1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMarkThread.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1CollectorPolicy.hpp"
  30 #include "gc/g1/g1ConcurrentMark.hpp"
  31 #include "gc/g1/g1IHOPControl.hpp"
  32 #include "gc/g1/g1GCPhaseTimes.hpp"
  33 #include "gc/g1/heapRegion.inline.hpp"
  34 #include "gc/g1/heapRegionRemSet.hpp"
  35 #include "gc/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 #include "utilities/pair.hpp"
  41 
  42 // Different defaults for different number of GC threads
  43 // They were chosen by running GCOld and SPECjbb on debris with different
  44 //   numbers of GC threads and choosing them based on the results
  45 
  46 // all the same
  47 static double rs_length_diff_defaults[] = {
  48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  49 };
  50 
  51 static double cost_per_card_ms_defaults[] = {
  52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  53 };
  54 
  55 // all the same
  56 static double young_cards_per_entry_ratio_defaults[] = {
  57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  58 };
  59 
  60 static double cost_per_entry_ms_defaults[] = {
  61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  62 };
  63 
  64 static double cost_per_byte_ms_defaults[] = {
  65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  66 };
  67 
  68 // these should be pretty consistent
  69 static double constant_other_time_ms_defaults[] = {
  70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  71 };
  72 
  73 
  74 static double young_other_cost_per_region_ms_defaults[] = {
  75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  76 };
  77 
  78 static double non_young_other_cost_per_region_ms_defaults[] = {
  79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  80 };
  81 
  82 G1CollectorPolicy::G1CollectorPolicy() :
  83   _predictor(G1ConfidencePercent / 100.0),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86 
  87   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  88   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89 
  90   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  91   _prev_collection_pause_end_ms(0.0),
  92   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  93   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_scan_hcc_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _recent_prev_end_times_for_all_gcs_sec(
 112                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 113 
 114   _recent_avg_pause_time_ratio(0.0),
 115   _rs_lengths_prediction(0),
 116   _max_survivor_regions(0),
 117 
 118   _eden_cset_region_length(0),
 119   _survivor_cset_region_length(0),
 120   _old_cset_region_length(0),
 121 
 122   _collection_set(NULL),
 123   _collection_set_bytes_used_before(0),
 124 
 125   // Incremental CSet attributes
 126   _inc_cset_build_state(Inactive),
 127   _inc_cset_head(NULL),
 128   _inc_cset_tail(NULL),
 129   _inc_cset_bytes_used_before(0),
 130   _inc_cset_recorded_rs_lengths(0),
 131   _inc_cset_recorded_rs_lengths_diffs(0),
 132   _inc_cset_predicted_elapsed_time_ms(0.0),
 133   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 134 
 135   // add here any more surv rate groups
 136   _recorded_survivor_regions(0),
 137   _recorded_survivor_head(NULL),
 138   _recorded_survivor_tail(NULL),
 139   _survivors_age_table(true),
 140 
 141   _gc_overhead_perc(0.0),
 142 
 143   _bytes_allocated_in_old_since_last_gc(0),
 144   _ihop_control(NULL),
 145   _initial_mark_to_mixed() {
 146 
 147   // SurvRateGroups below must be initialized after the predictor because they
 148   // indirectly use it through this object passed to their constructor.
 149   _short_lived_surv_rate_group =
 150     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 151   _survivor_surv_rate_group =
 152     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 153 
 154   // Set up the region size and associated fields. Given that the
 155   // policy is created before the heap, we have to set this up here,
 156   // so it's done as soon as possible.
 157 
 158   // It would have been natural to pass initial_heap_byte_size() and
 159   // max_heap_byte_size() to setup_heap_region_size() but those have
 160   // not been set up at this point since they should be aligned with
 161   // the region size. So, there is a circular dependency here. We base
 162   // the region size on the heap size, but the heap size should be
 163   // aligned with the region size. To get around this we use the
 164   // unaligned values for the heap.
 165   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 166   HeapRegionRemSet::setup_remset_size();
 167 
 168   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 169   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 170   clear_ratio_check_data();
 171 
 172   _phase_times = new G1GCPhaseTimes(ParallelGCThreads);
 173 
 174   int index = MIN2(ParallelGCThreads - 1, 7u);
 175 
 176   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 177   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 178   _cost_scan_hcc_seq->add(0.0);
 179   _young_cards_per_entry_ratio_seq->add(
 180                                   young_cards_per_entry_ratio_defaults[index]);
 181   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 182   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 183   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 184   _young_other_cost_per_region_ms_seq->add(
 185                                young_other_cost_per_region_ms_defaults[index]);
 186   _non_young_other_cost_per_region_ms_seq->add(
 187                            non_young_other_cost_per_region_ms_defaults[index]);
 188 
 189   // Below, we might need to calculate the pause time target based on
 190   // the pause interval. When we do so we are going to give G1 maximum
 191   // flexibility and allow it to do pauses when it needs to. So, we'll
 192   // arrange that the pause interval to be pause time target + 1 to
 193   // ensure that a) the pause time target is maximized with respect to
 194   // the pause interval and b) we maintain the invariant that pause
 195   // time target < pause interval. If the user does not want this
 196   // maximum flexibility, they will have to set the pause interval
 197   // explicitly.
 198 
 199   // First make sure that, if either parameter is set, its value is
 200   // reasonable.
 201   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 202     if (MaxGCPauseMillis < 1) {
 203       vm_exit_during_initialization("MaxGCPauseMillis should be "
 204                                     "greater than 0");
 205     }
 206   }
 207   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 208     if (GCPauseIntervalMillis < 1) {
 209       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 210                                     "greater than 0");
 211     }
 212   }
 213 
 214   // Then, if the pause time target parameter was not set, set it to
 215   // the default value.
 216   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 217     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 218       // The default pause time target in G1 is 200ms
 219       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 220     } else {
 221       // We do not allow the pause interval to be set without the
 222       // pause time target
 223       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 224                                     "without setting MaxGCPauseMillis");
 225     }
 226   }
 227 
 228   // Then, if the interval parameter was not set, set it according to
 229   // the pause time target (this will also deal with the case when the
 230   // pause time target is the default value).
 231   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 232     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 233   }
 234 
 235   // Finally, make sure that the two parameters are consistent.
 236   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 237     char buffer[256];
 238     jio_snprintf(buffer, 256,
 239                  "MaxGCPauseMillis (%u) should be less than "
 240                  "GCPauseIntervalMillis (%u)",
 241                  MaxGCPauseMillis, GCPauseIntervalMillis);
 242     vm_exit_during_initialization(buffer);
 243   }
 244 
 245   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 246   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 247   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 248 
 249   // start conservatively (around 50ms is about right)
 250   _concurrent_mark_remark_times_ms->add(0.05);
 251   _concurrent_mark_cleanup_times_ms->add(0.20);
 252   _tenuring_threshold = MaxTenuringThreshold;
 253 
 254   assert(GCTimeRatio > 0,
 255          "we should have set it to a default value set_g1_gc_flags() "
 256          "if a user set it to 0");
 257   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 258 
 259   uintx reserve_perc = G1ReservePercent;
 260   // Put an artificial ceiling on this so that it's not set to a silly value.
 261   if (reserve_perc > 50) {
 262     reserve_perc = 50;
 263     warning("G1ReservePercent is set to a value that is too large, "
 264             "it's been updated to " UINTX_FORMAT, reserve_perc);
 265   }
 266   _reserve_factor = (double) reserve_perc / 100.0;
 267   // This will be set when the heap is expanded
 268   // for the first time during initialization.
 269   _reserve_regions = 0;
 270 
 271   _cset_chooser = new CollectionSetChooser();
 272 }
 273 
 274 G1CollectorPolicy::~G1CollectorPolicy() {
 275   delete _ihop_control;
 276 }
 277 
 278 double G1CollectorPolicy::get_new_prediction(TruncatedSeq const* seq) const {
 279   return _predictor.get_new_prediction(seq);
 280 }
 281 
 282 size_t G1CollectorPolicy::get_new_size_prediction(TruncatedSeq const* seq) const {
 283   return (size_t)get_new_prediction(seq);
 284 }
 285 
 286 void G1CollectorPolicy::initialize_alignments() {
 287   _space_alignment = HeapRegion::GrainBytes;
 288   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 289   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 290   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 291 }
 292 
 293 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 294 
 295 // There are three command line options related to the young gen size:
 296 // NewSize, MaxNewSize and NewRatio (There is also -Xmn, but that is
 297 // just a short form for NewSize==MaxNewSize). G1 will use its internal
 298 // heuristics to calculate the actual young gen size, so these options
 299 // basically only limit the range within which G1 can pick a young gen
 300 // size. Also, these are general options taking byte sizes. G1 will
 301 // internally work with a number of regions instead. So, some rounding
 302 // will occur.
 303 //
 304 // If nothing related to the the young gen size is set on the command
 305 // line we should allow the young gen to be between G1NewSizePercent
 306 // and G1MaxNewSizePercent of the heap size. This means that every time
 307 // the heap size changes, the limits for the young gen size will be
 308 // recalculated.
 309 //
 310 // If only -XX:NewSize is set we should use the specified value as the
 311 // minimum size for young gen. Still using G1MaxNewSizePercent of the
 312 // heap as maximum.
 313 //
 314 // If only -XX:MaxNewSize is set we should use the specified value as the
 315 // maximum size for young gen. Still using G1NewSizePercent of the heap
 316 // as minimum.
 317 //
 318 // If -XX:NewSize and -XX:MaxNewSize are both specified we use these values.
 319 // No updates when the heap size changes. There is a special case when
 320 // NewSize==MaxNewSize. This is interpreted as "fixed" and will use a
 321 // different heuristic for calculating the collection set when we do mixed
 322 // collection.
 323 //
 324 // If only -XX:NewRatio is set we should use the specified ratio of the heap
 325 // as both min and max. This will be interpreted as "fixed" just like the
 326 // NewSize==MaxNewSize case above. But we will update the min and max
 327 // every time the heap size changes.
 328 //
 329 // NewSize and MaxNewSize override NewRatio. So, NewRatio is ignored if it is
 330 // combined with either NewSize or MaxNewSize. (A warning message is printed.)
 331 class G1YoungGenSizer : public CHeapObj<mtGC> {
 332 private:
 333   enum SizerKind {
 334     SizerDefaults,
 335     SizerNewSizeOnly,
 336     SizerMaxNewSizeOnly,
 337     SizerMaxAndNewSize,
 338     SizerNewRatio
 339   };
 340   SizerKind _sizer_kind;
 341   uint _min_desired_young_length;
 342   uint _max_desired_young_length;
 343   bool _adaptive_size;
 344   uint calculate_default_min_length(uint new_number_of_heap_regions);
 345   uint calculate_default_max_length(uint new_number_of_heap_regions);
 346 
 347   // Update the given values for minimum and maximum young gen length in regions
 348   // given the number of heap regions depending on the kind of sizing algorithm.
 349   void recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length);
 350 
 351 public:
 352   G1YoungGenSizer();
 353   // Calculate the maximum length of the young gen given the number of regions
 354   // depending on the sizing algorithm.
 355   uint max_young_length(uint number_of_heap_regions);
 356 
 357   void heap_size_changed(uint new_number_of_heap_regions);
 358   uint min_desired_young_length() {
 359     return _min_desired_young_length;
 360   }
 361   uint max_desired_young_length() {
 362     return _max_desired_young_length;
 363   }
 364 
 365   bool adaptive_young_list_length() const {
 366     return _adaptive_size;
 367   }
 368 };
 369 
 370 
 371 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 372         _min_desired_young_length(0), _max_desired_young_length(0) {
 373   if (FLAG_IS_CMDLINE(NewRatio)) {
 374     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 375       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 376     } else {
 377       _sizer_kind = SizerNewRatio;
 378       _adaptive_size = false;
 379       return;
 380     }
 381   }
 382 
 383   if (NewSize > MaxNewSize) {
 384     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 385       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 386               "A new max generation size of " SIZE_FORMAT "k will be used.",
 387               NewSize/K, MaxNewSize/K, NewSize/K);
 388     }
 389     MaxNewSize = NewSize;
 390   }
 391 
 392   if (FLAG_IS_CMDLINE(NewSize)) {
 393     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 394                                      1U);
 395     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 396       _max_desired_young_length =
 397                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 398                                   1U);
 399       _sizer_kind = SizerMaxAndNewSize;
 400       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 401     } else {
 402       _sizer_kind = SizerNewSizeOnly;
 403     }
 404   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 405     _max_desired_young_length =
 406                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 407                                   1U);
 408     _sizer_kind = SizerMaxNewSizeOnly;
 409   }
 410 }
 411 
 412 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 413   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 414   return MAX2(1U, default_value);
 415 }
 416 
 417 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 418   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 419   return MAX2(1U, default_value);
 420 }
 421 
 422 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 423   assert(number_of_heap_regions > 0, "Heap must be initialized");
 424 
 425   switch (_sizer_kind) {
 426     case SizerDefaults:
 427       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 428       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 429       break;
 430     case SizerNewSizeOnly:
 431       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 432       *max_young_length = MAX2(*min_young_length, *max_young_length);
 433       break;
 434     case SizerMaxNewSizeOnly:
 435       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 436       *min_young_length = MIN2(*min_young_length, *max_young_length);
 437       break;
 438     case SizerMaxAndNewSize:
 439       // Do nothing. Values set on the command line, don't update them at runtime.
 440       break;
 441     case SizerNewRatio:
 442       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 443       *max_young_length = *min_young_length;
 444       break;
 445     default:
 446       ShouldNotReachHere();
 447   }
 448 
 449   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 450 }
 451 
 452 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 453   // We need to pass the desired values because recalculation may not update these
 454   // values in some cases.
 455   uint temp = _min_desired_young_length;
 456   uint result = _max_desired_young_length;
 457   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 458   return result;
 459 }
 460 
 461 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 462   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 463           &_max_desired_young_length);
 464 }
 465 
 466 void G1CollectorPolicy::post_heap_initialize() {
 467   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 468   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 469   if (max_young_size != MaxNewSize) {
 470     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 471   }
 472 
 473   _ihop_control = create_ihop_control();
 474 }
 475 
 476 void G1CollectorPolicy::initialize_flags() {
 477   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 478     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 479   }
 480 
 481   if (SurvivorRatio < 1) {
 482     vm_exit_during_initialization("Invalid survivor ratio specified");
 483   }
 484   CollectorPolicy::initialize_flags();
 485   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 486 }
 487 
 488 
 489 void G1CollectorPolicy::init() {
 490   // Set aside an initial future to_space.
 491   _g1 = G1CollectedHeap::heap();
 492 
 493   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 494 
 495   initialize_gc_policy_counters();
 496 
 497   if (adaptive_young_list_length()) {
 498     _young_list_fixed_length = 0;
 499   } else {
 500     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 501   }
 502   _free_regions_at_end_of_collection = _g1->num_free_regions();
 503 
 504   update_young_list_max_and_target_length();
 505   // We may immediately start allocating regions and placing them on the
 506   // collection set list. Initialize the per-collection set info
 507   start_incremental_cset_building();
 508 }
 509 
 510 void G1CollectorPolicy::note_gc_start(uint num_active_workers) {
 511   phase_times()->note_gc_start(num_active_workers);
 512 }
 513 
 514 // Create the jstat counters for the policy.
 515 void G1CollectorPolicy::initialize_gc_policy_counters() {
 516   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 517 }
 518 
 519 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 520                                          double base_time_ms,
 521                                          uint base_free_regions,
 522                                          double target_pause_time_ms) const {
 523   if (young_length >= base_free_regions) {
 524     // end condition 1: not enough space for the young regions
 525     return false;
 526   }
 527 
 528   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 529   size_t bytes_to_copy =
 530                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 531   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 532   double young_other_time_ms = predict_young_other_time_ms(young_length);
 533   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 534   if (pause_time_ms > target_pause_time_ms) {
 535     // end condition 2: prediction is over the target pause time
 536     return false;
 537   }
 538 
 539   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 540 
 541   // When copying, we will likely need more bytes free than is live in the region.
 542   // Add some safety margin to factor in the confidence of our guess, and the
 543   // natural expected waste.
 544   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 545   // of the calculation: the lower the confidence, the more headroom.
 546   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 547   // copying due to anticipated waste in the PLABs.
 548   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 549   size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 550 
 551   if (expected_bytes_to_copy > free_bytes) {
 552     // end condition 3: out-of-space
 553     return false;
 554   }
 555 
 556   // success!
 557   return true;
 558 }
 559 
 560 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 561   // re-calculate the necessary reserve
 562   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 563   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 564   // smaller than 1.0) we'll get 1.
 565   _reserve_regions = (uint) ceil(reserve_regions_d);
 566 
 567   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 568 }
 569 
 570 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 571                                                        uint base_min_length) const {
 572   uint desired_min_length = 0;
 573   if (adaptive_young_list_length()) {
 574     if (_alloc_rate_ms_seq->num() > 3) {
 575       double now_sec = os::elapsedTime();
 576       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 577       double alloc_rate_ms = predict_alloc_rate_ms();
 578       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 579     } else {
 580       // otherwise we don't have enough info to make the prediction
 581     }
 582   }
 583   desired_min_length += base_min_length;
 584   // make sure we don't go below any user-defined minimum bound
 585   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 586 }
 587 
 588 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 589   // Here, we might want to also take into account any additional
 590   // constraints (i.e., user-defined minimum bound). Currently, we
 591   // effectively don't set this bound.
 592   return _young_gen_sizer->max_desired_young_length();
 593 }
 594 
 595 uint G1CollectorPolicy::update_young_list_max_and_target_length() {
 596   return update_young_list_max_and_target_length(get_new_size_prediction(_rs_lengths_seq));
 597 }
 598 
 599 uint G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 600   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 601   update_max_gc_locker_expansion();
 602   return unbounded_target_length;
 603 }
 604 
 605 uint G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 606   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 607   _young_list_target_length = young_lengths.first;
 608   return young_lengths.second;
 609 }
 610 
 611 G1CollectorPolicy::YoungTargetLengths G1CollectorPolicy::young_list_target_lengths(size_t rs_lengths) const {
 612   YoungTargetLengths result;
 613 
 614   // Calculate the absolute and desired min bounds first.
 615 
 616   // This is how many young regions we already have (currently: the survivors).
 617   uint base_min_length = recorded_survivor_regions();
 618   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 619   // This is the absolute minimum young length. Ensure that we
 620   // will at least have one eden region available for allocation.
 621   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 622   // If we shrank the young list target it should not shrink below the current size.
 623   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 624   // Calculate the absolute and desired max bounds.
 625 
 626   uint desired_max_length = calculate_young_list_desired_max_length();
 627 
 628   uint young_list_target_length = 0;
 629   if (adaptive_young_list_length()) {
 630     if (collector_state()->gcs_are_young()) {
 631       young_list_target_length =
 632                         calculate_young_list_target_length(rs_lengths,
 633                                                            base_min_length,
 634                                                            desired_min_length,
 635                                                            desired_max_length);
 636     } else {
 637       // Don't calculate anything and let the code below bound it to
 638       // the desired_min_length, i.e., do the next GC as soon as
 639       // possible to maximize how many old regions we can add to it.
 640     }
 641   } else {
 642     // The user asked for a fixed young gen so we'll fix the young gen
 643     // whether the next GC is young or mixed.
 644     young_list_target_length = _young_list_fixed_length;
 645   }
 646 
 647   result.second = young_list_target_length;
 648 
 649   // We will try our best not to "eat" into the reserve.
 650   uint absolute_max_length = 0;
 651   if (_free_regions_at_end_of_collection > _reserve_regions) {
 652     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 653   }
 654   if (desired_max_length > absolute_max_length) {
 655     desired_max_length = absolute_max_length;
 656   }
 657 
 658   // Make sure we don't go over the desired max length, nor under the
 659   // desired min length. In case they clash, desired_min_length wins
 660   // which is why that test is second.
 661   if (young_list_target_length > desired_max_length) {
 662     young_list_target_length = desired_max_length;
 663   }
 664   if (young_list_target_length < desired_min_length) {
 665     young_list_target_length = desired_min_length;
 666   }
 667 
 668   assert(young_list_target_length > recorded_survivor_regions(),
 669          "we should be able to allocate at least one eden region");
 670   assert(young_list_target_length >= absolute_min_length, "post-condition");
 671 
 672   result.first = young_list_target_length;
 673   return result;
 674 }
 675 
 676 uint
 677 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 678                                                      uint base_min_length,
 679                                                      uint desired_min_length,
 680                                                      uint desired_max_length) const {
 681   assert(adaptive_young_list_length(), "pre-condition");
 682   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 683 
 684   // In case some edge-condition makes the desired max length too small...
 685   if (desired_max_length <= desired_min_length) {
 686     return desired_min_length;
 687   }
 688 
 689   // We'll adjust min_young_length and max_young_length not to include
 690   // the already allocated young regions (i.e., so they reflect the
 691   // min and max eden regions we'll allocate). The base_min_length
 692   // will be reflected in the predictions by the
 693   // survivor_regions_evac_time prediction.
 694   assert(desired_min_length > base_min_length, "invariant");
 695   uint min_young_length = desired_min_length - base_min_length;
 696   assert(desired_max_length > base_min_length, "invariant");
 697   uint max_young_length = desired_max_length - base_min_length;
 698 
 699   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 700   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 701   size_t pending_cards = get_new_size_prediction(_pending_cards_seq);
 702   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 703   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 704   double base_time_ms =
 705     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 706     survivor_regions_evac_time;
 707   uint available_free_regions = _free_regions_at_end_of_collection;
 708   uint base_free_regions = 0;
 709   if (available_free_regions > _reserve_regions) {
 710     base_free_regions = available_free_regions - _reserve_regions;
 711   }
 712 
 713   // Here, we will make sure that the shortest young length that
 714   // makes sense fits within the target pause time.
 715 
 716   if (predict_will_fit(min_young_length, base_time_ms,
 717                        base_free_regions, target_pause_time_ms)) {
 718     // The shortest young length will fit into the target pause time;
 719     // we'll now check whether the absolute maximum number of young
 720     // regions will fit in the target pause time. If not, we'll do
 721     // a binary search between min_young_length and max_young_length.
 722     if (predict_will_fit(max_young_length, base_time_ms,
 723                          base_free_regions, target_pause_time_ms)) {
 724       // The maximum young length will fit into the target pause time.
 725       // We are done so set min young length to the maximum length (as
 726       // the result is assumed to be returned in min_young_length).
 727       min_young_length = max_young_length;
 728     } else {
 729       // The maximum possible number of young regions will not fit within
 730       // the target pause time so we'll search for the optimal
 731       // length. The loop invariants are:
 732       //
 733       // min_young_length < max_young_length
 734       // min_young_length is known to fit into the target pause time
 735       // max_young_length is known not to fit into the target pause time
 736       //
 737       // Going into the loop we know the above hold as we've just
 738       // checked them. Every time around the loop we check whether
 739       // the middle value between min_young_length and
 740       // max_young_length fits into the target pause time. If it
 741       // does, it becomes the new min. If it doesn't, it becomes
 742       // the new max. This way we maintain the loop invariants.
 743 
 744       assert(min_young_length < max_young_length, "invariant");
 745       uint diff = (max_young_length - min_young_length) / 2;
 746       while (diff > 0) {
 747         uint young_length = min_young_length + diff;
 748         if (predict_will_fit(young_length, base_time_ms,
 749                              base_free_regions, target_pause_time_ms)) {
 750           min_young_length = young_length;
 751         } else {
 752           max_young_length = young_length;
 753         }
 754         assert(min_young_length <  max_young_length, "invariant");
 755         diff = (max_young_length - min_young_length) / 2;
 756       }
 757       // The results is min_young_length which, according to the
 758       // loop invariants, should fit within the target pause time.
 759 
 760       // These are the post-conditions of the binary search above:
 761       assert(min_young_length < max_young_length,
 762              "otherwise we should have discovered that max_young_length "
 763              "fits into the pause target and not done the binary search");
 764       assert(predict_will_fit(min_young_length, base_time_ms,
 765                               base_free_regions, target_pause_time_ms),
 766              "min_young_length, the result of the binary search, should "
 767              "fit into the pause target");
 768       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 769                                base_free_regions, target_pause_time_ms),
 770              "min_young_length, the result of the binary search, should be "
 771              "optimal, so no larger length should fit into the pause target");
 772     }
 773   } else {
 774     // Even the minimum length doesn't fit into the pause time
 775     // target, return it as the result nevertheless.
 776   }
 777   return base_min_length + min_young_length;
 778 }
 779 
 780 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 781   double survivor_regions_evac_time = 0.0;
 782   for (HeapRegion * r = _recorded_survivor_head;
 783        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 784        r = r->get_next_young_region()) {
 785     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 786   }
 787   return survivor_regions_evac_time;
 788 }
 789 
 790 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 791   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 792 
 793   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 794   if (rs_lengths > _rs_lengths_prediction) {
 795     // add 10% to avoid having to recalculate often
 796     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 797     update_rs_lengths_prediction(rs_lengths_prediction);
 798 
 799     update_young_list_max_and_target_length(rs_lengths_prediction);
 800   }
 801 }
 802 
 803 void G1CollectorPolicy::update_rs_lengths_prediction() {
 804   update_rs_lengths_prediction(get_new_size_prediction(_rs_lengths_seq));
 805 }
 806 
 807 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 808   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 809     _rs_lengths_prediction = prediction;
 810   }
 811 }
 812 
 813 #ifndef PRODUCT
 814 bool G1CollectorPolicy::verify_young_ages() {
 815   HeapRegion* head = _g1->young_list()->first_region();
 816   return
 817     verify_young_ages(head, _short_lived_surv_rate_group);
 818   // also call verify_young_ages on any additional surv rate groups
 819 }
 820 
 821 bool
 822 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 823                                      SurvRateGroup *surv_rate_group) {
 824   guarantee( surv_rate_group != NULL, "pre-condition" );
 825 
 826   const char* name = surv_rate_group->name();
 827   bool ret = true;
 828   int prev_age = -1;
 829 
 830   for (HeapRegion* curr = head;
 831        curr != NULL;
 832        curr = curr->get_next_young_region()) {
 833     SurvRateGroup* group = curr->surv_rate_group();
 834     if (group == NULL && !curr->is_survivor()) {
 835       log_error(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 836       ret = false;
 837     }
 838 
 839     if (surv_rate_group == group) {
 840       int age = curr->age_in_surv_rate_group();
 841 
 842       if (age < 0) {
 843         log_error(gc, verify)("## %s: encountered negative age", name);
 844         ret = false;
 845       }
 846 
 847       if (age <= prev_age) {
 848         log_error(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 849         ret = false;
 850       }
 851       prev_age = age;
 852     }
 853   }
 854 
 855   return ret;
 856 }
 857 #endif // PRODUCT
 858 
 859 void G1CollectorPolicy::record_full_collection_start() {
 860   _full_collection_start_sec = os::elapsedTime();
 861   // Release the future to-space so that it is available for compaction into.
 862   collector_state()->set_full_collection(true);
 863 }
 864 
 865 void G1CollectorPolicy::record_full_collection_end() {
 866   // Consider this like a collection pause for the purposes of allocation
 867   // since last pause.
 868   double end_sec = os::elapsedTime();
 869   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 870   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 871 
 872   update_recent_gc_times(end_sec, full_gc_time_ms);
 873 
 874   collector_state()->set_full_collection(false);
 875 
 876   // "Nuke" the heuristics that control the young/mixed GC
 877   // transitions and make sure we start with young GCs after the Full GC.
 878   collector_state()->set_gcs_are_young(true);
 879   collector_state()->set_last_young_gc(false);
 880   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 881   collector_state()->set_during_initial_mark_pause(false);
 882   collector_state()->set_in_marking_window(false);
 883   collector_state()->set_in_marking_window_im(false);
 884 
 885   _short_lived_surv_rate_group->start_adding_regions();
 886   // also call this on any additional surv rate groups
 887 
 888   record_survivor_regions(0, NULL, NULL);
 889 
 890   _free_regions_at_end_of_collection = _g1->num_free_regions();
 891   // Reset survivors SurvRateGroup.
 892   _survivor_surv_rate_group->reset();
 893   update_young_list_max_and_target_length();
 894   update_rs_lengths_prediction();
 895   cset_chooser()->clear();
 896 
 897   _bytes_allocated_in_old_since_last_gc = 0;
 898 
 899   record_pause(FullGC, _full_collection_start_sec, end_sec);
 900 }
 901 
 902 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 903   // We only need to do this here as the policy will only be applied
 904   // to the GC we're about to start. so, no point is calculating this
 905   // every time we calculate / recalculate the target young length.
 906   update_survivors_policy();
 907 
 908   assert(_g1->used() == _g1->recalculate_used(),
 909          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 910          _g1->used(), _g1->recalculate_used());
 911 
 912   phase_times()->record_cur_collection_start_sec(start_time_sec);
 913   _pending_cards = _g1->pending_card_num();
 914 
 915   _collection_set_bytes_used_before = 0;
 916   _bytes_copied_during_gc = 0;
 917 
 918   collector_state()->set_last_gc_was_young(false);
 919 
 920   // do that for any other surv rate groups
 921   _short_lived_surv_rate_group->stop_adding_regions();
 922   _survivors_age_table.clear();
 923 
 924   assert( verify_young_ages(), "region age verification" );
 925 }
 926 
 927 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 928                                                    mark_init_elapsed_time_ms) {
 929   collector_state()->set_during_marking(true);
 930   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 931   collector_state()->set_during_initial_mark_pause(false);
 932 }
 933 
 934 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 935   _mark_remark_start_sec = os::elapsedTime();
 936   collector_state()->set_during_marking(false);
 937 }
 938 
 939 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 940   double end_time_sec = os::elapsedTime();
 941   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 942   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 943   _prev_collection_pause_end_ms += elapsed_time_ms;
 944 
 945   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 946 }
 947 
 948 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 949   _mark_cleanup_start_sec = os::elapsedTime();
 950 }
 951 
 952 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 953   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 954                                                               "skip last young-only gc");
 955   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 956   // We skip the marking phase.
 957   if (!should_continue_with_reclaim) {
 958     abort_time_to_mixed_tracking();
 959   }
 960   collector_state()->set_in_marking_window(false);
 961 }
 962 
 963 double G1CollectorPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 964   return phase_times()->average_time_ms(phase);
 965 }
 966 
 967 double G1CollectorPolicy::young_other_time_ms() const {
 968   return phase_times()->young_cset_choice_time_ms() +
 969          phase_times()->young_free_cset_time_ms();
 970 }
 971 
 972 double G1CollectorPolicy::non_young_other_time_ms() const {
 973   return phase_times()->non_young_cset_choice_time_ms() +
 974          phase_times()->non_young_free_cset_time_ms();
 975 
 976 }
 977 
 978 double G1CollectorPolicy::other_time_ms(double pause_time_ms) const {
 979   return pause_time_ms -
 980          average_time_ms(G1GCPhaseTimes::UpdateRS) -
 981          average_time_ms(G1GCPhaseTimes::ScanRS) -
 982          average_time_ms(G1GCPhaseTimes::ObjCopy) -
 983          average_time_ms(G1GCPhaseTimes::Termination);
 984 }
 985 
 986 double G1CollectorPolicy::constant_other_time_ms(double pause_time_ms) const {
 987   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 988 }
 989 
 990 bool G1CollectorPolicy::about_to_start_mixed_phase() const {
 991   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 992 }
 993 
 994 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 995   if (about_to_start_mixed_phase()) {
 996     return false;
 997   }
 998 
 999   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
1000 
1001   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
1002   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
1003   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
1004 
1005   bool result = false;
1006   if (marking_request_bytes > marking_initiating_used_threshold) {
1007     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
1008     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
1009                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
1010                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
1011   }
1012 
1013   return result;
1014 }
1015 
1016 // Anything below that is considered to be zero
1017 #define MIN_TIMER_GRANULARITY 0.0000001
1018 
1019 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
1020   double end_time_sec = os::elapsedTime();
1021 
1022   size_t cur_used_bytes = _g1->used();
1023   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
1024   bool last_pause_included_initial_mark = false;
1025   bool update_stats = !_g1->evacuation_failed();
1026 
1027   NOT_PRODUCT(_short_lived_surv_rate_group->print());
1028 
1029   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
1030 
1031   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
1032   if (last_pause_included_initial_mark) {
1033     record_concurrent_mark_init_end(0.0);
1034   } else {
1035     maybe_start_marking();
1036   }
1037 
1038   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
1039   if (app_time_ms < MIN_TIMER_GRANULARITY) {
1040     // This usually happens due to the timer not having the required
1041     // granularity. Some Linuxes are the usual culprits.
1042     // We'll just set it to something (arbitrarily) small.
1043     app_time_ms = 1.0;
1044   }
1045 
1046   if (update_stats) {
1047     // We maintain the invariant that all objects allocated by mutator
1048     // threads will be allocated out of eden regions. So, we can use
1049     // the eden region number allocated since the previous GC to
1050     // calculate the application's allocate rate. The only exception
1051     // to that is humongous objects that are allocated separately. But
1052     // given that humongous object allocations do not really affect
1053     // either the pause's duration nor when the next pause will take
1054     // place we can safely ignore them here.
1055     uint regions_allocated = eden_cset_region_length();
1056     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1057     _alloc_rate_ms_seq->add(alloc_rate_ms);
1058 
1059     double interval_ms =
1060       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1061     update_recent_gc_times(end_time_sec, pause_time_ms);
1062     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1063     if (recent_avg_pause_time_ratio() < 0.0 ||
1064         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1065       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1066       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1067       if (_recent_avg_pause_time_ratio < 0.0) {
1068         _recent_avg_pause_time_ratio = 0.0;
1069       } else {
1070         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1071         _recent_avg_pause_time_ratio = 1.0;
1072       }
1073     }
1074 
1075     // Compute the ratio of just this last pause time to the entire time range stored
1076     // in the vectors. Comparing this pause to the entire range, rather than only the
1077     // most recent interval, has the effect of smoothing over a possible transient 'burst'
1078     // of more frequent pauses that don't really reflect a change in heap occupancy.
1079     // This reduces the likelihood of a needless heap expansion being triggered.
1080     _last_pause_time_ratio =
1081       (pause_time_ms * _recent_prev_end_times_for_all_gcs_sec->num()) / interval_ms;
1082   }
1083 
1084   bool new_in_marking_window = collector_state()->in_marking_window();
1085   bool new_in_marking_window_im = false;
1086   if (last_pause_included_initial_mark) {
1087     new_in_marking_window = true;
1088     new_in_marking_window_im = true;
1089   }
1090 
1091   if (collector_state()->last_young_gc()) {
1092     // This is supposed to to be the "last young GC" before we start
1093     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1094     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
1095 
1096     if (next_gc_should_be_mixed("start mixed GCs",
1097                                 "do not start mixed GCs")) {
1098       collector_state()->set_gcs_are_young(false);
1099     } else {
1100       // We aborted the mixed GC phase early.
1101       abort_time_to_mixed_tracking();
1102     }
1103 
1104     collector_state()->set_last_young_gc(false);
1105   }
1106 
1107   if (!collector_state()->last_gc_was_young()) {
1108     // This is a mixed GC. Here we decide whether to continue doing
1109     // mixed GCs or not.
1110     if (!next_gc_should_be_mixed("continue mixed GCs",
1111                                  "do not continue mixed GCs")) {
1112       collector_state()->set_gcs_are_young(true);
1113 
1114       maybe_start_marking();
1115     }
1116   }
1117 
1118   _short_lived_surv_rate_group->start_adding_regions();
1119   // Do that for any other surv rate groups
1120 
1121   double scan_hcc_time_ms = ConcurrentG1Refine::hot_card_cache_enabled() ? average_time_ms(G1GCPhaseTimes::ScanHCC) : 0.0;
1122 
1123   if (update_stats) {
1124     double cost_per_card_ms = 0.0;
1125     if (_pending_cards > 0) {
1126       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms) / (double) _pending_cards;
1127       _cost_per_card_ms_seq->add(cost_per_card_ms);
1128     }
1129     _cost_scan_hcc_seq->add(scan_hcc_time_ms);
1130 
1131     double cost_per_entry_ms = 0.0;
1132     if (cards_scanned > 10) {
1133       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1134       if (collector_state()->last_gc_was_young()) {
1135         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1136       } else {
1137         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1138       }
1139     }
1140 
1141     if (_max_rs_lengths > 0) {
1142       double cards_per_entry_ratio =
1143         (double) cards_scanned / (double) _max_rs_lengths;
1144       if (collector_state()->last_gc_was_young()) {
1145         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1146       } else {
1147         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1148       }
1149     }
1150 
1151     // This is defensive. For a while _max_rs_lengths could get
1152     // smaller than _recorded_rs_lengths which was causing
1153     // rs_length_diff to get very large and mess up the RSet length
1154     // predictions. The reason was unsafe concurrent updates to the
1155     // _inc_cset_recorded_rs_lengths field which the code below guards
1156     // against (see CR 7118202). This bug has now been fixed (see CR
1157     // 7119027). However, I'm still worried that
1158     // _inc_cset_recorded_rs_lengths might still end up somewhat
1159     // inaccurate. The concurrent refinement thread calculates an
1160     // RSet's length concurrently with other CR threads updating it
1161     // which might cause it to calculate the length incorrectly (if,
1162     // say, it's in mid-coarsening). So I'll leave in the defensive
1163     // conditional below just in case.
1164     size_t rs_length_diff = 0;
1165     if (_max_rs_lengths > _recorded_rs_lengths) {
1166       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1167     }
1168     _rs_length_diff_seq->add((double) rs_length_diff);
1169 
1170     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
1171     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1172     double cost_per_byte_ms = 0.0;
1173 
1174     if (copied_bytes > 0) {
1175       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
1176       if (collector_state()->in_marking_window()) {
1177         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1178       } else {
1179         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1180       }
1181     }
1182 
1183     if (young_cset_region_length() > 0) {
1184       _young_other_cost_per_region_ms_seq->add(young_other_time_ms() /
1185                                                young_cset_region_length());
1186     }
1187 
1188     if (old_cset_region_length() > 0) {
1189       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms() /
1190                                                    old_cset_region_length());
1191     }
1192 
1193     _constant_other_time_ms_seq->add(constant_other_time_ms(pause_time_ms));
1194 
1195     _pending_cards_seq->add((double) _pending_cards);
1196     _rs_lengths_seq->add((double) _max_rs_lengths);
1197   }
1198 
1199   collector_state()->set_in_marking_window(new_in_marking_window);
1200   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1201   _free_regions_at_end_of_collection = _g1->num_free_regions();
1202   // IHOP control wants to know the expected young gen length if it were not
1203   // restrained by the heap reserve. Using the actual length would make the
1204   // prediction too small and the limit the young gen every time we get to the
1205   // predicted target occupancy.
1206   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
1207   update_rs_lengths_prediction();
1208 
1209   update_ihop_prediction(app_time_ms / 1000.0,
1210                          _bytes_allocated_in_old_since_last_gc,
1211                          last_unrestrained_young_length * HeapRegion::GrainBytes);
1212   _bytes_allocated_in_old_since_last_gc = 0;
1213 
1214   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
1215 
1216   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1217   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1218 
1219   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1220     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
1221                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
1222                                 update_rs_time_goal_ms, scan_hcc_time_ms);
1223 
1224     update_rs_time_goal_ms = 0;
1225   } else {
1226     update_rs_time_goal_ms -= scan_hcc_time_ms;
1227   }
1228   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1229                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1230                                update_rs_time_goal_ms);
1231 
1232   cset_chooser()->verify();
1233 }
1234 
1235 G1IHOPControl* G1CollectorPolicy::create_ihop_control() const {
1236   if (G1UseAdaptiveIHOP) {
1237     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
1238                                      G1CollectedHeap::heap()->max_capacity(),
1239                                      &_predictor,
1240                                      G1ReservePercent,
1241                                      G1HeapWastePercent);
1242   } else {
1243     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent,
1244                                    G1CollectedHeap::heap()->max_capacity());
1245   }
1246 }
1247 
1248 void G1CollectorPolicy::update_ihop_prediction(double mutator_time_s,
1249                                                size_t mutator_alloc_bytes,
1250                                                size_t young_gen_size) {
1251   // Always try to update IHOP prediction. Even evacuation failures give information
1252   // about e.g. whether to start IHOP earlier next time.
1253 
1254   // Avoid using really small application times that might create samples with
1255   // very high or very low values. They may be caused by e.g. back-to-back gcs.
1256   double const min_valid_time = 1e-6;
1257 
1258   bool report = false;
1259 
1260   double marking_to_mixed_time = -1.0;
1261   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
1262     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
1263     assert(marking_to_mixed_time > 0.0,
1264            "Initial mark to mixed time must be larger than zero but is %.3f",
1265            marking_to_mixed_time);
1266     if (marking_to_mixed_time > min_valid_time) {
1267       _ihop_control->update_marking_length(marking_to_mixed_time);
1268       report = true;
1269     }
1270   }
1271 
1272   // As an approximation for the young gc promotion rates during marking we use
1273   // all of them. In many applications there are only a few if any young gcs during
1274   // marking, which makes any prediction useless. This increases the accuracy of the
1275   // prediction.
1276   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
1277     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
1278     report = true;
1279   }
1280 
1281   if (report) {
1282     report_ihop_statistics();
1283   }
1284 }
1285 
1286 void G1CollectorPolicy::report_ihop_statistics() {
1287   _ihop_control->print();
1288 }
1289 
1290 void G1CollectorPolicy::print_phases() {
1291   phase_times()->print();
1292 }
1293 
1294 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1295                                                      double update_rs_processed_buffers,
1296                                                      double goal_ms) {
1297   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1298   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1299 
1300   if (G1UseAdaptiveConcRefinement) {
1301     const int k_gy = 3, k_gr = 6;
1302     const double inc_k = 1.1, dec_k = 0.9;
1303 
1304     int g = cg1r->green_zone();
1305     if (update_rs_time > goal_ms) {
1306       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1307     } else {
1308       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1309         g = (int)MAX2(g * inc_k, g + 1.0);
1310       }
1311     }
1312     // Change the refinement threads params
1313     cg1r->set_green_zone(g);
1314     cg1r->set_yellow_zone(g * k_gy);
1315     cg1r->set_red_zone(g * k_gr);
1316     cg1r->reinitialize_threads();
1317 
1318     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * _predictor.sigma()), 1);
1319     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1320                                     cg1r->yellow_zone());
1321     // Change the barrier params
1322     dcqs.set_process_completed_threshold(processing_threshold);
1323     dcqs.set_max_completed_queue(cg1r->red_zone());
1324   }
1325 
1326   int curr_queue_size = dcqs.completed_buffers_num();
1327   if (curr_queue_size >= cg1r->yellow_zone()) {
1328     dcqs.set_completed_queue_padding(curr_queue_size);
1329   } else {
1330     dcqs.set_completed_queue_padding(0);
1331   }
1332   dcqs.notify_if_necessary();
1333 }
1334 
1335 size_t G1CollectorPolicy::predict_rs_length_diff() const {
1336   return get_new_size_prediction(_rs_length_diff_seq);
1337 }
1338 
1339 double G1CollectorPolicy::predict_alloc_rate_ms() const {
1340   return get_new_prediction(_alloc_rate_ms_seq);
1341 }
1342 
1343 double G1CollectorPolicy::predict_cost_per_card_ms() const {
1344   return get_new_prediction(_cost_per_card_ms_seq);
1345 }
1346 
1347 double G1CollectorPolicy::predict_scan_hcc_ms() const {
1348   return get_new_prediction(_cost_scan_hcc_seq);
1349 }
1350 
1351 double G1CollectorPolicy::predict_rs_update_time_ms(size_t pending_cards) const {
1352   return pending_cards * predict_cost_per_card_ms() + predict_scan_hcc_ms();
1353 }
1354 
1355 double G1CollectorPolicy::predict_young_cards_per_entry_ratio() const {
1356   return get_new_prediction(_young_cards_per_entry_ratio_seq);
1357 }
1358 
1359 double G1CollectorPolicy::predict_mixed_cards_per_entry_ratio() const {
1360   if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
1361     return predict_young_cards_per_entry_ratio();
1362   } else {
1363     return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
1364   }
1365 }
1366 
1367 size_t G1CollectorPolicy::predict_young_card_num(size_t rs_length) const {
1368   return (size_t) (rs_length * predict_young_cards_per_entry_ratio());
1369 }
1370 
1371 size_t G1CollectorPolicy::predict_non_young_card_num(size_t rs_length) const {
1372   return (size_t)(rs_length * predict_mixed_cards_per_entry_ratio());
1373 }
1374 
1375 double G1CollectorPolicy::predict_rs_scan_time_ms(size_t card_num) const {
1376   if (collector_state()->gcs_are_young()) {
1377     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1378   } else {
1379     return predict_mixed_rs_scan_time_ms(card_num);
1380   }
1381 }
1382 
1383 double G1CollectorPolicy::predict_mixed_rs_scan_time_ms(size_t card_num) const {
1384   if (_mixed_cost_per_entry_ms_seq->num() < 3) {
1385     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1386   } else {
1387     return card_num * get_new_prediction(_mixed_cost_per_entry_ms_seq);
1388   }
1389 }
1390 
1391 double G1CollectorPolicy::predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const {
1392   if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
1393     return (1.1 * bytes_to_copy) * get_new_prediction(_cost_per_byte_ms_seq);
1394   } else {
1395     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_during_cm_seq);
1396   }
1397 }
1398 
1399 double G1CollectorPolicy::predict_object_copy_time_ms(size_t bytes_to_copy) const {
1400   if (collector_state()->during_concurrent_mark()) {
1401     return predict_object_copy_time_ms_during_cm(bytes_to_copy);
1402   } else {
1403     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_seq);
1404   }
1405 }
1406 
1407 double G1CollectorPolicy::predict_constant_other_time_ms() const {
1408   return get_new_prediction(_constant_other_time_ms_seq);
1409 }
1410 
1411 double G1CollectorPolicy::predict_young_other_time_ms(size_t young_num) const {
1412   return young_num * get_new_prediction(_young_other_cost_per_region_ms_seq);
1413 }
1414 
1415 double G1CollectorPolicy::predict_non_young_other_time_ms(size_t non_young_num) const {
1416   return non_young_num * get_new_prediction(_non_young_other_cost_per_region_ms_seq);
1417 }
1418 
1419 double G1CollectorPolicy::predict_remark_time_ms() const {
1420   return get_new_prediction(_concurrent_mark_remark_times_ms);
1421 }
1422 
1423 double G1CollectorPolicy::predict_cleanup_time_ms() const {
1424   return get_new_prediction(_concurrent_mark_cleanup_times_ms);
1425 }
1426 
1427 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1428   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1429   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1430   double pred = get_new_prediction(seq);
1431   if (pred > 1.0) {
1432     pred = 1.0;
1433   }
1434   return pred;
1435 }
1436 
1437 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1438   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1439 }
1440 
1441 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1442   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1443 }
1444 
1445 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1446                                                        size_t scanned_cards) const {
1447   return
1448     predict_rs_update_time_ms(pending_cards) +
1449     predict_rs_scan_time_ms(scanned_cards) +
1450     predict_constant_other_time_ms();
1451 }
1452 
1453 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1454   size_t rs_length = predict_rs_length_diff();
1455   size_t card_num;
1456   if (collector_state()->gcs_are_young()) {
1457     card_num = predict_young_card_num(rs_length);
1458   } else {
1459     card_num = predict_non_young_card_num(rs_length);
1460   }
1461   return predict_base_elapsed_time_ms(pending_cards, card_num);
1462 }
1463 
1464 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1465   size_t bytes_to_copy;
1466   if (hr->is_marked())
1467     bytes_to_copy = hr->max_live_bytes();
1468   else {
1469     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1470     int age = hr->age_in_surv_rate_group();
1471     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1472     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1473   }
1474   return bytes_to_copy;
1475 }
1476 
1477 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1478                                                          bool for_young_gc) const {
1479   size_t rs_length = hr->rem_set()->occupied();
1480   size_t card_num;
1481 
1482   // Predicting the number of cards is based on which type of GC
1483   // we're predicting for.
1484   if (for_young_gc) {
1485     card_num = predict_young_card_num(rs_length);
1486   } else {
1487     card_num = predict_non_young_card_num(rs_length);
1488   }
1489   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1490 
1491   double region_elapsed_time_ms =
1492     predict_rs_scan_time_ms(card_num) +
1493     predict_object_copy_time_ms(bytes_to_copy);
1494 
1495   // The prediction of the "other" time for this region is based
1496   // upon the region type and NOT the GC type.
1497   if (hr->is_young()) {
1498     region_elapsed_time_ms += predict_young_other_time_ms(1);
1499   } else {
1500     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1501   }
1502   return region_elapsed_time_ms;
1503 }
1504 
1505 void G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1506                                                  uint survivor_cset_region_length) {
1507   _eden_cset_region_length     = eden_cset_region_length;
1508   _survivor_cset_region_length = survivor_cset_region_length;
1509   _old_cset_region_length      = 0;
1510 }
1511 
1512 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1513   _recorded_rs_lengths = rs_lengths;
1514 }
1515 
1516 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1517                                                double elapsed_ms) {
1518   _recent_gc_times_ms->add(elapsed_ms);
1519   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1520   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1521 }
1522 
1523 void G1CollectorPolicy::clear_ratio_check_data() {
1524   _ratio_over_threshold_count = 0;
1525   _ratio_over_threshold_sum = 0.0;
1526   _pauses_since_start = 0;
1527 }
1528 
1529 size_t G1CollectorPolicy::expansion_amount() {
1530   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1531   double last_gc_overhead = _last_pause_time_ratio * 100.0;
1532   double threshold = _gc_overhead_perc;
1533   size_t expand_bytes = 0;
1534 
1535   // If the heap is at less than half its maximum size, scale the threshold down,
1536   // to a limit of 1. Thus the smaller the heap is, the more likely it is to expand,
1537   // though the scaling code will likely keep the increase small.
1538   if (_g1->capacity() <= _g1->max_capacity() / 2) {
1539     threshold *= (double)_g1->capacity() / (double)(_g1->max_capacity() / 2);
1540     threshold = MAX2(threshold, 1.0);
1541   }
1542 
1543   // If the last GC time ratio is over the threshold, increment the count of
1544   // times it has been exceeded, and add this ratio to the sum of exceeded
1545   // ratios.
1546   if (last_gc_overhead > threshold) {
1547     _ratio_over_threshold_count++;
1548     _ratio_over_threshold_sum += last_gc_overhead;
1549   }
1550 
1551   // Check if we've had enough GC time ratio checks that were over the
1552   // threshold to trigger an expansion. We'll also expand if we've
1553   // reached the end of the history buffer and the average of all entries
1554   // is still over the threshold. This indicates a smaller number of GCs were
1555   // long enough to make the average exceed the threshold.
1556   bool filled_history_buffer = _pauses_since_start == NumPrevPausesForHeuristics;
1557   if ((_ratio_over_threshold_count == MinOverThresholdForGrowth) ||
1558       (filled_history_buffer && (recent_gc_overhead > threshold))) {
1559     size_t min_expand_bytes = HeapRegion::GrainBytes;
1560     size_t reserved_bytes = _g1->max_capacity();
1561     size_t committed_bytes = _g1->capacity();
1562     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1563     size_t expand_bytes_via_pct =
1564       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1565     double scale_factor = 1.0;
1566 
1567     // If the current size is less than 1/4 of the Initial heap size, expand
1568     // by half of the delta between the current and Initial sizes. IE, grow
1569     // back quickly.
1570     //
1571     // Otherwise, take the current size, or G1ExpandByPercentOfAvailable % of
1572     // the available expansion space, whichever is smaller, as the base
1573     // expansion size. Then possibly scale this size according to how much the
1574     // threshold has (on average) been exceeded by. If the delta is small
1575     // (less than the StartScaleDownAt value), scale the size down linearly, but
1576     // not by less than MinScaleDownFactor. If the delta is large (greater than
1577     // the StartScaleUpAt value), scale up, but adding no more than MaxScaleUpFactor
1578     // times the base size. The scaling will be linear in the range from
1579     // StartScaleUpAt to (StartScaleUpAt + ScaleUpRange). In other words,
1580     // ScaleUpRange sets the rate of scaling up.
1581     if (committed_bytes < InitialHeapSize / 4) {
1582       expand_bytes = (InitialHeapSize - committed_bytes) / 2;
1583     } else {
1584       double const MinScaleDownFactor = 0.2;
1585       double const MaxScaleUpFactor = 2;
1586       double const StartScaleDownAt = _gc_overhead_perc;
1587       double const StartScaleUpAt = _gc_overhead_perc * 1.5;
1588       double const ScaleUpRange = _gc_overhead_perc * 2.0;
1589 
1590       double ratio_delta;
1591       if (filled_history_buffer) {
1592         ratio_delta = recent_gc_overhead - threshold;
1593       } else {
1594         ratio_delta = (_ratio_over_threshold_sum/_ratio_over_threshold_count) - threshold;
1595       }
1596 
1597       expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1598       if (ratio_delta < StartScaleDownAt) {
1599         scale_factor = ratio_delta / StartScaleDownAt;
1600         scale_factor = MAX2(scale_factor, MinScaleDownFactor);
1601       } else if (ratio_delta > StartScaleUpAt) {
1602         scale_factor = 1 + ((ratio_delta - StartScaleUpAt) / ScaleUpRange);
1603         scale_factor = MIN2(scale_factor, MaxScaleUpFactor);
1604       }
1605     }
1606 
1607     log_debug(gc, ergo, heap)("Attempt heap expansion (recent GC overhead higher than threshold after GC) "
1608                               "recent GC overhead: %1.2f %% threshold: %1.2f %% uncommitted: " SIZE_FORMAT "B base expansion amount and scale: " SIZE_FORMAT "B (%1.2f%%)",
1609                               recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes, scale_factor * 100);
1610 
1611     expand_bytes = static_cast<size_t>(expand_bytes * scale_factor);
1612 
1613     // Ensure the expansion size is at least the minimum growth amount
1614     // and at most the remaining uncommitted byte size.
1615     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1616     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1617 
1618     clear_ratio_check_data();
1619   } else {
1620     // An expansion was not triggered. If we've started counting, increment
1621     // the number of checks we've made in the current window.  If we've
1622     // reached the end of the window without resizing, clear the counters to
1623     // start again the next time we see a ratio above the threshold.
1624     if (_ratio_over_threshold_count > 0) {
1625       _pauses_since_start++;
1626       if (_pauses_since_start > NumPrevPausesForHeuristics) {
1627         clear_ratio_check_data();
1628       }
1629     }
1630   }
1631 
1632   return expand_bytes;
1633 }
1634 
1635 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1636 #ifndef PRODUCT
1637   _short_lived_surv_rate_group->print_surv_rate_summary();
1638   // add this call for any other surv rate groups
1639 #endif // PRODUCT
1640 }
1641 
1642 bool G1CollectorPolicy::is_young_list_full() const {
1643   uint young_list_length = _g1->young_list()->length();
1644   uint young_list_target_length = _young_list_target_length;
1645   return young_list_length >= young_list_target_length;
1646 }
1647 
1648 bool G1CollectorPolicy::can_expand_young_list() const {
1649   uint young_list_length = _g1->young_list()->length();
1650   uint young_list_max_length = _young_list_max_length;
1651   return young_list_length < young_list_max_length;
1652 }
1653 
1654 bool G1CollectorPolicy::adaptive_young_list_length() const {
1655   return _young_gen_sizer->adaptive_young_list_length();
1656 }
1657 
1658 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1659   uint expansion_region_num = 0;
1660   if (GCLockerEdenExpansionPercent > 0) {
1661     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1662     double expansion_region_num_d = perc * (double) _young_list_target_length;
1663     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1664     // less than 1.0) we'll get 1.
1665     expansion_region_num = (uint) ceil(expansion_region_num_d);
1666   } else {
1667     assert(expansion_region_num == 0, "sanity");
1668   }
1669   _young_list_max_length = _young_list_target_length + expansion_region_num;
1670   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1671 }
1672 
1673 // Calculates survivor space parameters.
1674 void G1CollectorPolicy::update_survivors_policy() {
1675   double max_survivor_regions_d =
1676                  (double) _young_list_target_length / (double) SurvivorRatio;
1677   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1678   // smaller than 1.0) we'll get 1.
1679   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1680 
1681   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1682         HeapRegion::GrainWords * _max_survivor_regions, counters());
1683 }
1684 
1685 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1686   // We actually check whether we are marking here and not if we are in a
1687   // reclamation phase. This means that we will schedule a concurrent mark
1688   // even while we are still in the process of reclaiming memory.
1689   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1690   if (!during_cycle) {
1691     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1692     collector_state()->set_initiate_conc_mark_if_possible(true);
1693     return true;
1694   } else {
1695     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1696     return false;
1697   }
1698 }
1699 
1700 void G1CollectorPolicy::initiate_conc_mark() {
1701   collector_state()->set_during_initial_mark_pause(true);
1702   collector_state()->set_initiate_conc_mark_if_possible(false);
1703 }
1704 
1705 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1706   // We are about to decide on whether this pause will be an
1707   // initial-mark pause.
1708 
1709   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1710   // will set it here if we have to. However, it should be cleared by
1711   // the end of the pause (it's only set for the duration of an
1712   // initial-mark pause).
1713   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1714 
1715   if (collector_state()->initiate_conc_mark_if_possible()) {
1716     // We had noticed on a previous pause that the heap occupancy has
1717     // gone over the initiating threshold and we should start a
1718     // concurrent marking cycle. So we might initiate one.
1719 
1720     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
1721       // Initiate a new initial mark if there is no marking or reclamation going on.
1722       initiate_conc_mark();
1723       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1724     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
1725       // Initiate a user requested initial mark. An initial mark must be young only
1726       // GC, so the collector state must be updated to reflect this.
1727       collector_state()->set_gcs_are_young(true);
1728       collector_state()->set_last_young_gc(false);
1729 
1730       abort_time_to_mixed_tracking();
1731       initiate_conc_mark();
1732       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1733     } else {
1734       // The concurrent marking thread is still finishing up the
1735       // previous cycle. If we start one right now the two cycles
1736       // overlap. In particular, the concurrent marking thread might
1737       // be in the process of clearing the next marking bitmap (which
1738       // we will use for the next cycle if we start one). Starting a
1739       // cycle now will be bad given that parts of the marking
1740       // information might get cleared by the marking thread. And we
1741       // cannot wait for the marking thread to finish the cycle as it
1742       // periodically yields while clearing the next marking bitmap
1743       // and, if it's in a yield point, it's waiting for us to
1744       // finish. So, at this point we will not start a cycle and we'll
1745       // let the concurrent marking thread complete the last one.
1746       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1747     }
1748   }
1749 }
1750 
1751 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1752   G1CollectedHeap* _g1h;
1753   CSetChooserParUpdater _cset_updater;
1754 
1755 public:
1756   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1757                            uint chunk_size) :
1758     _g1h(G1CollectedHeap::heap()),
1759     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1760 
1761   bool doHeapRegion(HeapRegion* r) {
1762     // Do we have any marking information for this region?
1763     if (r->is_marked()) {
1764       // We will skip any region that's currently used as an old GC
1765       // alloc region (we should not consider those for collection
1766       // before we fill them up).
1767       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1768         _cset_updater.add_region(r);
1769       }
1770     }
1771     return false;
1772   }
1773 };
1774 
1775 class ParKnownGarbageTask: public AbstractGangTask {
1776   CollectionSetChooser* _hrSorted;
1777   uint _chunk_size;
1778   G1CollectedHeap* _g1;
1779   HeapRegionClaimer _hrclaimer;
1780 
1781 public:
1782   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1783       AbstractGangTask("ParKnownGarbageTask"),
1784       _hrSorted(hrSorted), _chunk_size(chunk_size),
1785       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1786 
1787   void work(uint worker_id) {
1788     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1789     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1790   }
1791 };
1792 
1793 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1794   assert(n_workers > 0, "Active gc workers should be greater than 0");
1795   const uint overpartition_factor = 4;
1796   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1797   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1798 }
1799 
1800 void G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1801   cset_chooser()->clear();
1802 
1803   WorkGang* workers = _g1->workers();
1804   uint n_workers = workers->active_workers();
1805 
1806   uint n_regions = _g1->num_regions();
1807   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1808   cset_chooser()->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1809   ParKnownGarbageTask par_known_garbage_task(cset_chooser(), chunk_size, n_workers);
1810   workers->run_task(&par_known_garbage_task);
1811 
1812   cset_chooser()->sort_regions();
1813 
1814   double end_sec = os::elapsedTime();
1815   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1816   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1817   _prev_collection_pause_end_ms += elapsed_time_ms;
1818 
1819   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1820 }
1821 
1822 // Add the heap region at the head of the non-incremental collection set
1823 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1824   assert(_inc_cset_build_state == Active, "Precondition");
1825   assert(hr->is_old(), "the region should be old");
1826 
1827   assert(!hr->in_collection_set(), "should not already be in the CSet");
1828   _g1->register_old_region_with_cset(hr);
1829   hr->set_next_in_collection_set(_collection_set);
1830   _collection_set = hr;
1831   _collection_set_bytes_used_before += hr->used();
1832   size_t rs_length = hr->rem_set()->occupied();
1833   _recorded_rs_lengths += rs_length;
1834   _old_cset_region_length += 1;
1835 }
1836 
1837 // Initialize the per-collection-set information
1838 void G1CollectorPolicy::start_incremental_cset_building() {
1839   assert(_inc_cset_build_state == Inactive, "Precondition");
1840 
1841   _inc_cset_head = NULL;
1842   _inc_cset_tail = NULL;
1843   _inc_cset_bytes_used_before = 0;
1844 
1845   _inc_cset_recorded_rs_lengths = 0;
1846   _inc_cset_recorded_rs_lengths_diffs = 0;
1847   _inc_cset_predicted_elapsed_time_ms = 0.0;
1848   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1849   _inc_cset_build_state = Active;
1850 }
1851 
1852 void G1CollectorPolicy::finalize_incremental_cset_building() {
1853   assert(_inc_cset_build_state == Active, "Precondition");
1854   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1855 
1856   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1857   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1858   // that adds a new region to the CSet. Further updates by the
1859   // concurrent refinement thread that samples the young RSet lengths
1860   // are accumulated in the *_diffs fields. Here we add the diffs to
1861   // the "main" fields.
1862 
1863   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1864     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1865   } else {
1866     // This is defensive. The diff should in theory be always positive
1867     // as RSets can only grow between GCs. However, given that we
1868     // sample their size concurrently with other threads updating them
1869     // it's possible that we might get the wrong size back, which
1870     // could make the calculations somewhat inaccurate.
1871     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1872     if (_inc_cset_recorded_rs_lengths >= diffs) {
1873       _inc_cset_recorded_rs_lengths -= diffs;
1874     } else {
1875       _inc_cset_recorded_rs_lengths = 0;
1876     }
1877   }
1878   _inc_cset_predicted_elapsed_time_ms +=
1879                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1880 
1881   _inc_cset_recorded_rs_lengths_diffs = 0;
1882   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1883 }
1884 
1885 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1886   // This routine is used when:
1887   // * adding survivor regions to the incremental cset at the end of an
1888   //   evacuation pause,
1889   // * adding the current allocation region to the incremental cset
1890   //   when it is retired, and
1891   // * updating existing policy information for a region in the
1892   //   incremental cset via young list RSet sampling.
1893   // Therefore this routine may be called at a safepoint by the
1894   // VM thread, or in-between safepoints by mutator threads (when
1895   // retiring the current allocation region) or a concurrent
1896   // refine thread (RSet sampling).
1897 
1898   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1899   size_t used_bytes = hr->used();
1900   _inc_cset_recorded_rs_lengths += rs_length;
1901   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1902   _inc_cset_bytes_used_before += used_bytes;
1903 
1904   // Cache the values we have added to the aggregated information
1905   // in the heap region in case we have to remove this region from
1906   // the incremental collection set, or it is updated by the
1907   // rset sampling code
1908   hr->set_recorded_rs_length(rs_length);
1909   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1910 }
1911 
1912 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1913                                                      size_t new_rs_length) {
1914   // Update the CSet information that is dependent on the new RS length
1915   assert(hr->is_young(), "Precondition");
1916   assert(!SafepointSynchronize::is_at_safepoint(),
1917                                                "should not be at a safepoint");
1918 
1919   // We could have updated _inc_cset_recorded_rs_lengths and
1920   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1921   // that atomically, as this code is executed by a concurrent
1922   // refinement thread, potentially concurrently with a mutator thread
1923   // allocating a new region and also updating the same fields. To
1924   // avoid the atomic operations we accumulate these updates on two
1925   // separate fields (*_diffs) and we'll just add them to the "main"
1926   // fields at the start of a GC.
1927 
1928   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1929   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1930   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1931 
1932   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1933   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1934   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1935   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1936 
1937   hr->set_recorded_rs_length(new_rs_length);
1938   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1939 }
1940 
1941 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1942   assert(hr->is_young(), "invariant");
1943   assert(hr->young_index_in_cset() > -1, "should have already been set");
1944   assert(_inc_cset_build_state == Active, "Precondition");
1945 
1946   // We need to clear and set the cached recorded/cached collection set
1947   // information in the heap region here (before the region gets added
1948   // to the collection set). An individual heap region's cached values
1949   // are calculated, aggregated with the policy collection set info,
1950   // and cached in the heap region here (initially) and (subsequently)
1951   // by the Young List sampling code.
1952 
1953   size_t rs_length = hr->rem_set()->occupied();
1954   add_to_incremental_cset_info(hr, rs_length);
1955 
1956   assert(!hr->in_collection_set(), "invariant");
1957   _g1->register_young_region_with_cset(hr);
1958   assert(hr->next_in_collection_set() == NULL, "invariant");
1959 }
1960 
1961 // Add the region at the RHS of the incremental cset
1962 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1963   // We should only ever be appending survivors at the end of a pause
1964   assert(hr->is_survivor(), "Logic");
1965 
1966   // Do the 'common' stuff
1967   add_region_to_incremental_cset_common(hr);
1968 
1969   // Now add the region at the right hand side
1970   if (_inc_cset_tail == NULL) {
1971     assert(_inc_cset_head == NULL, "invariant");
1972     _inc_cset_head = hr;
1973   } else {
1974     _inc_cset_tail->set_next_in_collection_set(hr);
1975   }
1976   _inc_cset_tail = hr;
1977 }
1978 
1979 // Add the region to the LHS of the incremental cset
1980 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1981   // Survivors should be added to the RHS at the end of a pause
1982   assert(hr->is_eden(), "Logic");
1983 
1984   // Do the 'common' stuff
1985   add_region_to_incremental_cset_common(hr);
1986 
1987   // Add the region at the left hand side
1988   hr->set_next_in_collection_set(_inc_cset_head);
1989   if (_inc_cset_head == NULL) {
1990     assert(_inc_cset_tail == NULL, "Invariant");
1991     _inc_cset_tail = hr;
1992   }
1993   _inc_cset_head = hr;
1994 }
1995 
1996 #ifndef PRODUCT
1997 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1998   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1999 
2000   st->print_cr("\nCollection_set:");
2001   HeapRegion* csr = list_head;
2002   while (csr != NULL) {
2003     HeapRegion* next = csr->next_in_collection_set();
2004     assert(csr->in_collection_set(), "bad CS");
2005     st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
2006                  HR_FORMAT_PARAMS(csr),
2007                  p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
2008                  csr->age_in_surv_rate_group_cond());
2009     csr = next;
2010   }
2011 }
2012 #endif // !PRODUCT
2013 
2014 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
2015   // Returns the given amount of reclaimable bytes (that represents
2016   // the amount of reclaimable space still to be collected) as a
2017   // percentage of the current heap capacity.
2018   size_t capacity_bytes = _g1->capacity();
2019   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
2020 }
2021 
2022 void G1CollectorPolicy::maybe_start_marking() {
2023   if (need_to_start_conc_mark("end of GC")) {
2024     // Note: this might have already been set, if during the last
2025     // pause we decided to start a cycle but at the beginning of
2026     // this pause we decided to postpone it. That's OK.
2027     collector_state()->set_initiate_conc_mark_if_possible(true);
2028   }
2029 }
2030 
2031 G1CollectorPolicy::PauseKind G1CollectorPolicy::young_gc_pause_kind() const {
2032   assert(!collector_state()->full_collection(), "must be");
2033   if (collector_state()->during_initial_mark_pause()) {
2034     assert(collector_state()->last_gc_was_young(), "must be");
2035     assert(!collector_state()->last_young_gc(), "must be");
2036     return InitialMarkGC;
2037   } else if (collector_state()->last_young_gc()) {
2038     assert(!collector_state()->during_initial_mark_pause(), "must be");
2039     assert(collector_state()->last_gc_was_young(), "must be");
2040     return LastYoungGC;
2041   } else if (!collector_state()->last_gc_was_young()) {
2042     assert(!collector_state()->during_initial_mark_pause(), "must be");
2043     assert(!collector_state()->last_young_gc(), "must be");
2044     return MixedGC;
2045   } else {
2046     assert(collector_state()->last_gc_was_young(), "must be");
2047     assert(!collector_state()->during_initial_mark_pause(), "must be");
2048     assert(!collector_state()->last_young_gc(), "must be");
2049     return YoungOnlyGC;
2050   }
2051 }
2052 
2053 void G1CollectorPolicy::record_pause(PauseKind kind, double start, double end) {
2054   // Manage the MMU tracker. For some reason it ignores Full GCs.
2055   if (kind != FullGC) {
2056     _mmu_tracker->add_pause(start, end);
2057   }
2058   // Manage the mutator time tracking from initial mark to first mixed gc.
2059   switch (kind) {
2060     case FullGC:
2061       abort_time_to_mixed_tracking();
2062       break;
2063     case Cleanup:
2064     case Remark:
2065     case YoungOnlyGC:
2066     case LastYoungGC:
2067       _initial_mark_to_mixed.add_pause(end - start);
2068       break;
2069     case InitialMarkGC:
2070       _initial_mark_to_mixed.record_initial_mark_end(end);
2071       break;
2072     case MixedGC:
2073       _initial_mark_to_mixed.record_mixed_gc_start(start);
2074       break;
2075     default:
2076       ShouldNotReachHere();
2077   }
2078 }
2079 
2080 void G1CollectorPolicy::abort_time_to_mixed_tracking() {
2081   _initial_mark_to_mixed.reset();
2082 }
2083 
2084 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
2085                                                 const char* false_action_str) const {
2086   if (cset_chooser()->is_empty()) {
2087     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
2088     return false;
2089   }
2090 
2091   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
2092   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
2093   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2094   double threshold = (double) G1HeapWastePercent;
2095   if (reclaimable_perc <= threshold) {
2096     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
2097                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2098     return false;
2099   }
2100   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
2101                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2102   return true;
2103 }
2104 
2105 uint G1CollectorPolicy::calc_min_old_cset_length() const {
2106   // The min old CSet region bound is based on the maximum desired
2107   // number of mixed GCs after a cycle. I.e., even if some old regions
2108   // look expensive, we should add them to the CSet anyway to make
2109   // sure we go through the available old regions in no more than the
2110   // maximum desired number of mixed GCs.
2111   //
2112   // The calculation is based on the number of marked regions we added
2113   // to the CSet chooser in the first place, not how many remain, so
2114   // that the result is the same during all mixed GCs that follow a cycle.
2115 
2116   const size_t region_num = (size_t) cset_chooser()->length();
2117   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
2118   size_t result = region_num / gc_num;
2119   // emulate ceiling
2120   if (result * gc_num < region_num) {
2121     result += 1;
2122   }
2123   return (uint) result;
2124 }
2125 
2126 uint G1CollectorPolicy::calc_max_old_cset_length() const {
2127   // The max old CSet region bound is based on the threshold expressed
2128   // as a percentage of the heap size. I.e., it should bound the
2129   // number of old regions added to the CSet irrespective of how many
2130   // of them are available.
2131 
2132   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
2133   const size_t region_num = g1h->num_regions();
2134   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
2135   size_t result = region_num * perc / 100;
2136   // emulate ceiling
2137   if (100 * result < region_num * perc) {
2138     result += 1;
2139   }
2140   return (uint) result;
2141 }
2142 
2143 
2144 double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
2145   double young_start_time_sec = os::elapsedTime();
2146 
2147   YoungList* young_list = _g1->young_list();
2148   finalize_incremental_cset_building();
2149 
2150   guarantee(target_pause_time_ms > 0.0,
2151             "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
2152   guarantee(_collection_set == NULL, "Precondition");
2153 
2154   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2155   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
2156 
2157   log_trace(gc, ergo, cset)("Start choosing CSet. pending cards: " SIZE_FORMAT " predicted base time: %1.2fms remaining time: %1.2fms target pause time: %1.2fms",
2158                             _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
2159 
2160   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
2161 
2162   // The young list is laid with the survivor regions from the previous
2163   // pause are appended to the RHS of the young list, i.e.
2164   //   [Newly Young Regions ++ Survivors from last pause].
2165 
2166   uint survivor_region_length = young_list->survivor_length();
2167   uint eden_region_length = young_list->eden_length();
2168   init_cset_region_lengths(eden_region_length, survivor_region_length);
2169 
2170   HeapRegion* hr = young_list->first_survivor_region();
2171   while (hr != NULL) {
2172     assert(hr->is_survivor(), "badly formed young list");
2173     // There is a convention that all the young regions in the CSet
2174     // are tagged as "eden", so we do this for the survivors here. We
2175     // use the special set_eden_pre_gc() as it doesn't check that the
2176     // region is free (which is not the case here).
2177     hr->set_eden_pre_gc();
2178     hr = hr->get_next_young_region();
2179   }
2180 
2181   // Clear the fields that point to the survivor list - they are all young now.
2182   young_list->clear_survivors();
2183 
2184   _collection_set = _inc_cset_head;
2185   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2186   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
2187 
2188   log_trace(gc, ergo, cset)("Add young regions to CSet. eden: %u regions, survivors: %u regions, predicted young region time: %1.2fms, target pause time: %1.2fms",
2189                             eden_region_length, survivor_region_length, _inc_cset_predicted_elapsed_time_ms, target_pause_time_ms);
2190 
2191   // The number of recorded young regions is the incremental
2192   // collection set's current size
2193   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2194 
2195   double young_end_time_sec = os::elapsedTime();
2196   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2197 
2198   return time_remaining_ms;
2199 }
2200 
2201 void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
2202   double non_young_start_time_sec = os::elapsedTime();
2203   double predicted_old_time_ms = 0.0;
2204 
2205 
2206   if (!collector_state()->gcs_are_young()) {
2207     cset_chooser()->verify();
2208     const uint min_old_cset_length = calc_min_old_cset_length();
2209     const uint max_old_cset_length = calc_max_old_cset_length();
2210 
2211     uint expensive_region_num = 0;
2212     bool check_time_remaining = adaptive_young_list_length();
2213 
2214     HeapRegion* hr = cset_chooser()->peek();
2215     while (hr != NULL) {
2216       if (old_cset_region_length() >= max_old_cset_length) {
2217         // Added maximum number of old regions to the CSet.
2218         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached max). old %u regions, max %u regions",
2219                                   old_cset_region_length(), max_old_cset_length);
2220         break;
2221       }
2222 
2223 
2224       // Stop adding regions if the remaining reclaimable space is
2225       // not above G1HeapWastePercent.
2226       size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
2227       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2228       double threshold = (double) G1HeapWastePercent;
2229       if (reclaimable_perc <= threshold) {
2230         // We've added enough old regions that the amount of uncollected
2231         // reclaimable space is at or below the waste threshold. Stop
2232         // adding old regions to the CSet.
2233         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (reclaimable percentage not over threshold). "
2234                                   "old %u regions, max %u regions, reclaimable: " SIZE_FORMAT "B (%1.2f%%) threshold: " UINTX_FORMAT "%%",
2235                                   old_cset_region_length(), max_old_cset_length, reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2236         break;
2237       }
2238 
2239       double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
2240       if (check_time_remaining) {
2241         if (predicted_time_ms > time_remaining_ms) {
2242           // Too expensive for the current CSet.
2243 
2244           if (old_cset_region_length() >= min_old_cset_length) {
2245             // We have added the minimum number of old regions to the CSet,
2246             // we are done with this CSet.
2247             log_debug(gc, ergo, cset)("Finish adding old regions to CSet (predicted time is too high). "
2248                                       "predicted time: %1.2fms, remaining time: %1.2fms old %u regions, min %u regions",
2249                                       predicted_time_ms, time_remaining_ms, old_cset_region_length(), min_old_cset_length);
2250             break;
2251           }
2252 
2253           // We'll add it anyway given that we haven't reached the
2254           // minimum number of old regions.
2255           expensive_region_num += 1;
2256         }
2257       } else {
2258         if (old_cset_region_length() >= min_old_cset_length) {
2259           // In the non-auto-tuning case, we'll finish adding regions
2260           // to the CSet if we reach the minimum.
2261 
2262           log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached min). old %u regions, min %u regions",
2263                                     old_cset_region_length(), min_old_cset_length);
2264           break;
2265         }
2266       }
2267 
2268       // We will add this region to the CSet.
2269       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2270       predicted_old_time_ms += predicted_time_ms;
2271       cset_chooser()->pop(); // already have region via peek()
2272       _g1->old_set_remove(hr);
2273       add_old_region_to_cset(hr);
2274 
2275       hr = cset_chooser()->peek();
2276     }
2277     if (hr == NULL) {
2278       log_debug(gc, ergo, cset)("Finish adding old regions to CSet (candidate old regions not available)");
2279     }
2280 
2281     if (expensive_region_num > 0) {
2282       // We print the information once here at the end, predicated on
2283       // whether we added any apparently expensive regions or not, to
2284       // avoid generating output per region.
2285       log_debug(gc, ergo, cset)("Added expensive regions to CSet (old CSet region num not reached min)."
2286                                 "old: %u regions, expensive: %u regions, min: %u regions, remaining time: %1.2fms",
2287                                 old_cset_region_length(), expensive_region_num, min_old_cset_length, time_remaining_ms);
2288     }
2289 
2290     cset_chooser()->verify();
2291   }
2292 
2293   stop_incremental_cset_building();
2294 
2295   log_debug(gc, ergo, cset)("Finish choosing CSet. old: %u regions, predicted old region time: %1.2fms, time remaining: %1.2f",
2296                             old_cset_region_length(), predicted_old_time_ms, time_remaining_ms);
2297 
2298   double non_young_end_time_sec = os::elapsedTime();
2299   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2300 }