1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentG1Refine.hpp"
  33 #include "gc/g1/concurrentG1RefineThread.hpp"
  34 #include "gc/g1/concurrentMarkThread.inline.hpp"
  35 #include "gc/g1/g1Allocator.inline.hpp"
  36 #include "gc/g1/g1CollectedHeap.inline.hpp"
  37 #include "gc/g1/g1CollectionSet.hpp"
  38 #include "gc/g1/g1CollectorPolicy.hpp"
  39 #include "gc/g1/g1CollectorState.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1GCPhaseTimes.hpp"
  42 #include "gc/g1/g1HeapSizingPolicy.hpp"
  43 #include "gc/g1/g1HeapTransition.hpp"
  44 #include "gc/g1/g1HeapVerifier.hpp"
  45 #include "gc/g1/g1MarkSweep.hpp"
  46 #include "gc/g1/g1OopClosures.inline.hpp"
  47 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  48 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  49 #include "gc/g1/g1RemSet.inline.hpp"
  50 #include "gc/g1/g1RootClosures.hpp"
  51 #include "gc/g1/g1RootProcessor.hpp"
  52 #include "gc/g1/g1StringDedup.hpp"
  53 #include "gc/g1/g1YCTypes.hpp"
  54 #include "gc/g1/heapRegion.inline.hpp"
  55 #include "gc/g1/heapRegionRemSet.hpp"
  56 #include "gc/g1/heapRegionSet.inline.hpp"
  57 #include "gc/g1/suspendibleThreadSet.hpp"
  58 #include "gc/g1/vm_operations_g1.hpp"
  59 #include "gc/shared/gcHeapSummary.hpp"
  60 #include "gc/shared/gcId.hpp"
  61 #include "gc/shared/gcLocker.inline.hpp"
  62 #include "gc/shared/gcTimer.hpp"
  63 #include "gc/shared/gcTrace.hpp"
  64 #include "gc/shared/gcTraceTime.inline.hpp"
  65 #include "gc/shared/generationSpec.hpp"
  66 #include "gc/shared/isGCActiveMark.hpp"
  67 #include "gc/shared/referenceProcessor.inline.hpp"
  68 #include "gc/shared/taskqueue.inline.hpp"
  69 #include "logging/log.hpp"
  70 #include "memory/allocation.hpp"
  71 #include "memory/iterator.hpp"
  72 #include "oops/oop.inline.hpp"
  73 #include "runtime/atomic.inline.hpp"
  74 #include "runtime/init.hpp"
  75 #include "runtime/orderAccess.inline.hpp"
  76 #include "runtime/vmThread.hpp"
  77 #include "utilities/globalDefinitions.hpp"
  78 #include "utilities/stack.inline.hpp"
  79 
  80 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  81 
  82 // INVARIANTS/NOTES
  83 //
  84 // All allocation activity covered by the G1CollectedHeap interface is
  85 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  86 // and allocate_new_tlab, which are the "entry" points to the
  87 // allocation code from the rest of the JVM.  (Note that this does not
  88 // apply to TLAB allocation, which is not part of this interface: it
  89 // is done by clients of this interface.)
  90 
  91 // Local to this file.
  92 
  93 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  94   bool _concurrent;
  95 public:
  96   RefineCardTableEntryClosure() : _concurrent(true) { }
  97 
  98   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  99     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 100     // This path is executed by the concurrent refine or mutator threads,
 101     // concurrently, and so we do not care if card_ptr contains references
 102     // that point into the collection set.
 103     assert(!oops_into_cset, "should be");
 104 
 105     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 106       // Caller will actually yield.
 107       return false;
 108     }
 109     // Otherwise, we finished successfully; return true.
 110     return true;
 111   }
 112 
 113   void set_concurrent(bool b) { _concurrent = b; }
 114 };
 115 
 116 
 117 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 118  private:
 119   size_t _num_dirtied;
 120   G1CollectedHeap* _g1h;
 121   G1SATBCardTableLoggingModRefBS* _g1_bs;
 122 
 123   HeapRegion* region_for_card(jbyte* card_ptr) const {
 124     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 125   }
 126 
 127   bool will_become_free(HeapRegion* hr) const {
 128     // A region will be freed by free_collection_set if the region is in the
 129     // collection set and has not had an evacuation failure.
 130     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 131   }
 132 
 133  public:
 134   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 135     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 136 
 137   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 138     HeapRegion* hr = region_for_card(card_ptr);
 139 
 140     // Should only dirty cards in regions that won't be freed.
 141     if (!will_become_free(hr)) {
 142       *card_ptr = CardTableModRefBS::dirty_card_val();
 143       _num_dirtied++;
 144     }
 145 
 146     return true;
 147   }
 148 
 149   size_t num_dirtied()   const { return _num_dirtied; }
 150 };
 151 
 152 
 153 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 154   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 155 }
 156 
 157 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 158   // The from card cache is not the memory that is actually committed. So we cannot
 159   // take advantage of the zero_filled parameter.
 160   reset_from_card_cache(start_idx, num_regions);
 161 }
 162 
 163 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 164 {
 165   // Claim the right to put the region on the dirty cards region list
 166   // by installing a self pointer.
 167   HeapRegion* next = hr->get_next_dirty_cards_region();
 168   if (next == NULL) {
 169     HeapRegion* res = (HeapRegion*)
 170       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 171                           NULL);
 172     if (res == NULL) {
 173       HeapRegion* head;
 174       do {
 175         // Put the region to the dirty cards region list.
 176         head = _dirty_cards_region_list;
 177         next = (HeapRegion*)
 178           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 179         if (next == head) {
 180           assert(hr->get_next_dirty_cards_region() == hr,
 181                  "hr->get_next_dirty_cards_region() != hr");
 182           if (next == NULL) {
 183             // The last region in the list points to itself.
 184             hr->set_next_dirty_cards_region(hr);
 185           } else {
 186             hr->set_next_dirty_cards_region(next);
 187           }
 188         }
 189       } while (next != head);
 190     }
 191   }
 192 }
 193 
 194 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 195 {
 196   HeapRegion* head;
 197   HeapRegion* hr;
 198   do {
 199     head = _dirty_cards_region_list;
 200     if (head == NULL) {
 201       return NULL;
 202     }
 203     HeapRegion* new_head = head->get_next_dirty_cards_region();
 204     if (head == new_head) {
 205       // The last region.
 206       new_head = NULL;
 207     }
 208     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 209                                           head);
 210   } while (hr != head);
 211   assert(hr != NULL, "invariant");
 212   hr->set_next_dirty_cards_region(NULL);
 213   return hr;
 214 }
 215 
 216 // Returns true if the reference points to an object that
 217 // can move in an incremental collection.
 218 bool G1CollectedHeap::is_scavengable(const void* p) {
 219   HeapRegion* hr = heap_region_containing(p);
 220   return !hr->is_pinned();
 221 }
 222 
 223 // Private methods.
 224 
 225 HeapRegion*
 226 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 227   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 228   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 229     if (!_secondary_free_list.is_empty()) {
 230       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 231                                       "secondary_free_list has %u entries",
 232                                       _secondary_free_list.length());
 233       // It looks as if there are free regions available on the
 234       // secondary_free_list. Let's move them to the free_list and try
 235       // again to allocate from it.
 236       append_secondary_free_list();
 237 
 238       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 239              "empty we should have moved at least one entry to the free_list");
 240       HeapRegion* res = _hrm.allocate_free_region(is_old);
 241       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 242                                       "allocated " HR_FORMAT " from secondary_free_list",
 243                                       HR_FORMAT_PARAMS(res));
 244       return res;
 245     }
 246 
 247     // Wait here until we get notified either when (a) there are no
 248     // more free regions coming or (b) some regions have been moved on
 249     // the secondary_free_list.
 250     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 251   }
 252 
 253   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 254                                   "could not allocate from secondary_free_list");
 255   return NULL;
 256 }
 257 
 258 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 259   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 260          "the only time we use this to allocate a humongous region is "
 261          "when we are allocating a single humongous region");
 262 
 263   HeapRegion* res;
 264   if (G1StressConcRegionFreeing) {
 265     if (!_secondary_free_list.is_empty()) {
 266       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 267                                       "forced to look at the secondary_free_list");
 268       res = new_region_try_secondary_free_list(is_old);
 269       if (res != NULL) {
 270         return res;
 271       }
 272     }
 273   }
 274 
 275   res = _hrm.allocate_free_region(is_old);
 276 
 277   if (res == NULL) {
 278     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 279                                     "res == NULL, trying the secondary_free_list");
 280     res = new_region_try_secondary_free_list(is_old);
 281   }
 282   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 283     // Currently, only attempts to allocate GC alloc regions set
 284     // do_expand to true. So, we should only reach here during a
 285     // safepoint. If this assumption changes we might have to
 286     // reconsider the use of _expand_heap_after_alloc_failure.
 287     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 288 
 289     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 290                               word_size * HeapWordSize);
 291 
 292     if (expand(word_size * HeapWordSize)) {
 293       // Given that expand() succeeded in expanding the heap, and we
 294       // always expand the heap by an amount aligned to the heap
 295       // region size, the free list should in theory not be empty.
 296       // In either case allocate_free_region() will check for NULL.
 297       res = _hrm.allocate_free_region(is_old);
 298     } else {
 299       _expand_heap_after_alloc_failure = false;
 300     }
 301   }
 302   return res;
 303 }
 304 
 305 HeapWord*
 306 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 307                                                            uint num_regions,
 308                                                            size_t word_size,
 309                                                            AllocationContext_t context) {
 310   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 311   assert(is_humongous(word_size), "word_size should be humongous");
 312   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 313 
 314   // Index of last region in the series.
 315   uint last = first + num_regions - 1;
 316 
 317   // We need to initialize the region(s) we just discovered. This is
 318   // a bit tricky given that it can happen concurrently with
 319   // refinement threads refining cards on these regions and
 320   // potentially wanting to refine the BOT as they are scanning
 321   // those cards (this can happen shortly after a cleanup; see CR
 322   // 6991377). So we have to set up the region(s) carefully and in
 323   // a specific order.
 324 
 325   // The word size sum of all the regions we will allocate.
 326   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 327   assert(word_size <= word_size_sum, "sanity");
 328 
 329   // This will be the "starts humongous" region.
 330   HeapRegion* first_hr = region_at(first);
 331   // The header of the new object will be placed at the bottom of
 332   // the first region.
 333   HeapWord* new_obj = first_hr->bottom();
 334   // This will be the new top of the new object.
 335   HeapWord* obj_top = new_obj + word_size;
 336 
 337   // First, we need to zero the header of the space that we will be
 338   // allocating. When we update top further down, some refinement
 339   // threads might try to scan the region. By zeroing the header we
 340   // ensure that any thread that will try to scan the region will
 341   // come across the zero klass word and bail out.
 342   //
 343   // NOTE: It would not have been correct to have used
 344   // CollectedHeap::fill_with_object() and make the space look like
 345   // an int array. The thread that is doing the allocation will
 346   // later update the object header to a potentially different array
 347   // type and, for a very short period of time, the klass and length
 348   // fields will be inconsistent. This could cause a refinement
 349   // thread to calculate the object size incorrectly.
 350   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 351 
 352   // How many words we use for filler objects.
 353   size_t word_fill_size = word_size_sum - word_size;
 354 
 355   // How many words memory we "waste" which cannot hold a filler object.
 356   size_t words_not_fillable = 0;
 357 
 358   if (word_fill_size >= min_fill_size()) {
 359     fill_with_objects(obj_top, word_fill_size);
 360   } else if (word_fill_size > 0) {
 361     // We have space to fill, but we cannot fit an object there.
 362     words_not_fillable = word_fill_size;
 363     word_fill_size = 0;
 364   }
 365 
 366   // We will set up the first region as "starts humongous". This
 367   // will also update the BOT covering all the regions to reflect
 368   // that there is a single object that starts at the bottom of the
 369   // first region.
 370   first_hr->set_starts_humongous(obj_top, word_fill_size);
 371   first_hr->set_allocation_context(context);
 372   // Then, if there are any, we will set up the "continues
 373   // humongous" regions.
 374   HeapRegion* hr = NULL;
 375   for (uint i = first + 1; i <= last; ++i) {
 376     hr = region_at(i);
 377     hr->set_continues_humongous(first_hr);
 378     hr->set_allocation_context(context);
 379   }
 380 
 381   // Up to this point no concurrent thread would have been able to
 382   // do any scanning on any region in this series. All the top
 383   // fields still point to bottom, so the intersection between
 384   // [bottom,top] and [card_start,card_end] will be empty. Before we
 385   // update the top fields, we'll do a storestore to make sure that
 386   // no thread sees the update to top before the zeroing of the
 387   // object header and the BOT initialization.
 388   OrderAccess::storestore();
 389 
 390   // Now, we will update the top fields of the "continues humongous"
 391   // regions except the last one.
 392   for (uint i = first; i < last; ++i) {
 393     hr = region_at(i);
 394     hr->set_top(hr->end());
 395   }
 396 
 397   hr = region_at(last);
 398   // If we cannot fit a filler object, we must set top to the end
 399   // of the humongous object, otherwise we cannot iterate the heap
 400   // and the BOT will not be complete.
 401   hr->set_top(hr->end() - words_not_fillable);
 402 
 403   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 404          "obj_top should be in last region");
 405 
 406   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 407 
 408   assert(words_not_fillable == 0 ||
 409          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 410          "Miscalculation in humongous allocation");
 411 
 412   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 413 
 414   for (uint i = first; i <= last; ++i) {
 415     hr = region_at(i);
 416     _humongous_set.add(hr);
 417     _hr_printer.alloc(hr);
 418   }
 419 
 420   return new_obj;
 421 }
 422 
 423 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 424   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 425   return align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 426 }
 427 
 428 // If could fit into free regions w/o expansion, try.
 429 // Otherwise, if can expand, do so.
 430 // Otherwise, if using ex regions might help, try with ex given back.
 431 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 432   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 433 
 434   _verifier->verify_region_sets_optional();
 435 
 436   uint first = G1_NO_HRM_INDEX;
 437   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 438 
 439   if (obj_regions == 1) {
 440     // Only one region to allocate, try to use a fast path by directly allocating
 441     // from the free lists. Do not try to expand here, we will potentially do that
 442     // later.
 443     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 444     if (hr != NULL) {
 445       first = hr->hrm_index();
 446     }
 447   } else {
 448     // We can't allocate humongous regions spanning more than one region while
 449     // cleanupComplete() is running, since some of the regions we find to be
 450     // empty might not yet be added to the free list. It is not straightforward
 451     // to know in which list they are on so that we can remove them. We only
 452     // need to do this if we need to allocate more than one region to satisfy the
 453     // current humongous allocation request. If we are only allocating one region
 454     // we use the one-region region allocation code (see above), that already
 455     // potentially waits for regions from the secondary free list.
 456     wait_while_free_regions_coming();
 457     append_secondary_free_list_if_not_empty_with_lock();
 458 
 459     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 460     // are lucky enough to find some.
 461     first = _hrm.find_contiguous_only_empty(obj_regions);
 462     if (first != G1_NO_HRM_INDEX) {
 463       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 464     }
 465   }
 466 
 467   if (first == G1_NO_HRM_INDEX) {
 468     // Policy: We could not find enough regions for the humongous object in the
 469     // free list. Look through the heap to find a mix of free and uncommitted regions.
 470     // If so, try expansion.
 471     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 472     if (first != G1_NO_HRM_INDEX) {
 473       // We found something. Make sure these regions are committed, i.e. expand
 474       // the heap. Alternatively we could do a defragmentation GC.
 475       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 476                                     word_size * HeapWordSize);
 477 
 478 
 479       _hrm.expand_at(first, obj_regions);
 480       g1_policy()->record_new_heap_size(num_regions());
 481 
 482 #ifdef ASSERT
 483       for (uint i = first; i < first + obj_regions; ++i) {
 484         HeapRegion* hr = region_at(i);
 485         assert(hr->is_free(), "sanity");
 486         assert(hr->is_empty(), "sanity");
 487         assert(is_on_master_free_list(hr), "sanity");
 488       }
 489 #endif
 490       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 491     } else {
 492       // Policy: Potentially trigger a defragmentation GC.
 493     }
 494   }
 495 
 496   HeapWord* result = NULL;
 497   if (first != G1_NO_HRM_INDEX) {
 498     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 499                                                        word_size, context);
 500     assert(result != NULL, "it should always return a valid result");
 501 
 502     // A successful humongous object allocation changes the used space
 503     // information of the old generation so we need to recalculate the
 504     // sizes and update the jstat counters here.
 505     g1mm()->update_sizes();
 506   }
 507 
 508   _verifier->verify_region_sets_optional();
 509 
 510   return result;
 511 }
 512 
 513 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 514   assert_heap_not_locked_and_not_at_safepoint();
 515   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 516 
 517   uint dummy_gc_count_before;
 518   uint dummy_gclocker_retry_count = 0;
 519   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 520 }
 521 
 522 HeapWord*
 523 G1CollectedHeap::mem_allocate(size_t word_size,
 524                               bool*  gc_overhead_limit_was_exceeded) {
 525   assert_heap_not_locked_and_not_at_safepoint();
 526 
 527   // Loop until the allocation is satisfied, or unsatisfied after GC.
 528   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 529     uint gc_count_before;
 530 
 531     HeapWord* result = NULL;
 532     if (!is_humongous(word_size)) {
 533       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 534     } else {
 535       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 536     }
 537     if (result != NULL) {
 538       return result;
 539     }
 540 
 541     // Create the garbage collection operation...
 542     VM_G1CollectForAllocation op(gc_count_before, word_size);
 543     op.set_allocation_context(AllocationContext::current());
 544 
 545     // ...and get the VM thread to execute it.
 546     VMThread::execute(&op);
 547 
 548     if (op.prologue_succeeded() && op.pause_succeeded()) {
 549       // If the operation was successful we'll return the result even
 550       // if it is NULL. If the allocation attempt failed immediately
 551       // after a Full GC, it's unlikely we'll be able to allocate now.
 552       HeapWord* result = op.result();
 553       if (result != NULL && !is_humongous(word_size)) {
 554         // Allocations that take place on VM operations do not do any
 555         // card dirtying and we have to do it here. We only have to do
 556         // this for non-humongous allocations, though.
 557         dirty_young_block(result, word_size);
 558       }
 559       return result;
 560     } else {
 561       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 562         return NULL;
 563       }
 564       assert(op.result() == NULL,
 565              "the result should be NULL if the VM op did not succeed");
 566     }
 567 
 568     // Give a warning if we seem to be looping forever.
 569     if ((QueuedAllocationWarningCount > 0) &&
 570         (try_count % QueuedAllocationWarningCount == 0)) {
 571       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 572     }
 573   }
 574 
 575   ShouldNotReachHere();
 576   return NULL;
 577 }
 578 
 579 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 580                                                    AllocationContext_t context,
 581                                                    uint* gc_count_before_ret,
 582                                                    uint* gclocker_retry_count_ret) {
 583   // Make sure you read the note in attempt_allocation_humongous().
 584 
 585   assert_heap_not_locked_and_not_at_safepoint();
 586   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 587          "be called for humongous allocation requests");
 588 
 589   // We should only get here after the first-level allocation attempt
 590   // (attempt_allocation()) failed to allocate.
 591 
 592   // We will loop until a) we manage to successfully perform the
 593   // allocation or b) we successfully schedule a collection which
 594   // fails to perform the allocation. b) is the only case when we'll
 595   // return NULL.
 596   HeapWord* result = NULL;
 597   for (int try_count = 1; /* we'll return */; try_count += 1) {
 598     bool should_try_gc;
 599     uint gc_count_before;
 600 
 601     {
 602       MutexLockerEx x(Heap_lock);
 603       result = _allocator->attempt_allocation_locked(word_size, context);
 604       if (result != NULL) {
 605         return result;
 606       }
 607 
 608       if (GCLocker::is_active_and_needs_gc()) {
 609         if (g1_policy()->can_expand_young_list()) {
 610           // No need for an ergo verbose message here,
 611           // can_expand_young_list() does this when it returns true.
 612           result = _allocator->attempt_allocation_force(word_size, context);
 613           if (result != NULL) {
 614             return result;
 615           }
 616         }
 617         should_try_gc = false;
 618       } else {
 619         // The GCLocker may not be active but the GCLocker initiated
 620         // GC may not yet have been performed (GCLocker::needs_gc()
 621         // returns true). In this case we do not try this GC and
 622         // wait until the GCLocker initiated GC is performed, and
 623         // then retry the allocation.
 624         if (GCLocker::needs_gc()) {
 625           should_try_gc = false;
 626         } else {
 627           // Read the GC count while still holding the Heap_lock.
 628           gc_count_before = total_collections();
 629           should_try_gc = true;
 630         }
 631       }
 632     }
 633 
 634     if (should_try_gc) {
 635       bool succeeded;
 636       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 637                                    GCCause::_g1_inc_collection_pause);
 638       if (result != NULL) {
 639         assert(succeeded, "only way to get back a non-NULL result");
 640         return result;
 641       }
 642 
 643       if (succeeded) {
 644         // If we get here we successfully scheduled a collection which
 645         // failed to allocate. No point in trying to allocate
 646         // further. We'll just return NULL.
 647         MutexLockerEx x(Heap_lock);
 648         *gc_count_before_ret = total_collections();
 649         return NULL;
 650       }
 651     } else {
 652       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 653         MutexLockerEx x(Heap_lock);
 654         *gc_count_before_ret = total_collections();
 655         return NULL;
 656       }
 657       // The GCLocker is either active or the GCLocker initiated
 658       // GC has not yet been performed. Stall until it is and
 659       // then retry the allocation.
 660       GCLocker::stall_until_clear();
 661       (*gclocker_retry_count_ret) += 1;
 662     }
 663 
 664     // We can reach here if we were unsuccessful in scheduling a
 665     // collection (because another thread beat us to it) or if we were
 666     // stalled due to the GC locker. In either can we should retry the
 667     // allocation attempt in case another thread successfully
 668     // performed a collection and reclaimed enough space. We do the
 669     // first attempt (without holding the Heap_lock) here and the
 670     // follow-on attempt will be at the start of the next loop
 671     // iteration (after taking the Heap_lock).
 672     result = _allocator->attempt_allocation(word_size, context);
 673     if (result != NULL) {
 674       return result;
 675     }
 676 
 677     // Give a warning if we seem to be looping forever.
 678     if ((QueuedAllocationWarningCount > 0) &&
 679         (try_count % QueuedAllocationWarningCount == 0)) {
 680       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 681                       "retries %d times", try_count);
 682     }
 683   }
 684 
 685   ShouldNotReachHere();
 686   return NULL;
 687 }
 688 
 689 void G1CollectedHeap::begin_archive_alloc_range() {
 690   assert_at_safepoint(true /* should_be_vm_thread */);
 691   if (_archive_allocator == NULL) {
 692     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 693   }
 694 }
 695 
 696 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 697   // Allocations in archive regions cannot be of a size that would be considered
 698   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 699   // may be different at archive-restore time.
 700   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 701 }
 702 
 703 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 704   assert_at_safepoint(true /* should_be_vm_thread */);
 705   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 706   if (is_archive_alloc_too_large(word_size)) {
 707     return NULL;
 708   }
 709   return _archive_allocator->archive_mem_allocate(word_size);
 710 }
 711 
 712 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 713                                               size_t end_alignment_in_bytes) {
 714   assert_at_safepoint(true /* should_be_vm_thread */);
 715   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 716 
 717   // Call complete_archive to do the real work, filling in the MemRegion
 718   // array with the archive regions.
 719   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 720   delete _archive_allocator;
 721   _archive_allocator = NULL;
 722 }
 723 
 724 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 725   assert(ranges != NULL, "MemRegion array NULL");
 726   assert(count != 0, "No MemRegions provided");
 727   MemRegion reserved = _hrm.reserved();
 728   for (size_t i = 0; i < count; i++) {
 729     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 730       return false;
 731     }
 732   }
 733   return true;
 734 }
 735 
 736 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 737   assert(!is_init_completed(), "Expect to be called at JVM init time");
 738   assert(ranges != NULL, "MemRegion array NULL");
 739   assert(count != 0, "No MemRegions provided");
 740   MutexLockerEx x(Heap_lock);
 741 
 742   MemRegion reserved = _hrm.reserved();
 743   HeapWord* prev_last_addr = NULL;
 744   HeapRegion* prev_last_region = NULL;
 745 
 746   // Temporarily disable pretouching of heap pages. This interface is used
 747   // when mmap'ing archived heap data in, so pre-touching is wasted.
 748   FlagSetting fs(AlwaysPreTouch, false);
 749 
 750   // Enable archive object checking in G1MarkSweep. We have to let it know
 751   // about each archive range, so that objects in those ranges aren't marked.
 752   G1MarkSweep::enable_archive_object_check();
 753 
 754   // For each specified MemRegion range, allocate the corresponding G1
 755   // regions and mark them as archive regions. We expect the ranges in
 756   // ascending starting address order, without overlap.
 757   for (size_t i = 0; i < count; i++) {
 758     MemRegion curr_range = ranges[i];
 759     HeapWord* start_address = curr_range.start();
 760     size_t word_size = curr_range.word_size();
 761     HeapWord* last_address = curr_range.last();
 762     size_t commits = 0;
 763 
 764     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 765               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 766               p2i(start_address), p2i(last_address));
 767     guarantee(start_address > prev_last_addr,
 768               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 769               p2i(start_address), p2i(prev_last_addr));
 770     prev_last_addr = last_address;
 771 
 772     // Check for ranges that start in the same G1 region in which the previous
 773     // range ended, and adjust the start address so we don't try to allocate
 774     // the same region again. If the current range is entirely within that
 775     // region, skip it, just adjusting the recorded top.
 776     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 777     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 778       start_address = start_region->end();
 779       if (start_address > last_address) {
 780         increase_used(word_size * HeapWordSize);
 781         start_region->set_top(last_address + 1);
 782         continue;
 783       }
 784       start_region->set_top(start_address);
 785       curr_range = MemRegion(start_address, last_address + 1);
 786       start_region = _hrm.addr_to_region(start_address);
 787     }
 788 
 789     // Perform the actual region allocation, exiting if it fails.
 790     // Then note how much new space we have allocated.
 791     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 792       return false;
 793     }
 794     increase_used(word_size * HeapWordSize);
 795     if (commits != 0) {
 796       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 797                                 HeapRegion::GrainWords * HeapWordSize * commits);
 798 
 799     }
 800 
 801     // Mark each G1 region touched by the range as archive, add it to the old set,
 802     // and set the allocation context and top.
 803     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 804     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 805     prev_last_region = last_region;
 806 
 807     while (curr_region != NULL) {
 808       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 809              "Region already in use (index %u)", curr_region->hrm_index());
 810       curr_region->set_allocation_context(AllocationContext::system());
 811       curr_region->set_archive();
 812       _hr_printer.alloc(curr_region);
 813       _old_set.add(curr_region);
 814       if (curr_region != last_region) {
 815         curr_region->set_top(curr_region->end());
 816         curr_region = _hrm.next_region_in_heap(curr_region);
 817       } else {
 818         curr_region->set_top(last_address + 1);
 819         curr_region = NULL;
 820       }
 821     }
 822 
 823     // Notify mark-sweep of the archive range.
 824     G1MarkSweep::set_range_archive(curr_range, true);
 825   }
 826   return true;
 827 }
 828 
 829 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 830   assert(!is_init_completed(), "Expect to be called at JVM init time");
 831   assert(ranges != NULL, "MemRegion array NULL");
 832   assert(count != 0, "No MemRegions provided");
 833   MemRegion reserved = _hrm.reserved();
 834   HeapWord *prev_last_addr = NULL;
 835   HeapRegion* prev_last_region = NULL;
 836 
 837   // For each MemRegion, create filler objects, if needed, in the G1 regions
 838   // that contain the address range. The address range actually within the
 839   // MemRegion will not be modified. That is assumed to have been initialized
 840   // elsewhere, probably via an mmap of archived heap data.
 841   MutexLockerEx x(Heap_lock);
 842   for (size_t i = 0; i < count; i++) {
 843     HeapWord* start_address = ranges[i].start();
 844     HeapWord* last_address = ranges[i].last();
 845 
 846     assert(reserved.contains(start_address) && reserved.contains(last_address),
 847            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 848            p2i(start_address), p2i(last_address));
 849     assert(start_address > prev_last_addr,
 850            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 851            p2i(start_address), p2i(prev_last_addr));
 852 
 853     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 854     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 855     HeapWord* bottom_address = start_region->bottom();
 856 
 857     // Check for a range beginning in the same region in which the
 858     // previous one ended.
 859     if (start_region == prev_last_region) {
 860       bottom_address = prev_last_addr + 1;
 861     }
 862 
 863     // Verify that the regions were all marked as archive regions by
 864     // alloc_archive_regions.
 865     HeapRegion* curr_region = start_region;
 866     while (curr_region != NULL) {
 867       guarantee(curr_region->is_archive(),
 868                 "Expected archive region at index %u", curr_region->hrm_index());
 869       if (curr_region != last_region) {
 870         curr_region = _hrm.next_region_in_heap(curr_region);
 871       } else {
 872         curr_region = NULL;
 873       }
 874     }
 875 
 876     prev_last_addr = last_address;
 877     prev_last_region = last_region;
 878 
 879     // Fill the memory below the allocated range with dummy object(s),
 880     // if the region bottom does not match the range start, or if the previous
 881     // range ended within the same G1 region, and there is a gap.
 882     if (start_address != bottom_address) {
 883       size_t fill_size = pointer_delta(start_address, bottom_address);
 884       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 885       increase_used(fill_size * HeapWordSize);
 886     }
 887   }
 888 }
 889 
 890 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 891                                                      uint* gc_count_before_ret,
 892                                                      uint* gclocker_retry_count_ret) {
 893   assert_heap_not_locked_and_not_at_safepoint();
 894   assert(!is_humongous(word_size), "attempt_allocation() should not "
 895          "be called for humongous allocation requests");
 896 
 897   AllocationContext_t context = AllocationContext::current();
 898   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 899 
 900   if (result == NULL) {
 901     result = attempt_allocation_slow(word_size,
 902                                      context,
 903                                      gc_count_before_ret,
 904                                      gclocker_retry_count_ret);
 905   }
 906   assert_heap_not_locked();
 907   if (result != NULL) {
 908     dirty_young_block(result, word_size);
 909   }
 910   return result;
 911 }
 912 
 913 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 914   assert(!is_init_completed(), "Expect to be called at JVM init time");
 915   assert(ranges != NULL, "MemRegion array NULL");
 916   assert(count != 0, "No MemRegions provided");
 917   MemRegion reserved = _hrm.reserved();
 918   HeapWord* prev_last_addr = NULL;
 919   HeapRegion* prev_last_region = NULL;
 920   size_t size_used = 0;
 921   size_t uncommitted_regions = 0;
 922 
 923   // For each Memregion, free the G1 regions that constitute it, and
 924   // notify mark-sweep that the range is no longer to be considered 'archive.'
 925   MutexLockerEx x(Heap_lock);
 926   for (size_t i = 0; i < count; i++) {
 927     HeapWord* start_address = ranges[i].start();
 928     HeapWord* last_address = ranges[i].last();
 929 
 930     assert(reserved.contains(start_address) && reserved.contains(last_address),
 931            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 932            p2i(start_address), p2i(last_address));
 933     assert(start_address > prev_last_addr,
 934            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 935            p2i(start_address), p2i(prev_last_addr));
 936     size_used += ranges[i].byte_size();
 937     prev_last_addr = last_address;
 938 
 939     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 940     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 941 
 942     // Check for ranges that start in the same G1 region in which the previous
 943     // range ended, and adjust the start address so we don't try to free
 944     // the same region again. If the current range is entirely within that
 945     // region, skip it.
 946     if (start_region == prev_last_region) {
 947       start_address = start_region->end();
 948       if (start_address > last_address) {
 949         continue;
 950       }
 951       start_region = _hrm.addr_to_region(start_address);
 952     }
 953     prev_last_region = last_region;
 954 
 955     // After verifying that each region was marked as an archive region by
 956     // alloc_archive_regions, set it free and empty and uncommit it.
 957     HeapRegion* curr_region = start_region;
 958     while (curr_region != NULL) {
 959       guarantee(curr_region->is_archive(),
 960                 "Expected archive region at index %u", curr_region->hrm_index());
 961       uint curr_index = curr_region->hrm_index();
 962       _old_set.remove(curr_region);
 963       curr_region->set_free();
 964       curr_region->set_top(curr_region->bottom());
 965       if (curr_region != last_region) {
 966         curr_region = _hrm.next_region_in_heap(curr_region);
 967       } else {
 968         curr_region = NULL;
 969       }
 970       _hrm.shrink_at(curr_index, 1);
 971       uncommitted_regions++;
 972     }
 973 
 974     // Notify mark-sweep that this is no longer an archive range.
 975     G1MarkSweep::set_range_archive(ranges[i], false);
 976   }
 977 
 978   if (uncommitted_regions != 0) {
 979     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 980                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 981   }
 982   decrease_used(size_used);
 983 }
 984 
 985 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 986                                                         uint* gc_count_before_ret,
 987                                                         uint* gclocker_retry_count_ret) {
 988   // The structure of this method has a lot of similarities to
 989   // attempt_allocation_slow(). The reason these two were not merged
 990   // into a single one is that such a method would require several "if
 991   // allocation is not humongous do this, otherwise do that"
 992   // conditional paths which would obscure its flow. In fact, an early
 993   // version of this code did use a unified method which was harder to
 994   // follow and, as a result, it had subtle bugs that were hard to
 995   // track down. So keeping these two methods separate allows each to
 996   // be more readable. It will be good to keep these two in sync as
 997   // much as possible.
 998 
 999   assert_heap_not_locked_and_not_at_safepoint();
1000   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1001          "should only be called for humongous allocations");
1002 
1003   // Humongous objects can exhaust the heap quickly, so we should check if we
1004   // need to start a marking cycle at each humongous object allocation. We do
1005   // the check before we do the actual allocation. The reason for doing it
1006   // before the allocation is that we avoid having to keep track of the newly
1007   // allocated memory while we do a GC.
1008   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1009                                            word_size)) {
1010     collect(GCCause::_g1_humongous_allocation);
1011   }
1012 
1013   // We will loop until a) we manage to successfully perform the
1014   // allocation or b) we successfully schedule a collection which
1015   // fails to perform the allocation. b) is the only case when we'll
1016   // return NULL.
1017   HeapWord* result = NULL;
1018   for (int try_count = 1; /* we'll return */; try_count += 1) {
1019     bool should_try_gc;
1020     uint gc_count_before;
1021 
1022     {
1023       MutexLockerEx x(Heap_lock);
1024 
1025       // Given that humongous objects are not allocated in young
1026       // regions, we'll first try to do the allocation without doing a
1027       // collection hoping that there's enough space in the heap.
1028       result = humongous_obj_allocate(word_size, AllocationContext::current());
1029       if (result != NULL) {
1030         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
1031         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
1032         return result;
1033       }
1034 
1035       if (GCLocker::is_active_and_needs_gc()) {
1036         should_try_gc = false;
1037       } else {
1038          // The GCLocker may not be active but the GCLocker initiated
1039         // GC may not yet have been performed (GCLocker::needs_gc()
1040         // returns true). In this case we do not try this GC and
1041         // wait until the GCLocker initiated GC is performed, and
1042         // then retry the allocation.
1043         if (GCLocker::needs_gc()) {
1044           should_try_gc = false;
1045         } else {
1046           // Read the GC count while still holding the Heap_lock.
1047           gc_count_before = total_collections();
1048           should_try_gc = true;
1049         }
1050       }
1051     }
1052 
1053     if (should_try_gc) {
1054       // If we failed to allocate the humongous object, we should try to
1055       // do a collection pause (if we're allowed) in case it reclaims
1056       // enough space for the allocation to succeed after the pause.
1057 
1058       bool succeeded;
1059       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1060                                    GCCause::_g1_humongous_allocation);
1061       if (result != NULL) {
1062         assert(succeeded, "only way to get back a non-NULL result");
1063         return result;
1064       }
1065 
1066       if (succeeded) {
1067         // If we get here we successfully scheduled a collection which
1068         // failed to allocate. No point in trying to allocate
1069         // further. We'll just return NULL.
1070         MutexLockerEx x(Heap_lock);
1071         *gc_count_before_ret = total_collections();
1072         return NULL;
1073       }
1074     } else {
1075       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1076         MutexLockerEx x(Heap_lock);
1077         *gc_count_before_ret = total_collections();
1078         return NULL;
1079       }
1080       // The GCLocker is either active or the GCLocker initiated
1081       // GC has not yet been performed. Stall until it is and
1082       // then retry the allocation.
1083       GCLocker::stall_until_clear();
1084       (*gclocker_retry_count_ret) += 1;
1085     }
1086 
1087     // We can reach here if we were unsuccessful in scheduling a
1088     // collection (because another thread beat us to it) or if we were
1089     // stalled due to the GC locker. In either can we should retry the
1090     // allocation attempt in case another thread successfully
1091     // performed a collection and reclaimed enough space.  Give a
1092     // warning if we seem to be looping forever.
1093 
1094     if ((QueuedAllocationWarningCount > 0) &&
1095         (try_count % QueuedAllocationWarningCount == 0)) {
1096       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1097                       "retries %d times", try_count);
1098     }
1099   }
1100 
1101   ShouldNotReachHere();
1102   return NULL;
1103 }
1104 
1105 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1106                                                            AllocationContext_t context,
1107                                                            bool expect_null_mutator_alloc_region) {
1108   assert_at_safepoint(true /* should_be_vm_thread */);
1109   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1110          "the current alloc region was unexpectedly found to be non-NULL");
1111 
1112   if (!is_humongous(word_size)) {
1113     return _allocator->attempt_allocation_locked(word_size, context);
1114   } else {
1115     HeapWord* result = humongous_obj_allocate(word_size, context);
1116     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1117       collector_state()->set_initiate_conc_mark_if_possible(true);
1118     }
1119     return result;
1120   }
1121 
1122   ShouldNotReachHere();
1123 }
1124 
1125 class PostMCRemSetClearClosure: public HeapRegionClosure {
1126   G1CollectedHeap* _g1h;
1127   ModRefBarrierSet* _mr_bs;
1128 public:
1129   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1130     _g1h(g1h), _mr_bs(mr_bs) {}
1131 
1132   bool doHeapRegion(HeapRegion* r) {
1133     HeapRegionRemSet* hrrs = r->rem_set();
1134 
1135     _g1h->reset_gc_time_stamps(r);
1136 
1137     if (r->is_continues_humongous()) {
1138       // We'll assert that the strong code root list and RSet is empty
1139       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1140       assert(hrrs->occupied() == 0, "RSet should be empty");
1141     } else {
1142       hrrs->clear();
1143     }
1144     // You might think here that we could clear just the cards
1145     // corresponding to the used region.  But no: if we leave a dirty card
1146     // in a region we might allocate into, then it would prevent that card
1147     // from being enqueued, and cause it to be missed.
1148     // Re: the performance cost: we shouldn't be doing full GC anyway!
1149     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1150 
1151     return false;
1152   }
1153 };
1154 
1155 void G1CollectedHeap::clear_rsets_post_compaction() {
1156   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1157   heap_region_iterate(&rs_clear);
1158 }
1159 
1160 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1161   G1CollectedHeap*   _g1h;
1162   UpdateRSOopClosure _cl;
1163 public:
1164   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1165     _cl(g1->g1_rem_set(), worker_i),
1166     _g1h(g1)
1167   { }
1168 
1169   bool doHeapRegion(HeapRegion* r) {
1170     if (!r->is_continues_humongous()) {
1171       _cl.set_from(r);
1172       r->oop_iterate(&_cl);
1173     }
1174     return false;
1175   }
1176 };
1177 
1178 class ParRebuildRSTask: public AbstractGangTask {
1179   G1CollectedHeap* _g1;
1180   HeapRegionClaimer _hrclaimer;
1181 
1182 public:
1183   ParRebuildRSTask(G1CollectedHeap* g1) :
1184       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1185 
1186   void work(uint worker_id) {
1187     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1188     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1189   }
1190 };
1191 
1192 class PostCompactionPrinterClosure: public HeapRegionClosure {
1193 private:
1194   G1HRPrinter* _hr_printer;
1195 public:
1196   bool doHeapRegion(HeapRegion* hr) {
1197     assert(!hr->is_young(), "not expecting to find young regions");
1198     _hr_printer->post_compaction(hr);
1199     return false;
1200   }
1201 
1202   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1203     : _hr_printer(hr_printer) { }
1204 };
1205 
1206 void G1CollectedHeap::print_hrm_post_compaction() {
1207   if (_hr_printer.is_active()) {
1208     PostCompactionPrinterClosure cl(hr_printer());
1209     heap_region_iterate(&cl);
1210   }
1211 
1212 }
1213 
1214 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1215                                          bool clear_all_soft_refs) {
1216   assert_at_safepoint(true /* should_be_vm_thread */);
1217 
1218   if (GCLocker::check_active_before_gc()) {
1219     return false;
1220   }
1221 
1222   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1223   gc_timer->register_gc_start();
1224 
1225   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1226   GCIdMark gc_id_mark;
1227   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1228 
1229   SvcGCMarker sgcm(SvcGCMarker::FULL);
1230   ResourceMark rm;
1231 
1232   print_heap_before_gc();
1233   print_heap_regions();
1234   trace_heap_before_gc(gc_tracer);
1235 
1236   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1237 
1238   _verifier->verify_region_sets_optional();
1239 
1240   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1241                            collector_policy()->should_clear_all_soft_refs();
1242 
1243   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1244 
1245   {
1246     IsGCActiveMark x;
1247 
1248     // Timing
1249     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1250     GCTraceCPUTime tcpu;
1251 
1252     {
1253       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1254       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1255       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1256 
1257       G1HeapTransition heap_transition(this);
1258       g1_policy()->record_full_collection_start();
1259 
1260       // Note: When we have a more flexible GC logging framework that
1261       // allows us to add optional attributes to a GC log record we
1262       // could consider timing and reporting how long we wait in the
1263       // following two methods.
1264       wait_while_free_regions_coming();
1265       // If we start the compaction before the CM threads finish
1266       // scanning the root regions we might trip them over as we'll
1267       // be moving objects / updating references. So let's wait until
1268       // they are done. By telling them to abort, they should complete
1269       // early.
1270       _cm->root_regions()->abort();
1271       _cm->root_regions()->wait_until_scan_finished();
1272       append_secondary_free_list_if_not_empty_with_lock();
1273 
1274       gc_prologue(true);
1275       increment_total_collections(true /* full gc */);
1276       increment_old_marking_cycles_started();
1277 
1278       assert(used() == recalculate_used(), "Should be equal");
1279 
1280       _verifier->verify_before_gc();
1281 
1282       _verifier->check_bitmaps("Full GC Start");
1283       pre_full_gc_dump(gc_timer);
1284 
1285 #if defined(COMPILER2) || INCLUDE_JVMCI
1286       DerivedPointerTable::clear();
1287 #endif
1288 
1289       // Disable discovery and empty the discovered lists
1290       // for the CM ref processor.
1291       ref_processor_cm()->disable_discovery();
1292       ref_processor_cm()->abandon_partial_discovery();
1293       ref_processor_cm()->verify_no_references_recorded();
1294 
1295       // Abandon current iterations of concurrent marking and concurrent
1296       // refinement, if any are in progress.
1297       concurrent_mark()->abort();
1298 
1299       // Make sure we'll choose a new allocation region afterwards.
1300       _allocator->release_mutator_alloc_region();
1301       _allocator->abandon_gc_alloc_regions();
1302       g1_rem_set()->cleanupHRRS();
1303 
1304       // We may have added regions to the current incremental collection
1305       // set between the last GC or pause and now. We need to clear the
1306       // incremental collection set and then start rebuilding it afresh
1307       // after this full GC.
1308       abandon_collection_set(collection_set()->inc_head());
1309       collection_set()->clear_incremental();
1310       collection_set()->stop_incremental_building();
1311 
1312       tear_down_region_sets(false /* free_list_only */);
1313       collector_state()->set_gcs_are_young(true);
1314 
1315       // See the comments in g1CollectedHeap.hpp and
1316       // G1CollectedHeap::ref_processing_init() about
1317       // how reference processing currently works in G1.
1318 
1319       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1320       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1321 
1322       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1323       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1324 
1325       ref_processor_stw()->enable_discovery();
1326       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1327 
1328       // Do collection work
1329       {
1330         HandleMark hm;  // Discard invalid handles created during gc
1331         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1332       }
1333 
1334       assert(num_free_regions() == 0, "we should not have added any free regions");
1335       rebuild_region_sets(false /* free_list_only */);
1336 
1337       // Enqueue any discovered reference objects that have
1338       // not been removed from the discovered lists.
1339       ref_processor_stw()->enqueue_discovered_references();
1340 
1341 #if defined(COMPILER2) || INCLUDE_JVMCI
1342       DerivedPointerTable::update_pointers();
1343 #endif
1344 
1345       MemoryService::track_memory_usage();
1346 
1347       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1348       ref_processor_stw()->verify_no_references_recorded();
1349 
1350       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1351       ClassLoaderDataGraph::purge();
1352       MetaspaceAux::verify_metrics();
1353 
1354       // Note: since we've just done a full GC, concurrent
1355       // marking is no longer active. Therefore we need not
1356       // re-enable reference discovery for the CM ref processor.
1357       // That will be done at the start of the next marking cycle.
1358       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1359       ref_processor_cm()->verify_no_references_recorded();
1360 
1361       reset_gc_time_stamp();
1362       // Since everything potentially moved, we will clear all remembered
1363       // sets, and clear all cards.  Later we will rebuild remembered
1364       // sets. We will also reset the GC time stamps of the regions.
1365       clear_rsets_post_compaction();
1366       check_gc_time_stamps();
1367 
1368       resize_if_necessary_after_full_collection();
1369 
1370       // We should do this after we potentially resize the heap so
1371       // that all the COMMIT / UNCOMMIT events are generated before
1372       // the compaction events.
1373       print_hrm_post_compaction();
1374 
1375       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1376       if (hot_card_cache->use_cache()) {
1377         hot_card_cache->reset_card_counts();
1378         hot_card_cache->reset_hot_cache();
1379       }
1380 
1381       // Rebuild remembered sets of all regions.
1382       uint n_workers =
1383         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1384                                                 workers()->active_workers(),
1385                                                 Threads::number_of_non_daemon_threads());
1386       workers()->set_active_workers(n_workers);
1387 
1388       ParRebuildRSTask rebuild_rs_task(this);
1389       workers()->run_task(&rebuild_rs_task);
1390 
1391       // Rebuild the strong code root lists for each region
1392       rebuild_strong_code_roots();
1393 
1394       if (true) { // FIXME
1395         MetaspaceGC::compute_new_size();
1396       }
1397 
1398 #ifdef TRACESPINNING
1399       ParallelTaskTerminator::print_termination_counts();
1400 #endif
1401 
1402       // Discard all rset updates
1403       JavaThread::dirty_card_queue_set().abandon_logs();
1404       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1405 
1406       // At this point there should be no regions in the
1407       // entire heap tagged as young.
1408       assert(check_young_list_empty(true /* check_heap */),
1409              "young list should be empty at this point");
1410 
1411       // Update the number of full collections that have been completed.
1412       increment_old_marking_cycles_completed(false /* concurrent */);
1413 
1414       _hrm.verify_optional();
1415       _verifier->verify_region_sets_optional();
1416 
1417       _verifier->verify_after_gc();
1418 
1419       // Clear the previous marking bitmap, if needed for bitmap verification.
1420       // Note we cannot do this when we clear the next marking bitmap in
1421       // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1422       // objects marked during a full GC against the previous bitmap.
1423       // But we need to clear it before calling check_bitmaps below since
1424       // the full GC has compacted objects and updated TAMS but not updated
1425       // the prev bitmap.
1426       if (G1VerifyBitmaps) {
1427         _cm->clear_prev_bitmap(workers());
1428       }
1429       _verifier->check_bitmaps("Full GC End");
1430 
1431       // Start a new incremental collection set for the next pause
1432       assert(collection_set()->head() == NULL, "must be");
1433       collection_set()->start_incremental_building();
1434 
1435       clear_cset_fast_test();
1436 
1437       _allocator->init_mutator_alloc_region();
1438 
1439       g1_policy()->record_full_collection_end();
1440 
1441       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1442       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1443       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1444       // before any GC notifications are raised.
1445       g1mm()->update_sizes();
1446 
1447       gc_epilogue(true);
1448 
1449       heap_transition.print();
1450 
1451       print_heap_after_gc();
1452       print_heap_regions();
1453       trace_heap_after_gc(gc_tracer);
1454 
1455       post_full_gc_dump(gc_timer);
1456     }
1457 
1458     gc_timer->register_gc_end();
1459     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1460   }
1461 
1462   return true;
1463 }
1464 
1465 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1466   // Currently, there is no facility in the do_full_collection(bool) API to notify
1467   // the caller that the collection did not succeed (e.g., because it was locked
1468   // out by the GC locker). So, right now, we'll ignore the return value.
1469   bool dummy = do_full_collection(true,                /* explicit_gc */
1470                                   clear_all_soft_refs);
1471 }
1472 
1473 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1474   // Include bytes that will be pre-allocated to support collections, as "used".
1475   const size_t used_after_gc = used();
1476   const size_t capacity_after_gc = capacity();
1477   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1478 
1479   // This is enforced in arguments.cpp.
1480   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1481          "otherwise the code below doesn't make sense");
1482 
1483   // We don't have floating point command-line arguments
1484   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1485   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1486   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1487   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1488 
1489   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1490   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1491 
1492   // We have to be careful here as these two calculations can overflow
1493   // 32-bit size_t's.
1494   double used_after_gc_d = (double) used_after_gc;
1495   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1496   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1497 
1498   // Let's make sure that they are both under the max heap size, which
1499   // by default will make them fit into a size_t.
1500   double desired_capacity_upper_bound = (double) max_heap_size;
1501   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1502                                     desired_capacity_upper_bound);
1503   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1504                                     desired_capacity_upper_bound);
1505 
1506   // We can now safely turn them into size_t's.
1507   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1508   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1509 
1510   // This assert only makes sense here, before we adjust them
1511   // with respect to the min and max heap size.
1512   assert(minimum_desired_capacity <= maximum_desired_capacity,
1513          "minimum_desired_capacity = " SIZE_FORMAT ", "
1514          "maximum_desired_capacity = " SIZE_FORMAT,
1515          minimum_desired_capacity, maximum_desired_capacity);
1516 
1517   // Should not be greater than the heap max size. No need to adjust
1518   // it with respect to the heap min size as it's a lower bound (i.e.,
1519   // we'll try to make the capacity larger than it, not smaller).
1520   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1521   // Should not be less than the heap min size. No need to adjust it
1522   // with respect to the heap max size as it's an upper bound (i.e.,
1523   // we'll try to make the capacity smaller than it, not greater).
1524   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1525 
1526   if (capacity_after_gc < minimum_desired_capacity) {
1527     // Don't expand unless it's significant
1528     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1529 
1530     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1531                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1532                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1533 
1534     expand(expand_bytes);
1535 
1536     // No expansion, now see if we want to shrink
1537   } else if (capacity_after_gc > maximum_desired_capacity) {
1538     // Capacity too large, compute shrinking size
1539     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1540 
1541     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1542                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1543                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1544 
1545     shrink(shrink_bytes);
1546   }
1547 }
1548 
1549 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1550                                                             AllocationContext_t context,
1551                                                             bool do_gc,
1552                                                             bool clear_all_soft_refs,
1553                                                             bool expect_null_mutator_alloc_region,
1554                                                             bool* gc_succeeded) {
1555   *gc_succeeded = true;
1556   // Let's attempt the allocation first.
1557   HeapWord* result =
1558     attempt_allocation_at_safepoint(word_size,
1559                                     context,
1560                                     expect_null_mutator_alloc_region);
1561   if (result != NULL) {
1562     assert(*gc_succeeded, "sanity");
1563     return result;
1564   }
1565 
1566   // In a G1 heap, we're supposed to keep allocation from failing by
1567   // incremental pauses.  Therefore, at least for now, we'll favor
1568   // expansion over collection.  (This might change in the future if we can
1569   // do something smarter than full collection to satisfy a failed alloc.)
1570   result = expand_and_allocate(word_size, context);
1571   if (result != NULL) {
1572     assert(*gc_succeeded, "sanity");
1573     return result;
1574   }
1575 
1576   if (do_gc) {
1577     // Expansion didn't work, we'll try to do a Full GC.
1578     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1579                                        clear_all_soft_refs);
1580   }
1581 
1582   return NULL;
1583 }
1584 
1585 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1586                                                      AllocationContext_t context,
1587                                                      bool* succeeded) {
1588   assert_at_safepoint(true /* should_be_vm_thread */);
1589 
1590   // Attempts to allocate followed by Full GC.
1591   HeapWord* result =
1592     satisfy_failed_allocation_helper(word_size,
1593                                      context,
1594                                      true,  /* do_gc */
1595                                      false, /* clear_all_soft_refs */
1596                                      false, /* expect_null_mutator_alloc_region */
1597                                      succeeded);
1598 
1599   if (result != NULL || !*succeeded) {
1600     return result;
1601   }
1602 
1603   // Attempts to allocate followed by Full GC that will collect all soft references.
1604   result = satisfy_failed_allocation_helper(word_size,
1605                                             context,
1606                                             true, /* do_gc */
1607                                             true, /* clear_all_soft_refs */
1608                                             true, /* expect_null_mutator_alloc_region */
1609                                             succeeded);
1610 
1611   if (result != NULL || !*succeeded) {
1612     return result;
1613   }
1614 
1615   // Attempts to allocate, no GC
1616   result = satisfy_failed_allocation_helper(word_size,
1617                                             context,
1618                                             false, /* do_gc */
1619                                             false, /* clear_all_soft_refs */
1620                                             true,  /* expect_null_mutator_alloc_region */
1621                                             succeeded);
1622 
1623   if (result != NULL) {
1624     assert(*succeeded, "sanity");
1625     return result;
1626   }
1627 
1628   assert(!collector_policy()->should_clear_all_soft_refs(),
1629          "Flag should have been handled and cleared prior to this point");
1630 
1631   // What else?  We might try synchronous finalization later.  If the total
1632   // space available is large enough for the allocation, then a more
1633   // complete compaction phase than we've tried so far might be
1634   // appropriate.
1635   assert(*succeeded, "sanity");
1636   return NULL;
1637 }
1638 
1639 // Attempting to expand the heap sufficiently
1640 // to support an allocation of the given "word_size".  If
1641 // successful, perform the allocation and return the address of the
1642 // allocated block, or else "NULL".
1643 
1644 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1645   assert_at_safepoint(true /* should_be_vm_thread */);
1646 
1647   _verifier->verify_region_sets_optional();
1648 
1649   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1650   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1651                             word_size * HeapWordSize);
1652 
1653 
1654   if (expand(expand_bytes)) {
1655     _hrm.verify_optional();
1656     _verifier->verify_region_sets_optional();
1657     return attempt_allocation_at_safepoint(word_size,
1658                                            context,
1659                                            false /* expect_null_mutator_alloc_region */);
1660   }
1661   return NULL;
1662 }
1663 
1664 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1665   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1666   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1667                                        HeapRegion::GrainBytes);
1668 
1669   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",
1670                             expand_bytes, aligned_expand_bytes);
1671 
1672   if (is_maximal_no_gc()) {
1673     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1674     return false;
1675   }
1676 
1677   double expand_heap_start_time_sec = os::elapsedTime();
1678   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1679   assert(regions_to_expand > 0, "Must expand by at least one region");
1680 
1681   uint expanded_by = _hrm.expand_by(regions_to_expand);
1682   if (expand_time_ms != NULL) {
1683     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1684   }
1685 
1686   if (expanded_by > 0) {
1687     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1688     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1689     g1_policy()->record_new_heap_size(num_regions());
1690   } else {
1691     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1692 
1693     // The expansion of the virtual storage space was unsuccessful.
1694     // Let's see if it was because we ran out of swap.
1695     if (G1ExitOnExpansionFailure &&
1696         _hrm.available() >= regions_to_expand) {
1697       // We had head room...
1698       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1699     }
1700   }
1701   return regions_to_expand > 0;
1702 }
1703 
1704 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1705   size_t aligned_shrink_bytes =
1706     ReservedSpace::page_align_size_down(shrink_bytes);
1707   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1708                                          HeapRegion::GrainBytes);
1709   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1710 
1711   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1712   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1713 
1714 
1715   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1716                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1717   if (num_regions_removed > 0) {
1718     g1_policy()->record_new_heap_size(num_regions());
1719   } else {
1720     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1721   }
1722 }
1723 
1724 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1725   _verifier->verify_region_sets_optional();
1726 
1727   // We should only reach here at the end of a Full GC which means we
1728   // should not not be holding to any GC alloc regions. The method
1729   // below will make sure of that and do any remaining clean up.
1730   _allocator->abandon_gc_alloc_regions();
1731 
1732   // Instead of tearing down / rebuilding the free lists here, we
1733   // could instead use the remove_all_pending() method on free_list to
1734   // remove only the ones that we need to remove.
1735   tear_down_region_sets(true /* free_list_only */);
1736   shrink_helper(shrink_bytes);
1737   rebuild_region_sets(true /* free_list_only */);
1738 
1739   _hrm.verify_optional();
1740   _verifier->verify_region_sets_optional();
1741 }
1742 
1743 // Public methods.
1744 
1745 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1746   CollectedHeap(),
1747   _g1_policy(policy_),
1748   _collection_set(this),
1749   _dirty_card_queue_set(false),
1750   _is_alive_closure_cm(this),
1751   _is_alive_closure_stw(this),
1752   _ref_processor_cm(NULL),
1753   _ref_processor_stw(NULL),
1754   _bot(NULL),
1755   _cg1r(NULL),
1756   _g1mm(NULL),
1757   _refine_cte_cl(NULL),
1758   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1759   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1760   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1761   _humongous_reclaim_candidates(),
1762   _has_humongous_reclaim_candidates(false),
1763   _archive_allocator(NULL),
1764   _free_regions_coming(false),
1765   _young_list(new YoungList(this)),
1766   _gc_time_stamp(0),
1767   _summary_bytes_used(0),
1768   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1769   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1770   _expand_heap_after_alloc_failure(true),
1771   _old_marking_cycles_started(0),
1772   _old_marking_cycles_completed(0),
1773   _in_cset_fast_test(),
1774   _dirty_cards_region_list(NULL),
1775   _worker_cset_start_region(NULL),
1776   _worker_cset_start_region_time_stamp(NULL),
1777   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1778   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()) {
1779 
1780   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1781                           /* are_GC_task_threads */true,
1782                           /* are_ConcurrentGC_threads */false);
1783   _workers->initialize_workers();
1784   _verifier = new G1HeapVerifier(this);
1785 
1786   _allocator = G1Allocator::create_allocator(this);
1787 
1788   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1789 
1790   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1791 
1792   // Override the default _filler_array_max_size so that no humongous filler
1793   // objects are created.
1794   _filler_array_max_size = _humongous_object_threshold_in_words;
1795 
1796   uint n_queues = ParallelGCThreads;
1797   _task_queues = new RefToScanQueueSet(n_queues);
1798 
1799   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1800   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1801   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1802 
1803   for (uint i = 0; i < n_queues; i++) {
1804     RefToScanQueue* q = new RefToScanQueue();
1805     q->initialize();
1806     _task_queues->register_queue(i, q);
1807     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1808   }
1809   clear_cset_start_regions();
1810 
1811   // Initialize the G1EvacuationFailureALot counters and flags.
1812   NOT_PRODUCT(reset_evacuation_should_fail();)
1813 
1814   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1815 }
1816 
1817 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1818                                                                  size_t size,
1819                                                                  size_t translation_factor) {
1820   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1821   // Allocate a new reserved space, preferring to use large pages.
1822   ReservedSpace rs(size, preferred_page_size);
1823   G1RegionToSpaceMapper* result  =
1824     G1RegionToSpaceMapper::create_mapper(rs,
1825                                          size,
1826                                          rs.alignment(),
1827                                          HeapRegion::GrainBytes,
1828                                          translation_factor,
1829                                          mtGC);
1830   if (TracePageSizes) {
1831     tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1832                   description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1833   }
1834   return result;
1835 }
1836 
1837 jint G1CollectedHeap::initialize() {
1838   CollectedHeap::pre_initialize();
1839   os::enable_vtime();
1840 
1841   // Necessary to satisfy locking discipline assertions.
1842 
1843   MutexLocker x(Heap_lock);
1844 
1845   // While there are no constraints in the GC code that HeapWordSize
1846   // be any particular value, there are multiple other areas in the
1847   // system which believe this to be true (e.g. oop->object_size in some
1848   // cases incorrectly returns the size in wordSize units rather than
1849   // HeapWordSize).
1850   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1851 
1852   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1853   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1854   size_t heap_alignment = collector_policy()->heap_alignment();
1855 
1856   // Ensure that the sizes are properly aligned.
1857   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1858   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1859   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1860 
1861   _refine_cte_cl = new RefineCardTableEntryClosure();
1862 
1863   jint ecode = JNI_OK;
1864   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1865   if (_cg1r == NULL) {
1866     return ecode;
1867   }
1868 
1869   // Reserve the maximum.
1870 
1871   // When compressed oops are enabled, the preferred heap base
1872   // is calculated by subtracting the requested size from the
1873   // 32Gb boundary and using the result as the base address for
1874   // heap reservation. If the requested size is not aligned to
1875   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1876   // into the ReservedHeapSpace constructor) then the actual
1877   // base of the reserved heap may end up differing from the
1878   // address that was requested (i.e. the preferred heap base).
1879   // If this happens then we could end up using a non-optimal
1880   // compressed oops mode.
1881 
1882   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1883                                                  heap_alignment);
1884 
1885   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1886 
1887   // Create the barrier set for the entire reserved region.
1888   G1SATBCardTableLoggingModRefBS* bs
1889     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1890   bs->initialize();
1891   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1892   set_barrier_set(bs);
1893 
1894   // Also create a G1 rem set.
1895   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1896 
1897   // Carve out the G1 part of the heap.
1898   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1899   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1900   G1RegionToSpaceMapper* heap_storage =
1901     G1RegionToSpaceMapper::create_mapper(g1_rs,
1902                                          g1_rs.size(),
1903                                          page_size,
1904                                          HeapRegion::GrainBytes,
1905                                          1,
1906                                          mtJavaHeap);
1907   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1908                        max_byte_size, page_size,
1909                        heap_rs.base(),
1910                        heap_rs.size());
1911   heap_storage->set_mapping_changed_listener(&_listener);
1912 
1913   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1914   G1RegionToSpaceMapper* bot_storage =
1915     create_aux_memory_mapper("Block offset table",
1916                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1917                              G1BlockOffsetTable::heap_map_factor());
1918 
1919   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1920   G1RegionToSpaceMapper* cardtable_storage =
1921     create_aux_memory_mapper("Card table",
1922                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1923                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1924 
1925   G1RegionToSpaceMapper* card_counts_storage =
1926     create_aux_memory_mapper("Card counts table",
1927                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1928                              G1CardCounts::heap_map_factor());
1929 
1930   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1931   G1RegionToSpaceMapper* prev_bitmap_storage =
1932     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1933   G1RegionToSpaceMapper* next_bitmap_storage =
1934     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1935 
1936   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1937   g1_barrier_set()->initialize(cardtable_storage);
1938    // Do later initialization work for concurrent refinement.
1939   _cg1r->init(card_counts_storage);
1940 
1941   // 6843694 - ensure that the maximum region index can fit
1942   // in the remembered set structures.
1943   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1944   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1945 
1946   G1RemSet::initialize(max_regions());
1947 
1948   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1949   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1950   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1951             "too many cards per region");
1952 
1953   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1954 
1955   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1956 
1957   {
1958     HeapWord* start = _hrm.reserved().start();
1959     HeapWord* end = _hrm.reserved().end();
1960     size_t granularity = HeapRegion::GrainBytes;
1961 
1962     _in_cset_fast_test.initialize(start, end, granularity);
1963     _humongous_reclaim_candidates.initialize(start, end, granularity);
1964   }
1965 
1966   // Create the G1ConcurrentMark data structure and thread.
1967   // (Must do this late, so that "max_regions" is defined.)
1968   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1969   if (_cm == NULL || !_cm->completed_initialization()) {
1970     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1971     return JNI_ENOMEM;
1972   }
1973   _cmThread = _cm->cmThread();
1974 
1975   // Now expand into the initial heap size.
1976   if (!expand(init_byte_size)) {
1977     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1978     return JNI_ENOMEM;
1979   }
1980 
1981   // Perform any initialization actions delegated to the policy.
1982   g1_policy()->init();
1983 
1984   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1985                                                SATB_Q_FL_lock,
1986                                                G1SATBProcessCompletedThreshold,
1987                                                Shared_SATB_Q_lock);
1988 
1989   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1990                                                 DirtyCardQ_CBL_mon,
1991                                                 DirtyCardQ_FL_lock,
1992                                                 (int)concurrent_g1_refine()->yellow_zone(),
1993                                                 (int)concurrent_g1_refine()->red_zone(),
1994                                                 Shared_DirtyCardQ_lock,
1995                                                 NULL,  // fl_owner
1996                                                 true); // init_free_ids
1997 
1998   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1999                                     DirtyCardQ_CBL_mon,
2000                                     DirtyCardQ_FL_lock,
2001                                     -1, // never trigger processing
2002                                     -1, // no limit on length
2003                                     Shared_DirtyCardQ_lock,
2004                                     &JavaThread::dirty_card_queue_set());
2005 
2006   // Here we allocate the dummy HeapRegion that is required by the
2007   // G1AllocRegion class.
2008   HeapRegion* dummy_region = _hrm.get_dummy_region();
2009 
2010   // We'll re-use the same region whether the alloc region will
2011   // require BOT updates or not and, if it doesn't, then a non-young
2012   // region will complain that it cannot support allocations without
2013   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2014   dummy_region->set_eden();
2015   // Make sure it's full.
2016   dummy_region->set_top(dummy_region->end());
2017   G1AllocRegion::setup(this, dummy_region);
2018 
2019   _allocator->init_mutator_alloc_region();
2020 
2021   // Do create of the monitoring and management support so that
2022   // values in the heap have been properly initialized.
2023   _g1mm = new G1MonitoringSupport(this);
2024 
2025   G1StringDedup::initialize();
2026 
2027   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2028   for (uint i = 0; i < ParallelGCThreads; i++) {
2029     new (&_preserved_objs[i]) OopAndMarkOopStack();
2030   }
2031 
2032   return JNI_OK;
2033 }
2034 
2035 void G1CollectedHeap::stop() {
2036   // Stop all concurrent threads. We do this to make sure these threads
2037   // do not continue to execute and access resources (e.g. logging)
2038   // that are destroyed during shutdown.
2039   _cg1r->stop();
2040   _cmThread->stop();
2041   if (G1StringDedup::is_enabled()) {
2042     G1StringDedup::stop();
2043   }
2044 }
2045 
2046 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2047   return HeapRegion::max_region_size();
2048 }
2049 
2050 void G1CollectedHeap::post_initialize() {
2051   CollectedHeap::post_initialize();
2052   ref_processing_init();
2053 }
2054 
2055 void G1CollectedHeap::ref_processing_init() {
2056   // Reference processing in G1 currently works as follows:
2057   //
2058   // * There are two reference processor instances. One is
2059   //   used to record and process discovered references
2060   //   during concurrent marking; the other is used to
2061   //   record and process references during STW pauses
2062   //   (both full and incremental).
2063   // * Both ref processors need to 'span' the entire heap as
2064   //   the regions in the collection set may be dotted around.
2065   //
2066   // * For the concurrent marking ref processor:
2067   //   * Reference discovery is enabled at initial marking.
2068   //   * Reference discovery is disabled and the discovered
2069   //     references processed etc during remarking.
2070   //   * Reference discovery is MT (see below).
2071   //   * Reference discovery requires a barrier (see below).
2072   //   * Reference processing may or may not be MT
2073   //     (depending on the value of ParallelRefProcEnabled
2074   //     and ParallelGCThreads).
2075   //   * A full GC disables reference discovery by the CM
2076   //     ref processor and abandons any entries on it's
2077   //     discovered lists.
2078   //
2079   // * For the STW processor:
2080   //   * Non MT discovery is enabled at the start of a full GC.
2081   //   * Processing and enqueueing during a full GC is non-MT.
2082   //   * During a full GC, references are processed after marking.
2083   //
2084   //   * Discovery (may or may not be MT) is enabled at the start
2085   //     of an incremental evacuation pause.
2086   //   * References are processed near the end of a STW evacuation pause.
2087   //   * For both types of GC:
2088   //     * Discovery is atomic - i.e. not concurrent.
2089   //     * Reference discovery will not need a barrier.
2090 
2091   MemRegion mr = reserved_region();
2092 
2093   // Concurrent Mark ref processor
2094   _ref_processor_cm =
2095     new ReferenceProcessor(mr,    // span
2096                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2097                                 // mt processing
2098                            ParallelGCThreads,
2099                                 // degree of mt processing
2100                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2101                                 // mt discovery
2102                            MAX2(ParallelGCThreads, ConcGCThreads),
2103                                 // degree of mt discovery
2104                            false,
2105                                 // Reference discovery is not atomic
2106                            &_is_alive_closure_cm);
2107                                 // is alive closure
2108                                 // (for efficiency/performance)
2109 
2110   // STW ref processor
2111   _ref_processor_stw =
2112     new ReferenceProcessor(mr,    // span
2113                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2114                                 // mt processing
2115                            ParallelGCThreads,
2116                                 // degree of mt processing
2117                            (ParallelGCThreads > 1),
2118                                 // mt discovery
2119                            ParallelGCThreads,
2120                                 // degree of mt discovery
2121                            true,
2122                                 // Reference discovery is atomic
2123                            &_is_alive_closure_stw);
2124                                 // is alive closure
2125                                 // (for efficiency/performance)
2126 }
2127 
2128 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2129   return g1_policy();
2130 }
2131 
2132 size_t G1CollectedHeap::capacity() const {
2133   return _hrm.length() * HeapRegion::GrainBytes;
2134 }
2135 
2136 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2137   hr->reset_gc_time_stamp();
2138 }
2139 
2140 #ifndef PRODUCT
2141 
2142 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2143 private:
2144   unsigned _gc_time_stamp;
2145   bool _failures;
2146 
2147 public:
2148   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2149     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2150 
2151   virtual bool doHeapRegion(HeapRegion* hr) {
2152     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2153     if (_gc_time_stamp != region_gc_time_stamp) {
2154       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2155                             region_gc_time_stamp, _gc_time_stamp);
2156       _failures = true;
2157     }
2158     return false;
2159   }
2160 
2161   bool failures() { return _failures; }
2162 };
2163 
2164 void G1CollectedHeap::check_gc_time_stamps() {
2165   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2166   heap_region_iterate(&cl);
2167   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2168 }
2169 #endif // PRODUCT
2170 
2171 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2172   _cg1r->hot_card_cache()->drain(cl, worker_i);
2173 }
2174 
2175 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2176   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2177   size_t n_completed_buffers = 0;
2178   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2179     n_completed_buffers++;
2180   }
2181   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2182   dcqs.clear_n_completed_buffers();
2183   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2184 }
2185 
2186 // Computes the sum of the storage used by the various regions.
2187 size_t G1CollectedHeap::used() const {
2188   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2189   if (_archive_allocator != NULL) {
2190     result += _archive_allocator->used();
2191   }
2192   return result;
2193 }
2194 
2195 size_t G1CollectedHeap::used_unlocked() const {
2196   return _summary_bytes_used;
2197 }
2198 
2199 class SumUsedClosure: public HeapRegionClosure {
2200   size_t _used;
2201 public:
2202   SumUsedClosure() : _used(0) {}
2203   bool doHeapRegion(HeapRegion* r) {
2204     _used += r->used();
2205     return false;
2206   }
2207   size_t result() { return _used; }
2208 };
2209 
2210 size_t G1CollectedHeap::recalculate_used() const {
2211   double recalculate_used_start = os::elapsedTime();
2212 
2213   SumUsedClosure blk;
2214   heap_region_iterate(&blk);
2215 
2216   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2217   return blk.result();
2218 }
2219 
2220 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2221   switch (cause) {
2222     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2223     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2224     case GCCause::_update_allocation_context_stats_inc: return true;
2225     case GCCause::_wb_conc_mark:                        return true;
2226     default :                                           return false;
2227   }
2228 }
2229 
2230 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2231   switch (cause) {
2232     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2233     case GCCause::_g1_humongous_allocation: return true;
2234     default:                                return is_user_requested_concurrent_full_gc(cause);
2235   }
2236 }
2237 
2238 #ifndef PRODUCT
2239 void G1CollectedHeap::allocate_dummy_regions() {
2240   // Let's fill up most of the region
2241   size_t word_size = HeapRegion::GrainWords - 1024;
2242   // And as a result the region we'll allocate will be humongous.
2243   guarantee(is_humongous(word_size), "sanity");
2244 
2245   // _filler_array_max_size is set to humongous object threshold
2246   // but temporarily change it to use CollectedHeap::fill_with_object().
2247   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2248 
2249   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2250     // Let's use the existing mechanism for the allocation
2251     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2252                                                  AllocationContext::system());
2253     if (dummy_obj != NULL) {
2254       MemRegion mr(dummy_obj, word_size);
2255       CollectedHeap::fill_with_object(mr);
2256     } else {
2257       // If we can't allocate once, we probably cannot allocate
2258       // again. Let's get out of the loop.
2259       break;
2260     }
2261   }
2262 }
2263 #endif // !PRODUCT
2264 
2265 void G1CollectedHeap::increment_old_marking_cycles_started() {
2266   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2267          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2268          "Wrong marking cycle count (started: %d, completed: %d)",
2269          _old_marking_cycles_started, _old_marking_cycles_completed);
2270 
2271   _old_marking_cycles_started++;
2272 }
2273 
2274 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2275   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2276 
2277   // We assume that if concurrent == true, then the caller is a
2278   // concurrent thread that was joined the Suspendible Thread
2279   // Set. If there's ever a cheap way to check this, we should add an
2280   // assert here.
2281 
2282   // Given that this method is called at the end of a Full GC or of a
2283   // concurrent cycle, and those can be nested (i.e., a Full GC can
2284   // interrupt a concurrent cycle), the number of full collections
2285   // completed should be either one (in the case where there was no
2286   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2287   // behind the number of full collections started.
2288 
2289   // This is the case for the inner caller, i.e. a Full GC.
2290   assert(concurrent ||
2291          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2292          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2293          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2294          "is inconsistent with _old_marking_cycles_completed = %u",
2295          _old_marking_cycles_started, _old_marking_cycles_completed);
2296 
2297   // This is the case for the outer caller, i.e. the concurrent cycle.
2298   assert(!concurrent ||
2299          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2300          "for outer caller (concurrent cycle): "
2301          "_old_marking_cycles_started = %u "
2302          "is inconsistent with _old_marking_cycles_completed = %u",
2303          _old_marking_cycles_started, _old_marking_cycles_completed);
2304 
2305   _old_marking_cycles_completed += 1;
2306 
2307   // We need to clear the "in_progress" flag in the CM thread before
2308   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2309   // is set) so that if a waiter requests another System.gc() it doesn't
2310   // incorrectly see that a marking cycle is still in progress.
2311   if (concurrent) {
2312     _cmThread->set_idle();
2313   }
2314 
2315   // This notify_all() will ensure that a thread that called
2316   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2317   // and it's waiting for a full GC to finish will be woken up. It is
2318   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2319   FullGCCount_lock->notify_all();
2320 }
2321 
2322 void G1CollectedHeap::collect(GCCause::Cause cause) {
2323   assert_heap_not_locked();
2324 
2325   uint gc_count_before;
2326   uint old_marking_count_before;
2327   uint full_gc_count_before;
2328   bool retry_gc;
2329 
2330   do {
2331     retry_gc = false;
2332 
2333     {
2334       MutexLocker ml(Heap_lock);
2335 
2336       // Read the GC count while holding the Heap_lock
2337       gc_count_before = total_collections();
2338       full_gc_count_before = total_full_collections();
2339       old_marking_count_before = _old_marking_cycles_started;
2340     }
2341 
2342     if (should_do_concurrent_full_gc(cause)) {
2343       // Schedule an initial-mark evacuation pause that will start a
2344       // concurrent cycle. We're setting word_size to 0 which means that
2345       // we are not requesting a post-GC allocation.
2346       VM_G1IncCollectionPause op(gc_count_before,
2347                                  0,     /* word_size */
2348                                  true,  /* should_initiate_conc_mark */
2349                                  g1_policy()->max_pause_time_ms(),
2350                                  cause);
2351       op.set_allocation_context(AllocationContext::current());
2352 
2353       VMThread::execute(&op);
2354       if (!op.pause_succeeded()) {
2355         if (old_marking_count_before == _old_marking_cycles_started) {
2356           retry_gc = op.should_retry_gc();
2357         } else {
2358           // A Full GC happened while we were trying to schedule the
2359           // initial-mark GC. No point in starting a new cycle given
2360           // that the whole heap was collected anyway.
2361         }
2362 
2363         if (retry_gc) {
2364           if (GCLocker::is_active_and_needs_gc()) {
2365             GCLocker::stall_until_clear();
2366           }
2367         }
2368       }
2369     } else {
2370       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2371           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2372 
2373         // Schedule a standard evacuation pause. We're setting word_size
2374         // to 0 which means that we are not requesting a post-GC allocation.
2375         VM_G1IncCollectionPause op(gc_count_before,
2376                                    0,     /* word_size */
2377                                    false, /* should_initiate_conc_mark */
2378                                    g1_policy()->max_pause_time_ms(),
2379                                    cause);
2380         VMThread::execute(&op);
2381       } else {
2382         // Schedule a Full GC.
2383         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2384         VMThread::execute(&op);
2385       }
2386     }
2387   } while (retry_gc);
2388 }
2389 
2390 bool G1CollectedHeap::is_in(const void* p) const {
2391   if (_hrm.reserved().contains(p)) {
2392     // Given that we know that p is in the reserved space,
2393     // heap_region_containing() should successfully
2394     // return the containing region.
2395     HeapRegion* hr = heap_region_containing(p);
2396     return hr->is_in(p);
2397   } else {
2398     return false;
2399   }
2400 }
2401 
2402 #ifdef ASSERT
2403 bool G1CollectedHeap::is_in_exact(const void* p) const {
2404   bool contains = reserved_region().contains(p);
2405   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2406   if (contains && available) {
2407     return true;
2408   } else {
2409     return false;
2410   }
2411 }
2412 #endif
2413 
2414 bool G1CollectedHeap::obj_in_cs(oop obj) {
2415   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2416   return r != NULL && r->in_collection_set();
2417 }
2418 
2419 // Iteration functions.
2420 
2421 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2422 
2423 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2424   ExtendedOopClosure* _cl;
2425 public:
2426   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2427   bool doHeapRegion(HeapRegion* r) {
2428     if (!r->is_continues_humongous()) {
2429       r->oop_iterate(_cl);
2430     }
2431     return false;
2432   }
2433 };
2434 
2435 // Iterates an ObjectClosure over all objects within a HeapRegion.
2436 
2437 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2438   ObjectClosure* _cl;
2439 public:
2440   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2441   bool doHeapRegion(HeapRegion* r) {
2442     if (!r->is_continues_humongous()) {
2443       r->object_iterate(_cl);
2444     }
2445     return false;
2446   }
2447 };
2448 
2449 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2450   IterateObjectClosureRegionClosure blk(cl);
2451   heap_region_iterate(&blk);
2452 }
2453 
2454 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2455   _hrm.iterate(cl);
2456 }
2457 
2458 void
2459 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2460                                          uint worker_id,
2461                                          HeapRegionClaimer *hrclaimer,
2462                                          bool concurrent) const {
2463   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2464 }
2465 
2466 // Clear the cached CSet starting regions and (more importantly)
2467 // the time stamps. Called when we reset the GC time stamp.
2468 void G1CollectedHeap::clear_cset_start_regions() {
2469   assert(_worker_cset_start_region != NULL, "sanity");
2470   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2471 
2472   for (uint i = 0; i < ParallelGCThreads; i++) {
2473     _worker_cset_start_region[i] = NULL;
2474     _worker_cset_start_region_time_stamp[i] = 0;
2475   }
2476 }
2477 
2478 // Given the id of a worker, obtain or calculate a suitable
2479 // starting region for iterating over the current collection set.
2480 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2481   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2482 
2483   HeapRegion* result = NULL;
2484   unsigned gc_time_stamp = get_gc_time_stamp();
2485 
2486   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2487     // Cached starting region for current worker was set
2488     // during the current pause - so it's valid.
2489     // Note: the cached starting heap region may be NULL
2490     // (when the collection set is empty).
2491     result = _worker_cset_start_region[worker_i];
2492     assert(result == NULL || result->in_collection_set(), "sanity");
2493     return result;
2494   }
2495 
2496   // The cached entry was not valid so let's calculate
2497   // a suitable starting heap region for this worker.
2498 
2499   // We want the parallel threads to start their collection
2500   // set iteration at different collection set regions to
2501   // avoid contention.
2502   // If we have:
2503   //          n collection set regions
2504   //          p threads
2505   // Then thread t will start at region floor ((t * n) / p)
2506 
2507   result = collection_set()->head();
2508   uint cs_size = collection_set()->region_length();
2509   uint active_workers = workers()->active_workers();
2510 
2511   uint end_ind   = (cs_size * worker_i) / active_workers;
2512   uint start_ind = 0;
2513 
2514   if (worker_i > 0 &&
2515       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2516     // Previous workers starting region is valid
2517     // so let's iterate from there
2518     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2519     OrderAccess::loadload();
2520     result = _worker_cset_start_region[worker_i - 1];
2521   }
2522 
2523   for (uint i = start_ind; i < end_ind; i++) {
2524     result = result->next_in_collection_set();
2525   }
2526 
2527   // Note: the calculated starting heap region may be NULL
2528   // (when the collection set is empty).
2529   assert(result == NULL || result->in_collection_set(), "sanity");
2530   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2531          "should be updated only once per pause");
2532   _worker_cset_start_region[worker_i] = result;
2533   OrderAccess::storestore();
2534   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2535   return result;
2536 }
2537 
2538 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2539   HeapRegion* r = collection_set()->head();
2540   while (r != NULL) {
2541     HeapRegion* next = r->next_in_collection_set();
2542     if (cl->doHeapRegion(r)) {
2543       cl->incomplete();
2544       return;
2545     }
2546     r = next;
2547   }
2548 }
2549 
2550 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2551                                                   HeapRegionClosure *cl) {
2552   if (r == NULL) {
2553     // The CSet is empty so there's nothing to do.
2554     return;
2555   }
2556 
2557   assert(r->in_collection_set(),
2558          "Start region must be a member of the collection set.");
2559   HeapRegion* cur = r;
2560   while (cur != NULL) {
2561     HeapRegion* next = cur->next_in_collection_set();
2562     if (cl->doHeapRegion(cur) && false) {
2563       cl->incomplete();
2564       return;
2565     }
2566     cur = next;
2567   }
2568   cur = collection_set()->head();
2569   while (cur != r) {
2570     HeapRegion* next = cur->next_in_collection_set();
2571     if (cl->doHeapRegion(cur) && false) {
2572       cl->incomplete();
2573       return;
2574     }
2575     cur = next;
2576   }
2577 }
2578 
2579 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2580   HeapRegion* result = _hrm.next_region_in_heap(from);
2581   while (result != NULL && result->is_pinned()) {
2582     result = _hrm.next_region_in_heap(result);
2583   }
2584   return result;
2585 }
2586 
2587 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2588   HeapRegion* hr = heap_region_containing(addr);
2589   return hr->block_start(addr);
2590 }
2591 
2592 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2593   HeapRegion* hr = heap_region_containing(addr);
2594   return hr->block_size(addr);
2595 }
2596 
2597 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2598   HeapRegion* hr = heap_region_containing(addr);
2599   return hr->block_is_obj(addr);
2600 }
2601 
2602 bool G1CollectedHeap::supports_tlab_allocation() const {
2603   return true;
2604 }
2605 
2606 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2607   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2608 }
2609 
2610 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2611   return young_list()->eden_used_bytes();
2612 }
2613 
2614 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2615 // must be equal to the humongous object limit.
2616 size_t G1CollectedHeap::max_tlab_size() const {
2617   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2618 }
2619 
2620 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2621   AllocationContext_t context = AllocationContext::current();
2622   return _allocator->unsafe_max_tlab_alloc(context);
2623 }
2624 
2625 size_t G1CollectedHeap::max_capacity() const {
2626   return _hrm.reserved().byte_size();
2627 }
2628 
2629 jlong G1CollectedHeap::millis_since_last_gc() {
2630   // assert(false, "NYI");
2631   return 0;
2632 }
2633 
2634 void G1CollectedHeap::prepare_for_verify() {
2635   _verifier->prepare_for_verify();
2636 }
2637 
2638 void G1CollectedHeap::verify(VerifyOption vo) {
2639   _verifier->verify(vo);
2640 }
2641 
2642 class PrintRegionClosure: public HeapRegionClosure {
2643   outputStream* _st;
2644 public:
2645   PrintRegionClosure(outputStream* st) : _st(st) {}
2646   bool doHeapRegion(HeapRegion* r) {
2647     r->print_on(_st);
2648     return false;
2649   }
2650 };
2651 
2652 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2653                                        const HeapRegion* hr,
2654                                        const VerifyOption vo) const {
2655   switch (vo) {
2656   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2657   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2658   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
2659   default:                            ShouldNotReachHere();
2660   }
2661   return false; // keep some compilers happy
2662 }
2663 
2664 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2665                                        const VerifyOption vo) const {
2666   switch (vo) {
2667   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2668   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2669   case VerifyOption_G1UseMarkWord: {
2670     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
2671     return !obj->is_gc_marked() && !hr->is_archive();
2672   }
2673   default:                            ShouldNotReachHere();
2674   }
2675   return false; // keep some compilers happy
2676 }
2677 
2678 void G1CollectedHeap::print_heap_regions() const {
2679   LogHandle(gc, heap, region) log;
2680   if (log.is_trace()) {
2681     ResourceMark rm;
2682     print_regions_on(log.trace_stream());
2683   }
2684 }
2685 
2686 void G1CollectedHeap::print_on(outputStream* st) const {
2687   st->print(" %-20s", "garbage-first heap");
2688   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2689             capacity()/K, used_unlocked()/K);
2690   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
2691             p2i(_hrm.reserved().start()),
2692             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
2693             p2i(_hrm.reserved().end()));
2694   st->cr();
2695   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2696   uint young_regions = _young_list->length();
2697   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2698             (size_t) young_regions * HeapRegion::GrainBytes / K);
2699   uint survivor_regions = _young_list->survivor_length();
2700   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2701             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2702   st->cr();
2703   MetaspaceAux::print_on(st);
2704 }
2705 
2706 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2707   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2708                "HS=humongous(starts), HC=humongous(continues), "
2709                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2710                "AC=allocation context, "
2711                "TAMS=top-at-mark-start (previous, next)");
2712   PrintRegionClosure blk(st);
2713   heap_region_iterate(&blk);
2714 }
2715 
2716 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2717   print_on(st);
2718 
2719   // Print the per-region information.
2720   print_regions_on(st);
2721 }
2722 
2723 void G1CollectedHeap::print_on_error(outputStream* st) const {
2724   this->CollectedHeap::print_on_error(st);
2725 
2726   if (_cm != NULL) {
2727     st->cr();
2728     _cm->print_on_error(st);
2729   }
2730 }
2731 
2732 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2733   workers()->print_worker_threads_on(st);
2734   _cmThread->print_on(st);
2735   st->cr();
2736   _cm->print_worker_threads_on(st);
2737   _cg1r->print_worker_threads_on(st);
2738   if (G1StringDedup::is_enabled()) {
2739     G1StringDedup::print_worker_threads_on(st);
2740   }
2741 }
2742 
2743 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2744   workers()->threads_do(tc);
2745   tc->do_thread(_cmThread);
2746   _cg1r->threads_do(tc);
2747   if (G1StringDedup::is_enabled()) {
2748     G1StringDedup::threads_do(tc);
2749   }
2750 }
2751 
2752 void G1CollectedHeap::print_tracing_info() const {
2753   g1_rem_set()->print_summary_info();
2754   concurrent_mark()->print_summary_info();
2755   g1_policy()->print_yg_surv_rate_info();
2756 }
2757 
2758 #ifndef PRODUCT
2759 // Helpful for debugging RSet issues.
2760 
2761 class PrintRSetsClosure : public HeapRegionClosure {
2762 private:
2763   const char* _msg;
2764   size_t _occupied_sum;
2765 
2766 public:
2767   bool doHeapRegion(HeapRegion* r) {
2768     HeapRegionRemSet* hrrs = r->rem_set();
2769     size_t occupied = hrrs->occupied();
2770     _occupied_sum += occupied;
2771 
2772     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2773     if (occupied == 0) {
2774       tty->print_cr("  RSet is empty");
2775     } else {
2776       hrrs->print();
2777     }
2778     tty->print_cr("----------");
2779     return false;
2780   }
2781 
2782   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2783     tty->cr();
2784     tty->print_cr("========================================");
2785     tty->print_cr("%s", msg);
2786     tty->cr();
2787   }
2788 
2789   ~PrintRSetsClosure() {
2790     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2791     tty->print_cr("========================================");
2792     tty->cr();
2793   }
2794 };
2795 
2796 void G1CollectedHeap::print_cset_rsets() {
2797   PrintRSetsClosure cl("Printing CSet RSets");
2798   collection_set_iterate(&cl);
2799 }
2800 
2801 void G1CollectedHeap::print_all_rsets() {
2802   PrintRSetsClosure cl("Printing All RSets");;
2803   heap_region_iterate(&cl);
2804 }
2805 #endif // PRODUCT
2806 
2807 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2808   YoungList* young_list = heap()->young_list();
2809 
2810   size_t eden_used_bytes = young_list->eden_used_bytes();
2811   size_t survivor_used_bytes = young_list->survivor_used_bytes();
2812   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2813 
2814   size_t eden_capacity_bytes =
2815     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2816 
2817   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2818   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2819                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2820 }
2821 
2822 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2823   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2824                        stats->unused(), stats->used(), stats->region_end_waste(),
2825                        stats->regions_filled(), stats->direct_allocated(),
2826                        stats->failure_used(), stats->failure_waste());
2827 }
2828 
2829 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2830   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2831   gc_tracer->report_gc_heap_summary(when, heap_summary);
2832 
2833   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2834   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2835 }
2836 
2837 G1CollectedHeap* G1CollectedHeap::heap() {
2838   CollectedHeap* heap = Universe::heap();
2839   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2840   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2841   return (G1CollectedHeap*)heap;
2842 }
2843 
2844 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
2845   // always_do_update_barrier = false;
2846   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2847   // Fill TLAB's and such
2848   accumulate_statistics_all_tlabs();
2849   ensure_parsability(true);
2850 
2851   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2852 }
2853 
2854 void G1CollectedHeap::gc_epilogue(bool full) {
2855   // we are at the end of the GC. Total collections has already been increased.
2856   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2857 
2858   // FIXME: what is this about?
2859   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2860   // is set.
2861 #if defined(COMPILER2) || INCLUDE_JVMCI
2862   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2863 #endif
2864   // always_do_update_barrier = true;
2865 
2866   resize_all_tlabs();
2867   allocation_context_stats().update(full);
2868 
2869   // We have just completed a GC. Update the soft reference
2870   // policy with the new heap occupancy
2871   Universe::update_heap_info_at_gc();
2872 }
2873 
2874 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2875                                                uint gc_count_before,
2876                                                bool* succeeded,
2877                                                GCCause::Cause gc_cause) {
2878   assert_heap_not_locked_and_not_at_safepoint();
2879   VM_G1IncCollectionPause op(gc_count_before,
2880                              word_size,
2881                              false, /* should_initiate_conc_mark */
2882                              g1_policy()->max_pause_time_ms(),
2883                              gc_cause);
2884 
2885   op.set_allocation_context(AllocationContext::current());
2886   VMThread::execute(&op);
2887 
2888   HeapWord* result = op.result();
2889   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2890   assert(result == NULL || ret_succeeded,
2891          "the result should be NULL if the VM did not succeed");
2892   *succeeded = ret_succeeded;
2893 
2894   assert_heap_not_locked();
2895   return result;
2896 }
2897 
2898 void
2899 G1CollectedHeap::doConcurrentMark() {
2900   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2901   if (!_cmThread->in_progress()) {
2902     _cmThread->set_started();
2903     CGC_lock->notify();
2904   }
2905 }
2906 
2907 size_t G1CollectedHeap::pending_card_num() {
2908   size_t extra_cards = 0;
2909   JavaThread *curr = Threads::first();
2910   while (curr != NULL) {
2911     DirtyCardQueue& dcq = curr->dirty_card_queue();
2912     extra_cards += dcq.size();
2913     curr = curr->next();
2914   }
2915   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2916   size_t buffer_size = dcqs.buffer_size();
2917   size_t buffer_num = dcqs.completed_buffers_num();
2918 
2919   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
2920   // in bytes - not the number of 'entries'. We need to convert
2921   // into a number of cards.
2922   return (buffer_size * buffer_num + extra_cards) / oopSize;
2923 }
2924 
2925 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2926  private:
2927   size_t _total_humongous;
2928   size_t _candidate_humongous;
2929 
2930   DirtyCardQueue _dcq;
2931 
2932   // We don't nominate objects with many remembered set entries, on
2933   // the assumption that such objects are likely still live.
2934   bool is_remset_small(HeapRegion* region) const {
2935     HeapRegionRemSet* const rset = region->rem_set();
2936     return G1EagerReclaimHumongousObjectsWithStaleRefs
2937       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2938       : rset->is_empty();
2939   }
2940 
2941   bool is_typeArray_region(HeapRegion* region) const {
2942     return oop(region->bottom())->is_typeArray();
2943   }
2944 
2945   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2946     assert(region->is_starts_humongous(), "Must start a humongous object");
2947 
2948     // Candidate selection must satisfy the following constraints
2949     // while concurrent marking is in progress:
2950     //
2951     // * In order to maintain SATB invariants, an object must not be
2952     // reclaimed if it was allocated before the start of marking and
2953     // has not had its references scanned.  Such an object must have
2954     // its references (including type metadata) scanned to ensure no
2955     // live objects are missed by the marking process.  Objects
2956     // allocated after the start of concurrent marking don't need to
2957     // be scanned.
2958     //
2959     // * An object must not be reclaimed if it is on the concurrent
2960     // mark stack.  Objects allocated after the start of concurrent
2961     // marking are never pushed on the mark stack.
2962     //
2963     // Nominating only objects allocated after the start of concurrent
2964     // marking is sufficient to meet both constraints.  This may miss
2965     // some objects that satisfy the constraints, but the marking data
2966     // structures don't support efficiently performing the needed
2967     // additional tests or scrubbing of the mark stack.
2968     //
2969     // However, we presently only nominate is_typeArray() objects.
2970     // A humongous object containing references induces remembered
2971     // set entries on other regions.  In order to reclaim such an
2972     // object, those remembered sets would need to be cleaned up.
2973     //
2974     // We also treat is_typeArray() objects specially, allowing them
2975     // to be reclaimed even if allocated before the start of
2976     // concurrent mark.  For this we rely on mark stack insertion to
2977     // exclude is_typeArray() objects, preventing reclaiming an object
2978     // that is in the mark stack.  We also rely on the metadata for
2979     // such objects to be built-in and so ensured to be kept live.
2980     // Frequent allocation and drop of large binary blobs is an
2981     // important use case for eager reclaim, and this special handling
2982     // may reduce needed headroom.
2983 
2984     return is_typeArray_region(region) && is_remset_small(region);
2985   }
2986 
2987  public:
2988   RegisterHumongousWithInCSetFastTestClosure()
2989   : _total_humongous(0),
2990     _candidate_humongous(0),
2991     _dcq(&JavaThread::dirty_card_queue_set()) {
2992   }
2993 
2994   virtual bool doHeapRegion(HeapRegion* r) {
2995     if (!r->is_starts_humongous()) {
2996       return false;
2997     }
2998     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2999 
3000     bool is_candidate = humongous_region_is_candidate(g1h, r);
3001     uint rindex = r->hrm_index();
3002     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3003     if (is_candidate) {
3004       _candidate_humongous++;
3005       g1h->register_humongous_region_with_cset(rindex);
3006       // Is_candidate already filters out humongous object with large remembered sets.
3007       // If we have a humongous object with a few remembered sets, we simply flush these
3008       // remembered set entries into the DCQS. That will result in automatic
3009       // re-evaluation of their remembered set entries during the following evacuation
3010       // phase.
3011       if (!r->rem_set()->is_empty()) {
3012         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3013                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3014         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3015         HeapRegionRemSetIterator hrrs(r->rem_set());
3016         size_t card_index;
3017         while (hrrs.has_next(card_index)) {
3018           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3019           // The remembered set might contain references to already freed
3020           // regions. Filter out such entries to avoid failing card table
3021           // verification.
3022           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3023             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3024               *card_ptr = CardTableModRefBS::dirty_card_val();
3025               _dcq.enqueue(card_ptr);
3026             }
3027           }
3028         }
3029         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
3030                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
3031                hrrs.n_yielded(), r->rem_set()->occupied());
3032         r->rem_set()->clear_locked();
3033       }
3034       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3035     }
3036     _total_humongous++;
3037 
3038     return false;
3039   }
3040 
3041   size_t total_humongous() const { return _total_humongous; }
3042   size_t candidate_humongous() const { return _candidate_humongous; }
3043 
3044   void flush_rem_set_entries() { _dcq.flush(); }
3045 };
3046 
3047 void G1CollectedHeap::register_humongous_regions_with_cset() {
3048   if (!G1EagerReclaimHumongousObjects) {
3049     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3050     return;
3051   }
3052   double time = os::elapsed_counter();
3053 
3054   // Collect reclaim candidate information and register candidates with cset.
3055   RegisterHumongousWithInCSetFastTestClosure cl;
3056   heap_region_iterate(&cl);
3057 
3058   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3059   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3060                                                                   cl.total_humongous(),
3061                                                                   cl.candidate_humongous());
3062   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3063 
3064   // Finally flush all remembered set entries to re-check into the global DCQS.
3065   cl.flush_rem_set_entries();
3066 }
3067 
3068 class VerifyRegionRemSetClosure : public HeapRegionClosure {
3069   public:
3070     bool doHeapRegion(HeapRegion* hr) {
3071       if (!hr->is_archive() && !hr->is_continues_humongous()) {
3072         hr->verify_rem_set();
3073       }
3074       return false;
3075     }
3076 };
3077 
3078 #ifdef ASSERT
3079 class VerifyCSetClosure: public HeapRegionClosure {
3080 public:
3081   bool doHeapRegion(HeapRegion* hr) {
3082     // Here we check that the CSet region's RSet is ready for parallel
3083     // iteration. The fields that we'll verify are only manipulated
3084     // when the region is part of a CSet and is collected. Afterwards,
3085     // we reset these fields when we clear the region's RSet (when the
3086     // region is freed) so they are ready when the region is
3087     // re-allocated. The only exception to this is if there's an
3088     // evacuation failure and instead of freeing the region we leave
3089     // it in the heap. In that case, we reset these fields during
3090     // evacuation failure handling.
3091     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3092 
3093     // Here's a good place to add any other checks we'd like to
3094     // perform on CSet regions.
3095     return false;
3096   }
3097 };
3098 #endif // ASSERT
3099 
3100 uint G1CollectedHeap::num_task_queues() const {
3101   return _task_queues->size();
3102 }
3103 
3104 #if TASKQUEUE_STATS
3105 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3106   st->print_raw_cr("GC Task Stats");
3107   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3108   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3109 }
3110 
3111 void G1CollectedHeap::print_taskqueue_stats() const {
3112   if (!log_is_enabled(Trace, gc, task, stats)) {
3113     return;
3114   }
3115   LogHandle(gc, task, stats) log;
3116   ResourceMark rm;
3117   outputStream* st = log.trace_stream();
3118 
3119   print_taskqueue_stats_hdr(st);
3120 
3121   TaskQueueStats totals;
3122   const uint n = num_task_queues();
3123   for (uint i = 0; i < n; ++i) {
3124     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3125     totals += task_queue(i)->stats;
3126   }
3127   st->print_raw("tot "); totals.print(st); st->cr();
3128 
3129   DEBUG_ONLY(totals.verify());
3130 }
3131 
3132 void G1CollectedHeap::reset_taskqueue_stats() {
3133   const uint n = num_task_queues();
3134   for (uint i = 0; i < n; ++i) {
3135     task_queue(i)->stats.reset();
3136   }
3137 }
3138 #endif // TASKQUEUE_STATS
3139 
3140 void G1CollectedHeap::wait_for_root_region_scanning() {
3141   double scan_wait_start = os::elapsedTime();
3142   // We have to wait until the CM threads finish scanning the
3143   // root regions as it's the only way to ensure that all the
3144   // objects on them have been correctly scanned before we start
3145   // moving them during the GC.
3146   bool waited = _cm->root_regions()->wait_until_scan_finished();
3147   double wait_time_ms = 0.0;
3148   if (waited) {
3149     double scan_wait_end = os::elapsedTime();
3150     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3151   }
3152   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3153 }
3154 
3155 bool
3156 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3157   assert_at_safepoint(true /* should_be_vm_thread */);
3158   guarantee(!is_gc_active(), "collection is not reentrant");
3159 
3160   if (GCLocker::check_active_before_gc()) {
3161     return false;
3162   }
3163 
3164   _gc_timer_stw->register_gc_start();
3165 
3166   GCIdMark gc_id_mark;
3167   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3168 
3169   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3170   ResourceMark rm;
3171 
3172   wait_for_root_region_scanning();
3173 
3174   print_heap_before_gc();
3175   print_heap_regions();
3176   trace_heap_before_gc(_gc_tracer_stw);
3177 
3178   _verifier->verify_region_sets_optional();
3179   _verifier->verify_dirty_young_regions();
3180 
3181   // We should not be doing initial mark unless the conc mark thread is running
3182   if (!_cmThread->should_terminate()) {
3183     // This call will decide whether this pause is an initial-mark
3184     // pause. If it is, during_initial_mark_pause() will return true
3185     // for the duration of this pause.
3186     g1_policy()->decide_on_conc_mark_initiation();
3187   }
3188 
3189   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3190   assert(!collector_state()->during_initial_mark_pause() ||
3191           collector_state()->gcs_are_young(), "sanity");
3192 
3193   // We also do not allow mixed GCs during marking.
3194   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3195 
3196   // Record whether this pause is an initial mark. When the current
3197   // thread has completed its logging output and it's safe to signal
3198   // the CM thread, the flag's value in the policy has been reset.
3199   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3200 
3201   // Inner scope for scope based logging, timers, and stats collection
3202   {
3203     EvacuationInfo evacuation_info;
3204 
3205     if (collector_state()->during_initial_mark_pause()) {
3206       // We are about to start a marking cycle, so we increment the
3207       // full collection counter.
3208       increment_old_marking_cycles_started();
3209       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3210     }
3211 
3212     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3213 
3214     GCTraceCPUTime tcpu;
3215 
3216     FormatBuffer<> gc_string("Pause ");
3217     if (collector_state()->during_initial_mark_pause()) {
3218       gc_string.append("Initial Mark");
3219     } else if (collector_state()->gcs_are_young()) {
3220       gc_string.append("Young");
3221     } else {
3222       gc_string.append("Mixed");
3223     }
3224     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
3225 
3226     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3227                                                                   workers()->active_workers(),
3228                                                                   Threads::number_of_non_daemon_threads());
3229     workers()->set_active_workers(active_workers);
3230 
3231     g1_policy()->note_gc_start();
3232 
3233     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3234     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3235 
3236     // If the secondary_free_list is not empty, append it to the
3237     // free_list. No need to wait for the cleanup operation to finish;
3238     // the region allocation code will check the secondary_free_list
3239     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3240     // set, skip this step so that the region allocation code has to
3241     // get entries from the secondary_free_list.
3242     if (!G1StressConcRegionFreeing) {
3243       append_secondary_free_list_if_not_empty_with_lock();
3244     }
3245 
3246     G1HeapTransition heap_transition(this);
3247     size_t heap_used_bytes_before_gc = used();
3248 
3249     assert(check_young_list_well_formed(), "young list should be well formed");
3250 
3251     // Don't dynamically change the number of GC threads this early.  A value of
3252     // 0 is used to indicate serial work.  When parallel work is done,
3253     // it will be set.
3254 
3255     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3256       IsGCActiveMark x;
3257 
3258       gc_prologue(false);
3259       increment_total_collections(false /* full gc */);
3260       increment_gc_time_stamp();
3261 
3262       if (VerifyRememberedSets) {
3263         log_info(gc, verify)("[Verifying RemSets before GC]");
3264         VerifyRegionRemSetClosure v_cl;
3265         heap_region_iterate(&v_cl);
3266       }
3267 
3268       _verifier->verify_before_gc();
3269 
3270       _verifier->check_bitmaps("GC Start");
3271 
3272 #if defined(COMPILER2) || INCLUDE_JVMCI
3273       DerivedPointerTable::clear();
3274 #endif
3275 
3276       // Please see comment in g1CollectedHeap.hpp and
3277       // G1CollectedHeap::ref_processing_init() to see how
3278       // reference processing currently works in G1.
3279 
3280       // Enable discovery in the STW reference processor
3281       if (g1_policy()->should_process_references()) {
3282         ref_processor_stw()->enable_discovery();
3283       } else {
3284         ref_processor_stw()->disable_discovery();
3285       }
3286 
3287       {
3288         // We want to temporarily turn off discovery by the
3289         // CM ref processor, if necessary, and turn it back on
3290         // on again later if we do. Using a scoped
3291         // NoRefDiscovery object will do this.
3292         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3293 
3294         // Forget the current alloc region (we might even choose it to be part
3295         // of the collection set!).
3296         _allocator->release_mutator_alloc_region();
3297 
3298         // This timing is only used by the ergonomics to handle our pause target.
3299         // It is unclear why this should not include the full pause. We will
3300         // investigate this in CR 7178365.
3301         //
3302         // Preserving the old comment here if that helps the investigation:
3303         //
3304         // The elapsed time induced by the start time below deliberately elides
3305         // the possible verification above.
3306         double sample_start_time_sec = os::elapsedTime();
3307 
3308         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3309 
3310         if (collector_state()->during_initial_mark_pause()) {
3311           concurrent_mark()->checkpointRootsInitialPre();
3312         }
3313 
3314         g1_policy()->finalize_collection_set(target_pause_time_ms);
3315 
3316         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3317 
3318         // Make sure the remembered sets are up to date. This needs to be
3319         // done before register_humongous_regions_with_cset(), because the
3320         // remembered sets are used there to choose eager reclaim candidates.
3321         // If the remembered sets are not up to date we might miss some
3322         // entries that need to be handled.
3323         g1_rem_set()->cleanupHRRS();
3324 
3325         register_humongous_regions_with_cset();
3326 
3327         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3328 
3329         _cm->note_start_of_gc();
3330         // We call this after finalize_cset() to
3331         // ensure that the CSet has been finalized.
3332         _cm->verify_no_cset_oops();
3333 
3334         if (_hr_printer.is_active()) {
3335           HeapRegion* hr = collection_set()->head();
3336           while (hr != NULL) {
3337             _hr_printer.cset(hr);
3338             hr = hr->next_in_collection_set();
3339           }
3340         }
3341 
3342 #ifdef ASSERT
3343         VerifyCSetClosure cl;
3344         collection_set_iterate(&cl);
3345 #endif // ASSERT
3346 
3347         // Initialize the GC alloc regions.
3348         _allocator->init_gc_alloc_regions(evacuation_info);
3349 
3350         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3351         pre_evacuate_collection_set();
3352 
3353         // Actually do the work...
3354         evacuate_collection_set(evacuation_info, &per_thread_states);
3355 
3356         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3357 
3358         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3359         free_collection_set(collection_set()->head(), evacuation_info, surviving_young_words);
3360 
3361         eagerly_reclaim_humongous_regions();
3362 
3363         collection_set()->clear_head();
3364 
3365         record_obj_copy_mem_stats();
3366         _survivor_evac_stats.adjust_desired_plab_sz();
3367         _old_evac_stats.adjust_desired_plab_sz();
3368 
3369         // Start a new incremental collection set for the next pause.
3370         collection_set()->start_incremental_building();
3371 
3372         clear_cset_fast_test();
3373 
3374         // Don't check the whole heap at this point as the
3375         // GC alloc regions from this pause have been tagged
3376         // as survivors and moved on to the survivor list.
3377         // Survivor regions will fail the !is_young() check.
3378         assert(check_young_list_empty(false /* check_heap */),
3379           "young list should be empty");
3380 
3381         _young_list->reset_auxilary_lists();
3382 
3383         if (evacuation_failed()) {
3384           set_used(recalculate_used());
3385           if (_archive_allocator != NULL) {
3386             _archive_allocator->clear_used();
3387           }
3388           for (uint i = 0; i < ParallelGCThreads; i++) {
3389             if (_evacuation_failed_info_array[i].has_failed()) {
3390               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3391             }
3392           }
3393         } else {
3394           // The "used" of the the collection set have already been subtracted
3395           // when they were freed.  Add in the bytes evacuated.
3396           increase_used(g1_policy()->bytes_copied_during_gc());
3397         }
3398 
3399         if (collector_state()->during_initial_mark_pause()) {
3400           // We have to do this before we notify the CM threads that
3401           // they can start working to make sure that all the
3402           // appropriate initialization is done on the CM object.
3403           concurrent_mark()->checkpointRootsInitialPost();
3404           collector_state()->set_mark_in_progress(true);
3405           // Note that we don't actually trigger the CM thread at
3406           // this point. We do that later when we're sure that
3407           // the current thread has completed its logging output.
3408         }
3409 
3410         allocate_dummy_regions();
3411 
3412         _allocator->init_mutator_alloc_region();
3413 
3414         {
3415           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3416           if (expand_bytes > 0) {
3417             size_t bytes_before = capacity();
3418             // No need for an ergo logging here,
3419             // expansion_amount() does this when it returns a value > 0.
3420             double expand_ms;
3421             if (!expand(expand_bytes, &expand_ms)) {
3422               // We failed to expand the heap. Cannot do anything about it.
3423             }
3424             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3425           }
3426         }
3427 
3428         // We redo the verification but now wrt to the new CSet which
3429         // has just got initialized after the previous CSet was freed.
3430         _cm->verify_no_cset_oops();
3431         _cm->note_end_of_gc();
3432 
3433         // This timing is only used by the ergonomics to handle our pause target.
3434         // It is unclear why this should not include the full pause. We will
3435         // investigate this in CR 7178365.
3436         double sample_end_time_sec = os::elapsedTime();
3437         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3438         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3439         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3440 
3441         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3442         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3443 
3444         MemoryService::track_memory_usage();
3445 
3446         // In prepare_for_verify() below we'll need to scan the deferred
3447         // update buffers to bring the RSets up-to-date if
3448         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3449         // the update buffers we'll probably need to scan cards on the
3450         // regions we just allocated to (i.e., the GC alloc
3451         // regions). However, during the last GC we called
3452         // set_saved_mark() on all the GC alloc regions, so card
3453         // scanning might skip the [saved_mark_word()...top()] area of
3454         // those regions (i.e., the area we allocated objects into
3455         // during the last GC). But it shouldn't. Given that
3456         // saved_mark_word() is conditional on whether the GC time stamp
3457         // on the region is current or not, by incrementing the GC time
3458         // stamp here we invalidate all the GC time stamps on all the
3459         // regions and saved_mark_word() will simply return top() for
3460         // all the regions. This is a nicer way of ensuring this rather
3461         // than iterating over the regions and fixing them. In fact, the
3462         // GC time stamp increment here also ensures that
3463         // saved_mark_word() will return top() between pauses, i.e.,
3464         // during concurrent refinement. So we don't need the
3465         // is_gc_active() check to decided which top to use when
3466         // scanning cards (see CR 7039627).
3467         increment_gc_time_stamp();
3468 
3469         if (VerifyRememberedSets) {
3470           log_info(gc, verify)("[Verifying RemSets after GC]");
3471           VerifyRegionRemSetClosure v_cl;
3472           heap_region_iterate(&v_cl);
3473         }
3474 
3475         _verifier->verify_after_gc();
3476         _verifier->check_bitmaps("GC End");
3477 
3478         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3479         ref_processor_stw()->verify_no_references_recorded();
3480 
3481         // CM reference discovery will be re-enabled if necessary.
3482       }
3483 
3484 #ifdef TRACESPINNING
3485       ParallelTaskTerminator::print_termination_counts();
3486 #endif
3487 
3488       gc_epilogue(false);
3489     }
3490 
3491     // Print the remainder of the GC log output.
3492     if (evacuation_failed()) {
3493       log_info(gc)("To-space exhausted");
3494     }
3495 
3496     g1_policy()->print_phases();
3497     heap_transition.print();
3498 
3499     // It is not yet to safe to tell the concurrent mark to
3500     // start as we have some optional output below. We don't want the
3501     // output from the concurrent mark thread interfering with this
3502     // logging output either.
3503 
3504     _hrm.verify_optional();
3505     _verifier->verify_region_sets_optional();
3506 
3507     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3508     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3509 
3510     print_heap_after_gc();
3511     print_heap_regions();
3512     trace_heap_after_gc(_gc_tracer_stw);
3513 
3514     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3515     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3516     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3517     // before any GC notifications are raised.
3518     g1mm()->update_sizes();
3519 
3520     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3521     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3522     _gc_timer_stw->register_gc_end();
3523     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3524   }
3525   // It should now be safe to tell the concurrent mark thread to start
3526   // without its logging output interfering with the logging output
3527   // that came from the pause.
3528 
3529   if (should_start_conc_mark) {
3530     // CAUTION: after the doConcurrentMark() call below,
3531     // the concurrent marking thread(s) could be running
3532     // concurrently with us. Make sure that anything after
3533     // this point does not assume that we are the only GC thread
3534     // running. Note: of course, the actual marking work will
3535     // not start until the safepoint itself is released in
3536     // SuspendibleThreadSet::desynchronize().
3537     doConcurrentMark();
3538   }
3539 
3540   return true;
3541 }
3542 
3543 void G1CollectedHeap::restore_preserved_marks() {
3544   G1RestorePreservedMarksTask rpm_task(_preserved_objs);
3545   workers()->run_task(&rpm_task);
3546 }
3547 
3548 void G1CollectedHeap::remove_self_forwarding_pointers() {
3549   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3550   workers()->run_task(&rsfp_task);
3551 }
3552 
3553 void G1CollectedHeap::restore_after_evac_failure() {
3554   double remove_self_forwards_start = os::elapsedTime();
3555 
3556   remove_self_forwarding_pointers();
3557   restore_preserved_marks();
3558 
3559   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3560 }
3561 
3562 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3563   if (!_evacuation_failed) {
3564     _evacuation_failed = true;
3565   }
3566 
3567   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3568 
3569   // We want to call the "for_promotion_failure" version only in the
3570   // case of a promotion failure.
3571   if (m->must_be_preserved_for_promotion_failure(obj)) {
3572     OopAndMarkOop elem(obj, m);
3573     _preserved_objs[worker_id].push(elem);
3574   }
3575 }
3576 
3577 bool G1ParEvacuateFollowersClosure::offer_termination() {
3578   G1ParScanThreadState* const pss = par_scan_state();
3579   start_term_time();
3580   const bool res = terminator()->offer_termination();
3581   end_term_time();
3582   return res;
3583 }
3584 
3585 void G1ParEvacuateFollowersClosure::do_void() {
3586   G1ParScanThreadState* const pss = par_scan_state();
3587   pss->trim_queue();
3588   do {
3589     pss->steal_and_trim_queue(queues());
3590   } while (!offer_termination());
3591 }
3592 
3593 class G1ParTask : public AbstractGangTask {
3594 protected:
3595   G1CollectedHeap*         _g1h;
3596   G1ParScanThreadStateSet* _pss;
3597   RefToScanQueueSet*       _queues;
3598   G1RootProcessor*         _root_processor;
3599   ParallelTaskTerminator   _terminator;
3600   uint                     _n_workers;
3601 
3602 public:
3603   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3604     : AbstractGangTask("G1 collection"),
3605       _g1h(g1h),
3606       _pss(per_thread_states),
3607       _queues(task_queues),
3608       _root_processor(root_processor),
3609       _terminator(n_workers, _queues),
3610       _n_workers(n_workers)
3611   {}
3612 
3613   void work(uint worker_id) {
3614     if (worker_id >= _n_workers) return;  // no work needed this round
3615 
3616     double start_sec = os::elapsedTime();
3617     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3618 
3619     {
3620       ResourceMark rm;
3621       HandleMark   hm;
3622 
3623       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3624 
3625       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3626       pss->set_ref_processor(rp);
3627 
3628       double start_strong_roots_sec = os::elapsedTime();
3629 
3630       _root_processor->evacuate_roots(pss->closures(), worker_id);
3631 
3632       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
3633 
3634       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3635       // treating the nmethods visited to act as roots for concurrent marking.
3636       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3637       // objects copied by the current evacuation.
3638       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
3639                                                                              pss->closures()->weak_codeblobs(),
3640                                                                              worker_id);
3641 
3642       _pss->add_cards_scanned(worker_id, cards_scanned);
3643 
3644       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3645 
3646       double term_sec = 0.0;
3647       size_t evac_term_attempts = 0;
3648       {
3649         double start = os::elapsedTime();
3650         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3651         evac.do_void();
3652 
3653         evac_term_attempts = evac.term_attempts();
3654         term_sec = evac.term_time();
3655         double elapsed_sec = os::elapsedTime() - start;
3656         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3657         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3658         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3659       }
3660 
3661       assert(pss->queue_is_empty(), "should be empty");
3662 
3663       if (log_is_enabled(Debug, gc, task, stats)) {
3664         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3665         size_t lab_waste;
3666         size_t lab_undo_waste;
3667         pss->waste(lab_waste, lab_undo_waste);
3668         _g1h->print_termination_stats(worker_id,
3669                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3670                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3671                                       term_sec * 1000.0,                          /* evac term time */
3672                                       evac_term_attempts,                         /* evac term attempts */
3673                                       lab_waste,                                  /* alloc buffer waste */
3674                                       lab_undo_waste                              /* undo waste */
3675                                       );
3676       }
3677 
3678       // Close the inner scope so that the ResourceMark and HandleMark
3679       // destructors are executed here and are included as part of the
3680       // "GC Worker Time".
3681     }
3682     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3683   }
3684 };
3685 
3686 void G1CollectedHeap::print_termination_stats_hdr() {
3687   log_debug(gc, task, stats)("GC Termination Stats");
3688   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3689   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3690   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3691 }
3692 
3693 void G1CollectedHeap::print_termination_stats(uint worker_id,
3694                                               double elapsed_ms,
3695                                               double strong_roots_ms,
3696                                               double term_ms,
3697                                               size_t term_attempts,
3698                                               size_t alloc_buffer_waste,
3699                                               size_t undo_waste) const {
3700   log_debug(gc, task, stats)
3701               ("%3d %9.2f %9.2f %6.2f "
3702                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3703                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3704                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3705                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3706                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3707                alloc_buffer_waste * HeapWordSize / K,
3708                undo_waste * HeapWordSize / K);
3709 }
3710 
3711 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
3712 private:
3713   BoolObjectClosure* _is_alive;
3714   int _initial_string_table_size;
3715   int _initial_symbol_table_size;
3716 
3717   bool  _process_strings;
3718   int _strings_processed;
3719   int _strings_removed;
3720 
3721   bool  _process_symbols;
3722   int _symbols_processed;
3723   int _symbols_removed;
3724 
3725 public:
3726   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
3727     AbstractGangTask("String/Symbol Unlinking"),
3728     _is_alive(is_alive),
3729     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3730     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
3731 
3732     _initial_string_table_size = StringTable::the_table()->table_size();
3733     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3734     if (process_strings) {
3735       StringTable::clear_parallel_claimed_index();
3736     }
3737     if (process_symbols) {
3738       SymbolTable::clear_parallel_claimed_index();
3739     }
3740   }
3741 
3742   ~G1StringSymbolTableUnlinkTask() {
3743     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3744               "claim value %d after unlink less than initial string table size %d",
3745               StringTable::parallel_claimed_index(), _initial_string_table_size);
3746     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3747               "claim value %d after unlink less than initial symbol table size %d",
3748               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3749 
3750     log_info(gc, stringtable)(
3751         "Cleaned string and symbol table, "
3752         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3753         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3754         strings_processed(), strings_removed(),
3755         symbols_processed(), symbols_removed());
3756   }
3757 
3758   void work(uint worker_id) {
3759     int strings_processed = 0;
3760     int strings_removed = 0;
3761     int symbols_processed = 0;
3762     int symbols_removed = 0;
3763     if (_process_strings) {
3764       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3765       Atomic::add(strings_processed, &_strings_processed);
3766       Atomic::add(strings_removed, &_strings_removed);
3767     }
3768     if (_process_symbols) {
3769       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3770       Atomic::add(symbols_processed, &_symbols_processed);
3771       Atomic::add(symbols_removed, &_symbols_removed);
3772     }
3773   }
3774 
3775   size_t strings_processed() const { return (size_t)_strings_processed; }
3776   size_t strings_removed()   const { return (size_t)_strings_removed; }
3777 
3778   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3779   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3780 };
3781 
3782 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3783 private:
3784   static Monitor* _lock;
3785 
3786   BoolObjectClosure* const _is_alive;
3787   const bool               _unloading_occurred;
3788   const uint               _num_workers;
3789 
3790   // Variables used to claim nmethods.
3791   nmethod* _first_nmethod;
3792   volatile nmethod* _claimed_nmethod;
3793 
3794   // The list of nmethods that need to be processed by the second pass.
3795   volatile nmethod* _postponed_list;
3796   volatile uint     _num_entered_barrier;
3797 
3798  public:
3799   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3800       _is_alive(is_alive),
3801       _unloading_occurred(unloading_occurred),
3802       _num_workers(num_workers),
3803       _first_nmethod(NULL),
3804       _claimed_nmethod(NULL),
3805       _postponed_list(NULL),
3806       _num_entered_barrier(0)
3807   {
3808     nmethod::increase_unloading_clock();
3809     // Get first alive nmethod
3810     NMethodIterator iter = NMethodIterator();
3811     if(iter.next_alive()) {
3812       _first_nmethod = iter.method();
3813     }
3814     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
3815   }
3816 
3817   ~G1CodeCacheUnloadingTask() {
3818     CodeCache::verify_clean_inline_caches();
3819 
3820     CodeCache::set_needs_cache_clean(false);
3821     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3822 
3823     CodeCache::verify_icholder_relocations();
3824   }
3825 
3826  private:
3827   void add_to_postponed_list(nmethod* nm) {
3828       nmethod* old;
3829       do {
3830         old = (nmethod*)_postponed_list;
3831         nm->set_unloading_next(old);
3832       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
3833   }
3834 
3835   void clean_nmethod(nmethod* nm) {
3836     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3837 
3838     if (postponed) {
3839       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3840       add_to_postponed_list(nm);
3841     }
3842 
3843     // Mark that this thread has been cleaned/unloaded.
3844     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3845     nm->set_unloading_clock(nmethod::global_unloading_clock());
3846   }
3847 
3848   void clean_nmethod_postponed(nmethod* nm) {
3849     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3850   }
3851 
3852   static const int MaxClaimNmethods = 16;
3853 
3854   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
3855     nmethod* first;
3856     NMethodIterator last;
3857 
3858     do {
3859       *num_claimed_nmethods = 0;
3860 
3861       first = (nmethod*)_claimed_nmethod;
3862       last = NMethodIterator(first);
3863 
3864       if (first != NULL) {
3865 
3866         for (int i = 0; i < MaxClaimNmethods; i++) {
3867           if (!last.next_alive()) {
3868             break;
3869           }
3870           claimed_nmethods[i] = last.method();
3871           (*num_claimed_nmethods)++;
3872         }
3873       }
3874 
3875     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
3876   }
3877 
3878   nmethod* claim_postponed_nmethod() {
3879     nmethod* claim;
3880     nmethod* next;
3881 
3882     do {
3883       claim = (nmethod*)_postponed_list;
3884       if (claim == NULL) {
3885         return NULL;
3886       }
3887 
3888       next = claim->unloading_next();
3889 
3890     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
3891 
3892     return claim;
3893   }
3894 
3895  public:
3896   // Mark that we're done with the first pass of nmethod cleaning.
3897   void barrier_mark(uint worker_id) {
3898     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3899     _num_entered_barrier++;
3900     if (_num_entered_barrier == _num_workers) {
3901       ml.notify_all();
3902     }
3903   }
3904 
3905   // See if we have to wait for the other workers to
3906   // finish their first-pass nmethod cleaning work.
3907   void barrier_wait(uint worker_id) {
3908     if (_num_entered_barrier < _num_workers) {
3909       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3910       while (_num_entered_barrier < _num_workers) {
3911           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3912       }
3913     }
3914   }
3915 
3916   // Cleaning and unloading of nmethods. Some work has to be postponed
3917   // to the second pass, when we know which nmethods survive.
3918   void work_first_pass(uint worker_id) {
3919     // The first nmethods is claimed by the first worker.
3920     if (worker_id == 0 && _first_nmethod != NULL) {
3921       clean_nmethod(_first_nmethod);
3922       _first_nmethod = NULL;
3923     }
3924 
3925     int num_claimed_nmethods;
3926     nmethod* claimed_nmethods[MaxClaimNmethods];
3927 
3928     while (true) {
3929       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3930 
3931       if (num_claimed_nmethods == 0) {
3932         break;
3933       }
3934 
3935       for (int i = 0; i < num_claimed_nmethods; i++) {
3936         clean_nmethod(claimed_nmethods[i]);
3937       }
3938     }
3939   }
3940 
3941   void work_second_pass(uint worker_id) {
3942     nmethod* nm;
3943     // Take care of postponed nmethods.
3944     while ((nm = claim_postponed_nmethod()) != NULL) {
3945       clean_nmethod_postponed(nm);
3946     }
3947   }
3948 };
3949 
3950 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3951 
3952 class G1KlassCleaningTask : public StackObj {
3953   BoolObjectClosure*                      _is_alive;
3954   volatile jint                           _clean_klass_tree_claimed;
3955   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3956 
3957  public:
3958   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3959       _is_alive(is_alive),
3960       _clean_klass_tree_claimed(0),
3961       _klass_iterator() {
3962   }
3963 
3964  private:
3965   bool claim_clean_klass_tree_task() {
3966     if (_clean_klass_tree_claimed) {
3967       return false;
3968     }
3969 
3970     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
3971   }
3972 
3973   InstanceKlass* claim_next_klass() {
3974     Klass* klass;
3975     do {
3976       klass =_klass_iterator.next_klass();
3977     } while (klass != NULL && !klass->is_instance_klass());
3978 
3979     // this can be null so don't call InstanceKlass::cast
3980     return static_cast<InstanceKlass*>(klass);
3981   }
3982 
3983 public:
3984 
3985   void clean_klass(InstanceKlass* ik) {
3986     ik->clean_weak_instanceklass_links(_is_alive);
3987   }
3988 
3989   void work() {
3990     ResourceMark rm;
3991 
3992     // One worker will clean the subklass/sibling klass tree.
3993     if (claim_clean_klass_tree_task()) {
3994       Klass::clean_subklass_tree(_is_alive);
3995     }
3996 
3997     // All workers will help cleaning the classes,
3998     InstanceKlass* klass;
3999     while ((klass = claim_next_klass()) != NULL) {
4000       clean_klass(klass);
4001     }
4002   }
4003 };
4004 
4005 // To minimize the remark pause times, the tasks below are done in parallel.
4006 class G1ParallelCleaningTask : public AbstractGangTask {
4007 private:
4008   G1StringSymbolTableUnlinkTask _string_symbol_task;
4009   G1CodeCacheUnloadingTask      _code_cache_task;
4010   G1KlassCleaningTask           _klass_cleaning_task;
4011 
4012 public:
4013   // The constructor is run in the VMThread.
4014   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4015       AbstractGangTask("Parallel Cleaning"),
4016       _string_symbol_task(is_alive, process_strings, process_symbols),
4017       _code_cache_task(num_workers, is_alive, unloading_occurred),
4018       _klass_cleaning_task(is_alive) {
4019   }
4020 
4021   // The parallel work done by all worker threads.
4022   void work(uint worker_id) {
4023     // Do first pass of code cache cleaning.
4024     _code_cache_task.work_first_pass(worker_id);
4025 
4026     // Let the threads mark that the first pass is done.
4027     _code_cache_task.barrier_mark(worker_id);
4028 
4029     // Clean the Strings and Symbols.
4030     _string_symbol_task.work(worker_id);
4031 
4032     // Wait for all workers to finish the first code cache cleaning pass.
4033     _code_cache_task.barrier_wait(worker_id);
4034 
4035     // Do the second code cache cleaning work, which realize on
4036     // the liveness information gathered during the first pass.
4037     _code_cache_task.work_second_pass(worker_id);
4038 
4039     // Clean all klasses that were not unloaded.
4040     _klass_cleaning_task.work();
4041   }
4042 };
4043 
4044 
4045 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4046                                         bool process_strings,
4047                                         bool process_symbols,
4048                                         bool class_unloading_occurred) {
4049   uint n_workers = workers()->active_workers();
4050 
4051   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4052                                         n_workers, class_unloading_occurred);
4053   workers()->run_task(&g1_unlink_task);
4054 }
4055 
4056 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4057                                                      bool process_strings, bool process_symbols) {
4058   { // Timing scope
4059     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4060     workers()->run_task(&g1_unlink_task);
4061   }
4062 }
4063 
4064 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4065  private:
4066   DirtyCardQueueSet* _queue;
4067   G1CollectedHeap* _g1h;
4068  public:
4069   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
4070     _queue(queue), _g1h(g1h) { }
4071 
4072   virtual void work(uint worker_id) {
4073     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
4074     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4075 
4076     RedirtyLoggedCardTableEntryClosure cl(_g1h);
4077     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4078 
4079     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
4080   }
4081 };
4082 
4083 void G1CollectedHeap::redirty_logged_cards() {
4084   double redirty_logged_cards_start = os::elapsedTime();
4085 
4086   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
4087   dirty_card_queue_set().reset_for_par_iteration();
4088   workers()->run_task(&redirty_task);
4089 
4090   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4091   dcq.merge_bufferlists(&dirty_card_queue_set());
4092   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4093 
4094   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4095 }
4096 
4097 // Weak Reference Processing support
4098 
4099 // An always "is_alive" closure that is used to preserve referents.
4100 // If the object is non-null then it's alive.  Used in the preservation
4101 // of referent objects that are pointed to by reference objects
4102 // discovered by the CM ref processor.
4103 class G1AlwaysAliveClosure: public BoolObjectClosure {
4104   G1CollectedHeap* _g1;
4105 public:
4106   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4107   bool do_object_b(oop p) {
4108     if (p != NULL) {
4109       return true;
4110     }
4111     return false;
4112   }
4113 };
4114 
4115 bool G1STWIsAliveClosure::do_object_b(oop p) {
4116   // An object is reachable if it is outside the collection set,
4117   // or is inside and copied.
4118   return !_g1->is_in_cset(p) || p->is_forwarded();
4119 }
4120 
4121 // Non Copying Keep Alive closure
4122 class G1KeepAliveClosure: public OopClosure {
4123   G1CollectedHeap* _g1;
4124 public:
4125   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4126   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4127   void do_oop(oop* p) {
4128     oop obj = *p;
4129     assert(obj != NULL, "the caller should have filtered out NULL values");
4130 
4131     const InCSetState cset_state = _g1->in_cset_state(obj);
4132     if (!cset_state.is_in_cset_or_humongous()) {
4133       return;
4134     }
4135     if (cset_state.is_in_cset()) {
4136       assert( obj->is_forwarded(), "invariant" );
4137       *p = obj->forwardee();
4138     } else {
4139       assert(!obj->is_forwarded(), "invariant" );
4140       assert(cset_state.is_humongous(),
4141              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4142       _g1->set_humongous_is_live(obj);
4143     }
4144   }
4145 };
4146 
4147 // Copying Keep Alive closure - can be called from both
4148 // serial and parallel code as long as different worker
4149 // threads utilize different G1ParScanThreadState instances
4150 // and different queues.
4151 
4152 class G1CopyingKeepAliveClosure: public OopClosure {
4153   G1CollectedHeap*         _g1h;
4154   OopClosure*              _copy_non_heap_obj_cl;
4155   G1ParScanThreadState*    _par_scan_state;
4156 
4157 public:
4158   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4159                             OopClosure* non_heap_obj_cl,
4160                             G1ParScanThreadState* pss):
4161     _g1h(g1h),
4162     _copy_non_heap_obj_cl(non_heap_obj_cl),
4163     _par_scan_state(pss)
4164   {}
4165 
4166   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4167   virtual void do_oop(      oop* p) { do_oop_work(p); }
4168 
4169   template <class T> void do_oop_work(T* p) {
4170     oop obj = oopDesc::load_decode_heap_oop(p);
4171 
4172     if (_g1h->is_in_cset_or_humongous(obj)) {
4173       // If the referent object has been forwarded (either copied
4174       // to a new location or to itself in the event of an
4175       // evacuation failure) then we need to update the reference
4176       // field and, if both reference and referent are in the G1
4177       // heap, update the RSet for the referent.
4178       //
4179       // If the referent has not been forwarded then we have to keep
4180       // it alive by policy. Therefore we have copy the referent.
4181       //
4182       // If the reference field is in the G1 heap then we can push
4183       // on the PSS queue. When the queue is drained (after each
4184       // phase of reference processing) the object and it's followers
4185       // will be copied, the reference field set to point to the
4186       // new location, and the RSet updated. Otherwise we need to
4187       // use the the non-heap or metadata closures directly to copy
4188       // the referent object and update the pointer, while avoiding
4189       // updating the RSet.
4190 
4191       if (_g1h->is_in_g1_reserved(p)) {
4192         _par_scan_state->push_on_queue(p);
4193       } else {
4194         assert(!Metaspace::contains((const void*)p),
4195                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4196         _copy_non_heap_obj_cl->do_oop(p);
4197       }
4198     }
4199   }
4200 };
4201 
4202 // Serial drain queue closure. Called as the 'complete_gc'
4203 // closure for each discovered list in some of the
4204 // reference processing phases.
4205 
4206 class G1STWDrainQueueClosure: public VoidClosure {
4207 protected:
4208   G1CollectedHeap* _g1h;
4209   G1ParScanThreadState* _par_scan_state;
4210 
4211   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4212 
4213 public:
4214   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4215     _g1h(g1h),
4216     _par_scan_state(pss)
4217   { }
4218 
4219   void do_void() {
4220     G1ParScanThreadState* const pss = par_scan_state();
4221     pss->trim_queue();
4222   }
4223 };
4224 
4225 // Parallel Reference Processing closures
4226 
4227 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4228 // processing during G1 evacuation pauses.
4229 
4230 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4231 private:
4232   G1CollectedHeap*          _g1h;
4233   G1ParScanThreadStateSet*  _pss;
4234   RefToScanQueueSet*        _queues;
4235   WorkGang*                 _workers;
4236   uint                      _active_workers;
4237 
4238 public:
4239   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4240                            G1ParScanThreadStateSet* per_thread_states,
4241                            WorkGang* workers,
4242                            RefToScanQueueSet *task_queues,
4243                            uint n_workers) :
4244     _g1h(g1h),
4245     _pss(per_thread_states),
4246     _queues(task_queues),
4247     _workers(workers),
4248     _active_workers(n_workers)
4249   {
4250     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
4251   }
4252 
4253   // Executes the given task using concurrent marking worker threads.
4254   virtual void execute(ProcessTask& task);
4255   virtual void execute(EnqueueTask& task);
4256 };
4257 
4258 // Gang task for possibly parallel reference processing
4259 
4260 class G1STWRefProcTaskProxy: public AbstractGangTask {
4261   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4262   ProcessTask&     _proc_task;
4263   G1CollectedHeap* _g1h;
4264   G1ParScanThreadStateSet* _pss;
4265   RefToScanQueueSet* _task_queues;
4266   ParallelTaskTerminator* _terminator;
4267 
4268 public:
4269   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4270                         G1CollectedHeap* g1h,
4271                         G1ParScanThreadStateSet* per_thread_states,
4272                         RefToScanQueueSet *task_queues,
4273                         ParallelTaskTerminator* terminator) :
4274     AbstractGangTask("Process reference objects in parallel"),
4275     _proc_task(proc_task),
4276     _g1h(g1h),
4277     _pss(per_thread_states),
4278     _task_queues(task_queues),
4279     _terminator(terminator)
4280   {}
4281 
4282   virtual void work(uint worker_id) {
4283     // The reference processing task executed by a single worker.
4284     ResourceMark rm;
4285     HandleMark   hm;
4286 
4287     G1STWIsAliveClosure is_alive(_g1h);
4288 
4289     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4290     pss->set_ref_processor(NULL);
4291 
4292     // Keep alive closure.
4293     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4294 
4295     // Complete GC closure
4296     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4297 
4298     // Call the reference processing task's work routine.
4299     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4300 
4301     // Note we cannot assert that the refs array is empty here as not all
4302     // of the processing tasks (specifically phase2 - pp2_work) execute
4303     // the complete_gc closure (which ordinarily would drain the queue) so
4304     // the queue may not be empty.
4305   }
4306 };
4307 
4308 // Driver routine for parallel reference processing.
4309 // Creates an instance of the ref processing gang
4310 // task and has the worker threads execute it.
4311 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4312   assert(_workers != NULL, "Need parallel worker threads.");
4313 
4314   ParallelTaskTerminator terminator(_active_workers, _queues);
4315   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4316 
4317   _workers->run_task(&proc_task_proxy);
4318 }
4319 
4320 // Gang task for parallel reference enqueueing.
4321 
4322 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4323   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4324   EnqueueTask& _enq_task;
4325 
4326 public:
4327   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4328     AbstractGangTask("Enqueue reference objects in parallel"),
4329     _enq_task(enq_task)
4330   { }
4331 
4332   virtual void work(uint worker_id) {
4333     _enq_task.work(worker_id);
4334   }
4335 };
4336 
4337 // Driver routine for parallel reference enqueueing.
4338 // Creates an instance of the ref enqueueing gang
4339 // task and has the worker threads execute it.
4340 
4341 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4342   assert(_workers != NULL, "Need parallel worker threads.");
4343 
4344   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4345 
4346   _workers->run_task(&enq_task_proxy);
4347 }
4348 
4349 // End of weak reference support closures
4350 
4351 // Abstract task used to preserve (i.e. copy) any referent objects
4352 // that are in the collection set and are pointed to by reference
4353 // objects discovered by the CM ref processor.
4354 
4355 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4356 protected:
4357   G1CollectedHeap*         _g1h;
4358   G1ParScanThreadStateSet* _pss;
4359   RefToScanQueueSet*       _queues;
4360   ParallelTaskTerminator   _terminator;
4361   uint                     _n_workers;
4362 
4363 public:
4364   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4365     AbstractGangTask("ParPreserveCMReferents"),
4366     _g1h(g1h),
4367     _pss(per_thread_states),
4368     _queues(task_queues),
4369     _terminator(workers, _queues),
4370     _n_workers(workers)
4371   {
4372     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4373   }
4374 
4375   void work(uint worker_id) {
4376     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4377 
4378     ResourceMark rm;
4379     HandleMark   hm;
4380 
4381     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4382     pss->set_ref_processor(NULL);
4383     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4384 
4385     // Is alive closure
4386     G1AlwaysAliveClosure always_alive(_g1h);
4387 
4388     // Copying keep alive closure. Applied to referent objects that need
4389     // to be copied.
4390     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4391 
4392     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4393 
4394     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4395     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4396 
4397     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4398     // So this must be true - but assert just in case someone decides to
4399     // change the worker ids.
4400     assert(worker_id < limit, "sanity");
4401     assert(!rp->discovery_is_atomic(), "check this code");
4402 
4403     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4404     for (uint idx = worker_id; idx < limit; idx += stride) {
4405       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4406 
4407       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4408       while (iter.has_next()) {
4409         // Since discovery is not atomic for the CM ref processor, we
4410         // can see some null referent objects.
4411         iter.load_ptrs(DEBUG_ONLY(true));
4412         oop ref = iter.obj();
4413 
4414         // This will filter nulls.
4415         if (iter.is_referent_alive()) {
4416           iter.make_referent_alive();
4417         }
4418         iter.move_to_next();
4419       }
4420     }
4421 
4422     // Drain the queue - which may cause stealing
4423     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4424     drain_queue.do_void();
4425     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4426     assert(pss->queue_is_empty(), "should be");
4427   }
4428 };
4429 
4430 void G1CollectedHeap::process_weak_jni_handles() {
4431   double ref_proc_start = os::elapsedTime();
4432 
4433   G1STWIsAliveClosure is_alive(this);
4434   G1KeepAliveClosure keep_alive(this);
4435   JNIHandles::weak_oops_do(&is_alive, &keep_alive);
4436 
4437   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4438   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4439 }
4440 
4441 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4442   double preserve_cm_referents_start = os::elapsedTime();
4443   // Any reference objects, in the collection set, that were 'discovered'
4444   // by the CM ref processor should have already been copied (either by
4445   // applying the external root copy closure to the discovered lists, or
4446   // by following an RSet entry).
4447   //
4448   // But some of the referents, that are in the collection set, that these
4449   // reference objects point to may not have been copied: the STW ref
4450   // processor would have seen that the reference object had already
4451   // been 'discovered' and would have skipped discovering the reference,
4452   // but would not have treated the reference object as a regular oop.
4453   // As a result the copy closure would not have been applied to the
4454   // referent object.
4455   //
4456   // We need to explicitly copy these referent objects - the references
4457   // will be processed at the end of remarking.
4458   //
4459   // We also need to do this copying before we process the reference
4460   // objects discovered by the STW ref processor in case one of these
4461   // referents points to another object which is also referenced by an
4462   // object discovered by the STW ref processor.
4463 
4464   uint no_of_gc_workers = workers()->active_workers();
4465 
4466   G1ParPreserveCMReferentsTask keep_cm_referents(this,
4467                                                  per_thread_states,
4468                                                  no_of_gc_workers,
4469                                                  _task_queues);
4470   workers()->run_task(&keep_cm_referents);
4471 
4472   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms((os::elapsedTime() - preserve_cm_referents_start) * 1000.0);
4473 }
4474 
4475 // Weak Reference processing during an evacuation pause (part 1).
4476 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4477   double ref_proc_start = os::elapsedTime();
4478 
4479   ReferenceProcessor* rp = _ref_processor_stw;
4480   assert(rp->discovery_enabled(), "should have been enabled");
4481 
4482   // Closure to test whether a referent is alive.
4483   G1STWIsAliveClosure is_alive(this);
4484 
4485   // Even when parallel reference processing is enabled, the processing
4486   // of JNI refs is serial and performed serially by the current thread
4487   // rather than by a worker. The following PSS will be used for processing
4488   // JNI refs.
4489 
4490   // Use only a single queue for this PSS.
4491   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4492   pss->set_ref_processor(NULL);
4493   assert(pss->queue_is_empty(), "pre-condition");
4494 
4495   // Keep alive closure.
4496   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4497 
4498   // Serial Complete GC closure
4499   G1STWDrainQueueClosure drain_queue(this, pss);
4500 
4501   // Setup the soft refs policy...
4502   rp->setup_policy(false);
4503 
4504   ReferenceProcessorStats stats;
4505   if (!rp->processing_is_mt()) {
4506     // Serial reference processing...
4507     stats = rp->process_discovered_references(&is_alive,
4508                                               &keep_alive,
4509                                               &drain_queue,
4510                                               NULL,
4511                                               _gc_timer_stw);
4512   } else {
4513     uint no_of_gc_workers = workers()->active_workers();
4514 
4515     // Parallel reference processing
4516     assert(no_of_gc_workers <= rp->max_num_q(),
4517            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4518            no_of_gc_workers,  rp->max_num_q());
4519 
4520     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4521     stats = rp->process_discovered_references(&is_alive,
4522                                               &keep_alive,
4523                                               &drain_queue,
4524                                               &par_task_executor,
4525                                               _gc_timer_stw);
4526   }
4527 
4528   _gc_tracer_stw->report_gc_reference_stats(stats);
4529 
4530   // We have completed copying any necessary live referent objects.
4531   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4532 
4533   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4534   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4535 }
4536 
4537 // Weak Reference processing during an evacuation pause (part 2).
4538 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4539   double ref_enq_start = os::elapsedTime();
4540 
4541   ReferenceProcessor* rp = _ref_processor_stw;
4542   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4543 
4544   // Now enqueue any remaining on the discovered lists on to
4545   // the pending list.
4546   if (!rp->processing_is_mt()) {
4547     // Serial reference processing...
4548     rp->enqueue_discovered_references();
4549   } else {
4550     // Parallel reference enqueueing
4551 
4552     uint n_workers = workers()->active_workers();
4553 
4554     assert(n_workers <= rp->max_num_q(),
4555            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4556            n_workers,  rp->max_num_q());
4557 
4558     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4559     rp->enqueue_discovered_references(&par_task_executor);
4560   }
4561 
4562   rp->verify_no_references_recorded();
4563   assert(!rp->discovery_enabled(), "should have been disabled");
4564 
4565   // FIXME
4566   // CM's reference processing also cleans up the string and symbol tables.
4567   // Should we do that here also? We could, but it is a serial operation
4568   // and could significantly increase the pause time.
4569 
4570   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4571   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4572 }
4573 
4574 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4575   double merge_pss_time_start = os::elapsedTime();
4576   per_thread_states->flush();
4577   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4578 }
4579 
4580 void G1CollectedHeap::pre_evacuate_collection_set() {
4581   _expand_heap_after_alloc_failure = true;
4582   _evacuation_failed = false;
4583 
4584   // Disable the hot card cache.
4585   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
4586   hot_card_cache->reset_hot_cache_claimed_index();
4587   hot_card_cache->set_use_cache(false);
4588 
4589   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4590 }
4591 
4592 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4593   // Should G1EvacuationFailureALot be in effect for this GC?
4594   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4595 
4596   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4597   double start_par_time_sec = os::elapsedTime();
4598   double end_par_time_sec;
4599 
4600   {
4601     const uint n_workers = workers()->active_workers();
4602     G1RootProcessor root_processor(this, n_workers);
4603     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4604     // InitialMark needs claim bits to keep track of the marked-through CLDs.
4605     if (collector_state()->during_initial_mark_pause()) {
4606       ClassLoaderDataGraph::clear_claimed_marks();
4607     }
4608 
4609     print_termination_stats_hdr();
4610 
4611     workers()->run_task(&g1_par_task);
4612     end_par_time_sec = os::elapsedTime();
4613 
4614     // Closing the inner scope will execute the destructor
4615     // for the G1RootProcessor object. We record the current
4616     // elapsed time before closing the scope so that time
4617     // taken for the destructor is NOT included in the
4618     // reported parallel time.
4619   }
4620 
4621   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4622 
4623   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4624   phase_times->record_par_time(par_time_ms);
4625 
4626   double code_root_fixup_time_ms =
4627         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4628   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4629 }
4630 
4631 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4632   // Process any discovered reference objects - we have
4633   // to do this _before_ we retire the GC alloc regions
4634   // as we may have to copy some 'reachable' referent
4635   // objects (and their reachable sub-graphs) that were
4636   // not copied during the pause.
4637   if (g1_policy()->should_process_references()) {
4638     preserve_cm_referents(per_thread_states);
4639     process_discovered_references(per_thread_states);
4640   } else {
4641     ref_processor_stw()->verify_no_references_recorded();
4642     process_weak_jni_handles();
4643   }
4644 
4645   if (G1StringDedup::is_enabled()) {
4646     double fixup_start = os::elapsedTime();
4647 
4648     G1STWIsAliveClosure is_alive(this);
4649     G1KeepAliveClosure keep_alive(this);
4650     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4651 
4652     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4653     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4654   }
4655 
4656   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4657 
4658   if (evacuation_failed()) {
4659     restore_after_evac_failure();
4660 
4661     // Reset the G1EvacuationFailureALot counters and flags
4662     // Note: the values are reset only when an actual
4663     // evacuation failure occurs.
4664     NOT_PRODUCT(reset_evacuation_should_fail();)
4665   }
4666 
4667   // Enqueue any remaining references remaining on the STW
4668   // reference processor's discovered lists. We need to do
4669   // this after the card table is cleaned (and verified) as
4670   // the act of enqueueing entries on to the pending list
4671   // will log these updates (and dirty their associated
4672   // cards). We need these updates logged to update any
4673   // RSets.
4674   if (g1_policy()->should_process_references()) {
4675     enqueue_discovered_references(per_thread_states);
4676   } else {
4677     g1_policy()->phase_times()->record_ref_enq_time(0);
4678   }
4679 
4680   _allocator->release_gc_alloc_regions(evacuation_info);
4681 
4682   merge_per_thread_state_info(per_thread_states);
4683 
4684   // Reset and re-enable the hot card cache.
4685   // Note the counts for the cards in the regions in the
4686   // collection set are reset when the collection set is freed.
4687   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
4688   hot_card_cache->reset_hot_cache();
4689   hot_card_cache->set_use_cache(true);
4690 
4691   purge_code_root_memory();
4692 
4693   redirty_logged_cards();
4694 #if defined(COMPILER2) || INCLUDE_JVMCI
4695   DerivedPointerTable::update_pointers();
4696 #endif
4697 }
4698 
4699 void G1CollectedHeap::record_obj_copy_mem_stats() {
4700   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4701 
4702   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4703                                                create_g1_evac_summary(&_old_evac_stats));
4704 }
4705 
4706 void G1CollectedHeap::free_region(HeapRegion* hr,
4707                                   FreeRegionList* free_list,
4708                                   bool par,
4709                                   bool locked) {
4710   assert(!hr->is_free(), "the region should not be free");
4711   assert(!hr->is_empty(), "the region should not be empty");
4712   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4713   assert(free_list != NULL, "pre-condition");
4714 
4715   if (G1VerifyBitmaps) {
4716     MemRegion mr(hr->bottom(), hr->end());
4717     concurrent_mark()->clearRangePrevBitmap(mr);
4718   }
4719 
4720   // Clear the card counts for this region.
4721   // Note: we only need to do this if the region is not young
4722   // (since we don't refine cards in young regions).
4723   if (!hr->is_young()) {
4724     _cg1r->hot_card_cache()->reset_card_counts(hr);
4725   }
4726   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
4727   free_list->add_ordered(hr);
4728 }
4729 
4730 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4731                                             FreeRegionList* free_list,
4732                                             bool par) {
4733   assert(hr->is_humongous(), "this is only for humongous regions");
4734   assert(free_list != NULL, "pre-condition");
4735   hr->clear_humongous();
4736   free_region(hr, free_list, par);
4737 }
4738 
4739 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4740                                            const uint humongous_regions_removed) {
4741   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4742     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4743     _old_set.bulk_remove(old_regions_removed);
4744     _humongous_set.bulk_remove(humongous_regions_removed);
4745   }
4746 
4747 }
4748 
4749 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4750   assert(list != NULL, "list can't be null");
4751   if (!list->is_empty()) {
4752     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4753     _hrm.insert_list_into_free_list(list);
4754   }
4755 }
4756 
4757 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4758   decrease_used(bytes);
4759 }
4760 
4761 class G1ParCleanupCTTask : public AbstractGangTask {
4762   G1SATBCardTableModRefBS* _ct_bs;
4763   G1CollectedHeap* _g1h;
4764   HeapRegion* volatile _su_head;
4765 public:
4766   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
4767                      G1CollectedHeap* g1h) :
4768     AbstractGangTask("G1 Par Cleanup CT Task"),
4769     _ct_bs(ct_bs), _g1h(g1h) { }
4770 
4771   void work(uint worker_id) {
4772     HeapRegion* r;
4773     while (r = _g1h->pop_dirty_cards_region()) {
4774       clear_cards(r);
4775     }
4776   }
4777 
4778   void clear_cards(HeapRegion* r) {
4779     // Cards of the survivors should have already been dirtied.
4780     if (!r->is_survivor()) {
4781       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
4782     }
4783   }
4784 };
4785 
4786 class G1ParScrubRemSetTask: public AbstractGangTask {
4787 protected:
4788   G1RemSet* _g1rs;
4789   BitMap* _region_bm;
4790   BitMap* _card_bm;
4791   HeapRegionClaimer _hrclaimer;
4792 
4793 public:
4794   G1ParScrubRemSetTask(G1RemSet* g1_rs, BitMap* region_bm, BitMap* card_bm, uint num_workers) :
4795     AbstractGangTask("G1 ScrubRS"),
4796     _g1rs(g1_rs),
4797     _region_bm(region_bm),
4798     _card_bm(card_bm),
4799     _hrclaimer(num_workers) {
4800   }
4801 
4802   void work(uint worker_id) {
4803     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
4804   }
4805 };
4806 
4807 void G1CollectedHeap::scrub_rem_set(BitMap* region_bm, BitMap* card_bm) {
4808   uint num_workers = workers()->active_workers();
4809   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), region_bm, card_bm, num_workers);
4810   workers()->run_task(&g1_par_scrub_rs_task);
4811 }
4812 
4813 void G1CollectedHeap::cleanUpCardTable() {
4814   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
4815   double start = os::elapsedTime();
4816 
4817   {
4818     // Iterate over the dirty cards region list.
4819     G1ParCleanupCTTask cleanup_task(ct_bs, this);
4820 
4821     workers()->run_task(&cleanup_task);
4822 #ifndef PRODUCT
4823     _verifier->verify_card_table_cleanup();
4824 #endif
4825   }
4826 
4827   double elapsed = os::elapsedTime() - start;
4828   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
4829 }
4830 
4831 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4832   size_t pre_used = 0;
4833   FreeRegionList local_free_list("Local List for CSet Freeing");
4834 
4835   double young_time_ms     = 0.0;
4836   double non_young_time_ms = 0.0;
4837 
4838   // Since the collection set is a superset of the the young list,
4839   // all we need to do to clear the young list is clear its
4840   // head and length, and unlink any young regions in the code below
4841   _young_list->clear();
4842 
4843   G1CollectorPolicy* policy = g1_policy();
4844 
4845   double start_sec = os::elapsedTime();
4846   bool non_young = true;
4847 
4848   HeapRegion* cur = cs_head;
4849   int age_bound = -1;
4850   size_t rs_lengths = 0;
4851 
4852   while (cur != NULL) {
4853     assert(!is_on_master_free_list(cur), "sanity");
4854     if (non_young) {
4855       if (cur->is_young()) {
4856         double end_sec = os::elapsedTime();
4857         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4858         non_young_time_ms += elapsed_ms;
4859 
4860         start_sec = os::elapsedTime();
4861         non_young = false;
4862       }
4863     } else {
4864       if (!cur->is_young()) {
4865         double end_sec = os::elapsedTime();
4866         double elapsed_ms = (end_sec - start_sec) * 1000.0;
4867         young_time_ms += elapsed_ms;
4868 
4869         start_sec = os::elapsedTime();
4870         non_young = true;
4871       }
4872     }
4873 
4874     rs_lengths += cur->rem_set()->occupied_locked();
4875 
4876     HeapRegion* next = cur->next_in_collection_set();
4877     assert(cur->in_collection_set(), "bad CS");
4878     cur->set_next_in_collection_set(NULL);
4879     clear_in_cset(cur);
4880 
4881     if (cur->is_young()) {
4882       int index = cur->young_index_in_cset();
4883       assert(index != -1, "invariant");
4884       assert((uint) index < collection_set()->young_region_length(), "invariant");
4885       size_t words_survived = surviving_young_words[index];
4886       cur->record_surv_words_in_group(words_survived);
4887 
4888       // At this point the we have 'popped' cur from the collection set
4889       // (linked via next_in_collection_set()) but it is still in the
4890       // young list (linked via next_young_region()). Clear the
4891       // _next_young_region field.
4892       cur->set_next_young_region(NULL);
4893     } else {
4894       int index = cur->young_index_in_cset();
4895       assert(index == -1, "invariant");
4896     }
4897 
4898     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
4899             (!cur->is_young() && cur->young_index_in_cset() == -1),
4900             "invariant" );
4901 
4902     if (!cur->evacuation_failed()) {
4903       MemRegion used_mr = cur->used_region();
4904 
4905       // And the region is empty.
4906       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
4907       pre_used += cur->used();
4908       free_region(cur, &local_free_list, false /* par */, true /* locked */);
4909     } else {
4910       cur->uninstall_surv_rate_group();
4911       if (cur->is_young()) {
4912         cur->set_young_index_in_cset(-1);
4913       }
4914       cur->set_evacuation_failed(false);
4915       // When moving a young gen region to old gen, we "allocate" that whole region
4916       // there. This is in addition to any already evacuated objects. Notify the
4917       // policy about that.
4918       // Old gen regions do not cause an additional allocation: both the objects
4919       // still in the region and the ones already moved are accounted for elsewhere.
4920       if (cur->is_young()) {
4921         policy->add_bytes_allocated_in_old_since_last_gc(HeapRegion::GrainBytes);
4922       }
4923       // The region is now considered to be old.
4924       cur->set_old();
4925       // Do some allocation statistics accounting. Regions that failed evacuation
4926       // are always made old, so there is no need to update anything in the young
4927       // gen statistics, but we need to update old gen statistics.
4928       size_t used_words = cur->marked_bytes() / HeapWordSize;
4929       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
4930       _old_set.add(cur);
4931       evacuation_info.increment_collectionset_used_after(cur->used());
4932     }
4933     cur = next;
4934   }
4935 
4936   evacuation_info.set_regions_freed(local_free_list.length());
4937   policy->record_max_rs_lengths(rs_lengths);
4938   policy->cset_regions_freed();
4939 
4940   double end_sec = os::elapsedTime();
4941   double elapsed_ms = (end_sec - start_sec) * 1000.0;
4942 
4943   if (non_young) {
4944     non_young_time_ms += elapsed_ms;
4945   } else {
4946     young_time_ms += elapsed_ms;
4947   }
4948 
4949   prepend_to_freelist(&local_free_list);
4950   decrement_summary_bytes(pre_used);
4951   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
4952   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
4953 }
4954 
4955 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4956  private:
4957   FreeRegionList* _free_region_list;
4958   HeapRegionSet* _proxy_set;
4959   uint _humongous_regions_removed;
4960   size_t _freed_bytes;
4961  public:
4962 
4963   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4964     _free_region_list(free_region_list), _humongous_regions_removed(0), _freed_bytes(0) {
4965   }
4966 
4967   virtual bool doHeapRegion(HeapRegion* r) {
4968     if (!r->is_starts_humongous()) {
4969       return false;
4970     }
4971 
4972     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4973 
4974     oop obj = (oop)r->bottom();
4975     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
4976 
4977     // The following checks whether the humongous object is live are sufficient.
4978     // The main additional check (in addition to having a reference from the roots
4979     // or the young gen) is whether the humongous object has a remembered set entry.
4980     //
4981     // A humongous object cannot be live if there is no remembered set for it
4982     // because:
4983     // - there can be no references from within humongous starts regions referencing
4984     // the object because we never allocate other objects into them.
4985     // (I.e. there are no intra-region references that may be missed by the
4986     // remembered set)
4987     // - as soon there is a remembered set entry to the humongous starts region
4988     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4989     // until the end of a concurrent mark.
4990     //
4991     // It is not required to check whether the object has been found dead by marking
4992     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4993     // all objects allocated during that time are considered live.
4994     // SATB marking is even more conservative than the remembered set.
4995     // So if at this point in the collection there is no remembered set entry,
4996     // nobody has a reference to it.
4997     // At the start of collection we flush all refinement logs, and remembered sets
4998     // are completely up-to-date wrt to references to the humongous object.
4999     //
5000     // Other implementation considerations:
5001     // - never consider object arrays at this time because they would pose
5002     // considerable effort for cleaning up the the remembered sets. This is
5003     // required because stale remembered sets might reference locations that
5004     // are currently allocated into.
5005     uint region_idx = r->hrm_index();
5006     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5007         !r->rem_set()->is_empty()) {
5008       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5009                                region_idx,
5010                                (size_t)obj->size() * HeapWordSize,
5011                                p2i(r->bottom()),
5012                                r->rem_set()->occupied(),
5013                                r->rem_set()->strong_code_roots_list_length(),
5014                                next_bitmap->isMarked(r->bottom()),
5015                                g1h->is_humongous_reclaim_candidate(region_idx),
5016                                obj->is_typeArray()
5017                               );
5018       return false;
5019     }
5020 
5021     guarantee(obj->is_typeArray(),
5022               "Only eagerly reclaiming type arrays is supported, but the object "
5023               PTR_FORMAT " is not.", p2i(r->bottom()));
5024 
5025     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5026                              region_idx,
5027                              (size_t)obj->size() * HeapWordSize,
5028                              p2i(r->bottom()),
5029                              r->rem_set()->occupied(),
5030                              r->rem_set()->strong_code_roots_list_length(),
5031                              next_bitmap->isMarked(r->bottom()),
5032                              g1h->is_humongous_reclaim_candidate(region_idx),
5033                              obj->is_typeArray()
5034                             );
5035 
5036     // Need to clear mark bit of the humongous object if already set.
5037     if (next_bitmap->isMarked(r->bottom())) {
5038       next_bitmap->clear(r->bottom());
5039     }
5040     do {
5041       HeapRegion* next = g1h->next_region_in_humongous(r);
5042       _freed_bytes += r->used();
5043       r->set_containing_set(NULL);
5044       _humongous_regions_removed++;
5045       g1h->free_humongous_region(r, _free_region_list, false);
5046       r = next;
5047     } while (r != NULL);
5048 
5049     return false;
5050   }
5051 
5052   uint humongous_free_count() {
5053     return _humongous_regions_removed;
5054   }
5055 
5056   size_t bytes_freed() const {
5057     return _freed_bytes;
5058   }
5059 };
5060 
5061 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5062   assert_at_safepoint(true);
5063 
5064   if (!G1EagerReclaimHumongousObjects ||
5065       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5066     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5067     return;
5068   }
5069 
5070   double start_time = os::elapsedTime();
5071 
5072   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5073 
5074   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5075   heap_region_iterate(&cl);
5076 
5077   remove_from_old_sets(0, cl.humongous_free_count());
5078 
5079   G1HRPrinter* hrp = hr_printer();
5080   if (hrp->is_active()) {
5081     FreeRegionListIterator iter(&local_cleanup_list);
5082     while (iter.more_available()) {
5083       HeapRegion* hr = iter.get_next();
5084       hrp->cleanup(hr);
5085     }
5086   }
5087 
5088   prepend_to_freelist(&local_cleanup_list);
5089   decrement_summary_bytes(cl.bytes_freed());
5090 
5091   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5092                                                                     cl.humongous_free_count());
5093 }
5094 
5095 // This routine is similar to the above but does not record
5096 // any policy statistics or update free lists; we are abandoning
5097 // the current incremental collection set in preparation of a
5098 // full collection. After the full GC we will start to build up
5099 // the incremental collection set again.
5100 // This is only called when we're doing a full collection
5101 // and is immediately followed by the tearing down of the young list.
5102 
5103 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5104   HeapRegion* cur = cs_head;
5105 
5106   while (cur != NULL) {
5107     HeapRegion* next = cur->next_in_collection_set();
5108     assert(cur->in_collection_set(), "bad CS");
5109     cur->set_next_in_collection_set(NULL);
5110     clear_in_cset(cur);
5111     cur->set_young_index_in_cset(-1);
5112     cur = next;
5113   }
5114 }
5115 
5116 void G1CollectedHeap::set_free_regions_coming() {
5117   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
5118 
5119   assert(!free_regions_coming(), "pre-condition");
5120   _free_regions_coming = true;
5121 }
5122 
5123 void G1CollectedHeap::reset_free_regions_coming() {
5124   assert(free_regions_coming(), "pre-condition");
5125 
5126   {
5127     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5128     _free_regions_coming = false;
5129     SecondaryFreeList_lock->notify_all();
5130   }
5131 
5132   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5133 }
5134 
5135 void G1CollectedHeap::wait_while_free_regions_coming() {
5136   // Most of the time we won't have to wait, so let's do a quick test
5137   // first before we take the lock.
5138   if (!free_regions_coming()) {
5139     return;
5140   }
5141 
5142   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5143 
5144   {
5145     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5146     while (free_regions_coming()) {
5147       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5148     }
5149   }
5150 
5151   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5152 }
5153 
5154 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5155   return _allocator->is_retained_old_region(hr);
5156 }
5157 
5158 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5159   _young_list->push_region(hr);
5160 }
5161 
5162 class NoYoungRegionsClosure: public HeapRegionClosure {
5163 private:
5164   bool _success;
5165 public:
5166   NoYoungRegionsClosure() : _success(true) { }
5167   bool doHeapRegion(HeapRegion* r) {
5168     if (r->is_young()) {
5169       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5170                             p2i(r->bottom()), p2i(r->end()));
5171       _success = false;
5172     }
5173     return false;
5174   }
5175   bool success() { return _success; }
5176 };
5177 
5178 bool G1CollectedHeap::check_young_list_empty(bool check_heap) {
5179   bool ret = _young_list->check_list_empty();
5180 
5181   if (check_heap) {
5182     NoYoungRegionsClosure closure;
5183     heap_region_iterate(&closure);
5184     ret = ret && closure.success();
5185   }
5186 
5187   return ret;
5188 }
5189 
5190 class TearDownRegionSetsClosure : public HeapRegionClosure {
5191 private:
5192   HeapRegionSet *_old_set;
5193 
5194 public:
5195   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5196 
5197   bool doHeapRegion(HeapRegion* r) {
5198     if (r->is_old()) {
5199       _old_set->remove(r);
5200     } else {
5201       // We ignore free regions, we'll empty the free list afterwards.
5202       // We ignore young regions, we'll empty the young list afterwards.
5203       // We ignore humongous regions, we're not tearing down the
5204       // humongous regions set.
5205       assert(r->is_free() || r->is_young() || r->is_humongous(),
5206              "it cannot be another type");
5207     }
5208     return false;
5209   }
5210 
5211   ~TearDownRegionSetsClosure() {
5212     assert(_old_set->is_empty(), "post-condition");
5213   }
5214 };
5215 
5216 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5217   assert_at_safepoint(true /* should_be_vm_thread */);
5218 
5219   if (!free_list_only) {
5220     TearDownRegionSetsClosure cl(&_old_set);
5221     heap_region_iterate(&cl);
5222 
5223     // Note that emptying the _young_list is postponed and instead done as
5224     // the first step when rebuilding the regions sets again. The reason for
5225     // this is that during a full GC string deduplication needs to know if
5226     // a collected region was young or old when the full GC was initiated.
5227   }
5228   _hrm.remove_all_free_regions();
5229 }
5230 
5231 void G1CollectedHeap::increase_used(size_t bytes) {
5232   _summary_bytes_used += bytes;
5233 }
5234 
5235 void G1CollectedHeap::decrease_used(size_t bytes) {
5236   assert(_summary_bytes_used >= bytes,
5237          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5238          _summary_bytes_used, bytes);
5239   _summary_bytes_used -= bytes;
5240 }
5241 
5242 void G1CollectedHeap::set_used(size_t bytes) {
5243   _summary_bytes_used = bytes;
5244 }
5245 
5246 class RebuildRegionSetsClosure : public HeapRegionClosure {
5247 private:
5248   bool            _free_list_only;
5249   HeapRegionSet*   _old_set;
5250   HeapRegionManager*   _hrm;
5251   size_t          _total_used;
5252 
5253 public:
5254   RebuildRegionSetsClosure(bool free_list_only,
5255                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5256     _free_list_only(free_list_only),
5257     _old_set(old_set), _hrm(hrm), _total_used(0) {
5258     assert(_hrm->num_free_regions() == 0, "pre-condition");
5259     if (!free_list_only) {
5260       assert(_old_set->is_empty(), "pre-condition");
5261     }
5262   }
5263 
5264   bool doHeapRegion(HeapRegion* r) {
5265     if (r->is_empty()) {
5266       // Add free regions to the free list
5267       r->set_free();
5268       r->set_allocation_context(AllocationContext::system());
5269       _hrm->insert_into_free_list(r);
5270     } else if (!_free_list_only) {
5271       assert(!r->is_young(), "we should not come across young regions");
5272 
5273       if (r->is_humongous()) {
5274         // We ignore humongous regions. We left the humongous set unchanged.
5275       } else {
5276         // Objects that were compacted would have ended up on regions
5277         // that were previously old or free.  Archive regions (which are
5278         // old) will not have been touched.
5279         assert(r->is_free() || r->is_old(), "invariant");
5280         // We now consider them old, so register as such. Leave
5281         // archive regions set that way, however, while still adding
5282         // them to the old set.
5283         if (!r->is_archive()) {
5284           r->set_old();
5285         }
5286         _old_set->add(r);
5287       }
5288       _total_used += r->used();
5289     }
5290 
5291     return false;
5292   }
5293 
5294   size_t total_used() {
5295     return _total_used;
5296   }
5297 };
5298 
5299 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5300   assert_at_safepoint(true /* should_be_vm_thread */);
5301 
5302   if (!free_list_only) {
5303     _young_list->empty_list();
5304   }
5305 
5306   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5307   heap_region_iterate(&cl);
5308 
5309   if (!free_list_only) {
5310     set_used(cl.total_used());
5311     if (_archive_allocator != NULL) {
5312       _archive_allocator->clear_used();
5313     }
5314   }
5315   assert(used_unlocked() == recalculate_used(),
5316          "inconsistent used_unlocked(), "
5317          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5318          used_unlocked(), recalculate_used());
5319 }
5320 
5321 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5322   _refine_cte_cl->set_concurrent(concurrent);
5323 }
5324 
5325 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5326   HeapRegion* hr = heap_region_containing(p);
5327   return hr->is_in(p);
5328 }
5329 
5330 // Methods for the mutator alloc region
5331 
5332 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5333                                                       bool force) {
5334   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5335   assert(!force || g1_policy()->can_expand_young_list(),
5336          "if force is true we should be able to expand the young list");
5337   bool young_list_full = g1_policy()->is_young_list_full();
5338   if (force || !young_list_full) {
5339     HeapRegion* new_alloc_region = new_region(word_size,
5340                                               false /* is_old */,
5341                                               false /* do_expand */);
5342     if (new_alloc_region != NULL) {
5343       set_region_short_lived_locked(new_alloc_region);
5344       _hr_printer.alloc(new_alloc_region, young_list_full);
5345       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5346       return new_alloc_region;
5347     }
5348   }
5349   return NULL;
5350 }
5351 
5352 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5353                                                   size_t allocated_bytes) {
5354   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5355   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5356 
5357   collection_set()->add_eden_region(alloc_region);
5358   increase_used(allocated_bytes);
5359   _hr_printer.retire(alloc_region);
5360   // We update the eden sizes here, when the region is retired,
5361   // instead of when it's allocated, since this is the point that its
5362   // used space has been recored in _summary_bytes_used.
5363   g1mm()->update_eden_size();
5364 }
5365 
5366 // Methods for the GC alloc regions
5367 
5368 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5369   if (dest.is_old()) {
5370     return true;
5371   } else {
5372     return young_list()->survivor_length() < g1_policy()->max_survivor_regions();
5373   }
5374 }
5375 
5376 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5377   assert(FreeList_lock->owned_by_self(), "pre-condition");
5378 
5379   if (!has_more_regions(dest)) {
5380     return NULL;
5381   }
5382 
5383   const bool is_survivor = dest.is_young();
5384 
5385   HeapRegion* new_alloc_region = new_region(word_size,
5386                                             !is_survivor,
5387                                             true /* do_expand */);
5388   if (new_alloc_region != NULL) {
5389     // We really only need to do this for old regions given that we
5390     // should never scan survivors. But it doesn't hurt to do it
5391     // for survivors too.
5392     new_alloc_region->record_timestamp();
5393     if (is_survivor) {
5394       new_alloc_region->set_survivor();
5395       young_list()->add_survivor_region(new_alloc_region);
5396       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5397     } else {
5398       new_alloc_region->set_old();
5399       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5400     }
5401     _hr_printer.alloc(new_alloc_region);
5402     bool during_im = collector_state()->during_initial_mark_pause();
5403     new_alloc_region->note_start_of_copying(during_im);
5404     return new_alloc_region;
5405   }
5406   return NULL;
5407 }
5408 
5409 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5410                                              size_t allocated_bytes,
5411                                              InCSetState dest) {
5412   bool during_im = collector_state()->during_initial_mark_pause();
5413   alloc_region->note_end_of_copying(during_im);
5414   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5415   if (dest.is_old()) {
5416     _old_set.add(alloc_region);
5417   }
5418   _hr_printer.retire(alloc_region);
5419 }
5420 
5421 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5422   bool expanded = false;
5423   uint index = _hrm.find_highest_free(&expanded);
5424 
5425   if (index != G1_NO_HRM_INDEX) {
5426     if (expanded) {
5427       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5428                                 HeapRegion::GrainWords * HeapWordSize);
5429     }
5430     _hrm.allocate_free_regions_starting_at(index, 1);
5431     return region_at(index);
5432   }
5433   return NULL;
5434 }
5435 
5436 // Optimized nmethod scanning
5437 
5438 class RegisterNMethodOopClosure: public OopClosure {
5439   G1CollectedHeap* _g1h;
5440   nmethod* _nm;
5441 
5442   template <class T> void do_oop_work(T* p) {
5443     T heap_oop = oopDesc::load_heap_oop(p);
5444     if (!oopDesc::is_null(heap_oop)) {
5445       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5446       HeapRegion* hr = _g1h->heap_region_containing(obj);
5447       assert(!hr->is_continues_humongous(),
5448              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5449              " starting at " HR_FORMAT,
5450              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5451 
5452       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5453       hr->add_strong_code_root_locked(_nm);
5454     }
5455   }
5456 
5457 public:
5458   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5459     _g1h(g1h), _nm(nm) {}
5460 
5461   void do_oop(oop* p)       { do_oop_work(p); }
5462   void do_oop(narrowOop* p) { do_oop_work(p); }
5463 };
5464 
5465 class UnregisterNMethodOopClosure: public OopClosure {
5466   G1CollectedHeap* _g1h;
5467   nmethod* _nm;
5468 
5469   template <class T> void do_oop_work(T* p) {
5470     T heap_oop = oopDesc::load_heap_oop(p);
5471     if (!oopDesc::is_null(heap_oop)) {
5472       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5473       HeapRegion* hr = _g1h->heap_region_containing(obj);
5474       assert(!hr->is_continues_humongous(),
5475              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5476              " starting at " HR_FORMAT,
5477              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5478 
5479       hr->remove_strong_code_root(_nm);
5480     }
5481   }
5482 
5483 public:
5484   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5485     _g1h(g1h), _nm(nm) {}
5486 
5487   void do_oop(oop* p)       { do_oop_work(p); }
5488   void do_oop(narrowOop* p) { do_oop_work(p); }
5489 };
5490 
5491 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5492   CollectedHeap::register_nmethod(nm);
5493 
5494   guarantee(nm != NULL, "sanity");
5495   RegisterNMethodOopClosure reg_cl(this, nm);
5496   nm->oops_do(&reg_cl);
5497 }
5498 
5499 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5500   CollectedHeap::unregister_nmethod(nm);
5501 
5502   guarantee(nm != NULL, "sanity");
5503   UnregisterNMethodOopClosure reg_cl(this, nm);
5504   nm->oops_do(&reg_cl, true);
5505 }
5506 
5507 void G1CollectedHeap::purge_code_root_memory() {
5508   double purge_start = os::elapsedTime();
5509   G1CodeRootSet::purge();
5510   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5511   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5512 }
5513 
5514 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5515   G1CollectedHeap* _g1h;
5516 
5517 public:
5518   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5519     _g1h(g1h) {}
5520 
5521   void do_code_blob(CodeBlob* cb) {
5522     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5523     if (nm == NULL) {
5524       return;
5525     }
5526 
5527     if (ScavengeRootsInCode) {
5528       _g1h->register_nmethod(nm);
5529     }
5530   }
5531 };
5532 
5533 void G1CollectedHeap::rebuild_strong_code_roots() {
5534   RebuildStrongCodeRootClosure blob_cl(this);
5535   CodeCache::blobs_do(&blob_cl);
5536 }