1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/cms/cmsCollectorPolicy.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/compactibleFreeListSpace.hpp"
  33 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  34 #include "gc/cms/concurrentMarkSweepThread.hpp"
  35 #include "gc/cms/parNewGeneration.hpp"
  36 #include "gc/cms/vmCMSOperations.hpp"
  37 #include "gc/serial/genMarkSweep.hpp"
  38 #include "gc/serial/tenuredGeneration.hpp"
  39 #include "gc/shared/adaptiveSizePolicy.hpp"
  40 #include "gc/shared/cardGeneration.inline.hpp"
  41 #include "gc/shared/cardTableRS.hpp"
  42 #include "gc/shared/collectedHeap.inline.hpp"
  43 #include "gc/shared/collectorCounters.hpp"
  44 #include "gc/shared/collectorPolicy.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/genOopClosures.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/referencePolicy.hpp"
  54 #include "gc/shared/strongRootsScope.hpp"
  55 #include "gc/shared/taskqueue.inline.hpp"
  56 #include "logging/log.hpp"
  57 #include "memory/allocation.hpp"
  58 #include "memory/iterator.inline.hpp"
  59 #include "memory/padded.hpp"
  60 #include "memory/resourceArea.hpp"
  61 #include "oops/oop.inline.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "runtime/atomic.inline.hpp"
  64 #include "runtime/globals_extension.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/java.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/vmThread.hpp"
  69 #include "services/memoryService.hpp"
  70 #include "services/runtimeService.hpp"
  71 #include "utilities/stack.inline.hpp"
  72 
  73 // statics
  74 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  75 bool CMSCollector::_full_gc_requested = false;
  76 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  77 
  78 //////////////////////////////////////////////////////////////////
  79 // In support of CMS/VM thread synchronization
  80 //////////////////////////////////////////////////////////////////
  81 // We split use of the CGC_lock into 2 "levels".
  82 // The low-level locking is of the usual CGC_lock monitor. We introduce
  83 // a higher level "token" (hereafter "CMS token") built on top of the
  84 // low level monitor (hereafter "CGC lock").
  85 // The token-passing protocol gives priority to the VM thread. The
  86 // CMS-lock doesn't provide any fairness guarantees, but clients
  87 // should ensure that it is only held for very short, bounded
  88 // durations.
  89 //
  90 // When either of the CMS thread or the VM thread is involved in
  91 // collection operations during which it does not want the other
  92 // thread to interfere, it obtains the CMS token.
  93 //
  94 // If either thread tries to get the token while the other has
  95 // it, that thread waits. However, if the VM thread and CMS thread
  96 // both want the token, then the VM thread gets priority while the
  97 // CMS thread waits. This ensures, for instance, that the "concurrent"
  98 // phases of the CMS thread's work do not block out the VM thread
  99 // for long periods of time as the CMS thread continues to hog
 100 // the token. (See bug 4616232).
 101 //
 102 // The baton-passing functions are, however, controlled by the
 103 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 104 // and here the low-level CMS lock, not the high level token,
 105 // ensures mutual exclusion.
 106 //
 107 // Two important conditions that we have to satisfy:
 108 // 1. if a thread does a low-level wait on the CMS lock, then it
 109 //    relinquishes the CMS token if it were holding that token
 110 //    when it acquired the low-level CMS lock.
 111 // 2. any low-level notifications on the low-level lock
 112 //    should only be sent when a thread has relinquished the token.
 113 //
 114 // In the absence of either property, we'd have potential deadlock.
 115 //
 116 // We protect each of the CMS (concurrent and sequential) phases
 117 // with the CMS _token_, not the CMS _lock_.
 118 //
 119 // The only code protected by CMS lock is the token acquisition code
 120 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 121 // baton-passing code.
 122 //
 123 // Unfortunately, i couldn't come up with a good abstraction to factor and
 124 // hide the naked CGC_lock manipulation in the baton-passing code
 125 // further below. That's something we should try to do. Also, the proof
 126 // of correctness of this 2-level locking scheme is far from obvious,
 127 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 128 // that there may be a theoretical possibility of delay/starvation in the
 129 // low-level lock/wait/notify scheme used for the baton-passing because of
 130 // potential interference with the priority scheme embodied in the
 131 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 132 // invocation further below and marked with "XXX 20011219YSR".
 133 // Indeed, as we note elsewhere, this may become yet more slippery
 134 // in the presence of multiple CMS and/or multiple VM threads. XXX
 135 
 136 class CMSTokenSync: public StackObj {
 137  private:
 138   bool _is_cms_thread;
 139  public:
 140   CMSTokenSync(bool is_cms_thread):
 141     _is_cms_thread(is_cms_thread) {
 142     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 143            "Incorrect argument to constructor");
 144     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 145   }
 146 
 147   ~CMSTokenSync() {
 148     assert(_is_cms_thread ?
 149              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 150              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 151           "Incorrect state");
 152     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 153   }
 154 };
 155 
 156 // Convenience class that does a CMSTokenSync, and then acquires
 157 // upto three locks.
 158 class CMSTokenSyncWithLocks: public CMSTokenSync {
 159  private:
 160   // Note: locks are acquired in textual declaration order
 161   // and released in the opposite order
 162   MutexLockerEx _locker1, _locker2, _locker3;
 163  public:
 164   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 165                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 166     CMSTokenSync(is_cms_thread),
 167     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 168     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 169     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 170   { }
 171 };
 172 
 173 
 174 //////////////////////////////////////////////////////////////////
 175 //  Concurrent Mark-Sweep Generation /////////////////////////////
 176 //////////////////////////////////////////////////////////////////
 177 
 178 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 179 
 180 // This struct contains per-thread things necessary to support parallel
 181 // young-gen collection.
 182 class CMSParGCThreadState: public CHeapObj<mtGC> {
 183  public:
 184   CFLS_LAB lab;
 185   PromotionInfo promo;
 186 
 187   // Constructor.
 188   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 189     promo.setSpace(cfls);
 190   }
 191 };
 192 
 193 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 194      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 195   CardGeneration(rs, initial_byte_size, ct),
 196   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 197   _did_compact(false)
 198 {
 199   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 200   HeapWord* end    = (HeapWord*) _virtual_space.high();
 201 
 202   _direct_allocated_words = 0;
 203   NOT_PRODUCT(
 204     _numObjectsPromoted = 0;
 205     _numWordsPromoted = 0;
 206     _numObjectsAllocated = 0;
 207     _numWordsAllocated = 0;
 208   )
 209 
 210   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 211   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 212   _cmsSpace->_old_gen = this;
 213 
 214   _gc_stats = new CMSGCStats();
 215 
 216   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 217   // offsets match. The ability to tell free chunks from objects
 218   // depends on this property.
 219   debug_only(
 220     FreeChunk* junk = NULL;
 221     assert(UseCompressedClassPointers ||
 222            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 223            "Offset of FreeChunk::_prev within FreeChunk must match"
 224            "  that of OopDesc::_klass within OopDesc");
 225   )
 226 
 227   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 228   for (uint i = 0; i < ParallelGCThreads; i++) {
 229     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 230   }
 231 
 232   _incremental_collection_failed = false;
 233   // The "dilatation_factor" is the expansion that can occur on
 234   // account of the fact that the minimum object size in the CMS
 235   // generation may be larger than that in, say, a contiguous young
 236   //  generation.
 237   // Ideally, in the calculation below, we'd compute the dilatation
 238   // factor as: MinChunkSize/(promoting_gen's min object size)
 239   // Since we do not have such a general query interface for the
 240   // promoting generation, we'll instead just use the minimum
 241   // object size (which today is a header's worth of space);
 242   // note that all arithmetic is in units of HeapWords.
 243   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 244   assert(_dilatation_factor >= 1.0, "from previous assert");
 245 }
 246 
 247 
 248 // The field "_initiating_occupancy" represents the occupancy percentage
 249 // at which we trigger a new collection cycle.  Unless explicitly specified
 250 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 251 // is calculated by:
 252 //
 253 //   Let "f" be MinHeapFreeRatio in
 254 //
 255 //    _initiating_occupancy = 100-f +
 256 //                           f * (CMSTriggerRatio/100)
 257 //   where CMSTriggerRatio is the argument "tr" below.
 258 //
 259 // That is, if we assume the heap is at its desired maximum occupancy at the
 260 // end of a collection, we let CMSTriggerRatio of the (purported) free
 261 // space be allocated before initiating a new collection cycle.
 262 //
 263 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 264   assert(io <= 100 && tr <= 100, "Check the arguments");
 265   if (io >= 0) {
 266     _initiating_occupancy = (double)io / 100.0;
 267   } else {
 268     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 269                              (double)(tr * MinHeapFreeRatio) / 100.0)
 270                             / 100.0;
 271   }
 272 }
 273 
 274 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 275   assert(collector() != NULL, "no collector");
 276   collector()->ref_processor_init();
 277 }
 278 
 279 void CMSCollector::ref_processor_init() {
 280   if (_ref_processor == NULL) {
 281     // Allocate and initialize a reference processor
 282     _ref_processor =
 283       new ReferenceProcessor(_span,                               // span
 284                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 285                              ParallelGCThreads,                   // mt processing degree
 286                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 287                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 288                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 289                              &_is_alive_closure);                 // closure for liveness info
 290     // Initialize the _ref_processor field of CMSGen
 291     _cmsGen->set_ref_processor(_ref_processor);
 292 
 293   }
 294 }
 295 
 296 AdaptiveSizePolicy* CMSCollector::size_policy() {
 297   GenCollectedHeap* gch = GenCollectedHeap::heap();
 298   return gch->gen_policy()->size_policy();
 299 }
 300 
 301 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 302 
 303   const char* gen_name = "old";
 304   GenCollectorPolicy* gcp = GenCollectedHeap::heap()->gen_policy();
 305   // Generation Counters - generation 1, 1 subspace
 306   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 307       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 308 
 309   _space_counters = new GSpaceCounters(gen_name, 0,
 310                                        _virtual_space.reserved_size(),
 311                                        this, _gen_counters);
 312 }
 313 
 314 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 315   _cms_gen(cms_gen)
 316 {
 317   assert(alpha <= 100, "bad value");
 318   _saved_alpha = alpha;
 319 
 320   // Initialize the alphas to the bootstrap value of 100.
 321   _gc0_alpha = _cms_alpha = 100;
 322 
 323   _cms_begin_time.update();
 324   _cms_end_time.update();
 325 
 326   _gc0_duration = 0.0;
 327   _gc0_period = 0.0;
 328   _gc0_promoted = 0;
 329 
 330   _cms_duration = 0.0;
 331   _cms_period = 0.0;
 332   _cms_allocated = 0;
 333 
 334   _cms_used_at_gc0_begin = 0;
 335   _cms_used_at_gc0_end = 0;
 336   _allow_duty_cycle_reduction = false;
 337   _valid_bits = 0;
 338 }
 339 
 340 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 341   // TBD: CR 6909490
 342   return 1.0;
 343 }
 344 
 345 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 346 }
 347 
 348 // If promotion failure handling is on use
 349 // the padded average size of the promotion for each
 350 // young generation collection.
 351 double CMSStats::time_until_cms_gen_full() const {
 352   size_t cms_free = _cms_gen->cmsSpace()->free();
 353   GenCollectedHeap* gch = GenCollectedHeap::heap();
 354   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 355                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 356   if (cms_free > expected_promotion) {
 357     // Start a cms collection if there isn't enough space to promote
 358     // for the next young collection.  Use the padded average as
 359     // a safety factor.
 360     cms_free -= expected_promotion;
 361 
 362     // Adjust by the safety factor.
 363     double cms_free_dbl = (double)cms_free;
 364     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 365     // Apply a further correction factor which tries to adjust
 366     // for recent occurance of concurrent mode failures.
 367     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 368     cms_free_dbl = cms_free_dbl * cms_adjustment;
 369 
 370     log_develop(gc, stats)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 371                            cms_free, expected_promotion);
 372     log_develop(gc, stats)("  cms_free_dbl %f cms_consumption_rate %f",
 373                            cms_free_dbl, cms_consumption_rate() + 1.0);
 374     // Add 1 in case the consumption rate goes to zero.
 375     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 376   }
 377   return 0.0;
 378 }
 379 
 380 // Compare the duration of the cms collection to the
 381 // time remaining before the cms generation is empty.
 382 // Note that the time from the start of the cms collection
 383 // to the start of the cms sweep (less than the total
 384 // duration of the cms collection) can be used.  This
 385 // has been tried and some applications experienced
 386 // promotion failures early in execution.  This was
 387 // possibly because the averages were not accurate
 388 // enough at the beginning.
 389 double CMSStats::time_until_cms_start() const {
 390   // We add "gc0_period" to the "work" calculation
 391   // below because this query is done (mostly) at the
 392   // end of a scavenge, so we need to conservatively
 393   // account for that much possible delay
 394   // in the query so as to avoid concurrent mode failures
 395   // due to starting the collection just a wee bit too
 396   // late.
 397   double work = cms_duration() + gc0_period();
 398   double deadline = time_until_cms_gen_full();
 399   // If a concurrent mode failure occurred recently, we want to be
 400   // more conservative and halve our expected time_until_cms_gen_full()
 401   if (work > deadline) {
 402     log_develop(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 403                     cms_duration(), gc0_period(), time_until_cms_gen_full());
 404     return 0.0;
 405   }
 406   return work - deadline;
 407 }
 408 
 409 #ifndef PRODUCT
 410 void CMSStats::print_on(outputStream *st) const {
 411   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 412   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 413                gc0_duration(), gc0_period(), gc0_promoted());
 414   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 415             cms_duration(), cms_period(), cms_allocated());
 416   st->print(",cms_since_beg=%g,cms_since_end=%g",
 417             cms_time_since_begin(), cms_time_since_end());
 418   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 419             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 420 
 421   if (valid()) {
 422     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 423               promotion_rate(), cms_allocation_rate());
 424     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 425               cms_consumption_rate(), time_until_cms_gen_full());
 426   }
 427   st->print(" ");
 428 }
 429 #endif // #ifndef PRODUCT
 430 
 431 CMSCollector::CollectorState CMSCollector::_collectorState =
 432                              CMSCollector::Idling;
 433 bool CMSCollector::_foregroundGCIsActive = false;
 434 bool CMSCollector::_foregroundGCShouldWait = false;
 435 
 436 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 437                            CardTableRS*                   ct,
 438                            ConcurrentMarkSweepPolicy*     cp):
 439   _cmsGen(cmsGen),
 440   _ct(ct),
 441   _ref_processor(NULL),    // will be set later
 442   _conc_workers(NULL),     // may be set later
 443   _abort_preclean(false),
 444   _start_sampling(false),
 445   _between_prologue_and_epilogue(false),
 446   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 447   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 448                  -1 /* lock-free */, "No_lock" /* dummy */),
 449   _modUnionClosurePar(&_modUnionTable),
 450   // Adjust my span to cover old (cms) gen
 451   _span(cmsGen->reserved()),
 452   // Construct the is_alive_closure with _span & markBitMap
 453   _is_alive_closure(_span, &_markBitMap),
 454   _restart_addr(NULL),
 455   _overflow_list(NULL),
 456   _stats(cmsGen),
 457   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 458                              //verify that this lock should be acquired with safepoint check.
 459                              Monitor::_safepoint_check_sometimes)),
 460   _eden_chunk_array(NULL),     // may be set in ctor body
 461   _eden_chunk_capacity(0),     // -- ditto --
 462   _eden_chunk_index(0),        // -- ditto --
 463   _survivor_plab_array(NULL),  // -- ditto --
 464   _survivor_chunk_array(NULL), // -- ditto --
 465   _survivor_chunk_capacity(0), // -- ditto --
 466   _survivor_chunk_index(0),    // -- ditto --
 467   _ser_pmc_preclean_ovflw(0),
 468   _ser_kac_preclean_ovflw(0),
 469   _ser_pmc_remark_ovflw(0),
 470   _par_pmc_remark_ovflw(0),
 471   _ser_kac_ovflw(0),
 472   _par_kac_ovflw(0),
 473 #ifndef PRODUCT
 474   _num_par_pushes(0),
 475 #endif
 476   _collection_count_start(0),
 477   _verifying(false),
 478   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 479   _completed_initialization(false),
 480   _collector_policy(cp),
 481   _should_unload_classes(CMSClassUnloadingEnabled),
 482   _concurrent_cycles_since_last_unload(0),
 483   _roots_scanning_options(GenCollectedHeap::SO_None),
 484   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 485   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 486   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 487   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 488   _cms_start_registered(false)
 489 {
 490   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 491     ExplicitGCInvokesConcurrent = true;
 492   }
 493   // Now expand the span and allocate the collection support structures
 494   // (MUT, marking bit map etc.) to cover both generations subject to
 495   // collection.
 496 
 497   // For use by dirty card to oop closures.
 498   _cmsGen->cmsSpace()->set_collector(this);
 499 
 500   // Allocate MUT and marking bit map
 501   {
 502     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 503     if (!_markBitMap.allocate(_span)) {
 504       warning("Failed to allocate CMS Bit Map");
 505       return;
 506     }
 507     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 508   }
 509   {
 510     _modUnionTable.allocate(_span);
 511     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 512   }
 513 
 514   if (!_markStack.allocate(MarkStackSize)) {
 515     warning("Failed to allocate CMS Marking Stack");
 516     return;
 517   }
 518 
 519   // Support for multi-threaded concurrent phases
 520   if (CMSConcurrentMTEnabled) {
 521     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 522       // just for now
 523       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 524     }
 525     if (ConcGCThreads > 1) {
 526       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 527                                  ConcGCThreads, true);
 528       if (_conc_workers == NULL) {
 529         warning("GC/CMS: _conc_workers allocation failure: "
 530               "forcing -CMSConcurrentMTEnabled");
 531         CMSConcurrentMTEnabled = false;
 532       } else {
 533         _conc_workers->initialize_workers();
 534       }
 535     } else {
 536       CMSConcurrentMTEnabled = false;
 537     }
 538   }
 539   if (!CMSConcurrentMTEnabled) {
 540     ConcGCThreads = 0;
 541   } else {
 542     // Turn off CMSCleanOnEnter optimization temporarily for
 543     // the MT case where it's not fixed yet; see 6178663.
 544     CMSCleanOnEnter = false;
 545   }
 546   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 547          "Inconsistency");
 548 
 549   // Parallel task queues; these are shared for the
 550   // concurrent and stop-world phases of CMS, but
 551   // are not shared with parallel scavenge (ParNew).
 552   {
 553     uint i;
 554     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 555 
 556     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 557          || ParallelRefProcEnabled)
 558         && num_queues > 0) {
 559       _task_queues = new OopTaskQueueSet(num_queues);
 560       if (_task_queues == NULL) {
 561         warning("task_queues allocation failure.");
 562         return;
 563       }
 564       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 565       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 566       for (i = 0; i < num_queues; i++) {
 567         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 568         if (q == NULL) {
 569           warning("work_queue allocation failure.");
 570           return;
 571         }
 572         _task_queues->register_queue(i, q);
 573       }
 574       for (i = 0; i < num_queues; i++) {
 575         _task_queues->queue(i)->initialize();
 576         _hash_seed[i] = 17;  // copied from ParNew
 577       }
 578     }
 579   }
 580 
 581   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 582 
 583   // Clip CMSBootstrapOccupancy between 0 and 100.
 584   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 585 
 586   // Now tell CMS generations the identity of their collector
 587   ConcurrentMarkSweepGeneration::set_collector(this);
 588 
 589   // Create & start a CMS thread for this CMS collector
 590   _cmsThread = ConcurrentMarkSweepThread::start(this);
 591   assert(cmsThread() != NULL, "CMS Thread should have been created");
 592   assert(cmsThread()->collector() == this,
 593          "CMS Thread should refer to this gen");
 594   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 595 
 596   // Support for parallelizing young gen rescan
 597   GenCollectedHeap* gch = GenCollectedHeap::heap();
 598   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 599   _young_gen = (ParNewGeneration*)gch->young_gen();
 600   if (gch->supports_inline_contig_alloc()) {
 601     _top_addr = gch->top_addr();
 602     _end_addr = gch->end_addr();
 603     assert(_young_gen != NULL, "no _young_gen");
 604     _eden_chunk_index = 0;
 605     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 606     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 607   }
 608 
 609   // Support for parallelizing survivor space rescan
 610   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 611     const size_t max_plab_samples =
 612       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 613 
 614     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 615     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 616     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 617     _survivor_chunk_capacity = max_plab_samples;
 618     for (uint i = 0; i < ParallelGCThreads; i++) {
 619       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 620       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 621       assert(cur->end() == 0, "Should be 0");
 622       assert(cur->array() == vec, "Should be vec");
 623       assert(cur->capacity() == max_plab_samples, "Error");
 624     }
 625   }
 626 
 627   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 628   _gc_counters = new CollectorCounters("CMS", 1);
 629   _completed_initialization = true;
 630   _inter_sweep_timer.start();  // start of time
 631 }
 632 
 633 const char* ConcurrentMarkSweepGeneration::name() const {
 634   return "concurrent mark-sweep generation";
 635 }
 636 void ConcurrentMarkSweepGeneration::update_counters() {
 637   if (UsePerfData) {
 638     _space_counters->update_all();
 639     _gen_counters->update_all();
 640   }
 641 }
 642 
 643 // this is an optimized version of update_counters(). it takes the
 644 // used value as a parameter rather than computing it.
 645 //
 646 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 647   if (UsePerfData) {
 648     _space_counters->update_used(used);
 649     _space_counters->update_capacity();
 650     _gen_counters->update_all();
 651   }
 652 }
 653 
 654 void ConcurrentMarkSweepGeneration::print() const {
 655   Generation::print();
 656   cmsSpace()->print();
 657 }
 658 
 659 #ifndef PRODUCT
 660 void ConcurrentMarkSweepGeneration::print_statistics() {
 661   cmsSpace()->printFLCensus(0);
 662 }
 663 #endif
 664 
 665 size_t
 666 ConcurrentMarkSweepGeneration::contiguous_available() const {
 667   // dld proposes an improvement in precision here. If the committed
 668   // part of the space ends in a free block we should add that to
 669   // uncommitted size in the calculation below. Will make this
 670   // change later, staying with the approximation below for the
 671   // time being. -- ysr.
 672   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 673 }
 674 
 675 size_t
 676 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 677   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 678 }
 679 
 680 size_t ConcurrentMarkSweepGeneration::max_available() const {
 681   return free() + _virtual_space.uncommitted_size();
 682 }
 683 
 684 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 685   size_t available = max_available();
 686   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 687   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 688   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 689                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 690   return res;
 691 }
 692 
 693 // At a promotion failure dump information on block layout in heap
 694 // (cms old generation).
 695 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 696   LogHandle(gc, promotion) log;
 697   if (log.is_trace()) {
 698     ResourceMark rm;
 699     cmsSpace()->dump_at_safepoint_with_locks(collector(), log.trace_stream());
 700   }
 701 }
 702 
 703 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 704   // Clear the promotion information.  These pointers can be adjusted
 705   // along with all the other pointers into the heap but
 706   // compaction is expected to be a rare event with
 707   // a heap using cms so don't do it without seeing the need.
 708   for (uint i = 0; i < ParallelGCThreads; i++) {
 709     _par_gc_thread_states[i]->promo.reset();
 710   }
 711 }
 712 
 713 void ConcurrentMarkSweepGeneration::compute_new_size() {
 714   assert_locked_or_safepoint(Heap_lock);
 715 
 716   // If incremental collection failed, we just want to expand
 717   // to the limit.
 718   if (incremental_collection_failed()) {
 719     clear_incremental_collection_failed();
 720     grow_to_reserved();
 721     return;
 722   }
 723 
 724   // The heap has been compacted but not reset yet.
 725   // Any metric such as free() or used() will be incorrect.
 726 
 727   CardGeneration::compute_new_size();
 728 
 729   // Reset again after a possible resizing
 730   if (did_compact()) {
 731     cmsSpace()->reset_after_compaction();
 732   }
 733 }
 734 
 735 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 736   assert_locked_or_safepoint(Heap_lock);
 737 
 738   // If incremental collection failed, we just want to expand
 739   // to the limit.
 740   if (incremental_collection_failed()) {
 741     clear_incremental_collection_failed();
 742     grow_to_reserved();
 743     return;
 744   }
 745 
 746   double free_percentage = ((double) free()) / capacity();
 747   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 748   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 749 
 750   // compute expansion delta needed for reaching desired free percentage
 751   if (free_percentage < desired_free_percentage) {
 752     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 753     assert(desired_capacity >= capacity(), "invalid expansion size");
 754     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 755     LogHandle(gc) log;
 756     if (log.is_trace()) {
 757       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 758       log.trace("From compute_new_size: ");
 759       log.trace("  Free fraction %f", free_percentage);
 760       log.trace("  Desired free fraction %f", desired_free_percentage);
 761       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 762       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 763       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 764       GenCollectedHeap* gch = GenCollectedHeap::heap();
 765       assert(gch->is_old_gen(this), "The CMS generation should always be the old generation");
 766       size_t young_size = gch->young_gen()->capacity();
 767       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 768       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 769       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 770       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 771     }
 772     // safe if expansion fails
 773     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 774     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 775   } else {
 776     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 777     assert(desired_capacity <= capacity(), "invalid expansion size");
 778     size_t shrink_bytes = capacity() - desired_capacity;
 779     // Don't shrink unless the delta is greater than the minimum shrink we want
 780     if (shrink_bytes >= MinHeapDeltaBytes) {
 781       shrink_free_list_by(shrink_bytes);
 782     }
 783   }
 784 }
 785 
 786 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 787   return cmsSpace()->freelistLock();
 788 }
 789 
 790 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 791   CMSSynchronousYieldRequest yr;
 792   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 793   return have_lock_and_allocate(size, tlab);
 794 }
 795 
 796 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 797                                                                 bool   tlab /* ignored */) {
 798   assert_lock_strong(freelistLock());
 799   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 800   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 801   // Allocate the object live (grey) if the background collector has
 802   // started marking. This is necessary because the marker may
 803   // have passed this address and consequently this object will
 804   // not otherwise be greyed and would be incorrectly swept up.
 805   // Note that if this object contains references, the writing
 806   // of those references will dirty the card containing this object
 807   // allowing the object to be blackened (and its references scanned)
 808   // either during a preclean phase or at the final checkpoint.
 809   if (res != NULL) {
 810     // We may block here with an uninitialized object with
 811     // its mark-bit or P-bits not yet set. Such objects need
 812     // to be safely navigable by block_start().
 813     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 814     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 815     collector()->direct_allocated(res, adjustedSize);
 816     _direct_allocated_words += adjustedSize;
 817     // allocation counters
 818     NOT_PRODUCT(
 819       _numObjectsAllocated++;
 820       _numWordsAllocated += (int)adjustedSize;
 821     )
 822   }
 823   return res;
 824 }
 825 
 826 // In the case of direct allocation by mutators in a generation that
 827 // is being concurrently collected, the object must be allocated
 828 // live (grey) if the background collector has started marking.
 829 // This is necessary because the marker may
 830 // have passed this address and consequently this object will
 831 // not otherwise be greyed and would be incorrectly swept up.
 832 // Note that if this object contains references, the writing
 833 // of those references will dirty the card containing this object
 834 // allowing the object to be blackened (and its references scanned)
 835 // either during a preclean phase or at the final checkpoint.
 836 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 837   assert(_markBitMap.covers(start, size), "Out of bounds");
 838   if (_collectorState >= Marking) {
 839     MutexLockerEx y(_markBitMap.lock(),
 840                     Mutex::_no_safepoint_check_flag);
 841     // [see comments preceding SweepClosure::do_blk() below for details]
 842     //
 843     // Can the P-bits be deleted now?  JJJ
 844     //
 845     // 1. need to mark the object as live so it isn't collected
 846     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 847     // 3. need to mark the end of the object so marking, precleaning or sweeping
 848     //    can skip over uninitialized or unparsable objects. An allocated
 849     //    object is considered uninitialized for our purposes as long as
 850     //    its klass word is NULL.  All old gen objects are parsable
 851     //    as soon as they are initialized.)
 852     _markBitMap.mark(start);          // object is live
 853     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 854     _markBitMap.mark(start + size - 1);
 855                                       // mark end of object
 856   }
 857   // check that oop looks uninitialized
 858   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 859 }
 860 
 861 void CMSCollector::promoted(bool par, HeapWord* start,
 862                             bool is_obj_array, size_t obj_size) {
 863   assert(_markBitMap.covers(start), "Out of bounds");
 864   // See comment in direct_allocated() about when objects should
 865   // be allocated live.
 866   if (_collectorState >= Marking) {
 867     // we already hold the marking bit map lock, taken in
 868     // the prologue
 869     if (par) {
 870       _markBitMap.par_mark(start);
 871     } else {
 872       _markBitMap.mark(start);
 873     }
 874     // We don't need to mark the object as uninitialized (as
 875     // in direct_allocated above) because this is being done with the
 876     // world stopped and the object will be initialized by the
 877     // time the marking, precleaning or sweeping get to look at it.
 878     // But see the code for copying objects into the CMS generation,
 879     // where we need to ensure that concurrent readers of the
 880     // block offset table are able to safely navigate a block that
 881     // is in flux from being free to being allocated (and in
 882     // transition while being copied into) and subsequently
 883     // becoming a bona-fide object when the copy/promotion is complete.
 884     assert(SafepointSynchronize::is_at_safepoint(),
 885            "expect promotion only at safepoints");
 886 
 887     if (_collectorState < Sweeping) {
 888       // Mark the appropriate cards in the modUnionTable, so that
 889       // this object gets scanned before the sweep. If this is
 890       // not done, CMS generation references in the object might
 891       // not get marked.
 892       // For the case of arrays, which are otherwise precisely
 893       // marked, we need to dirty the entire array, not just its head.
 894       if (is_obj_array) {
 895         // The [par_]mark_range() method expects mr.end() below to
 896         // be aligned to the granularity of a bit's representation
 897         // in the heap. In the case of the MUT below, that's a
 898         // card size.
 899         MemRegion mr(start,
 900                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 901                         CardTableModRefBS::card_size /* bytes */));
 902         if (par) {
 903           _modUnionTable.par_mark_range(mr);
 904         } else {
 905           _modUnionTable.mark_range(mr);
 906         }
 907       } else {  // not an obj array; we can just mark the head
 908         if (par) {
 909           _modUnionTable.par_mark(start);
 910         } else {
 911           _modUnionTable.mark(start);
 912         }
 913       }
 914     }
 915   }
 916 }
 917 
 918 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 919   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 920   // allocate, copy and if necessary update promoinfo --
 921   // delegate to underlying space.
 922   assert_lock_strong(freelistLock());
 923 
 924 #ifndef PRODUCT
 925   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 926     return NULL;
 927   }
 928 #endif  // #ifndef PRODUCT
 929 
 930   oop res = _cmsSpace->promote(obj, obj_size);
 931   if (res == NULL) {
 932     // expand and retry
 933     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 934     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 935     // Since this is the old generation, we don't try to promote
 936     // into a more senior generation.
 937     res = _cmsSpace->promote(obj, obj_size);
 938   }
 939   if (res != NULL) {
 940     // See comment in allocate() about when objects should
 941     // be allocated live.
 942     assert(obj->is_oop(), "Will dereference klass pointer below");
 943     collector()->promoted(false,           // Not parallel
 944                           (HeapWord*)res, obj->is_objArray(), obj_size);
 945     // promotion counters
 946     NOT_PRODUCT(
 947       _numObjectsPromoted++;
 948       _numWordsPromoted +=
 949         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 950     )
 951   }
 952   return res;
 953 }
 954 
 955 
 956 // IMPORTANT: Notes on object size recognition in CMS.
 957 // ---------------------------------------------------
 958 // A block of storage in the CMS generation is always in
 959 // one of three states. A free block (FREE), an allocated
 960 // object (OBJECT) whose size() method reports the correct size,
 961 // and an intermediate state (TRANSIENT) in which its size cannot
 962 // be accurately determined.
 963 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 964 // -----------------------------------------------------
 965 // FREE:      klass_word & 1 == 1; mark_word holds block size
 966 //
 967 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 968 //            obj->size() computes correct size
 969 //
 970 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 971 //
 972 // STATE IDENTIFICATION: (64 bit+COOPS)
 973 // ------------------------------------
 974 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 975 //
 976 // OBJECT:    klass_word installed; klass_word != 0;
 977 //            obj->size() computes correct size
 978 //
 979 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 980 //
 981 //
 982 // STATE TRANSITION DIAGRAM
 983 //
 984 //        mut / parnew                     mut  /  parnew
 985 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 986 //  ^                                                                   |
 987 //  |------------------------ DEAD <------------------------------------|
 988 //         sweep                            mut
 989 //
 990 // While a block is in TRANSIENT state its size cannot be determined
 991 // so readers will either need to come back later or stall until
 992 // the size can be determined. Note that for the case of direct
 993 // allocation, P-bits, when available, may be used to determine the
 994 // size of an object that may not yet have been initialized.
 995 
 996 // Things to support parallel young-gen collection.
 997 oop
 998 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
 999                                            oop old, markOop m,
1000                                            size_t word_sz) {
1001 #ifndef PRODUCT
1002   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1003     return NULL;
1004   }
1005 #endif  // #ifndef PRODUCT
1006 
1007   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1008   PromotionInfo* promoInfo = &ps->promo;
1009   // if we are tracking promotions, then first ensure space for
1010   // promotion (including spooling space for saving header if necessary).
1011   // then allocate and copy, then track promoted info if needed.
1012   // When tracking (see PromotionInfo::track()), the mark word may
1013   // be displaced and in this case restoration of the mark word
1014   // occurs in the (oop_since_save_marks_)iterate phase.
1015   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1016     // Out of space for allocating spooling buffers;
1017     // try expanding and allocating spooling buffers.
1018     if (!expand_and_ensure_spooling_space(promoInfo)) {
1019       return NULL;
1020     }
1021   }
1022   assert(promoInfo->has_spooling_space(), "Control point invariant");
1023   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1024   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1025   if (obj_ptr == NULL) {
1026      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1027      if (obj_ptr == NULL) {
1028        return NULL;
1029      }
1030   }
1031   oop obj = oop(obj_ptr);
1032   OrderAccess::storestore();
1033   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1034   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1035   // IMPORTANT: See note on object initialization for CMS above.
1036   // Otherwise, copy the object.  Here we must be careful to insert the
1037   // klass pointer last, since this marks the block as an allocated object.
1038   // Except with compressed oops it's the mark word.
1039   HeapWord* old_ptr = (HeapWord*)old;
1040   // Restore the mark word copied above.
1041   obj->set_mark(m);
1042   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1043   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1044   OrderAccess::storestore();
1045 
1046   if (UseCompressedClassPointers) {
1047     // Copy gap missed by (aligned) header size calculation below
1048     obj->set_klass_gap(old->klass_gap());
1049   }
1050   if (word_sz > (size_t)oopDesc::header_size()) {
1051     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1052                                  obj_ptr + oopDesc::header_size(),
1053                                  word_sz - oopDesc::header_size());
1054   }
1055 
1056   // Now we can track the promoted object, if necessary.  We take care
1057   // to delay the transition from uninitialized to full object
1058   // (i.e., insertion of klass pointer) until after, so that it
1059   // atomically becomes a promoted object.
1060   if (promoInfo->tracking()) {
1061     promoInfo->track((PromotedObject*)obj, old->klass());
1062   }
1063   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1064   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1065   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1066 
1067   // Finally, install the klass pointer (this should be volatile).
1068   OrderAccess::storestore();
1069   obj->set_klass(old->klass());
1070   // We should now be able to calculate the right size for this object
1071   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1072 
1073   collector()->promoted(true,          // parallel
1074                         obj_ptr, old->is_objArray(), word_sz);
1075 
1076   NOT_PRODUCT(
1077     Atomic::inc_ptr(&_numObjectsPromoted);
1078     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1079   )
1080 
1081   return obj;
1082 }
1083 
1084 void
1085 ConcurrentMarkSweepGeneration::
1086 par_promote_alloc_done(int thread_num) {
1087   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1088   ps->lab.retire(thread_num);
1089 }
1090 
1091 void
1092 ConcurrentMarkSweepGeneration::
1093 par_oop_since_save_marks_iterate_done(int thread_num) {
1094   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1095   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1096   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1097 }
1098 
1099 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1100                                                    size_t size,
1101                                                    bool   tlab)
1102 {
1103   // We allow a STW collection only if a full
1104   // collection was requested.
1105   return full || should_allocate(size, tlab); // FIX ME !!!
1106   // This and promotion failure handling are connected at the
1107   // hip and should be fixed by untying them.
1108 }
1109 
1110 bool CMSCollector::shouldConcurrentCollect() {
1111   if (_full_gc_requested) {
1112     log_trace(gc, conc)("CMSCollector: collect because of explicit  gc request (or gc_locker)");
1113     return true;
1114   }
1115 
1116   FreelistLocker x(this);
1117   // ------------------------------------------------------------------
1118   // Print out lots of information which affects the initiation of
1119   // a collection.
1120   LogHandle(gc, conc, stats) log;
1121   if (log.is_debug() && stats().valid()) {
1122     log.debug("CMSCollector shouldConcurrentCollect: ");
1123     ResourceMark rm;
1124     stats().print_on(log.debug_stream());
1125     log.debug("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1126     log.debug("free=" SIZE_FORMAT, _cmsGen->free());
1127     log.debug("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1128     log.debug("promotion_rate=%g", stats().promotion_rate());
1129     log.debug("cms_allocation_rate=%g", stats().cms_allocation_rate());
1130     log.debug("occupancy=%3.7f", _cmsGen->occupancy());
1131     log.debug("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1132     log.debug("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1133     log.debug("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1134     log.debug("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1135   }
1136   // ------------------------------------------------------------------
1137 
1138   // If the estimated time to complete a cms collection (cms_duration())
1139   // is less than the estimated time remaining until the cms generation
1140   // is full, start a collection.
1141   if (!UseCMSInitiatingOccupancyOnly) {
1142     if (stats().valid()) {
1143       if (stats().time_until_cms_start() == 0.0) {
1144         return true;
1145       }
1146     } else {
1147       // We want to conservatively collect somewhat early in order
1148       // to try and "bootstrap" our CMS/promotion statistics;
1149       // this branch will not fire after the first successful CMS
1150       // collection because the stats should then be valid.
1151       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1152         log_debug(gc)(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1153                       _cmsGen->occupancy(), _bootstrap_occupancy);
1154         return true;
1155       }
1156     }
1157   }
1158 
1159   // Otherwise, we start a collection cycle if
1160   // old gen want a collection cycle started. Each may use
1161   // an appropriate criterion for making this decision.
1162   // XXX We need to make sure that the gen expansion
1163   // criterion dovetails well with this. XXX NEED TO FIX THIS
1164   if (_cmsGen->should_concurrent_collect()) {
1165     log_trace(gc)("CMS old gen initiated");
1166     return true;
1167   }
1168 
1169   // We start a collection if we believe an incremental collection may fail;
1170   // this is not likely to be productive in practice because it's probably too
1171   // late anyway.
1172   GenCollectedHeap* gch = GenCollectedHeap::heap();
1173   assert(gch->collector_policy()->is_generation_policy(),
1174          "You may want to check the correctness of the following");
1175   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1176     log_trace(gc)("CMSCollector: collect because incremental collection will fail ");
1177     return true;
1178   }
1179 
1180   if (MetaspaceGC::should_concurrent_collect()) {
1181     log_trace(gc)("CMSCollector: collect for metadata allocation ");
1182     return true;
1183   }
1184 
1185   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1186   if (CMSTriggerInterval >= 0) {
1187     if (CMSTriggerInterval == 0) {
1188       // Trigger always
1189       return true;
1190     }
1191 
1192     // Check the CMS time since begin (we do not check the stats validity
1193     // as we want to be able to trigger the first CMS cycle as well)
1194     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1195       if (stats().valid()) {
1196         log_trace(gc)("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1197                       stats().cms_time_since_begin());
1198       } else {
1199         log_trace(gc)("CMSCollector: collect because of trigger interval (first collection)");
1200       }
1201       return true;
1202     }
1203   }
1204 
1205   return false;
1206 }
1207 
1208 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1209 
1210 // Clear _expansion_cause fields of constituent generations
1211 void CMSCollector::clear_expansion_cause() {
1212   _cmsGen->clear_expansion_cause();
1213 }
1214 
1215 // We should be conservative in starting a collection cycle.  To
1216 // start too eagerly runs the risk of collecting too often in the
1217 // extreme.  To collect too rarely falls back on full collections,
1218 // which works, even if not optimum in terms of concurrent work.
1219 // As a work around for too eagerly collecting, use the flag
1220 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1221 // giving the user an easily understandable way of controlling the
1222 // collections.
1223 // We want to start a new collection cycle if any of the following
1224 // conditions hold:
1225 // . our current occupancy exceeds the configured initiating occupancy
1226 //   for this generation, or
1227 // . we recently needed to expand this space and have not, since that
1228 //   expansion, done a collection of this generation, or
1229 // . the underlying space believes that it may be a good idea to initiate
1230 //   a concurrent collection (this may be based on criteria such as the
1231 //   following: the space uses linear allocation and linear allocation is
1232 //   going to fail, or there is believed to be excessive fragmentation in
1233 //   the generation, etc... or ...
1234 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1235 //   the case of the old generation; see CR 6543076):
1236 //   we may be approaching a point at which allocation requests may fail because
1237 //   we will be out of sufficient free space given allocation rate estimates.]
1238 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1239 
1240   assert_lock_strong(freelistLock());
1241   if (occupancy() > initiating_occupancy()) {
1242     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1243                   short_name(), occupancy(), initiating_occupancy());
1244     return true;
1245   }
1246   if (UseCMSInitiatingOccupancyOnly) {
1247     return false;
1248   }
1249   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1250     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1251     return true;
1252   }
1253   return false;
1254 }
1255 
1256 void ConcurrentMarkSweepGeneration::collect(bool   full,
1257                                             bool   clear_all_soft_refs,
1258                                             size_t size,
1259                                             bool   tlab)
1260 {
1261   collector()->collect(full, clear_all_soft_refs, size, tlab);
1262 }
1263 
1264 void CMSCollector::collect(bool   full,
1265                            bool   clear_all_soft_refs,
1266                            size_t size,
1267                            bool   tlab)
1268 {
1269   // The following "if" branch is present for defensive reasons.
1270   // In the current uses of this interface, it can be replaced with:
1271   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1272   // But I am not placing that assert here to allow future
1273   // generality in invoking this interface.
1274   if (GC_locker::is_active()) {
1275     // A consistency test for GC_locker
1276     assert(GC_locker::needs_gc(), "Should have been set already");
1277     // Skip this foreground collection, instead
1278     // expanding the heap if necessary.
1279     // Need the free list locks for the call to free() in compute_new_size()
1280     compute_new_size();
1281     return;
1282   }
1283   acquire_control_and_collect(full, clear_all_soft_refs);
1284 }
1285 
1286 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1287   GenCollectedHeap* gch = GenCollectedHeap::heap();
1288   unsigned int gc_count = gch->total_full_collections();
1289   if (gc_count == full_gc_count) {
1290     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1291     _full_gc_requested = true;
1292     _full_gc_cause = cause;
1293     CGC_lock->notify();   // nudge CMS thread
1294   } else {
1295     assert(gc_count > full_gc_count, "Error: causal loop");
1296   }
1297 }
1298 
1299 bool CMSCollector::is_external_interruption() {
1300   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1301   return GCCause::is_user_requested_gc(cause) ||
1302          GCCause::is_serviceability_requested_gc(cause);
1303 }
1304 
1305 void CMSCollector::report_concurrent_mode_interruption() {
1306   if (is_external_interruption()) {
1307     log_debug(gc)("Concurrent mode interrupted");
1308   } else {
1309     log_debug(gc)("Concurrent mode failure");
1310     _gc_tracer_cm->report_concurrent_mode_failure();
1311   }
1312 }
1313 
1314 
1315 // The foreground and background collectors need to coordinate in order
1316 // to make sure that they do not mutually interfere with CMS collections.
1317 // When a background collection is active,
1318 // the foreground collector may need to take over (preempt) and
1319 // synchronously complete an ongoing collection. Depending on the
1320 // frequency of the background collections and the heap usage
1321 // of the application, this preemption can be seldom or frequent.
1322 // There are only certain
1323 // points in the background collection that the "collection-baton"
1324 // can be passed to the foreground collector.
1325 //
1326 // The foreground collector will wait for the baton before
1327 // starting any part of the collection.  The foreground collector
1328 // will only wait at one location.
1329 //
1330 // The background collector will yield the baton before starting a new
1331 // phase of the collection (e.g., before initial marking, marking from roots,
1332 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1333 // of the loop which switches the phases. The background collector does some
1334 // of the phases (initial mark, final re-mark) with the world stopped.
1335 // Because of locking involved in stopping the world,
1336 // the foreground collector should not block waiting for the background
1337 // collector when it is doing a stop-the-world phase.  The background
1338 // collector will yield the baton at an additional point just before
1339 // it enters a stop-the-world phase.  Once the world is stopped, the
1340 // background collector checks the phase of the collection.  If the
1341 // phase has not changed, it proceeds with the collection.  If the
1342 // phase has changed, it skips that phase of the collection.  See
1343 // the comments on the use of the Heap_lock in collect_in_background().
1344 //
1345 // Variable used in baton passing.
1346 //   _foregroundGCIsActive - Set to true by the foreground collector when
1347 //      it wants the baton.  The foreground clears it when it has finished
1348 //      the collection.
1349 //   _foregroundGCShouldWait - Set to true by the background collector
1350 //        when it is running.  The foreground collector waits while
1351 //      _foregroundGCShouldWait is true.
1352 //  CGC_lock - monitor used to protect access to the above variables
1353 //      and to notify the foreground and background collectors.
1354 //  _collectorState - current state of the CMS collection.
1355 //
1356 // The foreground collector
1357 //   acquires the CGC_lock
1358 //   sets _foregroundGCIsActive
1359 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1360 //     various locks acquired in preparation for the collection
1361 //     are released so as not to block the background collector
1362 //     that is in the midst of a collection
1363 //   proceeds with the collection
1364 //   clears _foregroundGCIsActive
1365 //   returns
1366 //
1367 // The background collector in a loop iterating on the phases of the
1368 //      collection
1369 //   acquires the CGC_lock
1370 //   sets _foregroundGCShouldWait
1371 //   if _foregroundGCIsActive is set
1372 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1373 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1374 //     and exits the loop.
1375 //   otherwise
1376 //     proceed with that phase of the collection
1377 //     if the phase is a stop-the-world phase,
1378 //       yield the baton once more just before enqueueing
1379 //       the stop-world CMS operation (executed by the VM thread).
1380 //   returns after all phases of the collection are done
1381 //
1382 
1383 void CMSCollector::acquire_control_and_collect(bool full,
1384         bool clear_all_soft_refs) {
1385   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1386   assert(!Thread::current()->is_ConcurrentGC_thread(),
1387          "shouldn't try to acquire control from self!");
1388 
1389   // Start the protocol for acquiring control of the
1390   // collection from the background collector (aka CMS thread).
1391   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1392          "VM thread should have CMS token");
1393   // Remember the possibly interrupted state of an ongoing
1394   // concurrent collection
1395   CollectorState first_state = _collectorState;
1396 
1397   // Signal to a possibly ongoing concurrent collection that
1398   // we want to do a foreground collection.
1399   _foregroundGCIsActive = true;
1400 
1401   // release locks and wait for a notify from the background collector
1402   // releasing the locks in only necessary for phases which
1403   // do yields to improve the granularity of the collection.
1404   assert_lock_strong(bitMapLock());
1405   // We need to lock the Free list lock for the space that we are
1406   // currently collecting.
1407   assert(haveFreelistLocks(), "Must be holding free list locks");
1408   bitMapLock()->unlock();
1409   releaseFreelistLocks();
1410   {
1411     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1412     if (_foregroundGCShouldWait) {
1413       // We are going to be waiting for action for the CMS thread;
1414       // it had better not be gone (for instance at shutdown)!
1415       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1416              "CMS thread must be running");
1417       // Wait here until the background collector gives us the go-ahead
1418       ConcurrentMarkSweepThread::clear_CMS_flag(
1419         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1420       // Get a possibly blocked CMS thread going:
1421       //   Note that we set _foregroundGCIsActive true above,
1422       //   without protection of the CGC_lock.
1423       CGC_lock->notify();
1424       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1425              "Possible deadlock");
1426       while (_foregroundGCShouldWait) {
1427         // wait for notification
1428         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1429         // Possibility of delay/starvation here, since CMS token does
1430         // not know to give priority to VM thread? Actually, i think
1431         // there wouldn't be any delay/starvation, but the proof of
1432         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1433       }
1434       ConcurrentMarkSweepThread::set_CMS_flag(
1435         ConcurrentMarkSweepThread::CMS_vm_has_token);
1436     }
1437   }
1438   // The CMS_token is already held.  Get back the other locks.
1439   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1440          "VM thread should have CMS token");
1441   getFreelistLocks();
1442   bitMapLock()->lock_without_safepoint_check();
1443   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1444                        p2i(Thread::current()), first_state);
1445   log_debug(gc, state)("    gets control with state %d", _collectorState);
1446 
1447   // Inform cms gen if this was due to partial collection failing.
1448   // The CMS gen may use this fact to determine its expansion policy.
1449   GenCollectedHeap* gch = GenCollectedHeap::heap();
1450   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1451     assert(!_cmsGen->incremental_collection_failed(),
1452            "Should have been noticed, reacted to and cleared");
1453     _cmsGen->set_incremental_collection_failed();
1454   }
1455 
1456   if (first_state > Idling) {
1457     report_concurrent_mode_interruption();
1458   }
1459 
1460   set_did_compact(true);
1461 
1462   // If the collection is being acquired from the background
1463   // collector, there may be references on the discovered
1464   // references lists.  Abandon those references, since some
1465   // of them may have become unreachable after concurrent
1466   // discovery; the STW compacting collector will redo discovery
1467   // more precisely, without being subject to floating garbage.
1468   // Leaving otherwise unreachable references in the discovered
1469   // lists would require special handling.
1470   ref_processor()->disable_discovery();
1471   ref_processor()->abandon_partial_discovery();
1472   ref_processor()->verify_no_references_recorded();
1473 
1474   if (first_state > Idling) {
1475     save_heap_summary();
1476   }
1477 
1478   do_compaction_work(clear_all_soft_refs);
1479 
1480   // Has the GC time limit been exceeded?
1481   size_t max_eden_size = _young_gen->max_eden_size();
1482   GCCause::Cause gc_cause = gch->gc_cause();
1483   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1484                                          _young_gen->eden()->used(),
1485                                          _cmsGen->max_capacity(),
1486                                          max_eden_size,
1487                                          full,
1488                                          gc_cause,
1489                                          gch->collector_policy());
1490 
1491   // Reset the expansion cause, now that we just completed
1492   // a collection cycle.
1493   clear_expansion_cause();
1494   _foregroundGCIsActive = false;
1495   return;
1496 }
1497 
1498 // Resize the tenured generation
1499 // after obtaining the free list locks for the
1500 // two generations.
1501 void CMSCollector::compute_new_size() {
1502   assert_locked_or_safepoint(Heap_lock);
1503   FreelistLocker z(this);
1504   MetaspaceGC::compute_new_size();
1505   _cmsGen->compute_new_size_free_list();
1506 }
1507 
1508 // A work method used by the foreground collector to do
1509 // a mark-sweep-compact.
1510 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1511   GenCollectedHeap* gch = GenCollectedHeap::heap();
1512 
1513   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1514   gc_timer->register_gc_start();
1515 
1516   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1517   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1518 
1519   GCTraceTime(Trace, gc) t("CMS:MSC");
1520 
1521   // Temporarily widen the span of the weak reference processing to
1522   // the entire heap.
1523   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1524   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1525   // Temporarily, clear the "is_alive_non_header" field of the
1526   // reference processor.
1527   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1528   // Temporarily make reference _processing_ single threaded (non-MT).
1529   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1530   // Temporarily make refs discovery atomic
1531   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1532   // Temporarily make reference _discovery_ single threaded (non-MT)
1533   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1534 
1535   ref_processor()->set_enqueuing_is_done(false);
1536   ref_processor()->enable_discovery();
1537   ref_processor()->setup_policy(clear_all_soft_refs);
1538   // If an asynchronous collection finishes, the _modUnionTable is
1539   // all clear.  If we are assuming the collection from an asynchronous
1540   // collection, clear the _modUnionTable.
1541   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1542     "_modUnionTable should be clear if the baton was not passed");
1543   _modUnionTable.clear_all();
1544   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1545     "mod union for klasses should be clear if the baton was passed");
1546   _ct->klass_rem_set()->clear_mod_union();
1547 
1548   // We must adjust the allocation statistics being maintained
1549   // in the free list space. We do so by reading and clearing
1550   // the sweep timer and updating the block flux rate estimates below.
1551   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1552   if (_inter_sweep_timer.is_active()) {
1553     _inter_sweep_timer.stop();
1554     // Note that we do not use this sample to update the _inter_sweep_estimate.
1555     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1556                                             _inter_sweep_estimate.padded_average(),
1557                                             _intra_sweep_estimate.padded_average());
1558   }
1559 
1560   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1561   #ifdef ASSERT
1562     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1563     size_t free_size = cms_space->free();
1564     assert(free_size ==
1565            pointer_delta(cms_space->end(), cms_space->compaction_top())
1566            * HeapWordSize,
1567       "All the free space should be compacted into one chunk at top");
1568     assert(cms_space->dictionary()->total_chunk_size(
1569                                       debug_only(cms_space->freelistLock())) == 0 ||
1570            cms_space->totalSizeInIndexedFreeLists() == 0,
1571       "All the free space should be in a single chunk");
1572     size_t num = cms_space->totalCount();
1573     assert((free_size == 0 && num == 0) ||
1574            (free_size > 0  && (num == 1 || num == 2)),
1575          "There should be at most 2 free chunks after compaction");
1576   #endif // ASSERT
1577   _collectorState = Resetting;
1578   assert(_restart_addr == NULL,
1579          "Should have been NULL'd before baton was passed");
1580   reset_stw();
1581   _cmsGen->reset_after_compaction();
1582   _concurrent_cycles_since_last_unload = 0;
1583 
1584   // Clear any data recorded in the PLAB chunk arrays.
1585   if (_survivor_plab_array != NULL) {
1586     reset_survivor_plab_arrays();
1587   }
1588 
1589   // Adjust the per-size allocation stats for the next epoch.
1590   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1591   // Restart the "inter sweep timer" for the next epoch.
1592   _inter_sweep_timer.reset();
1593   _inter_sweep_timer.start();
1594 
1595   gc_timer->register_gc_end();
1596 
1597   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1598 
1599   // For a mark-sweep-compact, compute_new_size() will be called
1600   // in the heap's do_collection() method.
1601 }
1602 
1603 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1604   LogHandle(gc, heap) log;
1605   if (!log.is_trace()) {
1606     return;
1607   }
1608 
1609   ContiguousSpace* eden_space = _young_gen->eden();
1610   ContiguousSpace* from_space = _young_gen->from();
1611   ContiguousSpace* to_space   = _young_gen->to();
1612   // Eden
1613   if (_eden_chunk_array != NULL) {
1614     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1615               p2i(eden_space->bottom()), p2i(eden_space->top()),
1616               p2i(eden_space->end()), eden_space->capacity());
1617     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1618               _eden_chunk_index, _eden_chunk_capacity);
1619     for (size_t i = 0; i < _eden_chunk_index; i++) {
1620       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1621     }
1622   }
1623   // Survivor
1624   if (_survivor_chunk_array != NULL) {
1625     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1626               p2i(from_space->bottom()), p2i(from_space->top()),
1627               p2i(from_space->end()), from_space->capacity());
1628     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1629               _survivor_chunk_index, _survivor_chunk_capacity);
1630     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1631       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1632     }
1633   }
1634 }
1635 
1636 void CMSCollector::getFreelistLocks() const {
1637   // Get locks for all free lists in all generations that this
1638   // collector is responsible for
1639   _cmsGen->freelistLock()->lock_without_safepoint_check();
1640 }
1641 
1642 void CMSCollector::releaseFreelistLocks() const {
1643   // Release locks for all free lists in all generations that this
1644   // collector is responsible for
1645   _cmsGen->freelistLock()->unlock();
1646 }
1647 
1648 bool CMSCollector::haveFreelistLocks() const {
1649   // Check locks for all free lists in all generations that this
1650   // collector is responsible for
1651   assert_lock_strong(_cmsGen->freelistLock());
1652   PRODUCT_ONLY(ShouldNotReachHere());
1653   return true;
1654 }
1655 
1656 // A utility class that is used by the CMS collector to
1657 // temporarily "release" the foreground collector from its
1658 // usual obligation to wait for the background collector to
1659 // complete an ongoing phase before proceeding.
1660 class ReleaseForegroundGC: public StackObj {
1661  private:
1662   CMSCollector* _c;
1663  public:
1664   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1665     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1666     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1667     // allow a potentially blocked foreground collector to proceed
1668     _c->_foregroundGCShouldWait = false;
1669     if (_c->_foregroundGCIsActive) {
1670       CGC_lock->notify();
1671     }
1672     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1673            "Possible deadlock");
1674   }
1675 
1676   ~ReleaseForegroundGC() {
1677     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1678     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1679     _c->_foregroundGCShouldWait = true;
1680   }
1681 };
1682 
1683 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1684   assert(Thread::current()->is_ConcurrentGC_thread(),
1685     "A CMS asynchronous collection is only allowed on a CMS thread.");
1686 
1687   GenCollectedHeap* gch = GenCollectedHeap::heap();
1688   {
1689     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1690     MutexLockerEx hl(Heap_lock, safepoint_check);
1691     FreelistLocker fll(this);
1692     MutexLockerEx x(CGC_lock, safepoint_check);
1693     if (_foregroundGCIsActive) {
1694       // The foreground collector is. Skip this
1695       // background collection.
1696       assert(!_foregroundGCShouldWait, "Should be clear");
1697       return;
1698     } else {
1699       assert(_collectorState == Idling, "Should be idling before start.");
1700       _collectorState = InitialMarking;
1701       register_gc_start(cause);
1702       // Reset the expansion cause, now that we are about to begin
1703       // a new cycle.
1704       clear_expansion_cause();
1705 
1706       // Clear the MetaspaceGC flag since a concurrent collection
1707       // is starting but also clear it after the collection.
1708       MetaspaceGC::set_should_concurrent_collect(false);
1709     }
1710     // Decide if we want to enable class unloading as part of the
1711     // ensuing concurrent GC cycle.
1712     update_should_unload_classes();
1713     _full_gc_requested = false;           // acks all outstanding full gc requests
1714     _full_gc_cause = GCCause::_no_gc;
1715     // Signal that we are about to start a collection
1716     gch->increment_total_full_collections();  // ... starting a collection cycle
1717     _collection_count_start = gch->total_full_collections();
1718   }
1719 
1720   // Used for PrintGC
1721   size_t prev_used = 0;
1722   if (PrintGC && Verbose) {
1723     prev_used = _cmsGen->used();
1724   }
1725 
1726   // The change of the collection state is normally done at this level;
1727   // the exceptions are phases that are executed while the world is
1728   // stopped.  For those phases the change of state is done while the
1729   // world is stopped.  For baton passing purposes this allows the
1730   // background collector to finish the phase and change state atomically.
1731   // The foreground collector cannot wait on a phase that is done
1732   // while the world is stopped because the foreground collector already
1733   // has the world stopped and would deadlock.
1734   while (_collectorState != Idling) {
1735     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1736                          p2i(Thread::current()), _collectorState);
1737     // The foreground collector
1738     //   holds the Heap_lock throughout its collection.
1739     //   holds the CMS token (but not the lock)
1740     //     except while it is waiting for the background collector to yield.
1741     //
1742     // The foreground collector should be blocked (not for long)
1743     //   if the background collector is about to start a phase
1744     //   executed with world stopped.  If the background
1745     //   collector has already started such a phase, the
1746     //   foreground collector is blocked waiting for the
1747     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1748     //   are executed in the VM thread.
1749     //
1750     // The locking order is
1751     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1752     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1753     //   CMS token  (claimed in
1754     //                stop_world_and_do() -->
1755     //                  safepoint_synchronize() -->
1756     //                    CMSThread::synchronize())
1757 
1758     {
1759       // Check if the FG collector wants us to yield.
1760       CMSTokenSync x(true); // is cms thread
1761       if (waitForForegroundGC()) {
1762         // We yielded to a foreground GC, nothing more to be
1763         // done this round.
1764         assert(_foregroundGCShouldWait == false, "We set it to false in "
1765                "waitForForegroundGC()");
1766         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1767                              p2i(Thread::current()), _collectorState);
1768         return;
1769       } else {
1770         // The background collector can run but check to see if the
1771         // foreground collector has done a collection while the
1772         // background collector was waiting to get the CGC_lock
1773         // above.  If yes, break so that _foregroundGCShouldWait
1774         // is cleared before returning.
1775         if (_collectorState == Idling) {
1776           break;
1777         }
1778       }
1779     }
1780 
1781     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1782       "should be waiting");
1783 
1784     switch (_collectorState) {
1785       case InitialMarking:
1786         {
1787           ReleaseForegroundGC x(this);
1788           stats().record_cms_begin();
1789           VM_CMS_Initial_Mark initial_mark_op(this);
1790           VMThread::execute(&initial_mark_op);
1791         }
1792         // The collector state may be any legal state at this point
1793         // since the background collector may have yielded to the
1794         // foreground collector.
1795         break;
1796       case Marking:
1797         // initial marking in checkpointRootsInitialWork has been completed
1798         if (markFromRoots()) { // we were successful
1799           assert(_collectorState == Precleaning, "Collector state should "
1800             "have changed");
1801         } else {
1802           assert(_foregroundGCIsActive, "Internal state inconsistency");
1803         }
1804         break;
1805       case Precleaning:
1806         // marking from roots in markFromRoots has been completed
1807         preclean();
1808         assert(_collectorState == AbortablePreclean ||
1809                _collectorState == FinalMarking,
1810                "Collector state should have changed");
1811         break;
1812       case AbortablePreclean:
1813         abortable_preclean();
1814         assert(_collectorState == FinalMarking, "Collector state should "
1815           "have changed");
1816         break;
1817       case FinalMarking:
1818         {
1819           ReleaseForegroundGC x(this);
1820 
1821           VM_CMS_Final_Remark final_remark_op(this);
1822           VMThread::execute(&final_remark_op);
1823         }
1824         assert(_foregroundGCShouldWait, "block post-condition");
1825         break;
1826       case Sweeping:
1827         // final marking in checkpointRootsFinal has been completed
1828         sweep();
1829         assert(_collectorState == Resizing, "Collector state change "
1830           "to Resizing must be done under the free_list_lock");
1831 
1832       case Resizing: {
1833         // Sweeping has been completed...
1834         // At this point the background collection has completed.
1835         // Don't move the call to compute_new_size() down
1836         // into code that might be executed if the background
1837         // collection was preempted.
1838         {
1839           ReleaseForegroundGC x(this);   // unblock FG collection
1840           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1841           CMSTokenSync        z(true);   // not strictly needed.
1842           if (_collectorState == Resizing) {
1843             compute_new_size();
1844             save_heap_summary();
1845             _collectorState = Resetting;
1846           } else {
1847             assert(_collectorState == Idling, "The state should only change"
1848                    " because the foreground collector has finished the collection");
1849           }
1850         }
1851         break;
1852       }
1853       case Resetting:
1854         // CMS heap resizing has been completed
1855         reset_concurrent();
1856         assert(_collectorState == Idling, "Collector state should "
1857           "have changed");
1858 
1859         MetaspaceGC::set_should_concurrent_collect(false);
1860 
1861         stats().record_cms_end();
1862         // Don't move the concurrent_phases_end() and compute_new_size()
1863         // calls to here because a preempted background collection
1864         // has it's state set to "Resetting".
1865         break;
1866       case Idling:
1867       default:
1868         ShouldNotReachHere();
1869         break;
1870     }
1871     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1872                          p2i(Thread::current()), _collectorState);
1873     assert(_foregroundGCShouldWait, "block post-condition");
1874   }
1875 
1876   // Should this be in gc_epilogue?
1877   collector_policy()->counters()->update_counters();
1878 
1879   {
1880     // Clear _foregroundGCShouldWait and, in the event that the
1881     // foreground collector is waiting, notify it, before
1882     // returning.
1883     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1884     _foregroundGCShouldWait = false;
1885     if (_foregroundGCIsActive) {
1886       CGC_lock->notify();
1887     }
1888     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1889            "Possible deadlock");
1890   }
1891   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1892                        p2i(Thread::current()), _collectorState);
1893   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1894                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1895 }
1896 
1897 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1898   _cms_start_registered = true;
1899   _gc_timer_cm->register_gc_start();
1900   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1901 }
1902 
1903 void CMSCollector::register_gc_end() {
1904   if (_cms_start_registered) {
1905     report_heap_summary(GCWhen::AfterGC);
1906 
1907     _gc_timer_cm->register_gc_end();
1908     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1909     _cms_start_registered = false;
1910   }
1911 }
1912 
1913 void CMSCollector::save_heap_summary() {
1914   GenCollectedHeap* gch = GenCollectedHeap::heap();
1915   _last_heap_summary = gch->create_heap_summary();
1916   _last_metaspace_summary = gch->create_metaspace_summary();
1917 }
1918 
1919 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1920   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1921   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1922 }
1923 
1924 bool CMSCollector::waitForForegroundGC() {
1925   bool res = false;
1926   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1927          "CMS thread should have CMS token");
1928   // Block the foreground collector until the
1929   // background collectors decides whether to
1930   // yield.
1931   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1932   _foregroundGCShouldWait = true;
1933   if (_foregroundGCIsActive) {
1934     // The background collector yields to the
1935     // foreground collector and returns a value
1936     // indicating that it has yielded.  The foreground
1937     // collector can proceed.
1938     res = true;
1939     _foregroundGCShouldWait = false;
1940     ConcurrentMarkSweepThread::clear_CMS_flag(
1941       ConcurrentMarkSweepThread::CMS_cms_has_token);
1942     ConcurrentMarkSweepThread::set_CMS_flag(
1943       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1944     // Get a possibly blocked foreground thread going
1945     CGC_lock->notify();
1946     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1947                          p2i(Thread::current()), _collectorState);
1948     while (_foregroundGCIsActive) {
1949       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1950     }
1951     ConcurrentMarkSweepThread::set_CMS_flag(
1952       ConcurrentMarkSweepThread::CMS_cms_has_token);
1953     ConcurrentMarkSweepThread::clear_CMS_flag(
1954       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1955   }
1956   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1957                        p2i(Thread::current()), _collectorState);
1958   return res;
1959 }
1960 
1961 // Because of the need to lock the free lists and other structures in
1962 // the collector, common to all the generations that the collector is
1963 // collecting, we need the gc_prologues of individual CMS generations
1964 // delegate to their collector. It may have been simpler had the
1965 // current infrastructure allowed one to call a prologue on a
1966 // collector. In the absence of that we have the generation's
1967 // prologue delegate to the collector, which delegates back
1968 // some "local" work to a worker method in the individual generations
1969 // that it's responsible for collecting, while itself doing any
1970 // work common to all generations it's responsible for. A similar
1971 // comment applies to the  gc_epilogue()'s.
1972 // The role of the variable _between_prologue_and_epilogue is to
1973 // enforce the invocation protocol.
1974 void CMSCollector::gc_prologue(bool full) {
1975   // Call gc_prologue_work() for the CMSGen
1976   // we are responsible for.
1977 
1978   // The following locking discipline assumes that we are only called
1979   // when the world is stopped.
1980   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
1981 
1982   // The CMSCollector prologue must call the gc_prologues for the
1983   // "generations" that it's responsible
1984   // for.
1985 
1986   assert(   Thread::current()->is_VM_thread()
1987          || (   CMSScavengeBeforeRemark
1988              && Thread::current()->is_ConcurrentGC_thread()),
1989          "Incorrect thread type for prologue execution");
1990 
1991   if (_between_prologue_and_epilogue) {
1992     // We have already been invoked; this is a gc_prologue delegation
1993     // from yet another CMS generation that we are responsible for, just
1994     // ignore it since all relevant work has already been done.
1995     return;
1996   }
1997 
1998   // set a bit saying prologue has been called; cleared in epilogue
1999   _between_prologue_and_epilogue = true;
2000   // Claim locks for common data structures, then call gc_prologue_work()
2001   // for each CMSGen.
2002 
2003   getFreelistLocks();   // gets free list locks on constituent spaces
2004   bitMapLock()->lock_without_safepoint_check();
2005 
2006   // Should call gc_prologue_work() for all cms gens we are responsible for
2007   bool duringMarking =    _collectorState >= Marking
2008                          && _collectorState < Sweeping;
2009 
2010   // The young collections clear the modified oops state, which tells if
2011   // there are any modified oops in the class. The remark phase also needs
2012   // that information. Tell the young collection to save the union of all
2013   // modified klasses.
2014   if (duringMarking) {
2015     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2016   }
2017 
2018   bool registerClosure = duringMarking;
2019 
2020   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2021 
2022   if (!full) {
2023     stats().record_gc0_begin();
2024   }
2025 }
2026 
2027 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2028 
2029   _capacity_at_prologue = capacity();
2030   _used_at_prologue = used();
2031 
2032   // Delegate to CMScollector which knows how to coordinate between
2033   // this and any other CMS generations that it is responsible for
2034   // collecting.
2035   collector()->gc_prologue(full);
2036 }
2037 
2038 // This is a "private" interface for use by this generation's CMSCollector.
2039 // Not to be called directly by any other entity (for instance,
2040 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2041 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2042   bool registerClosure, ModUnionClosure* modUnionClosure) {
2043   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2044   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2045     "Should be NULL");
2046   if (registerClosure) {
2047     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2048   }
2049   cmsSpace()->gc_prologue();
2050   // Clear stat counters
2051   NOT_PRODUCT(
2052     assert(_numObjectsPromoted == 0, "check");
2053     assert(_numWordsPromoted   == 0, "check");
2054     log_develop(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2055                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2056     _numObjectsAllocated = 0;
2057     _numWordsAllocated   = 0;
2058   )
2059 }
2060 
2061 void CMSCollector::gc_epilogue(bool full) {
2062   // The following locking discipline assumes that we are only called
2063   // when the world is stopped.
2064   assert(SafepointSynchronize::is_at_safepoint(),
2065          "world is stopped assumption");
2066 
2067   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2068   // if linear allocation blocks need to be appropriately marked to allow the
2069   // the blocks to be parsable. We also check here whether we need to nudge the
2070   // CMS collector thread to start a new cycle (if it's not already active).
2071   assert(   Thread::current()->is_VM_thread()
2072          || (   CMSScavengeBeforeRemark
2073              && Thread::current()->is_ConcurrentGC_thread()),
2074          "Incorrect thread type for epilogue execution");
2075 
2076   if (!_between_prologue_and_epilogue) {
2077     // We have already been invoked; this is a gc_epilogue delegation
2078     // from yet another CMS generation that we are responsible for, just
2079     // ignore it since all relevant work has already been done.
2080     return;
2081   }
2082   assert(haveFreelistLocks(), "must have freelist locks");
2083   assert_lock_strong(bitMapLock());
2084 
2085   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2086 
2087   _cmsGen->gc_epilogue_work(full);
2088 
2089   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2090     // in case sampling was not already enabled, enable it
2091     _start_sampling = true;
2092   }
2093   // reset _eden_chunk_array so sampling starts afresh
2094   _eden_chunk_index = 0;
2095 
2096   size_t cms_used   = _cmsGen->cmsSpace()->used();
2097 
2098   // update performance counters - this uses a special version of
2099   // update_counters() that allows the utilization to be passed as a
2100   // parameter, avoiding multiple calls to used().
2101   //
2102   _cmsGen->update_counters(cms_used);
2103 
2104   bitMapLock()->unlock();
2105   releaseFreelistLocks();
2106 
2107   if (!CleanChunkPoolAsync) {
2108     Chunk::clean_chunk_pool();
2109   }
2110 
2111   set_did_compact(false);
2112   _between_prologue_and_epilogue = false;  // ready for next cycle
2113 }
2114 
2115 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2116   collector()->gc_epilogue(full);
2117 
2118   // Also reset promotion tracking in par gc thread states.
2119   for (uint i = 0; i < ParallelGCThreads; i++) {
2120     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2121   }
2122 }
2123 
2124 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2125   assert(!incremental_collection_failed(), "Should have been cleared");
2126   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2127   cmsSpace()->gc_epilogue();
2128     // Print stat counters
2129   NOT_PRODUCT(
2130     assert(_numObjectsAllocated == 0, "check");
2131     assert(_numWordsAllocated == 0, "check");
2132     log_develop(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2133                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2134     _numObjectsPromoted = 0;
2135     _numWordsPromoted   = 0;
2136   )
2137 
2138   // Call down the chain in contiguous_available needs the freelistLock
2139   // so print this out before releasing the freeListLock.
2140   log_develop(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2141 }
2142 
2143 #ifndef PRODUCT
2144 bool CMSCollector::have_cms_token() {
2145   Thread* thr = Thread::current();
2146   if (thr->is_VM_thread()) {
2147     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2148   } else if (thr->is_ConcurrentGC_thread()) {
2149     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2150   } else if (thr->is_GC_task_thread()) {
2151     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2152            ParGCRareEvent_lock->owned_by_self();
2153   }
2154   return false;
2155 }
2156 #endif
2157 
2158 void
2159 CMSCollector::print_on_error(outputStream* st) {
2160   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2161   if (collector != NULL) {
2162     CMSBitMap* bitmap = &collector->_markBitMap;
2163     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2164     bitmap->print_on_error(st, " Bits: ");
2165 
2166     st->cr();
2167 
2168     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2169     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2170     mut_bitmap->print_on_error(st, " Bits: ");
2171   }
2172 }
2173 
2174 ////////////////////////////////////////////////////////
2175 // CMS Verification Support
2176 ////////////////////////////////////////////////////////
2177 // Following the remark phase, the following invariant
2178 // should hold -- each object in the CMS heap which is
2179 // marked in markBitMap() should be marked in the verification_mark_bm().
2180 
2181 class VerifyMarkedClosure: public BitMapClosure {
2182   CMSBitMap* _marks;
2183   bool       _failed;
2184 
2185  public:
2186   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2187 
2188   bool do_bit(size_t offset) {
2189     HeapWord* addr = _marks->offsetToHeapWord(offset);
2190     if (!_marks->isMarked(addr)) {
2191       LogHandle(gc, verify) log;
2192       ResourceMark rm;
2193       oop(addr)->print_on(log.info_stream());
2194       log.info(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2195       _failed = true;
2196     }
2197     return true;
2198   }
2199 
2200   bool failed() { return _failed; }
2201 };
2202 
2203 bool CMSCollector::verify_after_remark() {
2204   GCTraceTime(Info, gc, verify) tm("Verifying CMS Marking.");
2205   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2206   static bool init = false;
2207 
2208   assert(SafepointSynchronize::is_at_safepoint(),
2209          "Else mutations in object graph will make answer suspect");
2210   assert(have_cms_token(),
2211          "Else there may be mutual interference in use of "
2212          " verification data structures");
2213   assert(_collectorState > Marking && _collectorState <= Sweeping,
2214          "Else marking info checked here may be obsolete");
2215   assert(haveFreelistLocks(), "must hold free list locks");
2216   assert_lock_strong(bitMapLock());
2217 
2218 
2219   // Allocate marking bit map if not already allocated
2220   if (!init) { // first time
2221     if (!verification_mark_bm()->allocate(_span)) {
2222       return false;
2223     }
2224     init = true;
2225   }
2226 
2227   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2228 
2229   // Turn off refs discovery -- so we will be tracing through refs.
2230   // This is as intended, because by this time
2231   // GC must already have cleared any refs that need to be cleared,
2232   // and traced those that need to be marked; moreover,
2233   // the marking done here is not going to interfere in any
2234   // way with the marking information used by GC.
2235   NoRefDiscovery no_discovery(ref_processor());
2236 
2237 #if defined(COMPILER2) || INCLUDE_JVMCI
2238   DerivedPointerTableDeactivate dpt_deact;
2239 #endif
2240 
2241   // Clear any marks from a previous round
2242   verification_mark_bm()->clear_all();
2243   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2244   verify_work_stacks_empty();
2245 
2246   GenCollectedHeap* gch = GenCollectedHeap::heap();
2247   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2248   // Update the saved marks which may affect the root scans.
2249   gch->save_marks();
2250 
2251   if (CMSRemarkVerifyVariant == 1) {
2252     // In this first variant of verification, we complete
2253     // all marking, then check if the new marks-vector is
2254     // a subset of the CMS marks-vector.
2255     verify_after_remark_work_1();
2256   } else if (CMSRemarkVerifyVariant == 2) {
2257     // In this second variant of verification, we flag an error
2258     // (i.e. an object reachable in the new marks-vector not reachable
2259     // in the CMS marks-vector) immediately, also indicating the
2260     // identify of an object (A) that references the unmarked object (B) --
2261     // presumably, a mutation to A failed to be picked up by preclean/remark?
2262     verify_after_remark_work_2();
2263   } else {
2264     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2265             CMSRemarkVerifyVariant);
2266   }
2267   return true;
2268 }
2269 
2270 void CMSCollector::verify_after_remark_work_1() {
2271   ResourceMark rm;
2272   HandleMark  hm;
2273   GenCollectedHeap* gch = GenCollectedHeap::heap();
2274 
2275   // Get a clear set of claim bits for the roots processing to work with.
2276   ClassLoaderDataGraph::clear_claimed_marks();
2277 
2278   // Mark from roots one level into CMS
2279   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2280   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2281 
2282   {
2283     StrongRootsScope srs(1);
2284 
2285     gch->gen_process_roots(&srs,
2286                            GenCollectedHeap::OldGen,
2287                            true,   // young gen as roots
2288                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2289                            should_unload_classes(),
2290                            &notOlder,
2291                            NULL,
2292                            NULL);
2293   }
2294 
2295   // Now mark from the roots
2296   MarkFromRootsClosure markFromRootsClosure(this, _span,
2297     verification_mark_bm(), verification_mark_stack(),
2298     false /* don't yield */, true /* verifying */);
2299   assert(_restart_addr == NULL, "Expected pre-condition");
2300   verification_mark_bm()->iterate(&markFromRootsClosure);
2301   while (_restart_addr != NULL) {
2302     // Deal with stack overflow: by restarting at the indicated
2303     // address.
2304     HeapWord* ra = _restart_addr;
2305     markFromRootsClosure.reset(ra);
2306     _restart_addr = NULL;
2307     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2308   }
2309   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2310   verify_work_stacks_empty();
2311 
2312   // Marking completed -- now verify that each bit marked in
2313   // verification_mark_bm() is also marked in markBitMap(); flag all
2314   // errors by printing corresponding objects.
2315   VerifyMarkedClosure vcl(markBitMap());
2316   verification_mark_bm()->iterate(&vcl);
2317   if (vcl.failed()) {
2318     LogHandle(gc, verify) log;
2319     log.info("Verification failed");
2320     ResourceMark rm;
2321     gch->print_on(log.info_stream());
2322     fatal("CMS: failed marking verification after remark");
2323   }
2324 }
2325 
2326 class VerifyKlassOopsKlassClosure : public KlassClosure {
2327   class VerifyKlassOopsClosure : public OopClosure {
2328     CMSBitMap* _bitmap;
2329    public:
2330     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2331     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2332     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2333   } _oop_closure;
2334  public:
2335   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2336   void do_klass(Klass* k) {
2337     k->oops_do(&_oop_closure);
2338   }
2339 };
2340 
2341 void CMSCollector::verify_after_remark_work_2() {
2342   ResourceMark rm;
2343   HandleMark  hm;
2344   GenCollectedHeap* gch = GenCollectedHeap::heap();
2345 
2346   // Get a clear set of claim bits for the roots processing to work with.
2347   ClassLoaderDataGraph::clear_claimed_marks();
2348 
2349   // Mark from roots one level into CMS
2350   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2351                                      markBitMap());
2352   CLDToOopClosure cld_closure(&notOlder, true);
2353 
2354   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2355 
2356   {
2357     StrongRootsScope srs(1);
2358 
2359     gch->gen_process_roots(&srs,
2360                            GenCollectedHeap::OldGen,
2361                            true,   // young gen as roots
2362                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2363                            should_unload_classes(),
2364                            &notOlder,
2365                            NULL,
2366                            &cld_closure);
2367   }
2368 
2369   // Now mark from the roots
2370   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2371     verification_mark_bm(), markBitMap(), verification_mark_stack());
2372   assert(_restart_addr == NULL, "Expected pre-condition");
2373   verification_mark_bm()->iterate(&markFromRootsClosure);
2374   while (_restart_addr != NULL) {
2375     // Deal with stack overflow: by restarting at the indicated
2376     // address.
2377     HeapWord* ra = _restart_addr;
2378     markFromRootsClosure.reset(ra);
2379     _restart_addr = NULL;
2380     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2381   }
2382   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2383   verify_work_stacks_empty();
2384 
2385   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2386   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2387 
2388   // Marking completed -- now verify that each bit marked in
2389   // verification_mark_bm() is also marked in markBitMap(); flag all
2390   // errors by printing corresponding objects.
2391   VerifyMarkedClosure vcl(markBitMap());
2392   verification_mark_bm()->iterate(&vcl);
2393   assert(!vcl.failed(), "Else verification above should not have succeeded");
2394 }
2395 
2396 void ConcurrentMarkSweepGeneration::save_marks() {
2397   // delegate to CMS space
2398   cmsSpace()->save_marks();
2399   for (uint i = 0; i < ParallelGCThreads; i++) {
2400     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2401   }
2402 }
2403 
2404 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2405   return cmsSpace()->no_allocs_since_save_marks();
2406 }
2407 
2408 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2409                                                                 \
2410 void ConcurrentMarkSweepGeneration::                            \
2411 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2412   cl->set_generation(this);                                     \
2413   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2414   cl->reset_generation();                                       \
2415   save_marks();                                                 \
2416 }
2417 
2418 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2419 
2420 void
2421 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2422   if (freelistLock()->owned_by_self()) {
2423     Generation::oop_iterate(cl);
2424   } else {
2425     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2426     Generation::oop_iterate(cl);
2427   }
2428 }
2429 
2430 void
2431 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2432   if (freelistLock()->owned_by_self()) {
2433     Generation::object_iterate(cl);
2434   } else {
2435     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2436     Generation::object_iterate(cl);
2437   }
2438 }
2439 
2440 void
2441 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2442   if (freelistLock()->owned_by_self()) {
2443     Generation::safe_object_iterate(cl);
2444   } else {
2445     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2446     Generation::safe_object_iterate(cl);
2447   }
2448 }
2449 
2450 void
2451 ConcurrentMarkSweepGeneration::post_compact() {
2452 }
2453 
2454 void
2455 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2456   // Fix the linear allocation blocks to look like free blocks.
2457 
2458   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2459   // are not called when the heap is verified during universe initialization and
2460   // at vm shutdown.
2461   if (freelistLock()->owned_by_self()) {
2462     cmsSpace()->prepare_for_verify();
2463   } else {
2464     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2465     cmsSpace()->prepare_for_verify();
2466   }
2467 }
2468 
2469 void
2470 ConcurrentMarkSweepGeneration::verify() {
2471   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2472   // are not called when the heap is verified during universe initialization and
2473   // at vm shutdown.
2474   if (freelistLock()->owned_by_self()) {
2475     cmsSpace()->verify();
2476   } else {
2477     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2478     cmsSpace()->verify();
2479   }
2480 }
2481 
2482 void CMSCollector::verify() {
2483   _cmsGen->verify();
2484 }
2485 
2486 #ifndef PRODUCT
2487 bool CMSCollector::overflow_list_is_empty() const {
2488   assert(_num_par_pushes >= 0, "Inconsistency");
2489   if (_overflow_list == NULL) {
2490     assert(_num_par_pushes == 0, "Inconsistency");
2491   }
2492   return _overflow_list == NULL;
2493 }
2494 
2495 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2496 // merely consolidate assertion checks that appear to occur together frequently.
2497 void CMSCollector::verify_work_stacks_empty() const {
2498   assert(_markStack.isEmpty(), "Marking stack should be empty");
2499   assert(overflow_list_is_empty(), "Overflow list should be empty");
2500 }
2501 
2502 void CMSCollector::verify_overflow_empty() const {
2503   assert(overflow_list_is_empty(), "Overflow list should be empty");
2504   assert(no_preserved_marks(), "No preserved marks");
2505 }
2506 #endif // PRODUCT
2507 
2508 // Decide if we want to enable class unloading as part of the
2509 // ensuing concurrent GC cycle. We will collect and
2510 // unload classes if it's the case that:
2511 // (1) an explicit gc request has been made and the flag
2512 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2513 // (2) (a) class unloading is enabled at the command line, and
2514 //     (b) old gen is getting really full
2515 // NOTE: Provided there is no change in the state of the heap between
2516 // calls to this method, it should have idempotent results. Moreover,
2517 // its results should be monotonically increasing (i.e. going from 0 to 1,
2518 // but not 1 to 0) between successive calls between which the heap was
2519 // not collected. For the implementation below, it must thus rely on
2520 // the property that concurrent_cycles_since_last_unload()
2521 // will not decrease unless a collection cycle happened and that
2522 // _cmsGen->is_too_full() are
2523 // themselves also monotonic in that sense. See check_monotonicity()
2524 // below.
2525 void CMSCollector::update_should_unload_classes() {
2526   _should_unload_classes = false;
2527   // Condition 1 above
2528   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2529     _should_unload_classes = true;
2530   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2531     // Disjuncts 2.b.(i,ii,iii) above
2532     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2533                               CMSClassUnloadingMaxInterval)
2534                            || _cmsGen->is_too_full();
2535   }
2536 }
2537 
2538 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2539   bool res = should_concurrent_collect();
2540   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2541   return res;
2542 }
2543 
2544 void CMSCollector::setup_cms_unloading_and_verification_state() {
2545   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2546                              || VerifyBeforeExit;
2547   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2548 
2549   // We set the proper root for this CMS cycle here.
2550   if (should_unload_classes()) {   // Should unload classes this cycle
2551     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2552     set_verifying(should_verify);    // Set verification state for this cycle
2553     return;                            // Nothing else needs to be done at this time
2554   }
2555 
2556   // Not unloading classes this cycle
2557   assert(!should_unload_classes(), "Inconsistency!");
2558 
2559   // If we are not unloading classes then add SO_AllCodeCache to root
2560   // scanning options.
2561   add_root_scanning_option(rso);
2562 
2563   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2564     set_verifying(true);
2565   } else if (verifying() && !should_verify) {
2566     // We were verifying, but some verification flags got disabled.
2567     set_verifying(false);
2568     // Exclude symbols, strings and code cache elements from root scanning to
2569     // reduce IM and RM pauses.
2570     remove_root_scanning_option(rso);
2571   }
2572 }
2573 
2574 
2575 #ifndef PRODUCT
2576 HeapWord* CMSCollector::block_start(const void* p) const {
2577   const HeapWord* addr = (HeapWord*)p;
2578   if (_span.contains(p)) {
2579     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2580       return _cmsGen->cmsSpace()->block_start(p);
2581     }
2582   }
2583   return NULL;
2584 }
2585 #endif
2586 
2587 HeapWord*
2588 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2589                                                    bool   tlab,
2590                                                    bool   parallel) {
2591   CMSSynchronousYieldRequest yr;
2592   assert(!tlab, "Can't deal with TLAB allocation");
2593   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2594   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2595   if (GCExpandToAllocateDelayMillis > 0) {
2596     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2597   }
2598   return have_lock_and_allocate(word_size, tlab);
2599 }
2600 
2601 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2602     size_t bytes,
2603     size_t expand_bytes,
2604     CMSExpansionCause::Cause cause)
2605 {
2606 
2607   bool success = expand(bytes, expand_bytes);
2608 
2609   // remember why we expanded; this information is used
2610   // by shouldConcurrentCollect() when making decisions on whether to start
2611   // a new CMS cycle.
2612   if (success) {
2613     set_expansion_cause(cause);
2614     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2615   }
2616 }
2617 
2618 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2619   HeapWord* res = NULL;
2620   MutexLocker x(ParGCRareEvent_lock);
2621   while (true) {
2622     // Expansion by some other thread might make alloc OK now:
2623     res = ps->lab.alloc(word_sz);
2624     if (res != NULL) return res;
2625     // If there's not enough expansion space available, give up.
2626     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2627       return NULL;
2628     }
2629     // Otherwise, we try expansion.
2630     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2631     // Now go around the loop and try alloc again;
2632     // A competing par_promote might beat us to the expansion space,
2633     // so we may go around the loop again if promotion fails again.
2634     if (GCExpandToAllocateDelayMillis > 0) {
2635       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2636     }
2637   }
2638 }
2639 
2640 
2641 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2642   PromotionInfo* promo) {
2643   MutexLocker x(ParGCRareEvent_lock);
2644   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2645   while (true) {
2646     // Expansion by some other thread might make alloc OK now:
2647     if (promo->ensure_spooling_space()) {
2648       assert(promo->has_spooling_space(),
2649              "Post-condition of successful ensure_spooling_space()");
2650       return true;
2651     }
2652     // If there's not enough expansion space available, give up.
2653     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2654       return false;
2655     }
2656     // Otherwise, we try expansion.
2657     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2658     // Now go around the loop and try alloc again;
2659     // A competing allocation might beat us to the expansion space,
2660     // so we may go around the loop again if allocation fails again.
2661     if (GCExpandToAllocateDelayMillis > 0) {
2662       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2663     }
2664   }
2665 }
2666 
2667 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2668   // Only shrink if a compaction was done so that all the free space
2669   // in the generation is in a contiguous block at the end.
2670   if (did_compact()) {
2671     CardGeneration::shrink(bytes);
2672   }
2673 }
2674 
2675 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2676   assert_locked_or_safepoint(Heap_lock);
2677 }
2678 
2679 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2680   assert_locked_or_safepoint(Heap_lock);
2681   assert_lock_strong(freelistLock());
2682   if (PrintGCDetails && Verbose) {
2683     warning("Shrinking of CMS not yet implemented");
2684   }
2685   return;
2686 }
2687 
2688 
2689 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2690 // phases.
2691 class CMSPhaseAccounting: public StackObj {
2692  public:
2693   CMSPhaseAccounting(CMSCollector *collector,
2694                      const char *phase,
2695                      bool print_cr = true);
2696   ~CMSPhaseAccounting();
2697 
2698  private:
2699   CMSCollector *_collector;
2700   const char *_phase;
2701   jlong _start_counter;
2702   bool _print_cr;
2703 
2704  public:
2705   // Not MT-safe; so do not pass around these StackObj's
2706   // where they may be accessed by other threads.
2707   jlong wallclock_millis() {
2708     return TimeHelper::counter_to_millis(os::elapsed_counter() - _start_counter);
2709   }
2710 };
2711 
2712 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2713                                        const char *phase,
2714                                        bool print_cr) :
2715   _collector(collector), _phase(phase), _print_cr(print_cr) {
2716 
2717   _collector->resetYields();
2718   _collector->resetTimer();
2719   _start_counter = os::elapsed_counter();
2720   _collector->startTimer();
2721   log_info(gc)("Concurrent %s (%.3f)", _phase, TimeHelper::counter_to_seconds(_start_counter));
2722 }
2723 
2724 CMSPhaseAccounting::~CMSPhaseAccounting() {
2725   _collector->stopTimer();
2726   jlong end_counter = os::elapsed_counter();
2727   log_debug(gc)("Concurrent active time: %.3fms", _collector->timerValue());
2728   log_info(gc)("Concurrent %s (%.3fs, %.3fs) %.3fms",
2729                _phase,
2730                TimeHelper::counter_to_seconds(_start_counter),
2731                TimeHelper::counter_to_seconds(end_counter),
2732                TimeHelper::counter_to_millis(end_counter - _start_counter));
2733   log_debug(gc, conc, stats)(" (CMS-concurrent-%s yielded %d times)", _phase, _collector->yields());
2734 }
2735 
2736 // CMS work
2737 
2738 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2739 class CMSParMarkTask : public AbstractGangTask {
2740  protected:
2741   CMSCollector*     _collector;
2742   uint              _n_workers;
2743   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2744       AbstractGangTask(name),
2745       _collector(collector),
2746       _n_workers(n_workers) {}
2747   // Work method in support of parallel rescan ... of young gen spaces
2748   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2749                              ContiguousSpace* space,
2750                              HeapWord** chunk_array, size_t chunk_top);
2751   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2752 };
2753 
2754 // Parallel initial mark task
2755 class CMSParInitialMarkTask: public CMSParMarkTask {
2756   StrongRootsScope* _strong_roots_scope;
2757  public:
2758   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2759       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2760       _strong_roots_scope(strong_roots_scope) {}
2761   void work(uint worker_id);
2762 };
2763 
2764 // Checkpoint the roots into this generation from outside
2765 // this generation. [Note this initial checkpoint need only
2766 // be approximate -- we'll do a catch up phase subsequently.]
2767 void CMSCollector::checkpointRootsInitial() {
2768   assert(_collectorState == InitialMarking, "Wrong collector state");
2769   check_correct_thread_executing();
2770   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2771 
2772   save_heap_summary();
2773   report_heap_summary(GCWhen::BeforeGC);
2774 
2775   ReferenceProcessor* rp = ref_processor();
2776   assert(_restart_addr == NULL, "Control point invariant");
2777   {
2778     // acquire locks for subsequent manipulations
2779     MutexLockerEx x(bitMapLock(),
2780                     Mutex::_no_safepoint_check_flag);
2781     checkpointRootsInitialWork();
2782     // enable ("weak") refs discovery
2783     rp->enable_discovery();
2784     _collectorState = Marking;
2785   }
2786 }
2787 
2788 void CMSCollector::checkpointRootsInitialWork() {
2789   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2790   assert(_collectorState == InitialMarking, "just checking");
2791 
2792   // Already have locks.
2793   assert_lock_strong(bitMapLock());
2794   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2795 
2796   // Setup the verification and class unloading state for this
2797   // CMS collection cycle.
2798   setup_cms_unloading_and_verification_state();
2799 
2800   GCTraceTime(Trace, gc) ts("checkpointRootsInitialWork", _gc_timer_cm);
2801 
2802   // Reset all the PLAB chunk arrays if necessary.
2803   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2804     reset_survivor_plab_arrays();
2805   }
2806 
2807   ResourceMark rm;
2808   HandleMark  hm;
2809 
2810   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2811   GenCollectedHeap* gch = GenCollectedHeap::heap();
2812 
2813   verify_work_stacks_empty();
2814   verify_overflow_empty();
2815 
2816   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2817   // Update the saved marks which may affect the root scans.
2818   gch->save_marks();
2819 
2820   // weak reference processing has not started yet.
2821   ref_processor()->set_enqueuing_is_done(false);
2822 
2823   // Need to remember all newly created CLDs,
2824   // so that we can guarantee that the remark finds them.
2825   ClassLoaderDataGraph::remember_new_clds(true);
2826 
2827   // Whenever a CLD is found, it will be claimed before proceeding to mark
2828   // the klasses. The claimed marks need to be cleared before marking starts.
2829   ClassLoaderDataGraph::clear_claimed_marks();
2830 
2831   print_eden_and_survivor_chunk_arrays();
2832 
2833   {
2834 #if defined(COMPILER2) || INCLUDE_JVMCI
2835     DerivedPointerTableDeactivate dpt_deact;
2836 #endif
2837     if (CMSParallelInitialMarkEnabled) {
2838       // The parallel version.
2839       WorkGang* workers = gch->workers();
2840       assert(workers != NULL, "Need parallel worker threads.");
2841       uint n_workers = workers->active_workers();
2842 
2843       StrongRootsScope srs(n_workers);
2844 
2845       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2846       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2847       if (n_workers > 1) {
2848         workers->run_task(&tsk);
2849       } else {
2850         tsk.work(0);
2851       }
2852     } else {
2853       // The serial version.
2854       CLDToOopClosure cld_closure(&notOlder, true);
2855       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2856 
2857       StrongRootsScope srs(1);
2858 
2859       gch->gen_process_roots(&srs,
2860                              GenCollectedHeap::OldGen,
2861                              true,   // young gen as roots
2862                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2863                              should_unload_classes(),
2864                              &notOlder,
2865                              NULL,
2866                              &cld_closure);
2867     }
2868   }
2869 
2870   // Clear mod-union table; it will be dirtied in the prologue of
2871   // CMS generation per each young generation collection.
2872 
2873   assert(_modUnionTable.isAllClear(),
2874        "Was cleared in most recent final checkpoint phase"
2875        " or no bits are set in the gc_prologue before the start of the next "
2876        "subsequent marking phase.");
2877 
2878   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
2879 
2880   // Save the end of the used_region of the constituent generations
2881   // to be used to limit the extent of sweep in each generation.
2882   save_sweep_limits();
2883   verify_overflow_empty();
2884 }
2885 
2886 bool CMSCollector::markFromRoots() {
2887   // we might be tempted to assert that:
2888   // assert(!SafepointSynchronize::is_at_safepoint(),
2889   //        "inconsistent argument?");
2890   // However that wouldn't be right, because it's possible that
2891   // a safepoint is indeed in progress as a young generation
2892   // stop-the-world GC happens even as we mark in this generation.
2893   assert(_collectorState == Marking, "inconsistent state?");
2894   check_correct_thread_executing();
2895   verify_overflow_empty();
2896 
2897   // Weak ref discovery note: We may be discovering weak
2898   // refs in this generation concurrent (but interleaved) with
2899   // weak ref discovery by the young generation collector.
2900 
2901   CMSTokenSyncWithLocks ts(true, bitMapLock());
2902   GCTraceCPUTime tcpu;
2903   CMSPhaseAccounting pa(this, "Mark", !PrintGCDetails);
2904   bool res = markFromRootsWork();
2905   if (res) {
2906     _collectorState = Precleaning;
2907   } else { // We failed and a foreground collection wants to take over
2908     assert(_foregroundGCIsActive, "internal state inconsistency");
2909     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2910     log_debug(gc, conc)("bailing out to foreground collection");
2911   }
2912   verify_overflow_empty();
2913   return res;
2914 }
2915 
2916 bool CMSCollector::markFromRootsWork() {
2917   // iterate over marked bits in bit map, doing a full scan and mark
2918   // from these roots using the following algorithm:
2919   // . if oop is to the right of the current scan pointer,
2920   //   mark corresponding bit (we'll process it later)
2921   // . else (oop is to left of current scan pointer)
2922   //   push oop on marking stack
2923   // . drain the marking stack
2924 
2925   // Note that when we do a marking step we need to hold the
2926   // bit map lock -- recall that direct allocation (by mutators)
2927   // and promotion (by the young generation collector) is also
2928   // marking the bit map. [the so-called allocate live policy.]
2929   // Because the implementation of bit map marking is not
2930   // robust wrt simultaneous marking of bits in the same word,
2931   // we need to make sure that there is no such interference
2932   // between concurrent such updates.
2933 
2934   // already have locks
2935   assert_lock_strong(bitMapLock());
2936 
2937   verify_work_stacks_empty();
2938   verify_overflow_empty();
2939   bool result = false;
2940   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2941     result = do_marking_mt();
2942   } else {
2943     result = do_marking_st();
2944   }
2945   return result;
2946 }
2947 
2948 // Forward decl
2949 class CMSConcMarkingTask;
2950 
2951 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2952   CMSCollector*       _collector;
2953   CMSConcMarkingTask* _task;
2954  public:
2955   virtual void yield();
2956 
2957   // "n_threads" is the number of threads to be terminated.
2958   // "queue_set" is a set of work queues of other threads.
2959   // "collector" is the CMS collector associated with this task terminator.
2960   // "yield" indicates whether we need the gang as a whole to yield.
2961   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
2962     ParallelTaskTerminator(n_threads, queue_set),
2963     _collector(collector) { }
2964 
2965   void set_task(CMSConcMarkingTask* task) {
2966     _task = task;
2967   }
2968 };
2969 
2970 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
2971   CMSConcMarkingTask* _task;
2972  public:
2973   bool should_exit_termination();
2974   void set_task(CMSConcMarkingTask* task) {
2975     _task = task;
2976   }
2977 };
2978 
2979 // MT Concurrent Marking Task
2980 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
2981   CMSCollector* _collector;
2982   uint          _n_workers;       // requested/desired # workers
2983   bool          _result;
2984   CompactibleFreeListSpace*  _cms_space;
2985   char          _pad_front[64];   // padding to ...
2986   HeapWord*     _global_finger;   // ... avoid sharing cache line
2987   char          _pad_back[64];
2988   HeapWord*     _restart_addr;
2989 
2990   //  Exposed here for yielding support
2991   Mutex* const _bit_map_lock;
2992 
2993   // The per thread work queues, available here for stealing
2994   OopTaskQueueSet*  _task_queues;
2995 
2996   // Termination (and yielding) support
2997   CMSConcMarkingTerminator _term;
2998   CMSConcMarkingTerminatorTerminator _term_term;
2999 
3000  public:
3001   CMSConcMarkingTask(CMSCollector* collector,
3002                  CompactibleFreeListSpace* cms_space,
3003                  YieldingFlexibleWorkGang* workers,
3004                  OopTaskQueueSet* task_queues):
3005     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3006     _collector(collector),
3007     _cms_space(cms_space),
3008     _n_workers(0), _result(true),
3009     _task_queues(task_queues),
3010     _term(_n_workers, task_queues, _collector),
3011     _bit_map_lock(collector->bitMapLock())
3012   {
3013     _requested_size = _n_workers;
3014     _term.set_task(this);
3015     _term_term.set_task(this);
3016     _restart_addr = _global_finger = _cms_space->bottom();
3017   }
3018 
3019 
3020   OopTaskQueueSet* task_queues()  { return _task_queues; }
3021 
3022   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3023 
3024   HeapWord** global_finger_addr() { return &_global_finger; }
3025 
3026   CMSConcMarkingTerminator* terminator() { return &_term; }
3027 
3028   virtual void set_for_termination(uint active_workers) {
3029     terminator()->reset_for_reuse(active_workers);
3030   }
3031 
3032   void work(uint worker_id);
3033   bool should_yield() {
3034     return    ConcurrentMarkSweepThread::should_yield()
3035            && !_collector->foregroundGCIsActive();
3036   }
3037 
3038   virtual void coordinator_yield();  // stuff done by coordinator
3039   bool result() { return _result; }
3040 
3041   void reset(HeapWord* ra) {
3042     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3043     _restart_addr = _global_finger = ra;
3044     _term.reset_for_reuse();
3045   }
3046 
3047   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3048                                            OopTaskQueue* work_q);
3049 
3050  private:
3051   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3052   void do_work_steal(int i);
3053   void bump_global_finger(HeapWord* f);
3054 };
3055 
3056 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3057   assert(_task != NULL, "Error");
3058   return _task->yielding();
3059   // Note that we do not need the disjunct || _task->should_yield() above
3060   // because we want terminating threads to yield only if the task
3061   // is already in the midst of yielding, which happens only after at least one
3062   // thread has yielded.
3063 }
3064 
3065 void CMSConcMarkingTerminator::yield() {
3066   if (_task->should_yield()) {
3067     _task->yield();
3068   } else {
3069     ParallelTaskTerminator::yield();
3070   }
3071 }
3072 
3073 ////////////////////////////////////////////////////////////////
3074 // Concurrent Marking Algorithm Sketch
3075 ////////////////////////////////////////////////////////////////
3076 // Until all tasks exhausted (both spaces):
3077 // -- claim next available chunk
3078 // -- bump global finger via CAS
3079 // -- find first object that starts in this chunk
3080 //    and start scanning bitmap from that position
3081 // -- scan marked objects for oops
3082 // -- CAS-mark target, and if successful:
3083 //    . if target oop is above global finger (volatile read)
3084 //      nothing to do
3085 //    . if target oop is in chunk and above local finger
3086 //        then nothing to do
3087 //    . else push on work-queue
3088 // -- Deal with possible overflow issues:
3089 //    . local work-queue overflow causes stuff to be pushed on
3090 //      global (common) overflow queue
3091 //    . always first empty local work queue
3092 //    . then get a batch of oops from global work queue if any
3093 //    . then do work stealing
3094 // -- When all tasks claimed (both spaces)
3095 //    and local work queue empty,
3096 //    then in a loop do:
3097 //    . check global overflow stack; steal a batch of oops and trace
3098 //    . try to steal from other threads oif GOS is empty
3099 //    . if neither is available, offer termination
3100 // -- Terminate and return result
3101 //
3102 void CMSConcMarkingTask::work(uint worker_id) {
3103   elapsedTimer _timer;
3104   ResourceMark rm;
3105   HandleMark hm;
3106 
3107   DEBUG_ONLY(_collector->verify_overflow_empty();)
3108 
3109   // Before we begin work, our work queue should be empty
3110   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3111   // Scan the bitmap covering _cms_space, tracing through grey objects.
3112   _timer.start();
3113   do_scan_and_mark(worker_id, _cms_space);
3114   _timer.stop();
3115   log_debug(gc, conc, stats)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3116 
3117   // ... do work stealing
3118   _timer.reset();
3119   _timer.start();
3120   do_work_steal(worker_id);
3121   _timer.stop();
3122   log_debug(gc, conc, stats)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3123   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3124   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3125   // Note that under the current task protocol, the
3126   // following assertion is true even of the spaces
3127   // expanded since the completion of the concurrent
3128   // marking. XXX This will likely change under a strict
3129   // ABORT semantics.
3130   // After perm removal the comparison was changed to
3131   // greater than or equal to from strictly greater than.
3132   // Before perm removal the highest address sweep would
3133   // have been at the end of perm gen but now is at the
3134   // end of the tenured gen.
3135   assert(_global_finger >=  _cms_space->end(),
3136          "All tasks have been completed");
3137   DEBUG_ONLY(_collector->verify_overflow_empty();)
3138 }
3139 
3140 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3141   HeapWord* read = _global_finger;
3142   HeapWord* cur  = read;
3143   while (f > read) {
3144     cur = read;
3145     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3146     if (cur == read) {
3147       // our cas succeeded
3148       assert(_global_finger >= f, "protocol consistency");
3149       break;
3150     }
3151   }
3152 }
3153 
3154 // This is really inefficient, and should be redone by
3155 // using (not yet available) block-read and -write interfaces to the
3156 // stack and the work_queue. XXX FIX ME !!!
3157 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3158                                                       OopTaskQueue* work_q) {
3159   // Fast lock-free check
3160   if (ovflw_stk->length() == 0) {
3161     return false;
3162   }
3163   assert(work_q->size() == 0, "Shouldn't steal");
3164   MutexLockerEx ml(ovflw_stk->par_lock(),
3165                    Mutex::_no_safepoint_check_flag);
3166   // Grab up to 1/4 the size of the work queue
3167   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3168                     (size_t)ParGCDesiredObjsFromOverflowList);
3169   num = MIN2(num, ovflw_stk->length());
3170   for (int i = (int) num; i > 0; i--) {
3171     oop cur = ovflw_stk->pop();
3172     assert(cur != NULL, "Counted wrong?");
3173     work_q->push(cur);
3174   }
3175   return num > 0;
3176 }
3177 
3178 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3179   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3180   int n_tasks = pst->n_tasks();
3181   // We allow that there may be no tasks to do here because
3182   // we are restarting after a stack overflow.
3183   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3184   uint nth_task = 0;
3185 
3186   HeapWord* aligned_start = sp->bottom();
3187   if (sp->used_region().contains(_restart_addr)) {
3188     // Align down to a card boundary for the start of 0th task
3189     // for this space.
3190     aligned_start =
3191       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3192                                  CardTableModRefBS::card_size);
3193   }
3194 
3195   size_t chunk_size = sp->marking_task_size();
3196   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3197     // Having claimed the nth task in this space,
3198     // compute the chunk that it corresponds to:
3199     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3200                                aligned_start + (nth_task+1)*chunk_size);
3201     // Try and bump the global finger via a CAS;
3202     // note that we need to do the global finger bump
3203     // _before_ taking the intersection below, because
3204     // the task corresponding to that region will be
3205     // deemed done even if the used_region() expands
3206     // because of allocation -- as it almost certainly will
3207     // during start-up while the threads yield in the
3208     // closure below.
3209     HeapWord* finger = span.end();
3210     bump_global_finger(finger);   // atomically
3211     // There are null tasks here corresponding to chunks
3212     // beyond the "top" address of the space.
3213     span = span.intersection(sp->used_region());
3214     if (!span.is_empty()) {  // Non-null task
3215       HeapWord* prev_obj;
3216       assert(!span.contains(_restart_addr) || nth_task == 0,
3217              "Inconsistency");
3218       if (nth_task == 0) {
3219         // For the 0th task, we'll not need to compute a block_start.
3220         if (span.contains(_restart_addr)) {
3221           // In the case of a restart because of stack overflow,
3222           // we might additionally skip a chunk prefix.
3223           prev_obj = _restart_addr;
3224         } else {
3225           prev_obj = span.start();
3226         }
3227       } else {
3228         // We want to skip the first object because
3229         // the protocol is to scan any object in its entirety
3230         // that _starts_ in this span; a fortiori, any
3231         // object starting in an earlier span is scanned
3232         // as part of an earlier claimed task.
3233         // Below we use the "careful" version of block_start
3234         // so we do not try to navigate uninitialized objects.
3235         prev_obj = sp->block_start_careful(span.start());
3236         // Below we use a variant of block_size that uses the
3237         // Printezis bits to avoid waiting for allocated
3238         // objects to become initialized/parsable.
3239         while (prev_obj < span.start()) {
3240           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3241           if (sz > 0) {
3242             prev_obj += sz;
3243           } else {
3244             // In this case we may end up doing a bit of redundant
3245             // scanning, but that appears unavoidable, short of
3246             // locking the free list locks; see bug 6324141.
3247             break;
3248           }
3249         }
3250       }
3251       if (prev_obj < span.end()) {
3252         MemRegion my_span = MemRegion(prev_obj, span.end());
3253         // Do the marking work within a non-empty span --
3254         // the last argument to the constructor indicates whether the
3255         // iteration should be incremental with periodic yields.
3256         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3257                                     &_collector->_markBitMap,
3258                                     work_queue(i),
3259                                     &_collector->_markStack);
3260         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3261       } // else nothing to do for this task
3262     }   // else nothing to do for this task
3263   }
3264   // We'd be tempted to assert here that since there are no
3265   // more tasks left to claim in this space, the global_finger
3266   // must exceed space->top() and a fortiori space->end(). However,
3267   // that would not quite be correct because the bumping of
3268   // global_finger occurs strictly after the claiming of a task,
3269   // so by the time we reach here the global finger may not yet
3270   // have been bumped up by the thread that claimed the last
3271   // task.
3272   pst->all_tasks_completed();
3273 }
3274 
3275 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3276  private:
3277   CMSCollector* _collector;
3278   CMSConcMarkingTask* _task;
3279   MemRegion     _span;
3280   CMSBitMap*    _bit_map;
3281   CMSMarkStack* _overflow_stack;
3282   OopTaskQueue* _work_queue;
3283  protected:
3284   DO_OOP_WORK_DEFN
3285  public:
3286   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3287                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3288     MetadataAwareOopClosure(collector->ref_processor()),
3289     _collector(collector),
3290     _task(task),
3291     _span(collector->_span),
3292     _work_queue(work_queue),
3293     _bit_map(bit_map),
3294     _overflow_stack(overflow_stack)
3295   { }
3296   virtual void do_oop(oop* p);
3297   virtual void do_oop(narrowOop* p);
3298 
3299   void trim_queue(size_t max);
3300   void handle_stack_overflow(HeapWord* lost);
3301   void do_yield_check() {
3302     if (_task->should_yield()) {
3303       _task->yield();
3304     }
3305   }
3306 };
3307 
3308 // Grey object scanning during work stealing phase --
3309 // the salient assumption here is that any references
3310 // that are in these stolen objects being scanned must
3311 // already have been initialized (else they would not have
3312 // been published), so we do not need to check for
3313 // uninitialized objects before pushing here.
3314 void Par_ConcMarkingClosure::do_oop(oop obj) {
3315   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3316   HeapWord* addr = (HeapWord*)obj;
3317   // Check if oop points into the CMS generation
3318   // and is not marked
3319   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3320     // a white object ...
3321     // If we manage to "claim" the object, by being the
3322     // first thread to mark it, then we push it on our
3323     // marking stack
3324     if (_bit_map->par_mark(addr)) {     // ... now grey
3325       // push on work queue (grey set)
3326       bool simulate_overflow = false;
3327       NOT_PRODUCT(
3328         if (CMSMarkStackOverflowALot &&
3329             _collector->simulate_overflow()) {
3330           // simulate a stack overflow
3331           simulate_overflow = true;
3332         }
3333       )
3334       if (simulate_overflow ||
3335           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3336         // stack overflow
3337         log_debug(gc, conc, stats)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3338         // We cannot assert that the overflow stack is full because
3339         // it may have been emptied since.
3340         assert(simulate_overflow ||
3341                _work_queue->size() == _work_queue->max_elems(),
3342               "Else push should have succeeded");
3343         handle_stack_overflow(addr);
3344       }
3345     } // Else, some other thread got there first
3346     do_yield_check();
3347   }
3348 }
3349 
3350 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3351 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3352 
3353 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3354   while (_work_queue->size() > max) {
3355     oop new_oop;
3356     if (_work_queue->pop_local(new_oop)) {
3357       assert(new_oop->is_oop(), "Should be an oop");
3358       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3359       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3360       new_oop->oop_iterate(this);  // do_oop() above
3361       do_yield_check();
3362     }
3363   }
3364 }
3365 
3366 // Upon stack overflow, we discard (part of) the stack,
3367 // remembering the least address amongst those discarded
3368 // in CMSCollector's _restart_address.
3369 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3370   // We need to do this under a mutex to prevent other
3371   // workers from interfering with the work done below.
3372   MutexLockerEx ml(_overflow_stack->par_lock(),
3373                    Mutex::_no_safepoint_check_flag);
3374   // Remember the least grey address discarded
3375   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3376   _collector->lower_restart_addr(ra);
3377   _overflow_stack->reset();  // discard stack contents
3378   _overflow_stack->expand(); // expand the stack if possible
3379 }
3380 
3381 
3382 void CMSConcMarkingTask::do_work_steal(int i) {
3383   OopTaskQueue* work_q = work_queue(i);
3384   oop obj_to_scan;
3385   CMSBitMap* bm = &(_collector->_markBitMap);
3386   CMSMarkStack* ovflw = &(_collector->_markStack);
3387   int* seed = _collector->hash_seed(i);
3388   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3389   while (true) {
3390     cl.trim_queue(0);
3391     assert(work_q->size() == 0, "Should have been emptied above");
3392     if (get_work_from_overflow_stack(ovflw, work_q)) {
3393       // Can't assert below because the work obtained from the
3394       // overflow stack may already have been stolen from us.
3395       // assert(work_q->size() > 0, "Work from overflow stack");
3396       continue;
3397     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3398       assert(obj_to_scan->is_oop(), "Should be an oop");
3399       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3400       obj_to_scan->oop_iterate(&cl);
3401     } else if (terminator()->offer_termination(&_term_term)) {
3402       assert(work_q->size() == 0, "Impossible!");
3403       break;
3404     } else if (yielding() || should_yield()) {
3405       yield();
3406     }
3407   }
3408 }
3409 
3410 // This is run by the CMS (coordinator) thread.
3411 void CMSConcMarkingTask::coordinator_yield() {
3412   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3413          "CMS thread should hold CMS token");
3414   // First give up the locks, then yield, then re-lock
3415   // We should probably use a constructor/destructor idiom to
3416   // do this unlock/lock or modify the MutexUnlocker class to
3417   // serve our purpose. XXX
3418   assert_lock_strong(_bit_map_lock);
3419   _bit_map_lock->unlock();
3420   ConcurrentMarkSweepThread::desynchronize(true);
3421   _collector->stopTimer();
3422   _collector->incrementYields();
3423 
3424   // It is possible for whichever thread initiated the yield request
3425   // not to get a chance to wake up and take the bitmap lock between
3426   // this thread releasing it and reacquiring it. So, while the
3427   // should_yield() flag is on, let's sleep for a bit to give the
3428   // other thread a chance to wake up. The limit imposed on the number
3429   // of iterations is defensive, to avoid any unforseen circumstances
3430   // putting us into an infinite loop. Since it's always been this
3431   // (coordinator_yield()) method that was observed to cause the
3432   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3433   // which is by default non-zero. For the other seven methods that
3434   // also perform the yield operation, as are using a different
3435   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3436   // can enable the sleeping for those methods too, if necessary.
3437   // See 6442774.
3438   //
3439   // We really need to reconsider the synchronization between the GC
3440   // thread and the yield-requesting threads in the future and we
3441   // should really use wait/notify, which is the recommended
3442   // way of doing this type of interaction. Additionally, we should
3443   // consolidate the eight methods that do the yield operation and they
3444   // are almost identical into one for better maintainability and
3445   // readability. See 6445193.
3446   //
3447   // Tony 2006.06.29
3448   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3449                    ConcurrentMarkSweepThread::should_yield() &&
3450                    !CMSCollector::foregroundGCIsActive(); ++i) {
3451     os::sleep(Thread::current(), 1, false);
3452   }
3453 
3454   ConcurrentMarkSweepThread::synchronize(true);
3455   _bit_map_lock->lock_without_safepoint_check();
3456   _collector->startTimer();
3457 }
3458 
3459 bool CMSCollector::do_marking_mt() {
3460   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3461   uint num_workers = AdaptiveSizePolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3462                                                                   conc_workers()->active_workers(),
3463                                                                   Threads::number_of_non_daemon_threads());
3464   conc_workers()->set_active_workers(num_workers);
3465 
3466   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3467 
3468   CMSConcMarkingTask tsk(this,
3469                          cms_space,
3470                          conc_workers(),
3471                          task_queues());
3472 
3473   // Since the actual number of workers we get may be different
3474   // from the number we requested above, do we need to do anything different
3475   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3476   // class?? XXX
3477   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3478 
3479   // Refs discovery is already non-atomic.
3480   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3481   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3482   conc_workers()->start_task(&tsk);
3483   while (tsk.yielded()) {
3484     tsk.coordinator_yield();
3485     conc_workers()->continue_task(&tsk);
3486   }
3487   // If the task was aborted, _restart_addr will be non-NULL
3488   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3489   while (_restart_addr != NULL) {
3490     // XXX For now we do not make use of ABORTED state and have not
3491     // yet implemented the right abort semantics (even in the original
3492     // single-threaded CMS case). That needs some more investigation
3493     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3494     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3495     // If _restart_addr is non-NULL, a marking stack overflow
3496     // occurred; we need to do a fresh marking iteration from the
3497     // indicated restart address.
3498     if (_foregroundGCIsActive) {
3499       // We may be running into repeated stack overflows, having
3500       // reached the limit of the stack size, while making very
3501       // slow forward progress. It may be best to bail out and
3502       // let the foreground collector do its job.
3503       // Clear _restart_addr, so that foreground GC
3504       // works from scratch. This avoids the headache of
3505       // a "rescan" which would otherwise be needed because
3506       // of the dirty mod union table & card table.
3507       _restart_addr = NULL;
3508       return false;
3509     }
3510     // Adjust the task to restart from _restart_addr
3511     tsk.reset(_restart_addr);
3512     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3513                   _restart_addr);
3514     _restart_addr = NULL;
3515     // Get the workers going again
3516     conc_workers()->start_task(&tsk);
3517     while (tsk.yielded()) {
3518       tsk.coordinator_yield();
3519       conc_workers()->continue_task(&tsk);
3520     }
3521   }
3522   assert(tsk.completed(), "Inconsistency");
3523   assert(tsk.result() == true, "Inconsistency");
3524   return true;
3525 }
3526 
3527 bool CMSCollector::do_marking_st() {
3528   ResourceMark rm;
3529   HandleMark   hm;
3530 
3531   // Temporarily make refs discovery single threaded (non-MT)
3532   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3533   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3534     &_markStack, CMSYield);
3535   // the last argument to iterate indicates whether the iteration
3536   // should be incremental with periodic yields.
3537   _markBitMap.iterate(&markFromRootsClosure);
3538   // If _restart_addr is non-NULL, a marking stack overflow
3539   // occurred; we need to do a fresh iteration from the
3540   // indicated restart address.
3541   while (_restart_addr != NULL) {
3542     if (_foregroundGCIsActive) {
3543       // We may be running into repeated stack overflows, having
3544       // reached the limit of the stack size, while making very
3545       // slow forward progress. It may be best to bail out and
3546       // let the foreground collector do its job.
3547       // Clear _restart_addr, so that foreground GC
3548       // works from scratch. This avoids the headache of
3549       // a "rescan" which would otherwise be needed because
3550       // of the dirty mod union table & card table.
3551       _restart_addr = NULL;
3552       return false;  // indicating failure to complete marking
3553     }
3554     // Deal with stack overflow:
3555     // we restart marking from _restart_addr
3556     HeapWord* ra = _restart_addr;
3557     markFromRootsClosure.reset(ra);
3558     _restart_addr = NULL;
3559     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3560   }
3561   return true;
3562 }
3563 
3564 void CMSCollector::preclean() {
3565   check_correct_thread_executing();
3566   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3567   verify_work_stacks_empty();
3568   verify_overflow_empty();
3569   _abort_preclean = false;
3570   if (CMSPrecleaningEnabled) {
3571     if (!CMSEdenChunksRecordAlways) {
3572       _eden_chunk_index = 0;
3573     }
3574     size_t used = get_eden_used();
3575     size_t capacity = get_eden_capacity();
3576     // Don't start sampling unless we will get sufficiently
3577     // many samples.
3578     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3579                 * CMSScheduleRemarkEdenPenetration)) {
3580       _start_sampling = true;
3581     } else {
3582       _start_sampling = false;
3583     }
3584     GCTraceCPUTime tcpu;
3585     CMSPhaseAccounting pa(this, "Preclean", !PrintGCDetails);
3586     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3587   }
3588   CMSTokenSync x(true); // is cms thread
3589   if (CMSPrecleaningEnabled) {
3590     sample_eden();
3591     _collectorState = AbortablePreclean;
3592   } else {
3593     _collectorState = FinalMarking;
3594   }
3595   verify_work_stacks_empty();
3596   verify_overflow_empty();
3597 }
3598 
3599 // Try and schedule the remark such that young gen
3600 // occupancy is CMSScheduleRemarkEdenPenetration %.
3601 void CMSCollector::abortable_preclean() {
3602   check_correct_thread_executing();
3603   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3604   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3605 
3606   // If Eden's current occupancy is below this threshold,
3607   // immediately schedule the remark; else preclean
3608   // past the next scavenge in an effort to
3609   // schedule the pause as described above. By choosing
3610   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3611   // we will never do an actual abortable preclean cycle.
3612   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3613     GCTraceCPUTime tcpu;
3614     CMSPhaseAccounting pa(this, "Abortable Preclean", !PrintGCDetails);
3615     // We need more smarts in the abortable preclean
3616     // loop below to deal with cases where allocation
3617     // in young gen is very very slow, and our precleaning
3618     // is running a losing race against a horde of
3619     // mutators intent on flooding us with CMS updates
3620     // (dirty cards).
3621     // One, admittedly dumb, strategy is to give up
3622     // after a certain number of abortable precleaning loops
3623     // or after a certain maximum time. We want to make
3624     // this smarter in the next iteration.
3625     // XXX FIX ME!!! YSR
3626     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3627     while (!(should_abort_preclean() ||
3628              ConcurrentMarkSweepThread::should_terminate())) {
3629       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3630       cumworkdone += workdone;
3631       loops++;
3632       // Voluntarily terminate abortable preclean phase if we have
3633       // been at it for too long.
3634       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3635           loops >= CMSMaxAbortablePrecleanLoops) {
3636         log_debug(gc, conc)(" CMS: abort preclean due to loops ");
3637         break;
3638       }
3639       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3640         log_debug(gc, conc)(" CMS: abort preclean due to time ");
3641         break;
3642       }
3643       // If we are doing little work each iteration, we should
3644       // take a short break.
3645       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3646         // Sleep for some time, waiting for work to accumulate
3647         stopTimer();
3648         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3649         startTimer();
3650         waited++;
3651       }
3652     }
3653     log_debug(gc, conc, stats)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3654                                loops, waited, cumworkdone);
3655   }
3656   CMSTokenSync x(true); // is cms thread
3657   if (_collectorState != Idling) {
3658     assert(_collectorState == AbortablePreclean,
3659            "Spontaneous state transition?");
3660     _collectorState = FinalMarking;
3661   } // Else, a foreground collection completed this CMS cycle.
3662   return;
3663 }
3664 
3665 // Respond to an Eden sampling opportunity
3666 void CMSCollector::sample_eden() {
3667   // Make sure a young gc cannot sneak in between our
3668   // reading and recording of a sample.
3669   assert(Thread::current()->is_ConcurrentGC_thread(),
3670          "Only the cms thread may collect Eden samples");
3671   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3672          "Should collect samples while holding CMS token");
3673   if (!_start_sampling) {
3674     return;
3675   }
3676   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3677   // is populated by the young generation.
3678   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3679     if (_eden_chunk_index < _eden_chunk_capacity) {
3680       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3681       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3682              "Unexpected state of Eden");
3683       // We'd like to check that what we just sampled is an oop-start address;
3684       // however, we cannot do that here since the object may not yet have been
3685       // initialized. So we'll instead do the check when we _use_ this sample
3686       // later.
3687       if (_eden_chunk_index == 0 ||
3688           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3689                          _eden_chunk_array[_eden_chunk_index-1])
3690            >= CMSSamplingGrain)) {
3691         _eden_chunk_index++;  // commit sample
3692       }
3693     }
3694   }
3695   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3696     size_t used = get_eden_used();
3697     size_t capacity = get_eden_capacity();
3698     assert(used <= capacity, "Unexpected state of Eden");
3699     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3700       _abort_preclean = true;
3701     }
3702   }
3703 }
3704 
3705 
3706 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3707   assert(_collectorState == Precleaning ||
3708          _collectorState == AbortablePreclean, "incorrect state");
3709   ResourceMark rm;
3710   HandleMark   hm;
3711 
3712   // Precleaning is currently not MT but the reference processor
3713   // may be set for MT.  Disable it temporarily here.
3714   ReferenceProcessor* rp = ref_processor();
3715   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3716 
3717   // Do one pass of scrubbing the discovered reference lists
3718   // to remove any reference objects with strongly-reachable
3719   // referents.
3720   if (clean_refs) {
3721     CMSPrecleanRefsYieldClosure yield_cl(this);
3722     assert(rp->span().equals(_span), "Spans should be equal");
3723     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3724                                    &_markStack, true /* preclean */);
3725     CMSDrainMarkingStackClosure complete_trace(this,
3726                                    _span, &_markBitMap, &_markStack,
3727                                    &keep_alive, true /* preclean */);
3728 
3729     // We don't want this step to interfere with a young
3730     // collection because we don't want to take CPU
3731     // or memory bandwidth away from the young GC threads
3732     // (which may be as many as there are CPUs).
3733     // Note that we don't need to protect ourselves from
3734     // interference with mutators because they can't
3735     // manipulate the discovered reference lists nor affect
3736     // the computed reachability of the referents, the
3737     // only properties manipulated by the precleaning
3738     // of these reference lists.
3739     stopTimer();
3740     CMSTokenSyncWithLocks x(true /* is cms thread */,
3741                             bitMapLock());
3742     startTimer();
3743     sample_eden();
3744 
3745     // The following will yield to allow foreground
3746     // collection to proceed promptly. XXX YSR:
3747     // The code in this method may need further
3748     // tweaking for better performance and some restructuring
3749     // for cleaner interfaces.
3750     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3751     rp->preclean_discovered_references(
3752           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3753           gc_timer);
3754   }
3755 
3756   if (clean_survivor) {  // preclean the active survivor space(s)
3757     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3758                              &_markBitMap, &_modUnionTable,
3759                              &_markStack, true /* precleaning phase */);
3760     stopTimer();
3761     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3762                              bitMapLock());
3763     startTimer();
3764     unsigned int before_count =
3765       GenCollectedHeap::heap()->total_collections();
3766     SurvivorSpacePrecleanClosure
3767       sss_cl(this, _span, &_markBitMap, &_markStack,
3768              &pam_cl, before_count, CMSYield);
3769     _young_gen->from()->object_iterate_careful(&sss_cl);
3770     _young_gen->to()->object_iterate_careful(&sss_cl);
3771   }
3772   MarkRefsIntoAndScanClosure
3773     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3774              &_markStack, this, CMSYield,
3775              true /* precleaning phase */);
3776   // CAUTION: The following closure has persistent state that may need to
3777   // be reset upon a decrease in the sequence of addresses it
3778   // processes.
3779   ScanMarkedObjectsAgainCarefullyClosure
3780     smoac_cl(this, _span,
3781       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3782 
3783   // Preclean dirty cards in ModUnionTable and CardTable using
3784   // appropriate convergence criterion;
3785   // repeat CMSPrecleanIter times unless we find that
3786   // we are losing.
3787   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3788   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3789          "Bad convergence multiplier");
3790   assert(CMSPrecleanThreshold >= 100,
3791          "Unreasonably low CMSPrecleanThreshold");
3792 
3793   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3794   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3795        numIter < CMSPrecleanIter;
3796        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3797     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3798     log_trace(gc, conc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3799     // Either there are very few dirty cards, so re-mark
3800     // pause will be small anyway, or our pre-cleaning isn't
3801     // that much faster than the rate at which cards are being
3802     // dirtied, so we might as well stop and re-mark since
3803     // precleaning won't improve our re-mark time by much.
3804     if (curNumCards <= CMSPrecleanThreshold ||
3805         (numIter > 0 &&
3806          (curNumCards * CMSPrecleanDenominator >
3807          lastNumCards * CMSPrecleanNumerator))) {
3808       numIter++;
3809       cumNumCards += curNumCards;
3810       break;
3811     }
3812   }
3813 
3814   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
3815 
3816   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3817   cumNumCards += curNumCards;
3818   log_trace(gc, conc, stats)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3819                              curNumCards, cumNumCards, numIter);
3820   return cumNumCards;   // as a measure of useful work done
3821 }
3822 
3823 // PRECLEANING NOTES:
3824 // Precleaning involves:
3825 // . reading the bits of the modUnionTable and clearing the set bits.
3826 // . For the cards corresponding to the set bits, we scan the
3827 //   objects on those cards. This means we need the free_list_lock
3828 //   so that we can safely iterate over the CMS space when scanning
3829 //   for oops.
3830 // . When we scan the objects, we'll be both reading and setting
3831 //   marks in the marking bit map, so we'll need the marking bit map.
3832 // . For protecting _collector_state transitions, we take the CGC_lock.
3833 //   Note that any races in the reading of of card table entries by the
3834 //   CMS thread on the one hand and the clearing of those entries by the
3835 //   VM thread or the setting of those entries by the mutator threads on the
3836 //   other are quite benign. However, for efficiency it makes sense to keep
3837 //   the VM thread from racing with the CMS thread while the latter is
3838 //   dirty card info to the modUnionTable. We therefore also use the
3839 //   CGC_lock to protect the reading of the card table and the mod union
3840 //   table by the CM thread.
3841 // . We run concurrently with mutator updates, so scanning
3842 //   needs to be done carefully  -- we should not try to scan
3843 //   potentially uninitialized objects.
3844 //
3845 // Locking strategy: While holding the CGC_lock, we scan over and
3846 // reset a maximal dirty range of the mod union / card tables, then lock
3847 // the free_list_lock and bitmap lock to do a full marking, then
3848 // release these locks; and repeat the cycle. This allows for a
3849 // certain amount of fairness in the sharing of these locks between
3850 // the CMS collector on the one hand, and the VM thread and the
3851 // mutators on the other.
3852 
3853 // NOTE: preclean_mod_union_table() and preclean_card_table()
3854 // further below are largely identical; if you need to modify
3855 // one of these methods, please check the other method too.
3856 
3857 size_t CMSCollector::preclean_mod_union_table(
3858   ConcurrentMarkSweepGeneration* old_gen,
3859   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3860   verify_work_stacks_empty();
3861   verify_overflow_empty();
3862 
3863   // strategy: starting with the first card, accumulate contiguous
3864   // ranges of dirty cards; clear these cards, then scan the region
3865   // covered by these cards.
3866 
3867   // Since all of the MUT is committed ahead, we can just use
3868   // that, in case the generations expand while we are precleaning.
3869   // It might also be fine to just use the committed part of the
3870   // generation, but we might potentially miss cards when the
3871   // generation is rapidly expanding while we are in the midst
3872   // of precleaning.
3873   HeapWord* startAddr = old_gen->reserved().start();
3874   HeapWord* endAddr   = old_gen->reserved().end();
3875 
3876   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3877 
3878   size_t numDirtyCards, cumNumDirtyCards;
3879   HeapWord *nextAddr, *lastAddr;
3880   for (cumNumDirtyCards = numDirtyCards = 0,
3881        nextAddr = lastAddr = startAddr;
3882        nextAddr < endAddr;
3883        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3884 
3885     ResourceMark rm;
3886     HandleMark   hm;
3887 
3888     MemRegion dirtyRegion;
3889     {
3890       stopTimer();
3891       // Potential yield point
3892       CMSTokenSync ts(true);
3893       startTimer();
3894       sample_eden();
3895       // Get dirty region starting at nextOffset (inclusive),
3896       // simultaneously clearing it.
3897       dirtyRegion =
3898         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3899       assert(dirtyRegion.start() >= nextAddr,
3900              "returned region inconsistent?");
3901     }
3902     // Remember where the next search should begin.
3903     // The returned region (if non-empty) is a right open interval,
3904     // so lastOffset is obtained from the right end of that
3905     // interval.
3906     lastAddr = dirtyRegion.end();
3907     // Should do something more transparent and less hacky XXX
3908     numDirtyCards =
3909       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3910 
3911     // We'll scan the cards in the dirty region (with periodic
3912     // yields for foreground GC as needed).
3913     if (!dirtyRegion.is_empty()) {
3914       assert(numDirtyCards > 0, "consistency check");
3915       HeapWord* stop_point = NULL;
3916       stopTimer();
3917       // Potential yield point
3918       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3919                                bitMapLock());
3920       startTimer();
3921       {
3922         verify_work_stacks_empty();
3923         verify_overflow_empty();
3924         sample_eden();
3925         stop_point =
3926           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3927       }
3928       if (stop_point != NULL) {
3929         // The careful iteration stopped early either because it found an
3930         // uninitialized object, or because we were in the midst of an
3931         // "abortable preclean", which should now be aborted. Redirty
3932         // the bits corresponding to the partially-scanned or unscanned
3933         // cards. We'll either restart at the next block boundary or
3934         // abort the preclean.
3935         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3936                "Should only be AbortablePreclean.");
3937         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3938         if (should_abort_preclean()) {
3939           break; // out of preclean loop
3940         } else {
3941           // Compute the next address at which preclean should pick up;
3942           // might need bitMapLock in order to read P-bits.
3943           lastAddr = next_card_start_after_block(stop_point);
3944         }
3945       }
3946     } else {
3947       assert(lastAddr == endAddr, "consistency check");
3948       assert(numDirtyCards == 0, "consistency check");
3949       break;
3950     }
3951   }
3952   verify_work_stacks_empty();
3953   verify_overflow_empty();
3954   return cumNumDirtyCards;
3955 }
3956 
3957 // NOTE: preclean_mod_union_table() above and preclean_card_table()
3958 // below are largely identical; if you need to modify
3959 // one of these methods, please check the other method too.
3960 
3961 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
3962   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3963   // strategy: it's similar to precleamModUnionTable above, in that
3964   // we accumulate contiguous ranges of dirty cards, mark these cards
3965   // precleaned, then scan the region covered by these cards.
3966   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
3967   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
3968 
3969   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3970 
3971   size_t numDirtyCards, cumNumDirtyCards;
3972   HeapWord *lastAddr, *nextAddr;
3973 
3974   for (cumNumDirtyCards = numDirtyCards = 0,
3975        nextAddr = lastAddr = startAddr;
3976        nextAddr < endAddr;
3977        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3978 
3979     ResourceMark rm;
3980     HandleMark   hm;
3981 
3982     MemRegion dirtyRegion;
3983     {
3984       // See comments in "Precleaning notes" above on why we
3985       // do this locking. XXX Could the locking overheads be
3986       // too high when dirty cards are sparse? [I don't think so.]
3987       stopTimer();
3988       CMSTokenSync x(true); // is cms thread
3989       startTimer();
3990       sample_eden();
3991       // Get and clear dirty region from card table
3992       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
3993                                     MemRegion(nextAddr, endAddr),
3994                                     true,
3995                                     CardTableModRefBS::precleaned_card_val());
3996 
3997       assert(dirtyRegion.start() >= nextAddr,
3998              "returned region inconsistent?");
3999     }
4000     lastAddr = dirtyRegion.end();
4001     numDirtyCards =
4002       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4003 
4004     if (!dirtyRegion.is_empty()) {
4005       stopTimer();
4006       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4007       startTimer();
4008       sample_eden();
4009       verify_work_stacks_empty();
4010       verify_overflow_empty();
4011       HeapWord* stop_point =
4012         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4013       if (stop_point != NULL) {
4014         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4015                "Should only be AbortablePreclean.");
4016         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4017         if (should_abort_preclean()) {
4018           break; // out of preclean loop
4019         } else {
4020           // Compute the next address at which preclean should pick up.
4021           lastAddr = next_card_start_after_block(stop_point);
4022         }
4023       }
4024     } else {
4025       break;
4026     }
4027   }
4028   verify_work_stacks_empty();
4029   verify_overflow_empty();
4030   return cumNumDirtyCards;
4031 }
4032 
4033 class PrecleanKlassClosure : public KlassClosure {
4034   KlassToOopClosure _cm_klass_closure;
4035  public:
4036   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4037   void do_klass(Klass* k) {
4038     if (k->has_accumulated_modified_oops()) {
4039       k->clear_accumulated_modified_oops();
4040 
4041       _cm_klass_closure.do_klass(k);
4042     }
4043   }
4044 };
4045 
4046 // The freelist lock is needed to prevent asserts, is it really needed?
4047 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4048 
4049   cl->set_freelistLock(freelistLock);
4050 
4051   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4052 
4053   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4054   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4055   PrecleanKlassClosure preclean_klass_closure(cl);
4056   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4057 
4058   verify_work_stacks_empty();
4059   verify_overflow_empty();
4060 }
4061 
4062 void CMSCollector::checkpointRootsFinal() {
4063   assert(_collectorState == FinalMarking, "incorrect state transition?");
4064   check_correct_thread_executing();
4065   // world is stopped at this checkpoint
4066   assert(SafepointSynchronize::is_at_safepoint(),
4067          "world should be stopped");
4068   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4069 
4070   verify_work_stacks_empty();
4071   verify_overflow_empty();
4072 
4073   log_debug(gc, conc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4074                       _young_gen->used() / K, _young_gen->capacity() / K);
4075   {
4076     if (CMSScavengeBeforeRemark) {
4077       GenCollectedHeap* gch = GenCollectedHeap::heap();
4078       // Temporarily set flag to false, GCH->do_collection will
4079       // expect it to be false and set to true
4080       FlagSetting fl(gch->_is_gc_active, false);
4081 
4082       GCTraceTime(Trace, gc) tm("Scavenge-Before-Remark", _gc_timer_cm);
4083 
4084       gch->do_collection(true,                      // full (i.e. force, see below)
4085                          false,                     // !clear_all_soft_refs
4086                          0,                         // size
4087                          false,                     // is_tlab
4088                          GenCollectedHeap::YoungGen // type
4089         );
4090     }
4091     FreelistLocker x(this);
4092     MutexLockerEx y(bitMapLock(),
4093                     Mutex::_no_safepoint_check_flag);
4094     checkpointRootsFinalWork();
4095   }
4096   verify_work_stacks_empty();
4097   verify_overflow_empty();
4098 }
4099 
4100 void CMSCollector::checkpointRootsFinalWork() {
4101   GCTraceTime(Trace, gc) tm("checkpointRootsFinalWork", _gc_timer_cm);
4102 
4103   assert(haveFreelistLocks(), "must have free list locks");
4104   assert_lock_strong(bitMapLock());
4105 
4106   ResourceMark rm;
4107   HandleMark   hm;
4108 
4109   GenCollectedHeap* gch = GenCollectedHeap::heap();
4110 
4111   if (should_unload_classes()) {
4112     CodeCache::gc_prologue();
4113   }
4114   assert(haveFreelistLocks(), "must have free list locks");
4115   assert_lock_strong(bitMapLock());
4116 
4117   // We might assume that we need not fill TLAB's when
4118   // CMSScavengeBeforeRemark is set, because we may have just done
4119   // a scavenge which would have filled all TLAB's -- and besides
4120   // Eden would be empty. This however may not always be the case --
4121   // for instance although we asked for a scavenge, it may not have
4122   // happened because of a JNI critical section. We probably need
4123   // a policy for deciding whether we can in that case wait until
4124   // the critical section releases and then do the remark following
4125   // the scavenge, and skip it here. In the absence of that policy,
4126   // or of an indication of whether the scavenge did indeed occur,
4127   // we cannot rely on TLAB's having been filled and must do
4128   // so here just in case a scavenge did not happen.
4129   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4130   // Update the saved marks which may affect the root scans.
4131   gch->save_marks();
4132 
4133   print_eden_and_survivor_chunk_arrays();
4134 
4135   {
4136 #if defined(COMPILER2) || INCLUDE_JVMCI
4137     DerivedPointerTableDeactivate dpt_deact;
4138 #endif
4139 
4140     // Note on the role of the mod union table:
4141     // Since the marker in "markFromRoots" marks concurrently with
4142     // mutators, it is possible for some reachable objects not to have been
4143     // scanned. For instance, an only reference to an object A was
4144     // placed in object B after the marker scanned B. Unless B is rescanned,
4145     // A would be collected. Such updates to references in marked objects
4146     // are detected via the mod union table which is the set of all cards
4147     // dirtied since the first checkpoint in this GC cycle and prior to
4148     // the most recent young generation GC, minus those cleaned up by the
4149     // concurrent precleaning.
4150     if (CMSParallelRemarkEnabled) {
4151       GCTraceTime(Debug, gc) t("Rescan (parallel)", _gc_timer_cm);
4152       do_remark_parallel();
4153     } else {
4154       GCTraceTime(Debug, gc) t("Rescan (non-parallel)", _gc_timer_cm);
4155       do_remark_non_parallel();
4156     }
4157   }
4158   verify_work_stacks_empty();
4159   verify_overflow_empty();
4160 
4161   {
4162     GCTraceTime(Trace, gc) ts("refProcessingWork", _gc_timer_cm);
4163     refProcessingWork();
4164   }
4165   verify_work_stacks_empty();
4166   verify_overflow_empty();
4167 
4168   if (should_unload_classes()) {
4169     CodeCache::gc_epilogue();
4170   }
4171   JvmtiExport::gc_epilogue();
4172 
4173   // If we encountered any (marking stack / work queue) overflow
4174   // events during the current CMS cycle, take appropriate
4175   // remedial measures, where possible, so as to try and avoid
4176   // recurrence of that condition.
4177   assert(_markStack.isEmpty(), "No grey objects");
4178   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4179                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4180   if (ser_ovflw > 0) {
4181     log_debug(gc, conc, stats)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4182                                _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4183     _markStack.expand();
4184     _ser_pmc_remark_ovflw = 0;
4185     _ser_pmc_preclean_ovflw = 0;
4186     _ser_kac_preclean_ovflw = 0;
4187     _ser_kac_ovflw = 0;
4188   }
4189   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4190      log_debug(gc, conc, stats)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4191                                  _par_pmc_remark_ovflw, _par_kac_ovflw);
4192      _par_pmc_remark_ovflw = 0;
4193     _par_kac_ovflw = 0;
4194   }
4195    if (_markStack._hit_limit > 0) {
4196      log_debug(gc, conc, stats)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4197                                 _markStack._hit_limit);
4198    }
4199    if (_markStack._failed_double > 0) {
4200      log_debug(gc, conc, stats)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4201                                 _markStack._failed_double, _markStack.capacity());
4202    }
4203   _markStack._hit_limit = 0;
4204   _markStack._failed_double = 0;
4205 
4206   if ((VerifyAfterGC || VerifyDuringGC) &&
4207       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4208     verify_after_remark();
4209   }
4210 
4211   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4212 
4213   // Change under the freelistLocks.
4214   _collectorState = Sweeping;
4215   // Call isAllClear() under bitMapLock
4216   assert(_modUnionTable.isAllClear(),
4217       "Should be clear by end of the final marking");
4218   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4219       "Should be clear by end of the final marking");
4220 }
4221 
4222 void CMSParInitialMarkTask::work(uint worker_id) {
4223   elapsedTimer _timer;
4224   ResourceMark rm;
4225   HandleMark   hm;
4226 
4227   // ---------- scan from roots --------------
4228   _timer.start();
4229   GenCollectedHeap* gch = GenCollectedHeap::heap();
4230   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4231 
4232   // ---------- young gen roots --------------
4233   {
4234     work_on_young_gen_roots(worker_id, &par_mri_cl);
4235     _timer.stop();
4236     log_debug(gc, conc, stats)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4237   }
4238 
4239   // ---------- remaining roots --------------
4240   _timer.reset();
4241   _timer.start();
4242 
4243   CLDToOopClosure cld_closure(&par_mri_cl, true);
4244 
4245   gch->gen_process_roots(_strong_roots_scope,
4246                          GenCollectedHeap::OldGen,
4247                          false,     // yg was scanned above
4248                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4249                          _collector->should_unload_classes(),
4250                          &par_mri_cl,
4251                          NULL,
4252                          &cld_closure);
4253   assert(_collector->should_unload_classes()
4254          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4255          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4256   _timer.stop();
4257   log_debug(gc, conc, stats)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4258 }
4259 
4260 // Parallel remark task
4261 class CMSParRemarkTask: public CMSParMarkTask {
4262   CompactibleFreeListSpace* _cms_space;
4263 
4264   // The per-thread work queues, available here for stealing.
4265   OopTaskQueueSet*       _task_queues;
4266   ParallelTaskTerminator _term;
4267   StrongRootsScope*      _strong_roots_scope;
4268 
4269  public:
4270   // A value of 0 passed to n_workers will cause the number of
4271   // workers to be taken from the active workers in the work gang.
4272   CMSParRemarkTask(CMSCollector* collector,
4273                    CompactibleFreeListSpace* cms_space,
4274                    uint n_workers, WorkGang* workers,
4275                    OopTaskQueueSet* task_queues,
4276                    StrongRootsScope* strong_roots_scope):
4277     CMSParMarkTask("Rescan roots and grey objects in parallel",
4278                    collector, n_workers),
4279     _cms_space(cms_space),
4280     _task_queues(task_queues),
4281     _term(n_workers, task_queues),
4282     _strong_roots_scope(strong_roots_scope) { }
4283 
4284   OopTaskQueueSet* task_queues() { return _task_queues; }
4285 
4286   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4287 
4288   ParallelTaskTerminator* terminator() { return &_term; }
4289   uint n_workers() { return _n_workers; }
4290 
4291   void work(uint worker_id);
4292 
4293  private:
4294   // ... of  dirty cards in old space
4295   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4296                                   Par_MarkRefsIntoAndScanClosure* cl);
4297 
4298   // ... work stealing for the above
4299   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4300 };
4301 
4302 class RemarkKlassClosure : public KlassClosure {
4303   KlassToOopClosure _cm_klass_closure;
4304  public:
4305   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4306   void do_klass(Klass* k) {
4307     // Check if we have modified any oops in the Klass during the concurrent marking.
4308     if (k->has_accumulated_modified_oops()) {
4309       k->clear_accumulated_modified_oops();
4310 
4311       // We could have transfered the current modified marks to the accumulated marks,
4312       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4313     } else if (k->has_modified_oops()) {
4314       // Don't clear anything, this info is needed by the next young collection.
4315     } else {
4316       // No modified oops in the Klass.
4317       return;
4318     }
4319 
4320     // The klass has modified fields, need to scan the klass.
4321     _cm_klass_closure.do_klass(k);
4322   }
4323 };
4324 
4325 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4326   ParNewGeneration* young_gen = _collector->_young_gen;
4327   ContiguousSpace* eden_space = young_gen->eden();
4328   ContiguousSpace* from_space = young_gen->from();
4329   ContiguousSpace* to_space   = young_gen->to();
4330 
4331   HeapWord** eca = _collector->_eden_chunk_array;
4332   size_t     ect = _collector->_eden_chunk_index;
4333   HeapWord** sca = _collector->_survivor_chunk_array;
4334   size_t     sct = _collector->_survivor_chunk_index;
4335 
4336   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4337   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4338 
4339   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4340   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4341   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4342 }
4343 
4344 // work_queue(i) is passed to the closure
4345 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4346 // also is passed to do_dirty_card_rescan_tasks() and to
4347 // do_work_steal() to select the i-th task_queue.
4348 
4349 void CMSParRemarkTask::work(uint worker_id) {
4350   elapsedTimer _timer;
4351   ResourceMark rm;
4352   HandleMark   hm;
4353 
4354   // ---------- rescan from roots --------------
4355   _timer.start();
4356   GenCollectedHeap* gch = GenCollectedHeap::heap();
4357   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4358     _collector->_span, _collector->ref_processor(),
4359     &(_collector->_markBitMap),
4360     work_queue(worker_id));
4361 
4362   // Rescan young gen roots first since these are likely
4363   // coarsely partitioned and may, on that account, constitute
4364   // the critical path; thus, it's best to start off that
4365   // work first.
4366   // ---------- young gen roots --------------
4367   {
4368     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4369     _timer.stop();
4370     log_debug(gc, conc, stats)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4371   }
4372 
4373   // ---------- remaining roots --------------
4374   _timer.reset();
4375   _timer.start();
4376   gch->gen_process_roots(_strong_roots_scope,
4377                          GenCollectedHeap::OldGen,
4378                          false,     // yg was scanned above
4379                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4380                          _collector->should_unload_classes(),
4381                          &par_mrias_cl,
4382                          NULL,
4383                          NULL);     // The dirty klasses will be handled below
4384 
4385   assert(_collector->should_unload_classes()
4386          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4387          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4388   _timer.stop();
4389   log_debug(gc, conc, stats)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4390 
4391   // ---------- unhandled CLD scanning ----------
4392   if (worker_id == 0) { // Single threaded at the moment.
4393     _timer.reset();
4394     _timer.start();
4395 
4396     // Scan all new class loader data objects and new dependencies that were
4397     // introduced during concurrent marking.
4398     ResourceMark rm;
4399     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4400     for (int i = 0; i < array->length(); i++) {
4401       par_mrias_cl.do_cld_nv(array->at(i));
4402     }
4403 
4404     // We don't need to keep track of new CLDs anymore.
4405     ClassLoaderDataGraph::remember_new_clds(false);
4406 
4407     _timer.stop();
4408     log_debug(gc, conc, stats)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4409   }
4410 
4411   // ---------- dirty klass scanning ----------
4412   if (worker_id == 0) { // Single threaded at the moment.
4413     _timer.reset();
4414     _timer.start();
4415 
4416     // Scan all classes that was dirtied during the concurrent marking phase.
4417     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4418     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4419 
4420     _timer.stop();
4421     log_debug(gc, conc, stats)("Finished dirty klass scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4422   }
4423 
4424   // We might have added oops to ClassLoaderData::_handles during the
4425   // concurrent marking phase. These oops point to newly allocated objects
4426   // that are guaranteed to be kept alive. Either by the direct allocation
4427   // code, or when the young collector processes the roots. Hence,
4428   // we don't have to revisit the _handles block during the remark phase.
4429 
4430   // ---------- rescan dirty cards ------------
4431   _timer.reset();
4432   _timer.start();
4433 
4434   // Do the rescan tasks for each of the two spaces
4435   // (cms_space) in turn.
4436   // "worker_id" is passed to select the task_queue for "worker_id"
4437   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4438   _timer.stop();
4439   log_debug(gc, conc, stats)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4440 
4441   // ---------- steal work from other threads ...
4442   // ---------- ... and drain overflow list.
4443   _timer.reset();
4444   _timer.start();
4445   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4446   _timer.stop();
4447   log_debug(gc, conc, stats)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4448 }
4449 
4450 // Note that parameter "i" is not used.
4451 void
4452 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4453   OopsInGenClosure* cl, ContiguousSpace* space,
4454   HeapWord** chunk_array, size_t chunk_top) {
4455   // Until all tasks completed:
4456   // . claim an unclaimed task
4457   // . compute region boundaries corresponding to task claimed
4458   //   using chunk_array
4459   // . par_oop_iterate(cl) over that region
4460 
4461   ResourceMark rm;
4462   HandleMark   hm;
4463 
4464   SequentialSubTasksDone* pst = space->par_seq_tasks();
4465 
4466   uint nth_task = 0;
4467   uint n_tasks  = pst->n_tasks();
4468 
4469   if (n_tasks > 0) {
4470     assert(pst->valid(), "Uninitialized use?");
4471     HeapWord *start, *end;
4472     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4473       // We claimed task # nth_task; compute its boundaries.
4474       if (chunk_top == 0) {  // no samples were taken
4475         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4476         start = space->bottom();
4477         end   = space->top();
4478       } else if (nth_task == 0) {
4479         start = space->bottom();
4480         end   = chunk_array[nth_task];
4481       } else if (nth_task < (uint)chunk_top) {
4482         assert(nth_task >= 1, "Control point invariant");
4483         start = chunk_array[nth_task - 1];
4484         end   = chunk_array[nth_task];
4485       } else {
4486         assert(nth_task == (uint)chunk_top, "Control point invariant");
4487         start = chunk_array[chunk_top - 1];
4488         end   = space->top();
4489       }
4490       MemRegion mr(start, end);
4491       // Verify that mr is in space
4492       assert(mr.is_empty() || space->used_region().contains(mr),
4493              "Should be in space");
4494       // Verify that "start" is an object boundary
4495       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4496              "Should be an oop");
4497       space->par_oop_iterate(mr, cl);
4498     }
4499     pst->all_tasks_completed();
4500   }
4501 }
4502 
4503 void
4504 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4505   CompactibleFreeListSpace* sp, int i,
4506   Par_MarkRefsIntoAndScanClosure* cl) {
4507   // Until all tasks completed:
4508   // . claim an unclaimed task
4509   // . compute region boundaries corresponding to task claimed
4510   // . transfer dirty bits ct->mut for that region
4511   // . apply rescanclosure to dirty mut bits for that region
4512 
4513   ResourceMark rm;
4514   HandleMark   hm;
4515 
4516   OopTaskQueue* work_q = work_queue(i);
4517   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4518   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4519   // CAUTION: This closure has state that persists across calls to
4520   // the work method dirty_range_iterate_clear() in that it has
4521   // embedded in it a (subtype of) UpwardsObjectClosure. The
4522   // use of that state in the embedded UpwardsObjectClosure instance
4523   // assumes that the cards are always iterated (even if in parallel
4524   // by several threads) in monotonically increasing order per each
4525   // thread. This is true of the implementation below which picks
4526   // card ranges (chunks) in monotonically increasing order globally
4527   // and, a-fortiori, in monotonically increasing order per thread
4528   // (the latter order being a subsequence of the former).
4529   // If the work code below is ever reorganized into a more chaotic
4530   // work-partitioning form than the current "sequential tasks"
4531   // paradigm, the use of that persistent state will have to be
4532   // revisited and modified appropriately. See also related
4533   // bug 4756801 work on which should examine this code to make
4534   // sure that the changes there do not run counter to the
4535   // assumptions made here and necessary for correctness and
4536   // efficiency. Note also that this code might yield inefficient
4537   // behavior in the case of very large objects that span one or
4538   // more work chunks. Such objects would potentially be scanned
4539   // several times redundantly. Work on 4756801 should try and
4540   // address that performance anomaly if at all possible. XXX
4541   MemRegion  full_span  = _collector->_span;
4542   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4543   MarkFromDirtyCardsClosure
4544     greyRescanClosure(_collector, full_span, // entire span of interest
4545                       sp, bm, work_q, cl);
4546 
4547   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4548   assert(pst->valid(), "Uninitialized use?");
4549   uint nth_task = 0;
4550   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4551   MemRegion span = sp->used_region();
4552   HeapWord* start_addr = span.start();
4553   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4554                                            alignment);
4555   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4556   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4557          start_addr, "Check alignment");
4558   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4559          chunk_size, "Check alignment");
4560 
4561   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4562     // Having claimed the nth_task, compute corresponding mem-region,
4563     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4564     // The alignment restriction ensures that we do not need any
4565     // synchronization with other gang-workers while setting or
4566     // clearing bits in thus chunk of the MUT.
4567     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4568                                     start_addr + (nth_task+1)*chunk_size);
4569     // The last chunk's end might be way beyond end of the
4570     // used region. In that case pull back appropriately.
4571     if (this_span.end() > end_addr) {
4572       this_span.set_end(end_addr);
4573       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4574     }
4575     // Iterate over the dirty cards covering this chunk, marking them
4576     // precleaned, and setting the corresponding bits in the mod union
4577     // table. Since we have been careful to partition at Card and MUT-word
4578     // boundaries no synchronization is needed between parallel threads.
4579     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4580                                                  &modUnionClosure);
4581 
4582     // Having transferred these marks into the modUnionTable,
4583     // rescan the marked objects on the dirty cards in the modUnionTable.
4584     // Even if this is at a synchronous collection, the initial marking
4585     // may have been done during an asynchronous collection so there
4586     // may be dirty bits in the mod-union table.
4587     _collector->_modUnionTable.dirty_range_iterate_clear(
4588                   this_span, &greyRescanClosure);
4589     _collector->_modUnionTable.verifyNoOneBitsInRange(
4590                                  this_span.start(),
4591                                  this_span.end());
4592   }
4593   pst->all_tasks_completed();  // declare that i am done
4594 }
4595 
4596 // . see if we can share work_queues with ParNew? XXX
4597 void
4598 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4599                                 int* seed) {
4600   OopTaskQueue* work_q = work_queue(i);
4601   NOT_PRODUCT(int num_steals = 0;)
4602   oop obj_to_scan;
4603   CMSBitMap* bm = &(_collector->_markBitMap);
4604 
4605   while (true) {
4606     // Completely finish any left over work from (an) earlier round(s)
4607     cl->trim_queue(0);
4608     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4609                                          (size_t)ParGCDesiredObjsFromOverflowList);
4610     // Now check if there's any work in the overflow list
4611     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4612     // only affects the number of attempts made to get work from the
4613     // overflow list and does not affect the number of workers.  Just
4614     // pass ParallelGCThreads so this behavior is unchanged.
4615     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4616                                                 work_q,
4617                                                 ParallelGCThreads)) {
4618       // found something in global overflow list;
4619       // not yet ready to go stealing work from others.
4620       // We'd like to assert(work_q->size() != 0, ...)
4621       // because we just took work from the overflow list,
4622       // but of course we can't since all of that could have
4623       // been already stolen from us.
4624       // "He giveth and He taketh away."
4625       continue;
4626     }
4627     // Verify that we have no work before we resort to stealing
4628     assert(work_q->size() == 0, "Have work, shouldn't steal");
4629     // Try to steal from other queues that have work
4630     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4631       NOT_PRODUCT(num_steals++;)
4632       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4633       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4634       // Do scanning work
4635       obj_to_scan->oop_iterate(cl);
4636       // Loop around, finish this work, and try to steal some more
4637     } else if (terminator()->offer_termination()) {
4638         break;  // nirvana from the infinite cycle
4639     }
4640   }
4641   log_develop(gc, conc, stats)("\t(%d: stole %d oops)", i, num_steals);
4642   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4643          "Else our work is not yet done");
4644 }
4645 
4646 // Record object boundaries in _eden_chunk_array by sampling the eden
4647 // top in the slow-path eden object allocation code path and record
4648 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4649 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4650 // sampling in sample_eden() that activates during the part of the
4651 // preclean phase.
4652 void CMSCollector::sample_eden_chunk() {
4653   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4654     if (_eden_chunk_lock->try_lock()) {
4655       // Record a sample. This is the critical section. The contents
4656       // of the _eden_chunk_array have to be non-decreasing in the
4657       // address order.
4658       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4659       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4660              "Unexpected state of Eden");
4661       if (_eden_chunk_index == 0 ||
4662           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4663            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4664                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4665         _eden_chunk_index++;  // commit sample
4666       }
4667       _eden_chunk_lock->unlock();
4668     }
4669   }
4670 }
4671 
4672 // Return a thread-local PLAB recording array, as appropriate.
4673 void* CMSCollector::get_data_recorder(int thr_num) {
4674   if (_survivor_plab_array != NULL &&
4675       (CMSPLABRecordAlways ||
4676        (_collectorState > Marking && _collectorState < FinalMarking))) {
4677     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4678     ChunkArray* ca = &_survivor_plab_array[thr_num];
4679     ca->reset();   // clear it so that fresh data is recorded
4680     return (void*) ca;
4681   } else {
4682     return NULL;
4683   }
4684 }
4685 
4686 // Reset all the thread-local PLAB recording arrays
4687 void CMSCollector::reset_survivor_plab_arrays() {
4688   for (uint i = 0; i < ParallelGCThreads; i++) {
4689     _survivor_plab_array[i].reset();
4690   }
4691 }
4692 
4693 // Merge the per-thread plab arrays into the global survivor chunk
4694 // array which will provide the partitioning of the survivor space
4695 // for CMS initial scan and rescan.
4696 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4697                                               int no_of_gc_threads) {
4698   assert(_survivor_plab_array  != NULL, "Error");
4699   assert(_survivor_chunk_array != NULL, "Error");
4700   assert(_collectorState == FinalMarking ||
4701          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4702   for (int j = 0; j < no_of_gc_threads; j++) {
4703     _cursor[j] = 0;
4704   }
4705   HeapWord* top = surv->top();
4706   size_t i;
4707   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4708     HeapWord* min_val = top;          // Higher than any PLAB address
4709     uint      min_tid = 0;            // position of min_val this round
4710     for (int j = 0; j < no_of_gc_threads; j++) {
4711       ChunkArray* cur_sca = &_survivor_plab_array[j];
4712       if (_cursor[j] == cur_sca->end()) {
4713         continue;
4714       }
4715       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4716       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4717       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4718       if (cur_val < min_val) {
4719         min_tid = j;
4720         min_val = cur_val;
4721       } else {
4722         assert(cur_val < top, "All recorded addresses should be less");
4723       }
4724     }
4725     // At this point min_val and min_tid are respectively
4726     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4727     // and the thread (j) that witnesses that address.
4728     // We record this address in the _survivor_chunk_array[i]
4729     // and increment _cursor[min_tid] prior to the next round i.
4730     if (min_val == top) {
4731       break;
4732     }
4733     _survivor_chunk_array[i] = min_val;
4734     _cursor[min_tid]++;
4735   }
4736   // We are all done; record the size of the _survivor_chunk_array
4737   _survivor_chunk_index = i; // exclusive: [0, i)
4738   log_debug(gc, conc, stats)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4739   // Verify that we used up all the recorded entries
4740   #ifdef ASSERT
4741     size_t total = 0;
4742     for (int j = 0; j < no_of_gc_threads; j++) {
4743       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4744       total += _cursor[j];
4745     }
4746     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4747     // Check that the merged array is in sorted order
4748     if (total > 0) {
4749       for (size_t i = 0; i < total - 1; i++) {
4750         log_develop(gc, conc, stats)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4751                                     i, p2i(_survivor_chunk_array[i]));
4752         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4753                "Not sorted");
4754       }
4755     }
4756   #endif // ASSERT
4757 }
4758 
4759 // Set up the space's par_seq_tasks structure for work claiming
4760 // for parallel initial scan and rescan of young gen.
4761 // See ParRescanTask where this is currently used.
4762 void
4763 CMSCollector::
4764 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4765   assert(n_threads > 0, "Unexpected n_threads argument");
4766 
4767   // Eden space
4768   if (!_young_gen->eden()->is_empty()) {
4769     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4770     assert(!pst->valid(), "Clobbering existing data?");
4771     // Each valid entry in [0, _eden_chunk_index) represents a task.
4772     size_t n_tasks = _eden_chunk_index + 1;
4773     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4774     // Sets the condition for completion of the subtask (how many threads
4775     // need to finish in order to be done).
4776     pst->set_n_threads(n_threads);
4777     pst->set_n_tasks((int)n_tasks);
4778   }
4779 
4780   // Merge the survivor plab arrays into _survivor_chunk_array
4781   if (_survivor_plab_array != NULL) {
4782     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4783   } else {
4784     assert(_survivor_chunk_index == 0, "Error");
4785   }
4786 
4787   // To space
4788   {
4789     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4790     assert(!pst->valid(), "Clobbering existing data?");
4791     // Sets the condition for completion of the subtask (how many threads
4792     // need to finish in order to be done).
4793     pst->set_n_threads(n_threads);
4794     pst->set_n_tasks(1);
4795     assert(pst->valid(), "Error");
4796   }
4797 
4798   // From space
4799   {
4800     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4801     assert(!pst->valid(), "Clobbering existing data?");
4802     size_t n_tasks = _survivor_chunk_index + 1;
4803     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4804     // Sets the condition for completion of the subtask (how many threads
4805     // need to finish in order to be done).
4806     pst->set_n_threads(n_threads);
4807     pst->set_n_tasks((int)n_tasks);
4808     assert(pst->valid(), "Error");
4809   }
4810 }
4811 
4812 // Parallel version of remark
4813 void CMSCollector::do_remark_parallel() {
4814   GenCollectedHeap* gch = GenCollectedHeap::heap();
4815   WorkGang* workers = gch->workers();
4816   assert(workers != NULL, "Need parallel worker threads.");
4817   // Choose to use the number of GC workers most recently set
4818   // into "active_workers".
4819   uint n_workers = workers->active_workers();
4820 
4821   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4822 
4823   StrongRootsScope srs(n_workers);
4824 
4825   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4826 
4827   // We won't be iterating over the cards in the card table updating
4828   // the younger_gen cards, so we shouldn't call the following else
4829   // the verification code as well as subsequent younger_refs_iterate
4830   // code would get confused. XXX
4831   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4832 
4833   // The young gen rescan work will not be done as part of
4834   // process_roots (which currently doesn't know how to
4835   // parallelize such a scan), but rather will be broken up into
4836   // a set of parallel tasks (via the sampling that the [abortable]
4837   // preclean phase did of eden, plus the [two] tasks of
4838   // scanning the [two] survivor spaces. Further fine-grain
4839   // parallelization of the scanning of the survivor spaces
4840   // themselves, and of precleaning of the young gen itself
4841   // is deferred to the future.
4842   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4843 
4844   // The dirty card rescan work is broken up into a "sequence"
4845   // of parallel tasks (per constituent space) that are dynamically
4846   // claimed by the parallel threads.
4847   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4848 
4849   // It turns out that even when we're using 1 thread, doing the work in a
4850   // separate thread causes wide variance in run times.  We can't help this
4851   // in the multi-threaded case, but we special-case n=1 here to get
4852   // repeatable measurements of the 1-thread overhead of the parallel code.
4853   if (n_workers > 1) {
4854     // Make refs discovery MT-safe, if it isn't already: it may not
4855     // necessarily be so, since it's possible that we are doing
4856     // ST marking.
4857     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4858     workers->run_task(&tsk);
4859   } else {
4860     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4861     tsk.work(0);
4862   }
4863 
4864   // restore, single-threaded for now, any preserved marks
4865   // as a result of work_q overflow
4866   restore_preserved_marks_if_any();
4867 }
4868 
4869 // Non-parallel version of remark
4870 void CMSCollector::do_remark_non_parallel() {
4871   ResourceMark rm;
4872   HandleMark   hm;
4873   GenCollectedHeap* gch = GenCollectedHeap::heap();
4874   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4875 
4876   MarkRefsIntoAndScanClosure
4877     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4878              &_markStack, this,
4879              false /* should_yield */, false /* not precleaning */);
4880   MarkFromDirtyCardsClosure
4881     markFromDirtyCardsClosure(this, _span,
4882                               NULL,  // space is set further below
4883                               &_markBitMap, &_markStack, &mrias_cl);
4884   {
4885     GCTraceTime(Trace, gc) t("grey object rescan", _gc_timer_cm);
4886     // Iterate over the dirty cards, setting the corresponding bits in the
4887     // mod union table.
4888     {
4889       ModUnionClosure modUnionClosure(&_modUnionTable);
4890       _ct->ct_bs()->dirty_card_iterate(
4891                       _cmsGen->used_region(),
4892                       &modUnionClosure);
4893     }
4894     // Having transferred these marks into the modUnionTable, we just need
4895     // to rescan the marked objects on the dirty cards in the modUnionTable.
4896     // The initial marking may have been done during an asynchronous
4897     // collection so there may be dirty bits in the mod-union table.
4898     const int alignment =
4899       CardTableModRefBS::card_size * BitsPerWord;
4900     {
4901       // ... First handle dirty cards in CMS gen
4902       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4903       MemRegion ur = _cmsGen->used_region();
4904       HeapWord* lb = ur.start();
4905       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
4906       MemRegion cms_span(lb, ub);
4907       _modUnionTable.dirty_range_iterate_clear(cms_span,
4908                                                &markFromDirtyCardsClosure);
4909       verify_work_stacks_empty();
4910       log_debug(gc, conc, stats)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4911     }
4912   }
4913   if (VerifyDuringGC &&
4914       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4915     HandleMark hm;  // Discard invalid handles created during verification
4916     Universe::verify();
4917   }
4918   {
4919     GCTraceTime(Trace, gc) t("root rescan", _gc_timer_cm);
4920 
4921     verify_work_stacks_empty();
4922 
4923     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4924     StrongRootsScope srs(1);
4925 
4926     gch->gen_process_roots(&srs,
4927                            GenCollectedHeap::OldGen,
4928                            true,  // young gen as roots
4929                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
4930                            should_unload_classes(),
4931                            &mrias_cl,
4932                            NULL,
4933                            NULL); // The dirty klasses will be handled below
4934 
4935     assert(should_unload_classes()
4936            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4937            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4938   }
4939 
4940   {
4941     GCTraceTime(Trace, gc) t("visit unhandled CLDs", _gc_timer_cm);
4942 
4943     verify_work_stacks_empty();
4944 
4945     // Scan all class loader data objects that might have been introduced
4946     // during concurrent marking.
4947     ResourceMark rm;
4948     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4949     for (int i = 0; i < array->length(); i++) {
4950       mrias_cl.do_cld_nv(array->at(i));
4951     }
4952 
4953     // We don't need to keep track of new CLDs anymore.
4954     ClassLoaderDataGraph::remember_new_clds(false);
4955 
4956     verify_work_stacks_empty();
4957   }
4958 
4959   {
4960     GCTraceTime(Trace, gc) t("dirty klass scan", _gc_timer_cm);
4961 
4962     verify_work_stacks_empty();
4963 
4964     RemarkKlassClosure remark_klass_closure(&mrias_cl);
4965     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4966 
4967     verify_work_stacks_empty();
4968   }
4969 
4970   // We might have added oops to ClassLoaderData::_handles during the
4971   // concurrent marking phase. These oops point to newly allocated objects
4972   // that are guaranteed to be kept alive. Either by the direct allocation
4973   // code, or when the young collector processes the roots. Hence,
4974   // we don't have to revisit the _handles block during the remark phase.
4975 
4976   verify_work_stacks_empty();
4977   // Restore evacuated mark words, if any, used for overflow list links
4978   restore_preserved_marks_if_any();
4979 
4980   verify_overflow_empty();
4981 }
4982 
4983 ////////////////////////////////////////////////////////
4984 // Parallel Reference Processing Task Proxy Class
4985 ////////////////////////////////////////////////////////
4986 class AbstractGangTaskWOopQueues : public AbstractGangTask {
4987   OopTaskQueueSet*       _queues;
4988   ParallelTaskTerminator _terminator;
4989  public:
4990   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
4991     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
4992   ParallelTaskTerminator* terminator() { return &_terminator; }
4993   OopTaskQueueSet* queues() { return _queues; }
4994 };
4995 
4996 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
4997   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4998   CMSCollector*          _collector;
4999   CMSBitMap*             _mark_bit_map;
5000   const MemRegion        _span;
5001   ProcessTask&           _task;
5002 
5003 public:
5004   CMSRefProcTaskProxy(ProcessTask&     task,
5005                       CMSCollector*    collector,
5006                       const MemRegion& span,
5007                       CMSBitMap*       mark_bit_map,
5008                       AbstractWorkGang* workers,
5009                       OopTaskQueueSet* task_queues):
5010     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5011       task_queues,
5012       workers->active_workers()),
5013     _task(task),
5014     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5015   {
5016     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5017            "Inconsistency in _span");
5018   }
5019 
5020   OopTaskQueueSet* task_queues() { return queues(); }
5021 
5022   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5023 
5024   void do_work_steal(int i,
5025                      CMSParDrainMarkingStackClosure* drain,
5026                      CMSParKeepAliveClosure* keep_alive,
5027                      int* seed);
5028 
5029   virtual void work(uint worker_id);
5030 };
5031 
5032 void CMSRefProcTaskProxy::work(uint worker_id) {
5033   ResourceMark rm;
5034   HandleMark hm;
5035   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5036   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5037                                         _mark_bit_map,
5038                                         work_queue(worker_id));
5039   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5040                                                  _mark_bit_map,
5041                                                  work_queue(worker_id));
5042   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5043   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5044   if (_task.marks_oops_alive()) {
5045     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5046                   _collector->hash_seed(worker_id));
5047   }
5048   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5049   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5050 }
5051 
5052 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5053   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5054   EnqueueTask& _task;
5055 
5056 public:
5057   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5058     : AbstractGangTask("Enqueue reference objects in parallel"),
5059       _task(task)
5060   { }
5061 
5062   virtual void work(uint worker_id)
5063   {
5064     _task.work(worker_id);
5065   }
5066 };
5067 
5068 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5069   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5070    _span(span),
5071    _bit_map(bit_map),
5072    _work_queue(work_queue),
5073    _mark_and_push(collector, span, bit_map, work_queue),
5074    _low_water_mark(MIN2((work_queue->max_elems()/4),
5075                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5076 { }
5077 
5078 // . see if we can share work_queues with ParNew? XXX
5079 void CMSRefProcTaskProxy::do_work_steal(int i,
5080   CMSParDrainMarkingStackClosure* drain,
5081   CMSParKeepAliveClosure* keep_alive,
5082   int* seed) {
5083   OopTaskQueue* work_q = work_queue(i);
5084   NOT_PRODUCT(int num_steals = 0;)
5085   oop obj_to_scan;
5086 
5087   while (true) {
5088     // Completely finish any left over work from (an) earlier round(s)
5089     drain->trim_queue(0);
5090     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5091                                          (size_t)ParGCDesiredObjsFromOverflowList);
5092     // Now check if there's any work in the overflow list
5093     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5094     // only affects the number of attempts made to get work from the
5095     // overflow list and does not affect the number of workers.  Just
5096     // pass ParallelGCThreads so this behavior is unchanged.
5097     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5098                                                 work_q,
5099                                                 ParallelGCThreads)) {
5100       // Found something in global overflow list;
5101       // not yet ready to go stealing work from others.
5102       // We'd like to assert(work_q->size() != 0, ...)
5103       // because we just took work from the overflow list,
5104       // but of course we can't, since all of that might have
5105       // been already stolen from us.
5106       continue;
5107     }
5108     // Verify that we have no work before we resort to stealing
5109     assert(work_q->size() == 0, "Have work, shouldn't steal");
5110     // Try to steal from other queues that have work
5111     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5112       NOT_PRODUCT(num_steals++;)
5113       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5114       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5115       // Do scanning work
5116       obj_to_scan->oop_iterate(keep_alive);
5117       // Loop around, finish this work, and try to steal some more
5118     } else if (terminator()->offer_termination()) {
5119       break;  // nirvana from the infinite cycle
5120     }
5121   }
5122   log_develop(gc, conc, stats)("\n\t(%d: stole %d oops)", i, num_steals);
5123 }
5124 
5125 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5126 {
5127   GenCollectedHeap* gch = GenCollectedHeap::heap();
5128   WorkGang* workers = gch->workers();
5129   assert(workers != NULL, "Need parallel worker threads.");
5130   CMSRefProcTaskProxy rp_task(task, &_collector,
5131                               _collector.ref_processor()->span(),
5132                               _collector.markBitMap(),
5133                               workers, _collector.task_queues());
5134   workers->run_task(&rp_task);
5135 }
5136 
5137 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5138 {
5139 
5140   GenCollectedHeap* gch = GenCollectedHeap::heap();
5141   WorkGang* workers = gch->workers();
5142   assert(workers != NULL, "Need parallel worker threads.");
5143   CMSRefEnqueueTaskProxy enq_task(task);
5144   workers->run_task(&enq_task);
5145 }
5146 
5147 void CMSCollector::refProcessingWork() {
5148   ResourceMark rm;
5149   HandleMark   hm;
5150 
5151   ReferenceProcessor* rp = ref_processor();
5152   assert(rp->span().equals(_span), "Spans should be equal");
5153   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5154   // Process weak references.
5155   rp->setup_policy(false);
5156   verify_work_stacks_empty();
5157 
5158   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5159                                           &_markStack, false /* !preclean */);
5160   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5161                                 _span, &_markBitMap, &_markStack,
5162                                 &cmsKeepAliveClosure, false /* !preclean */);
5163   {
5164     GCTraceTime(Debug, gc) t("weak refs processing", _gc_timer_cm);
5165 
5166     ReferenceProcessorStats stats;
5167     if (rp->processing_is_mt()) {
5168       // Set the degree of MT here.  If the discovery is done MT, there
5169       // may have been a different number of threads doing the discovery
5170       // and a different number of discovered lists may have Ref objects.
5171       // That is OK as long as the Reference lists are balanced (see
5172       // balance_all_queues() and balance_queues()).
5173       GenCollectedHeap* gch = GenCollectedHeap::heap();
5174       uint active_workers = ParallelGCThreads;
5175       WorkGang* workers = gch->workers();
5176       if (workers != NULL) {
5177         active_workers = workers->active_workers();
5178         // The expectation is that active_workers will have already
5179         // been set to a reasonable value.  If it has not been set,
5180         // investigate.
5181         assert(active_workers > 0, "Should have been set during scavenge");
5182       }
5183       rp->set_active_mt_degree(active_workers);
5184       CMSRefProcTaskExecutor task_executor(*this);
5185       stats = rp->process_discovered_references(&_is_alive_closure,
5186                                         &cmsKeepAliveClosure,
5187                                         &cmsDrainMarkingStackClosure,
5188                                         &task_executor,
5189                                         _gc_timer_cm);
5190     } else {
5191       stats = rp->process_discovered_references(&_is_alive_closure,
5192                                         &cmsKeepAliveClosure,
5193                                         &cmsDrainMarkingStackClosure,
5194                                         NULL,
5195                                         _gc_timer_cm);
5196     }
5197     _gc_tracer_cm->report_gc_reference_stats(stats);
5198 
5199   }
5200 
5201   // This is the point where the entire marking should have completed.
5202   verify_work_stacks_empty();
5203 
5204   if (should_unload_classes()) {
5205     {
5206       GCTraceTime(Debug, gc) t("class unloading", _gc_timer_cm);
5207 
5208       // Unload classes and purge the SystemDictionary.
5209       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5210 
5211       // Unload nmethods.
5212       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5213 
5214       // Prune dead klasses from subklass/sibling/implementor lists.
5215       Klass::clean_weak_klass_links(&_is_alive_closure);
5216     }
5217 
5218     {
5219       GCTraceTime(Debug, gc) t("scrub symbol table", _gc_timer_cm);
5220       // Clean up unreferenced symbols in symbol table.
5221       SymbolTable::unlink();
5222     }
5223 
5224     {
5225       GCTraceTime(Debug, gc) t("scrub string table", _gc_timer_cm);
5226       // Delete entries for dead interned strings.
5227       StringTable::unlink(&_is_alive_closure);
5228     }
5229   }
5230 
5231 
5232   // Restore any preserved marks as a result of mark stack or
5233   // work queue overflow
5234   restore_preserved_marks_if_any();  // done single-threaded for now
5235 
5236   rp->set_enqueuing_is_done(true);
5237   if (rp->processing_is_mt()) {
5238     rp->balance_all_queues();
5239     CMSRefProcTaskExecutor task_executor(*this);
5240     rp->enqueue_discovered_references(&task_executor);
5241   } else {
5242     rp->enqueue_discovered_references(NULL);
5243   }
5244   rp->verify_no_references_recorded();
5245   assert(!rp->discovery_enabled(), "should have been disabled");
5246 }
5247 
5248 #ifndef PRODUCT
5249 void CMSCollector::check_correct_thread_executing() {
5250   Thread* t = Thread::current();
5251   // Only the VM thread or the CMS thread should be here.
5252   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5253          "Unexpected thread type");
5254   // If this is the vm thread, the foreground process
5255   // should not be waiting.  Note that _foregroundGCIsActive is
5256   // true while the foreground collector is waiting.
5257   if (_foregroundGCShouldWait) {
5258     // We cannot be the VM thread
5259     assert(t->is_ConcurrentGC_thread(),
5260            "Should be CMS thread");
5261   } else {
5262     // We can be the CMS thread only if we are in a stop-world
5263     // phase of CMS collection.
5264     if (t->is_ConcurrentGC_thread()) {
5265       assert(_collectorState == InitialMarking ||
5266              _collectorState == FinalMarking,
5267              "Should be a stop-world phase");
5268       // The CMS thread should be holding the CMS_token.
5269       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5270              "Potential interference with concurrently "
5271              "executing VM thread");
5272     }
5273   }
5274 }
5275 #endif
5276 
5277 void CMSCollector::sweep() {
5278   assert(_collectorState == Sweeping, "just checking");
5279   check_correct_thread_executing();
5280   verify_work_stacks_empty();
5281   verify_overflow_empty();
5282   increment_sweep_count();
5283   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5284 
5285   _inter_sweep_timer.stop();
5286   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5287 
5288   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5289   _intra_sweep_timer.reset();
5290   _intra_sweep_timer.start();
5291   {
5292     GCTraceCPUTime tcpu;
5293     CMSPhaseAccounting pa(this, "Sweep", !PrintGCDetails);
5294     // First sweep the old gen
5295     {
5296       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5297                                bitMapLock());
5298       sweepWork(_cmsGen);
5299     }
5300 
5301     // Update Universe::_heap_*_at_gc figures.
5302     // We need all the free list locks to make the abstract state
5303     // transition from Sweeping to Resetting. See detailed note
5304     // further below.
5305     {
5306       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5307       // Update heap occupancy information which is used as
5308       // input to soft ref clearing policy at the next gc.
5309       Universe::update_heap_info_at_gc();
5310       _collectorState = Resizing;
5311     }
5312   }
5313   verify_work_stacks_empty();
5314   verify_overflow_empty();
5315 
5316   if (should_unload_classes()) {
5317     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5318     // requires that the virtual spaces are stable and not deleted.
5319     ClassLoaderDataGraph::set_should_purge(true);
5320   }
5321 
5322   _intra_sweep_timer.stop();
5323   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5324 
5325   _inter_sweep_timer.reset();
5326   _inter_sweep_timer.start();
5327 
5328   // We need to use a monotonically non-decreasing time in ms
5329   // or we will see time-warp warnings and os::javaTimeMillis()
5330   // does not guarantee monotonicity.
5331   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5332   update_time_of_last_gc(now);
5333 
5334   // NOTE on abstract state transitions:
5335   // Mutators allocate-live and/or mark the mod-union table dirty
5336   // based on the state of the collection.  The former is done in
5337   // the interval [Marking, Sweeping] and the latter in the interval
5338   // [Marking, Sweeping).  Thus the transitions into the Marking state
5339   // and out of the Sweeping state must be synchronously visible
5340   // globally to the mutators.
5341   // The transition into the Marking state happens with the world
5342   // stopped so the mutators will globally see it.  Sweeping is
5343   // done asynchronously by the background collector so the transition
5344   // from the Sweeping state to the Resizing state must be done
5345   // under the freelistLock (as is the check for whether to
5346   // allocate-live and whether to dirty the mod-union table).
5347   assert(_collectorState == Resizing, "Change of collector state to"
5348     " Resizing must be done under the freelistLocks (plural)");
5349 
5350   // Now that sweeping has been completed, we clear
5351   // the incremental_collection_failed flag,
5352   // thus inviting a younger gen collection to promote into
5353   // this generation. If such a promotion may still fail,
5354   // the flag will be set again when a young collection is
5355   // attempted.
5356   GenCollectedHeap* gch = GenCollectedHeap::heap();
5357   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5358   gch->update_full_collections_completed(_collection_count_start);
5359 }
5360 
5361 // FIX ME!!! Looks like this belongs in CFLSpace, with
5362 // CMSGen merely delegating to it.
5363 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5364   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5365   HeapWord*  minAddr        = _cmsSpace->bottom();
5366   HeapWord*  largestAddr    =
5367     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5368   if (largestAddr == NULL) {
5369     // The dictionary appears to be empty.  In this case
5370     // try to coalesce at the end of the heap.
5371     largestAddr = _cmsSpace->end();
5372   }
5373   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5374   size_t nearLargestOffset =
5375     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5376   log_debug(gc, freelist, stats)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5377                                  p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5378   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5379 }
5380 
5381 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5382   return addr >= _cmsSpace->nearLargestChunk();
5383 }
5384 
5385 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5386   return _cmsSpace->find_chunk_at_end();
5387 }
5388 
5389 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5390                                                     bool full) {
5391   // If the young generation has been collected, gather any statistics
5392   // that are of interest at this point.
5393   bool current_is_young = GenCollectedHeap::heap()->is_young_gen(current_generation);
5394   if (!full && current_is_young) {
5395     // Gather statistics on the young generation collection.
5396     collector()->stats().record_gc0_end(used());
5397   }
5398 }
5399 
5400 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5401   // We iterate over the space(s) underlying this generation,
5402   // checking the mark bit map to see if the bits corresponding
5403   // to specific blocks are marked or not. Blocks that are
5404   // marked are live and are not swept up. All remaining blocks
5405   // are swept up, with coalescing on-the-fly as we sweep up
5406   // contiguous free and/or garbage blocks:
5407   // We need to ensure that the sweeper synchronizes with allocators
5408   // and stop-the-world collectors. In particular, the following
5409   // locks are used:
5410   // . CMS token: if this is held, a stop the world collection cannot occur
5411   // . freelistLock: if this is held no allocation can occur from this
5412   //                 generation by another thread
5413   // . bitMapLock: if this is held, no other thread can access or update
5414   //
5415 
5416   // Note that we need to hold the freelistLock if we use
5417   // block iterate below; else the iterator might go awry if
5418   // a mutator (or promotion) causes block contents to change
5419   // (for instance if the allocator divvies up a block).
5420   // If we hold the free list lock, for all practical purposes
5421   // young generation GC's can't occur (they'll usually need to
5422   // promote), so we might as well prevent all young generation
5423   // GC's while we do a sweeping step. For the same reason, we might
5424   // as well take the bit map lock for the entire duration
5425 
5426   // check that we hold the requisite locks
5427   assert(have_cms_token(), "Should hold cms token");
5428   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5429   assert_lock_strong(old_gen->freelistLock());
5430   assert_lock_strong(bitMapLock());
5431 
5432   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5433   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5434   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5435                                           _inter_sweep_estimate.padded_average(),
5436                                           _intra_sweep_estimate.padded_average());
5437   old_gen->setNearLargestChunk();
5438 
5439   {
5440     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5441     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5442     // We need to free-up/coalesce garbage/blocks from a
5443     // co-terminal free run. This is done in the SweepClosure
5444     // destructor; so, do not remove this scope, else the
5445     // end-of-sweep-census below will be off by a little bit.
5446   }
5447   old_gen->cmsSpace()->sweep_completed();
5448   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5449   if (should_unload_classes()) {                // unloaded classes this cycle,
5450     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5451   } else {                                      // did not unload classes,
5452     _concurrent_cycles_since_last_unload++;     // ... increment count
5453   }
5454 }
5455 
5456 // Reset CMS data structures (for now just the marking bit map)
5457 // preparatory for the next cycle.
5458 void CMSCollector::reset_concurrent() {
5459   CMSTokenSyncWithLocks ts(true, bitMapLock());
5460 
5461   // If the state is not "Resetting", the foreground  thread
5462   // has done a collection and the resetting.
5463   if (_collectorState != Resetting) {
5464     assert(_collectorState == Idling, "The state should only change"
5465       " because the foreground collector has finished the collection");
5466     return;
5467   }
5468 
5469   // Clear the mark bitmap (no grey objects to start with)
5470   // for the next cycle.
5471   GCTraceCPUTime tcpu;
5472   CMSPhaseAccounting cmspa(this, "Reset", !PrintGCDetails);
5473 
5474   HeapWord* curAddr = _markBitMap.startWord();
5475   while (curAddr < _markBitMap.endWord()) {
5476     size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5477     MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5478     _markBitMap.clear_large_range(chunk);
5479     if (ConcurrentMarkSweepThread::should_yield() &&
5480         !foregroundGCIsActive() &&
5481         CMSYield) {
5482       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5483              "CMS thread should hold CMS token");
5484       assert_lock_strong(bitMapLock());
5485       bitMapLock()->unlock();
5486       ConcurrentMarkSweepThread::desynchronize(true);
5487       stopTimer();
5488       incrementYields();
5489 
5490       // See the comment in coordinator_yield()
5491       for (unsigned i = 0; i < CMSYieldSleepCount &&
5492                        ConcurrentMarkSweepThread::should_yield() &&
5493                        !CMSCollector::foregroundGCIsActive(); ++i) {
5494         os::sleep(Thread::current(), 1, false);
5495       }
5496 
5497       ConcurrentMarkSweepThread::synchronize(true);
5498       bitMapLock()->lock_without_safepoint_check();
5499       startTimer();
5500     }
5501     curAddr = chunk.end();
5502   }
5503   // A successful mostly concurrent collection has been done.
5504   // Because only the full (i.e., concurrent mode failure) collections
5505   // are being measured for gc overhead limits, clean the "near" flag
5506   // and count.
5507   size_policy()->reset_gc_overhead_limit_count();
5508   _collectorState = Idling;
5509 
5510   register_gc_end();
5511 }
5512 
5513 // Same as above but for STW paths
5514 void CMSCollector::reset_stw() {
5515   // already have the lock
5516   assert(_collectorState == Resetting, "just checking");
5517   assert_lock_strong(bitMapLock());
5518   GCIdMarkAndRestore gc_id_mark(_cmsThread->gc_id());
5519   _markBitMap.clear_all();
5520   _collectorState = Idling;
5521   register_gc_end();
5522 }
5523 
5524 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5525   GCTraceCPUTime tcpu;
5526   TraceCollectorStats tcs(counters());
5527 
5528   switch (op) {
5529     case CMS_op_checkpointRootsInitial: {
5530       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5531       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5532       checkpointRootsInitial();
5533       break;
5534     }
5535     case CMS_op_checkpointRootsFinal: {
5536       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5537       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5538       checkpointRootsFinal();
5539       break;
5540     }
5541     default:
5542       fatal("No such CMS_op");
5543   }
5544 }
5545 
5546 #ifndef PRODUCT
5547 size_t const CMSCollector::skip_header_HeapWords() {
5548   return FreeChunk::header_size();
5549 }
5550 
5551 // Try and collect here conditions that should hold when
5552 // CMS thread is exiting. The idea is that the foreground GC
5553 // thread should not be blocked if it wants to terminate
5554 // the CMS thread and yet continue to run the VM for a while
5555 // after that.
5556 void CMSCollector::verify_ok_to_terminate() const {
5557   assert(Thread::current()->is_ConcurrentGC_thread(),
5558          "should be called by CMS thread");
5559   assert(!_foregroundGCShouldWait, "should be false");
5560   // We could check here that all the various low-level locks
5561   // are not held by the CMS thread, but that is overkill; see
5562   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5563   // is checked.
5564 }
5565 #endif
5566 
5567 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5568    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5569           "missing Printezis mark?");
5570   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5571   size_t size = pointer_delta(nextOneAddr + 1, addr);
5572   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5573          "alignment problem");
5574   assert(size >= 3, "Necessary for Printezis marks to work");
5575   return size;
5576 }
5577 
5578 // A variant of the above (block_size_using_printezis_bits()) except
5579 // that we return 0 if the P-bits are not yet set.
5580 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5581   if (_markBitMap.isMarked(addr + 1)) {
5582     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5583     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5584     size_t size = pointer_delta(nextOneAddr + 1, addr);
5585     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5586            "alignment problem");
5587     assert(size >= 3, "Necessary for Printezis marks to work");
5588     return size;
5589   }
5590   return 0;
5591 }
5592 
5593 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5594   size_t sz = 0;
5595   oop p = (oop)addr;
5596   if (p->klass_or_null() != NULL) {
5597     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5598   } else {
5599     sz = block_size_using_printezis_bits(addr);
5600   }
5601   assert(sz > 0, "size must be nonzero");
5602   HeapWord* next_block = addr + sz;
5603   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5604                                              CardTableModRefBS::card_size);
5605   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5606          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5607          "must be different cards");
5608   return next_card;
5609 }
5610 
5611 
5612 // CMS Bit Map Wrapper /////////////////////////////////////////
5613 
5614 // Construct a CMS bit map infrastructure, but don't create the
5615 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5616 // further below.
5617 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5618   _bm(),
5619   _shifter(shifter),
5620   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5621                                     Monitor::_safepoint_check_sometimes) : NULL)
5622 {
5623   _bmStartWord = 0;
5624   _bmWordSize  = 0;
5625 }
5626 
5627 bool CMSBitMap::allocate(MemRegion mr) {
5628   _bmStartWord = mr.start();
5629   _bmWordSize  = mr.word_size();
5630   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5631                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5632   if (!brs.is_reserved()) {
5633     warning("CMS bit map allocation failure");
5634     return false;
5635   }
5636   // For now we'll just commit all of the bit map up front.
5637   // Later on we'll try to be more parsimonious with swap.
5638   if (!_virtual_space.initialize(brs, brs.size())) {
5639     warning("CMS bit map backing store failure");
5640     return false;
5641   }
5642   assert(_virtual_space.committed_size() == brs.size(),
5643          "didn't reserve backing store for all of CMS bit map?");
5644   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5645   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5646          _bmWordSize, "inconsistency in bit map sizing");
5647   _bm.set_size(_bmWordSize >> _shifter);
5648 
5649   // bm.clear(); // can we rely on getting zero'd memory? verify below
5650   assert(isAllClear(),
5651          "Expected zero'd memory from ReservedSpace constructor");
5652   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5653          "consistency check");
5654   return true;
5655 }
5656 
5657 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5658   HeapWord *next_addr, *end_addr, *last_addr;
5659   assert_locked();
5660   assert(covers(mr), "out-of-range error");
5661   // XXX assert that start and end are appropriately aligned
5662   for (next_addr = mr.start(), end_addr = mr.end();
5663        next_addr < end_addr; next_addr = last_addr) {
5664     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5665     last_addr = dirty_region.end();
5666     if (!dirty_region.is_empty()) {
5667       cl->do_MemRegion(dirty_region);
5668     } else {
5669       assert(last_addr == end_addr, "program logic");
5670       return;
5671     }
5672   }
5673 }
5674 
5675 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5676   _bm.print_on_error(st, prefix);
5677 }
5678 
5679 #ifndef PRODUCT
5680 void CMSBitMap::assert_locked() const {
5681   CMSLockVerifier::assert_locked(lock());
5682 }
5683 
5684 bool CMSBitMap::covers(MemRegion mr) const {
5685   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5686   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5687          "size inconsistency");
5688   return (mr.start() >= _bmStartWord) &&
5689          (mr.end()   <= endWord());
5690 }
5691 
5692 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5693     return (start >= _bmStartWord && (start + size) <= endWord());
5694 }
5695 
5696 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5697   // verify that there are no 1 bits in the interval [left, right)
5698   FalseBitMapClosure falseBitMapClosure;
5699   iterate(&falseBitMapClosure, left, right);
5700 }
5701 
5702 void CMSBitMap::region_invariant(MemRegion mr)
5703 {
5704   assert_locked();
5705   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5706   assert(!mr.is_empty(), "unexpected empty region");
5707   assert(covers(mr), "mr should be covered by bit map");
5708   // convert address range into offset range
5709   size_t start_ofs = heapWordToOffset(mr.start());
5710   // Make sure that end() is appropriately aligned
5711   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5712                         (1 << (_shifter+LogHeapWordSize))),
5713          "Misaligned mr.end()");
5714   size_t end_ofs   = heapWordToOffset(mr.end());
5715   assert(end_ofs > start_ofs, "Should mark at least one bit");
5716 }
5717 
5718 #endif
5719 
5720 bool CMSMarkStack::allocate(size_t size) {
5721   // allocate a stack of the requisite depth
5722   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5723                    size * sizeof(oop)));
5724   if (!rs.is_reserved()) {
5725     warning("CMSMarkStack allocation failure");
5726     return false;
5727   }
5728   if (!_virtual_space.initialize(rs, rs.size())) {
5729     warning("CMSMarkStack backing store failure");
5730     return false;
5731   }
5732   assert(_virtual_space.committed_size() == rs.size(),
5733          "didn't reserve backing store for all of CMS stack?");
5734   _base = (oop*)(_virtual_space.low());
5735   _index = 0;
5736   _capacity = size;
5737   NOT_PRODUCT(_max_depth = 0);
5738   return true;
5739 }
5740 
5741 // XXX FIX ME !!! In the MT case we come in here holding a
5742 // leaf lock. For printing we need to take a further lock
5743 // which has lower rank. We need to recalibrate the two
5744 // lock-ranks involved in order to be able to print the
5745 // messages below. (Or defer the printing to the caller.
5746 // For now we take the expedient path of just disabling the
5747 // messages for the problematic case.)
5748 void CMSMarkStack::expand() {
5749   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5750   if (_capacity == MarkStackSizeMax) {
5751     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5752       // We print a warning message only once per CMS cycle.
5753       log_debug(gc, conc)(" (benign) Hit CMSMarkStack max size limit");
5754     }
5755     return;
5756   }
5757   // Double capacity if possible
5758   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5759   // Do not give up existing stack until we have managed to
5760   // get the double capacity that we desired.
5761   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5762                    new_capacity * sizeof(oop)));
5763   if (rs.is_reserved()) {
5764     // Release the backing store associated with old stack
5765     _virtual_space.release();
5766     // Reinitialize virtual space for new stack
5767     if (!_virtual_space.initialize(rs, rs.size())) {
5768       fatal("Not enough swap for expanded marking stack");
5769     }
5770     _base = (oop*)(_virtual_space.low());
5771     _index = 0;
5772     _capacity = new_capacity;
5773   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5774     // Failed to double capacity, continue;
5775     // we print a detail message only once per CMS cycle.
5776     log_debug(gc, conc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5777                         _capacity / K, new_capacity / K);
5778   }
5779 }
5780 
5781 
5782 // Closures
5783 // XXX: there seems to be a lot of code  duplication here;
5784 // should refactor and consolidate common code.
5785 
5786 // This closure is used to mark refs into the CMS generation in
5787 // the CMS bit map. Called at the first checkpoint. This closure
5788 // assumes that we do not need to re-mark dirty cards; if the CMS
5789 // generation on which this is used is not an oldest
5790 // generation then this will lose younger_gen cards!
5791 
5792 MarkRefsIntoClosure::MarkRefsIntoClosure(
5793   MemRegion span, CMSBitMap* bitMap):
5794     _span(span),
5795     _bitMap(bitMap)
5796 {
5797   assert(ref_processor() == NULL, "deliberately left NULL");
5798   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5799 }
5800 
5801 void MarkRefsIntoClosure::do_oop(oop obj) {
5802   // if p points into _span, then mark corresponding bit in _markBitMap
5803   assert(obj->is_oop(), "expected an oop");
5804   HeapWord* addr = (HeapWord*)obj;
5805   if (_span.contains(addr)) {
5806     // this should be made more efficient
5807     _bitMap->mark(addr);
5808   }
5809 }
5810 
5811 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
5812 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
5813 
5814 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
5815   MemRegion span, CMSBitMap* bitMap):
5816     _span(span),
5817     _bitMap(bitMap)
5818 {
5819   assert(ref_processor() == NULL, "deliberately left NULL");
5820   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5821 }
5822 
5823 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
5824   // if p points into _span, then mark corresponding bit in _markBitMap
5825   assert(obj->is_oop(), "expected an oop");
5826   HeapWord* addr = (HeapWord*)obj;
5827   if (_span.contains(addr)) {
5828     // this should be made more efficient
5829     _bitMap->par_mark(addr);
5830   }
5831 }
5832 
5833 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
5834 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
5835 
5836 // A variant of the above, used for CMS marking verification.
5837 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5838   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5839     _span(span),
5840     _verification_bm(verification_bm),
5841     _cms_bm(cms_bm)
5842 {
5843   assert(ref_processor() == NULL, "deliberately left NULL");
5844   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5845 }
5846 
5847 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5848   // if p points into _span, then mark corresponding bit in _markBitMap
5849   assert(obj->is_oop(), "expected an oop");
5850   HeapWord* addr = (HeapWord*)obj;
5851   if (_span.contains(addr)) {
5852     _verification_bm->mark(addr);
5853     if (!_cms_bm->isMarked(addr)) {
5854       LogHandle(gc, verify) log;
5855       ResourceMark rm;
5856       oop(addr)->print_on(log.info_stream());
5857       log.info(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5858       fatal("... aborting");
5859     }
5860   }
5861 }
5862 
5863 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5864 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
5865 
5866 //////////////////////////////////////////////////
5867 // MarkRefsIntoAndScanClosure
5868 //////////////////////////////////////////////////
5869 
5870 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5871                                                        ReferenceProcessor* rp,
5872                                                        CMSBitMap* bit_map,
5873                                                        CMSBitMap* mod_union_table,
5874                                                        CMSMarkStack*  mark_stack,
5875                                                        CMSCollector* collector,
5876                                                        bool should_yield,
5877                                                        bool concurrent_precleaning):
5878   _collector(collector),
5879   _span(span),
5880   _bit_map(bit_map),
5881   _mark_stack(mark_stack),
5882   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
5883                       mark_stack, concurrent_precleaning),
5884   _yield(should_yield),
5885   _concurrent_precleaning(concurrent_precleaning),
5886   _freelistLock(NULL)
5887 {
5888   // FIXME: Should initialize in base class constructor.
5889   assert(rp != NULL, "ref_processor shouldn't be NULL");
5890   set_ref_processor_internal(rp);
5891 }
5892 
5893 // This closure is used to mark refs into the CMS generation at the
5894 // second (final) checkpoint, and to scan and transitively follow
5895 // the unmarked oops. It is also used during the concurrent precleaning
5896 // phase while scanning objects on dirty cards in the CMS generation.
5897 // The marks are made in the marking bit map and the marking stack is
5898 // used for keeping the (newly) grey objects during the scan.
5899 // The parallel version (Par_...) appears further below.
5900 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5901   if (obj != NULL) {
5902     assert(obj->is_oop(), "expected an oop");
5903     HeapWord* addr = (HeapWord*)obj;
5904     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5905     assert(_collector->overflow_list_is_empty(),
5906            "overflow list should be empty");
5907     if (_span.contains(addr) &&
5908         !_bit_map->isMarked(addr)) {
5909       // mark bit map (object is now grey)
5910       _bit_map->mark(addr);
5911       // push on marking stack (stack should be empty), and drain the
5912       // stack by applying this closure to the oops in the oops popped
5913       // from the stack (i.e. blacken the grey objects)
5914       bool res = _mark_stack->push(obj);
5915       assert(res, "Should have space to push on empty stack");
5916       do {
5917         oop new_oop = _mark_stack->pop();
5918         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
5919         assert(_bit_map->isMarked((HeapWord*)new_oop),
5920                "only grey objects on this stack");
5921         // iterate over the oops in this oop, marking and pushing
5922         // the ones in CMS heap (i.e. in _span).
5923         new_oop->oop_iterate(&_pushAndMarkClosure);
5924         // check if it's time to yield
5925         do_yield_check();
5926       } while (!_mark_stack->isEmpty() ||
5927                (!_concurrent_precleaning && take_from_overflow_list()));
5928         // if marking stack is empty, and we are not doing this
5929         // during precleaning, then check the overflow list
5930     }
5931     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5932     assert(_collector->overflow_list_is_empty(),
5933            "overflow list was drained above");
5934 
5935     assert(_collector->no_preserved_marks(),
5936            "All preserved marks should have been restored above");
5937   }
5938 }
5939 
5940 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5941 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
5942 
5943 void MarkRefsIntoAndScanClosure::do_yield_work() {
5944   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5945          "CMS thread should hold CMS token");
5946   assert_lock_strong(_freelistLock);
5947   assert_lock_strong(_bit_map->lock());
5948   // relinquish the free_list_lock and bitMaplock()
5949   _bit_map->lock()->unlock();
5950   _freelistLock->unlock();
5951   ConcurrentMarkSweepThread::desynchronize(true);
5952   _collector->stopTimer();
5953   _collector->incrementYields();
5954 
5955   // See the comment in coordinator_yield()
5956   for (unsigned i = 0;
5957        i < CMSYieldSleepCount &&
5958        ConcurrentMarkSweepThread::should_yield() &&
5959        !CMSCollector::foregroundGCIsActive();
5960        ++i) {
5961     os::sleep(Thread::current(), 1, false);
5962   }
5963 
5964   ConcurrentMarkSweepThread::synchronize(true);
5965   _freelistLock->lock_without_safepoint_check();
5966   _bit_map->lock()->lock_without_safepoint_check();
5967   _collector->startTimer();
5968 }
5969 
5970 ///////////////////////////////////////////////////////////
5971 // Par_MarkRefsIntoAndScanClosure: a parallel version of
5972 //                                 MarkRefsIntoAndScanClosure
5973 ///////////////////////////////////////////////////////////
5974 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
5975   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
5976   CMSBitMap* bit_map, OopTaskQueue* work_queue):
5977   _span(span),
5978   _bit_map(bit_map),
5979   _work_queue(work_queue),
5980   _low_water_mark(MIN2((work_queue->max_elems()/4),
5981                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
5982   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
5983 {
5984   // FIXME: Should initialize in base class constructor.
5985   assert(rp != NULL, "ref_processor shouldn't be NULL");
5986   set_ref_processor_internal(rp);
5987 }
5988 
5989 // This closure is used to mark refs into the CMS generation at the
5990 // second (final) checkpoint, and to scan and transitively follow
5991 // the unmarked oops. The marks are made in the marking bit map and
5992 // the work_queue is used for keeping the (newly) grey objects during
5993 // the scan phase whence they are also available for stealing by parallel
5994 // threads. Since the marking bit map is shared, updates are
5995 // synchronized (via CAS).
5996 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5997   if (obj != NULL) {
5998     // Ignore mark word because this could be an already marked oop
5999     // that may be chained at the end of the overflow list.
6000     assert(obj->is_oop(true), "expected an oop");
6001     HeapWord* addr = (HeapWord*)obj;
6002     if (_span.contains(addr) &&
6003         !_bit_map->isMarked(addr)) {
6004       // mark bit map (object will become grey):
6005       // It is possible for several threads to be
6006       // trying to "claim" this object concurrently;
6007       // the unique thread that succeeds in marking the
6008       // object first will do the subsequent push on
6009       // to the work queue (or overflow list).
6010       if (_bit_map->par_mark(addr)) {
6011         // push on work_queue (which may not be empty), and trim the
6012         // queue to an appropriate length by applying this closure to
6013         // the oops in the oops popped from the stack (i.e. blacken the
6014         // grey objects)
6015         bool res = _work_queue->push(obj);
6016         assert(res, "Low water mark should be less than capacity?");
6017         trim_queue(_low_water_mark);
6018       } // Else, another thread claimed the object
6019     }
6020   }
6021 }
6022 
6023 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6024 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6025 
6026 // This closure is used to rescan the marked objects on the dirty cards
6027 // in the mod union table and the card table proper.
6028 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6029   oop p, MemRegion mr) {
6030 
6031   size_t size = 0;
6032   HeapWord* addr = (HeapWord*)p;
6033   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6034   assert(_span.contains(addr), "we are scanning the CMS generation");
6035   // check if it's time to yield
6036   if (do_yield_check()) {
6037     // We yielded for some foreground stop-world work,
6038     // and we have been asked to abort this ongoing preclean cycle.
6039     return 0;
6040   }
6041   if (_bitMap->isMarked(addr)) {
6042     // it's marked; is it potentially uninitialized?
6043     if (p->klass_or_null() != NULL) {
6044         // an initialized object; ignore mark word in verification below
6045         // since we are running concurrent with mutators
6046         assert(p->is_oop(true), "should be an oop");
6047         if (p->is_objArray()) {
6048           // objArrays are precisely marked; restrict scanning
6049           // to dirty cards only.
6050           size = CompactibleFreeListSpace::adjustObjectSize(
6051                    p->oop_iterate_size(_scanningClosure, mr));
6052         } else {
6053           // A non-array may have been imprecisely marked; we need
6054           // to scan object in its entirety.
6055           size = CompactibleFreeListSpace::adjustObjectSize(
6056                    p->oop_iterate_size(_scanningClosure));
6057         }
6058         #ifdef ASSERT
6059           size_t direct_size =
6060             CompactibleFreeListSpace::adjustObjectSize(p->size());
6061           assert(size == direct_size, "Inconsistency in size");
6062           assert(size >= 3, "Necessary for Printezis marks to work");
6063           if (!_bitMap->isMarked(addr+1)) {
6064             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6065           } else {
6066             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6067             assert(_bitMap->isMarked(addr+size-1),
6068                    "inconsistent Printezis mark");
6069           }
6070         #endif // ASSERT
6071     } else {
6072       // An uninitialized object.
6073       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6074       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6075       size = pointer_delta(nextOneAddr + 1, addr);
6076       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6077              "alignment problem");
6078       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6079       // will dirty the card when the klass pointer is installed in the
6080       // object (signaling the completion of initialization).
6081     }
6082   } else {
6083     // Either a not yet marked object or an uninitialized object
6084     if (p->klass_or_null() == NULL) {
6085       // An uninitialized object, skip to the next card, since
6086       // we may not be able to read its P-bits yet.
6087       assert(size == 0, "Initial value");
6088     } else {
6089       // An object not (yet) reached by marking: we merely need to
6090       // compute its size so as to go look at the next block.
6091       assert(p->is_oop(true), "should be an oop");
6092       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6093     }
6094   }
6095   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6096   return size;
6097 }
6098 
6099 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6100   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6101          "CMS thread should hold CMS token");
6102   assert_lock_strong(_freelistLock);
6103   assert_lock_strong(_bitMap->lock());
6104   // relinquish the free_list_lock and bitMaplock()
6105   _bitMap->lock()->unlock();
6106   _freelistLock->unlock();
6107   ConcurrentMarkSweepThread::desynchronize(true);
6108   _collector->stopTimer();
6109   _collector->incrementYields();
6110 
6111   // See the comment in coordinator_yield()
6112   for (unsigned i = 0; i < CMSYieldSleepCount &&
6113                    ConcurrentMarkSweepThread::should_yield() &&
6114                    !CMSCollector::foregroundGCIsActive(); ++i) {
6115     os::sleep(Thread::current(), 1, false);
6116   }
6117 
6118   ConcurrentMarkSweepThread::synchronize(true);
6119   _freelistLock->lock_without_safepoint_check();
6120   _bitMap->lock()->lock_without_safepoint_check();
6121   _collector->startTimer();
6122 }
6123 
6124 
6125 //////////////////////////////////////////////////////////////////
6126 // SurvivorSpacePrecleanClosure
6127 //////////////////////////////////////////////////////////////////
6128 // This (single-threaded) closure is used to preclean the oops in
6129 // the survivor spaces.
6130 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6131 
6132   HeapWord* addr = (HeapWord*)p;
6133   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6134   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6135   assert(p->klass_or_null() != NULL, "object should be initialized");
6136   // an initialized object; ignore mark word in verification below
6137   // since we are running concurrent with mutators
6138   assert(p->is_oop(true), "should be an oop");
6139   // Note that we do not yield while we iterate over
6140   // the interior oops of p, pushing the relevant ones
6141   // on our marking stack.
6142   size_t size = p->oop_iterate_size(_scanning_closure);
6143   do_yield_check();
6144   // Observe that below, we do not abandon the preclean
6145   // phase as soon as we should; rather we empty the
6146   // marking stack before returning. This is to satisfy
6147   // some existing assertions. In general, it may be a
6148   // good idea to abort immediately and complete the marking
6149   // from the grey objects at a later time.
6150   while (!_mark_stack->isEmpty()) {
6151     oop new_oop = _mark_stack->pop();
6152     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6153     assert(_bit_map->isMarked((HeapWord*)new_oop),
6154            "only grey objects on this stack");
6155     // iterate over the oops in this oop, marking and pushing
6156     // the ones in CMS heap (i.e. in _span).
6157     new_oop->oop_iterate(_scanning_closure);
6158     // check if it's time to yield
6159     do_yield_check();
6160   }
6161   unsigned int after_count =
6162     GenCollectedHeap::heap()->total_collections();
6163   bool abort = (_before_count != after_count) ||
6164                _collector->should_abort_preclean();
6165   return abort ? 0 : size;
6166 }
6167 
6168 void SurvivorSpacePrecleanClosure::do_yield_work() {
6169   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6170          "CMS thread should hold CMS token");
6171   assert_lock_strong(_bit_map->lock());
6172   // Relinquish the bit map lock
6173   _bit_map->lock()->unlock();
6174   ConcurrentMarkSweepThread::desynchronize(true);
6175   _collector->stopTimer();
6176   _collector->incrementYields();
6177 
6178   // See the comment in coordinator_yield()
6179   for (unsigned i = 0; i < CMSYieldSleepCount &&
6180                        ConcurrentMarkSweepThread::should_yield() &&
6181                        !CMSCollector::foregroundGCIsActive(); ++i) {
6182     os::sleep(Thread::current(), 1, false);
6183   }
6184 
6185   ConcurrentMarkSweepThread::synchronize(true);
6186   _bit_map->lock()->lock_without_safepoint_check();
6187   _collector->startTimer();
6188 }
6189 
6190 // This closure is used to rescan the marked objects on the dirty cards
6191 // in the mod union table and the card table proper. In the parallel
6192 // case, although the bitMap is shared, we do a single read so the
6193 // isMarked() query is "safe".
6194 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6195   // Ignore mark word because we are running concurrent with mutators
6196   assert(p->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6197   HeapWord* addr = (HeapWord*)p;
6198   assert(_span.contains(addr), "we are scanning the CMS generation");
6199   bool is_obj_array = false;
6200   #ifdef ASSERT
6201     if (!_parallel) {
6202       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6203       assert(_collector->overflow_list_is_empty(),
6204              "overflow list should be empty");
6205 
6206     }
6207   #endif // ASSERT
6208   if (_bit_map->isMarked(addr)) {
6209     // Obj arrays are precisely marked, non-arrays are not;
6210     // so we scan objArrays precisely and non-arrays in their
6211     // entirety.
6212     if (p->is_objArray()) {
6213       is_obj_array = true;
6214       if (_parallel) {
6215         p->oop_iterate(_par_scan_closure, mr);
6216       } else {
6217         p->oop_iterate(_scan_closure, mr);
6218       }
6219     } else {
6220       if (_parallel) {
6221         p->oop_iterate(_par_scan_closure);
6222       } else {
6223         p->oop_iterate(_scan_closure);
6224       }
6225     }
6226   }
6227   #ifdef ASSERT
6228     if (!_parallel) {
6229       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6230       assert(_collector->overflow_list_is_empty(),
6231              "overflow list should be empty");
6232 
6233     }
6234   #endif // ASSERT
6235   return is_obj_array;
6236 }
6237 
6238 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6239                         MemRegion span,
6240                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6241                         bool should_yield, bool verifying):
6242   _collector(collector),
6243   _span(span),
6244   _bitMap(bitMap),
6245   _mut(&collector->_modUnionTable),
6246   _markStack(markStack),
6247   _yield(should_yield),
6248   _skipBits(0)
6249 {
6250   assert(_markStack->isEmpty(), "stack should be empty");
6251   _finger = _bitMap->startWord();
6252   _threshold = _finger;
6253   assert(_collector->_restart_addr == NULL, "Sanity check");
6254   assert(_span.contains(_finger), "Out of bounds _finger?");
6255   DEBUG_ONLY(_verifying = verifying;)
6256 }
6257 
6258 void MarkFromRootsClosure::reset(HeapWord* addr) {
6259   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6260   assert(_span.contains(addr), "Out of bounds _finger?");
6261   _finger = addr;
6262   _threshold = (HeapWord*)round_to(
6263                  (intptr_t)_finger, CardTableModRefBS::card_size);
6264 }
6265 
6266 // Should revisit to see if this should be restructured for
6267 // greater efficiency.
6268 bool MarkFromRootsClosure::do_bit(size_t offset) {
6269   if (_skipBits > 0) {
6270     _skipBits--;
6271     return true;
6272   }
6273   // convert offset into a HeapWord*
6274   HeapWord* addr = _bitMap->startWord() + offset;
6275   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6276          "address out of range");
6277   assert(_bitMap->isMarked(addr), "tautology");
6278   if (_bitMap->isMarked(addr+1)) {
6279     // this is an allocated but not yet initialized object
6280     assert(_skipBits == 0, "tautology");
6281     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6282     oop p = oop(addr);
6283     if (p->klass_or_null() == NULL) {
6284       DEBUG_ONLY(if (!_verifying) {)
6285         // We re-dirty the cards on which this object lies and increase
6286         // the _threshold so that we'll come back to scan this object
6287         // during the preclean or remark phase. (CMSCleanOnEnter)
6288         if (CMSCleanOnEnter) {
6289           size_t sz = _collector->block_size_using_printezis_bits(addr);
6290           HeapWord* end_card_addr   = (HeapWord*)round_to(
6291                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6292           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6293           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6294           // Bump _threshold to end_card_addr; note that
6295           // _threshold cannot possibly exceed end_card_addr, anyhow.
6296           // This prevents future clearing of the card as the scan proceeds
6297           // to the right.
6298           assert(_threshold <= end_card_addr,
6299                  "Because we are just scanning into this object");
6300           if (_threshold < end_card_addr) {
6301             _threshold = end_card_addr;
6302           }
6303           if (p->klass_or_null() != NULL) {
6304             // Redirty the range of cards...
6305             _mut->mark_range(redirty_range);
6306           } // ...else the setting of klass will dirty the card anyway.
6307         }
6308       DEBUG_ONLY(})
6309       return true;
6310     }
6311   }
6312   scanOopsInOop(addr);
6313   return true;
6314 }
6315 
6316 // We take a break if we've been at this for a while,
6317 // so as to avoid monopolizing the locks involved.
6318 void MarkFromRootsClosure::do_yield_work() {
6319   // First give up the locks, then yield, then re-lock
6320   // We should probably use a constructor/destructor idiom to
6321   // do this unlock/lock or modify the MutexUnlocker class to
6322   // serve our purpose. XXX
6323   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6324          "CMS thread should hold CMS token");
6325   assert_lock_strong(_bitMap->lock());
6326   _bitMap->lock()->unlock();
6327   ConcurrentMarkSweepThread::desynchronize(true);
6328   _collector->stopTimer();
6329   _collector->incrementYields();
6330 
6331   // See the comment in coordinator_yield()
6332   for (unsigned i = 0; i < CMSYieldSleepCount &&
6333                        ConcurrentMarkSweepThread::should_yield() &&
6334                        !CMSCollector::foregroundGCIsActive(); ++i) {
6335     os::sleep(Thread::current(), 1, false);
6336   }
6337 
6338   ConcurrentMarkSweepThread::synchronize(true);
6339   _bitMap->lock()->lock_without_safepoint_check();
6340   _collector->startTimer();
6341 }
6342 
6343 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6344   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6345   assert(_markStack->isEmpty(),
6346          "should drain stack to limit stack usage");
6347   // convert ptr to an oop preparatory to scanning
6348   oop obj = oop(ptr);
6349   // Ignore mark word in verification below, since we
6350   // may be running concurrent with mutators.
6351   assert(obj->is_oop(true), "should be an oop");
6352   assert(_finger <= ptr, "_finger runneth ahead");
6353   // advance the finger to right end of this object
6354   _finger = ptr + obj->size();
6355   assert(_finger > ptr, "we just incremented it above");
6356   // On large heaps, it may take us some time to get through
6357   // the marking phase. During
6358   // this time it's possible that a lot of mutations have
6359   // accumulated in the card table and the mod union table --
6360   // these mutation records are redundant until we have
6361   // actually traced into the corresponding card.
6362   // Here, we check whether advancing the finger would make
6363   // us cross into a new card, and if so clear corresponding
6364   // cards in the MUT (preclean them in the card-table in the
6365   // future).
6366 
6367   DEBUG_ONLY(if (!_verifying) {)
6368     // The clean-on-enter optimization is disabled by default,
6369     // until we fix 6178663.
6370     if (CMSCleanOnEnter && (_finger > _threshold)) {
6371       // [_threshold, _finger) represents the interval
6372       // of cards to be cleared  in MUT (or precleaned in card table).
6373       // The set of cards to be cleared is all those that overlap
6374       // with the interval [_threshold, _finger); note that
6375       // _threshold is always kept card-aligned but _finger isn't
6376       // always card-aligned.
6377       HeapWord* old_threshold = _threshold;
6378       assert(old_threshold == (HeapWord*)round_to(
6379               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6380              "_threshold should always be card-aligned");
6381       _threshold = (HeapWord*)round_to(
6382                      (intptr_t)_finger, CardTableModRefBS::card_size);
6383       MemRegion mr(old_threshold, _threshold);
6384       assert(!mr.is_empty(), "Control point invariant");
6385       assert(_span.contains(mr), "Should clear within span");
6386       _mut->clear_range(mr);
6387     }
6388   DEBUG_ONLY(})
6389   // Note: the finger doesn't advance while we drain
6390   // the stack below.
6391   PushOrMarkClosure pushOrMarkClosure(_collector,
6392                                       _span, _bitMap, _markStack,
6393                                       _finger, this);
6394   bool res = _markStack->push(obj);
6395   assert(res, "Empty non-zero size stack should have space for single push");
6396   while (!_markStack->isEmpty()) {
6397     oop new_oop = _markStack->pop();
6398     // Skip verifying header mark word below because we are
6399     // running concurrent with mutators.
6400     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6401     // now scan this oop's oops
6402     new_oop->oop_iterate(&pushOrMarkClosure);
6403     do_yield_check();
6404   }
6405   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6406 }
6407 
6408 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6409                        CMSCollector* collector, MemRegion span,
6410                        CMSBitMap* bit_map,
6411                        OopTaskQueue* work_queue,
6412                        CMSMarkStack*  overflow_stack):
6413   _collector(collector),
6414   _whole_span(collector->_span),
6415   _span(span),
6416   _bit_map(bit_map),
6417   _mut(&collector->_modUnionTable),
6418   _work_queue(work_queue),
6419   _overflow_stack(overflow_stack),
6420   _skip_bits(0),
6421   _task(task)
6422 {
6423   assert(_work_queue->size() == 0, "work_queue should be empty");
6424   _finger = span.start();
6425   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6426   assert(_span.contains(_finger), "Out of bounds _finger?");
6427 }
6428 
6429 // Should revisit to see if this should be restructured for
6430 // greater efficiency.
6431 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6432   if (_skip_bits > 0) {
6433     _skip_bits--;
6434     return true;
6435   }
6436   // convert offset into a HeapWord*
6437   HeapWord* addr = _bit_map->startWord() + offset;
6438   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6439          "address out of range");
6440   assert(_bit_map->isMarked(addr), "tautology");
6441   if (_bit_map->isMarked(addr+1)) {
6442     // this is an allocated object that might not yet be initialized
6443     assert(_skip_bits == 0, "tautology");
6444     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6445     oop p = oop(addr);
6446     if (p->klass_or_null() == NULL) {
6447       // in the case of Clean-on-Enter optimization, redirty card
6448       // and avoid clearing card by increasing  the threshold.
6449       return true;
6450     }
6451   }
6452   scan_oops_in_oop(addr);
6453   return true;
6454 }
6455 
6456 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6457   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6458   // Should we assert that our work queue is empty or
6459   // below some drain limit?
6460   assert(_work_queue->size() == 0,
6461          "should drain stack to limit stack usage");
6462   // convert ptr to an oop preparatory to scanning
6463   oop obj = oop(ptr);
6464   // Ignore mark word in verification below, since we
6465   // may be running concurrent with mutators.
6466   assert(obj->is_oop(true), "should be an oop");
6467   assert(_finger <= ptr, "_finger runneth ahead");
6468   // advance the finger to right end of this object
6469   _finger = ptr + obj->size();
6470   assert(_finger > ptr, "we just incremented it above");
6471   // On large heaps, it may take us some time to get through
6472   // the marking phase. During
6473   // this time it's possible that a lot of mutations have
6474   // accumulated in the card table and the mod union table --
6475   // these mutation records are redundant until we have
6476   // actually traced into the corresponding card.
6477   // Here, we check whether advancing the finger would make
6478   // us cross into a new card, and if so clear corresponding
6479   // cards in the MUT (preclean them in the card-table in the
6480   // future).
6481 
6482   // The clean-on-enter optimization is disabled by default,
6483   // until we fix 6178663.
6484   if (CMSCleanOnEnter && (_finger > _threshold)) {
6485     // [_threshold, _finger) represents the interval
6486     // of cards to be cleared  in MUT (or precleaned in card table).
6487     // The set of cards to be cleared is all those that overlap
6488     // with the interval [_threshold, _finger); note that
6489     // _threshold is always kept card-aligned but _finger isn't
6490     // always card-aligned.
6491     HeapWord* old_threshold = _threshold;
6492     assert(old_threshold == (HeapWord*)round_to(
6493             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6494            "_threshold should always be card-aligned");
6495     _threshold = (HeapWord*)round_to(
6496                    (intptr_t)_finger, CardTableModRefBS::card_size);
6497     MemRegion mr(old_threshold, _threshold);
6498     assert(!mr.is_empty(), "Control point invariant");
6499     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6500     _mut->clear_range(mr);
6501   }
6502 
6503   // Note: the local finger doesn't advance while we drain
6504   // the stack below, but the global finger sure can and will.
6505   HeapWord** gfa = _task->global_finger_addr();
6506   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6507                                       _span, _bit_map,
6508                                       _work_queue,
6509                                       _overflow_stack,
6510                                       _finger,
6511                                       gfa, this);
6512   bool res = _work_queue->push(obj);   // overflow could occur here
6513   assert(res, "Will hold once we use workqueues");
6514   while (true) {
6515     oop new_oop;
6516     if (!_work_queue->pop_local(new_oop)) {
6517       // We emptied our work_queue; check if there's stuff that can
6518       // be gotten from the overflow stack.
6519       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6520             _overflow_stack, _work_queue)) {
6521         do_yield_check();
6522         continue;
6523       } else {  // done
6524         break;
6525       }
6526     }
6527     // Skip verifying header mark word below because we are
6528     // running concurrent with mutators.
6529     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6530     // now scan this oop's oops
6531     new_oop->oop_iterate(&pushOrMarkClosure);
6532     do_yield_check();
6533   }
6534   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6535 }
6536 
6537 // Yield in response to a request from VM Thread or
6538 // from mutators.
6539 void Par_MarkFromRootsClosure::do_yield_work() {
6540   assert(_task != NULL, "sanity");
6541   _task->yield();
6542 }
6543 
6544 // A variant of the above used for verifying CMS marking work.
6545 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6546                         MemRegion span,
6547                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6548                         CMSMarkStack*  mark_stack):
6549   _collector(collector),
6550   _span(span),
6551   _verification_bm(verification_bm),
6552   _cms_bm(cms_bm),
6553   _mark_stack(mark_stack),
6554   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6555                       mark_stack)
6556 {
6557   assert(_mark_stack->isEmpty(), "stack should be empty");
6558   _finger = _verification_bm->startWord();
6559   assert(_collector->_restart_addr == NULL, "Sanity check");
6560   assert(_span.contains(_finger), "Out of bounds _finger?");
6561 }
6562 
6563 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6564   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6565   assert(_span.contains(addr), "Out of bounds _finger?");
6566   _finger = addr;
6567 }
6568 
6569 // Should revisit to see if this should be restructured for
6570 // greater efficiency.
6571 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6572   // convert offset into a HeapWord*
6573   HeapWord* addr = _verification_bm->startWord() + offset;
6574   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6575          "address out of range");
6576   assert(_verification_bm->isMarked(addr), "tautology");
6577   assert(_cms_bm->isMarked(addr), "tautology");
6578 
6579   assert(_mark_stack->isEmpty(),
6580          "should drain stack to limit stack usage");
6581   // convert addr to an oop preparatory to scanning
6582   oop obj = oop(addr);
6583   assert(obj->is_oop(), "should be an oop");
6584   assert(_finger <= addr, "_finger runneth ahead");
6585   // advance the finger to right end of this object
6586   _finger = addr + obj->size();
6587   assert(_finger > addr, "we just incremented it above");
6588   // Note: the finger doesn't advance while we drain
6589   // the stack below.
6590   bool res = _mark_stack->push(obj);
6591   assert(res, "Empty non-zero size stack should have space for single push");
6592   while (!_mark_stack->isEmpty()) {
6593     oop new_oop = _mark_stack->pop();
6594     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6595     // now scan this oop's oops
6596     new_oop->oop_iterate(&_pam_verify_closure);
6597   }
6598   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6599   return true;
6600 }
6601 
6602 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6603   CMSCollector* collector, MemRegion span,
6604   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6605   CMSMarkStack*  mark_stack):
6606   MetadataAwareOopClosure(collector->ref_processor()),
6607   _collector(collector),
6608   _span(span),
6609   _verification_bm(verification_bm),
6610   _cms_bm(cms_bm),
6611   _mark_stack(mark_stack)
6612 { }
6613 
6614 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6615 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6616 
6617 // Upon stack overflow, we discard (part of) the stack,
6618 // remembering the least address amongst those discarded
6619 // in CMSCollector's _restart_address.
6620 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6621   // Remember the least grey address discarded
6622   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6623   _collector->lower_restart_addr(ra);
6624   _mark_stack->reset();  // discard stack contents
6625   _mark_stack->expand(); // expand the stack if possible
6626 }
6627 
6628 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6629   assert(obj->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6630   HeapWord* addr = (HeapWord*)obj;
6631   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6632     // Oop lies in _span and isn't yet grey or black
6633     _verification_bm->mark(addr);            // now grey
6634     if (!_cms_bm->isMarked(addr)) {
6635       LogHandle(gc, verify) log;
6636       ResourceMark rm;
6637       oop(addr)->print_on(log.info_stream());
6638       log.info(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6639       fatal("... aborting");
6640     }
6641 
6642     if (!_mark_stack->push(obj)) { // stack overflow
6643       log_debug(gc, conc, stats)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6644       assert(_mark_stack->isFull(), "Else push should have succeeded");
6645       handle_stack_overflow(addr);
6646     }
6647     // anything including and to the right of _finger
6648     // will be scanned as we iterate over the remainder of the
6649     // bit map
6650   }
6651 }
6652 
6653 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6654                      MemRegion span,
6655                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6656                      HeapWord* finger, MarkFromRootsClosure* parent) :
6657   MetadataAwareOopClosure(collector->ref_processor()),
6658   _collector(collector),
6659   _span(span),
6660   _bitMap(bitMap),
6661   _markStack(markStack),
6662   _finger(finger),
6663   _parent(parent)
6664 { }
6665 
6666 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6667                      MemRegion span,
6668                      CMSBitMap* bit_map,
6669                      OopTaskQueue* work_queue,
6670                      CMSMarkStack*  overflow_stack,
6671                      HeapWord* finger,
6672                      HeapWord** global_finger_addr,
6673                      Par_MarkFromRootsClosure* parent) :
6674   MetadataAwareOopClosure(collector->ref_processor()),
6675   _collector(collector),
6676   _whole_span(collector->_span),
6677   _span(span),
6678   _bit_map(bit_map),
6679   _work_queue(work_queue),
6680   _overflow_stack(overflow_stack),
6681   _finger(finger),
6682   _global_finger_addr(global_finger_addr),
6683   _parent(parent)
6684 { }
6685 
6686 // Assumes thread-safe access by callers, who are
6687 // responsible for mutual exclusion.
6688 void CMSCollector::lower_restart_addr(HeapWord* low) {
6689   assert(_span.contains(low), "Out of bounds addr");
6690   if (_restart_addr == NULL) {
6691     _restart_addr = low;
6692   } else {
6693     _restart_addr = MIN2(_restart_addr, low);
6694   }
6695 }
6696 
6697 // Upon stack overflow, we discard (part of) the stack,
6698 // remembering the least address amongst those discarded
6699 // in CMSCollector's _restart_address.
6700 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6701   // Remember the least grey address discarded
6702   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6703   _collector->lower_restart_addr(ra);
6704   _markStack->reset();  // discard stack contents
6705   _markStack->expand(); // expand the stack if possible
6706 }
6707 
6708 // Upon stack overflow, we discard (part of) the stack,
6709 // remembering the least address amongst those discarded
6710 // in CMSCollector's _restart_address.
6711 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6712   // We need to do this under a mutex to prevent other
6713   // workers from interfering with the work done below.
6714   MutexLockerEx ml(_overflow_stack->par_lock(),
6715                    Mutex::_no_safepoint_check_flag);
6716   // Remember the least grey address discarded
6717   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6718   _collector->lower_restart_addr(ra);
6719   _overflow_stack->reset();  // discard stack contents
6720   _overflow_stack->expand(); // expand the stack if possible
6721 }
6722 
6723 void PushOrMarkClosure::do_oop(oop obj) {
6724   // Ignore mark word because we are running concurrent with mutators.
6725   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6726   HeapWord* addr = (HeapWord*)obj;
6727   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6728     // Oop lies in _span and isn't yet grey or black
6729     _bitMap->mark(addr);            // now grey
6730     if (addr < _finger) {
6731       // the bit map iteration has already either passed, or
6732       // sampled, this bit in the bit map; we'll need to
6733       // use the marking stack to scan this oop's oops.
6734       bool simulate_overflow = false;
6735       NOT_PRODUCT(
6736         if (CMSMarkStackOverflowALot &&
6737             _collector->simulate_overflow()) {
6738           // simulate a stack overflow
6739           simulate_overflow = true;
6740         }
6741       )
6742       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6743         log_debug(gc, conc, stats)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6744         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6745         handle_stack_overflow(addr);
6746       }
6747     }
6748     // anything including and to the right of _finger
6749     // will be scanned as we iterate over the remainder of the
6750     // bit map
6751     do_yield_check();
6752   }
6753 }
6754 
6755 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
6756 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
6757 
6758 void Par_PushOrMarkClosure::do_oop(oop obj) {
6759   // Ignore mark word because we are running concurrent with mutators.
6760   assert(obj->is_oop_or_null(true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6761   HeapWord* addr = (HeapWord*)obj;
6762   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6763     // Oop lies in _span and isn't yet grey or black
6764     // We read the global_finger (volatile read) strictly after marking oop
6765     bool res = _bit_map->par_mark(addr);    // now grey
6766     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6767     // Should we push this marked oop on our stack?
6768     // -- if someone else marked it, nothing to do
6769     // -- if target oop is above global finger nothing to do
6770     // -- if target oop is in chunk and above local finger
6771     //      then nothing to do
6772     // -- else push on work queue
6773     if (   !res       // someone else marked it, they will deal with it
6774         || (addr >= *gfa)  // will be scanned in a later task
6775         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6776       return;
6777     }
6778     // the bit map iteration has already either passed, or
6779     // sampled, this bit in the bit map; we'll need to
6780     // use the marking stack to scan this oop's oops.
6781     bool simulate_overflow = false;
6782     NOT_PRODUCT(
6783       if (CMSMarkStackOverflowALot &&
6784           _collector->simulate_overflow()) {
6785         // simulate a stack overflow
6786         simulate_overflow = true;
6787       }
6788     )
6789     if (simulate_overflow ||
6790         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6791       // stack overflow
6792       log_debug(gc, conc, stats)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6793       // We cannot assert that the overflow stack is full because
6794       // it may have been emptied since.
6795       assert(simulate_overflow ||
6796              _work_queue->size() == _work_queue->max_elems(),
6797             "Else push should have succeeded");
6798       handle_stack_overflow(addr);
6799     }
6800     do_yield_check();
6801   }
6802 }
6803 
6804 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
6805 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
6806 
6807 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6808                                        MemRegion span,
6809                                        ReferenceProcessor* rp,
6810                                        CMSBitMap* bit_map,
6811                                        CMSBitMap* mod_union_table,
6812                                        CMSMarkStack*  mark_stack,
6813                                        bool           concurrent_precleaning):
6814   MetadataAwareOopClosure(rp),
6815   _collector(collector),
6816   _span(span),
6817   _bit_map(bit_map),
6818   _mod_union_table(mod_union_table),
6819   _mark_stack(mark_stack),
6820   _concurrent_precleaning(concurrent_precleaning)
6821 {
6822   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6823 }
6824 
6825 // Grey object rescan during pre-cleaning and second checkpoint phases --
6826 // the non-parallel version (the parallel version appears further below.)
6827 void PushAndMarkClosure::do_oop(oop obj) {
6828   // Ignore mark word verification. If during concurrent precleaning,
6829   // the object monitor may be locked. If during the checkpoint
6830   // phases, the object may already have been reached by a  different
6831   // path and may be at the end of the global overflow list (so
6832   // the mark word may be NULL).
6833   assert(obj->is_oop_or_null(true /* ignore mark word */),
6834          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6835   HeapWord* addr = (HeapWord*)obj;
6836   // Check if oop points into the CMS generation
6837   // and is not marked
6838   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6839     // a white object ...
6840     _bit_map->mark(addr);         // ... now grey
6841     // push on the marking stack (grey set)
6842     bool simulate_overflow = false;
6843     NOT_PRODUCT(
6844       if (CMSMarkStackOverflowALot &&
6845           _collector->simulate_overflow()) {
6846         // simulate a stack overflow
6847         simulate_overflow = true;
6848       }
6849     )
6850     if (simulate_overflow || !_mark_stack->push(obj)) {
6851       if (_concurrent_precleaning) {
6852          // During precleaning we can just dirty the appropriate card(s)
6853          // in the mod union table, thus ensuring that the object remains
6854          // in the grey set  and continue. In the case of object arrays
6855          // we need to dirty all of the cards that the object spans,
6856          // since the rescan of object arrays will be limited to the
6857          // dirty cards.
6858          // Note that no one can be interfering with us in this action
6859          // of dirtying the mod union table, so no locking or atomics
6860          // are required.
6861          if (obj->is_objArray()) {
6862            size_t sz = obj->size();
6863            HeapWord* end_card_addr = (HeapWord*)round_to(
6864                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6865            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6866            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6867            _mod_union_table->mark_range(redirty_range);
6868          } else {
6869            _mod_union_table->mark(addr);
6870          }
6871          _collector->_ser_pmc_preclean_ovflw++;
6872       } else {
6873          // During the remark phase, we need to remember this oop
6874          // in the overflow list.
6875          _collector->push_on_overflow_list(obj);
6876          _collector->_ser_pmc_remark_ovflw++;
6877       }
6878     }
6879   }
6880 }
6881 
6882 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
6883                                                MemRegion span,
6884                                                ReferenceProcessor* rp,
6885                                                CMSBitMap* bit_map,
6886                                                OopTaskQueue* work_queue):
6887   MetadataAwareOopClosure(rp),
6888   _collector(collector),
6889   _span(span),
6890   _bit_map(bit_map),
6891   _work_queue(work_queue)
6892 {
6893   assert(ref_processor() != NULL, "ref_processor shouldn't be NULL");
6894 }
6895 
6896 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
6897 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
6898 
6899 // Grey object rescan during second checkpoint phase --
6900 // the parallel version.
6901 void Par_PushAndMarkClosure::do_oop(oop obj) {
6902   // In the assert below, we ignore the mark word because
6903   // this oop may point to an already visited object that is
6904   // on the overflow stack (in which case the mark word has
6905   // been hijacked for chaining into the overflow stack --
6906   // if this is the last object in the overflow stack then
6907   // its mark word will be NULL). Because this object may
6908   // have been subsequently popped off the global overflow
6909   // stack, and the mark word possibly restored to the prototypical
6910   // value, by the time we get to examined this failing assert in
6911   // the debugger, is_oop_or_null(false) may subsequently start
6912   // to hold.
6913   assert(obj->is_oop_or_null(true),
6914          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6915   HeapWord* addr = (HeapWord*)obj;
6916   // Check if oop points into the CMS generation
6917   // and is not marked
6918   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6919     // a white object ...
6920     // If we manage to "claim" the object, by being the
6921     // first thread to mark it, then we push it on our
6922     // marking stack
6923     if (_bit_map->par_mark(addr)) {     // ... now grey
6924       // push on work queue (grey set)
6925       bool simulate_overflow = false;
6926       NOT_PRODUCT(
6927         if (CMSMarkStackOverflowALot &&
6928             _collector->par_simulate_overflow()) {
6929           // simulate a stack overflow
6930           simulate_overflow = true;
6931         }
6932       )
6933       if (simulate_overflow || !_work_queue->push(obj)) {
6934         _collector->par_push_on_overflow_list(obj);
6935         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6936       }
6937     } // Else, some other thread got there first
6938   }
6939 }
6940 
6941 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
6942 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
6943 
6944 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6945   Mutex* bml = _collector->bitMapLock();
6946   assert_lock_strong(bml);
6947   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6948          "CMS thread should hold CMS token");
6949 
6950   bml->unlock();
6951   ConcurrentMarkSweepThread::desynchronize(true);
6952 
6953   _collector->stopTimer();
6954   _collector->incrementYields();
6955 
6956   // See the comment in coordinator_yield()
6957   for (unsigned i = 0; i < CMSYieldSleepCount &&
6958                        ConcurrentMarkSweepThread::should_yield() &&
6959                        !CMSCollector::foregroundGCIsActive(); ++i) {
6960     os::sleep(Thread::current(), 1, false);
6961   }
6962 
6963   ConcurrentMarkSweepThread::synchronize(true);
6964   bml->lock();
6965 
6966   _collector->startTimer();
6967 }
6968 
6969 bool CMSPrecleanRefsYieldClosure::should_return() {
6970   if (ConcurrentMarkSweepThread::should_yield()) {
6971     do_yield_work();
6972   }
6973   return _collector->foregroundGCIsActive();
6974 }
6975 
6976 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
6977   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
6978          "mr should be aligned to start at a card boundary");
6979   // We'd like to assert:
6980   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
6981   //        "mr should be a range of cards");
6982   // However, that would be too strong in one case -- the last
6983   // partition ends at _unallocated_block which, in general, can be
6984   // an arbitrary boundary, not necessarily card aligned.
6985   _num_dirty_cards += mr.word_size()/CardTableModRefBS::card_size_in_words;
6986   _space->object_iterate_mem(mr, &_scan_cl);
6987 }
6988 
6989 SweepClosure::SweepClosure(CMSCollector* collector,
6990                            ConcurrentMarkSweepGeneration* g,
6991                            CMSBitMap* bitMap, bool should_yield) :
6992   _collector(collector),
6993   _g(g),
6994   _sp(g->cmsSpace()),
6995   _limit(_sp->sweep_limit()),
6996   _freelistLock(_sp->freelistLock()),
6997   _bitMap(bitMap),
6998   _yield(should_yield),
6999   _inFreeRange(false),           // No free range at beginning of sweep
7000   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7001   _lastFreeRangeCoalesced(false),
7002   _freeFinger(g->used_region().start())
7003 {
7004   NOT_PRODUCT(
7005     _numObjectsFreed = 0;
7006     _numWordsFreed   = 0;
7007     _numObjectsLive = 0;
7008     _numWordsLive = 0;
7009     _numObjectsAlreadyFree = 0;
7010     _numWordsAlreadyFree = 0;
7011     _last_fc = NULL;
7012 
7013     _sp->initializeIndexedFreeListArrayReturnedBytes();
7014     _sp->dictionary()->initialize_dict_returned_bytes();
7015   )
7016   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7017          "sweep _limit out of bounds");
7018   log_develop(gc, sweep)("====================");
7019   log_develop(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7020 }
7021 
7022 void SweepClosure::print_on(outputStream* st) const {
7023   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7024                 p2i(_sp->bottom()), p2i(_sp->end()));
7025   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7026   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7027   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7028   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7029                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7030 }
7031 
7032 #ifndef PRODUCT
7033 // Assertion checking only:  no useful work in product mode --
7034 // however, if any of the flags below become product flags,
7035 // you may need to review this code to see if it needs to be
7036 // enabled in product mode.
7037 SweepClosure::~SweepClosure() {
7038   assert_lock_strong(_freelistLock);
7039   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7040          "sweep _limit out of bounds");
7041   if (inFreeRange()) {
7042     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7043     print();
7044     ShouldNotReachHere();
7045   }
7046 
7047   if (log_is_enabled(Debug, gc, sweep)) {
7048     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7049                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7050     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7051                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7052     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7053     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7054   }
7055 
7056   if (log_is_enabled(Debug, gc, conc, stats) && CMSVerifyReturnedBytes) {
7057     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7058     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7059     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7060     log_debug(gc, conc, stats)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7061                                returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7062   }
7063   log_develop(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7064   log_develop(gc, sweep)("================");
7065 }
7066 #endif  // PRODUCT
7067 
7068 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7069     bool freeRangeInFreeLists) {
7070   log_develop(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7071                          p2i(freeFinger), freeRangeInFreeLists);
7072   assert(!inFreeRange(), "Trampling existing free range");
7073   set_inFreeRange(true);
7074   set_lastFreeRangeCoalesced(false);
7075 
7076   set_freeFinger(freeFinger);
7077   set_freeRangeInFreeLists(freeRangeInFreeLists);
7078 }
7079 
7080 // Note that the sweeper runs concurrently with mutators. Thus,
7081 // it is possible for direct allocation in this generation to happen
7082 // in the middle of the sweep. Note that the sweeper also coalesces
7083 // contiguous free blocks. Thus, unless the sweeper and the allocator
7084 // synchronize appropriately freshly allocated blocks may get swept up.
7085 // This is accomplished by the sweeper locking the free lists while
7086 // it is sweeping. Thus blocks that are determined to be free are
7087 // indeed free. There is however one additional complication:
7088 // blocks that have been allocated since the final checkpoint and
7089 // mark, will not have been marked and so would be treated as
7090 // unreachable and swept up. To prevent this, the allocator marks
7091 // the bit map when allocating during the sweep phase. This leads,
7092 // however, to a further complication -- objects may have been allocated
7093 // but not yet initialized -- in the sense that the header isn't yet
7094 // installed. The sweeper can not then determine the size of the block
7095 // in order to skip over it. To deal with this case, we use a technique
7096 // (due to Printezis) to encode such uninitialized block sizes in the
7097 // bit map. Since the bit map uses a bit per every HeapWord, but the
7098 // CMS generation has a minimum object size of 3 HeapWords, it follows
7099 // that "normal marks" won't be adjacent in the bit map (there will
7100 // always be at least two 0 bits between successive 1 bits). We make use
7101 // of these "unused" bits to represent uninitialized blocks -- the bit
7102 // corresponding to the start of the uninitialized object and the next
7103 // bit are both set. Finally, a 1 bit marks the end of the object that
7104 // started with the two consecutive 1 bits to indicate its potentially
7105 // uninitialized state.
7106 
7107 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7108   FreeChunk* fc = (FreeChunk*)addr;
7109   size_t res;
7110 
7111   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7112   // than "addr == _limit" because although _limit was a block boundary when
7113   // we started the sweep, it may no longer be one because heap expansion
7114   // may have caused us to coalesce the block ending at the address _limit
7115   // with a newly expanded chunk (this happens when _limit was set to the
7116   // previous _end of the space), so we may have stepped past _limit:
7117   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7118   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7119     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7120            "sweep _limit out of bounds");
7121     assert(addr < _sp->end(), "addr out of bounds");
7122     // Flush any free range we might be holding as a single
7123     // coalesced chunk to the appropriate free list.
7124     if (inFreeRange()) {
7125       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7126              "freeFinger() " PTR_FORMAT " is out-of-bounds", p2i(freeFinger()));
7127       flush_cur_free_chunk(freeFinger(),
7128                            pointer_delta(addr, freeFinger()));
7129       log_develop(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7130                              p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7131                              lastFreeRangeCoalesced() ? 1 : 0);
7132     }
7133 
7134     // help the iterator loop finish
7135     return pointer_delta(_sp->end(), addr);
7136   }
7137 
7138   assert(addr < _limit, "sweep invariant");
7139   // check if we should yield
7140   do_yield_check(addr);
7141   if (fc->is_free()) {
7142     // Chunk that is already free
7143     res = fc->size();
7144     do_already_free_chunk(fc);
7145     debug_only(_sp->verifyFreeLists());
7146     // If we flush the chunk at hand in lookahead_and_flush()
7147     // and it's coalesced with a preceding chunk, then the
7148     // process of "mangling" the payload of the coalesced block
7149     // will cause erasure of the size information from the
7150     // (erstwhile) header of all the coalesced blocks but the
7151     // first, so the first disjunct in the assert will not hold
7152     // in that specific case (in which case the second disjunct
7153     // will hold).
7154     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7155            "Otherwise the size info doesn't change at this step");
7156     NOT_PRODUCT(
7157       _numObjectsAlreadyFree++;
7158       _numWordsAlreadyFree += res;
7159     )
7160     NOT_PRODUCT(_last_fc = fc;)
7161   } else if (!_bitMap->isMarked(addr)) {
7162     // Chunk is fresh garbage
7163     res = do_garbage_chunk(fc);
7164     debug_only(_sp->verifyFreeLists());
7165     NOT_PRODUCT(
7166       _numObjectsFreed++;
7167       _numWordsFreed += res;
7168     )
7169   } else {
7170     // Chunk that is alive.
7171     res = do_live_chunk(fc);
7172     debug_only(_sp->verifyFreeLists());
7173     NOT_PRODUCT(
7174         _numObjectsLive++;
7175         _numWordsLive += res;
7176     )
7177   }
7178   return res;
7179 }
7180 
7181 // For the smart allocation, record following
7182 //  split deaths - a free chunk is removed from its free list because
7183 //      it is being split into two or more chunks.
7184 //  split birth - a free chunk is being added to its free list because
7185 //      a larger free chunk has been split and resulted in this free chunk.
7186 //  coal death - a free chunk is being removed from its free list because
7187 //      it is being coalesced into a large free chunk.
7188 //  coal birth - a free chunk is being added to its free list because
7189 //      it was created when two or more free chunks where coalesced into
7190 //      this free chunk.
7191 //
7192 // These statistics are used to determine the desired number of free
7193 // chunks of a given size.  The desired number is chosen to be relative
7194 // to the end of a CMS sweep.  The desired number at the end of a sweep
7195 // is the
7196 //      count-at-end-of-previous-sweep (an amount that was enough)
7197 //              - count-at-beginning-of-current-sweep  (the excess)
7198 //              + split-births  (gains in this size during interval)
7199 //              - split-deaths  (demands on this size during interval)
7200 // where the interval is from the end of one sweep to the end of the
7201 // next.
7202 //
7203 // When sweeping the sweeper maintains an accumulated chunk which is
7204 // the chunk that is made up of chunks that have been coalesced.  That
7205 // will be termed the left-hand chunk.  A new chunk of garbage that
7206 // is being considered for coalescing will be referred to as the
7207 // right-hand chunk.
7208 //
7209 // When making a decision on whether to coalesce a right-hand chunk with
7210 // the current left-hand chunk, the current count vs. the desired count
7211 // of the left-hand chunk is considered.  Also if the right-hand chunk
7212 // is near the large chunk at the end of the heap (see
7213 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7214 // left-hand chunk is coalesced.
7215 //
7216 // When making a decision about whether to split a chunk, the desired count
7217 // vs. the current count of the candidate to be split is also considered.
7218 // If the candidate is underpopulated (currently fewer chunks than desired)
7219 // a chunk of an overpopulated (currently more chunks than desired) size may
7220 // be chosen.  The "hint" associated with a free list, if non-null, points
7221 // to a free list which may be overpopulated.
7222 //
7223 
7224 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7225   const size_t size = fc->size();
7226 
7227   // a chunk that is already free, should not have been
7228   // marked in the bit map
7229   HeapWord* const addr = (HeapWord*) fc;
7230   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7231   // Verify that the bit map has no bits marked between
7232   // addr and purported end of this block.
7233   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7234 
7235   // Some chunks cannot be coalesced under any circumstances.
7236   // See the definition of cantCoalesce().
7237   if (!fc->cantCoalesce()) {
7238     // This chunk can potentially be coalesced.
7239     // All the work is done in
7240     do_post_free_or_garbage_chunk(fc, size);
7241     // Note that if the chunk is not coalescable (the else arm
7242     // below), we unconditionally flush, without needing to do
7243     // a "lookahead," as we do below.
7244     if (inFreeRange()) lookahead_and_flush(fc, size);
7245   } else {
7246     // Code path common to both original and adaptive free lists.
7247 
7248     // cant coalesce with previous block; this should be treated
7249     // as the end of a free run if any
7250     if (inFreeRange()) {
7251       // we kicked some butt; time to pick up the garbage
7252       assert(freeFinger() < addr, "freeFinger points too high");
7253       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7254     }
7255     // else, nothing to do, just continue
7256   }
7257 }
7258 
7259 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7260   // This is a chunk of garbage.  It is not in any free list.
7261   // Add it to a free list or let it possibly be coalesced into
7262   // a larger chunk.
7263   HeapWord* const addr = (HeapWord*) fc;
7264   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7265 
7266   // Verify that the bit map has no bits marked between
7267   // addr and purported end of just dead object.
7268   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7269   do_post_free_or_garbage_chunk(fc, size);
7270 
7271   assert(_limit >= addr + size,
7272          "A freshly garbage chunk can't possibly straddle over _limit");
7273   if (inFreeRange()) lookahead_and_flush(fc, size);
7274   return size;
7275 }
7276 
7277 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7278   HeapWord* addr = (HeapWord*) fc;
7279   // The sweeper has just found a live object. Return any accumulated
7280   // left hand chunk to the free lists.
7281   if (inFreeRange()) {
7282     assert(freeFinger() < addr, "freeFinger points too high");
7283     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7284   }
7285 
7286   // This object is live: we'd normally expect this to be
7287   // an oop, and like to assert the following:
7288   // assert(oop(addr)->is_oop(), "live block should be an oop");
7289   // However, as we commented above, this may be an object whose
7290   // header hasn't yet been initialized.
7291   size_t size;
7292   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7293   if (_bitMap->isMarked(addr + 1)) {
7294     // Determine the size from the bit map, rather than trying to
7295     // compute it from the object header.
7296     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7297     size = pointer_delta(nextOneAddr + 1, addr);
7298     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7299            "alignment problem");
7300 
7301 #ifdef ASSERT
7302       if (oop(addr)->klass_or_null() != NULL) {
7303         // Ignore mark word because we are running concurrent with mutators
7304         assert(oop(addr)->is_oop(true), "live block should be an oop");
7305         assert(size ==
7306                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7307                "P-mark and computed size do not agree");
7308       }
7309 #endif
7310 
7311   } else {
7312     // This should be an initialized object that's alive.
7313     assert(oop(addr)->klass_or_null() != NULL,
7314            "Should be an initialized object");
7315     // Ignore mark word because we are running concurrent with mutators
7316     assert(oop(addr)->is_oop(true), "live block should be an oop");
7317     // Verify that the bit map has no bits marked between
7318     // addr and purported end of this block.
7319     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7320     assert(size >= 3, "Necessary for Printezis marks to work");
7321     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7322     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7323   }
7324   return size;
7325 }
7326 
7327 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7328                                                  size_t chunkSize) {
7329   // do_post_free_or_garbage_chunk() should only be called in the case
7330   // of the adaptive free list allocator.
7331   const bool fcInFreeLists = fc->is_free();
7332   assert((HeapWord*)fc <= _limit, "sweep invariant");
7333 
7334   log_develop(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7335 
7336   HeapWord* const fc_addr = (HeapWord*) fc;
7337 
7338   bool coalesce = false;
7339   const size_t left  = pointer_delta(fc_addr, freeFinger());
7340   const size_t right = chunkSize;
7341   switch (FLSCoalescePolicy) {
7342     // numeric value forms a coalition aggressiveness metric
7343     case 0:  { // never coalesce
7344       coalesce = false;
7345       break;
7346     }
7347     case 1: { // coalesce if left & right chunks on overpopulated lists
7348       coalesce = _sp->coalOverPopulated(left) &&
7349                  _sp->coalOverPopulated(right);
7350       break;
7351     }
7352     case 2: { // coalesce if left chunk on overpopulated list (default)
7353       coalesce = _sp->coalOverPopulated(left);
7354       break;
7355     }
7356     case 3: { // coalesce if left OR right chunk on overpopulated list
7357       coalesce = _sp->coalOverPopulated(left) ||
7358                  _sp->coalOverPopulated(right);
7359       break;
7360     }
7361     case 4: { // always coalesce
7362       coalesce = true;
7363       break;
7364     }
7365     default:
7366      ShouldNotReachHere();
7367   }
7368 
7369   // Should the current free range be coalesced?
7370   // If the chunk is in a free range and either we decided to coalesce above
7371   // or the chunk is near the large block at the end of the heap
7372   // (isNearLargestChunk() returns true), then coalesce this chunk.
7373   const bool doCoalesce = inFreeRange()
7374                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7375   if (doCoalesce) {
7376     // Coalesce the current free range on the left with the new
7377     // chunk on the right.  If either is on a free list,
7378     // it must be removed from the list and stashed in the closure.
7379     if (freeRangeInFreeLists()) {
7380       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7381       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7382         "Size of free range is inconsistent with chunk size.");
7383       _sp->coalDeath(ffc->size());
7384       _sp->removeFreeChunkFromFreeLists(ffc);
7385       set_freeRangeInFreeLists(false);
7386     }
7387     if (fcInFreeLists) {
7388       _sp->coalDeath(chunkSize);
7389       assert(fc->size() == chunkSize,
7390         "The chunk has the wrong size or is not in the free lists");
7391       _sp->removeFreeChunkFromFreeLists(fc);
7392     }
7393     set_lastFreeRangeCoalesced(true);
7394     print_free_block_coalesced(fc);
7395   } else {  // not in a free range and/or should not coalesce
7396     // Return the current free range and start a new one.
7397     if (inFreeRange()) {
7398       // In a free range but cannot coalesce with the right hand chunk.
7399       // Put the current free range into the free lists.
7400       flush_cur_free_chunk(freeFinger(),
7401                            pointer_delta(fc_addr, freeFinger()));
7402     }
7403     // Set up for new free range.  Pass along whether the right hand
7404     // chunk is in the free lists.
7405     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7406   }
7407 }
7408 
7409 // Lookahead flush:
7410 // If we are tracking a free range, and this is the last chunk that
7411 // we'll look at because its end crosses past _limit, we'll preemptively
7412 // flush it along with any free range we may be holding on to. Note that
7413 // this can be the case only for an already free or freshly garbage
7414 // chunk. If this block is an object, it can never straddle
7415 // over _limit. The "straddling" occurs when _limit is set at
7416 // the previous end of the space when this cycle started, and
7417 // a subsequent heap expansion caused the previously co-terminal
7418 // free block to be coalesced with the newly expanded portion,
7419 // thus rendering _limit a non-block-boundary making it dangerous
7420 // for the sweeper to step over and examine.
7421 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7422   assert(inFreeRange(), "Should only be called if currently in a free range.");
7423   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7424   assert(_sp->used_region().contains(eob - 1),
7425          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7426          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7427          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7428          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7429   if (eob >= _limit) {
7430     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7431     log_develop(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7432                            "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7433                            "[" PTR_FORMAT "," PTR_FORMAT ")",
7434                            p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7435     // Return the storage we are tracking back into the free lists.
7436     log_develop(gc, sweep)("Flushing ... ");
7437     assert(freeFinger() < eob, "Error");
7438     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7439   }
7440 }
7441 
7442 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7443   assert(inFreeRange(), "Should only be called if currently in a free range.");
7444   assert(size > 0,
7445     "A zero sized chunk cannot be added to the free lists.");
7446   if (!freeRangeInFreeLists()) {
7447     log_develop(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7448                            p2i(chunk), size);
7449     // A new free range is going to be starting.  The current
7450     // free range has not been added to the free lists yet or
7451     // was removed so add it back.
7452     // If the current free range was coalesced, then the death
7453     // of the free range was recorded.  Record a birth now.
7454     if (lastFreeRangeCoalesced()) {
7455       _sp->coalBirth(size);
7456     }
7457     _sp->addChunkAndRepairOffsetTable(chunk, size,
7458             lastFreeRangeCoalesced());
7459   } else {
7460     log_develop(gc, sweep)("Already in free list: nothing to flush");
7461   }
7462   set_inFreeRange(false);
7463   set_freeRangeInFreeLists(false);
7464 }
7465 
7466 // We take a break if we've been at this for a while,
7467 // so as to avoid monopolizing the locks involved.
7468 void SweepClosure::do_yield_work(HeapWord* addr) {
7469   // Return current free chunk being used for coalescing (if any)
7470   // to the appropriate freelist.  After yielding, the next
7471   // free block encountered will start a coalescing range of
7472   // free blocks.  If the next free block is adjacent to the
7473   // chunk just flushed, they will need to wait for the next
7474   // sweep to be coalesced.
7475   if (inFreeRange()) {
7476     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7477   }
7478 
7479   // First give up the locks, then yield, then re-lock.
7480   // We should probably use a constructor/destructor idiom to
7481   // do this unlock/lock or modify the MutexUnlocker class to
7482   // serve our purpose. XXX
7483   assert_lock_strong(_bitMap->lock());
7484   assert_lock_strong(_freelistLock);
7485   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7486          "CMS thread should hold CMS token");
7487   _bitMap->lock()->unlock();
7488   _freelistLock->unlock();
7489   ConcurrentMarkSweepThread::desynchronize(true);
7490   _collector->stopTimer();
7491   _collector->incrementYields();
7492 
7493   // See the comment in coordinator_yield()
7494   for (unsigned i = 0; i < CMSYieldSleepCount &&
7495                        ConcurrentMarkSweepThread::should_yield() &&
7496                        !CMSCollector::foregroundGCIsActive(); ++i) {
7497     os::sleep(Thread::current(), 1, false);
7498   }
7499 
7500   ConcurrentMarkSweepThread::synchronize(true);
7501   _freelistLock->lock();
7502   _bitMap->lock()->lock_without_safepoint_check();
7503   _collector->startTimer();
7504 }
7505 
7506 #ifndef PRODUCT
7507 // This is actually very useful in a product build if it can
7508 // be called from the debugger.  Compile it into the product
7509 // as needed.
7510 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7511   return debug_cms_space->verify_chunk_in_free_list(fc);
7512 }
7513 #endif
7514 
7515 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7516   log_develop(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7517                          p2i(fc), fc->size());
7518 }
7519 
7520 // CMSIsAliveClosure
7521 bool CMSIsAliveClosure::do_object_b(oop obj) {
7522   HeapWord* addr = (HeapWord*)obj;
7523   return addr != NULL &&
7524          (!_span.contains(addr) || _bit_map->isMarked(addr));
7525 }
7526 
7527 
7528 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7529                       MemRegion span,
7530                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7531                       bool cpc):
7532   _collector(collector),
7533   _span(span),
7534   _bit_map(bit_map),
7535   _mark_stack(mark_stack),
7536   _concurrent_precleaning(cpc) {
7537   assert(!_span.is_empty(), "Empty span could spell trouble");
7538 }
7539 
7540 
7541 // CMSKeepAliveClosure: the serial version
7542 void CMSKeepAliveClosure::do_oop(oop obj) {
7543   HeapWord* addr = (HeapWord*)obj;
7544   if (_span.contains(addr) &&
7545       !_bit_map->isMarked(addr)) {
7546     _bit_map->mark(addr);
7547     bool simulate_overflow = false;
7548     NOT_PRODUCT(
7549       if (CMSMarkStackOverflowALot &&
7550           _collector->simulate_overflow()) {
7551         // simulate a stack overflow
7552         simulate_overflow = true;
7553       }
7554     )
7555     if (simulate_overflow || !_mark_stack->push(obj)) {
7556       if (_concurrent_precleaning) {
7557         // We dirty the overflown object and let the remark
7558         // phase deal with it.
7559         assert(_collector->overflow_list_is_empty(), "Error");
7560         // In the case of object arrays, we need to dirty all of
7561         // the cards that the object spans. No locking or atomics
7562         // are needed since no one else can be mutating the mod union
7563         // table.
7564         if (obj->is_objArray()) {
7565           size_t sz = obj->size();
7566           HeapWord* end_card_addr =
7567             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
7568           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7569           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7570           _collector->_modUnionTable.mark_range(redirty_range);
7571         } else {
7572           _collector->_modUnionTable.mark(addr);
7573         }
7574         _collector->_ser_kac_preclean_ovflw++;
7575       } else {
7576         _collector->push_on_overflow_list(obj);
7577         _collector->_ser_kac_ovflw++;
7578       }
7579     }
7580   }
7581 }
7582 
7583 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
7584 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
7585 
7586 // CMSParKeepAliveClosure: a parallel version of the above.
7587 // The work queues are private to each closure (thread),
7588 // but (may be) available for stealing by other threads.
7589 void CMSParKeepAliveClosure::do_oop(oop obj) {
7590   HeapWord* addr = (HeapWord*)obj;
7591   if (_span.contains(addr) &&
7592       !_bit_map->isMarked(addr)) {
7593     // In general, during recursive tracing, several threads
7594     // may be concurrently getting here; the first one to
7595     // "tag" it, claims it.
7596     if (_bit_map->par_mark(addr)) {
7597       bool res = _work_queue->push(obj);
7598       assert(res, "Low water mark should be much less than capacity");
7599       // Do a recursive trim in the hope that this will keep
7600       // stack usage lower, but leave some oops for potential stealers
7601       trim_queue(_low_water_mark);
7602     } // Else, another thread got there first
7603   }
7604 }
7605 
7606 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
7607 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
7608 
7609 void CMSParKeepAliveClosure::trim_queue(uint max) {
7610   while (_work_queue->size() > max) {
7611     oop new_oop;
7612     if (_work_queue->pop_local(new_oop)) {
7613       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7614       assert(_bit_map->isMarked((HeapWord*)new_oop),
7615              "no white objects on this stack!");
7616       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7617       // iterate over the oops in this oop, marking and pushing
7618       // the ones in CMS heap (i.e. in _span).
7619       new_oop->oop_iterate(&_mark_and_push);
7620     }
7621   }
7622 }
7623 
7624 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7625                                 CMSCollector* collector,
7626                                 MemRegion span, CMSBitMap* bit_map,
7627                                 OopTaskQueue* work_queue):
7628   _collector(collector),
7629   _span(span),
7630   _bit_map(bit_map),
7631   _work_queue(work_queue) { }
7632 
7633 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7634   HeapWord* addr = (HeapWord*)obj;
7635   if (_span.contains(addr) &&
7636       !_bit_map->isMarked(addr)) {
7637     if (_bit_map->par_mark(addr)) {
7638       bool simulate_overflow = false;
7639       NOT_PRODUCT(
7640         if (CMSMarkStackOverflowALot &&
7641             _collector->par_simulate_overflow()) {
7642           // simulate a stack overflow
7643           simulate_overflow = true;
7644         }
7645       )
7646       if (simulate_overflow || !_work_queue->push(obj)) {
7647         _collector->par_push_on_overflow_list(obj);
7648         _collector->_par_kac_ovflw++;
7649       }
7650     } // Else another thread got there already
7651   }
7652 }
7653 
7654 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7655 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
7656 
7657 //////////////////////////////////////////////////////////////////
7658 //  CMSExpansionCause                /////////////////////////////
7659 //////////////////////////////////////////////////////////////////
7660 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7661   switch (cause) {
7662     case _no_expansion:
7663       return "No expansion";
7664     case _satisfy_free_ratio:
7665       return "Free ratio";
7666     case _satisfy_promotion:
7667       return "Satisfy promotion";
7668     case _satisfy_allocation:
7669       return "allocation";
7670     case _allocate_par_lab:
7671       return "Par LAB";
7672     case _allocate_par_spooling_space:
7673       return "Par Spooling Space";
7674     case _adaptive_size_policy:
7675       return "Ergonomics";
7676     default:
7677       return "unknown";
7678   }
7679 }
7680 
7681 void CMSDrainMarkingStackClosure::do_void() {
7682   // the max number to take from overflow list at a time
7683   const size_t num = _mark_stack->capacity()/4;
7684   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7685          "Overflow list should be NULL during concurrent phases");
7686   while (!_mark_stack->isEmpty() ||
7687          // if stack is empty, check the overflow list
7688          _collector->take_from_overflow_list(num, _mark_stack)) {
7689     oop obj = _mark_stack->pop();
7690     HeapWord* addr = (HeapWord*)obj;
7691     assert(_span.contains(addr), "Should be within span");
7692     assert(_bit_map->isMarked(addr), "Should be marked");
7693     assert(obj->is_oop(), "Should be an oop");
7694     obj->oop_iterate(_keep_alive);
7695   }
7696 }
7697 
7698 void CMSParDrainMarkingStackClosure::do_void() {
7699   // drain queue
7700   trim_queue(0);
7701 }
7702 
7703 // Trim our work_queue so its length is below max at return
7704 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7705   while (_work_queue->size() > max) {
7706     oop new_oop;
7707     if (_work_queue->pop_local(new_oop)) {
7708       assert(new_oop->is_oop(), "Expected an oop");
7709       assert(_bit_map->isMarked((HeapWord*)new_oop),
7710              "no white objects on this stack!");
7711       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7712       // iterate over the oops in this oop, marking and pushing
7713       // the ones in CMS heap (i.e. in _span).
7714       new_oop->oop_iterate(&_mark_and_push);
7715     }
7716   }
7717 }
7718 
7719 ////////////////////////////////////////////////////////////////////
7720 // Support for Marking Stack Overflow list handling and related code
7721 ////////////////////////////////////////////////////////////////////
7722 // Much of the following code is similar in shape and spirit to the
7723 // code used in ParNewGC. We should try and share that code
7724 // as much as possible in the future.
7725 
7726 #ifndef PRODUCT
7727 // Debugging support for CMSStackOverflowALot
7728 
7729 // It's OK to call this multi-threaded;  the worst thing
7730 // that can happen is that we'll get a bunch of closely
7731 // spaced simulated overflows, but that's OK, in fact
7732 // probably good as it would exercise the overflow code
7733 // under contention.
7734 bool CMSCollector::simulate_overflow() {
7735   if (_overflow_counter-- <= 0) { // just being defensive
7736     _overflow_counter = CMSMarkStackOverflowInterval;
7737     return true;
7738   } else {
7739     return false;
7740   }
7741 }
7742 
7743 bool CMSCollector::par_simulate_overflow() {
7744   return simulate_overflow();
7745 }
7746 #endif
7747 
7748 // Single-threaded
7749 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7750   assert(stack->isEmpty(), "Expected precondition");
7751   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7752   size_t i = num;
7753   oop  cur = _overflow_list;
7754   const markOop proto = markOopDesc::prototype();
7755   NOT_PRODUCT(ssize_t n = 0;)
7756   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7757     next = oop(cur->mark());
7758     cur->set_mark(proto);   // until proven otherwise
7759     assert(cur->is_oop(), "Should be an oop");
7760     bool res = stack->push(cur);
7761     assert(res, "Bit off more than can chew?");
7762     NOT_PRODUCT(n++;)
7763   }
7764   _overflow_list = cur;
7765 #ifndef PRODUCT
7766   assert(_num_par_pushes >= n, "Too many pops?");
7767   _num_par_pushes -=n;
7768 #endif
7769   return !stack->isEmpty();
7770 }
7771 
7772 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7773 // (MT-safe) Get a prefix of at most "num" from the list.
7774 // The overflow list is chained through the mark word of
7775 // each object in the list. We fetch the entire list,
7776 // break off a prefix of the right size and return the
7777 // remainder. If other threads try to take objects from
7778 // the overflow list at that time, they will wait for
7779 // some time to see if data becomes available. If (and
7780 // only if) another thread places one or more object(s)
7781 // on the global list before we have returned the suffix
7782 // to the global list, we will walk down our local list
7783 // to find its end and append the global list to
7784 // our suffix before returning it. This suffix walk can
7785 // prove to be expensive (quadratic in the amount of traffic)
7786 // when there are many objects in the overflow list and
7787 // there is much producer-consumer contention on the list.
7788 // *NOTE*: The overflow list manipulation code here and
7789 // in ParNewGeneration:: are very similar in shape,
7790 // except that in the ParNew case we use the old (from/eden)
7791 // copy of the object to thread the list via its klass word.
7792 // Because of the common code, if you make any changes in
7793 // the code below, please check the ParNew version to see if
7794 // similar changes might be needed.
7795 // CR 6797058 has been filed to consolidate the common code.
7796 bool CMSCollector::par_take_from_overflow_list(size_t num,
7797                                                OopTaskQueue* work_q,
7798                                                int no_of_gc_threads) {
7799   assert(work_q->size() == 0, "First empty local work queue");
7800   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7801   if (_overflow_list == NULL) {
7802     return false;
7803   }
7804   // Grab the entire list; we'll put back a suffix
7805   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7806   Thread* tid = Thread::current();
7807   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7808   // set to ParallelGCThreads.
7809   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7810   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7811   // If the list is busy, we spin for a short while,
7812   // sleeping between attempts to get the list.
7813   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7814     os::sleep(tid, sleep_time_millis, false);
7815     if (_overflow_list == NULL) {
7816       // Nothing left to take
7817       return false;
7818     } else if (_overflow_list != BUSY) {
7819       // Try and grab the prefix
7820       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
7821     }
7822   }
7823   // If the list was found to be empty, or we spun long
7824   // enough, we give up and return empty-handed. If we leave
7825   // the list in the BUSY state below, it must be the case that
7826   // some other thread holds the overflow list and will set it
7827   // to a non-BUSY state in the future.
7828   if (prefix == NULL || prefix == BUSY) {
7829      // Nothing to take or waited long enough
7830      if (prefix == NULL) {
7831        // Write back the NULL in case we overwrote it with BUSY above
7832        // and it is still the same value.
7833        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7834      }
7835      return false;
7836   }
7837   assert(prefix != NULL && prefix != BUSY, "Error");
7838   size_t i = num;
7839   oop cur = prefix;
7840   // Walk down the first "num" objects, unless we reach the end.
7841   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
7842   if (cur->mark() == NULL) {
7843     // We have "num" or fewer elements in the list, so there
7844     // is nothing to return to the global list.
7845     // Write back the NULL in lieu of the BUSY we wrote
7846     // above, if it is still the same value.
7847     if (_overflow_list == BUSY) {
7848       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
7849     }
7850   } else {
7851     // Chop off the suffix and return it to the global list.
7852     assert(cur->mark() != BUSY, "Error");
7853     oop suffix_head = cur->mark(); // suffix will be put back on global list
7854     cur->set_mark(NULL);           // break off suffix
7855     // It's possible that the list is still in the empty(busy) state
7856     // we left it in a short while ago; in that case we may be
7857     // able to place back the suffix without incurring the cost
7858     // of a walk down the list.
7859     oop observed_overflow_list = _overflow_list;
7860     oop cur_overflow_list = observed_overflow_list;
7861     bool attached = false;
7862     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7863       observed_overflow_list =
7864         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7865       if (cur_overflow_list == observed_overflow_list) {
7866         attached = true;
7867         break;
7868       } else cur_overflow_list = observed_overflow_list;
7869     }
7870     if (!attached) {
7871       // Too bad, someone else sneaked in (at least) an element; we'll need
7872       // to do a splice. Find tail of suffix so we can prepend suffix to global
7873       // list.
7874       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
7875       oop suffix_tail = cur;
7876       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
7877              "Tautology");
7878       observed_overflow_list = _overflow_list;
7879       do {
7880         cur_overflow_list = observed_overflow_list;
7881         if (cur_overflow_list != BUSY) {
7882           // Do the splice ...
7883           suffix_tail->set_mark(markOop(cur_overflow_list));
7884         } else { // cur_overflow_list == BUSY
7885           suffix_tail->set_mark(NULL);
7886         }
7887         // ... and try to place spliced list back on overflow_list ...
7888         observed_overflow_list =
7889           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
7890       } while (cur_overflow_list != observed_overflow_list);
7891       // ... until we have succeeded in doing so.
7892     }
7893   }
7894 
7895   // Push the prefix elements on work_q
7896   assert(prefix != NULL, "control point invariant");
7897   const markOop proto = markOopDesc::prototype();
7898   oop next;
7899   NOT_PRODUCT(ssize_t n = 0;)
7900   for (cur = prefix; cur != NULL; cur = next) {
7901     next = oop(cur->mark());
7902     cur->set_mark(proto);   // until proven otherwise
7903     assert(cur->is_oop(), "Should be an oop");
7904     bool res = work_q->push(cur);
7905     assert(res, "Bit off more than we can chew?");
7906     NOT_PRODUCT(n++;)
7907   }
7908 #ifndef PRODUCT
7909   assert(_num_par_pushes >= n, "Too many pops?");
7910   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
7911 #endif
7912   return true;
7913 }
7914 
7915 // Single-threaded
7916 void CMSCollector::push_on_overflow_list(oop p) {
7917   NOT_PRODUCT(_num_par_pushes++;)
7918   assert(p->is_oop(), "Not an oop");
7919   preserve_mark_if_necessary(p);
7920   p->set_mark((markOop)_overflow_list);
7921   _overflow_list = p;
7922 }
7923 
7924 // Multi-threaded; use CAS to prepend to overflow list
7925 void CMSCollector::par_push_on_overflow_list(oop p) {
7926   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
7927   assert(p->is_oop(), "Not an oop");
7928   par_preserve_mark_if_necessary(p);
7929   oop observed_overflow_list = _overflow_list;
7930   oop cur_overflow_list;
7931   do {
7932     cur_overflow_list = observed_overflow_list;
7933     if (cur_overflow_list != BUSY) {
7934       p->set_mark(markOop(cur_overflow_list));
7935     } else {
7936       p->set_mark(NULL);
7937     }
7938     observed_overflow_list =
7939       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
7940   } while (cur_overflow_list != observed_overflow_list);
7941 }
7942 #undef BUSY
7943 
7944 // Single threaded
7945 // General Note on GrowableArray: pushes may silently fail
7946 // because we are (temporarily) out of C-heap for expanding
7947 // the stack. The problem is quite ubiquitous and affects
7948 // a lot of code in the JVM. The prudent thing for GrowableArray
7949 // to do (for now) is to exit with an error. However, that may
7950 // be too draconian in some cases because the caller may be
7951 // able to recover without much harm. For such cases, we
7952 // should probably introduce a "soft_push" method which returns
7953 // an indication of success or failure with the assumption that
7954 // the caller may be able to recover from a failure; code in
7955 // the VM can then be changed, incrementally, to deal with such
7956 // failures where possible, thus, incrementally hardening the VM
7957 // in such low resource situations.
7958 void CMSCollector::preserve_mark_work(oop p, markOop m) {
7959   _preserved_oop_stack.push(p);
7960   _preserved_mark_stack.push(m);
7961   assert(m == p->mark(), "Mark word changed");
7962   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
7963          "bijection");
7964 }
7965 
7966 // Single threaded
7967 void CMSCollector::preserve_mark_if_necessary(oop p) {
7968   markOop m = p->mark();
7969   if (m->must_be_preserved(p)) {
7970     preserve_mark_work(p, m);
7971   }
7972 }
7973 
7974 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
7975   markOop m = p->mark();
7976   if (m->must_be_preserved(p)) {
7977     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
7978     // Even though we read the mark word without holding
7979     // the lock, we are assured that it will not change
7980     // because we "own" this oop, so no other thread can
7981     // be trying to push it on the overflow list; see
7982     // the assertion in preserve_mark_work() that checks
7983     // that m == p->mark().
7984     preserve_mark_work(p, m);
7985   }
7986 }
7987 
7988 // We should be able to do this multi-threaded,
7989 // a chunk of stack being a task (this is
7990 // correct because each oop only ever appears
7991 // once in the overflow list. However, it's
7992 // not very easy to completely overlap this with
7993 // other operations, so will generally not be done
7994 // until all work's been completed. Because we
7995 // expect the preserved oop stack (set) to be small,
7996 // it's probably fine to do this single-threaded.
7997 // We can explore cleverer concurrent/overlapped/parallel
7998 // processing of preserved marks if we feel the
7999 // need for this in the future. Stack overflow should
8000 // be so rare in practice and, when it happens, its
8001 // effect on performance so great that this will
8002 // likely just be in the noise anyway.
8003 void CMSCollector::restore_preserved_marks_if_any() {
8004   assert(SafepointSynchronize::is_at_safepoint(),
8005          "world should be stopped");
8006   assert(Thread::current()->is_ConcurrentGC_thread() ||
8007          Thread::current()->is_VM_thread(),
8008          "should be single-threaded");
8009   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8010          "bijection");
8011 
8012   while (!_preserved_oop_stack.is_empty()) {
8013     oop p = _preserved_oop_stack.pop();
8014     assert(p->is_oop(), "Should be an oop");
8015     assert(_span.contains(p), "oop should be in _span");
8016     assert(p->mark() == markOopDesc::prototype(),
8017            "Set when taken from overflow list");
8018     markOop m = _preserved_mark_stack.pop();
8019     p->set_mark(m);
8020   }
8021   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8022          "stacks were cleared above");
8023 }
8024 
8025 #ifndef PRODUCT
8026 bool CMSCollector::no_preserved_marks() const {
8027   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8028 }
8029 #endif
8030 
8031 // Transfer some number of overflown objects to usual marking
8032 // stack. Return true if some objects were transferred.
8033 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8034   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8035                     (size_t)ParGCDesiredObjsFromOverflowList);
8036 
8037   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8038   assert(_collector->overflow_list_is_empty() || res,
8039          "If list is not empty, we should have taken something");
8040   assert(!res || !_mark_stack->isEmpty(),
8041          "If we took something, it should now be on our stack");
8042   return res;
8043 }
8044 
8045 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8046   size_t res = _sp->block_size_no_stall(addr, _collector);
8047   if (_sp->block_is_obj(addr)) {
8048     if (_live_bit_map->isMarked(addr)) {
8049       // It can't have been dead in a previous cycle
8050       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8051     } else {
8052       _dead_bit_map->mark(addr);      // mark the dead object
8053     }
8054   }
8055   // Could be 0, if the block size could not be computed without stalling.
8056   return res;
8057 }
8058 
8059 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8060 
8061   switch (phase) {
8062     case CMSCollector::InitialMarking:
8063       initialize(true  /* fullGC */ ,
8064                  cause /* cause of the GC */,
8065                  true  /* recordGCBeginTime */,
8066                  true  /* recordPreGCUsage */,
8067                  false /* recordPeakUsage */,
8068                  false /* recordPostGCusage */,
8069                  true  /* recordAccumulatedGCTime */,
8070                  false /* recordGCEndTime */,
8071                  false /* countCollection */  );
8072       break;
8073 
8074     case CMSCollector::FinalMarking:
8075       initialize(true  /* fullGC */ ,
8076                  cause /* cause of the GC */,
8077                  false /* recordGCBeginTime */,
8078                  false /* recordPreGCUsage */,
8079                  false /* recordPeakUsage */,
8080                  false /* recordPostGCusage */,
8081                  true  /* recordAccumulatedGCTime */,
8082                  false /* recordGCEndTime */,
8083                  false /* countCollection */  );
8084       break;
8085 
8086     case CMSCollector::Sweeping:
8087       initialize(true  /* fullGC */ ,
8088                  cause /* cause of the GC */,
8089                  false /* recordGCBeginTime */,
8090                  false /* recordPreGCUsage */,
8091                  true  /* recordPeakUsage */,
8092                  true  /* recordPostGCusage */,
8093                  false /* recordAccumulatedGCTime */,
8094                  true  /* recordGCEndTime */,
8095                  true  /* countCollection */  );
8096       break;
8097 
8098     default:
8099       ShouldNotReachHere();
8100   }
8101 }