< prev index next >

src/share/vm/gc/parallel/psMarkSweep.cpp

Print this page




  28 #include "code/codeCache.hpp"
  29 #include "gc/parallel/parallelScavengeHeap.hpp"
  30 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  31 #include "gc/parallel/psMarkSweep.hpp"
  32 #include "gc/parallel/psMarkSweepDecorator.hpp"
  33 #include "gc/parallel/psOldGen.hpp"
  34 #include "gc/parallel/psScavenge.hpp"
  35 #include "gc/parallel/psYoungGen.hpp"
  36 #include "gc/serial/markSweep.hpp"
  37 #include "gc/shared/gcCause.hpp"
  38 #include "gc/shared/gcHeapSummary.hpp"
  39 #include "gc/shared/gcId.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "gc/shared/gcTimer.hpp"
  42 #include "gc/shared/gcTrace.hpp"
  43 #include "gc/shared/gcTraceTime.hpp"
  44 #include "gc/shared/isGCActiveMark.hpp"
  45 #include "gc/shared/referencePolicy.hpp"
  46 #include "gc/shared/referenceProcessor.hpp"
  47 #include "gc/shared/spaceDecorator.hpp"

  48 #include "oops/oop.inline.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/fprofiler.hpp"
  51 #include "runtime/safepoint.hpp"
  52 #include "runtime/vmThread.hpp"
  53 #include "services/management.hpp"
  54 #include "services/memoryService.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/stack.inline.hpp"
  57 
  58 elapsedTimer        PSMarkSweep::_accumulated_time;
  59 jlong               PSMarkSweep::_time_of_last_gc   = 0;
  60 CollectorCounters*  PSMarkSweep::_counters = NULL;
  61 
  62 void PSMarkSweep::initialize() {
  63   MemRegion mr = ParallelScavengeHeap::heap()->reserved_region();
  64   set_ref_processor(new ReferenceProcessor(mr));     // a vanilla ref proc
  65   _counters = new CollectorCounters("PSMarkSweep", 1);
  66 }
  67 


 119   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
 120 
 121   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 122 
 123   // The scope of casr should end after code that can change
 124   // CollectorPolicy::_should_clear_all_soft_refs.
 125   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
 126 
 127   PSYoungGen* young_gen = heap->young_gen();
 128   PSOldGen* old_gen = heap->old_gen();
 129 
 130   // Increment the invocation count
 131   heap->increment_total_collections(true /* full */);
 132 
 133   // Save information needed to minimize mangling
 134   heap->record_gen_tops_before_GC();
 135 
 136   // We need to track unique mark sweep invocations as well.
 137   _total_invocations++;
 138 
 139   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
 140 
 141   heap->print_heap_before_gc();
 142   heap->trace_heap_before_gc(_gc_tracer);
 143 
 144   // Fill in TLABs
 145   heap->accumulate_statistics_all_tlabs();
 146   heap->ensure_parsability(true);  // retire TLABs
 147 
 148   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 149     HandleMark hm;  // Discard invalid handles created during verification
 150     Universe::verify(" VerifyBeforeGC:");
 151   }
 152 
 153   // Verify object start arrays
 154   if (VerifyObjectStartArray &&
 155       VerifyBeforeGC) {
 156     old_gen->verify_object_start_array();
 157   }
 158 
 159   heap->pre_full_gc_dump(_gc_timer);
 160 
 161   // Filled in below to track the state of the young gen after the collection.
 162   bool eden_empty;
 163   bool survivors_empty;
 164   bool young_gen_empty;
 165 
 166   {
 167     HandleMark hm;
 168 
 169     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
 170     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
 171     TraceCollectorStats tcs(counters());
 172     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
 173 
 174     if (TraceOldGenTime) accumulated_time()->start();
 175 
 176     // Let the size policy know we're starting
 177     size_policy->major_collection_begin();
 178 
 179     CodeCache::gc_prologue();
 180     BiasedLocking::preserve_marks();
 181 
 182     // Capture heap size before collection for printing.
 183     size_t prev_used = heap->used();
 184 
 185     // Capture metadata size before collection for sizing.
 186     size_t metadata_prev_used = MetaspaceAux::used_bytes();
 187 
 188     // For PrintGCDetails
 189     size_t old_gen_prev_used = old_gen->used_in_bytes();
 190     size_t young_gen_prev_used = young_gen->used_in_bytes();
 191 
 192     allocate_stacks();
 193 
 194 #if defined(COMPILER2) || INCLUDE_JVMCI
 195     DerivedPointerTable::clear();
 196 #endif
 197 
 198     ref_processor()->enable_discovery();
 199     ref_processor()->setup_policy(clear_all_softrefs);
 200 
 201     mark_sweep_phase1(clear_all_softrefs);
 202 
 203     mark_sweep_phase2();
 204 


 248     MetaspaceAux::verify_metrics();
 249 
 250     BiasedLocking::restore_marks();
 251     CodeCache::gc_epilogue();
 252     JvmtiExport::gc_epilogue();
 253 
 254 #if defined(COMPILER2) || INCLUDE_JVMCI
 255     DerivedPointerTable::update_pointers();
 256 #endif
 257 
 258     ref_processor()->enqueue_discovered_references(NULL);
 259 
 260     // Update time of last GC
 261     reset_millis_since_last_gc();
 262 
 263     // Let the size policy know we're done
 264     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
 265 
 266     if (UseAdaptiveSizePolicy) {
 267 
 268       if (PrintAdaptiveSizePolicy) {
 269         gclog_or_tty->print("AdaptiveSizeStart: ");
 270         gclog_or_tty->stamp();
 271         gclog_or_tty->print_cr(" collection: %d ",
 272                        heap->total_collections());
 273         if (Verbose) {
 274           gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
 275             " young_gen_capacity: " SIZE_FORMAT,
 276             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
 277         }
 278       }
 279 
 280       // Don't check if the size_policy is ready here.  Let
 281       // the size_policy check that internally.
 282       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
 283           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
 284         // Swap the survivor spaces if from_space is empty. The
 285         // resize_young_gen() called below is normally used after
 286         // a successful young GC and swapping of survivor spaces;
 287         // otherwise, it will fail to resize the young gen with
 288         // the current implementation.
 289         if (young_gen->from_space()->is_empty()) {
 290           young_gen->from_space()->clear(SpaceDecorator::Mangle);
 291           young_gen->swap_spaces();
 292         }
 293 
 294         // Calculate optimal free space amounts
 295         assert(young_gen->max_size() >
 296           young_gen->from_space()->capacity_in_bytes() +
 297           young_gen->to_space()->capacity_in_bytes(),
 298           "Sizes of space in young gen are out-of-bounds");


 315                                                     cur_eden,
 316                                                     max_old_gen_size,
 317                                                     max_eden_size,
 318                                                     true /* full gc*/);
 319 
 320         size_policy->check_gc_overhead_limit(young_live,
 321                                              eden_live,
 322                                              max_old_gen_size,
 323                                              max_eden_size,
 324                                              true /* full gc*/,
 325                                              gc_cause,
 326                                              heap->collector_policy());
 327 
 328         size_policy->decay_supplemental_growth(true /* full gc*/);
 329 
 330         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
 331 
 332         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 333                                size_policy->calculated_survivor_size_in_bytes());
 334       }
 335       if (PrintAdaptiveSizePolicy) {
 336         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
 337                        heap->total_collections());
 338       }
 339     }
 340 
 341     if (UsePerfData) {
 342       heap->gc_policy_counters()->update_counters();
 343       heap->gc_policy_counters()->update_old_capacity(
 344         old_gen->capacity_in_bytes());
 345       heap->gc_policy_counters()->update_young_capacity(
 346         young_gen->capacity_in_bytes());
 347     }
 348 
 349     heap->resize_all_tlabs();
 350 
 351     // We collected the heap, recalculate the metaspace capacity
 352     MetaspaceGC::compute_new_size();
 353 
 354     if (TraceOldGenTime) accumulated_time()->stop();
 355 
 356     if (PrintGC) {
 357       if (PrintGCDetails) {
 358         // Don't print a GC timestamp here.  This is after the GC so
 359         // would be confusing.
 360         young_gen->print_used_change(young_gen_prev_used);
 361         old_gen->print_used_change(old_gen_prev_used);
 362       }
 363       heap->print_heap_change(prev_used);
 364       if (PrintGCDetails) {
 365         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 366       }
 367     }
 368 
 369     // Track memory usage and detect low memory
 370     MemoryService::track_memory_usage();
 371     heap->update_counters();
 372   }
 373 
 374   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 375     HandleMark hm;  // Discard invalid handles created during verification
 376     Universe::verify(" VerifyAfterGC:");
 377   }
 378 
 379   // Re-verify object start arrays
 380   if (VerifyObjectStartArray &&
 381       VerifyAfterGC) {
 382     old_gen->verify_object_start_array();
 383   }
 384 
 385   if (ZapUnusedHeapArea) {
 386     old_gen->object_space()->check_mangled_unused_area_complete();
 387   }
 388 
 389   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 390 
 391   heap->print_heap_after_gc();
 392   heap->trace_heap_after_gc(_gc_tracer);
 393 
 394   heap->post_full_gc_dump(_gc_timer);
 395 
 396 #ifdef TRACESPINNING
 397   ParallelTaskTerminator::print_termination_counts();
 398 #endif
 399 


 400   _gc_timer->register_gc_end();
 401 
 402   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 403 
 404   return true;
 405 }
 406 
 407 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 408                                              PSYoungGen* young_gen,
 409                                              PSOldGen* old_gen) {
 410   MutableSpace* const eden_space = young_gen->eden_space();
 411   assert(!eden_space->is_empty(), "eden must be non-empty");
 412   assert(young_gen->virtual_space()->alignment() ==
 413          old_gen->virtual_space()->alignment(), "alignments do not match");
 414 
 415   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
 416     return false;
 417   }
 418 
 419   // Both generations must be completely committed.


 425   }
 426 
 427   // Figure out how much to take from eden.  Include the average amount promoted
 428   // in the total; otherwise the next young gen GC will simply bail out to a
 429   // full GC.
 430   const size_t alignment = old_gen->virtual_space()->alignment();
 431   const size_t eden_used = eden_space->used_in_bytes();
 432   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
 433   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
 434   const size_t eden_capacity = eden_space->capacity_in_bytes();
 435 
 436   if (absorb_size >= eden_capacity) {
 437     return false; // Must leave some space in eden.
 438   }
 439 
 440   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
 441   if (new_young_size < young_gen->min_gen_size()) {
 442     return false; // Respect young gen minimum size.
 443   }
 444 
 445   if (TraceAdaptiveGCBoundary && Verbose) {
 446     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
 447                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
 448                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
 449                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
 450                         absorb_size / K,
 451                         eden_capacity / K, (eden_capacity - absorb_size) / K,
 452                         young_gen->from_space()->used_in_bytes() / K,
 453                         young_gen->to_space()->used_in_bytes() / K,
 454                         young_gen->capacity_in_bytes() / K, new_young_size / K);
 455   }
 456 
 457   // Fill the unused part of the old gen.
 458   MutableSpace* const old_space = old_gen->object_space();
 459   HeapWord* const unused_start = old_space->top();
 460   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
 461 
 462   if (unused_words > 0) {
 463     if (unused_words < CollectedHeap::min_fill_size()) {
 464       return false;  // If the old gen cannot be filled, must give up.
 465     }
 466     CollectedHeap::fill_with_objects(unused_start, unused_words);
 467   }
 468 
 469   // Take the live data from eden and set both top and end in the old gen to
 470   // eden top.  (Need to set end because reset_after_change() mangles the region
 471   // from end to virtual_space->high() in debug builds).
 472   HeapWord* const new_top = eden_space->top();
 473   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
 474                                         absorb_size);
 475   young_gen->reset_after_change();


 499   MutableSpace* to_space = young_gen->to_space();
 500   _preserved_marks = (PreservedMark*)to_space->top();
 501   _preserved_count = 0;
 502 
 503   // We want to calculate the size in bytes first.
 504   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
 505   // Now divide by the size of a PreservedMark
 506   _preserved_count_max /= sizeof(PreservedMark);
 507 }
 508 
 509 
 510 void PSMarkSweep::deallocate_stacks() {
 511   _preserved_mark_stack.clear(true);
 512   _preserved_oop_stack.clear(true);
 513   _marking_stack.clear();
 514   _objarray_stack.clear(true);
 515 }
 516 
 517 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
 518   // Recursively traverse all live objects and mark them
 519   GCTraceTime tm("phase 1", PrintGCDetails && Verbose, true, _gc_timer);
 520 
 521   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 522 
 523   // Need to clear claim bits before the tracing starts.
 524   ClassLoaderDataGraph::clear_claimed_marks();
 525 
 526   // General strong roots.
 527   {
 528     ParallelScavengeHeap::ParStrongRootsScope psrs;
 529     Universe::oops_do(mark_and_push_closure());
 530     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
 531     CLDToOopClosure mark_and_push_from_cld(mark_and_push_closure());
 532     MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
 533     Threads::oops_do(mark_and_push_closure(), &mark_and_push_from_cld, &each_active_code_blob);
 534     ObjectSynchronizer::oops_do(mark_and_push_closure());
 535     FlatProfiler::oops_do(mark_and_push_closure());
 536     Management::oops_do(mark_and_push_closure());
 537     JvmtiExport::oops_do(mark_and_push_closure());
 538     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
 539     ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());


 558 
 559   // Unload classes and purge the SystemDictionary.
 560   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
 561 
 562   // Unload nmethods.
 563   CodeCache::do_unloading(is_alive_closure(), purged_class);
 564 
 565   // Prune dead klasses from subklass/sibling/implementor lists.
 566   Klass::clean_weak_klass_links(is_alive_closure());
 567 
 568   // Delete entries for dead interned strings.
 569   StringTable::unlink(is_alive_closure());
 570 
 571   // Clean up unreferenced symbols in symbol table.
 572   SymbolTable::unlink();
 573   _gc_tracer->report_object_count_after_gc(is_alive_closure());
 574 }
 575 
 576 
 577 void PSMarkSweep::mark_sweep_phase2() {
 578   GCTraceTime tm("phase 2", PrintGCDetails && Verbose, true, _gc_timer);
 579 
 580   // Now all live objects are marked, compute the new object addresses.
 581 
 582   // It is not required that we traverse spaces in the same order in
 583   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
 584   // tracking expects us to do so. See comment under phase4.
 585 
 586   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 587   PSOldGen* old_gen = heap->old_gen();
 588 
 589   // Begin compacting into the old gen
 590   PSMarkSweepDecorator::set_destination_decorator_tenured();
 591 
 592   // This will also compact the young gen spaces.
 593   old_gen->precompact();
 594 }
 595 
 596 // This should be moved to the shared markSweep code!
 597 class PSAlwaysTrueClosure: public BoolObjectClosure {
 598 public:
 599   bool do_object_b(oop p) { return true; }
 600 };
 601 static PSAlwaysTrueClosure always_true;
 602 
 603 void PSMarkSweep::mark_sweep_phase3() {
 604   // Adjust the pointers to reflect the new locations
 605   GCTraceTime tm("phase 3", PrintGCDetails && Verbose, true, _gc_timer);
 606 
 607   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 608   PSYoungGen* young_gen = heap->young_gen();
 609   PSOldGen* old_gen = heap->old_gen();
 610 
 611   // Need to clear claim bits before the tracing starts.
 612   ClassLoaderDataGraph::clear_claimed_marks();
 613 
 614   // General strong roots.
 615   Universe::oops_do(adjust_pointer_closure());
 616   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
 617   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
 618   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
 619   ObjectSynchronizer::oops_do(adjust_pointer_closure());
 620   FlatProfiler::oops_do(adjust_pointer_closure());
 621   Management::oops_do(adjust_pointer_closure());
 622   JvmtiExport::oops_do(adjust_pointer_closure());
 623   SystemDictionary::oops_do(adjust_pointer_closure());
 624   ClassLoaderDataGraph::cld_do(adjust_cld_closure());
 625 
 626   // Now adjust pointers in remaining weak roots.  (All of which should
 627   // have been cleared if they pointed to non-surviving objects.)
 628   // Global (weak) JNI handles
 629   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
 630 
 631   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
 632   CodeCache::blobs_do(&adjust_from_blobs);
 633   StringTable::oops_do(adjust_pointer_closure());
 634   ref_processor()->weak_oops_do(adjust_pointer_closure());
 635   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
 636 
 637   adjust_marks();
 638 
 639   young_gen->adjust_pointers();
 640   old_gen->adjust_pointers();
 641 }
 642 
 643 void PSMarkSweep::mark_sweep_phase4() {
 644   EventMark m("4 compact heap");
 645   GCTraceTime tm("phase 4", PrintGCDetails && Verbose, true, _gc_timer);
 646 
 647   // All pointers are now adjusted, move objects accordingly
 648 
 649   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 650   PSYoungGen* young_gen = heap->young_gen();
 651   PSOldGen* old_gen = heap->old_gen();
 652 
 653   old_gen->compact();
 654   young_gen->compact();
 655 }
 656 
 657 jlong PSMarkSweep::millis_since_last_gc() {
 658   // We need a monotonically non-decreasing time in ms but
 659   // os::javaTimeMillis() does not guarantee monotonicity.
 660   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 661   jlong ret_val = now - _time_of_last_gc;
 662   // XXX See note in genCollectedHeap::millis_since_last_gc().
 663   if (ret_val < 0) {
 664     NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, ret_val);)
 665     return 0;


  28 #include "code/codeCache.hpp"
  29 #include "gc/parallel/parallelScavengeHeap.hpp"
  30 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  31 #include "gc/parallel/psMarkSweep.hpp"
  32 #include "gc/parallel/psMarkSweepDecorator.hpp"
  33 #include "gc/parallel/psOldGen.hpp"
  34 #include "gc/parallel/psScavenge.hpp"
  35 #include "gc/parallel/psYoungGen.hpp"
  36 #include "gc/serial/markSweep.hpp"
  37 #include "gc/shared/gcCause.hpp"
  38 #include "gc/shared/gcHeapSummary.hpp"
  39 #include "gc/shared/gcId.hpp"
  40 #include "gc/shared/gcLocker.inline.hpp"
  41 #include "gc/shared/gcTimer.hpp"
  42 #include "gc/shared/gcTrace.hpp"
  43 #include "gc/shared/gcTraceTime.hpp"
  44 #include "gc/shared/isGCActiveMark.hpp"
  45 #include "gc/shared/referencePolicy.hpp"
  46 #include "gc/shared/referenceProcessor.hpp"
  47 #include "gc/shared/spaceDecorator.hpp"
  48 #include "logging/log.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/fprofiler.hpp"
  52 #include "runtime/safepoint.hpp"
  53 #include "runtime/vmThread.hpp"
  54 #include "services/management.hpp"
  55 #include "services/memoryService.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/stack.inline.hpp"
  58 
  59 elapsedTimer        PSMarkSweep::_accumulated_time;
  60 jlong               PSMarkSweep::_time_of_last_gc   = 0;
  61 CollectorCounters*  PSMarkSweep::_counters = NULL;
  62 
  63 void PSMarkSweep::initialize() {
  64   MemRegion mr = ParallelScavengeHeap::heap()->reserved_region();
  65   set_ref_processor(new ReferenceProcessor(mr));     // a vanilla ref proc
  66   _counters = new CollectorCounters("PSMarkSweep", 1);
  67 }
  68 


 120   _gc_tracer->report_gc_start(gc_cause, _gc_timer->gc_start());
 121 
 122   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
 123 
 124   // The scope of casr should end after code that can change
 125   // CollectorPolicy::_should_clear_all_soft_refs.
 126   ClearedAllSoftRefs casr(clear_all_softrefs, heap->collector_policy());
 127 
 128   PSYoungGen* young_gen = heap->young_gen();
 129   PSOldGen* old_gen = heap->old_gen();
 130 
 131   // Increment the invocation count
 132   heap->increment_total_collections(true /* full */);
 133 
 134   // Save information needed to minimize mangling
 135   heap->record_gen_tops_before_GC();
 136 
 137   // We need to track unique mark sweep invocations as well.
 138   _total_invocations++;
 139 


 140   heap->print_heap_before_gc();
 141   heap->trace_heap_before_gc(_gc_tracer);
 142 
 143   // Fill in TLABs
 144   heap->accumulate_statistics_all_tlabs();
 145   heap->ensure_parsability(true);  // retire TLABs
 146 
 147   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 148     HandleMark hm;  // Discard invalid handles created during verification
 149     Universe::verify("Before GC");
 150   }
 151 
 152   // Verify object start arrays
 153   if (VerifyObjectStartArray &&
 154       VerifyBeforeGC) {
 155     old_gen->verify_object_start_array();
 156   }
 157 
 158   heap->pre_full_gc_dump(_gc_timer);
 159 
 160   // Filled in below to track the state of the young gen after the collection.
 161   bool eden_empty;
 162   bool survivors_empty;
 163   bool young_gen_empty;
 164 
 165   {
 166     HandleMark hm;
 167 
 168     GCTraceCPUTime tcpu;
 169     GCTraceTime(Info, gc) t("Full GC", NULL, gc_cause, true);
 170     TraceCollectorStats tcs(counters());
 171     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
 172 
 173     if (TraceOldGenTime) accumulated_time()->start();
 174 
 175     // Let the size policy know we're starting
 176     size_policy->major_collection_begin();
 177 
 178     CodeCache::gc_prologue();
 179     BiasedLocking::preserve_marks();
 180 



 181     // Capture metadata size before collection for sizing.
 182     size_t metadata_prev_used = MetaspaceAux::used_bytes();
 183 
 184     // For PrintGCDetails
 185     size_t old_gen_prev_used = old_gen->used_in_bytes();
 186     size_t young_gen_prev_used = young_gen->used_in_bytes();
 187 
 188     allocate_stacks();
 189 
 190 #if defined(COMPILER2) || INCLUDE_JVMCI
 191     DerivedPointerTable::clear();
 192 #endif
 193 
 194     ref_processor()->enable_discovery();
 195     ref_processor()->setup_policy(clear_all_softrefs);
 196 
 197     mark_sweep_phase1(clear_all_softrefs);
 198 
 199     mark_sweep_phase2();
 200 


 244     MetaspaceAux::verify_metrics();
 245 
 246     BiasedLocking::restore_marks();
 247     CodeCache::gc_epilogue();
 248     JvmtiExport::gc_epilogue();
 249 
 250 #if defined(COMPILER2) || INCLUDE_JVMCI
 251     DerivedPointerTable::update_pointers();
 252 #endif
 253 
 254     ref_processor()->enqueue_discovered_references(NULL);
 255 
 256     // Update time of last GC
 257     reset_millis_since_last_gc();
 258 
 259     // Let the size policy know we're done
 260     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
 261 
 262     if (UseAdaptiveSizePolicy) {
 263 
 264      log_debug(gc, ergo)("AdaptiveSizeStart: collection: %d ", heap->total_collections());
 265      log_trace(gc, ergo)("old_gen_capacity: " SIZE_FORMAT " young_gen_capacity: " SIZE_FORMAT,






 266                          old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());


 267 
 268       // Don't check if the size_policy is ready here.  Let
 269       // the size_policy check that internally.
 270       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
 271           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
 272         // Swap the survivor spaces if from_space is empty. The
 273         // resize_young_gen() called below is normally used after
 274         // a successful young GC and swapping of survivor spaces;
 275         // otherwise, it will fail to resize the young gen with
 276         // the current implementation.
 277         if (young_gen->from_space()->is_empty()) {
 278           young_gen->from_space()->clear(SpaceDecorator::Mangle);
 279           young_gen->swap_spaces();
 280         }
 281 
 282         // Calculate optimal free space amounts
 283         assert(young_gen->max_size() >
 284           young_gen->from_space()->capacity_in_bytes() +
 285           young_gen->to_space()->capacity_in_bytes(),
 286           "Sizes of space in young gen are out-of-bounds");


 303                                                     cur_eden,
 304                                                     max_old_gen_size,
 305                                                     max_eden_size,
 306                                                     true /* full gc*/);
 307 
 308         size_policy->check_gc_overhead_limit(young_live,
 309                                              eden_live,
 310                                              max_old_gen_size,
 311                                              max_eden_size,
 312                                              true /* full gc*/,
 313                                              gc_cause,
 314                                              heap->collector_policy());
 315 
 316         size_policy->decay_supplemental_growth(true /* full gc*/);
 317 
 318         heap->resize_old_gen(size_policy->calculated_old_free_size_in_bytes());
 319 
 320         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
 321                                size_policy->calculated_survivor_size_in_bytes());
 322       }
 323       log_debug(gc, ergo)("AdaptiveSizeStop: collection: %d ", heap->total_collections());



 324     }
 325 
 326     if (UsePerfData) {
 327       heap->gc_policy_counters()->update_counters();
 328       heap->gc_policy_counters()->update_old_capacity(
 329         old_gen->capacity_in_bytes());
 330       heap->gc_policy_counters()->update_young_capacity(
 331         young_gen->capacity_in_bytes());
 332     }
 333 
 334     heap->resize_all_tlabs();
 335 
 336     // We collected the heap, recalculate the metaspace capacity
 337     MetaspaceGC::compute_new_size();
 338 
 339     if (TraceOldGenTime) accumulated_time()->stop();
 340 
 341     if (PrintGC) {
 342       if (PrintGCDetails) {
 343         // Don't print a GC timestamp here.  This is after the GC so
 344         // would be confusing.
 345         young_gen->print_used_change(young_gen_prev_used);
 346         old_gen->print_used_change(old_gen_prev_used);
 347       }

 348       if (PrintGCDetails) {
 349         MetaspaceAux::print_metaspace_change(metadata_prev_used);
 350       }
 351     }
 352 
 353     // Track memory usage and detect low memory
 354     MemoryService::track_memory_usage();
 355     heap->update_counters();
 356   }
 357 
 358   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
 359     HandleMark hm;  // Discard invalid handles created during verification
 360     Universe::verify("After GC");
 361   }
 362 
 363   // Re-verify object start arrays
 364   if (VerifyObjectStartArray &&
 365       VerifyAfterGC) {
 366     old_gen->verify_object_start_array();
 367   }
 368 
 369   if (ZapUnusedHeapArea) {
 370     old_gen->object_space()->check_mangled_unused_area_complete();
 371   }
 372 
 373   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
 374 
 375   heap->print_heap_after_gc();
 376   heap->trace_heap_after_gc(_gc_tracer);
 377 
 378   heap->post_full_gc_dump(_gc_timer);
 379 
 380 #ifdef TRACESPINNING
 381   ParallelTaskTerminator::print_termination_counts();
 382 #endif
 383 
 384   AdaptiveSizePolicyOutput::print(size_policy, heap->total_collections());
 385 
 386   _gc_timer->register_gc_end();
 387 
 388   _gc_tracer->report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 389 
 390   return true;
 391 }
 392 
 393 bool PSMarkSweep::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
 394                                              PSYoungGen* young_gen,
 395                                              PSOldGen* old_gen) {
 396   MutableSpace* const eden_space = young_gen->eden_space();
 397   assert(!eden_space->is_empty(), "eden must be non-empty");
 398   assert(young_gen->virtual_space()->alignment() ==
 399          old_gen->virtual_space()->alignment(), "alignments do not match");
 400 
 401   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
 402     return false;
 403   }
 404 
 405   // Both generations must be completely committed.


 411   }
 412 
 413   // Figure out how much to take from eden.  Include the average amount promoted
 414   // in the total; otherwise the next young gen GC will simply bail out to a
 415   // full GC.
 416   const size_t alignment = old_gen->virtual_space()->alignment();
 417   const size_t eden_used = eden_space->used_in_bytes();
 418   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
 419   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
 420   const size_t eden_capacity = eden_space->capacity_in_bytes();
 421 
 422   if (absorb_size >= eden_capacity) {
 423     return false; // Must leave some space in eden.
 424   }
 425 
 426   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
 427   if (new_young_size < young_gen->min_gen_size()) {
 428     return false; // Respect young gen minimum size.
 429   }
 430 
 431   log_trace(heap, ergo)(" absorbing " SIZE_FORMAT "K:  "

 432                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
 433                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
 434                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
 435                         absorb_size / K,
 436                         eden_capacity / K, (eden_capacity - absorb_size) / K,
 437                         young_gen->from_space()->used_in_bytes() / K,
 438                         young_gen->to_space()->used_in_bytes() / K,
 439                         young_gen->capacity_in_bytes() / K, new_young_size / K);

 440 
 441   // Fill the unused part of the old gen.
 442   MutableSpace* const old_space = old_gen->object_space();
 443   HeapWord* const unused_start = old_space->top();
 444   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
 445 
 446   if (unused_words > 0) {
 447     if (unused_words < CollectedHeap::min_fill_size()) {
 448       return false;  // If the old gen cannot be filled, must give up.
 449     }
 450     CollectedHeap::fill_with_objects(unused_start, unused_words);
 451   }
 452 
 453   // Take the live data from eden and set both top and end in the old gen to
 454   // eden top.  (Need to set end because reset_after_change() mangles the region
 455   // from end to virtual_space->high() in debug builds).
 456   HeapWord* const new_top = eden_space->top();
 457   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
 458                                         absorb_size);
 459   young_gen->reset_after_change();


 483   MutableSpace* to_space = young_gen->to_space();
 484   _preserved_marks = (PreservedMark*)to_space->top();
 485   _preserved_count = 0;
 486 
 487   // We want to calculate the size in bytes first.
 488   _preserved_count_max  = pointer_delta(to_space->end(), to_space->top(), sizeof(jbyte));
 489   // Now divide by the size of a PreservedMark
 490   _preserved_count_max /= sizeof(PreservedMark);
 491 }
 492 
 493 
 494 void PSMarkSweep::deallocate_stacks() {
 495   _preserved_mark_stack.clear(true);
 496   _preserved_oop_stack.clear(true);
 497   _marking_stack.clear();
 498   _objarray_stack.clear(true);
 499 }
 500 
 501 void PSMarkSweep::mark_sweep_phase1(bool clear_all_softrefs) {
 502   // Recursively traverse all live objects and mark them
 503   GCTraceTime(Trace, gc) tm("phase 1: Mark live objects", _gc_timer);
 504 
 505   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 506 
 507   // Need to clear claim bits before the tracing starts.
 508   ClassLoaderDataGraph::clear_claimed_marks();
 509 
 510   // General strong roots.
 511   {
 512     ParallelScavengeHeap::ParStrongRootsScope psrs;
 513     Universe::oops_do(mark_and_push_closure());
 514     JNIHandles::oops_do(mark_and_push_closure());   // Global (strong) JNI handles
 515     CLDToOopClosure mark_and_push_from_cld(mark_and_push_closure());
 516     MarkingCodeBlobClosure each_active_code_blob(mark_and_push_closure(), !CodeBlobToOopClosure::FixRelocations);
 517     Threads::oops_do(mark_and_push_closure(), &mark_and_push_from_cld, &each_active_code_blob);
 518     ObjectSynchronizer::oops_do(mark_and_push_closure());
 519     FlatProfiler::oops_do(mark_and_push_closure());
 520     Management::oops_do(mark_and_push_closure());
 521     JvmtiExport::oops_do(mark_and_push_closure());
 522     SystemDictionary::always_strong_oops_do(mark_and_push_closure());
 523     ClassLoaderDataGraph::always_strong_cld_do(follow_cld_closure());


 542 
 543   // Unload classes and purge the SystemDictionary.
 544   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
 545 
 546   // Unload nmethods.
 547   CodeCache::do_unloading(is_alive_closure(), purged_class);
 548 
 549   // Prune dead klasses from subklass/sibling/implementor lists.
 550   Klass::clean_weak_klass_links(is_alive_closure());
 551 
 552   // Delete entries for dead interned strings.
 553   StringTable::unlink(is_alive_closure());
 554 
 555   // Clean up unreferenced symbols in symbol table.
 556   SymbolTable::unlink();
 557   _gc_tracer->report_object_count_after_gc(is_alive_closure());
 558 }
 559 
 560 
 561 void PSMarkSweep::mark_sweep_phase2() {
 562   GCTraceTime(Trace, gc) tm("phase 2: Compute new object addresses", _gc_timer);
 563 
 564   // Now all live objects are marked, compute the new object addresses.
 565 
 566   // It is not required that we traverse spaces in the same order in
 567   // phase2, phase3 and phase4, but the ValidateMarkSweep live oops
 568   // tracking expects us to do so. See comment under phase4.
 569 
 570   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 571   PSOldGen* old_gen = heap->old_gen();
 572 
 573   // Begin compacting into the old gen
 574   PSMarkSweepDecorator::set_destination_decorator_tenured();
 575 
 576   // This will also compact the young gen spaces.
 577   old_gen->precompact();
 578 }
 579 
 580 // This should be moved to the shared markSweep code!
 581 class PSAlwaysTrueClosure: public BoolObjectClosure {
 582 public:
 583   bool do_object_b(oop p) { return true; }
 584 };
 585 static PSAlwaysTrueClosure always_true;
 586 
 587 void PSMarkSweep::mark_sweep_phase3() {
 588   // Adjust the pointers to reflect the new locations
 589   GCTraceTime(Trace, gc) tm("phase 3: Adjust pointers", _gc_timer);
 590 
 591   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 592   PSYoungGen* young_gen = heap->young_gen();
 593   PSOldGen* old_gen = heap->old_gen();
 594 
 595   // Need to clear claim bits before the tracing starts.
 596   ClassLoaderDataGraph::clear_claimed_marks();
 597 
 598   // General strong roots.
 599   Universe::oops_do(adjust_pointer_closure());
 600   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
 601   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
 602   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
 603   ObjectSynchronizer::oops_do(adjust_pointer_closure());
 604   FlatProfiler::oops_do(adjust_pointer_closure());
 605   Management::oops_do(adjust_pointer_closure());
 606   JvmtiExport::oops_do(adjust_pointer_closure());
 607   SystemDictionary::oops_do(adjust_pointer_closure());
 608   ClassLoaderDataGraph::cld_do(adjust_cld_closure());
 609 
 610   // Now adjust pointers in remaining weak roots.  (All of which should
 611   // have been cleared if they pointed to non-surviving objects.)
 612   // Global (weak) JNI handles
 613   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
 614 
 615   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
 616   CodeCache::blobs_do(&adjust_from_blobs);
 617   StringTable::oops_do(adjust_pointer_closure());
 618   ref_processor()->weak_oops_do(adjust_pointer_closure());
 619   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
 620 
 621   adjust_marks();
 622 
 623   young_gen->adjust_pointers();
 624   old_gen->adjust_pointers();
 625 }
 626 
 627 void PSMarkSweep::mark_sweep_phase4() {
 628   EventMark m("4 compact heap");
 629   GCTraceTime(Trace, gc) tm("phase 4: Move objects", _gc_timer);
 630 
 631   // All pointers are now adjusted, move objects accordingly
 632 
 633   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 634   PSYoungGen* young_gen = heap->young_gen();
 635   PSOldGen* old_gen = heap->old_gen();
 636 
 637   old_gen->compact();
 638   young_gen->compact();
 639 }
 640 
 641 jlong PSMarkSweep::millis_since_last_gc() {
 642   // We need a monotonically non-decreasing time in ms but
 643   // os::javaTimeMillis() does not guarantee monotonicity.
 644   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 645   jlong ret_val = now - _time_of_last_gc;
 646   // XXX See note in genCollectedHeap::millis_since_last_gc().
 647   if (ret_val < 0) {
 648     NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, ret_val);)
 649     return 0;
< prev index next >