1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 #ifdef _DEBUG
  77 #include <crtdbg.h>
  78 #endif
  79 
  80 
  81 #include <windows.h>
  82 #include <sys/types.h>
  83 #include <sys/stat.h>
  84 #include <sys/timeb.h>
  85 #include <objidl.h>
  86 #include <shlobj.h>
  87 
  88 #include <malloc.h>
  89 #include <signal.h>
  90 #include <direct.h>
  91 #include <errno.h>
  92 #include <fcntl.h>
  93 #include <io.h>
  94 #include <process.h>              // For _beginthreadex(), _endthreadex()
  95 #include <imagehlp.h>             // For os::dll_address_to_function_name
  96 // for enumerating dll libraries
  97 #include <vdmdbg.h>
  98 
  99 // for timer info max values which include all bits
 100 #define ALL_64_BITS CONST64(-1)
 101 
 102 // For DLL loading/load error detection
 103 // Values of PE COFF
 104 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 105 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 106 
 107 static HANDLE main_process;
 108 static HANDLE main_thread;
 109 static int    main_thread_id;
 110 
 111 static FILETIME process_creation_time;
 112 static FILETIME process_exit_time;
 113 static FILETIME process_user_time;
 114 static FILETIME process_kernel_time;
 115 
 116 #ifdef _M_IA64
 117   #define __CPU__ ia64
 118 #else
 119   #ifdef _M_AMD64
 120     #define __CPU__ amd64
 121   #else
 122     #define __CPU__ i486
 123   #endif
 124 #endif
 125 
 126 // save DLL module handle, used by GetModuleFileName
 127 
 128 HINSTANCE vm_lib_handle;
 129 
 130 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 131   switch (reason) {
 132   case DLL_PROCESS_ATTACH:
 133     vm_lib_handle = hinst;
 134     if (ForceTimeHighResolution) {
 135       timeBeginPeriod(1L);
 136     }
 137     break;
 138   case DLL_PROCESS_DETACH:
 139     if (ForceTimeHighResolution) {
 140       timeEndPeriod(1L);
 141     }
 142     break;
 143   default:
 144     break;
 145   }
 146   return true;
 147 }
 148 
 149 static inline double fileTimeAsDouble(FILETIME* time) {
 150   const double high  = (double) ((unsigned int) ~0);
 151   const double split = 10000000.0;
 152   double result = (time->dwLowDateTime / split) +
 153                    time->dwHighDateTime * (high/split);
 154   return result;
 155 }
 156 
 157 // Implementation of os
 158 
 159 bool os::unsetenv(const char* name) {
 160   assert(name != NULL, "Null pointer");
 161   return (SetEnvironmentVariable(name, NULL) == TRUE);
 162 }
 163 
 164 // No setuid programs under Windows.
 165 bool os::have_special_privileges() {
 166   return false;
 167 }
 168 
 169 
 170 // This method is  a periodic task to check for misbehaving JNI applications
 171 // under CheckJNI, we can add any periodic checks here.
 172 // For Windows at the moment does nothing
 173 void os::run_periodic_checks() {
 174   return;
 175 }
 176 
 177 // previous UnhandledExceptionFilter, if there is one
 178 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 179 
 180 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 181 
 182 void os::init_system_properties_values() {
 183   // sysclasspath, java_home, dll_dir
 184   {
 185     char *home_path;
 186     char *dll_path;
 187     char *pslash;
 188     char *bin = "\\bin";
 189     char home_dir[MAX_PATH + 1];
 190     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 191 
 192     if (alt_home_dir != NULL)  {
 193       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 194       home_dir[MAX_PATH] = '\0';
 195     } else {
 196       os::jvm_path(home_dir, sizeof(home_dir));
 197       // Found the full path to jvm.dll.
 198       // Now cut the path to <java_home>/jre if we can.
 199       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 200       pslash = strrchr(home_dir, '\\');
 201       if (pslash != NULL) {
 202         *pslash = '\0';                   // get rid of \{client|server}
 203         pslash = strrchr(home_dir, '\\');
 204         if (pslash != NULL) {
 205           *pslash = '\0';                 // get rid of \bin
 206         }
 207       }
 208     }
 209 
 210     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 211     if (home_path == NULL) {
 212       return;
 213     }
 214     strcpy(home_path, home_dir);
 215     Arguments::set_java_home(home_path);
 216     FREE_C_HEAP_ARRAY(char, home_path);
 217 
 218     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 219                                 mtInternal);
 220     if (dll_path == NULL) {
 221       return;
 222     }
 223     strcpy(dll_path, home_dir);
 224     strcat(dll_path, bin);
 225     Arguments::set_dll_dir(dll_path);
 226     FREE_C_HEAP_ARRAY(char, dll_path);
 227 
 228     if (!set_boot_path('\\', ';')) {
 229       return;
 230     }
 231   }
 232 
 233 // library_path
 234 #define EXT_DIR "\\lib\\ext"
 235 #define BIN_DIR "\\bin"
 236 #define PACKAGE_DIR "\\Sun\\Java"
 237   {
 238     // Win32 library search order (See the documentation for LoadLibrary):
 239     //
 240     // 1. The directory from which application is loaded.
 241     // 2. The system wide Java Extensions directory (Java only)
 242     // 3. System directory (GetSystemDirectory)
 243     // 4. Windows directory (GetWindowsDirectory)
 244     // 5. The PATH environment variable
 245     // 6. The current directory
 246 
 247     char *library_path;
 248     char tmp[MAX_PATH];
 249     char *path_str = ::getenv("PATH");
 250 
 251     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 252                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 253 
 254     library_path[0] = '\0';
 255 
 256     GetModuleFileName(NULL, tmp, sizeof(tmp));
 257     *(strrchr(tmp, '\\')) = '\0';
 258     strcat(library_path, tmp);
 259 
 260     GetWindowsDirectory(tmp, sizeof(tmp));
 261     strcat(library_path, ";");
 262     strcat(library_path, tmp);
 263     strcat(library_path, PACKAGE_DIR BIN_DIR);
 264 
 265     GetSystemDirectory(tmp, sizeof(tmp));
 266     strcat(library_path, ";");
 267     strcat(library_path, tmp);
 268 
 269     GetWindowsDirectory(tmp, sizeof(tmp));
 270     strcat(library_path, ";");
 271     strcat(library_path, tmp);
 272 
 273     if (path_str) {
 274       strcat(library_path, ";");
 275       strcat(library_path, path_str);
 276     }
 277 
 278     strcat(library_path, ";.");
 279 
 280     Arguments::set_library_path(library_path);
 281     FREE_C_HEAP_ARRAY(char, library_path);
 282   }
 283 
 284   // Default extensions directory
 285   {
 286     char path[MAX_PATH];
 287     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 288     GetWindowsDirectory(path, MAX_PATH);
 289     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 290             path, PACKAGE_DIR, EXT_DIR);
 291     Arguments::set_ext_dirs(buf);
 292   }
 293   #undef EXT_DIR
 294   #undef BIN_DIR
 295   #undef PACKAGE_DIR
 296 
 297 #ifndef _WIN64
 298   // set our UnhandledExceptionFilter and save any previous one
 299   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 300 #endif
 301 
 302   // Done
 303   return;
 304 }
 305 
 306 void os::breakpoint() {
 307   DebugBreak();
 308 }
 309 
 310 // Invoked from the BREAKPOINT Macro
 311 extern "C" void breakpoint() {
 312   os::breakpoint();
 313 }
 314 
 315 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 316 // So far, this method is only used by Native Memory Tracking, which is
 317 // only supported on Windows XP or later.
 318 //
 319 int os::get_native_stack(address* stack, int frames, int toSkip) {
 320 #ifdef _NMT_NOINLINE_
 321   toSkip++;
 322 #endif
 323   int captured = Kernel32Dll::RtlCaptureStackBackTrace(toSkip + 1, frames,
 324                                                        (PVOID*)stack, NULL);
 325   for (int index = captured; index < frames; index ++) {
 326     stack[index] = NULL;
 327   }
 328   return captured;
 329 }
 330 
 331 
 332 // os::current_stack_base()
 333 //
 334 //   Returns the base of the stack, which is the stack's
 335 //   starting address.  This function must be called
 336 //   while running on the stack of the thread being queried.
 337 
 338 address os::current_stack_base() {
 339   MEMORY_BASIC_INFORMATION minfo;
 340   address stack_bottom;
 341   size_t stack_size;
 342 
 343   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 344   stack_bottom =  (address)minfo.AllocationBase;
 345   stack_size = minfo.RegionSize;
 346 
 347   // Add up the sizes of all the regions with the same
 348   // AllocationBase.
 349   while (1) {
 350     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 351     if (stack_bottom == (address)minfo.AllocationBase) {
 352       stack_size += minfo.RegionSize;
 353     } else {
 354       break;
 355     }
 356   }
 357 
 358 #ifdef _M_IA64
 359   // IA64 has memory and register stacks
 360   //
 361   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 362   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 363   // growing downwards, 2MB summed up)
 364   //
 365   // ...
 366   // ------- top of stack (high address) -----
 367   // |
 368   // |      1MB
 369   // |      Backing Store (Register Stack)
 370   // |
 371   // |         / \
 372   // |          |
 373   // |          |
 374   // |          |
 375   // ------------------------ stack base -----
 376   // |      1MB
 377   // |      Memory Stack
 378   // |
 379   // |          |
 380   // |          |
 381   // |          |
 382   // |         \ /
 383   // |
 384   // ----- bottom of stack (low address) -----
 385   // ...
 386 
 387   stack_size = stack_size / 2;
 388 #endif
 389   return stack_bottom + stack_size;
 390 }
 391 
 392 size_t os::current_stack_size() {
 393   size_t sz;
 394   MEMORY_BASIC_INFORMATION minfo;
 395   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 396   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 397   return sz;
 398 }
 399 
 400 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 401   const struct tm* time_struct_ptr = localtime(clock);
 402   if (time_struct_ptr != NULL) {
 403     *res = *time_struct_ptr;
 404     return res;
 405   }
 406   return NULL;
 407 }
 408 
 409 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 410 
 411 // Thread start routine for all new Java threads
 412 static unsigned __stdcall java_start(Thread* thread) {
 413   // Try to randomize the cache line index of hot stack frames.
 414   // This helps when threads of the same stack traces evict each other's
 415   // cache lines. The threads can be either from the same JVM instance, or
 416   // from different JVM instances. The benefit is especially true for
 417   // processors with hyperthreading technology.
 418   static int counter = 0;
 419   int pid = os::current_process_id();
 420   _alloca(((pid ^ counter++) & 7) * 128);
 421 
 422   OSThread* osthr = thread->osthread();
 423   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 424 
 425   if (UseNUMA) {
 426     int lgrp_id = os::numa_get_group_id();
 427     if (lgrp_id != -1) {
 428       thread->set_lgrp_id(lgrp_id);
 429     }
 430   }
 431 
 432   // Diagnostic code to investigate JDK-6573254
 433   int res = 30115;  // non-java thread
 434   if (thread->is_Java_thread()) {
 435     res = 20115;    // java thread
 436   }
 437 
 438   // Install a win32 structured exception handler around every thread created
 439   // by VM, so VM can generate error dump when an exception occurred in non-
 440   // Java thread (e.g. VM thread).
 441   __try {
 442     thread->run();
 443   } __except(topLevelExceptionFilter(
 444                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 445     // Nothing to do.
 446   }
 447 
 448   // One less thread is executing
 449   // When the VMThread gets here, the main thread may have already exited
 450   // which frees the CodeHeap containing the Atomic::add code
 451   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 452     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 453   }
 454 
 455   // Thread must not return from exit_process_or_thread(), but if it does,
 456   // let it proceed to exit normally
 457   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 458 }
 459 
 460 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 461                                   int thread_id) {
 462   // Allocate the OSThread object
 463   OSThread* osthread = new OSThread(NULL, NULL);
 464   if (osthread == NULL) return NULL;
 465 
 466   // Initialize support for Java interrupts
 467   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 468   if (interrupt_event == NULL) {
 469     delete osthread;
 470     return NULL;
 471   }
 472   osthread->set_interrupt_event(interrupt_event);
 473 
 474   // Store info on the Win32 thread into the OSThread
 475   osthread->set_thread_handle(thread_handle);
 476   osthread->set_thread_id(thread_id);
 477 
 478   if (UseNUMA) {
 479     int lgrp_id = os::numa_get_group_id();
 480     if (lgrp_id != -1) {
 481       thread->set_lgrp_id(lgrp_id);
 482     }
 483   }
 484 
 485   // Initial thread state is INITIALIZED, not SUSPENDED
 486   osthread->set_state(INITIALIZED);
 487 
 488   return osthread;
 489 }
 490 
 491 
 492 bool os::create_attached_thread(JavaThread* thread) {
 493 #ifdef ASSERT
 494   thread->verify_not_published();
 495 #endif
 496   HANDLE thread_h;
 497   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 498                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 499     fatal("DuplicateHandle failed\n");
 500   }
 501   OSThread* osthread = create_os_thread(thread, thread_h,
 502                                         (int)current_thread_id());
 503   if (osthread == NULL) {
 504     return false;
 505   }
 506 
 507   // Initial thread state is RUNNABLE
 508   osthread->set_state(RUNNABLE);
 509 
 510   thread->set_osthread(osthread);
 511   return true;
 512 }
 513 
 514 bool os::create_main_thread(JavaThread* thread) {
 515 #ifdef ASSERT
 516   thread->verify_not_published();
 517 #endif
 518   if (_starting_thread == NULL) {
 519     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 520     if (_starting_thread == NULL) {
 521       return false;
 522     }
 523   }
 524 
 525   // The primordial thread is runnable from the start)
 526   _starting_thread->set_state(RUNNABLE);
 527 
 528   thread->set_osthread(_starting_thread);
 529   return true;
 530 }
 531 
 532 // Allocate and initialize a new OSThread
 533 bool os::create_thread(Thread* thread, ThreadType thr_type,
 534                        size_t stack_size) {
 535   unsigned thread_id;
 536 
 537   // Allocate the OSThread object
 538   OSThread* osthread = new OSThread(NULL, NULL);
 539   if (osthread == NULL) {
 540     return false;
 541   }
 542 
 543   // Initialize support for Java interrupts
 544   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 545   if (interrupt_event == NULL) {
 546     delete osthread;
 547     return NULL;
 548   }
 549   osthread->set_interrupt_event(interrupt_event);
 550   osthread->set_interrupted(false);
 551 
 552   thread->set_osthread(osthread);
 553 
 554   if (stack_size == 0) {
 555     switch (thr_type) {
 556     case os::java_thread:
 557       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 558       if (JavaThread::stack_size_at_create() > 0) {
 559         stack_size = JavaThread::stack_size_at_create();
 560       }
 561       break;
 562     case os::compiler_thread:
 563       if (CompilerThreadStackSize > 0) {
 564         stack_size = (size_t)(CompilerThreadStackSize * K);
 565         break;
 566       } // else fall through:
 567         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 568     case os::vm_thread:
 569     case os::pgc_thread:
 570     case os::cgc_thread:
 571     case os::watcher_thread:
 572       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 573       break;
 574     }
 575   }
 576 
 577   // Create the Win32 thread
 578   //
 579   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 580   // does not specify stack size. Instead, it specifies the size of
 581   // initially committed space. The stack size is determined by
 582   // PE header in the executable. If the committed "stack_size" is larger
 583   // than default value in the PE header, the stack is rounded up to the
 584   // nearest multiple of 1MB. For example if the launcher has default
 585   // stack size of 320k, specifying any size less than 320k does not
 586   // affect the actual stack size at all, it only affects the initial
 587   // commitment. On the other hand, specifying 'stack_size' larger than
 588   // default value may cause significant increase in memory usage, because
 589   // not only the stack space will be rounded up to MB, but also the
 590   // entire space is committed upfront.
 591   //
 592   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 593   // for CreateThread() that can treat 'stack_size' as stack size. However we
 594   // are not supposed to call CreateThread() directly according to MSDN
 595   // document because JVM uses C runtime library. The good news is that the
 596   // flag appears to work with _beginthredex() as well.
 597 
 598 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 599   #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 600 #endif
 601 
 602   HANDLE thread_handle =
 603     (HANDLE)_beginthreadex(NULL,
 604                            (unsigned)stack_size,
 605                            (unsigned (__stdcall *)(void*)) java_start,
 606                            thread,
 607                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 608                            &thread_id);
 609   if (thread_handle == NULL) {
 610     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 611     // without the flag.
 612     thread_handle =
 613       (HANDLE)_beginthreadex(NULL,
 614                              (unsigned)stack_size,
 615                              (unsigned (__stdcall *)(void*)) java_start,
 616                              thread,
 617                              CREATE_SUSPENDED,
 618                              &thread_id);
 619   }
 620   if (thread_handle == NULL) {
 621     // Need to clean up stuff we've allocated so far
 622     CloseHandle(osthread->interrupt_event());
 623     thread->set_osthread(NULL);
 624     delete osthread;
 625     return NULL;
 626   }
 627 
 628   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 629 
 630   // Store info on the Win32 thread into the OSThread
 631   osthread->set_thread_handle(thread_handle);
 632   osthread->set_thread_id(thread_id);
 633 
 634   // Initial thread state is INITIALIZED, not SUSPENDED
 635   osthread->set_state(INITIALIZED);
 636 
 637   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 638   return true;
 639 }
 640 
 641 
 642 // Free Win32 resources related to the OSThread
 643 void os::free_thread(OSThread* osthread) {
 644   assert(osthread != NULL, "osthread not set");
 645   CloseHandle(osthread->thread_handle());
 646   CloseHandle(osthread->interrupt_event());
 647   delete osthread;
 648 }
 649 
 650 static jlong first_filetime;
 651 static jlong initial_performance_count;
 652 static jlong performance_frequency;
 653 
 654 
 655 jlong as_long(LARGE_INTEGER x) {
 656   jlong result = 0; // initialization to avoid warning
 657   set_high(&result, x.HighPart);
 658   set_low(&result, x.LowPart);
 659   return result;
 660 }
 661 
 662 
 663 jlong os::elapsed_counter() {
 664   LARGE_INTEGER count;
 665   if (win32::_has_performance_count) {
 666     QueryPerformanceCounter(&count);
 667     return as_long(count) - initial_performance_count;
 668   } else {
 669     FILETIME wt;
 670     GetSystemTimeAsFileTime(&wt);
 671     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 672   }
 673 }
 674 
 675 
 676 jlong os::elapsed_frequency() {
 677   if (win32::_has_performance_count) {
 678     return performance_frequency;
 679   } else {
 680     // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 681     return 10000000;
 682   }
 683 }
 684 
 685 
 686 julong os::available_memory() {
 687   return win32::available_memory();
 688 }
 689 
 690 julong os::win32::available_memory() {
 691   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 692   // value if total memory is larger than 4GB
 693   MEMORYSTATUSEX ms;
 694   ms.dwLength = sizeof(ms);
 695   GlobalMemoryStatusEx(&ms);
 696 
 697   return (julong)ms.ullAvailPhys;
 698 }
 699 
 700 julong os::physical_memory() {
 701   return win32::physical_memory();
 702 }
 703 
 704 bool os::has_allocatable_memory_limit(julong* limit) {
 705   MEMORYSTATUSEX ms;
 706   ms.dwLength = sizeof(ms);
 707   GlobalMemoryStatusEx(&ms);
 708 #ifdef _LP64
 709   *limit = (julong)ms.ullAvailVirtual;
 710   return true;
 711 #else
 712   // Limit to 1400m because of the 2gb address space wall
 713   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 714   return true;
 715 #endif
 716 }
 717 
 718 // VC6 lacks DWORD_PTR
 719 #if _MSC_VER < 1300
 720 typedef UINT_PTR DWORD_PTR;
 721 #endif
 722 
 723 int os::active_processor_count() {
 724   DWORD_PTR lpProcessAffinityMask = 0;
 725   DWORD_PTR lpSystemAffinityMask = 0;
 726   int proc_count = processor_count();
 727   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 728       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 729     // Nof active processors is number of bits in process affinity mask
 730     int bitcount = 0;
 731     while (lpProcessAffinityMask != 0) {
 732       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 733       bitcount++;
 734     }
 735     return bitcount;
 736   } else {
 737     return proc_count;
 738   }
 739 }
 740 
 741 void os::set_native_thread_name(const char *name) {
 742 
 743   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 744   //
 745   // Note that unfortunately this only works if the process
 746   // is already attached to a debugger; debugger must observe
 747   // the exception below to show the correct name.
 748 
 749   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 750   struct {
 751     DWORD dwType;     // must be 0x1000
 752     LPCSTR szName;    // pointer to name (in user addr space)
 753     DWORD dwThreadID; // thread ID (-1=caller thread)
 754     DWORD dwFlags;    // reserved for future use, must be zero
 755   } info;
 756 
 757   info.dwType = 0x1000;
 758   info.szName = name;
 759   info.dwThreadID = -1;
 760   info.dwFlags = 0;
 761 
 762   __try {
 763     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 764   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 765 }
 766 
 767 bool os::distribute_processes(uint length, uint* distribution) {
 768   // Not yet implemented.
 769   return false;
 770 }
 771 
 772 bool os::bind_to_processor(uint processor_id) {
 773   // Not yet implemented.
 774   return false;
 775 }
 776 
 777 void os::win32::initialize_performance_counter() {
 778   LARGE_INTEGER count;
 779   if (QueryPerformanceFrequency(&count)) {
 780     win32::_has_performance_count = 1;
 781     performance_frequency = as_long(count);
 782     QueryPerformanceCounter(&count);
 783     initial_performance_count = as_long(count);
 784   } else {
 785     win32::_has_performance_count = 0;
 786     FILETIME wt;
 787     GetSystemTimeAsFileTime(&wt);
 788     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 789   }
 790 }
 791 
 792 
 793 double os::elapsedTime() {
 794   return (double) elapsed_counter() / (double) elapsed_frequency();
 795 }
 796 
 797 
 798 // Windows format:
 799 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 800 // Java format:
 801 //   Java standards require the number of milliseconds since 1/1/1970
 802 
 803 // Constant offset - calculated using offset()
 804 static jlong  _offset   = 116444736000000000;
 805 // Fake time counter for reproducible results when debugging
 806 static jlong  fake_time = 0;
 807 
 808 #ifdef ASSERT
 809 // Just to be safe, recalculate the offset in debug mode
 810 static jlong _calculated_offset = 0;
 811 static int   _has_calculated_offset = 0;
 812 
 813 jlong offset() {
 814   if (_has_calculated_offset) return _calculated_offset;
 815   SYSTEMTIME java_origin;
 816   java_origin.wYear          = 1970;
 817   java_origin.wMonth         = 1;
 818   java_origin.wDayOfWeek     = 0; // ignored
 819   java_origin.wDay           = 1;
 820   java_origin.wHour          = 0;
 821   java_origin.wMinute        = 0;
 822   java_origin.wSecond        = 0;
 823   java_origin.wMilliseconds  = 0;
 824   FILETIME jot;
 825   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 826     fatal("Error = %d\nWindows error", GetLastError());
 827   }
 828   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 829   _has_calculated_offset = 1;
 830   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 831   return _calculated_offset;
 832 }
 833 #else
 834 jlong offset() {
 835   return _offset;
 836 }
 837 #endif
 838 
 839 jlong windows_to_java_time(FILETIME wt) {
 840   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 841   return (a - offset()) / 10000;
 842 }
 843 
 844 // Returns time ticks in (10th of micro seconds)
 845 jlong windows_to_time_ticks(FILETIME wt) {
 846   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 847   return (a - offset());
 848 }
 849 
 850 FILETIME java_to_windows_time(jlong l) {
 851   jlong a = (l * 10000) + offset();
 852   FILETIME result;
 853   result.dwHighDateTime = high(a);
 854   result.dwLowDateTime  = low(a);
 855   return result;
 856 }
 857 
 858 bool os::supports_vtime() { return true; }
 859 bool os::enable_vtime() { return false; }
 860 bool os::vtime_enabled() { return false; }
 861 
 862 double os::elapsedVTime() {
 863   FILETIME created;
 864   FILETIME exited;
 865   FILETIME kernel;
 866   FILETIME user;
 867   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 868     // the resolution of windows_to_java_time() should be sufficient (ms)
 869     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 870   } else {
 871     return elapsedTime();
 872   }
 873 }
 874 
 875 jlong os::javaTimeMillis() {
 876   if (UseFakeTimers) {
 877     return fake_time++;
 878   } else {
 879     FILETIME wt;
 880     GetSystemTimeAsFileTime(&wt);
 881     return windows_to_java_time(wt);
 882   }
 883 }
 884 
 885 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 886   FILETIME wt;
 887   GetSystemTimeAsFileTime(&wt);
 888   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 889   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 890   seconds = secs;
 891   nanos = jlong(ticks - (secs*10000000)) * 100;
 892 }
 893 
 894 jlong os::javaTimeNanos() {
 895   if (!win32::_has_performance_count) {
 896     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 897   } else {
 898     LARGE_INTEGER current_count;
 899     QueryPerformanceCounter(&current_count);
 900     double current = as_long(current_count);
 901     double freq = performance_frequency;
 902     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 903     return time;
 904   }
 905 }
 906 
 907 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 908   if (!win32::_has_performance_count) {
 909     // javaTimeMillis() doesn't have much percision,
 910     // but it is not going to wrap -- so all 64 bits
 911     info_ptr->max_value = ALL_64_BITS;
 912 
 913     // this is a wall clock timer, so may skip
 914     info_ptr->may_skip_backward = true;
 915     info_ptr->may_skip_forward = true;
 916   } else {
 917     jlong freq = performance_frequency;
 918     if (freq < NANOSECS_PER_SEC) {
 919       // the performance counter is 64 bits and we will
 920       // be multiplying it -- so no wrap in 64 bits
 921       info_ptr->max_value = ALL_64_BITS;
 922     } else if (freq > NANOSECS_PER_SEC) {
 923       // use the max value the counter can reach to
 924       // determine the max value which could be returned
 925       julong max_counter = (julong)ALL_64_BITS;
 926       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 927     } else {
 928       // the performance counter is 64 bits and we will
 929       // be using it directly -- so no wrap in 64 bits
 930       info_ptr->max_value = ALL_64_BITS;
 931     }
 932 
 933     // using a counter, so no skipping
 934     info_ptr->may_skip_backward = false;
 935     info_ptr->may_skip_forward = false;
 936   }
 937   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 938 }
 939 
 940 char* os::local_time_string(char *buf, size_t buflen) {
 941   SYSTEMTIME st;
 942   GetLocalTime(&st);
 943   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 944                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 945   return buf;
 946 }
 947 
 948 bool os::getTimesSecs(double* process_real_time,
 949                       double* process_user_time,
 950                       double* process_system_time) {
 951   HANDLE h_process = GetCurrentProcess();
 952   FILETIME create_time, exit_time, kernel_time, user_time;
 953   BOOL result = GetProcessTimes(h_process,
 954                                 &create_time,
 955                                 &exit_time,
 956                                 &kernel_time,
 957                                 &user_time);
 958   if (result != 0) {
 959     FILETIME wt;
 960     GetSystemTimeAsFileTime(&wt);
 961     jlong rtc_millis = windows_to_java_time(wt);
 962     jlong user_millis = windows_to_java_time(user_time);
 963     jlong system_millis = windows_to_java_time(kernel_time);
 964     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 965     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 966     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 967     return true;
 968   } else {
 969     return false;
 970   }
 971 }
 972 
 973 void os::shutdown() {
 974   // allow PerfMemory to attempt cleanup of any persistent resources
 975   perfMemory_exit();
 976 
 977   // flush buffered output, finish log files
 978   ostream_abort();
 979 
 980   // Check for abort hook
 981   abort_hook_t abort_hook = Arguments::abort_hook();
 982   if (abort_hook != NULL) {
 983     abort_hook();
 984   }
 985 }
 986 
 987 
 988 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 989                                          PMINIDUMP_EXCEPTION_INFORMATION,
 990                                          PMINIDUMP_USER_STREAM_INFORMATION,
 991                                          PMINIDUMP_CALLBACK_INFORMATION);
 992 
 993 static HANDLE dumpFile = NULL;
 994 
 995 // Check if dump file can be created.
 996 void os::check_dump_limit(char* buffer, size_t buffsz) {
 997   bool status = true;
 998   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
 999     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1000     status = false;
1001   }
1002 
1003 #ifndef ASSERT
1004   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1005     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1006     status = false;
1007   }
1008 #endif
1009 
1010   if (status) {
1011     const char* cwd = get_current_directory(NULL, 0);
1012     int pid = current_process_id();
1013     if (cwd != NULL) {
1014       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1015     } else {
1016       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1017     }
1018 
1019     if (dumpFile == NULL &&
1020        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1021                  == INVALID_HANDLE_VALUE) {
1022       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1023       status = false;
1024     }
1025   }
1026   VMError::record_coredump_status(buffer, status);
1027 }
1028 
1029 void os::abort(bool dump_core, void* siginfo, void* context) {
1030   HINSTANCE dbghelp;
1031   EXCEPTION_POINTERS ep;
1032   MINIDUMP_EXCEPTION_INFORMATION mei;
1033   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1034 
1035   HANDLE hProcess = GetCurrentProcess();
1036   DWORD processId = GetCurrentProcessId();
1037   MINIDUMP_TYPE dumpType;
1038 
1039   shutdown();
1040   if (!dump_core || dumpFile == NULL) {
1041     if (dumpFile != NULL) {
1042       CloseHandle(dumpFile);
1043     }
1044     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1045   }
1046 
1047   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1048 
1049   if (dbghelp == NULL) {
1050     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1051     CloseHandle(dumpFile);
1052     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1053   }
1054 
1055   _MiniDumpWriteDump =
1056       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1057                                     PMINIDUMP_EXCEPTION_INFORMATION,
1058                                     PMINIDUMP_USER_STREAM_INFORMATION,
1059                                     PMINIDUMP_CALLBACK_INFORMATION),
1060                                     GetProcAddress(dbghelp,
1061                                     "MiniDumpWriteDump"));
1062 
1063   if (_MiniDumpWriteDump == NULL) {
1064     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1065     CloseHandle(dumpFile);
1066     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1067   }
1068 
1069   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
1070 
1071   // Older versions of dbghelp.h do not contain all the dumptypes we want, dbghelp.h with
1072   // API_VERSION_NUMBER 11 or higher contains the ones we want though
1073 #if API_VERSION_NUMBER >= 11
1074   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
1075                              MiniDumpWithUnloadedModules);
1076 #endif
1077 
1078   if (siginfo != NULL && context != NULL) {
1079     ep.ContextRecord = (PCONTEXT) context;
1080     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1081 
1082     mei.ThreadId = GetCurrentThreadId();
1083     mei.ExceptionPointers = &ep;
1084     pmei = &mei;
1085   } else {
1086     pmei = NULL;
1087   }
1088 
1089   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1090   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1091   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1092       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1093     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1094   }
1095   CloseHandle(dumpFile);
1096   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1097 }
1098 
1099 // Die immediately, no exit hook, no abort hook, no cleanup.
1100 void os::die() {
1101   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1102 }
1103 
1104 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1105 //  * dirent_md.c       1.15 00/02/02
1106 //
1107 // The declarations for DIR and struct dirent are in jvm_win32.h.
1108 
1109 // Caller must have already run dirname through JVM_NativePath, which removes
1110 // duplicate slashes and converts all instances of '/' into '\\'.
1111 
1112 DIR * os::opendir(const char *dirname) {
1113   assert(dirname != NULL, "just checking");   // hotspot change
1114   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1115   DWORD fattr;                                // hotspot change
1116   char alt_dirname[4] = { 0, 0, 0, 0 };
1117 
1118   if (dirp == 0) {
1119     errno = ENOMEM;
1120     return 0;
1121   }
1122 
1123   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1124   // as a directory in FindFirstFile().  We detect this case here and
1125   // prepend the current drive name.
1126   //
1127   if (dirname[1] == '\0' && dirname[0] == '\\') {
1128     alt_dirname[0] = _getdrive() + 'A' - 1;
1129     alt_dirname[1] = ':';
1130     alt_dirname[2] = '\\';
1131     alt_dirname[3] = '\0';
1132     dirname = alt_dirname;
1133   }
1134 
1135   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1136   if (dirp->path == 0) {
1137     free(dirp);
1138     errno = ENOMEM;
1139     return 0;
1140   }
1141   strcpy(dirp->path, dirname);
1142 
1143   fattr = GetFileAttributes(dirp->path);
1144   if (fattr == 0xffffffff) {
1145     free(dirp->path);
1146     free(dirp);
1147     errno = ENOENT;
1148     return 0;
1149   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1150     free(dirp->path);
1151     free(dirp);
1152     errno = ENOTDIR;
1153     return 0;
1154   }
1155 
1156   // Append "*.*", or possibly "\\*.*", to path
1157   if (dirp->path[1] == ':' &&
1158       (dirp->path[2] == '\0' ||
1159       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1160     // No '\\' needed for cases like "Z:" or "Z:\"
1161     strcat(dirp->path, "*.*");
1162   } else {
1163     strcat(dirp->path, "\\*.*");
1164   }
1165 
1166   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1167   if (dirp->handle == INVALID_HANDLE_VALUE) {
1168     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1169       free(dirp->path);
1170       free(dirp);
1171       errno = EACCES;
1172       return 0;
1173     }
1174   }
1175   return dirp;
1176 }
1177 
1178 // parameter dbuf unused on Windows
1179 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1180   assert(dirp != NULL, "just checking");      // hotspot change
1181   if (dirp->handle == INVALID_HANDLE_VALUE) {
1182     return 0;
1183   }
1184 
1185   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1186 
1187   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1188     if (GetLastError() == ERROR_INVALID_HANDLE) {
1189       errno = EBADF;
1190       return 0;
1191     }
1192     FindClose(dirp->handle);
1193     dirp->handle = INVALID_HANDLE_VALUE;
1194   }
1195 
1196   return &dirp->dirent;
1197 }
1198 
1199 int os::closedir(DIR *dirp) {
1200   assert(dirp != NULL, "just checking");      // hotspot change
1201   if (dirp->handle != INVALID_HANDLE_VALUE) {
1202     if (!FindClose(dirp->handle)) {
1203       errno = EBADF;
1204       return -1;
1205     }
1206     dirp->handle = INVALID_HANDLE_VALUE;
1207   }
1208   free(dirp->path);
1209   free(dirp);
1210   return 0;
1211 }
1212 
1213 // This must be hard coded because it's the system's temporary
1214 // directory not the java application's temp directory, ala java.io.tmpdir.
1215 const char* os::get_temp_directory() {
1216   static char path_buf[MAX_PATH];
1217   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1218     return path_buf;
1219   } else {
1220     path_buf[0] = '\0';
1221     return path_buf;
1222   }
1223 }
1224 
1225 static bool file_exists(const char* filename) {
1226   if (filename == NULL || strlen(filename) == 0) {
1227     return false;
1228   }
1229   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1230 }
1231 
1232 bool os::dll_build_name(char *buffer, size_t buflen,
1233                         const char* pname, const char* fname) {
1234   bool retval = false;
1235   const size_t pnamelen = pname ? strlen(pname) : 0;
1236   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1237 
1238   // Return error on buffer overflow.
1239   if (pnamelen + strlen(fname) + 10 > buflen) {
1240     return retval;
1241   }
1242 
1243   if (pnamelen == 0) {
1244     jio_snprintf(buffer, buflen, "%s.dll", fname);
1245     retval = true;
1246   } else if (c == ':' || c == '\\') {
1247     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1248     retval = true;
1249   } else if (strchr(pname, *os::path_separator()) != NULL) {
1250     int n;
1251     char** pelements = split_path(pname, &n);
1252     if (pelements == NULL) {
1253       return false;
1254     }
1255     for (int i = 0; i < n; i++) {
1256       char* path = pelements[i];
1257       // Really shouldn't be NULL, but check can't hurt
1258       size_t plen = (path == NULL) ? 0 : strlen(path);
1259       if (plen == 0) {
1260         continue; // skip the empty path values
1261       }
1262       const char lastchar = path[plen - 1];
1263       if (lastchar == ':' || lastchar == '\\') {
1264         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1265       } else {
1266         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1267       }
1268       if (file_exists(buffer)) {
1269         retval = true;
1270         break;
1271       }
1272     }
1273     // release the storage
1274     for (int i = 0; i < n; i++) {
1275       if (pelements[i] != NULL) {
1276         FREE_C_HEAP_ARRAY(char, pelements[i]);
1277       }
1278     }
1279     if (pelements != NULL) {
1280       FREE_C_HEAP_ARRAY(char*, pelements);
1281     }
1282   } else {
1283     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1284     retval = true;
1285   }
1286   return retval;
1287 }
1288 
1289 // Needs to be in os specific directory because windows requires another
1290 // header file <direct.h>
1291 const char* os::get_current_directory(char *buf, size_t buflen) {
1292   int n = static_cast<int>(buflen);
1293   if (buflen > INT_MAX)  n = INT_MAX;
1294   return _getcwd(buf, n);
1295 }
1296 
1297 //-----------------------------------------------------------
1298 // Helper functions for fatal error handler
1299 #ifdef _WIN64
1300 // Helper routine which returns true if address in
1301 // within the NTDLL address space.
1302 //
1303 static bool _addr_in_ntdll(address addr) {
1304   HMODULE hmod;
1305   MODULEINFO minfo;
1306 
1307   hmod = GetModuleHandle("NTDLL.DLL");
1308   if (hmod == NULL) return false;
1309   if (!os::PSApiDll::GetModuleInformation(GetCurrentProcess(), hmod,
1310                                           &minfo, sizeof(MODULEINFO))) {
1311     return false;
1312   }
1313 
1314   if ((addr >= minfo.lpBaseOfDll) &&
1315       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1316     return true;
1317   } else {
1318     return false;
1319   }
1320 }
1321 #endif
1322 
1323 struct _modinfo {
1324   address addr;
1325   char*   full_path;   // point to a char buffer
1326   int     buflen;      // size of the buffer
1327   address base_addr;
1328 };
1329 
1330 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1331                                   address top_address, void * param) {
1332   struct _modinfo *pmod = (struct _modinfo *)param;
1333   if (!pmod) return -1;
1334 
1335   if (base_addr   <= pmod->addr &&
1336       top_address > pmod->addr) {
1337     // if a buffer is provided, copy path name to the buffer
1338     if (pmod->full_path) {
1339       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1340     }
1341     pmod->base_addr = base_addr;
1342     return 1;
1343   }
1344   return 0;
1345 }
1346 
1347 bool os::dll_address_to_library_name(address addr, char* buf,
1348                                      int buflen, int* offset) {
1349   // buf is not optional, but offset is optional
1350   assert(buf != NULL, "sanity check");
1351 
1352 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1353 //       return the full path to the DLL file, sometimes it returns path
1354 //       to the corresponding PDB file (debug info); sometimes it only
1355 //       returns partial path, which makes life painful.
1356 
1357   struct _modinfo mi;
1358   mi.addr      = addr;
1359   mi.full_path = buf;
1360   mi.buflen    = buflen;
1361   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1362     // buf already contains path name
1363     if (offset) *offset = addr - mi.base_addr;
1364     return true;
1365   }
1366 
1367   buf[0] = '\0';
1368   if (offset) *offset = -1;
1369   return false;
1370 }
1371 
1372 bool os::dll_address_to_function_name(address addr, char *buf,
1373                                       int buflen, int *offset,
1374                                       bool demangle) {
1375   // buf is not optional, but offset is optional
1376   assert(buf != NULL, "sanity check");
1377 
1378   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1379     return true;
1380   }
1381   if (offset != NULL)  *offset  = -1;
1382   buf[0] = '\0';
1383   return false;
1384 }
1385 
1386 // save the start and end address of jvm.dll into param[0] and param[1]
1387 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1388                            address top_address, void * param) {
1389   if (!param) return -1;
1390 
1391   if (base_addr   <= (address)_locate_jvm_dll &&
1392       top_address > (address)_locate_jvm_dll) {
1393     ((address*)param)[0] = base_addr;
1394     ((address*)param)[1] = top_address;
1395     return 1;
1396   }
1397   return 0;
1398 }
1399 
1400 address vm_lib_location[2];    // start and end address of jvm.dll
1401 
1402 // check if addr is inside jvm.dll
1403 bool os::address_is_in_vm(address addr) {
1404   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1405     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1406       assert(false, "Can't find jvm module.");
1407       return false;
1408     }
1409   }
1410 
1411   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1412 }
1413 
1414 // print module info; param is outputStream*
1415 static int _print_module(const char* fname, address base_address,
1416                          address top_address, void* param) {
1417   if (!param) return -1;
1418 
1419   outputStream* st = (outputStream*)param;
1420 
1421   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1422   return 0;
1423 }
1424 
1425 // Loads .dll/.so and
1426 // in case of error it checks if .dll/.so was built for the
1427 // same architecture as Hotspot is running on
1428 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1429   void * result = LoadLibrary(name);
1430   if (result != NULL) {
1431     return result;
1432   }
1433 
1434   DWORD errcode = GetLastError();
1435   if (errcode == ERROR_MOD_NOT_FOUND) {
1436     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1437     ebuf[ebuflen - 1] = '\0';
1438     return NULL;
1439   }
1440 
1441   // Parsing dll below
1442   // If we can read dll-info and find that dll was built
1443   // for an architecture other than Hotspot is running in
1444   // - then print to buffer "DLL was built for a different architecture"
1445   // else call os::lasterror to obtain system error message
1446 
1447   // Read system error message into ebuf
1448   // It may or may not be overwritten below (in the for loop and just above)
1449   lasterror(ebuf, (size_t) ebuflen);
1450   ebuf[ebuflen - 1] = '\0';
1451   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1452   if (fd < 0) {
1453     return NULL;
1454   }
1455 
1456   uint32_t signature_offset;
1457   uint16_t lib_arch = 0;
1458   bool failed_to_get_lib_arch =
1459     ( // Go to position 3c in the dll
1460      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1461      ||
1462      // Read location of signature
1463      (sizeof(signature_offset) !=
1464      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1465      ||
1466      // Go to COFF File Header in dll
1467      // that is located after "signature" (4 bytes long)
1468      (os::seek_to_file_offset(fd,
1469      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1470      ||
1471      // Read field that contains code of architecture
1472      // that dll was built for
1473      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1474     );
1475 
1476   ::close(fd);
1477   if (failed_to_get_lib_arch) {
1478     // file i/o error - report os::lasterror(...) msg
1479     return NULL;
1480   }
1481 
1482   typedef struct {
1483     uint16_t arch_code;
1484     char* arch_name;
1485   } arch_t;
1486 
1487   static const arch_t arch_array[] = {
1488     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1489     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1490     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1491   };
1492 #if   (defined _M_IA64)
1493   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1494 #elif (defined _M_AMD64)
1495   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1496 #elif (defined _M_IX86)
1497   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1498 #else
1499   #error Method os::dll_load requires that one of following \
1500          is defined :_M_IA64,_M_AMD64 or _M_IX86
1501 #endif
1502 
1503 
1504   // Obtain a string for printf operation
1505   // lib_arch_str shall contain string what platform this .dll was built for
1506   // running_arch_str shall string contain what platform Hotspot was built for
1507   char *running_arch_str = NULL, *lib_arch_str = NULL;
1508   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1509     if (lib_arch == arch_array[i].arch_code) {
1510       lib_arch_str = arch_array[i].arch_name;
1511     }
1512     if (running_arch == arch_array[i].arch_code) {
1513       running_arch_str = arch_array[i].arch_name;
1514     }
1515   }
1516 
1517   assert(running_arch_str,
1518          "Didn't find running architecture code in arch_array");
1519 
1520   // If the architecture is right
1521   // but some other error took place - report os::lasterror(...) msg
1522   if (lib_arch == running_arch) {
1523     return NULL;
1524   }
1525 
1526   if (lib_arch_str != NULL) {
1527     ::_snprintf(ebuf, ebuflen - 1,
1528                 "Can't load %s-bit .dll on a %s-bit platform",
1529                 lib_arch_str, running_arch_str);
1530   } else {
1531     // don't know what architecture this dll was build for
1532     ::_snprintf(ebuf, ebuflen - 1,
1533                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1534                 lib_arch, running_arch_str);
1535   }
1536 
1537   return NULL;
1538 }
1539 
1540 void os::print_dll_info(outputStream *st) {
1541   st->print_cr("Dynamic libraries:");
1542   get_loaded_modules_info(_print_module, (void *)st);
1543 }
1544 
1545 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1546   HANDLE   hProcess;
1547 
1548 # define MAX_NUM_MODULES 128
1549   HMODULE     modules[MAX_NUM_MODULES];
1550   static char filename[MAX_PATH];
1551   int         result = 0;
1552 
1553   if (!os::PSApiDll::PSApiAvailable()) {
1554     return 0;
1555   }
1556 
1557   int pid = os::current_process_id();
1558   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1559                          FALSE, pid);
1560   if (hProcess == NULL) return 0;
1561 
1562   DWORD size_needed;
1563   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1564                                         sizeof(modules), &size_needed)) {
1565     CloseHandle(hProcess);
1566     return 0;
1567   }
1568 
1569   // number of modules that are currently loaded
1570   int num_modules = size_needed / sizeof(HMODULE);
1571 
1572   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1573     // Get Full pathname:
1574     if (!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1575                                            filename, sizeof(filename))) {
1576       filename[0] = '\0';
1577     }
1578 
1579     MODULEINFO modinfo;
1580     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1581                                             &modinfo, sizeof(modinfo))) {
1582       modinfo.lpBaseOfDll = NULL;
1583       modinfo.SizeOfImage = 0;
1584     }
1585 
1586     // Invoke callback function
1587     result = callback(filename, (address)modinfo.lpBaseOfDll,
1588                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1589     if (result) break;
1590   }
1591 
1592   CloseHandle(hProcess);
1593   return result;
1594 }
1595 
1596 #ifndef PRODUCT
1597 bool os::get_host_name(char* buf, size_t buflen) {
1598   DWORD size = (DWORD)buflen;
1599   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1600 }
1601 #endif // PRODUCT
1602 
1603 void os::get_summary_os_info(char* buf, size_t buflen) {
1604   stringStream sst(buf, buflen);
1605   os::win32::print_windows_version(&sst);
1606   // chop off newline character
1607   char* nl = strchr(buf, '\n');
1608   if (nl != NULL) *nl = '\0';
1609 }
1610 
1611 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1612   int ret = vsnprintf(buf, len, fmt, args);
1613   // Get the correct buffer size if buf is too small
1614   if (ret < 0) {
1615     return _vscprintf(fmt, args);
1616   }
1617   return ret;
1618 }
1619 
1620 void os::print_os_info_brief(outputStream* st) {
1621   os::print_os_info(st);
1622 }
1623 
1624 void os::print_os_info(outputStream* st) {
1625 #ifdef ASSERT
1626   char buffer[1024];
1627   st->print("HostName: ");
1628   if (get_host_name(buffer, sizeof(buffer))) {
1629     st->print("%s ", buffer);
1630   } else {
1631     st->print("N/A ");
1632   }
1633 #endif
1634   st->print("OS:");
1635   os::win32::print_windows_version(st);
1636 }
1637 
1638 void os::win32::print_windows_version(outputStream* st) {
1639   OSVERSIONINFOEX osvi;
1640   VS_FIXEDFILEINFO *file_info;
1641   TCHAR kernel32_path[MAX_PATH];
1642   UINT len, ret;
1643 
1644   // Use the GetVersionEx information to see if we're on a server or
1645   // workstation edition of Windows. Starting with Windows 8.1 we can't
1646   // trust the OS version information returned by this API.
1647   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1648   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1649   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1650     st->print_cr("Call to GetVersionEx failed");
1651     return;
1652   }
1653   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1654 
1655   // Get the full path to \Windows\System32\kernel32.dll and use that for
1656   // determining what version of Windows we're running on.
1657   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1658   ret = GetSystemDirectory(kernel32_path, len);
1659   if (ret == 0 || ret > len) {
1660     st->print_cr("Call to GetSystemDirectory failed");
1661     return;
1662   }
1663   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1664 
1665   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1666   if (version_size == 0) {
1667     st->print_cr("Call to GetFileVersionInfoSize failed");
1668     return;
1669   }
1670 
1671   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1672   if (version_info == NULL) {
1673     st->print_cr("Failed to allocate version_info");
1674     return;
1675   }
1676 
1677   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1678     os::free(version_info);
1679     st->print_cr("Call to GetFileVersionInfo failed");
1680     return;
1681   }
1682 
1683   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1684     os::free(version_info);
1685     st->print_cr("Call to VerQueryValue failed");
1686     return;
1687   }
1688 
1689   int major_version = HIWORD(file_info->dwProductVersionMS);
1690   int minor_version = LOWORD(file_info->dwProductVersionMS);
1691   int build_number = HIWORD(file_info->dwProductVersionLS);
1692   int build_minor = LOWORD(file_info->dwProductVersionLS);
1693   int os_vers = major_version * 1000 + minor_version;
1694   os::free(version_info);
1695 
1696   st->print(" Windows ");
1697   switch (os_vers) {
1698 
1699   case 6000:
1700     if (is_workstation) {
1701       st->print("Vista");
1702     } else {
1703       st->print("Server 2008");
1704     }
1705     break;
1706 
1707   case 6001:
1708     if (is_workstation) {
1709       st->print("7");
1710     } else {
1711       st->print("Server 2008 R2");
1712     }
1713     break;
1714 
1715   case 6002:
1716     if (is_workstation) {
1717       st->print("8");
1718     } else {
1719       st->print("Server 2012");
1720     }
1721     break;
1722 
1723   case 6003:
1724     if (is_workstation) {
1725       st->print("8.1");
1726     } else {
1727       st->print("Server 2012 R2");
1728     }
1729     break;
1730 
1731   case 10000:
1732     if (is_workstation) {
1733       st->print("10");
1734     } else {
1735       // The server version name of Windows 10 is not known at this time
1736       st->print("%d.%d", major_version, minor_version);
1737     }
1738     break;
1739 
1740   default:
1741     // Unrecognized windows, print out its major and minor versions
1742     st->print("%d.%d", major_version, minor_version);
1743     break;
1744   }
1745 
1746   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1747   // find out whether we are running on 64 bit processor or not
1748   SYSTEM_INFO si;
1749   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1750   os::Kernel32Dll::GetNativeSystemInfo(&si);
1751   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1752     st->print(" , 64 bit");
1753   }
1754 
1755   st->print(" Build %d", build_number);
1756   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1757   st->cr();
1758 }
1759 
1760 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1761   // Nothing to do for now.
1762 }
1763 
1764 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1765   HKEY key;
1766   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1767                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1768   if (status == ERROR_SUCCESS) {
1769     DWORD size = (DWORD)buflen;
1770     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1771     if (status != ERROR_SUCCESS) {
1772         strncpy(buf, "## __CPU__", buflen);
1773     }
1774     RegCloseKey(key);
1775   } else {
1776     // Put generic cpu info to return
1777     strncpy(buf, "## __CPU__", buflen);
1778   }
1779 }
1780 
1781 void os::print_memory_info(outputStream* st) {
1782   st->print("Memory:");
1783   st->print(" %dk page", os::vm_page_size()>>10);
1784 
1785   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1786   // value if total memory is larger than 4GB
1787   MEMORYSTATUSEX ms;
1788   ms.dwLength = sizeof(ms);
1789   GlobalMemoryStatusEx(&ms);
1790 
1791   st->print(", physical %uk", os::physical_memory() >> 10);
1792   st->print("(%uk free)", os::available_memory() >> 10);
1793 
1794   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1795   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1796   st->cr();
1797 }
1798 
1799 void os::print_siginfo(outputStream *st, void *siginfo) {
1800   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1801   st->print("siginfo:");
1802   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1803 
1804   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1805       er->NumberParameters >= 2) {
1806     switch (er->ExceptionInformation[0]) {
1807     case 0: st->print(", reading address"); break;
1808     case 1: st->print(", writing address"); break;
1809     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1810                        er->ExceptionInformation[0]);
1811     }
1812     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1813   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1814              er->NumberParameters >= 2 && UseSharedSpaces) {
1815     FileMapInfo* mapinfo = FileMapInfo::current_info();
1816     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1817       st->print("\n\nError accessing class data sharing archive."       \
1818                 " Mapped file inaccessible during execution, "          \
1819                 " possible disk/network problem.");
1820     }
1821   } else {
1822     int num = er->NumberParameters;
1823     if (num > 0) {
1824       st->print(", ExceptionInformation=");
1825       for (int i = 0; i < num; i++) {
1826         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1827       }
1828     }
1829   }
1830   st->cr();
1831 }
1832 
1833 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1834   // do nothing
1835 }
1836 
1837 static char saved_jvm_path[MAX_PATH] = {0};
1838 
1839 // Find the full path to the current module, jvm.dll
1840 void os::jvm_path(char *buf, jint buflen) {
1841   // Error checking.
1842   if (buflen < MAX_PATH) {
1843     assert(false, "must use a large-enough buffer");
1844     buf[0] = '\0';
1845     return;
1846   }
1847   // Lazy resolve the path to current module.
1848   if (saved_jvm_path[0] != 0) {
1849     strcpy(buf, saved_jvm_path);
1850     return;
1851   }
1852 
1853   buf[0] = '\0';
1854   if (Arguments::sun_java_launcher_is_altjvm()) {
1855     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1856     // for a JAVA_HOME environment variable and fix up the path so it
1857     // looks like jvm.dll is installed there (append a fake suffix
1858     // hotspot/jvm.dll).
1859     char* java_home_var = ::getenv("JAVA_HOME");
1860     if (java_home_var != NULL && java_home_var[0] != 0 &&
1861         strlen(java_home_var) < (size_t)buflen) {
1862       strncpy(buf, java_home_var, buflen);
1863 
1864       // determine if this is a legacy image or modules image
1865       // modules image doesn't have "jre" subdirectory
1866       size_t len = strlen(buf);
1867       char* jrebin_p = buf + len;
1868       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1869       if (0 != _access(buf, 0)) {
1870         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1871       }
1872       len = strlen(buf);
1873       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1874     }
1875   }
1876 
1877   if (buf[0] == '\0') {
1878     GetModuleFileName(vm_lib_handle, buf, buflen);
1879   }
1880   strncpy(saved_jvm_path, buf, MAX_PATH);
1881   saved_jvm_path[MAX_PATH - 1] = '\0';
1882 }
1883 
1884 
1885 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1886 #ifndef _WIN64
1887   st->print("_");
1888 #endif
1889 }
1890 
1891 
1892 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1893 #ifndef _WIN64
1894   st->print("@%d", args_size  * sizeof(int));
1895 #endif
1896 }
1897 
1898 // This method is a copy of JDK's sysGetLastErrorString
1899 // from src/windows/hpi/src/system_md.c
1900 
1901 size_t os::lasterror(char* buf, size_t len) {
1902   DWORD errval;
1903 
1904   if ((errval = GetLastError()) != 0) {
1905     // DOS error
1906     size_t n = (size_t)FormatMessage(
1907                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1908                                      NULL,
1909                                      errval,
1910                                      0,
1911                                      buf,
1912                                      (DWORD)len,
1913                                      NULL);
1914     if (n > 3) {
1915       // Drop final '.', CR, LF
1916       if (buf[n - 1] == '\n') n--;
1917       if (buf[n - 1] == '\r') n--;
1918       if (buf[n - 1] == '.') n--;
1919       buf[n] = '\0';
1920     }
1921     return n;
1922   }
1923 
1924   if (errno != 0) {
1925     // C runtime error that has no corresponding DOS error code
1926     const char* s = strerror(errno);
1927     size_t n = strlen(s);
1928     if (n >= len) n = len - 1;
1929     strncpy(buf, s, n);
1930     buf[n] = '\0';
1931     return n;
1932   }
1933 
1934   return 0;
1935 }
1936 
1937 int os::get_last_error() {
1938   DWORD error = GetLastError();
1939   if (error == 0) {
1940     error = errno;
1941   }
1942   return (int)error;
1943 }
1944 
1945 WindowsSemaphore::WindowsSemaphore(uint value) {
1946   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1947 
1948   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1949 }
1950 
1951 WindowsSemaphore::~WindowsSemaphore() {
1952   ::CloseHandle(_semaphore);
1953 }
1954 
1955 void WindowsSemaphore::signal(uint count) {
1956   if (count > 0) {
1957     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1958 
1959     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1960   }
1961 }
1962 
1963 void WindowsSemaphore::wait() {
1964   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1965   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1966   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1967 }
1968 
1969 // sun.misc.Signal
1970 // NOTE that this is a workaround for an apparent kernel bug where if
1971 // a signal handler for SIGBREAK is installed then that signal handler
1972 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1973 // See bug 4416763.
1974 static void (*sigbreakHandler)(int) = NULL;
1975 
1976 static void UserHandler(int sig, void *siginfo, void *context) {
1977   os::signal_notify(sig);
1978   // We need to reinstate the signal handler each time...
1979   os::signal(sig, (void*)UserHandler);
1980 }
1981 
1982 void* os::user_handler() {
1983   return (void*) UserHandler;
1984 }
1985 
1986 void* os::signal(int signal_number, void* handler) {
1987   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1988     void (*oldHandler)(int) = sigbreakHandler;
1989     sigbreakHandler = (void (*)(int)) handler;
1990     return (void*) oldHandler;
1991   } else {
1992     return (void*)::signal(signal_number, (void (*)(int))handler);
1993   }
1994 }
1995 
1996 void os::signal_raise(int signal_number) {
1997   raise(signal_number);
1998 }
1999 
2000 // The Win32 C runtime library maps all console control events other than ^C
2001 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
2002 // logoff, and shutdown events.  We therefore install our own console handler
2003 // that raises SIGTERM for the latter cases.
2004 //
2005 static BOOL WINAPI consoleHandler(DWORD event) {
2006   switch (event) {
2007   case CTRL_C_EVENT:
2008     if (is_error_reported()) {
2009       // Ctrl-C is pressed during error reporting, likely because the error
2010       // handler fails to abort. Let VM die immediately.
2011       os::die();
2012     }
2013 
2014     os::signal_raise(SIGINT);
2015     return TRUE;
2016     break;
2017   case CTRL_BREAK_EVENT:
2018     if (sigbreakHandler != NULL) {
2019       (*sigbreakHandler)(SIGBREAK);
2020     }
2021     return TRUE;
2022     break;
2023   case CTRL_LOGOFF_EVENT: {
2024     // Don't terminate JVM if it is running in a non-interactive session,
2025     // such as a service process.
2026     USEROBJECTFLAGS flags;
2027     HANDLE handle = GetProcessWindowStation();
2028     if (handle != NULL &&
2029         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2030         sizeof(USEROBJECTFLAGS), NULL)) {
2031       // If it is a non-interactive session, let next handler to deal
2032       // with it.
2033       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2034         return FALSE;
2035       }
2036     }
2037   }
2038   case CTRL_CLOSE_EVENT:
2039   case CTRL_SHUTDOWN_EVENT:
2040     os::signal_raise(SIGTERM);
2041     return TRUE;
2042     break;
2043   default:
2044     break;
2045   }
2046   return FALSE;
2047 }
2048 
2049 // The following code is moved from os.cpp for making this
2050 // code platform specific, which it is by its very nature.
2051 
2052 // Return maximum OS signal used + 1 for internal use only
2053 // Used as exit signal for signal_thread
2054 int os::sigexitnum_pd() {
2055   return NSIG;
2056 }
2057 
2058 // a counter for each possible signal value, including signal_thread exit signal
2059 static volatile jint pending_signals[NSIG+1] = { 0 };
2060 static HANDLE sig_sem = NULL;
2061 
2062 void os::signal_init_pd() {
2063   // Initialize signal structures
2064   memset((void*)pending_signals, 0, sizeof(pending_signals));
2065 
2066   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2067 
2068   // Programs embedding the VM do not want it to attempt to receive
2069   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2070   // shutdown hooks mechanism introduced in 1.3.  For example, when
2071   // the VM is run as part of a Windows NT service (i.e., a servlet
2072   // engine in a web server), the correct behavior is for any console
2073   // control handler to return FALSE, not TRUE, because the OS's
2074   // "final" handler for such events allows the process to continue if
2075   // it is a service (while terminating it if it is not a service).
2076   // To make this behavior uniform and the mechanism simpler, we
2077   // completely disable the VM's usage of these console events if -Xrs
2078   // (=ReduceSignalUsage) is specified.  This means, for example, that
2079   // the CTRL-BREAK thread dump mechanism is also disabled in this
2080   // case.  See bugs 4323062, 4345157, and related bugs.
2081 
2082   if (!ReduceSignalUsage) {
2083     // Add a CTRL-C handler
2084     SetConsoleCtrlHandler(consoleHandler, TRUE);
2085   }
2086 }
2087 
2088 void os::signal_notify(int signal_number) {
2089   BOOL ret;
2090   if (sig_sem != NULL) {
2091     Atomic::inc(&pending_signals[signal_number]);
2092     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2093     assert(ret != 0, "ReleaseSemaphore() failed");
2094   }
2095 }
2096 
2097 static int check_pending_signals(bool wait_for_signal) {
2098   DWORD ret;
2099   while (true) {
2100     for (int i = 0; i < NSIG + 1; i++) {
2101       jint n = pending_signals[i];
2102       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2103         return i;
2104       }
2105     }
2106     if (!wait_for_signal) {
2107       return -1;
2108     }
2109 
2110     JavaThread *thread = JavaThread::current();
2111 
2112     ThreadBlockInVM tbivm(thread);
2113 
2114     bool threadIsSuspended;
2115     do {
2116       thread->set_suspend_equivalent();
2117       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2118       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2119       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2120 
2121       // were we externally suspended while we were waiting?
2122       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2123       if (threadIsSuspended) {
2124         // The semaphore has been incremented, but while we were waiting
2125         // another thread suspended us. We don't want to continue running
2126         // while suspended because that would surprise the thread that
2127         // suspended us.
2128         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2129         assert(ret != 0, "ReleaseSemaphore() failed");
2130 
2131         thread->java_suspend_self();
2132       }
2133     } while (threadIsSuspended);
2134   }
2135 }
2136 
2137 int os::signal_lookup() {
2138   return check_pending_signals(false);
2139 }
2140 
2141 int os::signal_wait() {
2142   return check_pending_signals(true);
2143 }
2144 
2145 // Implicit OS exception handling
2146 
2147 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2148                       address handler) {
2149   JavaThread* thread = JavaThread::current();
2150   // Save pc in thread
2151 #ifdef _M_IA64
2152   // Do not blow up if no thread info available.
2153   if (thread) {
2154     // Saving PRECISE pc (with slot information) in thread.
2155     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2156     // Convert precise PC into "Unix" format
2157     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2158     thread->set_saved_exception_pc((address)precise_pc);
2159   }
2160   // Set pc to handler
2161   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2162   // Clear out psr.ri (= Restart Instruction) in order to continue
2163   // at the beginning of the target bundle.
2164   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2165   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2166 #else
2167   #ifdef _M_AMD64
2168   // Do not blow up if no thread info available.
2169   if (thread) {
2170     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2171   }
2172   // Set pc to handler
2173   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2174   #else
2175   // Do not blow up if no thread info available.
2176   if (thread) {
2177     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2178   }
2179   // Set pc to handler
2180   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2181   #endif
2182 #endif
2183 
2184   // Continue the execution
2185   return EXCEPTION_CONTINUE_EXECUTION;
2186 }
2187 
2188 
2189 // Used for PostMortemDump
2190 extern "C" void safepoints();
2191 extern "C" void find(int x);
2192 extern "C" void events();
2193 
2194 // According to Windows API documentation, an illegal instruction sequence should generate
2195 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2196 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2197 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2198 
2199 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2200 
2201 // From "Execution Protection in the Windows Operating System" draft 0.35
2202 // Once a system header becomes available, the "real" define should be
2203 // included or copied here.
2204 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2205 
2206 // Handle NAT Bit consumption on IA64.
2207 #ifdef _M_IA64
2208   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2209 #endif
2210 
2211 // Windows Vista/2008 heap corruption check
2212 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2213 
2214 #define def_excpt(val) #val, val
2215 
2216 struct siglabel {
2217   char *name;
2218   int   number;
2219 };
2220 
2221 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2222 // C++ compiler contain this error code. Because this is a compiler-generated
2223 // error, the code is not listed in the Win32 API header files.
2224 // The code is actually a cryptic mnemonic device, with the initial "E"
2225 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2226 // ASCII values of "msc".
2227 
2228 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2229 
2230 
2231 struct siglabel exceptlabels[] = {
2232     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2233     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2234     def_excpt(EXCEPTION_BREAKPOINT),
2235     def_excpt(EXCEPTION_SINGLE_STEP),
2236     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2237     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2238     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2239     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2240     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2241     def_excpt(EXCEPTION_FLT_OVERFLOW),
2242     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2243     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2244     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2245     def_excpt(EXCEPTION_INT_OVERFLOW),
2246     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2247     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2248     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2249     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2250     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2251     def_excpt(EXCEPTION_STACK_OVERFLOW),
2252     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2253     def_excpt(EXCEPTION_GUARD_PAGE),
2254     def_excpt(EXCEPTION_INVALID_HANDLE),
2255     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2256     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2257 #ifdef _M_IA64
2258     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2259 #endif
2260     NULL, 0
2261 };
2262 
2263 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2264   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2265     if (exceptlabels[i].number == exception_code) {
2266       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2267       return buf;
2268     }
2269   }
2270 
2271   return NULL;
2272 }
2273 
2274 //-----------------------------------------------------------------------------
2275 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2276   // handle exception caused by idiv; should only happen for -MinInt/-1
2277   // (division by zero is handled explicitly)
2278 #ifdef _M_IA64
2279   assert(0, "Fix Handle_IDiv_Exception");
2280 #else
2281   #ifdef  _M_AMD64
2282   PCONTEXT ctx = exceptionInfo->ContextRecord;
2283   address pc = (address)ctx->Rip;
2284   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2285   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2286   if (pc[0] == 0xF7) {
2287     // set correct result values and continue after idiv instruction
2288     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2289   } else {
2290     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2291   }
2292   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2293   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2294   // idiv opcode (0xF7).
2295   ctx->Rdx = (DWORD)0;             // remainder
2296   // Continue the execution
2297   #else
2298   PCONTEXT ctx = exceptionInfo->ContextRecord;
2299   address pc = (address)ctx->Eip;
2300   assert(pc[0] == 0xF7, "not an idiv opcode");
2301   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2302   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2303   // set correct result values and continue after idiv instruction
2304   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2305   ctx->Eax = (DWORD)min_jint;      // result
2306   ctx->Edx = (DWORD)0;             // remainder
2307   // Continue the execution
2308   #endif
2309 #endif
2310   return EXCEPTION_CONTINUE_EXECUTION;
2311 }
2312 
2313 //-----------------------------------------------------------------------------
2314 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2315   PCONTEXT ctx = exceptionInfo->ContextRecord;
2316 #ifndef  _WIN64
2317   // handle exception caused by native method modifying control word
2318   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2319 
2320   switch (exception_code) {
2321   case EXCEPTION_FLT_DENORMAL_OPERAND:
2322   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2323   case EXCEPTION_FLT_INEXACT_RESULT:
2324   case EXCEPTION_FLT_INVALID_OPERATION:
2325   case EXCEPTION_FLT_OVERFLOW:
2326   case EXCEPTION_FLT_STACK_CHECK:
2327   case EXCEPTION_FLT_UNDERFLOW:
2328     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2329     if (fp_control_word != ctx->FloatSave.ControlWord) {
2330       // Restore FPCW and mask out FLT exceptions
2331       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2332       // Mask out pending FLT exceptions
2333       ctx->FloatSave.StatusWord &=  0xffffff00;
2334       return EXCEPTION_CONTINUE_EXECUTION;
2335     }
2336   }
2337 
2338   if (prev_uef_handler != NULL) {
2339     // We didn't handle this exception so pass it to the previous
2340     // UnhandledExceptionFilter.
2341     return (prev_uef_handler)(exceptionInfo);
2342   }
2343 #else // !_WIN64
2344   // On Windows, the mxcsr control bits are non-volatile across calls
2345   // See also CR 6192333
2346   //
2347   jint MxCsr = INITIAL_MXCSR;
2348   // we can't use StubRoutines::addr_mxcsr_std()
2349   // because in Win64 mxcsr is not saved there
2350   if (MxCsr != ctx->MxCsr) {
2351     ctx->MxCsr = MxCsr;
2352     return EXCEPTION_CONTINUE_EXECUTION;
2353   }
2354 #endif // !_WIN64
2355 
2356   return EXCEPTION_CONTINUE_SEARCH;
2357 }
2358 
2359 static inline void report_error(Thread* t, DWORD exception_code,
2360                                 address addr, void* siginfo, void* context) {
2361   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2362 
2363   // If UseOsErrorReporting, this will return here and save the error file
2364   // somewhere where we can find it in the minidump.
2365 }
2366 
2367 //-----------------------------------------------------------------------------
2368 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2369   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2370   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2371 #ifdef _M_IA64
2372   // On Itanium, we need the "precise pc", which has the slot number coded
2373   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2374   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2375   // Convert the pc to "Unix format", which has the slot number coded
2376   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2377   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2378   // information is saved in the Unix format.
2379   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2380 #else
2381   #ifdef _M_AMD64
2382   address pc = (address) exceptionInfo->ContextRecord->Rip;
2383   #else
2384   address pc = (address) exceptionInfo->ContextRecord->Eip;
2385   #endif
2386 #endif
2387   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2388 
2389   // Handle SafeFetch32 and SafeFetchN exceptions.
2390   if (StubRoutines::is_safefetch_fault(pc)) {
2391     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2392   }
2393 
2394 #ifndef _WIN64
2395   // Execution protection violation - win32 running on AMD64 only
2396   // Handled first to avoid misdiagnosis as a "normal" access violation;
2397   // This is safe to do because we have a new/unique ExceptionInformation
2398   // code for this condition.
2399   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2400     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2401     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2402     address addr = (address) exceptionRecord->ExceptionInformation[1];
2403 
2404     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2405       int page_size = os::vm_page_size();
2406 
2407       // Make sure the pc and the faulting address are sane.
2408       //
2409       // If an instruction spans a page boundary, and the page containing
2410       // the beginning of the instruction is executable but the following
2411       // page is not, the pc and the faulting address might be slightly
2412       // different - we still want to unguard the 2nd page in this case.
2413       //
2414       // 15 bytes seems to be a (very) safe value for max instruction size.
2415       bool pc_is_near_addr =
2416         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2417       bool instr_spans_page_boundary =
2418         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2419                          (intptr_t) page_size) > 0);
2420 
2421       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2422         static volatile address last_addr =
2423           (address) os::non_memory_address_word();
2424 
2425         // In conservative mode, don't unguard unless the address is in the VM
2426         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2427             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2428 
2429           // Set memory to RWX and retry
2430           address page_start =
2431             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2432           bool res = os::protect_memory((char*) page_start, page_size,
2433                                         os::MEM_PROT_RWX);
2434 
2435           if (PrintMiscellaneous && Verbose) {
2436             char buf[256];
2437             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2438                          "at " INTPTR_FORMAT
2439                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2440                          page_start, (res ? "success" : strerror(errno)));
2441             tty->print_raw_cr(buf);
2442           }
2443 
2444           // Set last_addr so if we fault again at the same address, we don't
2445           // end up in an endless loop.
2446           //
2447           // There are two potential complications here.  Two threads trapping
2448           // at the same address at the same time could cause one of the
2449           // threads to think it already unguarded, and abort the VM.  Likely
2450           // very rare.
2451           //
2452           // The other race involves two threads alternately trapping at
2453           // different addresses and failing to unguard the page, resulting in
2454           // an endless loop.  This condition is probably even more unlikely
2455           // than the first.
2456           //
2457           // Although both cases could be avoided by using locks or thread
2458           // local last_addr, these solutions are unnecessary complication:
2459           // this handler is a best-effort safety net, not a complete solution.
2460           // It is disabled by default and should only be used as a workaround
2461           // in case we missed any no-execute-unsafe VM code.
2462 
2463           last_addr = addr;
2464 
2465           return EXCEPTION_CONTINUE_EXECUTION;
2466         }
2467       }
2468 
2469       // Last unguard failed or not unguarding
2470       tty->print_raw_cr("Execution protection violation");
2471       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2472                    exceptionInfo->ContextRecord);
2473       return EXCEPTION_CONTINUE_SEARCH;
2474     }
2475   }
2476 #endif // _WIN64
2477 
2478   // Check to see if we caught the safepoint code in the
2479   // process of write protecting the memory serialization page.
2480   // It write enables the page immediately after protecting it
2481   // so just return.
2482   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2483     JavaThread* thread = (JavaThread*) t;
2484     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2485     address addr = (address) exceptionRecord->ExceptionInformation[1];
2486     if (os::is_memory_serialize_page(thread, addr)) {
2487       // Block current thread until the memory serialize page permission restored.
2488       os::block_on_serialize_page_trap();
2489       return EXCEPTION_CONTINUE_EXECUTION;
2490     }
2491   }
2492 
2493   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2494       VM_Version::is_cpuinfo_segv_addr(pc)) {
2495     // Verify that OS save/restore AVX registers.
2496     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2497   }
2498 
2499   if (t != NULL && t->is_Java_thread()) {
2500     JavaThread* thread = (JavaThread*) t;
2501     bool in_java = thread->thread_state() == _thread_in_Java;
2502 
2503     // Handle potential stack overflows up front.
2504     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2505       if (os::uses_stack_guard_pages()) {
2506 #ifdef _M_IA64
2507         // Use guard page for register stack.
2508         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2509         address addr = (address) exceptionRecord->ExceptionInformation[1];
2510         // Check for a register stack overflow on Itanium
2511         if (thread->addr_inside_register_stack_red_zone(addr)) {
2512           // Fatal red zone violation happens if the Java program
2513           // catches a StackOverflow error and does so much processing
2514           // that it runs beyond the unprotected yellow guard zone. As
2515           // a result, we are out of here.
2516           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2517         } else if(thread->addr_inside_register_stack(addr)) {
2518           // Disable the yellow zone which sets the state that
2519           // we've got a stack overflow problem.
2520           if (thread->stack_yellow_zone_enabled()) {
2521             thread->disable_stack_yellow_zone();
2522           }
2523           // Give us some room to process the exception.
2524           thread->disable_register_stack_guard();
2525           // Tracing with +Verbose.
2526           if (Verbose) {
2527             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2528             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2529             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2530             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2531                           thread->register_stack_base(),
2532                           thread->register_stack_base() + thread->stack_size());
2533           }
2534 
2535           // Reguard the permanent register stack red zone just to be sure.
2536           // We saw Windows silently disabling this without telling us.
2537           thread->enable_register_stack_red_zone();
2538 
2539           return Handle_Exception(exceptionInfo,
2540                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2541         }
2542 #endif
2543         if (thread->stack_yellow_zone_enabled()) {
2544           // Yellow zone violation.  The o/s has unprotected the first yellow
2545           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2546           // update the enabled status, even if the zone contains only one page.
2547           thread->disable_stack_yellow_zone();
2548           // If not in java code, return and hope for the best.
2549           return in_java
2550               ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2551               :  EXCEPTION_CONTINUE_EXECUTION;
2552         } else {
2553           // Fatal red zone violation.
2554           thread->disable_stack_red_zone();
2555           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2556           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2557                        exceptionInfo->ContextRecord);
2558           return EXCEPTION_CONTINUE_SEARCH;
2559         }
2560       } else if (in_java) {
2561         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2562         // a one-time-only guard page, which it has released to us.  The next
2563         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2564         return Handle_Exception(exceptionInfo,
2565                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2566       } else {
2567         // Can only return and hope for the best.  Further stack growth will
2568         // result in an ACCESS_VIOLATION.
2569         return EXCEPTION_CONTINUE_EXECUTION;
2570       }
2571     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2572       // Either stack overflow or null pointer exception.
2573       if (in_java) {
2574         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2575         address addr = (address) exceptionRecord->ExceptionInformation[1];
2576         address stack_end = thread->stack_base() - thread->stack_size();
2577         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2578           // Stack overflow.
2579           assert(!os::uses_stack_guard_pages(),
2580                  "should be caught by red zone code above.");
2581           return Handle_Exception(exceptionInfo,
2582                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2583         }
2584         // Check for safepoint polling and implicit null
2585         // We only expect null pointers in the stubs (vtable)
2586         // the rest are checked explicitly now.
2587         CodeBlob* cb = CodeCache::find_blob(pc);
2588         if (cb != NULL) {
2589           if (os::is_poll_address(addr)) {
2590             address stub = SharedRuntime::get_poll_stub(pc);
2591             return Handle_Exception(exceptionInfo, stub);
2592           }
2593         }
2594         {
2595 #ifdef _WIN64
2596           // If it's a legal stack address map the entire region in
2597           //
2598           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2599           address addr = (address) exceptionRecord->ExceptionInformation[1];
2600           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base()) {
2601             addr = (address)((uintptr_t)addr &
2602                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2603             os::commit_memory((char *)addr, thread->stack_base() - addr,
2604                               !ExecMem);
2605             return EXCEPTION_CONTINUE_EXECUTION;
2606           } else
2607 #endif
2608           {
2609             // Null pointer exception.
2610 #ifdef _M_IA64
2611             // Process implicit null checks in compiled code. Note: Implicit null checks
2612             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2613             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2614               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2615               // Handle implicit null check in UEP method entry
2616               if (cb && (cb->is_frame_complete_at(pc) ||
2617                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2618                 if (Verbose) {
2619                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2620                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2621                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2622                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2623                                 *(bundle_start + 1), *bundle_start);
2624                 }
2625                 return Handle_Exception(exceptionInfo,
2626                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2627               }
2628             }
2629 
2630             // Implicit null checks were processed above.  Hence, we should not reach
2631             // here in the usual case => die!
2632             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2633             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2634                          exceptionInfo->ContextRecord);
2635             return EXCEPTION_CONTINUE_SEARCH;
2636 
2637 #else // !IA64
2638 
2639             // Windows 98 reports faulting addresses incorrectly
2640             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2641                 !os::win32::is_nt()) {
2642               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2643               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2644             }
2645             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2646                          exceptionInfo->ContextRecord);
2647             return EXCEPTION_CONTINUE_SEARCH;
2648 #endif
2649           }
2650         }
2651       }
2652 
2653 #ifdef _WIN64
2654       // Special care for fast JNI field accessors.
2655       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2656       // in and the heap gets shrunk before the field access.
2657       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2658         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2659         if (addr != (address)-1) {
2660           return Handle_Exception(exceptionInfo, addr);
2661         }
2662       }
2663 #endif
2664 
2665       // Stack overflow or null pointer exception in native code.
2666       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2667                    exceptionInfo->ContextRecord);
2668       return EXCEPTION_CONTINUE_SEARCH;
2669     } // /EXCEPTION_ACCESS_VIOLATION
2670     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2671 #if defined _M_IA64
2672     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2673               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2674       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2675 
2676       // Compiled method patched to be non entrant? Following conditions must apply:
2677       // 1. must be first instruction in bundle
2678       // 2. must be a break instruction with appropriate code
2679       if ((((uint64_t) pc & 0x0F) == 0) &&
2680           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2681         return Handle_Exception(exceptionInfo,
2682                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2683       }
2684     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2685 #endif
2686 
2687 
2688     if (in_java) {
2689       switch (exception_code) {
2690       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2691         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2692 
2693       case EXCEPTION_INT_OVERFLOW:
2694         return Handle_IDiv_Exception(exceptionInfo);
2695 
2696       } // switch
2697     }
2698     if (((thread->thread_state() == _thread_in_Java) ||
2699          (thread->thread_state() == _thread_in_native)) &&
2700          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2701       LONG result=Handle_FLT_Exception(exceptionInfo);
2702       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2703     }
2704   }
2705 
2706   if (exception_code != EXCEPTION_BREAKPOINT) {
2707     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2708                  exceptionInfo->ContextRecord);
2709   }
2710   return EXCEPTION_CONTINUE_SEARCH;
2711 }
2712 
2713 #ifndef _WIN64
2714 // Special care for fast JNI accessors.
2715 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2716 // the heap gets shrunk before the field access.
2717 // Need to install our own structured exception handler since native code may
2718 // install its own.
2719 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2720   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2721   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2722     address pc = (address) exceptionInfo->ContextRecord->Eip;
2723     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2724     if (addr != (address)-1) {
2725       return Handle_Exception(exceptionInfo, addr);
2726     }
2727   }
2728   return EXCEPTION_CONTINUE_SEARCH;
2729 }
2730 
2731 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2732   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2733                                                      jobject obj,           \
2734                                                      jfieldID fieldID) {    \
2735     __try {                                                                 \
2736       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2737                                                                  obj,       \
2738                                                                  fieldID);  \
2739     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2740                                               _exception_info())) {         \
2741     }                                                                       \
2742     return 0;                                                               \
2743   }
2744 
2745 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2746 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2747 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2748 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2749 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2750 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2751 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2752 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2753 
2754 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2755   switch (type) {
2756   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2757   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2758   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2759   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2760   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2761   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2762   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2763   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2764   default:        ShouldNotReachHere();
2765   }
2766   return (address)-1;
2767 }
2768 #endif
2769 
2770 // Virtual Memory
2771 
2772 int os::vm_page_size() { return os::win32::vm_page_size(); }
2773 int os::vm_allocation_granularity() {
2774   return os::win32::vm_allocation_granularity();
2775 }
2776 
2777 // Windows large page support is available on Windows 2003. In order to use
2778 // large page memory, the administrator must first assign additional privilege
2779 // to the user:
2780 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2781 //   + select Local Policies -> User Rights Assignment
2782 //   + double click "Lock pages in memory", add users and/or groups
2783 //   + reboot
2784 // Note the above steps are needed for administrator as well, as administrators
2785 // by default do not have the privilege to lock pages in memory.
2786 //
2787 // Note about Windows 2003: although the API supports committing large page
2788 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2789 // scenario, I found through experiment it only uses large page if the entire
2790 // memory region is reserved and committed in a single VirtualAlloc() call.
2791 // This makes Windows large page support more or less like Solaris ISM, in
2792 // that the entire heap must be committed upfront. This probably will change
2793 // in the future, if so the code below needs to be revisited.
2794 
2795 #ifndef MEM_LARGE_PAGES
2796   #define MEM_LARGE_PAGES 0x20000000
2797 #endif
2798 
2799 static HANDLE    _hProcess;
2800 static HANDLE    _hToken;
2801 
2802 // Container for NUMA node list info
2803 class NUMANodeListHolder {
2804  private:
2805   int *_numa_used_node_list;  // allocated below
2806   int _numa_used_node_count;
2807 
2808   void free_node_list() {
2809     if (_numa_used_node_list != NULL) {
2810       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2811     }
2812   }
2813 
2814  public:
2815   NUMANodeListHolder() {
2816     _numa_used_node_count = 0;
2817     _numa_used_node_list = NULL;
2818     // do rest of initialization in build routine (after function pointers are set up)
2819   }
2820 
2821   ~NUMANodeListHolder() {
2822     free_node_list();
2823   }
2824 
2825   bool build() {
2826     DWORD_PTR proc_aff_mask;
2827     DWORD_PTR sys_aff_mask;
2828     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2829     ULONG highest_node_number;
2830     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2831     free_node_list();
2832     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2833     for (unsigned int i = 0; i <= highest_node_number; i++) {
2834       ULONGLONG proc_mask_numa_node;
2835       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2836       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2837         _numa_used_node_list[_numa_used_node_count++] = i;
2838       }
2839     }
2840     return (_numa_used_node_count > 1);
2841   }
2842 
2843   int get_count() { return _numa_used_node_count; }
2844   int get_node_list_entry(int n) {
2845     // for indexes out of range, returns -1
2846     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2847   }
2848 
2849 } numa_node_list_holder;
2850 
2851 
2852 
2853 static size_t _large_page_size = 0;
2854 
2855 static bool resolve_functions_for_large_page_init() {
2856   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2857     os::Advapi32Dll::AdvapiAvailable();
2858 }
2859 
2860 static bool request_lock_memory_privilege() {
2861   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2862                           os::current_process_id());
2863 
2864   LUID luid;
2865   if (_hProcess != NULL &&
2866       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2867       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2868 
2869     TOKEN_PRIVILEGES tp;
2870     tp.PrivilegeCount = 1;
2871     tp.Privileges[0].Luid = luid;
2872     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2873 
2874     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2875     // privilege. Check GetLastError() too. See MSDN document.
2876     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2877         (GetLastError() == ERROR_SUCCESS)) {
2878       return true;
2879     }
2880   }
2881 
2882   return false;
2883 }
2884 
2885 static void cleanup_after_large_page_init() {
2886   if (_hProcess) CloseHandle(_hProcess);
2887   _hProcess = NULL;
2888   if (_hToken) CloseHandle(_hToken);
2889   _hToken = NULL;
2890 }
2891 
2892 static bool numa_interleaving_init() {
2893   bool success = false;
2894   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2895 
2896   // print a warning if UseNUMAInterleaving flag is specified on command line
2897   bool warn_on_failure = use_numa_interleaving_specified;
2898 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2899 
2900   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2901   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2902   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2903 
2904   if (os::Kernel32Dll::NumaCallsAvailable()) {
2905     if (numa_node_list_holder.build()) {
2906       if (PrintMiscellaneous && Verbose) {
2907         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2908         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2909           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2910         }
2911         tty->print("\n");
2912       }
2913       success = true;
2914     } else {
2915       WARN("Process does not cover multiple NUMA nodes.");
2916     }
2917   } else {
2918     WARN("NUMA Interleaving is not supported by the operating system.");
2919   }
2920   if (!success) {
2921     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2922   }
2923   return success;
2924 #undef WARN
2925 }
2926 
2927 // this routine is used whenever we need to reserve a contiguous VA range
2928 // but we need to make separate VirtualAlloc calls for each piece of the range
2929 // Reasons for doing this:
2930 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2931 //  * UseNUMAInterleaving requires a separate node for each piece
2932 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2933                                          DWORD prot,
2934                                          bool should_inject_error = false) {
2935   char * p_buf;
2936   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2937   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2938   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2939 
2940   // first reserve enough address space in advance since we want to be
2941   // able to break a single contiguous virtual address range into multiple
2942   // large page commits but WS2003 does not allow reserving large page space
2943   // so we just use 4K pages for reserve, this gives us a legal contiguous
2944   // address space. then we will deallocate that reservation, and re alloc
2945   // using large pages
2946   const size_t size_of_reserve = bytes + chunk_size;
2947   if (bytes > size_of_reserve) {
2948     // Overflowed.
2949     return NULL;
2950   }
2951   p_buf = (char *) VirtualAlloc(addr,
2952                                 size_of_reserve,  // size of Reserve
2953                                 MEM_RESERVE,
2954                                 PAGE_READWRITE);
2955   // If reservation failed, return NULL
2956   if (p_buf == NULL) return NULL;
2957   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2958   os::release_memory(p_buf, bytes + chunk_size);
2959 
2960   // we still need to round up to a page boundary (in case we are using large pages)
2961   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2962   // instead we handle this in the bytes_to_rq computation below
2963   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2964 
2965   // now go through and allocate one chunk at a time until all bytes are
2966   // allocated
2967   size_t  bytes_remaining = bytes;
2968   // An overflow of align_size_up() would have been caught above
2969   // in the calculation of size_of_reserve.
2970   char * next_alloc_addr = p_buf;
2971   HANDLE hProc = GetCurrentProcess();
2972 
2973 #ifdef ASSERT
2974   // Variable for the failure injection
2975   long ran_num = os::random();
2976   size_t fail_after = ran_num % bytes;
2977 #endif
2978 
2979   int count=0;
2980   while (bytes_remaining) {
2981     // select bytes_to_rq to get to the next chunk_size boundary
2982 
2983     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2984     // Note allocate and commit
2985     char * p_new;
2986 
2987 #ifdef ASSERT
2988     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2989 #else
2990     const bool inject_error_now = false;
2991 #endif
2992 
2993     if (inject_error_now) {
2994       p_new = NULL;
2995     } else {
2996       if (!UseNUMAInterleaving) {
2997         p_new = (char *) VirtualAlloc(next_alloc_addr,
2998                                       bytes_to_rq,
2999                                       flags,
3000                                       prot);
3001       } else {
3002         // get the next node to use from the used_node_list
3003         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
3004         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
3005         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
3006                                                             next_alloc_addr,
3007                                                             bytes_to_rq,
3008                                                             flags,
3009                                                             prot,
3010                                                             node);
3011       }
3012     }
3013 
3014     if (p_new == NULL) {
3015       // Free any allocated pages
3016       if (next_alloc_addr > p_buf) {
3017         // Some memory was committed so release it.
3018         size_t bytes_to_release = bytes - bytes_remaining;
3019         // NMT has yet to record any individual blocks, so it
3020         // need to create a dummy 'reserve' record to match
3021         // the release.
3022         MemTracker::record_virtual_memory_reserve((address)p_buf,
3023                                                   bytes_to_release, CALLER_PC);
3024         os::release_memory(p_buf, bytes_to_release);
3025       }
3026 #ifdef ASSERT
3027       if (should_inject_error) {
3028         if (TracePageSizes && Verbose) {
3029           tty->print_cr("Reserving pages individually failed.");
3030         }
3031       }
3032 #endif
3033       return NULL;
3034     }
3035 
3036     bytes_remaining -= bytes_to_rq;
3037     next_alloc_addr += bytes_to_rq;
3038     count++;
3039   }
3040   // Although the memory is allocated individually, it is returned as one.
3041   // NMT records it as one block.
3042   if ((flags & MEM_COMMIT) != 0) {
3043     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3044   } else {
3045     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3046   }
3047 
3048   // made it this far, success
3049   return p_buf;
3050 }
3051 
3052 
3053 
3054 void os::large_page_init() {
3055   if (!UseLargePages) return;
3056 
3057   // print a warning if any large page related flag is specified on command line
3058   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3059                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3060   bool success = false;
3061 
3062 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3063   if (resolve_functions_for_large_page_init()) {
3064     if (request_lock_memory_privilege()) {
3065       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3066       if (s) {
3067 #if defined(IA32) || defined(AMD64)
3068         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3069           WARN("JVM cannot use large pages bigger than 4mb.");
3070         } else {
3071 #endif
3072           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3073             _large_page_size = LargePageSizeInBytes;
3074           } else {
3075             _large_page_size = s;
3076           }
3077           success = true;
3078 #if defined(IA32) || defined(AMD64)
3079         }
3080 #endif
3081       } else {
3082         WARN("Large page is not supported by the processor.");
3083       }
3084     } else {
3085       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3086     }
3087   } else {
3088     WARN("Large page is not supported by the operating system.");
3089   }
3090 #undef WARN
3091 
3092   const size_t default_page_size = (size_t) vm_page_size();
3093   if (success && _large_page_size > default_page_size) {
3094     _page_sizes[0] = _large_page_size;
3095     _page_sizes[1] = default_page_size;
3096     _page_sizes[2] = 0;
3097   }
3098 
3099   cleanup_after_large_page_init();
3100   UseLargePages = success;
3101 }
3102 
3103 // On win32, one cannot release just a part of reserved memory, it's an
3104 // all or nothing deal.  When we split a reservation, we must break the
3105 // reservation into two reservations.
3106 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3107                                   bool realloc) {
3108   if (size > 0) {
3109     release_memory(base, size);
3110     if (realloc) {
3111       reserve_memory(split, base);
3112     }
3113     if (size != split) {
3114       reserve_memory(size - split, base + split);
3115     }
3116   }
3117 }
3118 
3119 // Multiple threads can race in this code but it's not possible to unmap small sections of
3120 // virtual space to get requested alignment, like posix-like os's.
3121 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3122 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3123   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3124          "Alignment must be a multiple of allocation granularity (page size)");
3125   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3126 
3127   size_t extra_size = size + alignment;
3128   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3129 
3130   char* aligned_base = NULL;
3131 
3132   do {
3133     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3134     if (extra_base == NULL) {
3135       return NULL;
3136     }
3137     // Do manual alignment
3138     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3139 
3140     os::release_memory(extra_base, extra_size);
3141 
3142     aligned_base = os::reserve_memory(size, aligned_base);
3143 
3144   } while (aligned_base == NULL);
3145 
3146   return aligned_base;
3147 }
3148 
3149 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3150   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3151          "reserve alignment");
3152   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3153   char* res;
3154   // note that if UseLargePages is on, all the areas that require interleaving
3155   // will go thru reserve_memory_special rather than thru here.
3156   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3157   if (!use_individual) {
3158     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3159   } else {
3160     elapsedTimer reserveTimer;
3161     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3162     // in numa interleaving, we have to allocate pages individually
3163     // (well really chunks of NUMAInterleaveGranularity size)
3164     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3165     if (res == NULL) {
3166       warning("NUMA page allocation failed");
3167     }
3168     if (Verbose && PrintMiscellaneous) {
3169       reserveTimer.stop();
3170       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3171                     reserveTimer.milliseconds(), reserveTimer.ticks());
3172     }
3173   }
3174   assert(res == NULL || addr == NULL || addr == res,
3175          "Unexpected address from reserve.");
3176 
3177   return res;
3178 }
3179 
3180 // Reserve memory at an arbitrary address, only if that area is
3181 // available (and not reserved for something else).
3182 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3183   // Windows os::reserve_memory() fails of the requested address range is
3184   // not avilable.
3185   return reserve_memory(bytes, requested_addr);
3186 }
3187 
3188 size_t os::large_page_size() {
3189   return _large_page_size;
3190 }
3191 
3192 bool os::can_commit_large_page_memory() {
3193   // Windows only uses large page memory when the entire region is reserved
3194   // and committed in a single VirtualAlloc() call. This may change in the
3195   // future, but with Windows 2003 it's not possible to commit on demand.
3196   return false;
3197 }
3198 
3199 bool os::can_execute_large_page_memory() {
3200   return true;
3201 }
3202 
3203 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3204                                  bool exec) {
3205   assert(UseLargePages, "only for large pages");
3206 
3207   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3208     return NULL; // Fallback to small pages.
3209   }
3210 
3211   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3212   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3213 
3214   // with large pages, there are two cases where we need to use Individual Allocation
3215   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3216   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3217   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3218     if (TracePageSizes && Verbose) {
3219       tty->print_cr("Reserving large pages individually.");
3220     }
3221     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3222     if (p_buf == NULL) {
3223       // give an appropriate warning message
3224       if (UseNUMAInterleaving) {
3225         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3226       }
3227       if (UseLargePagesIndividualAllocation) {
3228         warning("Individually allocated large pages failed, "
3229                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3230       }
3231       return NULL;
3232     }
3233 
3234     return p_buf;
3235 
3236   } else {
3237     if (TracePageSizes && Verbose) {
3238       tty->print_cr("Reserving large pages in a single large chunk.");
3239     }
3240     // normal policy just allocate it all at once
3241     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3242     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3243     if (res != NULL) {
3244       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3245     }
3246 
3247     return res;
3248   }
3249 }
3250 
3251 bool os::release_memory_special(char* base, size_t bytes) {
3252   assert(base != NULL, "Sanity check");
3253   return release_memory(base, bytes);
3254 }
3255 
3256 void os::print_statistics() {
3257 }
3258 
3259 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3260   int err = os::get_last_error();
3261   char buf[256];
3262   size_t buf_len = os::lasterror(buf, sizeof(buf));
3263   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3264           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3265           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3266 }
3267 
3268 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3269   if (bytes == 0) {
3270     // Don't bother the OS with noops.
3271     return true;
3272   }
3273   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3274   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3275   // Don't attempt to print anything if the OS call fails. We're
3276   // probably low on resources, so the print itself may cause crashes.
3277 
3278   // unless we have NUMAInterleaving enabled, the range of a commit
3279   // is always within a reserve covered by a single VirtualAlloc
3280   // in that case we can just do a single commit for the requested size
3281   if (!UseNUMAInterleaving) {
3282     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3283       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3284       return false;
3285     }
3286     if (exec) {
3287       DWORD oldprot;
3288       // Windows doc says to use VirtualProtect to get execute permissions
3289       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3290         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3291         return false;
3292       }
3293     }
3294     return true;
3295   } else {
3296 
3297     // when NUMAInterleaving is enabled, the commit might cover a range that
3298     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3299     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3300     // returns represents the number of bytes that can be committed in one step.
3301     size_t bytes_remaining = bytes;
3302     char * next_alloc_addr = addr;
3303     while (bytes_remaining > 0) {
3304       MEMORY_BASIC_INFORMATION alloc_info;
3305       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3306       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3307       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3308                        PAGE_READWRITE) == NULL) {
3309         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3310                                             exec);)
3311         return false;
3312       }
3313       if (exec) {
3314         DWORD oldprot;
3315         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3316                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3317           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3318                                               exec);)
3319           return false;
3320         }
3321       }
3322       bytes_remaining -= bytes_to_rq;
3323       next_alloc_addr += bytes_to_rq;
3324     }
3325   }
3326   // if we made it this far, return true
3327   return true;
3328 }
3329 
3330 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3331                           bool exec) {
3332   // alignment_hint is ignored on this OS
3333   return pd_commit_memory(addr, size, exec);
3334 }
3335 
3336 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3337                                   const char* mesg) {
3338   assert(mesg != NULL, "mesg must be specified");
3339   if (!pd_commit_memory(addr, size, exec)) {
3340     warn_fail_commit_memory(addr, size, exec);
3341     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3342   }
3343 }
3344 
3345 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3346                                   size_t alignment_hint, bool exec,
3347                                   const char* mesg) {
3348   // alignment_hint is ignored on this OS
3349   pd_commit_memory_or_exit(addr, size, exec, mesg);
3350 }
3351 
3352 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3353   if (bytes == 0) {
3354     // Don't bother the OS with noops.
3355     return true;
3356   }
3357   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3358   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3359   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3360 }
3361 
3362 bool os::pd_release_memory(char* addr, size_t bytes) {
3363   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3364 }
3365 
3366 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3367   return os::commit_memory(addr, size, !ExecMem);
3368 }
3369 
3370 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3371   return os::uncommit_memory(addr, size);
3372 }
3373 
3374 // Set protections specified
3375 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3376                         bool is_committed) {
3377   unsigned int p = 0;
3378   switch (prot) {
3379   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3380   case MEM_PROT_READ: p = PAGE_READONLY; break;
3381   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3382   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3383   default:
3384     ShouldNotReachHere();
3385   }
3386 
3387   DWORD old_status;
3388 
3389   // Strange enough, but on Win32 one can change protection only for committed
3390   // memory, not a big deal anyway, as bytes less or equal than 64K
3391   if (!is_committed) {
3392     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3393                           "cannot commit protection page");
3394   }
3395   // One cannot use os::guard_memory() here, as on Win32 guard page
3396   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3397   //
3398   // Pages in the region become guard pages. Any attempt to access a guard page
3399   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3400   // the guard page status. Guard pages thus act as a one-time access alarm.
3401   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3402 }
3403 
3404 bool os::guard_memory(char* addr, size_t bytes) {
3405   DWORD old_status;
3406   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3407 }
3408 
3409 bool os::unguard_memory(char* addr, size_t bytes) {
3410   DWORD old_status;
3411   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3412 }
3413 
3414 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3415 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3416 void os::numa_make_global(char *addr, size_t bytes)    { }
3417 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3418 bool os::numa_topology_changed()                       { return false; }
3419 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3420 int os::numa_get_group_id()                            { return 0; }
3421 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3422   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3423     // Provide an answer for UMA systems
3424     ids[0] = 0;
3425     return 1;
3426   } else {
3427     // check for size bigger than actual groups_num
3428     size = MIN2(size, numa_get_groups_num());
3429     for (int i = 0; i < (int)size; i++) {
3430       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3431     }
3432     return size;
3433   }
3434 }
3435 
3436 bool os::get_page_info(char *start, page_info* info) {
3437   return false;
3438 }
3439 
3440 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3441                      page_info* page_found) {
3442   return end;
3443 }
3444 
3445 char* os::non_memory_address_word() {
3446   // Must never look like an address returned by reserve_memory,
3447   // even in its subfields (as defined by the CPU immediate fields,
3448   // if the CPU splits constants across multiple instructions).
3449   return (char*)-1;
3450 }
3451 
3452 #define MAX_ERROR_COUNT 100
3453 #define SYS_THREAD_ERROR 0xffffffffUL
3454 
3455 void os::pd_start_thread(Thread* thread) {
3456   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3457   // Returns previous suspend state:
3458   // 0:  Thread was not suspended
3459   // 1:  Thread is running now
3460   // >1: Thread is still suspended.
3461   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3462 }
3463 
3464 class HighResolutionInterval : public CHeapObj<mtThread> {
3465   // The default timer resolution seems to be 10 milliseconds.
3466   // (Where is this written down?)
3467   // If someone wants to sleep for only a fraction of the default,
3468   // then we set the timer resolution down to 1 millisecond for
3469   // the duration of their interval.
3470   // We carefully set the resolution back, since otherwise we
3471   // seem to incur an overhead (3%?) that we don't need.
3472   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3473   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3474   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3475   // timeBeginPeriod() if the relative error exceeded some threshold.
3476   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3477   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3478   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3479   // resolution timers running.
3480  private:
3481   jlong resolution;
3482  public:
3483   HighResolutionInterval(jlong ms) {
3484     resolution = ms % 10L;
3485     if (resolution != 0) {
3486       MMRESULT result = timeBeginPeriod(1L);
3487     }
3488   }
3489   ~HighResolutionInterval() {
3490     if (resolution != 0) {
3491       MMRESULT result = timeEndPeriod(1L);
3492     }
3493     resolution = 0L;
3494   }
3495 };
3496 
3497 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3498   jlong limit = (jlong) MAXDWORD;
3499 
3500   while (ms > limit) {
3501     int res;
3502     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3503       return res;
3504     }
3505     ms -= limit;
3506   }
3507 
3508   assert(thread == Thread::current(), "thread consistency check");
3509   OSThread* osthread = thread->osthread();
3510   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3511   int result;
3512   if (interruptable) {
3513     assert(thread->is_Java_thread(), "must be java thread");
3514     JavaThread *jt = (JavaThread *) thread;
3515     ThreadBlockInVM tbivm(jt);
3516 
3517     jt->set_suspend_equivalent();
3518     // cleared by handle_special_suspend_equivalent_condition() or
3519     // java_suspend_self() via check_and_wait_while_suspended()
3520 
3521     HANDLE events[1];
3522     events[0] = osthread->interrupt_event();
3523     HighResolutionInterval *phri=NULL;
3524     if (!ForceTimeHighResolution) {
3525       phri = new HighResolutionInterval(ms);
3526     }
3527     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3528       result = OS_TIMEOUT;
3529     } else {
3530       ResetEvent(osthread->interrupt_event());
3531       osthread->set_interrupted(false);
3532       result = OS_INTRPT;
3533     }
3534     delete phri; //if it is NULL, harmless
3535 
3536     // were we externally suspended while we were waiting?
3537     jt->check_and_wait_while_suspended();
3538   } else {
3539     assert(!thread->is_Java_thread(), "must not be java thread");
3540     Sleep((long) ms);
3541     result = OS_TIMEOUT;
3542   }
3543   return result;
3544 }
3545 
3546 // Short sleep, direct OS call.
3547 //
3548 // ms = 0, means allow others (if any) to run.
3549 //
3550 void os::naked_short_sleep(jlong ms) {
3551   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3552   Sleep(ms);
3553 }
3554 
3555 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3556 void os::infinite_sleep() {
3557   while (true) {    // sleep forever ...
3558     Sleep(100000);  // ... 100 seconds at a time
3559   }
3560 }
3561 
3562 typedef BOOL (WINAPI * STTSignature)(void);
3563 
3564 void os::naked_yield() {
3565   // Use either SwitchToThread() or Sleep(0)
3566   // Consider passing back the return value from SwitchToThread().
3567   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3568     SwitchToThread();
3569   } else {
3570     Sleep(0);
3571   }
3572 }
3573 
3574 // Win32 only gives you access to seven real priorities at a time,
3575 // so we compress Java's ten down to seven.  It would be better
3576 // if we dynamically adjusted relative priorities.
3577 
3578 int os::java_to_os_priority[CriticalPriority + 1] = {
3579   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3580   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3581   THREAD_PRIORITY_LOWEST,                       // 2
3582   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3583   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3584   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3585   THREAD_PRIORITY_NORMAL,                       // 6
3586   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3587   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3588   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3589   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3590   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3591 };
3592 
3593 int prio_policy1[CriticalPriority + 1] = {
3594   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3595   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3596   THREAD_PRIORITY_LOWEST,                       // 2
3597   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3598   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3599   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3600   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3601   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3602   THREAD_PRIORITY_HIGHEST,                      // 8
3603   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3604   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3605   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3606 };
3607 
3608 static int prio_init() {
3609   // If ThreadPriorityPolicy is 1, switch tables
3610   if (ThreadPriorityPolicy == 1) {
3611     int i;
3612     for (i = 0; i < CriticalPriority + 1; i++) {
3613       os::java_to_os_priority[i] = prio_policy1[i];
3614     }
3615   }
3616   if (UseCriticalJavaThreadPriority) {
3617     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3618   }
3619   return 0;
3620 }
3621 
3622 OSReturn os::set_native_priority(Thread* thread, int priority) {
3623   if (!UseThreadPriorities) return OS_OK;
3624   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3625   return ret ? OS_OK : OS_ERR;
3626 }
3627 
3628 OSReturn os::get_native_priority(const Thread* const thread,
3629                                  int* priority_ptr) {
3630   if (!UseThreadPriorities) {
3631     *priority_ptr = java_to_os_priority[NormPriority];
3632     return OS_OK;
3633   }
3634   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3635   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3636     assert(false, "GetThreadPriority failed");
3637     return OS_ERR;
3638   }
3639   *priority_ptr = os_prio;
3640   return OS_OK;
3641 }
3642 
3643 
3644 // Hint to the underlying OS that a task switch would not be good.
3645 // Void return because it's a hint and can fail.
3646 void os::hint_no_preempt() {}
3647 
3648 void os::interrupt(Thread* thread) {
3649   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3650          Threads_lock->owned_by_self(),
3651          "possibility of dangling Thread pointer");
3652 
3653   OSThread* osthread = thread->osthread();
3654   osthread->set_interrupted(true);
3655   // More than one thread can get here with the same value of osthread,
3656   // resulting in multiple notifications.  We do, however, want the store
3657   // to interrupted() to be visible to other threads before we post
3658   // the interrupt event.
3659   OrderAccess::release();
3660   SetEvent(osthread->interrupt_event());
3661   // For JSR166:  unpark after setting status
3662   if (thread->is_Java_thread()) {
3663     ((JavaThread*)thread)->parker()->unpark();
3664   }
3665 
3666   ParkEvent * ev = thread->_ParkEvent;
3667   if (ev != NULL) ev->unpark();
3668 }
3669 
3670 
3671 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3672   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3673          "possibility of dangling Thread pointer");
3674 
3675   OSThread* osthread = thread->osthread();
3676   // There is no synchronization between the setting of the interrupt
3677   // and it being cleared here. It is critical - see 6535709 - that
3678   // we only clear the interrupt state, and reset the interrupt event,
3679   // if we are going to report that we were indeed interrupted - else
3680   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3681   // depending on the timing. By checking thread interrupt event to see
3682   // if the thread gets real interrupt thus prevent spurious wakeup.
3683   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3684   if (interrupted && clear_interrupted) {
3685     osthread->set_interrupted(false);
3686     ResetEvent(osthread->interrupt_event());
3687   } // Otherwise leave the interrupted state alone
3688 
3689   return interrupted;
3690 }
3691 
3692 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3693 ExtendedPC os::get_thread_pc(Thread* thread) {
3694   CONTEXT context;
3695   context.ContextFlags = CONTEXT_CONTROL;
3696   HANDLE handle = thread->osthread()->thread_handle();
3697 #ifdef _M_IA64
3698   assert(0, "Fix get_thread_pc");
3699   return ExtendedPC(NULL);
3700 #else
3701   if (GetThreadContext(handle, &context)) {
3702 #ifdef _M_AMD64
3703     return ExtendedPC((address) context.Rip);
3704 #else
3705     return ExtendedPC((address) context.Eip);
3706 #endif
3707   } else {
3708     return ExtendedPC(NULL);
3709   }
3710 #endif
3711 }
3712 
3713 // GetCurrentThreadId() returns DWORD
3714 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3715 
3716 static int _initial_pid = 0;
3717 
3718 int os::current_process_id() {
3719   return (_initial_pid ? _initial_pid : _getpid());
3720 }
3721 
3722 int    os::win32::_vm_page_size              = 0;
3723 int    os::win32::_vm_allocation_granularity = 0;
3724 int    os::win32::_processor_type            = 0;
3725 // Processor level is not available on non-NT systems, use vm_version instead
3726 int    os::win32::_processor_level           = 0;
3727 julong os::win32::_physical_memory           = 0;
3728 size_t os::win32::_default_stack_size        = 0;
3729 
3730 intx          os::win32::_os_thread_limit    = 0;
3731 volatile intx os::win32::_os_thread_count    = 0;
3732 
3733 bool   os::win32::_is_nt                     = false;
3734 bool   os::win32::_is_windows_2003           = false;
3735 bool   os::win32::_is_windows_server         = false;
3736 
3737 // 6573254
3738 // Currently, the bug is observed across all the supported Windows releases,
3739 // including the latest one (as of this writing - Windows Server 2012 R2)
3740 bool   os::win32::_has_exit_bug              = true;
3741 bool   os::win32::_has_performance_count     = 0;
3742 
3743 void os::win32::initialize_system_info() {
3744   SYSTEM_INFO si;
3745   GetSystemInfo(&si);
3746   _vm_page_size    = si.dwPageSize;
3747   _vm_allocation_granularity = si.dwAllocationGranularity;
3748   _processor_type  = si.dwProcessorType;
3749   _processor_level = si.wProcessorLevel;
3750   set_processor_count(si.dwNumberOfProcessors);
3751 
3752   MEMORYSTATUSEX ms;
3753   ms.dwLength = sizeof(ms);
3754 
3755   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3756   // dwMemoryLoad (% of memory in use)
3757   GlobalMemoryStatusEx(&ms);
3758   _physical_memory = ms.ullTotalPhys;
3759 
3760   OSVERSIONINFOEX oi;
3761   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3762   GetVersionEx((OSVERSIONINFO*)&oi);
3763   switch (oi.dwPlatformId) {
3764   case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3765   case VER_PLATFORM_WIN32_NT:
3766     _is_nt = true;
3767     {
3768       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3769       if (os_vers == 5002) {
3770         _is_windows_2003 = true;
3771       }
3772       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3773           oi.wProductType == VER_NT_SERVER) {
3774         _is_windows_server = true;
3775       }
3776     }
3777     break;
3778   default: fatal("Unknown platform");
3779   }
3780 
3781   _default_stack_size = os::current_stack_size();
3782   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3783   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3784          "stack size not a multiple of page size");
3785 
3786   initialize_performance_counter();
3787 }
3788 
3789 
3790 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3791                                       int ebuflen) {
3792   char path[MAX_PATH];
3793   DWORD size;
3794   DWORD pathLen = (DWORD)sizeof(path);
3795   HINSTANCE result = NULL;
3796 
3797   // only allow library name without path component
3798   assert(strchr(name, '\\') == NULL, "path not allowed");
3799   assert(strchr(name, ':') == NULL, "path not allowed");
3800   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3801     jio_snprintf(ebuf, ebuflen,
3802                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3803     return NULL;
3804   }
3805 
3806   // search system directory
3807   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3808     if (size >= pathLen) {
3809       return NULL; // truncated
3810     }
3811     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3812       return NULL; // truncated
3813     }
3814     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3815       return result;
3816     }
3817   }
3818 
3819   // try Windows directory
3820   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3821     if (size >= pathLen) {
3822       return NULL; // truncated
3823     }
3824     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3825       return NULL; // truncated
3826     }
3827     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3828       return result;
3829     }
3830   }
3831 
3832   jio_snprintf(ebuf, ebuflen,
3833                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3834   return NULL;
3835 }
3836 
3837 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3838 
3839 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3840   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3841   return TRUE;
3842 }
3843 
3844 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3845   // Basic approach:
3846   //  - Each exiting thread registers its intent to exit and then does so.
3847   //  - A thread trying to terminate the process must wait for all
3848   //    threads currently exiting to complete their exit.
3849 
3850   if (os::win32::has_exit_bug()) {
3851     // The array holds handles of the threads that have started exiting by calling
3852     // _endthreadex().
3853     // Should be large enough to avoid blocking the exiting thread due to lack of
3854     // a free slot.
3855     static HANDLE handles[MAXIMUM_WAIT_OBJECTS];
3856     static int handle_count = 0;
3857 
3858     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3859     static CRITICAL_SECTION crit_sect;
3860     static volatile jint process_exiting = 0;
3861     int i, j;
3862     DWORD res;
3863     HANDLE hproc, hthr;
3864 
3865     // The first thread that reached this point, initializes the critical section.
3866     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3867       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3868     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3869       EnterCriticalSection(&crit_sect);
3870 
3871       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3872         // Remove from the array those handles of the threads that have completed exiting.
3873         for (i = 0, j = 0; i < handle_count; ++i) {
3874           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3875           if (res == WAIT_TIMEOUT) {
3876             handles[j++] = handles[i];
3877           } else {
3878             if (res == WAIT_FAILED) {
3879               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3880                       GetLastError(), __FILE__, __LINE__);
3881             }
3882             // Don't keep the handle, if we failed waiting for it.
3883             CloseHandle(handles[i]);
3884           }
3885         }
3886 
3887         // If there's no free slot in the array of the kept handles, we'll have to
3888         // wait until at least one thread completes exiting.
3889         if ((handle_count = j) == MAXIMUM_WAIT_OBJECTS) {
3890           // Raise the priority of the oldest exiting thread to increase its chances
3891           // to complete sooner.
3892           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3893           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3894           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3895             i = (res - WAIT_OBJECT_0);
3896             handle_count = MAXIMUM_WAIT_OBJECTS - 1;
3897             for (; i < handle_count; ++i) {
3898               handles[i] = handles[i + 1];
3899             }
3900           } else {
3901             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3902                     (res == WAIT_FAILED ? "failed" : "timed out"),
3903                     GetLastError(), __FILE__, __LINE__);
3904             // Don't keep handles, if we failed waiting for them.
3905             for (i = 0; i < MAXIMUM_WAIT_OBJECTS; ++i) {
3906               CloseHandle(handles[i]);
3907             }
3908             handle_count = 0;
3909           }
3910         }
3911 
3912         // Store a duplicate of the current thread handle in the array of handles.
3913         hproc = GetCurrentProcess();
3914         hthr = GetCurrentThread();
3915         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3916                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3917           warning("DuplicateHandle failed (%u) in %s: %d\n",
3918                   GetLastError(), __FILE__, __LINE__);
3919         } else {
3920           ++handle_count;
3921         }
3922 
3923         // The current exiting thread has stored its handle in the array, and now
3924         // should leave the critical section before calling _endthreadex().
3925 
3926       } else if (what != EPT_THREAD) {
3927         if (handle_count > 0) {
3928           // Before ending the process, make sure all the threads that had called
3929           // _endthreadex() completed.
3930 
3931           // Set the priority level of the current thread to the same value as
3932           // the priority level of exiting threads.
3933           // This is to ensure it will be given a fair chance to execute if
3934           // the timeout expires.
3935           hthr = GetCurrentThread();
3936           SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3937           for (i = 0; i < handle_count; ++i) {
3938             SetThreadPriority(handles[i], THREAD_PRIORITY_ABOVE_NORMAL);
3939           }
3940           res = WaitForMultipleObjects(handle_count, handles, TRUE, EXIT_TIMEOUT);
3941           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3942             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3943                     (res == WAIT_FAILED ? "failed" : "timed out"),
3944                     GetLastError(), __FILE__, __LINE__);
3945           }
3946           for (i = 0; i < handle_count; ++i) {
3947             CloseHandle(handles[i]);
3948           }
3949           handle_count = 0;
3950         }
3951 
3952         OrderAccess::release_store(&process_exiting, 1);
3953       }
3954 
3955       LeaveCriticalSection(&crit_sect);
3956     }
3957 
3958     if (what == EPT_THREAD) {
3959       while (OrderAccess::load_acquire(&process_exiting) != 0) {
3960         // Some other thread is about to call exit(), so we
3961         // don't let the current thread proceed to _endthreadex()
3962         SuspendThread(GetCurrentThread());
3963         // Avoid busy-wait loop, if SuspendThread() failed.
3964         Sleep(EXIT_TIMEOUT);
3965       }
3966     }
3967   }
3968 
3969   // We are here if either
3970   // - there's no 'race at exit' bug on this OS release;
3971   // - initialization of the critical section failed (unlikely);
3972   // - the current thread has stored its handle and left the critical section;
3973   // - the process-exiting thread has raised the flag and left the critical section.
3974   if (what == EPT_THREAD) {
3975     _endthreadex((unsigned)exit_code);
3976   } else if (what == EPT_PROCESS) {
3977     ::exit(exit_code);
3978   } else {
3979     _exit(exit_code);
3980   }
3981 
3982   // Should not reach here
3983   return exit_code;
3984 }
3985 
3986 #undef EXIT_TIMEOUT
3987 
3988 void os::win32::setmode_streams() {
3989   _setmode(_fileno(stdin), _O_BINARY);
3990   _setmode(_fileno(stdout), _O_BINARY);
3991   _setmode(_fileno(stderr), _O_BINARY);
3992 }
3993 
3994 
3995 bool os::is_debugger_attached() {
3996   return IsDebuggerPresent() ? true : false;
3997 }
3998 
3999 
4000 void os::wait_for_keypress_at_exit(void) {
4001   if (PauseAtExit) {
4002     fprintf(stderr, "Press any key to continue...\n");
4003     fgetc(stdin);
4004   }
4005 }
4006 
4007 
4008 int os::message_box(const char* title, const char* message) {
4009   int result = MessageBox(NULL, message, title,
4010                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4011   return result == IDYES;
4012 }
4013 
4014 int os::allocate_thread_local_storage() {
4015   return TlsAlloc();
4016 }
4017 
4018 
4019 void os::free_thread_local_storage(int index) {
4020   TlsFree(index);
4021 }
4022 
4023 
4024 void os::thread_local_storage_at_put(int index, void* value) {
4025   TlsSetValue(index, value);
4026   assert(thread_local_storage_at(index) == value, "Just checking");
4027 }
4028 
4029 
4030 void* os::thread_local_storage_at(int index) {
4031   return TlsGetValue(index);
4032 }
4033 
4034 
4035 #ifndef PRODUCT
4036 #ifndef _WIN64
4037 // Helpers to check whether NX protection is enabled
4038 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4039   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4040       pex->ExceptionRecord->NumberParameters > 0 &&
4041       pex->ExceptionRecord->ExceptionInformation[0] ==
4042       EXCEPTION_INFO_EXEC_VIOLATION) {
4043     return EXCEPTION_EXECUTE_HANDLER;
4044   }
4045   return EXCEPTION_CONTINUE_SEARCH;
4046 }
4047 
4048 void nx_check_protection() {
4049   // If NX is enabled we'll get an exception calling into code on the stack
4050   char code[] = { (char)0xC3 }; // ret
4051   void *code_ptr = (void *)code;
4052   __try {
4053     __asm call code_ptr
4054   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4055     tty->print_raw_cr("NX protection detected.");
4056   }
4057 }
4058 #endif // _WIN64
4059 #endif // PRODUCT
4060 
4061 // this is called _before_ the global arguments have been parsed
4062 void os::init(void) {
4063   _initial_pid = _getpid();
4064 
4065   init_random(1234567);
4066 
4067   win32::initialize_system_info();
4068   win32::setmode_streams();
4069   init_page_sizes((size_t) win32::vm_page_size());
4070 
4071   // This may be overridden later when argument processing is done.
4072   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
4073                 os::win32::is_windows_2003());
4074 
4075   // Initialize main_process and main_thread
4076   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4077   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4078                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4079     fatal("DuplicateHandle failed\n");
4080   }
4081   main_thread_id = (int) GetCurrentThreadId();
4082 }
4083 
4084 // To install functions for atexit processing
4085 extern "C" {
4086   static void perfMemory_exit_helper() {
4087     perfMemory_exit();
4088   }
4089 }
4090 
4091 static jint initSock();
4092 
4093 // this is called _after_ the global arguments have been parsed
4094 jint os::init_2(void) {
4095   // Allocate a single page and mark it as readable for safepoint polling
4096   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4097   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4098 
4099   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4100   guarantee(return_page != NULL, "Commit Failed for polling page");
4101 
4102   os::set_polling_page(polling_page);
4103 
4104 #ifndef PRODUCT
4105   if (Verbose && PrintMiscellaneous) {
4106     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n",
4107                (intptr_t)polling_page);
4108   }
4109 #endif
4110 
4111   if (!UseMembar) {
4112     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4113     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4114 
4115     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4116     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4117 
4118     os::set_memory_serialize_page(mem_serialize_page);
4119 
4120 #ifndef PRODUCT
4121     if (Verbose && PrintMiscellaneous) {
4122       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n",
4123                  (intptr_t)mem_serialize_page);
4124     }
4125 #endif
4126   }
4127 
4128   // Setup Windows Exceptions
4129 
4130   // for debugging float code generation bugs
4131   if (ForceFloatExceptions) {
4132 #ifndef  _WIN64
4133     static long fp_control_word = 0;
4134     __asm { fstcw fp_control_word }
4135     // see Intel PPro Manual, Vol. 2, p 7-16
4136     const long precision = 0x20;
4137     const long underflow = 0x10;
4138     const long overflow  = 0x08;
4139     const long zero_div  = 0x04;
4140     const long denorm    = 0x02;
4141     const long invalid   = 0x01;
4142     fp_control_word |= invalid;
4143     __asm { fldcw fp_control_word }
4144 #endif
4145   }
4146 
4147   // If stack_commit_size is 0, windows will reserve the default size,
4148   // but only commit a small portion of it.
4149   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4150   size_t default_reserve_size = os::win32::default_stack_size();
4151   size_t actual_reserve_size = stack_commit_size;
4152   if (stack_commit_size < default_reserve_size) {
4153     // If stack_commit_size == 0, we want this too
4154     actual_reserve_size = default_reserve_size;
4155   }
4156 
4157   // Check minimum allowable stack size for thread creation and to initialize
4158   // the java system classes, including StackOverflowError - depends on page
4159   // size.  Add a page for compiler2 recursion in main thread.
4160   // Add in 2*BytesPerWord times page size to account for VM stack during
4161   // class initialization depending on 32 or 64 bit VM.
4162   size_t min_stack_allowed =
4163             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4164                      2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
4165   if (actual_reserve_size < min_stack_allowed) {
4166     tty->print_cr("\nThe stack size specified is too small, "
4167                   "Specify at least %dk",
4168                   min_stack_allowed / K);
4169     return JNI_ERR;
4170   }
4171 
4172   JavaThread::set_stack_size_at_create(stack_commit_size);
4173 
4174   // Calculate theoretical max. size of Threads to guard gainst artifical
4175   // out-of-memory situations, where all available address-space has been
4176   // reserved by thread stacks.
4177   assert(actual_reserve_size != 0, "Must have a stack");
4178 
4179   // Calculate the thread limit when we should start doing Virtual Memory
4180   // banging. Currently when the threads will have used all but 200Mb of space.
4181   //
4182   // TODO: consider performing a similar calculation for commit size instead
4183   // as reserve size, since on a 64-bit platform we'll run into that more
4184   // often than running out of virtual memory space.  We can use the
4185   // lower value of the two calculations as the os_thread_limit.
4186   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4187   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4188 
4189   // at exit methods are called in the reverse order of their registration.
4190   // there is no limit to the number of functions registered. atexit does
4191   // not set errno.
4192 
4193   if (PerfAllowAtExitRegistration) {
4194     // only register atexit functions if PerfAllowAtExitRegistration is set.
4195     // atexit functions can be delayed until process exit time, which
4196     // can be problematic for embedded VM situations. Embedded VMs should
4197     // call DestroyJavaVM() to assure that VM resources are released.
4198 
4199     // note: perfMemory_exit_helper atexit function may be removed in
4200     // the future if the appropriate cleanup code can be added to the
4201     // VM_Exit VMOperation's doit method.
4202     if (atexit(perfMemory_exit_helper) != 0) {
4203       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4204     }
4205   }
4206 
4207 #ifndef _WIN64
4208   // Print something if NX is enabled (win32 on AMD64)
4209   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4210 #endif
4211 
4212   // initialize thread priority policy
4213   prio_init();
4214 
4215   if (UseNUMA && !ForceNUMA) {
4216     UseNUMA = false; // We don't fully support this yet
4217   }
4218 
4219   if (UseNUMAInterleaving) {
4220     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4221     bool success = numa_interleaving_init();
4222     if (!success) UseNUMAInterleaving = false;
4223   }
4224 
4225   if (initSock() != JNI_OK) {
4226     return JNI_ERR;
4227   }
4228 
4229   return JNI_OK;
4230 }
4231 
4232 // Mark the polling page as unreadable
4233 void os::make_polling_page_unreadable(void) {
4234   DWORD old_status;
4235   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4236                       PAGE_NOACCESS, &old_status)) {
4237     fatal("Could not disable polling page");
4238   }
4239 }
4240 
4241 // Mark the polling page as readable
4242 void os::make_polling_page_readable(void) {
4243   DWORD old_status;
4244   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4245                       PAGE_READONLY, &old_status)) {
4246     fatal("Could not enable polling page");
4247   }
4248 }
4249 
4250 
4251 int os::stat(const char *path, struct stat *sbuf) {
4252   char pathbuf[MAX_PATH];
4253   if (strlen(path) > MAX_PATH - 1) {
4254     errno = ENAMETOOLONG;
4255     return -1;
4256   }
4257   os::native_path(strcpy(pathbuf, path));
4258   int ret = ::stat(pathbuf, sbuf);
4259   if (sbuf != NULL && UseUTCFileTimestamp) {
4260     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4261     // the system timezone and so can return different values for the
4262     // same file if/when daylight savings time changes.  This adjustment
4263     // makes sure the same timestamp is returned regardless of the TZ.
4264     //
4265     // See:
4266     // http://msdn.microsoft.com/library/
4267     //   default.asp?url=/library/en-us/sysinfo/base/
4268     //   time_zone_information_str.asp
4269     // and
4270     // http://msdn.microsoft.com/library/default.asp?url=
4271     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4272     //
4273     // NOTE: there is a insidious bug here:  If the timezone is changed
4274     // after the call to stat() but before 'GetTimeZoneInformation()', then
4275     // the adjustment we do here will be wrong and we'll return the wrong
4276     // value (which will likely end up creating an invalid class data
4277     // archive).  Absent a better API for this, or some time zone locking
4278     // mechanism, we'll have to live with this risk.
4279     TIME_ZONE_INFORMATION tz;
4280     DWORD tzid = GetTimeZoneInformation(&tz);
4281     int daylightBias =
4282       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4283     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4284   }
4285   return ret;
4286 }
4287 
4288 
4289 #define FT2INT64(ft) \
4290   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4291 
4292 
4293 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4294 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4295 // of a thread.
4296 //
4297 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4298 // the fast estimate available on the platform.
4299 
4300 // current_thread_cpu_time() is not optimized for Windows yet
4301 jlong os::current_thread_cpu_time() {
4302   // return user + sys since the cost is the same
4303   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4304 }
4305 
4306 jlong os::thread_cpu_time(Thread* thread) {
4307   // consistent with what current_thread_cpu_time() returns.
4308   return os::thread_cpu_time(thread, true /* user+sys */);
4309 }
4310 
4311 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4312   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4313 }
4314 
4315 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4316   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4317   // If this function changes, os::is_thread_cpu_time_supported() should too
4318   if (os::win32::is_nt()) {
4319     FILETIME CreationTime;
4320     FILETIME ExitTime;
4321     FILETIME KernelTime;
4322     FILETIME UserTime;
4323 
4324     if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4325                        &ExitTime, &KernelTime, &UserTime) == 0) {
4326       return -1;
4327     } else if (user_sys_cpu_time) {
4328       return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4329     } else {
4330       return FT2INT64(UserTime) * 100;
4331     }
4332   } else {
4333     return (jlong) timeGetTime() * 1000000;
4334   }
4335 }
4336 
4337 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4338   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4339   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4340   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4341   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4342 }
4343 
4344 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4345   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4346   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4347   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4348   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4349 }
4350 
4351 bool os::is_thread_cpu_time_supported() {
4352   // see os::thread_cpu_time
4353   if (os::win32::is_nt()) {
4354     FILETIME CreationTime;
4355     FILETIME ExitTime;
4356     FILETIME KernelTime;
4357     FILETIME UserTime;
4358 
4359     if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4360                        &KernelTime, &UserTime) == 0) {
4361       return false;
4362     } else {
4363       return true;
4364     }
4365   } else {
4366     return false;
4367   }
4368 }
4369 
4370 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4371 // It does have primitives (PDH API) to get CPU usage and run queue length.
4372 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4373 // If we wanted to implement loadavg on Windows, we have a few options:
4374 //
4375 // a) Query CPU usage and run queue length and "fake" an answer by
4376 //    returning the CPU usage if it's under 100%, and the run queue
4377 //    length otherwise.  It turns out that querying is pretty slow
4378 //    on Windows, on the order of 200 microseconds on a fast machine.
4379 //    Note that on the Windows the CPU usage value is the % usage
4380 //    since the last time the API was called (and the first call
4381 //    returns 100%), so we'd have to deal with that as well.
4382 //
4383 // b) Sample the "fake" answer using a sampling thread and store
4384 //    the answer in a global variable.  The call to loadavg would
4385 //    just return the value of the global, avoiding the slow query.
4386 //
4387 // c) Sample a better answer using exponential decay to smooth the
4388 //    value.  This is basically the algorithm used by UNIX kernels.
4389 //
4390 // Note that sampling thread starvation could affect both (b) and (c).
4391 int os::loadavg(double loadavg[], int nelem) {
4392   return -1;
4393 }
4394 
4395 
4396 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4397 bool os::dont_yield() {
4398   return DontYieldALot;
4399 }
4400 
4401 // This method is a slightly reworked copy of JDK's sysOpen
4402 // from src/windows/hpi/src/sys_api_md.c
4403 
4404 int os::open(const char *path, int oflag, int mode) {
4405   char pathbuf[MAX_PATH];
4406 
4407   if (strlen(path) > MAX_PATH - 1) {
4408     errno = ENAMETOOLONG;
4409     return -1;
4410   }
4411   os::native_path(strcpy(pathbuf, path));
4412   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4413 }
4414 
4415 FILE* os::open(int fd, const char* mode) {
4416   return ::_fdopen(fd, mode);
4417 }
4418 
4419 // Is a (classpath) directory empty?
4420 bool os::dir_is_empty(const char* path) {
4421   WIN32_FIND_DATA fd;
4422   HANDLE f = FindFirstFile(path, &fd);
4423   if (f == INVALID_HANDLE_VALUE) {
4424     return true;
4425   }
4426   FindClose(f);
4427   return false;
4428 }
4429 
4430 // create binary file, rewriting existing file if required
4431 int os::create_binary_file(const char* path, bool rewrite_existing) {
4432   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4433   if (!rewrite_existing) {
4434     oflags |= _O_EXCL;
4435   }
4436   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4437 }
4438 
4439 // return current position of file pointer
4440 jlong os::current_file_offset(int fd) {
4441   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4442 }
4443 
4444 // move file pointer to the specified offset
4445 jlong os::seek_to_file_offset(int fd, jlong offset) {
4446   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4447 }
4448 
4449 
4450 jlong os::lseek(int fd, jlong offset, int whence) {
4451   return (jlong) ::_lseeki64(fd, offset, whence);
4452 }
4453 
4454 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4455   OVERLAPPED ov;
4456   DWORD nread;
4457   BOOL result;
4458 
4459   ZeroMemory(&ov, sizeof(ov));
4460   ov.Offset = (DWORD)offset;
4461   ov.OffsetHigh = (DWORD)(offset >> 32);
4462 
4463   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4464 
4465   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4466 
4467   return result ? nread : 0;
4468 }
4469 
4470 
4471 // This method is a slightly reworked copy of JDK's sysNativePath
4472 // from src/windows/hpi/src/path_md.c
4473 
4474 // Convert a pathname to native format.  On win32, this involves forcing all
4475 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4476 // sometimes rejects '/') and removing redundant separators.  The input path is
4477 // assumed to have been converted into the character encoding used by the local
4478 // system.  Because this might be a double-byte encoding, care is taken to
4479 // treat double-byte lead characters correctly.
4480 //
4481 // This procedure modifies the given path in place, as the result is never
4482 // longer than the original.  There is no error return; this operation always
4483 // succeeds.
4484 char * os::native_path(char *path) {
4485   char *src = path, *dst = path, *end = path;
4486   char *colon = NULL;  // If a drive specifier is found, this will
4487                        // point to the colon following the drive letter
4488 
4489   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4490   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4491           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4492 
4493   // Check for leading separators
4494 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4495   while (isfilesep(*src)) {
4496     src++;
4497   }
4498 
4499   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4500     // Remove leading separators if followed by drive specifier.  This
4501     // hack is necessary to support file URLs containing drive
4502     // specifiers (e.g., "file://c:/path").  As a side effect,
4503     // "/c:/path" can be used as an alternative to "c:/path".
4504     *dst++ = *src++;
4505     colon = dst;
4506     *dst++ = ':';
4507     src++;
4508   } else {
4509     src = path;
4510     if (isfilesep(src[0]) && isfilesep(src[1])) {
4511       // UNC pathname: Retain first separator; leave src pointed at
4512       // second separator so that further separators will be collapsed
4513       // into the second separator.  The result will be a pathname
4514       // beginning with "\\\\" followed (most likely) by a host name.
4515       src = dst = path + 1;
4516       path[0] = '\\';     // Force first separator to '\\'
4517     }
4518   }
4519 
4520   end = dst;
4521 
4522   // Remove redundant separators from remainder of path, forcing all
4523   // separators to be '\\' rather than '/'. Also, single byte space
4524   // characters are removed from the end of the path because those
4525   // are not legal ending characters on this operating system.
4526   //
4527   while (*src != '\0') {
4528     if (isfilesep(*src)) {
4529       *dst++ = '\\'; src++;
4530       while (isfilesep(*src)) src++;
4531       if (*src == '\0') {
4532         // Check for trailing separator
4533         end = dst;
4534         if (colon == dst - 2) break;  // "z:\\"
4535         if (dst == path + 1) break;   // "\\"
4536         if (dst == path + 2 && isfilesep(path[0])) {
4537           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4538           // beginning of a UNC pathname.  Even though it is not, by
4539           // itself, a valid UNC pathname, we leave it as is in order
4540           // to be consistent with the path canonicalizer as well
4541           // as the win32 APIs, which treat this case as an invalid
4542           // UNC pathname rather than as an alias for the root
4543           // directory of the current drive.
4544           break;
4545         }
4546         end = --dst;  // Path does not denote a root directory, so
4547                       // remove trailing separator
4548         break;
4549       }
4550       end = dst;
4551     } else {
4552       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4553         *dst++ = *src++;
4554         if (*src) *dst++ = *src++;
4555         end = dst;
4556       } else {  // Copy a single-byte character
4557         char c = *src++;
4558         *dst++ = c;
4559         // Space is not a legal ending character
4560         if (c != ' ') end = dst;
4561       }
4562     }
4563   }
4564 
4565   *end = '\0';
4566 
4567   // For "z:", add "." to work around a bug in the C runtime library
4568   if (colon == dst - 1) {
4569     path[2] = '.';
4570     path[3] = '\0';
4571   }
4572 
4573   return path;
4574 }
4575 
4576 // This code is a copy of JDK's sysSetLength
4577 // from src/windows/hpi/src/sys_api_md.c
4578 
4579 int os::ftruncate(int fd, jlong length) {
4580   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4581   long high = (long)(length >> 32);
4582   DWORD ret;
4583 
4584   if (h == (HANDLE)(-1)) {
4585     return -1;
4586   }
4587 
4588   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4589   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4590     return -1;
4591   }
4592 
4593   if (::SetEndOfFile(h) == FALSE) {
4594     return -1;
4595   }
4596 
4597   return 0;
4598 }
4599 
4600 
4601 // This code is a copy of JDK's sysSync
4602 // from src/windows/hpi/src/sys_api_md.c
4603 // except for the legacy workaround for a bug in Win 98
4604 
4605 int os::fsync(int fd) {
4606   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4607 
4608   if ((!::FlushFileBuffers(handle)) &&
4609       (GetLastError() != ERROR_ACCESS_DENIED)) {
4610     // from winerror.h
4611     return -1;
4612   }
4613   return 0;
4614 }
4615 
4616 static int nonSeekAvailable(int, long *);
4617 static int stdinAvailable(int, long *);
4618 
4619 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4620 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4621 
4622 // This code is a copy of JDK's sysAvailable
4623 // from src/windows/hpi/src/sys_api_md.c
4624 
4625 int os::available(int fd, jlong *bytes) {
4626   jlong cur, end;
4627   struct _stati64 stbuf64;
4628 
4629   if (::_fstati64(fd, &stbuf64) >= 0) {
4630     int mode = stbuf64.st_mode;
4631     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4632       int ret;
4633       long lpbytes;
4634       if (fd == 0) {
4635         ret = stdinAvailable(fd, &lpbytes);
4636       } else {
4637         ret = nonSeekAvailable(fd, &lpbytes);
4638       }
4639       (*bytes) = (jlong)(lpbytes);
4640       return ret;
4641     }
4642     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4643       return FALSE;
4644     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4645       return FALSE;
4646     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4647       return FALSE;
4648     }
4649     *bytes = end - cur;
4650     return TRUE;
4651   } else {
4652     return FALSE;
4653   }
4654 }
4655 
4656 // This code is a copy of JDK's nonSeekAvailable
4657 // from src/windows/hpi/src/sys_api_md.c
4658 
4659 static int nonSeekAvailable(int fd, long *pbytes) {
4660   // This is used for available on non-seekable devices
4661   // (like both named and anonymous pipes, such as pipes
4662   //  connected to an exec'd process).
4663   // Standard Input is a special case.
4664   HANDLE han;
4665 
4666   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4667     return FALSE;
4668   }
4669 
4670   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4671     // PeekNamedPipe fails when at EOF.  In that case we
4672     // simply make *pbytes = 0 which is consistent with the
4673     // behavior we get on Solaris when an fd is at EOF.
4674     // The only alternative is to raise an Exception,
4675     // which isn't really warranted.
4676     //
4677     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4678       return FALSE;
4679     }
4680     *pbytes = 0;
4681   }
4682   return TRUE;
4683 }
4684 
4685 #define MAX_INPUT_EVENTS 2000
4686 
4687 // This code is a copy of JDK's stdinAvailable
4688 // from src/windows/hpi/src/sys_api_md.c
4689 
4690 static int stdinAvailable(int fd, long *pbytes) {
4691   HANDLE han;
4692   DWORD numEventsRead = 0;  // Number of events read from buffer
4693   DWORD numEvents = 0;      // Number of events in buffer
4694   DWORD i = 0;              // Loop index
4695   DWORD curLength = 0;      // Position marker
4696   DWORD actualLength = 0;   // Number of bytes readable
4697   BOOL error = FALSE;       // Error holder
4698   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4699 
4700   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4701     return FALSE;
4702   }
4703 
4704   // Construct an array of input records in the console buffer
4705   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4706   if (error == 0) {
4707     return nonSeekAvailable(fd, pbytes);
4708   }
4709 
4710   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4711   if (numEvents > MAX_INPUT_EVENTS) {
4712     numEvents = MAX_INPUT_EVENTS;
4713   }
4714 
4715   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4716   if (lpBuffer == NULL) {
4717     return FALSE;
4718   }
4719 
4720   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4721   if (error == 0) {
4722     os::free(lpBuffer);
4723     return FALSE;
4724   }
4725 
4726   // Examine input records for the number of bytes available
4727   for (i=0; i<numEvents; i++) {
4728     if (lpBuffer[i].EventType == KEY_EVENT) {
4729 
4730       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4731                                       &(lpBuffer[i].Event);
4732       if (keyRecord->bKeyDown == TRUE) {
4733         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4734         curLength++;
4735         if (*keyPressed == '\r') {
4736           actualLength = curLength;
4737         }
4738       }
4739     }
4740   }
4741 
4742   if (lpBuffer != NULL) {
4743     os::free(lpBuffer);
4744   }
4745 
4746   *pbytes = (long) actualLength;
4747   return TRUE;
4748 }
4749 
4750 // Map a block of memory.
4751 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4752                         char *addr, size_t bytes, bool read_only,
4753                         bool allow_exec) {
4754   HANDLE hFile;
4755   char* base;
4756 
4757   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4758                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4759   if (hFile == NULL) {
4760     if (PrintMiscellaneous && Verbose) {
4761       DWORD err = GetLastError();
4762       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4763     }
4764     return NULL;
4765   }
4766 
4767   if (allow_exec) {
4768     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4769     // unless it comes from a PE image (which the shared archive is not.)
4770     // Even VirtualProtect refuses to give execute access to mapped memory
4771     // that was not previously executable.
4772     //
4773     // Instead, stick the executable region in anonymous memory.  Yuck.
4774     // Penalty is that ~4 pages will not be shareable - in the future
4775     // we might consider DLLizing the shared archive with a proper PE
4776     // header so that mapping executable + sharing is possible.
4777 
4778     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4779                                 PAGE_READWRITE);
4780     if (base == NULL) {
4781       if (PrintMiscellaneous && Verbose) {
4782         DWORD err = GetLastError();
4783         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4784       }
4785       CloseHandle(hFile);
4786       return NULL;
4787     }
4788 
4789     DWORD bytes_read;
4790     OVERLAPPED overlapped;
4791     overlapped.Offset = (DWORD)file_offset;
4792     overlapped.OffsetHigh = 0;
4793     overlapped.hEvent = NULL;
4794     // ReadFile guarantees that if the return value is true, the requested
4795     // number of bytes were read before returning.
4796     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4797     if (!res) {
4798       if (PrintMiscellaneous && Verbose) {
4799         DWORD err = GetLastError();
4800         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4801       }
4802       release_memory(base, bytes);
4803       CloseHandle(hFile);
4804       return NULL;
4805     }
4806   } else {
4807     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4808                                     NULL /* file_name */);
4809     if (hMap == NULL) {
4810       if (PrintMiscellaneous && Verbose) {
4811         DWORD err = GetLastError();
4812         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4813       }
4814       CloseHandle(hFile);
4815       return NULL;
4816     }
4817 
4818     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4819     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4820                                   (DWORD)bytes, addr);
4821     if (base == NULL) {
4822       if (PrintMiscellaneous && Verbose) {
4823         DWORD err = GetLastError();
4824         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4825       }
4826       CloseHandle(hMap);
4827       CloseHandle(hFile);
4828       return NULL;
4829     }
4830 
4831     if (CloseHandle(hMap) == 0) {
4832       if (PrintMiscellaneous && Verbose) {
4833         DWORD err = GetLastError();
4834         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4835       }
4836       CloseHandle(hFile);
4837       return base;
4838     }
4839   }
4840 
4841   if (allow_exec) {
4842     DWORD old_protect;
4843     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4844     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4845 
4846     if (!res) {
4847       if (PrintMiscellaneous && Verbose) {
4848         DWORD err = GetLastError();
4849         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4850       }
4851       // Don't consider this a hard error, on IA32 even if the
4852       // VirtualProtect fails, we should still be able to execute
4853       CloseHandle(hFile);
4854       return base;
4855     }
4856   }
4857 
4858   if (CloseHandle(hFile) == 0) {
4859     if (PrintMiscellaneous && Verbose) {
4860       DWORD err = GetLastError();
4861       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4862     }
4863     return base;
4864   }
4865 
4866   return base;
4867 }
4868 
4869 
4870 // Remap a block of memory.
4871 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4872                           char *addr, size_t bytes, bool read_only,
4873                           bool allow_exec) {
4874   // This OS does not allow existing memory maps to be remapped so we
4875   // have to unmap the memory before we remap it.
4876   if (!os::unmap_memory(addr, bytes)) {
4877     return NULL;
4878   }
4879 
4880   // There is a very small theoretical window between the unmap_memory()
4881   // call above and the map_memory() call below where a thread in native
4882   // code may be able to access an address that is no longer mapped.
4883 
4884   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4885                         read_only, allow_exec);
4886 }
4887 
4888 
4889 // Unmap a block of memory.
4890 // Returns true=success, otherwise false.
4891 
4892 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4893   MEMORY_BASIC_INFORMATION mem_info;
4894   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4895     if (PrintMiscellaneous && Verbose) {
4896       DWORD err = GetLastError();
4897       tty->print_cr("VirtualQuery() failed: GetLastError->%ld.", err);
4898     }
4899     return false;
4900   }
4901 
4902   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4903   // Instead, executable region was allocated using VirtualAlloc(). See
4904   // pd_map_memory() above.
4905   //
4906   // The following flags should match the 'exec_access' flages used for
4907   // VirtualProtect() in pd_map_memory().
4908   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4909       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4910     return pd_release_memory(addr, bytes);
4911   }
4912 
4913   BOOL result = UnmapViewOfFile(addr);
4914   if (result == 0) {
4915     if (PrintMiscellaneous && Verbose) {
4916       DWORD err = GetLastError();
4917       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4918     }
4919     return false;
4920   }
4921   return true;
4922 }
4923 
4924 void os::pause() {
4925   char filename[MAX_PATH];
4926   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4927     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4928   } else {
4929     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4930   }
4931 
4932   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4933   if (fd != -1) {
4934     struct stat buf;
4935     ::close(fd);
4936     while (::stat(filename, &buf) == 0) {
4937       Sleep(100);
4938     }
4939   } else {
4940     jio_fprintf(stderr,
4941                 "Could not open pause file '%s', continuing immediately.\n", filename);
4942   }
4943 }
4944 
4945 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4946   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4947 }
4948 
4949 // See the caveats for this class in os_windows.hpp
4950 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4951 // into this method and returns false. If no OS EXCEPTION was raised, returns
4952 // true.
4953 // The callback is supposed to provide the method that should be protected.
4954 //
4955 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4956   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4957   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4958          "crash_protection already set?");
4959 
4960   bool success = true;
4961   __try {
4962     WatcherThread::watcher_thread()->set_crash_protection(this);
4963     cb.call();
4964   } __except(EXCEPTION_EXECUTE_HANDLER) {
4965     // only for protection, nothing to do
4966     success = false;
4967   }
4968   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4969   return success;
4970 }
4971 
4972 // An Event wraps a win32 "CreateEvent" kernel handle.
4973 //
4974 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4975 //
4976 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4977 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4978 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4979 //     In addition, an unpark() operation might fetch the handle field, but the
4980 //     event could recycle between the fetch and the SetEvent() operation.
4981 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4982 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4983 //     on an stale but recycled handle would be harmless, but in practice this might
4984 //     confuse other non-Sun code, so it's not a viable approach.
4985 //
4986 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4987 //     with the Event.  The event handle is never closed.  This could be construed
4988 //     as handle leakage, but only up to the maximum # of threads that have been extant
4989 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4990 //     permit a process to have hundreds of thousands of open handles.
4991 //
4992 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4993 //     and release unused handles.
4994 //
4995 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4996 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4997 //
4998 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4999 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5000 //
5001 // We use (2).
5002 //
5003 // TODO-FIXME:
5004 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5005 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5006 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5007 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5008 //     into a single win32 CreateEvent() handle.
5009 //
5010 // Assumption:
5011 //    Only one parker can exist on an event, which is why we allocate
5012 //    them per-thread. Multiple unparkers can coexist.
5013 //
5014 // _Event transitions in park()
5015 //   -1 => -1 : illegal
5016 //    1 =>  0 : pass - return immediately
5017 //    0 => -1 : block; then set _Event to 0 before returning
5018 //
5019 // _Event transitions in unpark()
5020 //    0 => 1 : just return
5021 //    1 => 1 : just return
5022 //   -1 => either 0 or 1; must signal target thread
5023 //         That is, we can safely transition _Event from -1 to either
5024 //         0 or 1.
5025 //
5026 // _Event serves as a restricted-range semaphore.
5027 //   -1 : thread is blocked, i.e. there is a waiter
5028 //    0 : neutral: thread is running or ready,
5029 //        could have been signaled after a wait started
5030 //    1 : signaled - thread is running or ready
5031 //
5032 // Another possible encoding of _Event would be with
5033 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5034 //
5035 
5036 int os::PlatformEvent::park(jlong Millis) {
5037   // Transitions for _Event:
5038   //   -1 => -1 : illegal
5039   //    1 =>  0 : pass - return immediately
5040   //    0 => -1 : block; then set _Event to 0 before returning
5041 
5042   guarantee(_ParkHandle != NULL , "Invariant");
5043   guarantee(Millis > 0          , "Invariant");
5044 
5045   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5046   // the initial park() operation.
5047   // Consider: use atomic decrement instead of CAS-loop
5048 
5049   int v;
5050   for (;;) {
5051     v = _Event;
5052     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5053   }
5054   guarantee((v == 0) || (v == 1), "invariant");
5055   if (v != 0) return OS_OK;
5056 
5057   // Do this the hard way by blocking ...
5058   // TODO: consider a brief spin here, gated on the success of recent
5059   // spin attempts by this thread.
5060   //
5061   // We decompose long timeouts into series of shorter timed waits.
5062   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5063   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5064   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5065   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5066   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5067   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5068   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5069   // for the already waited time.  This policy does not admit any new outcomes.
5070   // In the future, however, we might want to track the accumulated wait time and
5071   // adjust Millis accordingly if we encounter a spurious wakeup.
5072 
5073   const int MAXTIMEOUT = 0x10000000;
5074   DWORD rv = WAIT_TIMEOUT;
5075   while (_Event < 0 && Millis > 0) {
5076     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5077     if (Millis > MAXTIMEOUT) {
5078       prd = MAXTIMEOUT;
5079     }
5080     rv = ::WaitForSingleObject(_ParkHandle, prd);
5081     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5082     if (rv == WAIT_TIMEOUT) {
5083       Millis -= prd;
5084     }
5085   }
5086   v = _Event;
5087   _Event = 0;
5088   // see comment at end of os::PlatformEvent::park() below:
5089   OrderAccess::fence();
5090   // If we encounter a nearly simultanous timeout expiry and unpark()
5091   // we return OS_OK indicating we awoke via unpark().
5092   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5093   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5094 }
5095 
5096 void os::PlatformEvent::park() {
5097   // Transitions for _Event:
5098   //   -1 => -1 : illegal
5099   //    1 =>  0 : pass - return immediately
5100   //    0 => -1 : block; then set _Event to 0 before returning
5101 
5102   guarantee(_ParkHandle != NULL, "Invariant");
5103   // Invariant: Only the thread associated with the Event/PlatformEvent
5104   // may call park().
5105   // Consider: use atomic decrement instead of CAS-loop
5106   int v;
5107   for (;;) {
5108     v = _Event;
5109     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5110   }
5111   guarantee((v == 0) || (v == 1), "invariant");
5112   if (v != 0) return;
5113 
5114   // Do this the hard way by blocking ...
5115   // TODO: consider a brief spin here, gated on the success of recent
5116   // spin attempts by this thread.
5117   while (_Event < 0) {
5118     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5119     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5120   }
5121 
5122   // Usually we'll find _Event == 0 at this point, but as
5123   // an optional optimization we clear it, just in case can
5124   // multiple unpark() operations drove _Event up to 1.
5125   _Event = 0;
5126   OrderAccess::fence();
5127   guarantee(_Event >= 0, "invariant");
5128 }
5129 
5130 void os::PlatformEvent::unpark() {
5131   guarantee(_ParkHandle != NULL, "Invariant");
5132 
5133   // Transitions for _Event:
5134   //    0 => 1 : just return
5135   //    1 => 1 : just return
5136   //   -1 => either 0 or 1; must signal target thread
5137   //         That is, we can safely transition _Event from -1 to either
5138   //         0 or 1.
5139   // See also: "Semaphores in Plan 9" by Mullender & Cox
5140   //
5141   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5142   // that it will take two back-to-back park() calls for the owning
5143   // thread to block. This has the benefit of forcing a spurious return
5144   // from the first park() call after an unpark() call which will help
5145   // shake out uses of park() and unpark() without condition variables.
5146 
5147   if (Atomic::xchg(1, &_Event) >= 0) return;
5148 
5149   ::SetEvent(_ParkHandle);
5150 }
5151 
5152 
5153 // JSR166
5154 // -------------------------------------------------------
5155 
5156 // The Windows implementation of Park is very straightforward: Basic
5157 // operations on Win32 Events turn out to have the right semantics to
5158 // use them directly. We opportunistically resuse the event inherited
5159 // from Monitor.
5160 
5161 void Parker::park(bool isAbsolute, jlong time) {
5162   guarantee(_ParkEvent != NULL, "invariant");
5163   // First, demultiplex/decode time arguments
5164   if (time < 0) { // don't wait
5165     return;
5166   } else if (time == 0 && !isAbsolute) {
5167     time = INFINITE;
5168   } else if (isAbsolute) {
5169     time -= os::javaTimeMillis(); // convert to relative time
5170     if (time <= 0) {  // already elapsed
5171       return;
5172     }
5173   } else { // relative
5174     time /= 1000000;  // Must coarsen from nanos to millis
5175     if (time == 0) {  // Wait for the minimal time unit if zero
5176       time = 1;
5177     }
5178   }
5179 
5180   JavaThread* thread = (JavaThread*)(Thread::current());
5181   assert(thread->is_Java_thread(), "Must be JavaThread");
5182   JavaThread *jt = (JavaThread *)thread;
5183 
5184   // Don't wait if interrupted or already triggered
5185   if (Thread::is_interrupted(thread, false) ||
5186       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5187     ResetEvent(_ParkEvent);
5188     return;
5189   } else {
5190     ThreadBlockInVM tbivm(jt);
5191     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5192     jt->set_suspend_equivalent();
5193 
5194     WaitForSingleObject(_ParkEvent, time);
5195     ResetEvent(_ParkEvent);
5196 
5197     // If externally suspended while waiting, re-suspend
5198     if (jt->handle_special_suspend_equivalent_condition()) {
5199       jt->java_suspend_self();
5200     }
5201   }
5202 }
5203 
5204 void Parker::unpark() {
5205   guarantee(_ParkEvent != NULL, "invariant");
5206   SetEvent(_ParkEvent);
5207 }
5208 
5209 // Run the specified command in a separate process. Return its exit value,
5210 // or -1 on failure (e.g. can't create a new process).
5211 int os::fork_and_exec(char* cmd) {
5212   STARTUPINFO si;
5213   PROCESS_INFORMATION pi;
5214 
5215   memset(&si, 0, sizeof(si));
5216   si.cb = sizeof(si);
5217   memset(&pi, 0, sizeof(pi));
5218   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5219                             cmd,    // command line
5220                             NULL,   // process security attribute
5221                             NULL,   // thread security attribute
5222                             TRUE,   // inherits system handles
5223                             0,      // no creation flags
5224                             NULL,   // use parent's environment block
5225                             NULL,   // use parent's starting directory
5226                             &si,    // (in) startup information
5227                             &pi);   // (out) process information
5228 
5229   if (rslt) {
5230     // Wait until child process exits.
5231     WaitForSingleObject(pi.hProcess, INFINITE);
5232 
5233     DWORD exit_code;
5234     GetExitCodeProcess(pi.hProcess, &exit_code);
5235 
5236     // Close process and thread handles.
5237     CloseHandle(pi.hProcess);
5238     CloseHandle(pi.hThread);
5239 
5240     return (int)exit_code;
5241   } else {
5242     return -1;
5243   }
5244 }
5245 
5246 //--------------------------------------------------------------------------------------------------
5247 // Non-product code
5248 
5249 static int mallocDebugIntervalCounter = 0;
5250 static int mallocDebugCounter = 0;
5251 bool os::check_heap(bool force) {
5252   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
5253   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
5254     // Note: HeapValidate executes two hardware breakpoints when it finds something
5255     // wrong; at these points, eax contains the address of the offending block (I think).
5256     // To get to the exlicit error message(s) below, just continue twice.
5257     HANDLE heap = GetProcessHeap();
5258 
5259     // If we fail to lock the heap, then gflags.exe has been used
5260     // or some other special heap flag has been set that prevents
5261     // locking. We don't try to walk a heap we can't lock.
5262     if (HeapLock(heap) != 0) {
5263       PROCESS_HEAP_ENTRY phe;
5264       phe.lpData = NULL;
5265       while (HeapWalk(heap, &phe) != 0) {
5266         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5267             !HeapValidate(heap, 0, phe.lpData)) {
5268           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5269           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5270           fatal("corrupted C heap");
5271         }
5272       }
5273       DWORD err = GetLastError();
5274       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5275         fatal("heap walk aborted with error %d", err);
5276       }
5277       HeapUnlock(heap);
5278     }
5279     mallocDebugIntervalCounter = 0;
5280   }
5281   return true;
5282 }
5283 
5284 
5285 bool os::find(address addr, outputStream* st) {
5286   // Nothing yet
5287   return false;
5288 }
5289 
5290 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5291   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5292 
5293   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5294     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5295     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5296     address addr = (address) exceptionRecord->ExceptionInformation[1];
5297 
5298     if (os::is_memory_serialize_page(thread, addr)) {
5299       return EXCEPTION_CONTINUE_EXECUTION;
5300     }
5301   }
5302 
5303   return EXCEPTION_CONTINUE_SEARCH;
5304 }
5305 
5306 // We don't build a headless jre for Windows
5307 bool os::is_headless_jre() { return false; }
5308 
5309 static jint initSock() {
5310   WSADATA wsadata;
5311 
5312   if (!os::WinSock2Dll::WinSock2Available()) {
5313     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5314                 ::GetLastError());
5315     return JNI_ERR;
5316   }
5317 
5318   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5319     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5320                 ::GetLastError());
5321     return JNI_ERR;
5322   }
5323   return JNI_OK;
5324 }
5325 
5326 struct hostent* os::get_host_by_name(char* name) {
5327   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5328 }
5329 
5330 int os::socket_close(int fd) {
5331   return ::closesocket(fd);
5332 }
5333 
5334 int os::socket(int domain, int type, int protocol) {
5335   return ::socket(domain, type, protocol);
5336 }
5337 
5338 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5339   return ::connect(fd, him, len);
5340 }
5341 
5342 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5343   return ::recv(fd, buf, (int)nBytes, flags);
5344 }
5345 
5346 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5347   return ::send(fd, buf, (int)nBytes, flags);
5348 }
5349 
5350 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5351   return ::send(fd, buf, (int)nBytes, flags);
5352 }
5353 
5354 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5355 #if defined(IA32)
5356   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5357 #elif defined (AMD64)
5358   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5359 #endif
5360 
5361 // returns true if thread could be suspended,
5362 // false otherwise
5363 static bool do_suspend(HANDLE* h) {
5364   if (h != NULL) {
5365     if (SuspendThread(*h) != ~0) {
5366       return true;
5367     }
5368   }
5369   return false;
5370 }
5371 
5372 // resume the thread
5373 // calling resume on an active thread is a no-op
5374 static void do_resume(HANDLE* h) {
5375   if (h != NULL) {
5376     ResumeThread(*h);
5377   }
5378 }
5379 
5380 // retrieve a suspend/resume context capable handle
5381 // from the tid. Caller validates handle return value.
5382 void get_thread_handle_for_extended_context(HANDLE* h,
5383                                             OSThread::thread_id_t tid) {
5384   if (h != NULL) {
5385     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5386   }
5387 }
5388 
5389 // Thread sampling implementation
5390 //
5391 void os::SuspendedThreadTask::internal_do_task() {
5392   CONTEXT    ctxt;
5393   HANDLE     h = NULL;
5394 
5395   // get context capable handle for thread
5396   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5397 
5398   // sanity
5399   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5400     return;
5401   }
5402 
5403   // suspend the thread
5404   if (do_suspend(&h)) {
5405     ctxt.ContextFlags = sampling_context_flags;
5406     // get thread context
5407     GetThreadContext(h, &ctxt);
5408     SuspendedThreadTaskContext context(_thread, &ctxt);
5409     // pass context to Thread Sampling impl
5410     do_task(context);
5411     // resume thread
5412     do_resume(&h);
5413   }
5414 
5415   // close handle
5416   CloseHandle(h);
5417 }
5418 
5419 
5420 // Kernel32 API
5421 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5422 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn)(HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5423 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn)(PULONG);
5424 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn)(UCHAR, PULONGLONG);
5425 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5426 
5427 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5428 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5429 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5430 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5431 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5432 
5433 
5434 BOOL                        os::Kernel32Dll::initialized = FALSE;
5435 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5436   assert(initialized && _GetLargePageMinimum != NULL,
5437          "GetLargePageMinimumAvailable() not yet called");
5438   return _GetLargePageMinimum();
5439 }
5440 
5441 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5442   if (!initialized) {
5443     initialize();
5444   }
5445   return _GetLargePageMinimum != NULL;
5446 }
5447 
5448 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5449   if (!initialized) {
5450     initialize();
5451   }
5452   return _VirtualAllocExNuma != NULL;
5453 }
5454 
5455 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr,
5456                                            SIZE_T bytes, DWORD flags,
5457                                            DWORD prot, DWORD node) {
5458   assert(initialized && _VirtualAllocExNuma != NULL,
5459          "NUMACallsAvailable() not yet called");
5460 
5461   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5462 }
5463 
5464 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5465   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5466          "NUMACallsAvailable() not yet called");
5467 
5468   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5469 }
5470 
5471 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node,
5472                                                PULONGLONG proc_mask) {
5473   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5474          "NUMACallsAvailable() not yet called");
5475 
5476   return _GetNumaNodeProcessorMask(node, proc_mask);
5477 }
5478 
5479 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5480                                                  ULONG FrameToCapture,
5481                                                  PVOID* BackTrace,
5482                                                  PULONG BackTraceHash) {
5483   if (!initialized) {
5484     initialize();
5485   }
5486 
5487   if (_RtlCaptureStackBackTrace != NULL) {
5488     return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5489                                      BackTrace, BackTraceHash);
5490   } else {
5491     return 0;
5492   }
5493 }
5494 
5495 void os::Kernel32Dll::initializeCommon() {
5496   if (!initialized) {
5497     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5498     assert(handle != NULL, "Just check");
5499     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5500     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5501     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5502     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5503     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5504     initialized = TRUE;
5505   }
5506 }
5507 
5508 
5509 
5510 #ifndef JDK6_OR_EARLIER
5511 
5512 void os::Kernel32Dll::initialize() {
5513   initializeCommon();
5514 }
5515 
5516 
5517 // Kernel32 API
5518 inline BOOL os::Kernel32Dll::SwitchToThread() {
5519   return ::SwitchToThread();
5520 }
5521 
5522 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5523   return true;
5524 }
5525 
5526 // Help tools
5527 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5528   return true;
5529 }
5530 
5531 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5532                                                         DWORD th32ProcessId) {
5533   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5534 }
5535 
5536 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,
5537                                            LPMODULEENTRY32 lpme) {
5538   return ::Module32First(hSnapshot, lpme);
5539 }
5540 
5541 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5542                                           LPMODULEENTRY32 lpme) {
5543   return ::Module32Next(hSnapshot, lpme);
5544 }
5545 
5546 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5547   ::GetNativeSystemInfo(lpSystemInfo);
5548 }
5549 
5550 // PSAPI API
5551 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess,
5552                                              HMODULE *lpModule, DWORD cb,
5553                                              LPDWORD lpcbNeeded) {
5554   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5555 }
5556 
5557 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess,
5558                                                HMODULE hModule,
5559                                                LPTSTR lpFilename,
5560                                                DWORD nSize) {
5561   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5562 }
5563 
5564 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess,
5565                                                HMODULE hModule,
5566                                                LPMODULEINFO lpmodinfo,
5567                                                DWORD cb) {
5568   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5569 }
5570 
5571 inline BOOL os::PSApiDll::PSApiAvailable() {
5572   return true;
5573 }
5574 
5575 
5576 // WinSock2 API
5577 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested,
5578                                         LPWSADATA lpWSAData) {
5579   return ::WSAStartup(wVersionRequested, lpWSAData);
5580 }
5581 
5582 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5583   return ::gethostbyname(name);
5584 }
5585 
5586 inline BOOL os::WinSock2Dll::WinSock2Available() {
5587   return true;
5588 }
5589 
5590 // Advapi API
5591 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5592                                                    BOOL DisableAllPrivileges,
5593                                                    PTOKEN_PRIVILEGES NewState,
5594                                                    DWORD BufferLength,
5595                                                    PTOKEN_PRIVILEGES PreviousState,
5596                                                    PDWORD ReturnLength) {
5597   return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5598                                  BufferLength, PreviousState, ReturnLength);
5599 }
5600 
5601 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5602                                               DWORD DesiredAccess,
5603                                               PHANDLE TokenHandle) {
5604   return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5605 }
5606 
5607 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5608                                                   LPCTSTR lpName,
5609                                                   PLUID lpLuid) {
5610   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5611 }
5612 
5613 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5614   return true;
5615 }
5616 
5617 void* os::get_default_process_handle() {
5618   return (void*)GetModuleHandle(NULL);
5619 }
5620 
5621 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5622 // which is used to find statically linked in agents.
5623 // Additionally for windows, takes into account __stdcall names.
5624 // Parameters:
5625 //            sym_name: Symbol in library we are looking for
5626 //            lib_name: Name of library to look in, NULL for shared libs.
5627 //            is_absolute_path == true if lib_name is absolute path to agent
5628 //                                     such as "C:/a/b/L.dll"
5629 //            == false if only the base name of the library is passed in
5630 //               such as "L"
5631 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5632                                     bool is_absolute_path) {
5633   char *agent_entry_name;
5634   size_t len;
5635   size_t name_len;
5636   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5637   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5638   const char *start;
5639 
5640   if (lib_name != NULL) {
5641     len = name_len = strlen(lib_name);
5642     if (is_absolute_path) {
5643       // Need to strip path, prefix and suffix
5644       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5645         lib_name = ++start;
5646       } else {
5647         // Need to check for drive prefix
5648         if ((start = strchr(lib_name, ':')) != NULL) {
5649           lib_name = ++start;
5650         }
5651       }
5652       if (len <= (prefix_len + suffix_len)) {
5653         return NULL;
5654       }
5655       lib_name += prefix_len;
5656       name_len = strlen(lib_name) - suffix_len;
5657     }
5658   }
5659   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5660   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5661   if (agent_entry_name == NULL) {
5662     return NULL;
5663   }
5664   if (lib_name != NULL) {
5665     const char *p = strrchr(sym_name, '@');
5666     if (p != NULL && p != sym_name) {
5667       // sym_name == _Agent_OnLoad@XX
5668       strncpy(agent_entry_name, sym_name, (p - sym_name));
5669       agent_entry_name[(p-sym_name)] = '\0';
5670       // agent_entry_name == _Agent_OnLoad
5671       strcat(agent_entry_name, "_");
5672       strncat(agent_entry_name, lib_name, name_len);
5673       strcat(agent_entry_name, p);
5674       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5675     } else {
5676       strcpy(agent_entry_name, sym_name);
5677       strcat(agent_entry_name, "_");
5678       strncat(agent_entry_name, lib_name, name_len);
5679     }
5680   } else {
5681     strcpy(agent_entry_name, sym_name);
5682   }
5683   return agent_entry_name;
5684 }
5685 
5686 #else
5687 // Kernel32 API
5688 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5689 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD, DWORD);
5690 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE, LPMODULEENTRY32);
5691 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE, LPMODULEENTRY32);
5692 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5693 
5694 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5695 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5696 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5697 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5698 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5699 
5700 void os::Kernel32Dll::initialize() {
5701   if (!initialized) {
5702     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5703     assert(handle != NULL, "Just check");
5704 
5705     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5706     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5707       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5708     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5709     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5710     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5711     initializeCommon();  // resolve the functions that always need resolving
5712 
5713     initialized = TRUE;
5714   }
5715 }
5716 
5717 BOOL os::Kernel32Dll::SwitchToThread() {
5718   assert(initialized && _SwitchToThread != NULL,
5719          "SwitchToThreadAvailable() not yet called");
5720   return _SwitchToThread();
5721 }
5722 
5723 
5724 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5725   if (!initialized) {
5726     initialize();
5727   }
5728   return _SwitchToThread != NULL;
5729 }
5730 
5731 // Help tools
5732 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5733   if (!initialized) {
5734     initialize();
5735   }
5736   return _CreateToolhelp32Snapshot != NULL &&
5737          _Module32First != NULL &&
5738          _Module32Next != NULL;
5739 }
5740 
5741 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,
5742                                                  DWORD th32ProcessId) {
5743   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5744          "HelpToolsAvailable() not yet called");
5745 
5746   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5747 }
5748 
5749 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5750   assert(initialized && _Module32First != NULL,
5751          "HelpToolsAvailable() not yet called");
5752 
5753   return _Module32First(hSnapshot, lpme);
5754 }
5755 
5756 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,
5757                                           LPMODULEENTRY32 lpme) {
5758   assert(initialized && _Module32Next != NULL,
5759          "HelpToolsAvailable() not yet called");
5760 
5761   return _Module32Next(hSnapshot, lpme);
5762 }
5763 
5764 
5765 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5766   if (!initialized) {
5767     initialize();
5768   }
5769   return _GetNativeSystemInfo != NULL;
5770 }
5771 
5772 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5773   assert(initialized && _GetNativeSystemInfo != NULL,
5774          "GetNativeSystemInfoAvailable() not yet called");
5775 
5776   _GetNativeSystemInfo(lpSystemInfo);
5777 }
5778 
5779 // PSAPI API
5780 
5781 
5782 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5783 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);
5784 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5785 
5786 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5787 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5788 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5789 BOOL                    os::PSApiDll::initialized = FALSE;
5790 
5791 void os::PSApiDll::initialize() {
5792   if (!initialized) {
5793     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5794     if (handle != NULL) {
5795       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5796                                                                     "EnumProcessModules");
5797       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5798                                                                       "GetModuleFileNameExA");
5799       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5800                                                                         "GetModuleInformation");
5801     }
5802     initialized = TRUE;
5803   }
5804 }
5805 
5806 
5807 
5808 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule,
5809                                       DWORD cb, LPDWORD lpcbNeeded) {
5810   assert(initialized && _EnumProcessModules != NULL,
5811          "PSApiAvailable() not yet called");
5812   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5813 }
5814 
5815 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule,
5816                                         LPTSTR lpFilename, DWORD nSize) {
5817   assert(initialized && _GetModuleFileNameEx != NULL,
5818          "PSApiAvailable() not yet called");
5819   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5820 }
5821 
5822 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule,
5823                                         LPMODULEINFO lpmodinfo, DWORD cb) {
5824   assert(initialized && _GetModuleInformation != NULL,
5825          "PSApiAvailable() not yet called");
5826   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5827 }
5828 
5829 BOOL os::PSApiDll::PSApiAvailable() {
5830   if (!initialized) {
5831     initialize();
5832   }
5833   return _EnumProcessModules != NULL &&
5834     _GetModuleFileNameEx != NULL &&
5835     _GetModuleInformation != NULL;
5836 }
5837 
5838 
5839 // WinSock2 API
5840 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5841 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5842 
5843 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5844 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5845 BOOL             os::WinSock2Dll::initialized = FALSE;
5846 
5847 void os::WinSock2Dll::initialize() {
5848   if (!initialized) {
5849     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5850     if (handle != NULL) {
5851       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5852       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5853     }
5854     initialized = TRUE;
5855   }
5856 }
5857 
5858 
5859 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5860   assert(initialized && _WSAStartup != NULL,
5861          "WinSock2Available() not yet called");
5862   return _WSAStartup(wVersionRequested, lpWSAData);
5863 }
5864 
5865 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5866   assert(initialized && _gethostbyname != NULL,
5867          "WinSock2Available() not yet called");
5868   return _gethostbyname(name);
5869 }
5870 
5871 BOOL os::WinSock2Dll::WinSock2Available() {
5872   if (!initialized) {
5873     initialize();
5874   }
5875   return _WSAStartup != NULL &&
5876     _gethostbyname != NULL;
5877 }
5878 
5879 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5880 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5881 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5882 
5883 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5884 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5885 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5886 BOOL                     os::Advapi32Dll::initialized = FALSE;
5887 
5888 void os::Advapi32Dll::initialize() {
5889   if (!initialized) {
5890     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5891     if (handle != NULL) {
5892       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5893                                                                           "AdjustTokenPrivileges");
5894       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5895                                                                 "OpenProcessToken");
5896       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5897                                                                         "LookupPrivilegeValueA");
5898     }
5899     initialized = TRUE;
5900   }
5901 }
5902 
5903 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5904                                             BOOL DisableAllPrivileges,
5905                                             PTOKEN_PRIVILEGES NewState,
5906                                             DWORD BufferLength,
5907                                             PTOKEN_PRIVILEGES PreviousState,
5908                                             PDWORD ReturnLength) {
5909   assert(initialized && _AdjustTokenPrivileges != NULL,
5910          "AdvapiAvailable() not yet called");
5911   return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5912                                 BufferLength, PreviousState, ReturnLength);
5913 }
5914 
5915 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle,
5916                                        DWORD DesiredAccess,
5917                                        PHANDLE TokenHandle) {
5918   assert(initialized && _OpenProcessToken != NULL,
5919          "AdvapiAvailable() not yet called");
5920   return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5921 }
5922 
5923 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName,
5924                                            LPCTSTR lpName, PLUID lpLuid) {
5925   assert(initialized && _LookupPrivilegeValue != NULL,
5926          "AdvapiAvailable() not yet called");
5927   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5928 }
5929 
5930 BOOL os::Advapi32Dll::AdvapiAvailable() {
5931   if (!initialized) {
5932     initialize();
5933   }
5934   return _AdjustTokenPrivileges != NULL &&
5935     _OpenProcessToken != NULL &&
5936     _LookupPrivilegeValue != NULL;
5937 }
5938 
5939 #endif
5940 
5941 #ifndef PRODUCT
5942 
5943 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5944 // contiguous memory block at a particular address.
5945 // The test first tries to find a good approximate address to allocate at by using the same
5946 // method to allocate some memory at any address. The test then tries to allocate memory in
5947 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5948 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5949 // the previously allocated memory is available for allocation. The only actual failure
5950 // that is reported is when the test tries to allocate at a particular location but gets a
5951 // different valid one. A NULL return value at this point is not considered an error but may
5952 // be legitimate.
5953 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5954 void TestReserveMemorySpecial_test() {
5955   if (!UseLargePages) {
5956     if (VerboseInternalVMTests) {
5957       tty->print("Skipping test because large pages are disabled");
5958     }
5959     return;
5960   }
5961   // save current value of globals
5962   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5963   bool old_use_numa_interleaving = UseNUMAInterleaving;
5964 
5965   // set globals to make sure we hit the correct code path
5966   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5967 
5968   // do an allocation at an address selected by the OS to get a good one.
5969   const size_t large_allocation_size = os::large_page_size() * 4;
5970   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5971   if (result == NULL) {
5972     if (VerboseInternalVMTests) {
5973       tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5974                           large_allocation_size);
5975     }
5976   } else {
5977     os::release_memory_special(result, large_allocation_size);
5978 
5979     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5980     // we managed to get it once.
5981     const size_t expected_allocation_size = os::large_page_size();
5982     char* expected_location = result + os::large_page_size();
5983     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5984     if (actual_location == NULL) {
5985       if (VerboseInternalVMTests) {
5986         tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5987                             expected_location, large_allocation_size);
5988       }
5989     } else {
5990       // release memory
5991       os::release_memory_special(actual_location, expected_allocation_size);
5992       // only now check, after releasing any memory to avoid any leaks.
5993       assert(actual_location == expected_location,
5994              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5995              expected_location, expected_allocation_size, actual_location);
5996     }
5997   }
5998 
5999   // restore globals
6000   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
6001   UseNUMAInterleaving = old_use_numa_interleaving;
6002 }
6003 #endif // PRODUCT