1 /*
   2  * Copyright (c) 2011, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1ALLOCREGION_HPP
  26 #define SHARE_VM_GC_G1_G1ALLOCREGION_HPP
  27 
  28 #include "gc/g1/heapRegion.hpp"
  29 #include "gc/g1/g1EvacStats.hpp"
  30 #include "gc/g1/g1InCSetState.hpp"
  31 
  32 class G1CollectedHeap;
  33 
  34 // A class that holds a region that is active in satisfying allocation
  35 // requests, potentially issued in parallel. When the active region is
  36 // full it will be retired and replaced with a new one. The
  37 // implementation assumes that fast-path allocations will be lock-free
  38 // and a lock will need to be taken when the active region needs to be
  39 // replaced.
  40 
  41 class G1AllocRegion VALUE_OBJ_CLASS_SPEC {
  42 
  43 private:
  44   // The active allocating region we are currently allocating out
  45   // of. The invariant is that if this object is initialized (i.e.,
  46   // init() has been called and release() has not) then _alloc_region
  47   // is either an active allocating region or the dummy region (i.e.,
  48   // it can never be NULL) and this object can be used to satisfy
  49   // allocation requests. If this object is not initialized
  50   // (i.e. init() has not been called or release() has been called)
  51   // then _alloc_region is NULL and this object should not be used to
  52   // satisfy allocation requests (it was done this way to force the
  53   // correct use of init() and release()).
  54   HeapRegion* volatile _alloc_region;
  55 
  56   // Allocation context associated with this alloc region.
  57   AllocationContext_t _allocation_context;
  58 
  59   // It keeps track of the distinct number of regions that are used
  60   // for allocation in the active interval of this object, i.e.,
  61   // between a call to init() and a call to release(). The count
  62   // mostly includes regions that are freshly allocated, as well as
  63   // the region that is re-used using the set() method. This count can
  64   // be used in any heuristics that might want to bound how many
  65   // distinct regions this object can used during an active interval.
  66   uint _count;
  67 
  68   // When we set up a new active region we save its used bytes in this
  69   // field so that, when we retire it, we can calculate how much space
  70   // we allocated in it.
  71   size_t _used_bytes_before;
  72 
  73   // When true, indicates that allocate calls should do BOT updates.
  74   const bool _bot_updates;
  75 
  76   // Useful for debugging and tracing.
  77   const char* _name;
  78 
  79   // A dummy region (i.e., it's been allocated specially for this
  80   // purpose and it is not part of the heap) that is full (i.e., top()
  81   // == end()). When we don't have a valid active region we make
  82   // _alloc_region point to this. This allows us to skip checking
  83   // whether the _alloc_region is NULL or not.
  84   static HeapRegion* _dummy_region;
  85 
  86   // Some of the methods below take a bot_updates parameter. Its value
  87   // should be the same as the _bot_updates field. The idea is that
  88   // the parameter will be a constant for a particular alloc region
  89   // and, given that these methods will be hopefully inlined, the
  90   // compiler should compile out the test.
  91 
  92   // Perform a non-MT-safe allocation out of the given region.
  93   static inline HeapWord* allocate(HeapRegion* alloc_region,
  94                                    size_t word_size,
  95                                    bool bot_updates);
  96 
  97   // Perform a MT-safe allocation out of the given region.
  98   static inline HeapWord* par_allocate(HeapRegion* alloc_region,
  99                                        size_t word_size,
 100                                        bool bot_updates);
 101   // Perform a MT-safe allocation out of the given region, with the given
 102   // minimum and desired size. Returns the actual size allocated (between
 103   // minimum and desired size) in actual_word_size if the allocation has been
 104   // successful.
 105   static inline HeapWord* par_allocate(HeapRegion* alloc_region,
 106                                        size_t min_word_size,
 107                                        size_t desired_word_size,
 108                                        size_t* actual_word_size,
 109                                        bool bot_updates);
 110 
 111   // Ensure that the region passed as a parameter has been filled up
 112   // so that noone else can allocate out of it any more.
 113   // Returns the number of bytes that have been wasted by filled up
 114   // the space.
 115   static size_t fill_up_remaining_space(HeapRegion* alloc_region,
 116                                         bool bot_updates);
 117 
 118   // After a region is allocated by alloc_new_region, this
 119   // method is used to set it as the active alloc_region
 120   void update_alloc_region(HeapRegion* alloc_region);
 121 
 122   // Allocate a new active region and use it to perform a word_size
 123   // allocation. The force parameter will be passed on to
 124   // G1CollectedHeap::allocate_new_alloc_region() and tells it to try
 125   // to allocate a new region even if the max has been reached.
 126   HeapWord* new_alloc_region_and_allocate(size_t word_size, bool force);
 127 
 128 protected:
 129   // Retire the active allocating region. If fill_up is true then make
 130   // sure that the region is full before we retire it so that no one
 131   // else can allocate out of it.
 132   // Returns the number of bytes that have been filled up during retire.
 133   virtual size_t retire(bool fill_up);
 134 
 135   // For convenience as subclasses use it.
 136   static G1CollectedHeap* _g1h;
 137 
 138   virtual HeapRegion* allocate_new_region(size_t word_size, bool force) = 0;
 139   virtual void retire_region(HeapRegion* alloc_region,
 140                              size_t allocated_bytes) = 0;
 141 
 142   G1AllocRegion(const char* name, bool bot_updates);
 143 
 144 public:
 145   static void setup(G1CollectedHeap* g1h, HeapRegion* dummy_region);
 146 
 147   HeapRegion* get() const {
 148     HeapRegion * hr = _alloc_region;
 149     // Make sure that the dummy region does not escape this class.
 150     return (hr == _dummy_region) ? NULL : hr;
 151   }
 152 
 153   void set_allocation_context(AllocationContext_t context) { _allocation_context = context; }
 154   AllocationContext_t  allocation_context() { return _allocation_context; }
 155 
 156   uint count() { return _count; }
 157 
 158   // The following two are the building blocks for the allocation method.
 159 
 160   // First-level allocation: Should be called without holding a
 161   // lock. It will try to allocate lock-free out of the active region,
 162   // or return NULL if it was unable to.
 163   inline HeapWord* attempt_allocation(size_t word_size,
 164                                       bool bot_updates);
 165   // Perform an allocation out of the current allocation region, with the given
 166   // minimum and desired size. Returns the actual size allocated (between
 167   // minimum and desired size) in actual_word_size if the allocation has been
 168   // successful.
 169   // Should be called without holding a lock. It will try to allocate lock-free
 170   // out of the active region, or return NULL if it was unable to.
 171   inline HeapWord* attempt_allocation(size_t min_word_size,
 172                                       size_t desired_word_size,
 173                                       size_t* actual_word_size,
 174                                       bool bot_updates);
 175 
 176   // Second-level allocation: Should be called while holding a
 177   // lock. It will try to first allocate lock-free out of the active
 178   // region or, if it's unable to, it will try to replace the active
 179   // alloc region with a new one. We require that the caller takes the
 180   // appropriate lock before calling this so that it is easier to make
 181   // it conform to its locking protocol.
 182   inline HeapWord* attempt_allocation_locked(size_t word_size,
 183                                              bool bot_updates);
 184   // Same as attempt_allocation_locked(size_t, bool), but allowing specification
 185   // of minimum word size of the block in min_word_size, and the maximum word
 186   // size of the allocation in desired_word_size. The actual size of the block is
 187   // returned in actual_word_size.
 188   inline HeapWord* attempt_allocation_locked(size_t min_word_size,
 189                                              size_t desired_word_size,
 190                                              size_t* actual_word_size,
 191                                              bool bot_updates);
 192 
 193   // Should be called to allocate a new region even if the max of this
 194   // type of regions has been reached. Should only be called if other
 195   // allocation attempts have failed and we are not holding a valid
 196   // active region.
 197   inline HeapWord* attempt_allocation_force(size_t word_size,
 198                                             bool bot_updates);
 199 
 200   // Should be called before we start using this object.
 201   void init();
 202 
 203   // This can be used to set the active region to a specific
 204   // region. (Use Example: we try to retain the last old GC alloc
 205   // region that we've used during a GC and we can use set() to
 206   // re-instate it at the beginning of the next GC.)
 207   void set(HeapRegion* alloc_region);
 208 
 209   // Should be called when we want to release the active region which
 210   // is returned after it's been retired.
 211   virtual HeapRegion* release();
 212 
 213 #ifndef PRODUCT
 214   void trace(const char* str,
 215              size_t min_word_size = 0,
 216              size_t desired_word_size = 0,
 217              size_t actual_word_size = 0,
 218              HeapWord* result = NULL);
 219 #else // PRODUCT
 220   void trace(const char* str,
 221              size_t min_word_size = 0,
 222              size_t desired_word_size = 0,
 223              size_t actual_word_size = 0,
 224              HeapWord* result = NULL) { }
 225 #endif // PRODUCT
 226 };
 227 
 228 class MutatorAllocRegion : public G1AllocRegion {
 229 protected:
 230   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 231   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 232 public:
 233   MutatorAllocRegion()
 234     : G1AllocRegion("Mutator Alloc Region", false /* bot_updates */) { }
 235 };
 236 
 237 // Common base class for allocation regions used during GC.
 238 class G1GCAllocRegion : public G1AllocRegion {
 239 protected:
 240   G1EvacStats* _stats;
 241   InCSetState::in_cset_state_t _purpose;
 242 
 243   virtual HeapRegion* allocate_new_region(size_t word_size, bool force);
 244   virtual void retire_region(HeapRegion* alloc_region, size_t allocated_bytes);
 245 
 246   virtual size_t retire(bool fill_up);
 247 public:
 248   G1GCAllocRegion(const char* name, bool bot_updates, G1EvacStats* stats, InCSetState::in_cset_state_t purpose)
 249   : G1AllocRegion(name, bot_updates), _stats(stats), _purpose(purpose) {
 250     assert(stats != NULL, "Must pass non-NULL PLAB statistics");
 251   }
 252 };
 253 
 254 class SurvivorGCAllocRegion : public G1GCAllocRegion {
 255 public:
 256   SurvivorGCAllocRegion(G1EvacStats* stats)
 257   : G1GCAllocRegion("Survivor GC Alloc Region", false /* bot_updates */, stats, InCSetState::Young) { }
 258 };
 259 
 260 class OldGCAllocRegion : public G1GCAllocRegion {
 261 public:
 262   OldGCAllocRegion(G1EvacStats* stats)
 263   : G1GCAllocRegion("Old GC Alloc Region", true /* bot_updates */, stats, InCSetState::Old) { }
 264 
 265   // This specialization of release() makes sure that the last card that has
 266   // been allocated into has been completely filled by a dummy object.  This
 267   // avoids races when remembered set scanning wants to update the BOT of the
 268   // last card in the retained old gc alloc region, and allocation threads
 269   // allocating into that card at the same time.
 270   virtual HeapRegion* release();
 271 };
 272 
 273 #endif // SHARE_VM_GC_G1_G1ALLOCREGION_HPP