1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP
  27 
  28 #include "gc/g1/g1CollectorState.hpp"
  29 #include "gc/g1/g1GCPhaseTimes.hpp"
  30 #include "gc/g1/g1InCSetState.hpp"
  31 #include "gc/g1/g1InitialMarkToMixedTimeTracker.hpp"
  32 #include "gc/g1/g1MMUTracker.hpp"
  33 #include "gc/g1/g1Predictions.hpp"
  34 #include "gc/shared/collectorPolicy.hpp"
  35 #include "utilities/pair.hpp"
  36 
  37 // A G1CollectorPolicy makes policy decisions that determine the
  38 // characteristics of the collector.  Examples include:
  39 //   * choice of collection set.
  40 //   * when to collect.
  41 
  42 class HeapRegion;
  43 class G1CollectionSet;
  44 class CollectionSetChooser;
  45 class G1IHOPControl;
  46 class G1Analytics;
  47 class G1YoungGenSizer;
  48 
  49 class G1CollectorPolicy: public CollectorPolicy {
  50  private:
  51   G1IHOPControl* _ihop_control;
  52 
  53   G1IHOPControl* create_ihop_control() const;
  54   // Update the IHOP control with necessary statistics.
  55   void update_ihop_prediction(double mutator_time_s,
  56                               size_t mutator_alloc_bytes,
  57                               size_t young_gen_size);
  58   void report_ihop_statistics();
  59 
  60   G1Predictions _predictor;
  61   G1Analytics* _analytics;
  62   G1MMUTracker* _mmu_tracker;
  63 
  64   void initialize_alignments();
  65   void initialize_flags();
  66 
  67   double _full_collection_start_sec;
  68 
  69   uint _young_list_target_length;
  70   uint _young_list_fixed_length;
  71 
  72   // The max number of regions we can extend the eden by while the GC
  73   // locker is active. This should be >= _young_list_target_length;
  74   uint _young_list_max_length;
  75 
  76   SurvRateGroup* _short_lived_surv_rate_group;
  77   SurvRateGroup* _survivor_surv_rate_group;
  78 
  79   double _reserve_factor;
  80   uint   _reserve_regions;
  81 
  82   G1YoungGenSizer* _young_gen_sizer;
  83 
  84   uint _free_regions_at_end_of_collection;
  85 
  86   size_t _max_rs_lengths;
  87 
  88   size_t _rs_lengths_prediction;
  89 
  90 #ifndef PRODUCT
  91   bool verify_young_ages(HeapRegion* head, SurvRateGroup *surv_rate_group);
  92 #endif // PRODUCT
  93 
  94   double _pause_time_target_ms;
  95 
  96   size_t _pending_cards;
  97 
  98   // The amount of allocated bytes in old gen during the last mutator and the following
  99   // young GC phase.
 100   size_t _bytes_allocated_in_old_since_last_gc;
 101 
 102   G1InitialMarkToMixedTimeTracker _initial_mark_to_mixed;
 103 public:
 104   const G1Predictions& predictor() const { return _predictor; }
 105   const G1Analytics* analytics()   const { return const_cast<const G1Analytics*>(_analytics); }
 106 
 107   // Add the given number of bytes to the total number of allocated bytes in the old gen.
 108   void add_bytes_allocated_in_old_since_last_gc(size_t bytes) { _bytes_allocated_in_old_since_last_gc += bytes; }
 109 
 110   // Accessors
 111 
 112   void set_region_eden(HeapRegion* hr, int young_index_in_cset) {
 113     hr->set_eden();
 114     hr->install_surv_rate_group(_short_lived_surv_rate_group);
 115     hr->set_young_index_in_cset(young_index_in_cset);
 116   }
 117 
 118   void set_region_survivor(HeapRegion* hr, int young_index_in_cset) {
 119     assert(hr->is_survivor(), "pre-condition");
 120     hr->install_surv_rate_group(_survivor_surv_rate_group);
 121     hr->set_young_index_in_cset(young_index_in_cset);
 122   }
 123 
 124 #ifndef PRODUCT
 125   bool verify_young_ages();
 126 #endif // PRODUCT
 127 
 128   void record_max_rs_lengths(size_t rs_lengths) {
 129     _max_rs_lengths = rs_lengths;
 130   }
 131 
 132 
 133   double predict_base_elapsed_time_ms(size_t pending_cards) const;
 134   double predict_base_elapsed_time_ms(size_t pending_cards,
 135                                       size_t scanned_cards) const;
 136   size_t predict_bytes_to_copy(HeapRegion* hr) const;
 137   double predict_region_elapsed_time_ms(HeapRegion* hr, bool for_young_gc) const;
 138 
 139   double predict_survivor_regions_evac_time() const;
 140 
 141   bool should_update_surv_rate_group_predictors() {
 142     return collector_state()->last_gc_was_young() && !collector_state()->in_marking_window();
 143   }
 144 
 145   void cset_regions_freed() {
 146     bool update = should_update_surv_rate_group_predictors();
 147 
 148     _short_lived_surv_rate_group->all_surviving_words_recorded(update);
 149     _survivor_surv_rate_group->all_surviving_words_recorded(update);
 150   }
 151 
 152   G1MMUTracker* mmu_tracker() {
 153     return _mmu_tracker;
 154   }
 155 
 156   const G1MMUTracker* mmu_tracker() const {
 157     return _mmu_tracker;
 158   }
 159 
 160   double max_pause_time_ms() const {
 161     return _mmu_tracker->max_gc_time() * 1000.0;
 162   }
 163 
 164   // Returns an estimate of the survival rate of the region at yg-age
 165   // "yg_age".
 166   double predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const;
 167 
 168   double predict_yg_surv_rate(int age) const;
 169 
 170   double accum_yg_surv_rate_pred(int age) const;
 171 
 172   // When copying, we will likely need more bytes free than is live in the region.
 173   // Add some safety margin to factor in the confidence of our guess, and the
 174   // natural expected waste.
 175   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 176   // of the calculation: the lower the confidence, the more headroom.
 177   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 178   // copying due to anticipated waste in the PLABs.
 179   double safety_factor() const {
 180     return (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 181   }
 182 
 183   // Returns an estimate of the available bytes at end of collection, adjusted by
 184   // the safety factor.
 185   size_t available_bytes_estimate();
 186 
 187 protected:
 188   G1CollectionSet* _collection_set;
 189   virtual double average_time_ms(G1GCPhaseTimes::GCParPhases phase) const;
 190   virtual double other_time_ms(double pause_time_ms) const;
 191 
 192   double young_other_time_ms() const;
 193   double non_young_other_time_ms() const;
 194   double constant_other_time_ms(double pause_time_ms) const;
 195 
 196   CollectionSetChooser* cset_chooser() const;
 197 private:
 198 
 199   // The number of bytes copied during the GC.
 200   size_t _bytes_copied_during_gc;
 201 
 202   // Stash a pointer to the g1 heap.
 203   G1CollectedHeap* _g1;
 204 
 205   G1GCPhaseTimes* _phase_times;
 206 
 207   // This set of variables tracks the collector efficiency, in order to
 208   // determine whether we should initiate a new marking.
 209   double _mark_remark_start_sec;
 210   double _mark_cleanup_start_sec;
 211 
 212   // Updates the internal young list maximum and target lengths. Returns the
 213   // unbounded young list target length.
 214   uint update_young_list_max_and_target_length();
 215   uint update_young_list_max_and_target_length(size_t rs_lengths);
 216 
 217   // Update the young list target length either by setting it to the
 218   // desired fixed value or by calculating it using G1's pause
 219   // prediction model. If no rs_lengths parameter is passed, predict
 220   // the RS lengths using the prediction model, otherwise use the
 221   // given rs_lengths as the prediction.
 222   // Returns the unbounded young list target length.
 223   uint update_young_list_target_length(size_t rs_lengths);
 224 
 225   // Calculate and return the minimum desired young list target
 226   // length. This is the minimum desired young list length according
 227   // to the user's inputs.
 228   uint calculate_young_list_desired_min_length(uint base_min_length) const;
 229 
 230   // Calculate and return the maximum desired young list target
 231   // length. This is the maximum desired young list length according
 232   // to the user's inputs.
 233   uint calculate_young_list_desired_max_length() const;
 234 
 235   // Calculate and return the maximum young list target length that
 236   // can fit into the pause time goal. The parameters are: rs_lengths
 237   // represent the prediction of how large the young RSet lengths will
 238   // be, base_min_length is the already existing number of regions in
 239   // the young list, min_length and max_length are the desired min and
 240   // max young list length according to the user's inputs.
 241   uint calculate_young_list_target_length(size_t rs_lengths,
 242                                           uint base_min_length,
 243                                           uint desired_min_length,
 244                                           uint desired_max_length) const;
 245 
 246   // Result of the bounded_young_list_target_length() method, containing both the
 247   // bounded as well as the unbounded young list target lengths in this order.
 248   typedef Pair<uint, uint, StackObj> YoungTargetLengths;
 249   YoungTargetLengths young_list_target_lengths(size_t rs_lengths) const;
 250 
 251   void update_rs_lengths_prediction();
 252   void update_rs_lengths_prediction(size_t prediction);
 253 
 254   // Check whether a given young length (young_length) fits into the
 255   // given target pause time and whether the prediction for the amount
 256   // of objects to be copied for the given length will fit into the
 257   // given free space (expressed by base_free_regions).  It is used by
 258   // calculate_young_list_target_length().
 259   bool predict_will_fit(uint young_length, double base_time_ms,
 260                         uint base_free_regions, double target_pause_time_ms) const;
 261 
 262 public:
 263   size_t pending_cards() const { return _pending_cards; }
 264 
 265   // Calculate the minimum number of old regions we'll add to the CSet
 266   // during a mixed GC.
 267   uint calc_min_old_cset_length() const;
 268 
 269   // Calculate the maximum number of old regions we'll add to the CSet
 270   // during a mixed GC.
 271   uint calc_max_old_cset_length() const;
 272 
 273   // Returns the given amount of uncollected reclaimable space
 274   // as a percentage of the current heap capacity.
 275   double reclaimable_bytes_perc(size_t reclaimable_bytes) const;
 276 
 277 private:
 278   // Sets up marking if proper conditions are met.
 279   void maybe_start_marking();
 280 
 281   // The kind of STW pause.
 282   enum PauseKind {
 283     FullGC,
 284     YoungOnlyGC,
 285     MixedGC,
 286     LastYoungGC,
 287     InitialMarkGC,
 288     Cleanup,
 289     Remark
 290   };
 291 
 292   // Calculate PauseKind from internal state.
 293   PauseKind young_gc_pause_kind() const;
 294   // Record the given STW pause with the given start and end times (in s).
 295   void record_pause(PauseKind kind, double start, double end);
 296   // Indicate that we aborted marking before doing any mixed GCs.
 297   void abort_time_to_mixed_tracking();
 298 public:
 299 
 300   G1CollectorPolicy();
 301 
 302   virtual ~G1CollectorPolicy();
 303 
 304   virtual G1CollectorPolicy* as_g1_policy() { return this; }
 305 
 306   G1CollectorState* collector_state() const;
 307 
 308   G1GCPhaseTimes* phase_times() const { return _phase_times; }
 309 
 310   // Check the current value of the young list RSet lengths and
 311   // compare it against the last prediction. If the current value is
 312   // higher, recalculate the young list target length prediction.
 313   void revise_young_list_target_length_if_necessary(size_t rs_lengths);
 314 
 315   // This should be called after the heap is resized.
 316   void record_new_heap_size(uint new_number_of_regions);
 317 
 318   void init();
 319 
 320   virtual void note_gc_start(uint num_active_workers);
 321 
 322   // Create jstat counters for the policy.
 323   virtual void initialize_gc_policy_counters();
 324 
 325   bool need_to_start_conc_mark(const char* source, size_t alloc_word_size = 0);
 326 
 327   bool about_to_start_mixed_phase() const;
 328 
 329   // Record the start and end of an evacuation pause.
 330   void record_collection_pause_start(double start_time_sec);
 331   void record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc);
 332 
 333   // Record the start and end of a full collection.
 334   void record_full_collection_start();
 335   void record_full_collection_end();
 336 
 337   // Must currently be called while the world is stopped.
 338   void record_concurrent_mark_init_end(double mark_init_elapsed_time_ms);
 339 
 340   // Record start and end of remark.
 341   void record_concurrent_mark_remark_start();
 342   void record_concurrent_mark_remark_end();
 343 
 344   // Record start, end, and completion of cleanup.
 345   void record_concurrent_mark_cleanup_start();
 346   void record_concurrent_mark_cleanup_end();
 347   void record_concurrent_mark_cleanup_completed();
 348 
 349   virtual void print_phases();
 350 
 351   // Record how much space we copied during a GC. This is typically
 352   // called when a GC alloc region is being retired.
 353   void record_bytes_copied_during_gc(size_t bytes) {
 354     _bytes_copied_during_gc += bytes;
 355   }
 356 
 357   // The amount of space we copied during a GC.
 358   size_t bytes_copied_during_gc() const {
 359     return _bytes_copied_during_gc;
 360   }
 361 
 362   // Determine whether there are candidate regions so that the
 363   // next GC should be mixed. The two action strings are used
 364   // in the ergo output when the method returns true or false.
 365   bool next_gc_should_be_mixed(const char* true_action_str,
 366                                const char* false_action_str) const;
 367 
 368   virtual void finalize_collection_set(double target_pause_time_ms);
 369 private:
 370   // Set the state to start a concurrent marking cycle and clear
 371   // _initiate_conc_mark_if_possible because it has now been
 372   // acted on.
 373   void initiate_conc_mark();
 374 
 375 public:
 376   // This sets the initiate_conc_mark_if_possible() flag to start a
 377   // new cycle, as long as we are not already in one. It's best if it
 378   // is called during a safepoint when the test whether a cycle is in
 379   // progress or not is stable.
 380   bool force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause);
 381 
 382   // This is called at the very beginning of an evacuation pause (it
 383   // has to be the first thing that the pause does). If
 384   // initiate_conc_mark_if_possible() is true, and the concurrent
 385   // marking thread has completed its work during the previous cycle,
 386   // it will set during_initial_mark_pause() to so that the pause does
 387   // the initial-mark work and start a marking cycle.
 388   void decide_on_conc_mark_initiation();
 389 
 390   // Print stats on young survival ratio
 391   void print_yg_surv_rate_info() const;
 392 
 393   void finished_recalculating_age_indexes(bool is_survivors) {
 394     if (is_survivors) {
 395       _survivor_surv_rate_group->finished_recalculating_age_indexes();
 396     } else {
 397       _short_lived_surv_rate_group->finished_recalculating_age_indexes();
 398     }
 399   }
 400 
 401   size_t young_list_target_length() const { return _young_list_target_length; }
 402 
 403   bool is_young_list_full() const;
 404 
 405   bool can_expand_young_list() const;
 406 
 407   uint young_list_max_length() const {
 408     return _young_list_max_length;
 409   }
 410 
 411   bool adaptive_young_list_length() const;
 412 
 413   virtual bool should_process_references() const {
 414     return true;
 415   }
 416 
 417 private:
 418   //
 419   // Survivor regions policy.
 420   //
 421 
 422   // Current tenuring threshold, set to 0 if the collector reaches the
 423   // maximum amount of survivors regions.
 424   uint _tenuring_threshold;
 425 
 426   // The limit on the number of regions allocated for survivors.
 427   uint _max_survivor_regions;
 428 
 429   AgeTable _survivors_age_table;
 430 
 431 public:
 432   uint tenuring_threshold() const { return _tenuring_threshold; }
 433 
 434   uint max_survivor_regions() {
 435     return _max_survivor_regions;
 436   }
 437 
 438   void note_start_adding_survivor_regions() {
 439     _survivor_surv_rate_group->start_adding_regions();
 440   }
 441 
 442   void note_stop_adding_survivor_regions() {
 443     _survivor_surv_rate_group->stop_adding_regions();
 444   }
 445 
 446   void record_age_table(AgeTable* age_table) {
 447     _survivors_age_table.merge(age_table);
 448   }
 449 
 450   void update_max_gc_locker_expansion();
 451 
 452   // Calculates survivor space parameters.
 453   void update_survivors_policy();
 454 
 455   virtual void post_heap_initialize();
 456 };
 457 
 458 #endif // SHARE_VM_GC_G1_G1COLLECTORPOLICY_HPP