeq _init_times;
 360   NumberSeq _remark_times;
 361   NumberSeq _remark_mark_times;
 362   NumberSeq _remark_weak_ref_times;
 363   NumberSeq _cleanup_times;
 364   double    _total_counting_time;
 365   double    _total_rs_scrub_time;
 366 
 367   double*   _accum_task_vtime;   // Accumulated task vtime
 368 
 369   WorkGang* _parallel_workers;
 370 
 371   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
 372   void weakRefsWork(bool clear_all_soft_refs);
 373 
 374   void swapMarkBitMaps();
 375 
 376   // It resets the global marking data structures, as well as the
 377   // task local ones; should be called during initial mark.
 378   void reset();
 379 
 380   // Resets all the marking data structures. Called when we have to restart
 381   // marking or when marking completes (via set_non_marking_state below).
 382   void reset_marking_state(bool clear_overflow = true);
 383 
 384   // We do this after we're done with marking so that the marking data
 385   // structures are initialized to a sensible and predictable state.
 386   void set_non_marking_state();
 387 
 388   // Called to indicate how many threads are currently active.
 389   void set_concurrency(uint active_tasks);
 390 
 391   // It should be called to indicate which phase we're in (concurrent
 392   // mark or remark) and how many threads are currently active.
 393   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 394 
 395   // Prints all gathered CM-related statistics
 396   void print_stats();
 397 
 398   bool cleanup_list_is_empty() {
 399     return _cleanup_list.is_empty();
 400   }
 401 
 402   // Accessor methods
 403   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 404   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 405   double sleep_factor()                     { return _sleep_factor; }
 406   double marking_task_overhead()            { return _marking_task_overhead;}
 407 
 408   HeapWord*               finger()          { return _finger;   }
 409   bool                    concurrent()      { return _concurrent; }
 410   uint                    active_tasks()    { return _active_tasks; }
 411   ParallelTaskTerminator* terminator()      { return &_terminator; }
 412 
 413   // It claims the next available region to be scanned by a marking
 414   // task/thread. It might return NULL if the next region is empty or
 415   // we have run out of regions. In the latter case, out_of_regions()
 416   // determines whether we've really run out of regions or the task
 417   // should call claim_region() again. This might seem a bit
 418   // awkward. Originally, the code was written so that claim_region()
 419   // either successfully returned with a non-empty region or there
 420   // were no more regions to be claimed. The problem with this was
 421   // that, in certain circumstances, it iterated over large chunks of
 422   // the heap finding only empty regions and, while it was working, it
 423   // was preventing the calling task to call its regular clock
 424   // method. So, this way, each task will spend very little time in
 425   // claim_region() and is allowed to call the regular clock method
 426   // frequently.
 427   HeapRegion* claim_region(uint worker_id);
 428 
 429   // It determines whether we've run out of regions to scan. Note that
 430   // the finger can point past the heap end in case the heap was expanded
 431   // to satisfy an allocation without doing a GC. This is fine, because all
 432   // objects in those regions will be considered live anyway because of
 433   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 434   bool        out_of_regions() { return _finger >= _heap_end; }
 435 
 436   // Returns the task with the given id
 437   G1CMTask* task(int id) {
 438     assert(0 <= id && id < (int) _active_tasks,
 439            "task id not within active bounds");
 440     return _tasks[id];
 441   }
 442 
 443   // Returns the task queue with the given id
 444   G1CMTaskQueue* task_queue(int id) {
 445     assert(0 <= id && id < (int) _active_tasks,
 446            "task queue id not within active bounds");
 447     return (G1CMTaskQueue*) _task_queues->queue(id);
 448   }
 449 
 450   // Returns the task queue set
 451   G1CMTaskQueueSet* task_queues()  { return _task_queues; }
 452 
 453   // Access / manipulation of the overflow flag which is set to
 454   // indicate that the global stack has overflown
 455   bool has_overflown()           { return _has_overflown; }
 456   void set_has_overflown()       { _has_overflown = true; }
 457   void clear_has_overflown()     { _has_overflown = false; }
 458   bool restart_for_overflow()    { return _restart_for_overflow; }
 459 
 460   // Methods to enter the two overflow sync barriers
 461   void enter_first_sync_barrier(uint worker_id);
 462   void enter_second_sync_barrier(uint worker_id);
 463 
 464   // Live Data Counting data structures...
 465   // These data structures are initialized at the start of
 466   // marking. They are written to while marking is active.
 467   // They are aggregated during remark; the aggregated values
 468   // are then used to populate the _region_bm, _card_bm, and
 469   // the total live bytes, which are then subsequently updated
 470   // during cleanup.
 471 
 472   // An array of bitmaps (one bit map per task). Each bitmap
 473   // is used to record the cards spanned by the live objects
 474   // marked by that task/worker.
 475   BitMap*  _count_card_bitmaps;
 476 
 477   // Used to record the number of marked live bytes
 478   // (for each region, by worker thread).
 479   size_t** _count_marked_bytes;
 480 
 481   // Card index of the bottom of the G1 heap. Used for biasing indices into
 482   // the card bitmaps.
 483   intptr_t _heap_bottom_card_num;
 484 
 485   // Set to true when initialization is complete
 486   bool _completed_initialization;
 487 
 488 public:
 489   // Manipulation of the global mark stack.
 490   // The push and pop operations are used by tasks for transfers
 491   // between task-local queues and the global mark stack, and use
 492   // locking for concurrency safety.
 493   bool mark_stack_push(oop* arr, int n) {
 494     _markStack.par_push_arr(arr, n);
 495     if (_markStack.overflow()) {
 496       set_has_overflown();
 497       return false;
 498     }
 499     return true;
 500   }
 501   void mark_stack_pop(oop* arr, int max, int* n) {
 502     _markStack.par_pop_arr(arr, max, n);
 503   }
 504   size_t mark_stack_size()                { return _markStack.size(); }
 505   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 506   bool mark_stack_overflow()              { return _markStack.overflow(); }
 507   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
 508 
 509   G1CMRootRegions* root_regions() { return &_root_regions; }
 510 
 511   bool concurrent_marking_in_progress() {
 512     return _concurrent_marking_in_progress;
 513   }
 514   void set_concurrent_marking_in_progress() {
 515     _concurrent_marking_in_progress = true;
 516   }
 517   void clear_concurrent_marking_in_progress() {
 518     _concurrent_marking_in_progress = false;
 519   }
 520 
 521   void register_concurrent_phase_start(const char* title);
 522   void register_concurrent_phase_end();
 523 
 524   void update_accum_task_vtime(int i, double vtime) {
 525     _accum_task_vtime[i] += vtime;
 526   }
 527 
 528   double all_task_accum_vtime() {
 529     double ret = 0.0;
 530     for (uint i = 0; i < _max_worker_id; ++i)
 531       ret += _accum_task_vtime[i];
 532     return ret;
 533   }
 534 
 535   // Attempts to steal an object from the task queues of other tasks
 536   bool try_stealing(uint worker_id, int* hash_seed, oop& obj);
 537 
 538   G1ConcurrentMark(G1CollectedHeap* g1h,
 539                    G1RegionToSpaceMapper* prev_bitmap_storage,
 540                    G1RegionToSpaceMapper* next_bitmap_storage);
 541   ~G1ConcurrentMark();
 542 
 543   ConcurrentMarkThread* cmThread() { return _cmThread; }
 544 
 545   G1CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 546   G1CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 547 
 548   // Returns the number of GC threads to be used in a concurrent
 549   // phase based on the number of GC threads being used in a STW
 550   // phase.
 551   uint scale_parallel_threads(uint n_par_threads);
 552 
 553   // Calculates the number of GC threads to be used in a concurrent phase.
 554   uint calc_parallel_marking_threads();
 555 
 556   // The following three are interaction between CM and
 557   // G1CollectedHeap
 558 
 559   // This notifies CM that a root during initial-mark needs to be
 560   // grayed. It is MT-safe. word_size is the size of the object in
 561   // words. It is passed explicitly as sometimes we cannot calculate
 562   // it from the given object because it might be in an inconsistent
 563   // state (e.g., in to-space and being copied). So the caller is
 564   // responsible for dealing with this issue (e.g., get the size from
 565   // the from-space image when the to-space image might be
 566   // inconsistent) and always passing the size. hr is the region that
 567   // contains the object and it's passed optionally from callers who
 568   // might already have it (no point in recalculating it).
 569   inline void grayRoot(oop obj,
 570                        size_t word_size,
 571                        uint worker_id,
 572                        HeapRegion* hr = NULL);
 573 
 574   // Clear the next marking bitmap (will be called concurrently).
 575   void clearNextBitmap();
 576 
 577   // Return whether the next mark bitmap has no marks set. To be used for assertions
 578   // only. Will not yield to pause requests.
 579   bool nextMarkBitmapIsClear();
 580 
 581   // These two do the work that needs to be done before and after the
 582   // initial root checkpoint. Since this checkpoint can be done at two
 583   // different points (i.e. an explicit pause or piggy-backed on a
 584   // young collection), then it's nice to be able to easily share the
 585   // pre/post code. It might be the case that we can put everything in
 586   // the post method. TP
 587   void checkpointRootsInitialPre();
 588   void checkpointRootsInitialPost();
 589 
 590   // Scan all the root regions and mark everything reachable from
 591   // them.
 592   void scanRootRegions();
 593 
 594   // Scan a single root region and mark everything reachable from it.
 595   void scanRootRegion(HeapRegion* hr, uint worker_id);
 596 
 597   // Do concurrent phase of marking, to a tentative transitive closure.
 598   void markFromRoots();
 599 
 600   void checkpointRootsFinal(bool clear_all_soft_refs);
 601   void checkpointRootsFinalWork();
 602   void cleanup();
 603   void completeCleanup();
 604 
 605   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 606   // this carefully!
 607   inline void markPrev(oop p);
 608 
 609   // Clears marks for all objects in the given range, for the prev or
 610   // next bitmaps.  NB: the previous bitmap is usually
 611   // read-only, so use this carefully!
 612   void clearRangePrevBitmap(MemRegion mr);
 613 
 614   // Notify data structures that a GC has started.
 615   void note_start_of_gc() {
 616     _markStack.note_start_of_gc();
 617   }
 618 
 619   // Notify data structures that a GC is finished.
 620   void note_end_of_gc() {
 621     _markStack.note_end_of_gc();
 622   }
 623 
 624   // Verify that there are no CSet oops on the stacks (taskqueues /
 625   // global mark stack) and fingers (global / per-task).
 626   // If marking is not in progress, it's a no-op.
 627   void verify_no_cset_oops() PRODUCT_RETURN;
 628 
 629   inline bool isPrevMarked(oop p) const;
 630 
 631   inline bool do_yield_check(uint worker_i = 0);
 632 
 633   // Called to abort the marking cycle after a Full GC takes place.
 634   void abort();
 635 
 636   bool has_aborted()      { return _has_aborted; }
 637 
 638   void print_summary_info();
 639 
 640   void print_worker_threads_on(outputStream* st) const;
 641 
 642   void print_on_error(outputStream* st) const;
 643 
 644   // Liveness counting
 645 
 646   // Utility routine to set an exclusive range of cards on the given
 647   // card liveness bitmap
 648   inline void set_card_bitmap_range(BitMap* card_bm,
 649                                     BitMap::idx_t start_idx,
 650                                     BitMap::idx_t end_idx,
 651                                     bool is_par);
 652 
 653   // Returns the card number of the bottom of the G1 heap.
 654   // Used in biasing indices into accounting card bitmaps.
 655   intptr_t heap_bottom_card_num() const {
 656     return _heap_bottom_card_num;
 657   }
 658 
 659   // Returns the card bitmap for a given task or worker id.
 660   BitMap* count_card_bitmap_for(uint worker_id) {
 661     assert(worker_id < _max_worker_id, "oob");
 662     assert(_count_card_bitmaps != NULL, "uninitialized");
 663     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
 664     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
 665     return task_card_bm;
 666   }
 667 
 668   // Returns the array containing the marked bytes for each region,
 669   // for the given worker or task id.
 670   size_t* count_marked_bytes_array_for(uint worker_id) {
 671     assert(worker_id < _max_worker_id, "oob");
 672     assert(_count_marked_bytes != NULL, "uninitialized");
 673     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
 674     assert(marked_bytes_array != NULL, "uninitialized");
 675     return marked_bytes_array;
 676   }
 677 
 678   // Returns the index in the liveness accounting card table bitmap
 679   // for the given address
 680   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
 681 
 682   // Counts the size of the given memory region in the the given
 683   // marked_bytes array slot for the given HeapRegion.
 684   // Sets the bits in the given card bitmap that are associated with the
 685   // cards that are spanned by the memory region.
 686   inline void count_region(MemRegion mr,
 687                            HeapRegion* hr,
 688                            size_t* marked_bytes_array,
 689                            BitMap* task_card_bm);
 690 
 691   // Counts the given object in the given task/worker counting
 692   // data structures.
 693   inline void count_object(oop obj,
 694                            HeapRegion* hr,
 695                            size_t* marked_bytes_array,
 696                            BitMap* task_card_bm,
 697                            size_t word_size);
 698 
 699   // Attempts to mark the given object and, if successful, counts
 700   // the object in the given task/worker counting structures.
 701   inline bool par_mark_and_count(oop obj,
 702                                  HeapRegion* hr,
 703                                  size_t* marked_bytes_array,
 704                                  BitMap* task_card_bm);
 705 
 706   // Attempts to mark the given object and, if successful, counts
 707   // the object in the task/worker counting structures for the
 708   // given worker id.
 709   inline bool par_mark_and_count(oop obj,
 710                                  size_t word_size,
 711                                  HeapRegion* hr,
 712                                  uint worker_id);
 713 
 714   // Returns true if initialization was successfully completed.
 715   bool completed_initialization() const {
 716     return _completed_initialization;
 717   }
 718 
 719 protected:
 720   // Clear all the per-task bitmaps and arrays used to store the
 721   // counting data.
 722   void clear_all_count_data();
 723 
 724   // Aggregates the counting data for each worker/task
 725   // that was constructed while marking. Also sets
 726   // the amount of marked bytes for each region and
 727   // the top at concurrent mark count.
 728   void aggregate_count_data();
 729 
 730   // Verification routine
 731   void verify_count_data();
 732 };
 733 
 734 // A class representing a marking task.
 735 class G1CMTask : public TerminatorTerminator {
 736 private:
 737   enum PrivateConstants {
 738     // the regular clock call is called once the scanned words reaches
 739     // this limit
 740     words_scanned_period          = 12*1024,
 741     // the regular clock call is called once the number of visited
 742     // references reaches this limit
 743     refs_reached_period           = 384,
 744     // initial value for the hash seed, used in the work stealing code
 745     init_hash_seed                = 17,
 746     // how many entries will be transferred between global stack and
 747     // local queues
 748     global_stack_transfer_size    = 16
 749   };
 750 
 751   uint                        _worker_id;
 752   G1CollectedHeap*            _g1h;
 753   G1ConcurrentMark*           _cm;
 754   G1CMBitMap*                 _nextMarkBitMap;
 755   // the task queue of this task
 756   G1CMTaskQueue*              _task_queue;
 757 private:
 758   // the task queue set---needed for stealing
 759   G1CMTaskQueueSet*           _task_queues;
 760   // indicates whether the task has been claimed---this is only  for
 761   // debugging purposes
 762   bool                        _claimed;
 763 
 764   // number of calls to this task
 765   int                         _calls;
 766 
 767   // when the virtual timer reaches this time, the marking step should
 768   // exit
 769   double                      _time_target_ms;
 770   // the start time of the current marking step
 771   double                      _start_time_ms;
 772 
 773   // the oop closure used for iterations over oops
 774   G1CMOopClosure*             _cm_oop_closure;
 775 
 776   // the region this task is scanning, NULL if we're not scanning any
 777   HeapRegion*                 _curr_region;
 778   // the local finger of this task, NULL if we're not scanning a region
 779   HeapWord*                   _finger;
 780   // limit of the region this task is scanning, NULL if we're not scanning one
 781   HeapWord*                   _region_limit;
 782 
 783   // the number of words this task has scanned
 784   size_t                      _words_scanned;
 785   // When _words_scanned reaches this limit, the regular clock is
 786   // called. Notice that this might be decreased under certain
 787   // circumstances (i.e. when we believe that we did an expensive
 788   // operation).
 789   size_t                      _words_scanned_limit;
 790   // the initial value of _words_scanned_limit (i.e. what it was
 791   // before it was decreased).
 792   size_t                      _real_words_scanned_limit;
 793 
 794   // the number of references this task has visited
 795   size_t                      _refs_reached;
 796   // When _refs_reached reaches this limit, the regular clock is
 797   // called. Notice this this might be decreased under certain
 798   // circumstances (i.e. when we believe that we did an expensive
 799   // operation).
 800   size_t                      _refs_reached_limit;
 801   // the initial value of _refs_reached_limit (i.e. what it was before
 802   // it was decreased).
 803   size_t                      _real_refs_reached_limit;
 804 
 805   // used by the work stealing stuff
 806   int                         _hash_seed;
 807   // if this is true, then the task has aborted for some reason
 808   bool                        _has_aborted;
 809   // set when the task aborts because it has met its time quota
 810   bool                        _has_timed_out;
 811   // true when we're draining SATB buffers; this avoids the task
 812   // aborting due to SATB buffers being available (as we're already
 813   // dealing with them)
 814   bool                        _draining_satb_buffers;
 815 
 816   // number sequence of past step times
 817   NumberSeq                   _step_times_ms;
 818   // elapsed time of this task
 819   double                      _elapsed_time_ms;
 820   // termination time of this task
 821   double                      _termination_time_ms;
 822   // when this task got into the termination protocol
 823   double                      _termination_start_time_ms;
 824 
 825   // true when the task is during a concurrent phase, false when it is
 826   // in the remark phase (so, in the latter case, we do not have to
 827   // check all the things that we have to check during the concurrent
 828   // phase, i.e. SATB buffer availability...)
 829   bool                        _concurrent;
 830 
 831   TruncatedSeq                _marking_step_diffs_ms;
 832 
 833   // Counting data structures. Embedding the task's marked_bytes_array
 834   // and card bitmap into the actual task saves having to go through
 835   // the ConcurrentMark object.
 836   size_t*                     _marked_bytes_array;
 837   BitMap*                     _card_bm;
 838 
 839   // it updates the local fields after this task has claimed
 840   // a new region to scan
 841   void setup_for_region(HeapRegion* hr);
 842   // it brings up-to-date the limit of the region
 843   void update_region_limit();
 844 
 845   // called when either the words scanned or the refs visited limit
 846   // has been reached
 847   void reached_limit();
 848   // recalculates the words scanned and refs visited limits
 849   void recalculate_limits();
 850   // decreases the words scanned and refs visited limits when we reach
 851   // an expensive operation
 852   void decrease_limits();
 853   // it checks whether the words scanned or refs visited reached their
 854   // respective limit and calls reached_limit() if they have
 855   void check_limits() {
 856     if (_words_scanned >= _words_scanned_limit ||
 857         _refs_reached >= _refs_reached_limit) {
 858       reached_limit();
 859     }
 860   }
 861   // this is supposed to be called regularly during a marking step as
 862   // it checks a bunch of conditions that might cause the marking step
 863   // to abort
 864   void regular_clock_call();
 865   bool concurrent() { return _concurrent; }
 866 
 867   // Test whether obj might have already been passed over by the
 868   // mark bitmap scan, and so needs to be pushed onto the mark stack.
 869   bool is_below_finger(oop obj, HeapWord* global_finger) const;
 870 
 871   template<bool scan> void process_grey_object(oop obj);
 872 
 873 public:
 874   // It resets the task; it should be called right at the beginning of
 875   // a marking phase.
 876   void reset(G1CMBitMap* _nextMarkBitMap);
 877   // it clears all the fields that correspond to a claimed region.
 878   void clear_region_fields();
 879 
 880   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
 881 
 882   // The main method of this class which performs a marking step
 883   // trying not to exceed the given duration. However, it might exit
 884   // prematurely, according to some conditions (i.e. SATB buffers are
 885   // available for processing).
 886   void do_marking_step(double target_ms,
 887                        bool do_termination,
 888                        bool is_serial);
 889 
 890   // These two calls start and stop the timer
 891   void record_start_time() {
 892     _elapsed_time_ms = os::elapsedTime() * 1000.0;
 893   }
 894   void record_end_time() {
 895     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
 896   }
 897 
 898   // returns the worker ID associated with this task.
 899   uint worker_id() { return _worker_id; }
 900 
 901   // From TerminatorTerminator. It determines whether this task should
 902   // exit the termination protocol after it's entered it.
 903   virtual bool should_exit_termination();
 904 
 905   // Resets the local region fields after a task has finished scanning a
 906   // region; or when they have become stale as a result of the region
 907   // being evacuated.
 908   void giveup_current_region();
 909 
 910   HeapWord* finger()            { return _finger; }
 911 
 912   bool has_aborted()            { return _has_aborted; }
 913   void set_has_aborted()        { _has_aborted = true; }
 914   void clear_has_aborted()      { _has_aborted = false; }
 915   bool has_timed_out()          { return _has_timed_out; }
 916   bool claimed()                { return _claimed; }
 917 
 918   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
 919 
 920   // Increment the number of references this task has visited.
 921   void increment_refs_reached() { ++_refs_reached; }
 922 
 923   // Grey the object by marking it.  If not already marked, push it on
 924   // the local queue if below the finger.
 925   // Precondition: obj is in region.
 926   // Precondition: obj is below region's NTAMS.
 927   inline void make_reference_grey(oop obj, HeapRegion* region);
 928 
 929   // Grey the object (by calling make_grey_reference) if required,
 930   // e.g. obj is below its containing region's NTAMS.
 931   // Precondition: obj is a valid heap object.
 932   inline void deal_with_reference(oop obj);
 933 
 934   // It scans an object and visits its children.
 935   inline void scan_object(oop obj);
 936 
 937   // It pushes an object on the local queue.
 938   inline void push(oop obj);
 939 
 940   // These two move entries to/from the global stack.
 941   void move_entries_to_global_stack();
 942   void get_entries_from_global_stack();
 943 
 944   // It pops and scans objects from the local queue. If partially is
 945   // true, then it stops when the queue size is of a given limit. If
 946   // partially is false, then it stops when the queue is empty.
 947   void drain_local_queue(bool partially);
 948   // It moves entries from the global stack to the local queue and
 949   // drains the local queue. If partially is true, then it stops when
 950   // both the global stack and the local queue reach a given size. If
 951   // partially if false, it tries to empty them totally.
 952   void drain_global_stack(bool partially);
 953   // It keeps picking SATB buffers and processing them until no SATB
 954   // buffers are available.
 955   void drain_satb_buffers();
 956 
 957   // moves the local finger to a new location
 958   inline void move_finger_to(HeapWord* new_finger) {
 959     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
 960     _finger = new_finger;
 961   }
 962 
 963   G1CMTask(uint worker_id,
 964            G1ConcurrentMark *cm,
 965            size_t* marked_bytes,
 966            BitMap* card_bm,
 967            G1CMTaskQueue* task_queue,
 968            G1CMTaskQueueSet* task_queues);
 969 
 970   // it prints statistics associated with this task
 971   void print_stats();
 972 };
 973 
 974 // Class that's used to to print out per-region liveness
 975 // information. It's currently used at the end of marking and also
 976 // after we sort the old regions at the end of the cleanup operation.
 977 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
 978 private:
 979   // Accumulators for these values.
 980   size_t _total_used_bytes;
 981   size_t _total_capacity_bytes;
 982   size_t _total_prev_live_bytes;
 983   size_t _total_next_live_bytes;
 984 
 985   // These are set up when we come across a "stars humongous" region
 986   // (as this is where most of this information is stored, not in the
 987   // subsequent "continues humongous" regions). After that, for every
 988   // region in a given humongous region series we deduce the right
 989   // values for it by simply subtracting the appropriate amount from
 990   // these fields. All these values should reach 0 after we've visited
 991   // the last region in the series.
 992   size_t _hum_used_bytes;
 993   size_t _hum_capacity_bytes;
 994   size_t _hum_prev_live_bytes;
 995   size_t _hum_next_live_bytes;
 996 
 997   // Accumulator for the remembered set size
 998   size_t _total_remset_bytes;
 999 
1000   // Accumulator for strong code roots memory size
1001   size_t _total_strong_code_roots_bytes;
1002 
1003   static double perc(size_t val, size_t total) {
1004     if (total == 0) {
1005       return 0.0;
1006     } else {
1007       return 100.0 * ((double) val / (double) total);
1008     }
1009   }
1010 
1011   static double bytes_to_mb(size_t val) {
1012     return (double) val / (double) M;
1013   }
1014 
1015   // See the .cpp file.
1016   size_t get_hum_bytes(size_t* hum_bytes);
1017   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
1018                      size_t* prev_live_bytes, size_t* next_live_bytes);
1019 
1020 public:
1021   // The header and footer are printed in the constructor and
1022   // destructor respectively.
1023   G1PrintRegionLivenessInfoClosure(const char* phase_name);
1024   virtual bool doHeapRegion(HeapRegion* r);
1025   ~G1PrintRegionLivenessInfoClosure();
1026 };
1027 
1028 #endif // SHARE_VM_GC_G1_G1CONCURRENTMARK_HPP