1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1EvacFailure.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1MarkSweep.hpp"
  41 #include "gc/g1/g1OopClosures.inline.hpp"
  42 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  43 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  44 #include "gc/g1/g1RemSet.inline.hpp"
  45 #include "gc/g1/g1RootClosures.hpp"
  46 #include "gc/g1/g1RootProcessor.hpp"
  47 #include "gc/g1/g1StringDedup.hpp"
  48 #include "gc/g1/g1YCTypes.hpp"
  49 #include "gc/g1/heapRegion.inline.hpp"
  50 #include "gc/g1/heapRegionRemSet.hpp"
  51 #include "gc/g1/heapRegionSet.inline.hpp"
  52 #include "gc/g1/suspendibleThreadSet.hpp"
  53 #include "gc/g1/vm_operations_g1.hpp"
  54 #include "gc/shared/gcHeapSummary.hpp"
  55 #include "gc/shared/gcId.hpp"
  56 #include "gc/shared/gcLocker.inline.hpp"
  57 #include "gc/shared/gcTimer.hpp"
  58 #include "gc/shared/gcTrace.hpp"
  59 #include "gc/shared/gcTraceTime.hpp"
  60 #include "gc/shared/generationSpec.hpp"
  61 #include "gc/shared/isGCActiveMark.hpp"
  62 #include "gc/shared/referenceProcessor.hpp"
  63 #include "gc/shared/taskqueue.inline.hpp"
  64 #include "logging/log.hpp"
  65 #include "memory/allocation.hpp"
  66 #include "memory/iterator.hpp"
  67 #include "oops/oop.inline.hpp"
  68 #include "runtime/atomic.inline.hpp"
  69 #include "runtime/init.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  76 
  77 // INVARIANTS/NOTES
  78 //
  79 // All allocation activity covered by the G1CollectedHeap interface is
  80 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  81 // and allocate_new_tlab, which are the "entry" points to the
  82 // allocation code from the rest of the JVM.  (Note that this does not
  83 // apply to TLAB allocation, which is not part of this interface: it
  84 // is done by clients of this interface.)
  85 
  86 // Local to this file.
  87 
  88 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  89   bool _concurrent;
  90 public:
  91   RefineCardTableEntryClosure() : _concurrent(true) { }
  92 
  93   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  94     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  95     // This path is executed by the concurrent refine or mutator threads,
  96     // concurrently, and so we do not care if card_ptr contains references
  97     // that point into the collection set.
  98     assert(!oops_into_cset, "should be");
  99 
 100     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 101       // Caller will actually yield.
 102       return false;
 103     }
 104     // Otherwise, we finished successfully; return true.
 105     return true;
 106   }
 107 
 108   void set_concurrent(bool b) { _concurrent = b; }
 109 };
 110 
 111 
 112 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 113  private:
 114   size_t _num_processed;
 115 
 116  public:
 117   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 118 
 119   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 120     *card_ptr = CardTableModRefBS::dirty_card_val();
 121     _num_processed++;
 122     return true;
 123   }
 124 
 125   size_t num_processed() const { return _num_processed; }
 126 };
 127 
 128 
 129 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 130   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 131 }
 132 
 133 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 134   // The from card cache is not the memory that is actually committed. So we cannot
 135   // take advantage of the zero_filled parameter.
 136   reset_from_card_cache(start_idx, num_regions);
 137 }
 138 
 139 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 140 {
 141   // Claim the right to put the region on the dirty cards region list
 142   // by installing a self pointer.
 143   HeapRegion* next = hr->get_next_dirty_cards_region();
 144   if (next == NULL) {
 145     HeapRegion* res = (HeapRegion*)
 146       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 147                           NULL);
 148     if (res == NULL) {
 149       HeapRegion* head;
 150       do {
 151         // Put the region to the dirty cards region list.
 152         head = _dirty_cards_region_list;
 153         next = (HeapRegion*)
 154           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 155         if (next == head) {
 156           assert(hr->get_next_dirty_cards_region() == hr,
 157                  "hr->get_next_dirty_cards_region() != hr");
 158           if (next == NULL) {
 159             // The last region in the list points to itself.
 160             hr->set_next_dirty_cards_region(hr);
 161           } else {
 162             hr->set_next_dirty_cards_region(next);
 163           }
 164         }
 165       } while (next != head);
 166     }
 167   }
 168 }
 169 
 170 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 171 {
 172   HeapRegion* head;
 173   HeapRegion* hr;
 174   do {
 175     head = _dirty_cards_region_list;
 176     if (head == NULL) {
 177       return NULL;
 178     }
 179     HeapRegion* new_head = head->get_next_dirty_cards_region();
 180     if (head == new_head) {
 181       // The last region.
 182       new_head = NULL;
 183     }
 184     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 185                                           head);
 186   } while (hr != head);
 187   assert(hr != NULL, "invariant");
 188   hr->set_next_dirty_cards_region(NULL);
 189   return hr;
 190 }
 191 
 192 // Returns true if the reference points to an object that
 193 // can move in an incremental collection.
 194 bool G1CollectedHeap::is_scavengable(const void* p) {
 195   HeapRegion* hr = heap_region_containing(p);
 196   return !hr->is_pinned();
 197 }
 198 
 199 // Private methods.
 200 
 201 HeapRegion*
 202 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 203   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 204   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 205     if (!_secondary_free_list.is_empty()) {
 206       log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 207                                 "secondary_free_list has %u entries",
 208                                 _secondary_free_list.length());
 209       // It looks as if there are free regions available on the
 210       // secondary_free_list. Let's move them to the free_list and try
 211       // again to allocate from it.
 212       append_secondary_free_list();
 213 
 214       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 215              "empty we should have moved at least one entry to the free_list");
 216       HeapRegion* res = _hrm.allocate_free_region(is_old);
 217       log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 218                                 "allocated " HR_FORMAT " from secondary_free_list",
 219                                 HR_FORMAT_PARAMS(res));
 220       return res;
 221     }
 222 
 223     // Wait here until we get notified either when (a) there are no
 224     // more free regions coming or (b) some regions have been moved on
 225     // the secondary_free_list.
 226     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 227   }
 228 
 229   log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 230                             "could not allocate from secondary_free_list");
 231   return NULL;
 232 }
 233 
 234 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 235   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 236          "the only time we use this to allocate a humongous region is "
 237          "when we are allocating a single humongous region");
 238 
 239   HeapRegion* res;
 240   if (G1StressConcRegionFreeing) {
 241     if (!_secondary_free_list.is_empty()) {
 242       log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 243                                 "forced to look at the secondary_free_list");
 244       res = new_region_try_secondary_free_list(is_old);
 245       if (res != NULL) {
 246         return res;
 247       }
 248     }
 249   }
 250 
 251   res = _hrm.allocate_free_region(is_old);
 252 
 253   if (res == NULL) {
 254     log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 255                               "res == NULL, trying the secondary_free_list");
 256     res = new_region_try_secondary_free_list(is_old);
 257   }
 258   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 259     // Currently, only attempts to allocate GC alloc regions set
 260     // do_expand to true. So, we should only reach here during a
 261     // safepoint. If this assumption changes we might have to
 262     // reconsider the use of _expand_heap_after_alloc_failure.
 263     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 264 
 265     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 266                               word_size * HeapWordSize);
 267 
 268     if (expand(word_size * HeapWordSize)) {
 269       // Given that expand() succeeded in expanding the heap, and we
 270       // always expand the heap by an amount aligned to the heap
 271       // region size, the free list should in theory not be empty.
 272       // In either case allocate_free_region() will check for NULL.
 273       res = _hrm.allocate_free_region(is_old);
 274     } else {
 275       _expand_heap_after_alloc_failure = false;
 276     }
 277   }
 278   return res;
 279 }
 280 
 281 HeapWord*
 282 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 283                                                            uint num_regions,
 284                                                            size_t word_size,
 285                                                            AllocationContext_t context) {
 286   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 287   assert(is_humongous(word_size), "word_size should be humongous");
 288   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 289 
 290   // Index of last region in the series + 1.
 291   uint last = first + num_regions;
 292 
 293   // We need to initialize the region(s) we just discovered. This is
 294   // a bit tricky given that it can happen concurrently with
 295   // refinement threads refining cards on these regions and
 296   // potentially wanting to refine the BOT as they are scanning
 297   // those cards (this can happen shortly after a cleanup; see CR
 298   // 6991377). So we have to set up the region(s) carefully and in
 299   // a specific order.
 300 
 301   // The word size sum of all the regions we will allocate.
 302   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 303   assert(word_size <= word_size_sum, "sanity");
 304 
 305   // This will be the "starts humongous" region.
 306   HeapRegion* first_hr = region_at(first);
 307   // The header of the new object will be placed at the bottom of
 308   // the first region.
 309   HeapWord* new_obj = first_hr->bottom();
 310   // This will be the new top of the new object.
 311   HeapWord* obj_top = new_obj + word_size;
 312 
 313   // First, we need to zero the header of the space that we will be
 314   // allocating. When we update top further down, some refinement
 315   // threads might try to scan the region. By zeroing the header we
 316   // ensure that any thread that will try to scan the region will
 317   // come across the zero klass word and bail out.
 318   //
 319   // NOTE: It would not have been correct to have used
 320   // CollectedHeap::fill_with_object() and make the space look like
 321   // an int array. The thread that is doing the allocation will
 322   // later update the object header to a potentially different array
 323   // type and, for a very short period of time, the klass and length
 324   // fields will be inconsistent. This could cause a refinement
 325   // thread to calculate the object size incorrectly.
 326   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 327 
 328   // We will set up the first region as "starts humongous". This
 329   // will also update the BOT covering all the regions to reflect
 330   // that there is a single object that starts at the bottom of the
 331   // first region.
 332   first_hr->set_starts_humongous(obj_top);
 333   first_hr->set_allocation_context(context);
 334   // Then, if there are any, we will set up the "continues
 335   // humongous" regions.
 336   HeapRegion* hr = NULL;
 337   for (uint i = first + 1; i < last; ++i) {
 338     hr = region_at(i);
 339     hr->set_continues_humongous(first_hr);
 340     hr->set_allocation_context(context);
 341   }
 342 
 343   // Up to this point no concurrent thread would have been able to
 344   // do any scanning on any region in this series. All the top
 345   // fields still point to bottom, so the intersection between
 346   // [bottom,top] and [card_start,card_end] will be empty. Before we
 347   // update the top fields, we'll do a storestore to make sure that
 348   // no thread sees the update to top before the zeroing of the
 349   // object header and the BOT initialization.
 350   OrderAccess::storestore();
 351 
 352   // Now that the BOT and the object header have been initialized,
 353   // we can update top of the "starts humongous" region.
 354   first_hr->set_top(MIN2(first_hr->end(), obj_top));
 355   if (_hr_printer.is_active()) {
 356     _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, first_hr->top());
 357   }
 358 
 359   // Now, we will update the top fields of the "continues humongous"
 360   // regions.
 361   hr = NULL;
 362   for (uint i = first + 1; i < last; ++i) {
 363     hr = region_at(i);
 364     if ((i + 1) == last) {
 365       // last continues humongous region
 366       assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 367              "new_top should fall on this region");
 368       hr->set_top(obj_top);
 369       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, obj_top);
 370     } else {
 371       // not last one
 372       assert(obj_top > hr->end(), "obj_top should be above this region");
 373       hr->set_top(hr->end());
 374       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 375     }
 376   }
 377   // If we have continues humongous regions (hr != NULL), its top should
 378   // match obj_top.
 379   assert(hr == NULL || (hr->top() == obj_top), "sanity");
 380   check_bitmaps("Humongous Region Allocation", first_hr);
 381 
 382   increase_used(word_size * HeapWordSize);
 383 
 384   for (uint i = first; i < last; ++i) {
 385     _humongous_set.add(region_at(i));
 386   }
 387 
 388   return new_obj;
 389 }
 390 
 391 // If could fit into free regions w/o expansion, try.
 392 // Otherwise, if can expand, do so.
 393 // Otherwise, if using ex regions might help, try with ex given back.
 394 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 395   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 396 
 397   verify_region_sets_optional();
 398 
 399   uint first = G1_NO_HRM_INDEX;
 400   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 401 
 402   if (obj_regions == 1) {
 403     // Only one region to allocate, try to use a fast path by directly allocating
 404     // from the free lists. Do not try to expand here, we will potentially do that
 405     // later.
 406     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 407     if (hr != NULL) {
 408       first = hr->hrm_index();
 409     }
 410   } else {
 411     // We can't allocate humongous regions spanning more than one region while
 412     // cleanupComplete() is running, since some of the regions we find to be
 413     // empty might not yet be added to the free list. It is not straightforward
 414     // to know in which list they are on so that we can remove them. We only
 415     // need to do this if we need to allocate more than one region to satisfy the
 416     // current humongous allocation request. If we are only allocating one region
 417     // we use the one-region region allocation code (see above), that already
 418     // potentially waits for regions from the secondary free list.
 419     wait_while_free_regions_coming();
 420     append_secondary_free_list_if_not_empty_with_lock();
 421 
 422     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 423     // are lucky enough to find some.
 424     first = _hrm.find_contiguous_only_empty(obj_regions);
 425     if (first != G1_NO_HRM_INDEX) {
 426       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 427     }
 428   }
 429 
 430   if (first == G1_NO_HRM_INDEX) {
 431     // Policy: We could not find enough regions for the humongous object in the
 432     // free list. Look through the heap to find a mix of free and uncommitted regions.
 433     // If so, try expansion.
 434     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 435     if (first != G1_NO_HRM_INDEX) {
 436       // We found something. Make sure these regions are committed, i.e. expand
 437       // the heap. Alternatively we could do a defragmentation GC.
 438       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 439                                     word_size * HeapWordSize);
 440 
 441 
 442       _hrm.expand_at(first, obj_regions);
 443       g1_policy()->record_new_heap_size(num_regions());
 444 
 445 #ifdef ASSERT
 446       for (uint i = first; i < first + obj_regions; ++i) {
 447         HeapRegion* hr = region_at(i);
 448         assert(hr->is_free(), "sanity");
 449         assert(hr->is_empty(), "sanity");
 450         assert(is_on_master_free_list(hr), "sanity");
 451       }
 452 #endif
 453       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 454     } else {
 455       // Policy: Potentially trigger a defragmentation GC.
 456     }
 457   }
 458 
 459   HeapWord* result = NULL;
 460   if (first != G1_NO_HRM_INDEX) {
 461     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 462                                                        word_size, context);
 463     assert(result != NULL, "it should always return a valid result");
 464 
 465     // A successful humongous object allocation changes the used space
 466     // information of the old generation so we need to recalculate the
 467     // sizes and update the jstat counters here.
 468     g1mm()->update_sizes();
 469   }
 470 
 471   verify_region_sets_optional();
 472 
 473   return result;
 474 }
 475 
 476 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 477   assert_heap_not_locked_and_not_at_safepoint();
 478   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 479 
 480   uint dummy_gc_count_before;
 481   uint dummy_gclocker_retry_count = 0;
 482   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 483 }
 484 
 485 HeapWord*
 486 G1CollectedHeap::mem_allocate(size_t word_size,
 487                               bool*  gc_overhead_limit_was_exceeded) {
 488   assert_heap_not_locked_and_not_at_safepoint();
 489 
 490   // Loop until the allocation is satisfied, or unsatisfied after GC.
 491   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 492     uint gc_count_before;
 493 
 494     HeapWord* result = NULL;
 495     if (!is_humongous(word_size)) {
 496       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 497     } else {
 498       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 499     }
 500     if (result != NULL) {
 501       return result;
 502     }
 503 
 504     // Create the garbage collection operation...
 505     VM_G1CollectForAllocation op(gc_count_before, word_size);
 506     op.set_allocation_context(AllocationContext::current());
 507 
 508     // ...and get the VM thread to execute it.
 509     VMThread::execute(&op);
 510 
 511     if (op.prologue_succeeded() && op.pause_succeeded()) {
 512       // If the operation was successful we'll return the result even
 513       // if it is NULL. If the allocation attempt failed immediately
 514       // after a Full GC, it's unlikely we'll be able to allocate now.
 515       HeapWord* result = op.result();
 516       if (result != NULL && !is_humongous(word_size)) {
 517         // Allocations that take place on VM operations do not do any
 518         // card dirtying and we have to do it here. We only have to do
 519         // this for non-humongous allocations, though.
 520         dirty_young_block(result, word_size);
 521       }
 522       return result;
 523     } else {
 524       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 525         return NULL;
 526       }
 527       assert(op.result() == NULL,
 528              "the result should be NULL if the VM op did not succeed");
 529     }
 530 
 531     // Give a warning if we seem to be looping forever.
 532     if ((QueuedAllocationWarningCount > 0) &&
 533         (try_count % QueuedAllocationWarningCount == 0)) {
 534       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 535     }
 536   }
 537 
 538   ShouldNotReachHere();
 539   return NULL;
 540 }
 541 
 542 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 543                                                    AllocationContext_t context,
 544                                                    uint* gc_count_before_ret,
 545                                                    uint* gclocker_retry_count_ret) {
 546   // Make sure you read the note in attempt_allocation_humongous().
 547 
 548   assert_heap_not_locked_and_not_at_safepoint();
 549   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 550          "be called for humongous allocation requests");
 551 
 552   // We should only get here after the first-level allocation attempt
 553   // (attempt_allocation()) failed to allocate.
 554 
 555   // We will loop until a) we manage to successfully perform the
 556   // allocation or b) we successfully schedule a collection which
 557   // fails to perform the allocation. b) is the only case when we'll
 558   // return NULL.
 559   HeapWord* result = NULL;
 560   for (int try_count = 1; /* we'll return */; try_count += 1) {
 561     bool should_try_gc;
 562     uint gc_count_before;
 563 
 564     {
 565       MutexLockerEx x(Heap_lock);
 566       result = _allocator->attempt_allocation_locked(word_size, context);
 567       if (result != NULL) {
 568         return result;
 569       }
 570 
 571       if (GC_locker::is_active_and_needs_gc()) {
 572         if (g1_policy()->can_expand_young_list()) {
 573           // No need for an ergo verbose message here,
 574           // can_expand_young_list() does this when it returns true.
 575           result = _allocator->attempt_allocation_force(word_size, context);
 576           if (result != NULL) {
 577             return result;
 578           }
 579         }
 580         should_try_gc = false;
 581       } else {
 582         // The GCLocker may not be active but the GCLocker initiated
 583         // GC may not yet have been performed (GCLocker::needs_gc()
 584         // returns true). In this case we do not try this GC and
 585         // wait until the GCLocker initiated GC is performed, and
 586         // then retry the allocation.
 587         if (GC_locker::needs_gc()) {
 588           should_try_gc = false;
 589         } else {
 590           // Read the GC count while still holding the Heap_lock.
 591           gc_count_before = total_collections();
 592           should_try_gc = true;
 593         }
 594       }
 595     }
 596 
 597     if (should_try_gc) {
 598       bool succeeded;
 599       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 600                                    GCCause::_g1_inc_collection_pause);
 601       if (result != NULL) {
 602         assert(succeeded, "only way to get back a non-NULL result");
 603         return result;
 604       }
 605 
 606       if (succeeded) {
 607         // If we get here we successfully scheduled a collection which
 608         // failed to allocate. No point in trying to allocate
 609         // further. We'll just return NULL.
 610         MutexLockerEx x(Heap_lock);
 611         *gc_count_before_ret = total_collections();
 612         return NULL;
 613       }
 614     } else {
 615       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 616         MutexLockerEx x(Heap_lock);
 617         *gc_count_before_ret = total_collections();
 618         return NULL;
 619       }
 620       // The GCLocker is either active or the GCLocker initiated
 621       // GC has not yet been performed. Stall until it is and
 622       // then retry the allocation.
 623       GC_locker::stall_until_clear();
 624       (*gclocker_retry_count_ret) += 1;
 625     }
 626 
 627     // We can reach here if we were unsuccessful in scheduling a
 628     // collection (because another thread beat us to it) or if we were
 629     // stalled due to the GC locker. In either can we should retry the
 630     // allocation attempt in case another thread successfully
 631     // performed a collection and reclaimed enough space. We do the
 632     // first attempt (without holding the Heap_lock) here and the
 633     // follow-on attempt will be at the start of the next loop
 634     // iteration (after taking the Heap_lock).
 635     result = _allocator->attempt_allocation(word_size, context);
 636     if (result != NULL) {
 637       return result;
 638     }
 639 
 640     // Give a warning if we seem to be looping forever.
 641     if ((QueuedAllocationWarningCount > 0) &&
 642         (try_count % QueuedAllocationWarningCount == 0)) {
 643       warning("G1CollectedHeap::attempt_allocation_slow() "
 644               "retries %d times", try_count);
 645     }
 646   }
 647 
 648   ShouldNotReachHere();
 649   return NULL;
 650 }
 651 
 652 void G1CollectedHeap::begin_archive_alloc_range() {
 653   assert_at_safepoint(true /* should_be_vm_thread */);
 654   if (_archive_allocator == NULL) {
 655     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 656   }
 657 }
 658 
 659 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 660   // Allocations in archive regions cannot be of a size that would be considered
 661   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 662   // may be different at archive-restore time.
 663   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 664 }
 665 
 666 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 667   assert_at_safepoint(true /* should_be_vm_thread */);
 668   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 669   if (is_archive_alloc_too_large(word_size)) {
 670     return NULL;
 671   }
 672   return _archive_allocator->archive_mem_allocate(word_size);
 673 }
 674 
 675 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 676                                               size_t end_alignment_in_bytes) {
 677   assert_at_safepoint(true /* should_be_vm_thread */);
 678   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 679 
 680   // Call complete_archive to do the real work, filling in the MemRegion
 681   // array with the archive regions.
 682   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 683   delete _archive_allocator;
 684   _archive_allocator = NULL;
 685 }
 686 
 687 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 688   assert(ranges != NULL, "MemRegion array NULL");
 689   assert(count != 0, "No MemRegions provided");
 690   MemRegion reserved = _hrm.reserved();
 691   for (size_t i = 0; i < count; i++) {
 692     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 693       return false;
 694     }
 695   }
 696   return true;
 697 }
 698 
 699 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 700   assert(!is_init_completed(), "Expect to be called at JVM init time");
 701   assert(ranges != NULL, "MemRegion array NULL");
 702   assert(count != 0, "No MemRegions provided");
 703   MutexLockerEx x(Heap_lock);
 704 
 705   MemRegion reserved = _hrm.reserved();
 706   HeapWord* prev_last_addr = NULL;
 707   HeapRegion* prev_last_region = NULL;
 708 
 709   // Temporarily disable pretouching of heap pages. This interface is used
 710   // when mmap'ing archived heap data in, so pre-touching is wasted.
 711   FlagSetting fs(AlwaysPreTouch, false);
 712 
 713   // Enable archive object checking in G1MarkSweep. We have to let it know
 714   // about each archive range, so that objects in those ranges aren't marked.
 715   G1MarkSweep::enable_archive_object_check();
 716 
 717   // For each specified MemRegion range, allocate the corresponding G1
 718   // regions and mark them as archive regions. We expect the ranges in
 719   // ascending starting address order, without overlap.
 720   for (size_t i = 0; i < count; i++) {
 721     MemRegion curr_range = ranges[i];
 722     HeapWord* start_address = curr_range.start();
 723     size_t word_size = curr_range.word_size();
 724     HeapWord* last_address = curr_range.last();
 725     size_t commits = 0;
 726 
 727     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 728               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 729               p2i(start_address), p2i(last_address));
 730     guarantee(start_address > prev_last_addr,
 731               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 732               p2i(start_address), p2i(prev_last_addr));
 733     prev_last_addr = last_address;
 734 
 735     // Check for ranges that start in the same G1 region in which the previous
 736     // range ended, and adjust the start address so we don't try to allocate
 737     // the same region again. If the current range is entirely within that
 738     // region, skip it, just adjusting the recorded top.
 739     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 740     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 741       start_address = start_region->end();
 742       if (start_address > last_address) {
 743         increase_used(word_size * HeapWordSize);
 744         start_region->set_top(last_address + 1);
 745         continue;
 746       }
 747       start_region->set_top(start_address);
 748       curr_range = MemRegion(start_address, last_address + 1);
 749       start_region = _hrm.addr_to_region(start_address);
 750     }
 751 
 752     // Perform the actual region allocation, exiting if it fails.
 753     // Then note how much new space we have allocated.
 754     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 755       return false;
 756     }
 757     increase_used(word_size * HeapWordSize);
 758     if (commits != 0) {
 759       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 760                                 HeapRegion::GrainWords * HeapWordSize * commits);
 761 
 762     }
 763 
 764     // Mark each G1 region touched by the range as archive, add it to the old set,
 765     // and set the allocation context and top.
 766     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 767     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 768     prev_last_region = last_region;
 769 
 770     while (curr_region != NULL) {
 771       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 772              "Region already in use (index %u)", curr_region->hrm_index());
 773       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 774       curr_region->set_allocation_context(AllocationContext::system());
 775       curr_region->set_archive();
 776       _old_set.add(curr_region);
 777       if (curr_region != last_region) {
 778         curr_region->set_top(curr_region->end());
 779         curr_region = _hrm.next_region_in_heap(curr_region);
 780       } else {
 781         curr_region->set_top(last_address + 1);
 782         curr_region = NULL;
 783       }
 784     }
 785 
 786     // Notify mark-sweep of the archive range.
 787     G1MarkSweep::set_range_archive(curr_range, true);
 788   }
 789   return true;
 790 }
 791 
 792 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 793   assert(!is_init_completed(), "Expect to be called at JVM init time");
 794   assert(ranges != NULL, "MemRegion array NULL");
 795   assert(count != 0, "No MemRegions provided");
 796   MemRegion reserved = _hrm.reserved();
 797   HeapWord *prev_last_addr = NULL;
 798   HeapRegion* prev_last_region = NULL;
 799 
 800   // For each MemRegion, create filler objects, if needed, in the G1 regions
 801   // that contain the address range. The address range actually within the
 802   // MemRegion will not be modified. That is assumed to have been initialized
 803   // elsewhere, probably via an mmap of archived heap data.
 804   MutexLockerEx x(Heap_lock);
 805   for (size_t i = 0; i < count; i++) {
 806     HeapWord* start_address = ranges[i].start();
 807     HeapWord* last_address = ranges[i].last();
 808 
 809     assert(reserved.contains(start_address) && reserved.contains(last_address),
 810            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 811            p2i(start_address), p2i(last_address));
 812     assert(start_address > prev_last_addr,
 813            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 814            p2i(start_address), p2i(prev_last_addr));
 815 
 816     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 817     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 818     HeapWord* bottom_address = start_region->bottom();
 819 
 820     // Check for a range beginning in the same region in which the
 821     // previous one ended.
 822     if (start_region == prev_last_region) {
 823       bottom_address = prev_last_addr + 1;
 824     }
 825 
 826     // Verify that the regions were all marked as archive regions by
 827     // alloc_archive_regions.
 828     HeapRegion* curr_region = start_region;
 829     while (curr_region != NULL) {
 830       guarantee(curr_region->is_archive(),
 831                 "Expected archive region at index %u", curr_region->hrm_index());
 832       if (curr_region != last_region) {
 833         curr_region = _hrm.next_region_in_heap(curr_region);
 834       } else {
 835         curr_region = NULL;
 836       }
 837     }
 838 
 839     prev_last_addr = last_address;
 840     prev_last_region = last_region;
 841 
 842     // Fill the memory below the allocated range with dummy object(s),
 843     // if the region bottom does not match the range start, or if the previous
 844     // range ended within the same G1 region, and there is a gap.
 845     if (start_address != bottom_address) {
 846       size_t fill_size = pointer_delta(start_address, bottom_address);
 847       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 848       increase_used(fill_size * HeapWordSize);
 849     }
 850   }
 851 }
 852 
 853 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 854                                                      uint* gc_count_before_ret,
 855                                                      uint* gclocker_retry_count_ret) {
 856   assert_heap_not_locked_and_not_at_safepoint();
 857   assert(!is_humongous(word_size), "attempt_allocation() should not "
 858          "be called for humongous allocation requests");
 859 
 860   AllocationContext_t context = AllocationContext::current();
 861   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 862 
 863   if (result == NULL) {
 864     result = attempt_allocation_slow(word_size,
 865                                      context,
 866                                      gc_count_before_ret,
 867                                      gclocker_retry_count_ret);
 868   }
 869   assert_heap_not_locked();
 870   if (result != NULL) {
 871     dirty_young_block(result, word_size);
 872   }
 873   return result;
 874 }
 875 
 876 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 877   assert(!is_init_completed(), "Expect to be called at JVM init time");
 878   assert(ranges != NULL, "MemRegion array NULL");
 879   assert(count != 0, "No MemRegions provided");
 880   MemRegion reserved = _hrm.reserved();
 881   HeapWord* prev_last_addr = NULL;
 882   HeapRegion* prev_last_region = NULL;
 883   size_t size_used = 0;
 884   size_t uncommitted_regions = 0;
 885 
 886   // For each Memregion, free the G1 regions that constitute it, and
 887   // notify mark-sweep that the range is no longer to be considered 'archive.'
 888   MutexLockerEx x(Heap_lock);
 889   for (size_t i = 0; i < count; i++) {
 890     HeapWord* start_address = ranges[i].start();
 891     HeapWord* last_address = ranges[i].last();
 892 
 893     assert(reserved.contains(start_address) && reserved.contains(last_address),
 894            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 895            p2i(start_address), p2i(last_address));
 896     assert(start_address > prev_last_addr,
 897            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 898            p2i(start_address), p2i(prev_last_addr));
 899     size_used += ranges[i].byte_size();
 900     prev_last_addr = last_address;
 901 
 902     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 903     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 904 
 905     // Check for ranges that start in the same G1 region in which the previous
 906     // range ended, and adjust the start address so we don't try to free
 907     // the same region again. If the current range is entirely within that
 908     // region, skip it.
 909     if (start_region == prev_last_region) {
 910       start_address = start_region->end();
 911       if (start_address > last_address) {
 912         continue;
 913       }
 914       start_region = _hrm.addr_to_region(start_address);
 915     }
 916     prev_last_region = last_region;
 917 
 918     // After verifying that each region was marked as an archive region by
 919     // alloc_archive_regions, set it free and empty and uncommit it.
 920     HeapRegion* curr_region = start_region;
 921     while (curr_region != NULL) {
 922       guarantee(curr_region->is_archive(),
 923                 "Expected archive region at index %u", curr_region->hrm_index());
 924       uint curr_index = curr_region->hrm_index();
 925       _old_set.remove(curr_region);
 926       curr_region->set_free();
 927       curr_region->set_top(curr_region->bottom());
 928       if (curr_region != last_region) {
 929         curr_region = _hrm.next_region_in_heap(curr_region);
 930       } else {
 931         curr_region = NULL;
 932       }
 933       _hrm.shrink_at(curr_index, 1);
 934       uncommitted_regions++;
 935     }
 936 
 937     // Notify mark-sweep that this is no longer an archive range.
 938     G1MarkSweep::set_range_archive(ranges[i], false);
 939   }
 940 
 941   if (uncommitted_regions != 0) {
 942     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 943                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 944   }
 945   decrease_used(size_used);
 946 }
 947 
 948 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 949                                                         uint* gc_count_before_ret,
 950                                                         uint* gclocker_retry_count_ret) {
 951   // The structure of this method has a lot of similarities to
 952   // attempt_allocation_slow(). The reason these two were not merged
 953   // into a single one is that such a method would require several "if
 954   // allocation is not humongous do this, otherwise do that"
 955   // conditional paths which would obscure its flow. In fact, an early
 956   // version of this code did use a unified method which was harder to
 957   // follow and, as a result, it had subtle bugs that were hard to
 958   // track down. So keeping these two methods separate allows each to
 959   // be more readable. It will be good to keep these two in sync as
 960   // much as possible.
 961 
 962   assert_heap_not_locked_and_not_at_safepoint();
 963   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 964          "should only be called for humongous allocations");
 965 
 966   // Humongous objects can exhaust the heap quickly, so we should check if we
 967   // need to start a marking cycle at each humongous object allocation. We do
 968   // the check before we do the actual allocation. The reason for doing it
 969   // before the allocation is that we avoid having to keep track of the newly
 970   // allocated memory while we do a GC.
 971   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 972                                            word_size)) {
 973     collect(GCCause::_g1_humongous_allocation);
 974   }
 975 
 976   // We will loop until a) we manage to successfully perform the
 977   // allocation or b) we successfully schedule a collection which
 978   // fails to perform the allocation. b) is the only case when we'll
 979   // return NULL.
 980   HeapWord* result = NULL;
 981   for (int try_count = 1; /* we'll return */; try_count += 1) {
 982     bool should_try_gc;
 983     uint gc_count_before;
 984 
 985     {
 986       MutexLockerEx x(Heap_lock);
 987 
 988       // Given that humongous objects are not allocated in young
 989       // regions, we'll first try to do the allocation without doing a
 990       // collection hoping that there's enough space in the heap.
 991       result = humongous_obj_allocate(word_size, AllocationContext::current());
 992       if (result != NULL) {
 993         return result;
 994       }
 995 
 996       if (GC_locker::is_active_and_needs_gc()) {
 997         should_try_gc = false;
 998       } else {
 999          // The GCLocker may not be active but the GCLocker initiated
1000         // GC may not yet have been performed (GCLocker::needs_gc()
1001         // returns true). In this case we do not try this GC and
1002         // wait until the GCLocker initiated GC is performed, and
1003         // then retry the allocation.
1004         if (GC_locker::needs_gc()) {
1005           should_try_gc = false;
1006         } else {
1007           // Read the GC count while still holding the Heap_lock.
1008           gc_count_before = total_collections();
1009           should_try_gc = true;
1010         }
1011       }
1012     }
1013 
1014     if (should_try_gc) {
1015       // If we failed to allocate the humongous object, we should try to
1016       // do a collection pause (if we're allowed) in case it reclaims
1017       // enough space for the allocation to succeed after the pause.
1018 
1019       bool succeeded;
1020       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1021                                    GCCause::_g1_humongous_allocation);
1022       if (result != NULL) {
1023         assert(succeeded, "only way to get back a non-NULL result");
1024         return result;
1025       }
1026 
1027       if (succeeded) {
1028         // If we get here we successfully scheduled a collection which
1029         // failed to allocate. No point in trying to allocate
1030         // further. We'll just return NULL.
1031         MutexLockerEx x(Heap_lock);
1032         *gc_count_before_ret = total_collections();
1033         return NULL;
1034       }
1035     } else {
1036       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1037         MutexLockerEx x(Heap_lock);
1038         *gc_count_before_ret = total_collections();
1039         return NULL;
1040       }
1041       // The GCLocker is either active or the GCLocker initiated
1042       // GC has not yet been performed. Stall until it is and
1043       // then retry the allocation.
1044       GC_locker::stall_until_clear();
1045       (*gclocker_retry_count_ret) += 1;
1046     }
1047 
1048     // We can reach here if we were unsuccessful in scheduling a
1049     // collection (because another thread beat us to it) or if we were
1050     // stalled due to the GC locker. In either can we should retry the
1051     // allocation attempt in case another thread successfully
1052     // performed a collection and reclaimed enough space.  Give a
1053     // warning if we seem to be looping forever.
1054 
1055     if ((QueuedAllocationWarningCount > 0) &&
1056         (try_count % QueuedAllocationWarningCount == 0)) {
1057       warning("G1CollectedHeap::attempt_allocation_humongous() "
1058               "retries %d times", try_count);
1059     }
1060   }
1061 
1062   ShouldNotReachHere();
1063   return NULL;
1064 }
1065 
1066 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1067                                                            AllocationContext_t context,
1068                                                            bool expect_null_mutator_alloc_region) {
1069   assert_at_safepoint(true /* should_be_vm_thread */);
1070   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1071          "the current alloc region was unexpectedly found to be non-NULL");
1072 
1073   if (!is_humongous(word_size)) {
1074     return _allocator->attempt_allocation_locked(word_size, context);
1075   } else {
1076     HeapWord* result = humongous_obj_allocate(word_size, context);
1077     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1078       collector_state()->set_initiate_conc_mark_if_possible(true);
1079     }
1080     return result;
1081   }
1082 
1083   ShouldNotReachHere();
1084 }
1085 
1086 class PostMCRemSetClearClosure: public HeapRegionClosure {
1087   G1CollectedHeap* _g1h;
1088   ModRefBarrierSet* _mr_bs;
1089 public:
1090   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1091     _g1h(g1h), _mr_bs(mr_bs) {}
1092 
1093   bool doHeapRegion(HeapRegion* r) {
1094     HeapRegionRemSet* hrrs = r->rem_set();
1095 
1096     _g1h->reset_gc_time_stamps(r);
1097 
1098     if (r->is_continues_humongous()) {
1099       // We'll assert that the strong code root list and RSet is empty
1100       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1101       assert(hrrs->occupied() == 0, "RSet should be empty");
1102     } else {
1103       hrrs->clear();
1104     }
1105     // You might think here that we could clear just the cards
1106     // corresponding to the used region.  But no: if we leave a dirty card
1107     // in a region we might allocate into, then it would prevent that card
1108     // from being enqueued, and cause it to be missed.
1109     // Re: the performance cost: we shouldn't be doing full GC anyway!
1110     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1111 
1112     return false;
1113   }
1114 };
1115 
1116 void G1CollectedHeap::clear_rsets_post_compaction() {
1117   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1118   heap_region_iterate(&rs_clear);
1119 }
1120 
1121 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1122   G1CollectedHeap*   _g1h;
1123   UpdateRSOopClosure _cl;
1124 public:
1125   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1126     _cl(g1->g1_rem_set(), worker_i),
1127     _g1h(g1)
1128   { }
1129 
1130   bool doHeapRegion(HeapRegion* r) {
1131     if (!r->is_continues_humongous()) {
1132       _cl.set_from(r);
1133       r->oop_iterate(&_cl);
1134     }
1135     return false;
1136   }
1137 };
1138 
1139 class ParRebuildRSTask: public AbstractGangTask {
1140   G1CollectedHeap* _g1;
1141   HeapRegionClaimer _hrclaimer;
1142 
1143 public:
1144   ParRebuildRSTask(G1CollectedHeap* g1) :
1145       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1146 
1147   void work(uint worker_id) {
1148     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1149     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1150   }
1151 };
1152 
1153 class PostCompactionPrinterClosure: public HeapRegionClosure {
1154 private:
1155   G1HRPrinter* _hr_printer;
1156 public:
1157   bool doHeapRegion(HeapRegion* hr) {
1158     assert(!hr->is_young(), "not expecting to find young regions");
1159     if (hr->is_free()) {
1160       // We only generate output for non-empty regions.
1161     } else if (hr->is_starts_humongous()) {
1162       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1163     } else if (hr->is_continues_humongous()) {
1164       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1165     } else if (hr->is_archive()) {
1166       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1167     } else if (hr->is_old()) {
1168       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1169     } else {
1170       ShouldNotReachHere();
1171     }
1172     return false;
1173   }
1174 
1175   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1176     : _hr_printer(hr_printer) { }
1177 };
1178 
1179 void G1CollectedHeap::print_hrm_post_compaction() {
1180   if (_hr_printer.is_active()) {
1181     PostCompactionPrinterClosure cl(hr_printer());
1182     heap_region_iterate(&cl);
1183   }
1184 
1185 }
1186 
1187 bool G1CollectedHeap::do_collection(bool explicit_gc,
1188                                     bool clear_all_soft_refs,
1189                                     size_t word_size) {
1190   assert_at_safepoint(true /* should_be_vm_thread */);
1191 
1192   if (GC_locker::check_active_before_gc()) {
1193     return false;
1194   }
1195 
1196   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1197   gc_timer->register_gc_start();
1198 
1199   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1200   GCIdMark gc_id_mark;
1201   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1202 
1203   SvcGCMarker sgcm(SvcGCMarker::FULL);
1204   ResourceMark rm;
1205 
1206   print_heap_before_gc();
1207   trace_heap_before_gc(gc_tracer);
1208 
1209   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1210 
1211   verify_region_sets_optional();
1212 
1213   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1214                            collector_policy()->should_clear_all_soft_refs();
1215 
1216   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1217 
1218   {
1219     IsGCActiveMark x;
1220 
1221     // Timing
1222     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1223     GCTraceCPUTime tcpu;
1224 
1225     {
1226       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1227       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1228       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1229 
1230       g1_policy()->record_full_collection_start();
1231 
1232       // Note: When we have a more flexible GC logging framework that
1233       // allows us to add optional attributes to a GC log record we
1234       // could consider timing and reporting how long we wait in the
1235       // following two methods.
1236       wait_while_free_regions_coming();
1237       // If we start the compaction before the CM threads finish
1238       // scanning the root regions we might trip them over as we'll
1239       // be moving objects / updating references. So let's wait until
1240       // they are done. By telling them to abort, they should complete
1241       // early.
1242       _cm->root_regions()->abort();
1243       _cm->root_regions()->wait_until_scan_finished();
1244       append_secondary_free_list_if_not_empty_with_lock();
1245 
1246       gc_prologue(true);
1247       increment_total_collections(true /* full gc */);
1248       increment_old_marking_cycles_started();
1249 
1250       assert(used() == recalculate_used(), "Should be equal");
1251 
1252       verify_before_gc();
1253 
1254       check_bitmaps("Full GC Start");
1255       pre_full_gc_dump(gc_timer);
1256 
1257 #if defined(COMPILER2) || INCLUDE_JVMCI
1258       DerivedPointerTable::clear();
1259 #endif
1260 
1261       // Disable discovery and empty the discovered lists
1262       // for the CM ref processor.
1263       ref_processor_cm()->disable_discovery();
1264       ref_processor_cm()->abandon_partial_discovery();
1265       ref_processor_cm()->verify_no_references_recorded();
1266 
1267       // Abandon current iterations of concurrent marking and concurrent
1268       // refinement, if any are in progress. We have to do this before
1269       // wait_until_scan_finished() below.
1270       concurrent_mark()->abort();
1271 
1272       // Make sure we'll choose a new allocation region afterwards.
1273       _allocator->release_mutator_alloc_region();
1274       _allocator->abandon_gc_alloc_regions();
1275       g1_rem_set()->cleanupHRRS();
1276 
1277       // We may have added regions to the current incremental collection
1278       // set between the last GC or pause and now. We need to clear the
1279       // incremental collection set and then start rebuilding it afresh
1280       // after this full GC.
1281       abandon_collection_set(g1_policy()->inc_cset_head());
1282       g1_policy()->clear_incremental_cset();
1283       g1_policy()->stop_incremental_cset_building();
1284 
1285       tear_down_region_sets(false /* free_list_only */);
1286       collector_state()->set_gcs_are_young(true);
1287 
1288       // See the comments in g1CollectedHeap.hpp and
1289       // G1CollectedHeap::ref_processing_init() about
1290       // how reference processing currently works in G1.
1291 
1292       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1293       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1294 
1295       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1296       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1297 
1298       ref_processor_stw()->enable_discovery();
1299       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1300 
1301       // Do collection work
1302       {
1303         HandleMark hm;  // Discard invalid handles created during gc
1304         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1305       }
1306 
1307       assert(num_free_regions() == 0, "we should not have added any free regions");
1308       rebuild_region_sets(false /* free_list_only */);
1309 
1310       // Enqueue any discovered reference objects that have
1311       // not been removed from the discovered lists.
1312       ref_processor_stw()->enqueue_discovered_references();
1313 
1314 #if defined(COMPILER2) || INCLUDE_JVMCI
1315       DerivedPointerTable::update_pointers();
1316 #endif
1317 
1318       MemoryService::track_memory_usage();
1319 
1320       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1321       ref_processor_stw()->verify_no_references_recorded();
1322 
1323       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1324       ClassLoaderDataGraph::purge();
1325       MetaspaceAux::verify_metrics();
1326 
1327       // Note: since we've just done a full GC, concurrent
1328       // marking is no longer active. Therefore we need not
1329       // re-enable reference discovery for the CM ref processor.
1330       // That will be done at the start of the next marking cycle.
1331       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1332       ref_processor_cm()->verify_no_references_recorded();
1333 
1334       reset_gc_time_stamp();
1335       // Since everything potentially moved, we will clear all remembered
1336       // sets, and clear all cards.  Later we will rebuild remembered
1337       // sets. We will also reset the GC time stamps of the regions.
1338       clear_rsets_post_compaction();
1339       check_gc_time_stamps();
1340 
1341       // Resize the heap if necessary.
1342       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1343 
1344       // We should do this after we potentially resize the heap so
1345       // that all the COMMIT / UNCOMMIT events are generated before
1346       // the compaction events.
1347       print_hrm_post_compaction();
1348 
1349       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1350       if (hot_card_cache->use_cache()) {
1351         hot_card_cache->reset_card_counts();
1352         hot_card_cache->reset_hot_cache();
1353       }
1354 
1355       // Rebuild remembered sets of all regions.
1356       uint n_workers =
1357         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1358                                                 workers()->active_workers(),
1359                                                 Threads::number_of_non_daemon_threads());
1360       workers()->set_active_workers(n_workers);
1361 
1362       ParRebuildRSTask rebuild_rs_task(this);
1363       workers()->run_task(&rebuild_rs_task);
1364 
1365       // Rebuild the strong code root lists for each region
1366       rebuild_strong_code_roots();
1367 
1368       if (true) { // FIXME
1369         MetaspaceGC::compute_new_size();
1370       }
1371 
1372 #ifdef TRACESPINNING
1373       ParallelTaskTerminator::print_termination_counts();
1374 #endif
1375 
1376       // Discard all rset updates
1377       JavaThread::dirty_card_queue_set().abandon_logs();
1378       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1379 
1380       _young_list->reset_sampled_info();
1381       // At this point there should be no regions in the
1382       // entire heap tagged as young.
1383       assert(check_young_list_empty(true /* check_heap */),
1384              "young list should be empty at this point");
1385 
1386       // Update the number of full collections that have been completed.
1387       increment_old_marking_cycles_completed(false /* concurrent */);
1388 
1389       _hrm.verify_optional();
1390       verify_region_sets_optional();
1391 
1392       verify_after_gc();
1393 
1394       // Clear the previous marking bitmap, if needed for bitmap verification.
1395       // Note we cannot do this when we clear the next marking bitmap in
1396       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1397       // objects marked during a full GC against the previous bitmap.
1398       // But we need to clear it before calling check_bitmaps below since
1399       // the full GC has compacted objects and updated TAMS but not updated
1400       // the prev bitmap.
1401       if (G1VerifyBitmaps) {
1402         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1403       }
1404       check_bitmaps("Full GC End");
1405 
1406       // Start a new incremental collection set for the next pause
1407       assert(g1_policy()->collection_set() == NULL, "must be");
1408       g1_policy()->start_incremental_cset_building();
1409 
1410       clear_cset_fast_test();
1411 
1412       _allocator->init_mutator_alloc_region();
1413 
1414       g1_policy()->record_full_collection_end();
1415 
1416       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1417       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1418       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1419       // before any GC notifications are raised.
1420       g1mm()->update_sizes();
1421 
1422       gc_epilogue(true);
1423     }
1424 
1425     g1_policy()->print_detailed_heap_transition();
1426 
1427     print_heap_after_gc();
1428     trace_heap_after_gc(gc_tracer);
1429 
1430     post_full_gc_dump(gc_timer);
1431 
1432     gc_timer->register_gc_end();
1433     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1434   }
1435 
1436   return true;
1437 }
1438 
1439 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1440   // do_collection() will return whether it succeeded in performing
1441   // the GC. Currently, there is no facility on the
1442   // do_full_collection() API to notify the caller than the collection
1443   // did not succeed (e.g., because it was locked out by the GC
1444   // locker). So, right now, we'll ignore the return value.
1445   bool dummy = do_collection(true,                /* explicit_gc */
1446                              clear_all_soft_refs,
1447                              0                    /* word_size */);
1448 }
1449 
1450 // This code is mostly copied from TenuredGeneration.
1451 void
1452 G1CollectedHeap::
1453 resize_if_necessary_after_full_collection(size_t word_size) {
1454   // Include the current allocation, if any, and bytes that will be
1455   // pre-allocated to support collections, as "used".
1456   const size_t used_after_gc = used();
1457   const size_t capacity_after_gc = capacity();
1458   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1459 
1460   // This is enforced in arguments.cpp.
1461   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1462          "otherwise the code below doesn't make sense");
1463 
1464   // We don't have floating point command-line arguments
1465   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1466   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1467   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1468   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1469 
1470   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1471   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1472 
1473   // We have to be careful here as these two calculations can overflow
1474   // 32-bit size_t's.
1475   double used_after_gc_d = (double) used_after_gc;
1476   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1477   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1478 
1479   // Let's make sure that they are both under the max heap size, which
1480   // by default will make them fit into a size_t.
1481   double desired_capacity_upper_bound = (double) max_heap_size;
1482   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1483                                     desired_capacity_upper_bound);
1484   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1485                                     desired_capacity_upper_bound);
1486 
1487   // We can now safely turn them into size_t's.
1488   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1489   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1490 
1491   // This assert only makes sense here, before we adjust them
1492   // with respect to the min and max heap size.
1493   assert(minimum_desired_capacity <= maximum_desired_capacity,
1494          "minimum_desired_capacity = " SIZE_FORMAT ", "
1495          "maximum_desired_capacity = " SIZE_FORMAT,
1496          minimum_desired_capacity, maximum_desired_capacity);
1497 
1498   // Should not be greater than the heap max size. No need to adjust
1499   // it with respect to the heap min size as it's a lower bound (i.e.,
1500   // we'll try to make the capacity larger than it, not smaller).
1501   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1502   // Should not be less than the heap min size. No need to adjust it
1503   // with respect to the heap max size as it's an upper bound (i.e.,
1504   // we'll try to make the capacity smaller than it, not greater).
1505   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1506 
1507   if (capacity_after_gc < minimum_desired_capacity) {
1508     // Don't expand unless it's significant
1509     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1510 
1511     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1512                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1513                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1514 
1515     expand(expand_bytes);
1516 
1517     // No expansion, now see if we want to shrink
1518   } else if (capacity_after_gc > maximum_desired_capacity) {
1519     // Capacity too large, compute shrinking size
1520     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1521 
1522     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1523                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1524                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1525 
1526     shrink(shrink_bytes);
1527   }
1528 }
1529 
1530 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1531                                                             AllocationContext_t context,
1532                                                             bool do_gc,
1533                                                             bool clear_all_soft_refs,
1534                                                             bool expect_null_mutator_alloc_region,
1535                                                             bool* gc_succeeded) {
1536   *gc_succeeded = true;
1537   // Let's attempt the allocation first.
1538   HeapWord* result =
1539     attempt_allocation_at_safepoint(word_size,
1540                                     context,
1541                                     expect_null_mutator_alloc_region);
1542   if (result != NULL) {
1543     assert(*gc_succeeded, "sanity");
1544     return result;
1545   }
1546 
1547   // In a G1 heap, we're supposed to keep allocation from failing by
1548   // incremental pauses.  Therefore, at least for now, we'll favor
1549   // expansion over collection.  (This might change in the future if we can
1550   // do something smarter than full collection to satisfy a failed alloc.)
1551   result = expand_and_allocate(word_size, context);
1552   if (result != NULL) {
1553     assert(*gc_succeeded, "sanity");
1554     return result;
1555   }
1556 
1557   if (do_gc) {
1558     // Expansion didn't work, we'll try to do a Full GC.
1559     *gc_succeeded = do_collection(false, /* explicit_gc */
1560                                   clear_all_soft_refs,
1561                                   word_size);
1562   }
1563 
1564   return NULL;
1565 }
1566 
1567 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1568                                                      AllocationContext_t context,
1569                                                      bool* succeeded) {
1570   assert_at_safepoint(true /* should_be_vm_thread */);
1571 
1572   // Attempts to allocate followed by Full GC.
1573   HeapWord* result =
1574     satisfy_failed_allocation_helper(word_size,
1575                                      context,
1576                                      true,  /* do_gc */
1577                                      false, /* clear_all_soft_refs */
1578                                      false, /* expect_null_mutator_alloc_region */
1579                                      succeeded);
1580 
1581   if (result != NULL || !*succeeded) {
1582     return result;
1583   }
1584 
1585   // Attempts to allocate followed by Full GC that will collect all soft references.
1586   result = satisfy_failed_allocation_helper(word_size,
1587                                             context,
1588                                             true, /* do_gc */
1589                                             true, /* clear_all_soft_refs */
1590                                             true, /* expect_null_mutator_alloc_region */
1591                                             succeeded);
1592 
1593   if (result != NULL || !*succeeded) {
1594     return result;
1595   }
1596 
1597   // Attempts to allocate, no GC
1598   result = satisfy_failed_allocation_helper(word_size,
1599                                             context,
1600                                             false, /* do_gc */
1601                                             false, /* clear_all_soft_refs */
1602                                             true,  /* expect_null_mutator_alloc_region */
1603                                             succeeded);
1604 
1605   if (result != NULL) {
1606     assert(*succeeded, "sanity");
1607     return result;
1608   }
1609 
1610   assert(!collector_policy()->should_clear_all_soft_refs(),
1611          "Flag should have been handled and cleared prior to this point");
1612 
1613   // What else?  We might try synchronous finalization later.  If the total
1614   // space available is large enough for the allocation, then a more
1615   // complete compaction phase than we've tried so far might be
1616   // appropriate.
1617   assert(*succeeded, "sanity");
1618   return NULL;
1619 }
1620 
1621 // Attempting to expand the heap sufficiently
1622 // to support an allocation of the given "word_size".  If
1623 // successful, perform the allocation and return the address of the
1624 // allocated block, or else "NULL".
1625 
1626 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1627   assert_at_safepoint(true /* should_be_vm_thread */);
1628 
1629   verify_region_sets_optional();
1630 
1631   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1632   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1633                             word_size * HeapWordSize);
1634 
1635 
1636   if (expand(expand_bytes)) {
1637     _hrm.verify_optional();
1638     verify_region_sets_optional();
1639     return attempt_allocation_at_safepoint(word_size,
1640                                            context,
1641                                            false /* expect_null_mutator_alloc_region */);
1642   }
1643   return NULL;
1644 }
1645 
1646 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1647   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1648   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1649                                        HeapRegion::GrainBytes);
1650 
1651   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",
1652                             expand_bytes, aligned_expand_bytes);
1653 
1654   if (is_maximal_no_gc()) {
1655     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1656     return false;
1657   }
1658 
1659   double expand_heap_start_time_sec = os::elapsedTime();
1660   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1661   assert(regions_to_expand > 0, "Must expand by at least one region");
1662 
1663   uint expanded_by = _hrm.expand_by(regions_to_expand);
1664   if (expand_time_ms != NULL) {
1665     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1666   }
1667 
1668   if (expanded_by > 0) {
1669     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1670     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1671     g1_policy()->record_new_heap_size(num_regions());
1672   } else {
1673     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1674 
1675     // The expansion of the virtual storage space was unsuccessful.
1676     // Let's see if it was because we ran out of swap.
1677     if (G1ExitOnExpansionFailure &&
1678         _hrm.available() >= regions_to_expand) {
1679       // We had head room...
1680       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1681     }
1682   }
1683   return regions_to_expand > 0;
1684 }
1685 
1686 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1687   size_t aligned_shrink_bytes =
1688     ReservedSpace::page_align_size_down(shrink_bytes);
1689   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1690                                          HeapRegion::GrainBytes);
1691   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1692 
1693   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1694   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1695 
1696 
1697   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1698                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1699   if (num_regions_removed > 0) {
1700     g1_policy()->record_new_heap_size(num_regions());
1701   } else {
1702     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1703   }
1704 }
1705 
1706 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1707   verify_region_sets_optional();
1708 
1709   // We should only reach here at the end of a Full GC which means we
1710   // should not not be holding to any GC alloc regions. The method
1711   // below will make sure of that and do any remaining clean up.
1712   _allocator->abandon_gc_alloc_regions();
1713 
1714   // Instead of tearing down / rebuilding the free lists here, we
1715   // could instead use the remove_all_pending() method on free_list to
1716   // remove only the ones that we need to remove.
1717   tear_down_region_sets(true /* free_list_only */);
1718   shrink_helper(shrink_bytes);
1719   rebuild_region_sets(true /* free_list_only */);
1720 
1721   _hrm.verify_optional();
1722   verify_region_sets_optional();
1723 }
1724 
1725 // Public methods.
1726 
1727 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1728   CollectedHeap(),
1729   _g1_policy(policy_),
1730   _dirty_card_queue_set(false),
1731   _is_alive_closure_cm(this),
1732   _is_alive_closure_stw(this),
1733   _ref_processor_cm(NULL),
1734   _ref_processor_stw(NULL),
1735   _bot_shared(NULL),
1736   _cg1r(NULL),
1737   _g1mm(NULL),
1738   _refine_cte_cl(NULL),
1739   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1740   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1741   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1742   _humongous_reclaim_candidates(),
1743   _has_humongous_reclaim_candidates(false),
1744   _archive_allocator(NULL),
1745   _free_regions_coming(false),
1746   _young_list(new YoungList(this)),
1747   _gc_time_stamp(0),
1748   _summary_bytes_used(0),
1749   _survivor_evac_stats(YoungPLABSize, PLABWeight),
1750   _old_evac_stats(OldPLABSize, PLABWeight),
1751   _expand_heap_after_alloc_failure(true),
1752   _old_marking_cycles_started(0),
1753   _old_marking_cycles_completed(0),
1754   _heap_summary_sent(false),
1755   _in_cset_fast_test(),
1756   _dirty_cards_region_list(NULL),
1757   _worker_cset_start_region(NULL),
1758   _worker_cset_start_region_time_stamp(NULL),
1759   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1760   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1761   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1762   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1763 
1764   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1765                           /* are_GC_task_threads */true,
1766                           /* are_ConcurrentGC_threads */false);
1767   _workers->initialize_workers();
1768 
1769   _allocator = G1Allocator::create_allocator(this);
1770   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1771 
1772   // Override the default _filler_array_max_size so that no humongous filler
1773   // objects are created.
1774   _filler_array_max_size = _humongous_object_threshold_in_words;
1775 
1776   uint n_queues = ParallelGCThreads;
1777   _task_queues = new RefToScanQueueSet(n_queues);
1778 
1779   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1780   assert(n_rem_sets > 0, "Invariant.");
1781 
1782   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1783   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1784   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1785 
1786   for (uint i = 0; i < n_queues; i++) {
1787     RefToScanQueue* q = new RefToScanQueue();
1788     q->initialize();
1789     _task_queues->register_queue(i, q);
1790     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1791   }
1792   clear_cset_start_regions();
1793 
1794   // Initialize the G1EvacuationFailureALot counters and flags.
1795   NOT_PRODUCT(reset_evacuation_should_fail();)
1796 
1797   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1798 }
1799 
1800 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1801                                                                  size_t size,
1802                                                                  size_t translation_factor) {
1803   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1804   // Allocate a new reserved space, preferring to use large pages.
1805   ReservedSpace rs(size, preferred_page_size);
1806   G1RegionToSpaceMapper* result  =
1807     G1RegionToSpaceMapper::create_mapper(rs,
1808                                          size,
1809                                          rs.alignment(),
1810                                          HeapRegion::GrainBytes,
1811                                          translation_factor,
1812                                          mtGC);
1813   if (TracePageSizes) {
1814     tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1815                   description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1816   }
1817   return result;
1818 }
1819 
1820 jint G1CollectedHeap::initialize() {
1821   CollectedHeap::pre_initialize();
1822   os::enable_vtime();
1823 
1824   // Necessary to satisfy locking discipline assertions.
1825 
1826   MutexLocker x(Heap_lock);
1827 
1828   // While there are no constraints in the GC code that HeapWordSize
1829   // be any particular value, there are multiple other areas in the
1830   // system which believe this to be true (e.g. oop->object_size in some
1831   // cases incorrectly returns the size in wordSize units rather than
1832   // HeapWordSize).
1833   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1834 
1835   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1836   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1837   size_t heap_alignment = collector_policy()->heap_alignment();
1838 
1839   // Ensure that the sizes are properly aligned.
1840   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1841   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1842   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1843 
1844   _refine_cte_cl = new RefineCardTableEntryClosure();
1845 
1846   jint ecode = JNI_OK;
1847   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);
1848   if (_cg1r == NULL) {
1849     return ecode;
1850   }
1851 
1852   // Reserve the maximum.
1853 
1854   // When compressed oops are enabled, the preferred heap base
1855   // is calculated by subtracting the requested size from the
1856   // 32Gb boundary and using the result as the base address for
1857   // heap reservation. If the requested size is not aligned to
1858   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1859   // into the ReservedHeapSpace constructor) then the actual
1860   // base of the reserved heap may end up differing from the
1861   // address that was requested (i.e. the preferred heap base).
1862   // If this happens then we could end up using a non-optimal
1863   // compressed oops mode.
1864 
1865   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1866                                                  heap_alignment);
1867 
1868   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1869 
1870   // Create the barrier set for the entire reserved region.
1871   G1SATBCardTableLoggingModRefBS* bs
1872     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1873   bs->initialize();
1874   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1875   set_barrier_set(bs);
1876 
1877   // Also create a G1 rem set.
1878   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1879 
1880   // Carve out the G1 part of the heap.
1881 
1882   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1883   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1884   G1RegionToSpaceMapper* heap_storage =
1885     G1RegionToSpaceMapper::create_mapper(g1_rs,
1886                                          g1_rs.size(),
1887                                          page_size,
1888                                          HeapRegion::GrainBytes,
1889                                          1,
1890                                          mtJavaHeap);
1891   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1892                        max_byte_size, page_size,
1893                        heap_rs.base(),
1894                        heap_rs.size());
1895   heap_storage->set_mapping_changed_listener(&_listener);
1896 
1897   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1898   G1RegionToSpaceMapper* bot_storage =
1899     create_aux_memory_mapper("Block offset table",
1900                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1901                              G1BlockOffsetSharedArray::heap_map_factor());
1902 
1903   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1904   G1RegionToSpaceMapper* cardtable_storage =
1905     create_aux_memory_mapper("Card table",
1906                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1907                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1908 
1909   G1RegionToSpaceMapper* card_counts_storage =
1910     create_aux_memory_mapper("Card counts table",
1911                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1912                              G1CardCounts::heap_map_factor());
1913 
1914   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1915   G1RegionToSpaceMapper* prev_bitmap_storage =
1916     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1917   G1RegionToSpaceMapper* next_bitmap_storage =
1918     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1919 
1920   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1921   g1_barrier_set()->initialize(cardtable_storage);
1922    // Do later initialization work for concurrent refinement.
1923   _cg1r->init(card_counts_storage);
1924 
1925   // 6843694 - ensure that the maximum region index can fit
1926   // in the remembered set structures.
1927   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1928   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1929 
1930   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1931   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1932   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1933             "too many cards per region");
1934 
1935   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1936 
1937   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1938 
1939   {
1940     HeapWord* start = _hrm.reserved().start();
1941     HeapWord* end = _hrm.reserved().end();
1942     size_t granularity = HeapRegion::GrainBytes;
1943 
1944     _in_cset_fast_test.initialize(start, end, granularity);
1945     _humongous_reclaim_candidates.initialize(start, end, granularity);
1946   }
1947 
1948   // Create the ConcurrentMark data structure and thread.
1949   // (Must do this late, so that "max_regions" is defined.)
1950   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1951   if (_cm == NULL || !_cm->completed_initialization()) {
1952     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1953     return JNI_ENOMEM;
1954   }
1955   _cmThread = _cm->cmThread();
1956 
1957   // Initialize the from_card cache structure of HeapRegionRemSet.
1958   HeapRegionRemSet::init_heap(max_regions());
1959 
1960   // Now expand into the initial heap size.
1961   if (!expand(init_byte_size)) {
1962     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1963     return JNI_ENOMEM;
1964   }
1965 
1966   // Perform any initialization actions delegated to the policy.
1967   g1_policy()->init();
1968 
1969   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1970                                                SATB_Q_FL_lock,
1971                                                G1SATBProcessCompletedThreshold,
1972                                                Shared_SATB_Q_lock);
1973 
1974   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1975                                                 DirtyCardQ_CBL_mon,
1976                                                 DirtyCardQ_FL_lock,
1977                                                 concurrent_g1_refine()->yellow_zone(),
1978                                                 concurrent_g1_refine()->red_zone(),
1979                                                 Shared_DirtyCardQ_lock);
1980 
1981   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1982                                     DirtyCardQ_CBL_mon,
1983                                     DirtyCardQ_FL_lock,
1984                                     -1, // never trigger processing
1985                                     -1, // no limit on length
1986                                     Shared_DirtyCardQ_lock,
1987                                     &JavaThread::dirty_card_queue_set());
1988 
1989   // Here we allocate the dummy HeapRegion that is required by the
1990   // G1AllocRegion class.
1991   HeapRegion* dummy_region = _hrm.get_dummy_region();
1992 
1993   // We'll re-use the same region whether the alloc region will
1994   // require BOT updates or not and, if it doesn't, then a non-young
1995   // region will complain that it cannot support allocations without
1996   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1997   dummy_region->set_eden();
1998   // Make sure it's full.
1999   dummy_region->set_top(dummy_region->end());
2000   G1AllocRegion::setup(this, dummy_region);
2001 
2002   _allocator->init_mutator_alloc_region();
2003 
2004   // Do create of the monitoring and management support so that
2005   // values in the heap have been properly initialized.
2006   _g1mm = new G1MonitoringSupport(this);
2007 
2008   G1StringDedup::initialize();
2009 
2010   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2011   for (uint i = 0; i < ParallelGCThreads; i++) {
2012     new (&_preserved_objs[i]) OopAndMarkOopStack();
2013   }
2014 
2015   return JNI_OK;
2016 }
2017 
2018 void G1CollectedHeap::stop() {
2019   // Stop all concurrent threads. We do this to make sure these threads
2020   // do not continue to execute and access resources (e.g. logging)
2021   // that are destroyed during shutdown.
2022   _cg1r->stop();
2023   _cmThread->stop();
2024   if (G1StringDedup::is_enabled()) {
2025     G1StringDedup::stop();
2026   }
2027 }
2028 
2029 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2030   return HeapRegion::max_region_size();
2031 }
2032 
2033 void G1CollectedHeap::post_initialize() {
2034   CollectedHeap::post_initialize();
2035   ref_processing_init();
2036 }
2037 
2038 void G1CollectedHeap::ref_processing_init() {
2039   // Reference processing in G1 currently works as follows:
2040   //
2041   // * There are two reference processor instances. One is
2042   //   used to record and process discovered references
2043   //   during concurrent marking; the other is used to
2044   //   record and process references during STW pauses
2045   //   (both full and incremental).
2046   // * Both ref processors need to 'span' the entire heap as
2047   //   the regions in the collection set may be dotted around.
2048   //
2049   // * For the concurrent marking ref processor:
2050   //   * Reference discovery is enabled at initial marking.
2051   //   * Reference discovery is disabled and the discovered
2052   //     references processed etc during remarking.
2053   //   * Reference discovery is MT (see below).
2054   //   * Reference discovery requires a barrier (see below).
2055   //   * Reference processing may or may not be MT
2056   //     (depending on the value of ParallelRefProcEnabled
2057   //     and ParallelGCThreads).
2058   //   * A full GC disables reference discovery by the CM
2059   //     ref processor and abandons any entries on it's
2060   //     discovered lists.
2061   //
2062   // * For the STW processor:
2063   //   * Non MT discovery is enabled at the start of a full GC.
2064   //   * Processing and enqueueing during a full GC is non-MT.
2065   //   * During a full GC, references are processed after marking.
2066   //
2067   //   * Discovery (may or may not be MT) is enabled at the start
2068   //     of an incremental evacuation pause.
2069   //   * References are processed near the end of a STW evacuation pause.
2070   //   * For both types of GC:
2071   //     * Discovery is atomic - i.e. not concurrent.
2072   //     * Reference discovery will not need a barrier.
2073 
2074   MemRegion mr = reserved_region();
2075 
2076   // Concurrent Mark ref processor
2077   _ref_processor_cm =
2078     new ReferenceProcessor(mr,    // span
2079                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2080                                 // mt processing
2081                            ParallelGCThreads,
2082                                 // degree of mt processing
2083                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2084                                 // mt discovery
2085                            MAX2(ParallelGCThreads, ConcGCThreads),
2086                                 // degree of mt discovery
2087                            false,
2088                                 // Reference discovery is not atomic
2089                            &_is_alive_closure_cm);
2090                                 // is alive closure
2091                                 // (for efficiency/performance)
2092 
2093   // STW ref processor
2094   _ref_processor_stw =
2095     new ReferenceProcessor(mr,    // span
2096                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2097                                 // mt processing
2098                            ParallelGCThreads,
2099                                 // degree of mt processing
2100                            (ParallelGCThreads > 1),
2101                                 // mt discovery
2102                            ParallelGCThreads,
2103                                 // degree of mt discovery
2104                            true,
2105                                 // Reference discovery is atomic
2106                            &_is_alive_closure_stw);
2107                                 // is alive closure
2108                                 // (for efficiency/performance)
2109 }
2110 
2111 CollectorPolicy* G1CollectedHeap::collector_policy() const {
2112   return g1_policy();
2113 }
2114 
2115 size_t G1CollectedHeap::capacity() const {
2116   return _hrm.length() * HeapRegion::GrainBytes;
2117 }
2118 
2119 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2120   hr->reset_gc_time_stamp();
2121 }
2122 
2123 #ifndef PRODUCT
2124 
2125 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2126 private:
2127   unsigned _gc_time_stamp;
2128   bool _failures;
2129 
2130 public:
2131   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2132     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2133 
2134   virtual bool doHeapRegion(HeapRegion* hr) {
2135     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2136     if (_gc_time_stamp != region_gc_time_stamp) {
2137       log_info(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
2138                            region_gc_time_stamp, _gc_time_stamp);
2139       _failures = true;
2140     }
2141     return false;
2142   }
2143 
2144   bool failures() { return _failures; }
2145 };
2146 
2147 void G1CollectedHeap::check_gc_time_stamps() {
2148   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2149   heap_region_iterate(&cl);
2150   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2151 }
2152 #endif // PRODUCT
2153 
2154 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2155   _cg1r->hot_card_cache()->drain(cl, worker_i);
2156 }
2157 
2158 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2159   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2160   size_t n_completed_buffers = 0;
2161   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2162     n_completed_buffers++;
2163   }
2164   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2165   dcqs.clear_n_completed_buffers();
2166   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2167 }
2168 
2169 // Computes the sum of the storage used by the various regions.
2170 size_t G1CollectedHeap::used() const {
2171   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2172   if (_archive_allocator != NULL) {
2173     result += _archive_allocator->used();
2174   }
2175   return result;
2176 }
2177 
2178 size_t G1CollectedHeap::used_unlocked() const {
2179   return _summary_bytes_used;
2180 }
2181 
2182 class SumUsedClosure: public HeapRegionClosure {
2183   size_t _used;
2184 public:
2185   SumUsedClosure() : _used(0) {}
2186   bool doHeapRegion(HeapRegion* r) {
2187     _used += r->used();
2188     return false;
2189   }
2190   size_t result() { return _used; }
2191 };
2192 
2193 size_t G1CollectedHeap::recalculate_used() const {
2194   double recalculate_used_start = os::elapsedTime();
2195 
2196   SumUsedClosure blk;
2197   heap_region_iterate(&blk);
2198 
2199   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2200   return blk.result();
2201 }
2202 
2203 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2204   switch (cause) {
2205     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2206     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2207     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2208     case GCCause::_g1_humongous_allocation: return true;
2209     case GCCause::_update_allocation_context_stats_inc: return true;
2210     case GCCause::_wb_conc_mark:            return true;
2211     default:                                return false;
2212   }
2213 }
2214 
2215 #ifndef PRODUCT
2216 void G1CollectedHeap::allocate_dummy_regions() {
2217   // Let's fill up most of the region
2218   size_t word_size = HeapRegion::GrainWords - 1024;
2219   // And as a result the region we'll allocate will be humongous.
2220   guarantee(is_humongous(word_size), "sanity");
2221 
2222   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2223     // Let's use the existing mechanism for the allocation
2224     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2225                                                  AllocationContext::system());
2226     if (dummy_obj != NULL) {
2227       MemRegion mr(dummy_obj, word_size);
2228       CollectedHeap::fill_with_object(mr);
2229     } else {
2230       // If we can't allocate once, we probably cannot allocate
2231       // again. Let's get out of the loop.
2232       break;
2233     }
2234   }
2235 }
2236 #endif // !PRODUCT
2237 
2238 void G1CollectedHeap::increment_old_marking_cycles_started() {
2239   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2240          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2241          "Wrong marking cycle count (started: %d, completed: %d)",
2242          _old_marking_cycles_started, _old_marking_cycles_completed);
2243 
2244   _old_marking_cycles_started++;
2245 }
2246 
2247 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2248   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2249 
2250   // We assume that if concurrent == true, then the caller is a
2251   // concurrent thread that was joined the Suspendible Thread
2252   // Set. If there's ever a cheap way to check this, we should add an
2253   // assert here.
2254 
2255   // Given that this method is called at the end of a Full GC or of a
2256   // concurrent cycle, and those can be nested (i.e., a Full GC can
2257   // interrupt a concurrent cycle), the number of full collections
2258   // completed should be either one (in the case where there was no
2259   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2260   // behind the number of full collections started.
2261 
2262   // This is the case for the inner caller, i.e. a Full GC.
2263   assert(concurrent ||
2264          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2265          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2266          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2267          "is inconsistent with _old_marking_cycles_completed = %u",
2268          _old_marking_cycles_started, _old_marking_cycles_completed);
2269 
2270   // This is the case for the outer caller, i.e. the concurrent cycle.
2271   assert(!concurrent ||
2272          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2273          "for outer caller (concurrent cycle): "
2274          "_old_marking_cycles_started = %u "
2275          "is inconsistent with _old_marking_cycles_completed = %u",
2276          _old_marking_cycles_started, _old_marking_cycles_completed);
2277 
2278   _old_marking_cycles_completed += 1;
2279 
2280   // We need to clear the "in_progress" flag in the CM thread before
2281   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2282   // is set) so that if a waiter requests another System.gc() it doesn't
2283   // incorrectly see that a marking cycle is still in progress.
2284   if (concurrent) {
2285     _cmThread->set_idle();
2286   }
2287 
2288   // This notify_all() will ensure that a thread that called
2289   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2290   // and it's waiting for a full GC to finish will be woken up. It is
2291   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2292   FullGCCount_lock->notify_all();
2293 }
2294 
2295 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2296   GCIdMarkAndRestore conc_gc_id_mark;
2297   collector_state()->set_concurrent_cycle_started(true);
2298   _gc_timer_cm->register_gc_start(start_time);
2299 
2300   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2301   trace_heap_before_gc(_gc_tracer_cm);
2302   _cmThread->set_gc_id(GCId::current());
2303 }
2304 
2305 void G1CollectedHeap::register_concurrent_cycle_end() {
2306   if (collector_state()->concurrent_cycle_started()) {
2307     GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2308     if (_cm->has_aborted()) {
2309       _gc_tracer_cm->report_concurrent_mode_failure();
2310     }
2311 
2312     _gc_timer_cm->register_gc_end();
2313     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2314 
2315     // Clear state variables to prepare for the next concurrent cycle.
2316      collector_state()->set_concurrent_cycle_started(false);
2317     _heap_summary_sent = false;
2318   }
2319 }
2320 
2321 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2322   if (collector_state()->concurrent_cycle_started()) {
2323     // This function can be called when:
2324     //  the cleanup pause is run
2325     //  the concurrent cycle is aborted before the cleanup pause.
2326     //  the concurrent cycle is aborted after the cleanup pause,
2327     //   but before the concurrent cycle end has been registered.
2328     // Make sure that we only send the heap information once.
2329     if (!_heap_summary_sent) {
2330       GCIdMarkAndRestore conc_gc_id_mark(_cmThread->gc_id());
2331       trace_heap_after_gc(_gc_tracer_cm);
2332       _heap_summary_sent = true;
2333     }
2334   }
2335 }
2336 
2337 void G1CollectedHeap::collect(GCCause::Cause cause) {
2338   assert_heap_not_locked();
2339 
2340   uint gc_count_before;
2341   uint old_marking_count_before;
2342   uint full_gc_count_before;
2343   bool retry_gc;
2344 
2345   do {
2346     retry_gc = false;
2347 
2348     {
2349       MutexLocker ml(Heap_lock);
2350 
2351       // Read the GC count while holding the Heap_lock
2352       gc_count_before = total_collections();
2353       full_gc_count_before = total_full_collections();
2354       old_marking_count_before = _old_marking_cycles_started;
2355     }
2356 
2357     if (should_do_concurrent_full_gc(cause)) {
2358       // Schedule an initial-mark evacuation pause that will start a
2359       // concurrent cycle. We're setting word_size to 0 which means that
2360       // we are not requesting a post-GC allocation.
2361       VM_G1IncCollectionPause op(gc_count_before,
2362                                  0,     /* word_size */
2363                                  true,  /* should_initiate_conc_mark */
2364                                  g1_policy()->max_pause_time_ms(),
2365                                  cause);
2366       op.set_allocation_context(AllocationContext::current());
2367 
2368       VMThread::execute(&op);
2369       if (!op.pause_succeeded()) {
2370         if (old_marking_count_before == _old_marking_cycles_started) {
2371           retry_gc = op.should_retry_gc();
2372         } else {
2373           // A Full GC happened while we were trying to schedule the
2374           // initial-mark GC. No point in starting a new cycle given
2375           // that the whole heap was collected anyway.
2376         }
2377 
2378         if (retry_gc) {
2379           if (GC_locker::is_active_and_needs_gc()) {
2380             GC_locker::stall_until_clear();
2381           }
2382         }
2383       }
2384     } else {
2385       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2386           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2387 
2388         // Schedule a standard evacuation pause. We're setting word_size
2389         // to 0 which means that we are not requesting a post-GC allocation.
2390         VM_G1IncCollectionPause op(gc_count_before,
2391                                    0,     /* word_size */
2392                                    false, /* should_initiate_conc_mark */
2393                                    g1_policy()->max_pause_time_ms(),
2394                                    cause);
2395         VMThread::execute(&op);
2396       } else {
2397         // Schedule a Full GC.
2398         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2399         VMThread::execute(&op);
2400       }
2401     }
2402   } while (retry_gc);
2403 }
2404 
2405 bool G1CollectedHeap::is_in(const void* p) const {
2406   if (_hrm.reserved().contains(p)) {
2407     // Given that we know that p is in the reserved space,
2408     // heap_region_containing() should successfully
2409     // return the containing region.
2410     HeapRegion* hr = heap_region_containing(p);
2411     return hr->is_in(p);
2412   } else {
2413     return false;
2414   }
2415 }
2416 
2417 #ifdef ASSERT
2418 bool G1CollectedHeap::is_in_exact(const void* p) const {
2419   bool contains = reserved_region().contains(p);
2420   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2421   if (contains && available) {
2422     return true;
2423   } else {
2424     return false;
2425   }
2426 }
2427 #endif
2428 
2429 bool G1CollectedHeap::obj_in_cs(oop obj) {
2430   HeapRegion* r = _hrm.addr_to_region((HeapWord*) obj);
2431   return r != NULL && r->in_collection_set();
2432 }
2433 
2434 // Iteration functions.
2435 
2436 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2437 
2438 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2439   ExtendedOopClosure* _cl;
2440 public:
2441   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2442   bool doHeapRegion(HeapRegion* r) {
2443     if (!r->is_continues_humongous()) {
2444       r->oop_iterate(_cl);
2445     }
2446     return false;
2447   }
2448 };
2449 
2450 // Iterates an ObjectClosure over all objects within a HeapRegion.
2451 
2452 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2453   ObjectClosure* _cl;
2454 public:
2455   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2456   bool doHeapRegion(HeapRegion* r) {
2457     if (!r->is_continues_humongous()) {
2458       r->object_iterate(_cl);
2459     }
2460     return false;
2461   }
2462 };
2463 
2464 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2465   IterateObjectClosureRegionClosure blk(cl);
2466   heap_region_iterate(&blk);
2467 }
2468 
2469 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2470   _hrm.iterate(cl);
2471 }
2472 
2473 void
2474 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2475                                          uint worker_id,
2476                                          HeapRegionClaimer *hrclaimer,
2477                                          bool concurrent) const {
2478   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2479 }
2480 
2481 // Clear the cached CSet starting regions and (more importantly)
2482 // the time stamps. Called when we reset the GC time stamp.
2483 void G1CollectedHeap::clear_cset_start_regions() {
2484   assert(_worker_cset_start_region != NULL, "sanity");
2485   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2486 
2487   for (uint i = 0; i < ParallelGCThreads; i++) {
2488     _worker_cset_start_region[i] = NULL;
2489     _worker_cset_start_region_time_stamp[i] = 0;
2490   }
2491 }
2492 
2493 // Given the id of a worker, obtain or calculate a suitable
2494 // starting region for iterating over the current collection set.
2495 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2496   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2497 
2498   HeapRegion* result = NULL;
2499   unsigned gc_time_stamp = get_gc_time_stamp();
2500 
2501   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2502     // Cached starting region for current worker was set
2503     // during the current pause - so it's valid.
2504     // Note: the cached starting heap region may be NULL
2505     // (when the collection set is empty).
2506     result = _worker_cset_start_region[worker_i];
2507     assert(result == NULL || result->in_collection_set(), "sanity");
2508     return result;
2509   }
2510 
2511   // The cached entry was not valid so let's calculate
2512   // a suitable starting heap region for this worker.
2513 
2514   // We want the parallel threads to start their collection
2515   // set iteration at different collection set regions to
2516   // avoid contention.
2517   // If we have:
2518   //          n collection set regions
2519   //          p threads
2520   // Then thread t will start at region floor ((t * n) / p)
2521 
2522   result = g1_policy()->collection_set();
2523   uint cs_size = g1_policy()->cset_region_length();
2524   uint active_workers = workers()->active_workers();
2525 
2526   uint end_ind   = (cs_size * worker_i) / active_workers;
2527   uint start_ind = 0;
2528 
2529   if (worker_i > 0 &&
2530       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2531     // Previous workers starting region is valid
2532     // so let's iterate from there
2533     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2534     result = _worker_cset_start_region[worker_i - 1];
2535   }
2536 
2537   for (uint i = start_ind; i < end_ind; i++) {
2538     result = result->next_in_collection_set();
2539   }
2540 
2541   // Note: the calculated starting heap region may be NULL
2542   // (when the collection set is empty).
2543   assert(result == NULL || result->in_collection_set(), "sanity");
2544   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2545          "should be updated only once per pause");
2546   _worker_cset_start_region[worker_i] = result;
2547   OrderAccess::storestore();
2548   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2549   return result;
2550 }
2551 
2552 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2553   HeapRegion* r = g1_policy()->collection_set();
2554   while (r != NULL) {
2555     HeapRegion* next = r->next_in_collection_set();
2556     if (cl->doHeapRegion(r)) {
2557       cl->incomplete();
2558       return;
2559     }
2560     r = next;
2561   }
2562 }
2563 
2564 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2565                                                   HeapRegionClosure *cl) {
2566   if (r == NULL) {
2567     // The CSet is empty so there's nothing to do.
2568     return;
2569   }
2570 
2571   assert(r->in_collection_set(),
2572          "Start region must be a member of the collection set.");
2573   HeapRegion* cur = r;
2574   while (cur != NULL) {
2575     HeapRegion* next = cur->next_in_collection_set();
2576     if (cl->doHeapRegion(cur) && false) {
2577       cl->incomplete();
2578       return;
2579     }
2580     cur = next;
2581   }
2582   cur = g1_policy()->collection_set();
2583   while (cur != r) {
2584     HeapRegion* next = cur->next_in_collection_set();
2585     if (cl->doHeapRegion(cur) && false) {
2586       cl->incomplete();
2587       return;
2588     }
2589     cur = next;
2590   }
2591 }
2592 
2593 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2594   HeapRegion* result = _hrm.next_region_in_heap(from);
2595   while (result != NULL && result->is_pinned()) {
2596     result = _hrm.next_region_in_heap(result);
2597   }
2598   return result;
2599 }
2600 
2601 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2602   HeapRegion* hr = heap_region_containing(addr);
2603   return hr->block_start(addr);
2604 }
2605 
2606 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2607   HeapRegion* hr = heap_region_containing(addr);
2608   return hr->block_size(addr);
2609 }
2610 
2611 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2612   HeapRegion* hr = heap_region_containing(addr);
2613   return hr->block_is_obj(addr);
2614 }
2615 
2616 bool G1CollectedHeap::supports_tlab_allocation() const {
2617   return true;
2618 }
2619 
2620 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2621   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2622 }
2623 
2624 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2625   return young_list()->eden_used_bytes();
2626 }
2627 
2628 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2629 // must be equal to the humongous object limit.
2630 size_t G1CollectedHeap::max_tlab_size() const {
2631   return align_size_down(_humongous_object_threshold_in_words, MinObjAlignment);
2632 }
2633 
2634 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2635   AllocationContext_t context = AllocationContext::current();
2636   return _allocator->unsafe_max_tlab_alloc(context);
2637 }
2638 
2639 size_t G1CollectedHeap::max_capacity() const {
2640   return _hrm.reserved().byte_size();
2641 }
2642 
2643 jlong G1CollectedHeap::millis_since_last_gc() {
2644   // assert(false, "NYI");
2645   return 0;
2646 }
2647 
2648 void G1CollectedHeap::prepare_for_verify() {
2649   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2650     ensure_parsability(false);
2651   }
2652   g1_rem_set()->prepare_for_verify();
2653 }
2654 
2655 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2656                                               VerifyOption vo) {
2657   switch (vo) {
2658   case VerifyOption_G1UsePrevMarking:
2659     return hr->obj_allocated_since_prev_marking(obj);
2660   case VerifyOption_G1UseNextMarking:
2661     return hr->obj_allocated_since_next_marking(obj);
2662   case VerifyOption_G1UseMarkWord:
2663     return false;
2664   default:
2665     ShouldNotReachHere();
2666   }
2667   return false; // keep some compilers happy
2668 }
2669 
2670 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2671   switch (vo) {
2672   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2673   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2674   case VerifyOption_G1UseMarkWord:    return NULL;
2675   default:                            ShouldNotReachHere();
2676   }
2677   return NULL; // keep some compilers happy
2678 }
2679 
2680 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2681   switch (vo) {
2682   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2683   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2684   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2685   default:                            ShouldNotReachHere();
2686   }
2687   return false; // keep some compilers happy
2688 }
2689 
2690 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2691   switch (vo) {
2692   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2693   case VerifyOption_G1UseNextMarking: return "NTAMS";
2694   case VerifyOption_G1UseMarkWord:    return "NONE";
2695   default:                            ShouldNotReachHere();
2696   }
2697   return NULL; // keep some compilers happy
2698 }
2699 
2700 class VerifyRootsClosure: public OopClosure {
2701 private:
2702   G1CollectedHeap* _g1h;
2703   VerifyOption     _vo;
2704   bool             _failures;
2705 public:
2706   // _vo == UsePrevMarking -> use "prev" marking information,
2707   // _vo == UseNextMarking -> use "next" marking information,
2708   // _vo == UseMarkWord    -> use mark word from object header.
2709   VerifyRootsClosure(VerifyOption vo) :
2710     _g1h(G1CollectedHeap::heap()),
2711     _vo(vo),
2712     _failures(false) { }
2713 
2714   bool failures() { return _failures; }
2715 
2716   template <class T> void do_oop_nv(T* p) {
2717     T heap_oop = oopDesc::load_heap_oop(p);
2718     if (!oopDesc::is_null(heap_oop)) {
2719       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2720       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2721         LogHandle(gc, verify) log;
2722         log.info("Root location " PTR_FORMAT " points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2723         if (_vo == VerifyOption_G1UseMarkWord) {
2724           log.info("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2725         }
2726         ResourceMark rm;
2727         obj->print_on(log.info_stream());
2728         _failures = true;
2729       }
2730     }
2731   }
2732 
2733   void do_oop(oop* p)       { do_oop_nv(p); }
2734   void do_oop(narrowOop* p) { do_oop_nv(p); }
2735 };
2736 
2737 class G1VerifyCodeRootOopClosure: public OopClosure {
2738   G1CollectedHeap* _g1h;
2739   OopClosure* _root_cl;
2740   nmethod* _nm;
2741   VerifyOption _vo;
2742   bool _failures;
2743 
2744   template <class T> void do_oop_work(T* p) {
2745     // First verify that this root is live
2746     _root_cl->do_oop(p);
2747 
2748     if (!G1VerifyHeapRegionCodeRoots) {
2749       // We're not verifying the code roots attached to heap region.
2750       return;
2751     }
2752 
2753     // Don't check the code roots during marking verification in a full GC
2754     if (_vo == VerifyOption_G1UseMarkWord) {
2755       return;
2756     }
2757 
2758     // Now verify that the current nmethod (which contains p) is
2759     // in the code root list of the heap region containing the
2760     // object referenced by p.
2761 
2762     T heap_oop = oopDesc::load_heap_oop(p);
2763     if (!oopDesc::is_null(heap_oop)) {
2764       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2765 
2766       // Now fetch the region containing the object
2767       HeapRegion* hr = _g1h->heap_region_containing(obj);
2768       HeapRegionRemSet* hrrs = hr->rem_set();
2769       // Verify that the strong code root list for this region
2770       // contains the nmethod
2771       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2772         log_info(gc, verify)("Code root location " PTR_FORMAT " "
2773                              "from nmethod " PTR_FORMAT " not in strong "
2774                              "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2775                              p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2776         _failures = true;
2777       }
2778     }
2779   }
2780 
2781 public:
2782   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2783     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2784 
2785   void do_oop(oop* p) { do_oop_work(p); }
2786   void do_oop(narrowOop* p) { do_oop_work(p); }
2787 
2788   void set_nmethod(nmethod* nm) { _nm = nm; }
2789   bool failures() { return _failures; }
2790 };
2791 
2792 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2793   G1VerifyCodeRootOopClosure* _oop_cl;
2794 
2795 public:
2796   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2797     _oop_cl(oop_cl) {}
2798 
2799   void do_code_blob(CodeBlob* cb) {
2800     nmethod* nm = cb->as_nmethod_or_null();
2801     if (nm != NULL) {
2802       _oop_cl->set_nmethod(nm);
2803       nm->oops_do(_oop_cl);
2804     }
2805   }
2806 };
2807 
2808 class YoungRefCounterClosure : public OopClosure {
2809   G1CollectedHeap* _g1h;
2810   int              _count;
2811  public:
2812   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2813   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2814   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2815 
2816   int count() { return _count; }
2817   void reset_count() { _count = 0; };
2818 };
2819 
2820 class VerifyKlassClosure: public KlassClosure {
2821   YoungRefCounterClosure _young_ref_counter_closure;
2822   OopClosure *_oop_closure;
2823  public:
2824   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2825   void do_klass(Klass* k) {
2826     k->oops_do(_oop_closure);
2827 
2828     _young_ref_counter_closure.reset_count();
2829     k->oops_do(&_young_ref_counter_closure);
2830     if (_young_ref_counter_closure.count() > 0) {
2831       guarantee(k->has_modified_oops(), "Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k));
2832     }
2833   }
2834 };
2835 
2836 class VerifyLivenessOopClosure: public OopClosure {
2837   G1CollectedHeap* _g1h;
2838   VerifyOption _vo;
2839 public:
2840   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2841     _g1h(g1h), _vo(vo)
2842   { }
2843   void do_oop(narrowOop *p) { do_oop_work(p); }
2844   void do_oop(      oop *p) { do_oop_work(p); }
2845 
2846   template <class T> void do_oop_work(T *p) {
2847     oop obj = oopDesc::load_decode_heap_oop(p);
2848     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2849               "Dead object referenced by a not dead object");
2850   }
2851 };
2852 
2853 class VerifyObjsInRegionClosure: public ObjectClosure {
2854 private:
2855   G1CollectedHeap* _g1h;
2856   size_t _live_bytes;
2857   HeapRegion *_hr;
2858   VerifyOption _vo;
2859 public:
2860   // _vo == UsePrevMarking -> use "prev" marking information,
2861   // _vo == UseNextMarking -> use "next" marking information,
2862   // _vo == UseMarkWord    -> use mark word from object header.
2863   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2864     : _live_bytes(0), _hr(hr), _vo(vo) {
2865     _g1h = G1CollectedHeap::heap();
2866   }
2867   void do_object(oop o) {
2868     VerifyLivenessOopClosure isLive(_g1h, _vo);
2869     assert(o != NULL, "Huh?");
2870     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2871       // If the object is alive according to the mark word,
2872       // then verify that the marking information agrees.
2873       // Note we can't verify the contra-positive of the
2874       // above: if the object is dead (according to the mark
2875       // word), it may not be marked, or may have been marked
2876       // but has since became dead, or may have been allocated
2877       // since the last marking.
2878       if (_vo == VerifyOption_G1UseMarkWord) {
2879         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2880       }
2881 
2882       o->oop_iterate_no_header(&isLive);
2883       if (!_hr->obj_allocated_since_prev_marking(o)) {
2884         size_t obj_size = o->size();    // Make sure we don't overflow
2885         _live_bytes += (obj_size * HeapWordSize);
2886       }
2887     }
2888   }
2889   size_t live_bytes() { return _live_bytes; }
2890 };
2891 
2892 class VerifyArchiveOopClosure: public OopClosure {
2893 public:
2894   VerifyArchiveOopClosure(HeapRegion *hr) { }
2895   void do_oop(narrowOop *p) { do_oop_work(p); }
2896   void do_oop(      oop *p) { do_oop_work(p); }
2897 
2898   template <class T> void do_oop_work(T *p) {
2899     oop obj = oopDesc::load_decode_heap_oop(p);
2900     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
2901               "Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
2902               p2i(p), p2i(obj));
2903   }
2904 };
2905 
2906 class VerifyArchiveRegionClosure: public ObjectClosure {
2907 public:
2908   VerifyArchiveRegionClosure(HeapRegion *hr) { }
2909   // Verify that all object pointers are to archive regions.
2910   void do_object(oop o) {
2911     VerifyArchiveOopClosure checkOop(NULL);
2912     assert(o != NULL, "Should not be here for NULL oops");
2913     o->oop_iterate_no_header(&checkOop);
2914   }
2915 };
2916 
2917 class VerifyRegionClosure: public HeapRegionClosure {
2918 private:
2919   bool             _par;
2920   VerifyOption     _vo;
2921   bool             _failures;
2922 public:
2923   // _vo == UsePrevMarking -> use "prev" marking information,
2924   // _vo == UseNextMarking -> use "next" marking information,
2925   // _vo == UseMarkWord    -> use mark word from object header.
2926   VerifyRegionClosure(bool par, VerifyOption vo)
2927     : _par(par),
2928       _vo(vo),
2929       _failures(false) {}
2930 
2931   bool failures() {
2932     return _failures;
2933   }
2934 
2935   bool doHeapRegion(HeapRegion* r) {
2936     // For archive regions, verify there are no heap pointers to
2937     // non-pinned regions. For all others, verify liveness info.
2938     if (r->is_archive()) {
2939       VerifyArchiveRegionClosure verify_oop_pointers(r);
2940       r->object_iterate(&verify_oop_pointers);
2941       return true;
2942     }
2943     if (!r->is_continues_humongous()) {
2944       bool failures = false;
2945       r->verify(_vo, &failures);
2946       if (failures) {
2947         _failures = true;
2948       } else if (!r->is_starts_humongous()) {
2949         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2950         r->object_iterate(&not_dead_yet_cl);
2951         if (_vo != VerifyOption_G1UseNextMarking) {
2952           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2953             log_info(gc, verify)("[" PTR_FORMAT "," PTR_FORMAT "] max_live_bytes " SIZE_FORMAT " < calculated " SIZE_FORMAT,
2954                                    p2i(r->bottom()), p2i(r->end()), r->max_live_bytes(), not_dead_yet_cl.live_bytes());
2955             _failures = true;
2956           }
2957         } else {
2958           // When vo == UseNextMarking we cannot currently do a sanity
2959           // check on the live bytes as the calculation has not been
2960           // finalized yet.
2961         }
2962       }
2963     }
2964     return false; // stop the region iteration if we hit a failure
2965   }
2966 };
2967 
2968 // This is the task used for parallel verification of the heap regions
2969 
2970 class G1ParVerifyTask: public AbstractGangTask {
2971 private:
2972   G1CollectedHeap*  _g1h;
2973   VerifyOption      _vo;
2974   bool              _failures;
2975   HeapRegionClaimer _hrclaimer;
2976 
2977 public:
2978   // _vo == UsePrevMarking -> use "prev" marking information,
2979   // _vo == UseNextMarking -> use "next" marking information,
2980   // _vo == UseMarkWord    -> use mark word from object header.
2981   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
2982       AbstractGangTask("Parallel verify task"),
2983       _g1h(g1h),
2984       _vo(vo),
2985       _failures(false),
2986       _hrclaimer(g1h->workers()->active_workers()) {}
2987 
2988   bool failures() {
2989     return _failures;
2990   }
2991 
2992   void work(uint worker_id) {
2993     HandleMark hm;
2994     VerifyRegionClosure blk(true, _vo);
2995     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
2996     if (blk.failures()) {
2997       _failures = true;
2998     }
2999   }
3000 };
3001 
3002 void G1CollectedHeap::verify(VerifyOption vo) {
3003   if (!SafepointSynchronize::is_at_safepoint()) {
3004     log_info(gc, verify)("Skipping verification. Not at safepoint.");
3005   }
3006 
3007   assert(Thread::current()->is_VM_thread(),
3008          "Expected to be executed serially by the VM thread at this point");
3009 
3010   log_debug(gc, verify)("Roots");
3011   VerifyRootsClosure rootsCl(vo);
3012   VerifyKlassClosure klassCl(this, &rootsCl);
3013   CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3014 
3015   // We apply the relevant closures to all the oops in the
3016   // system dictionary, class loader data graph, the string table
3017   // and the nmethods in the code cache.
3018   G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3019   G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3020 
3021   {
3022     G1RootProcessor root_processor(this, 1);
3023     root_processor.process_all_roots(&rootsCl,
3024                                      &cldCl,
3025                                      &blobsCl);
3026   }
3027 
3028   bool failures = rootsCl.failures() || codeRootsCl.failures();
3029 
3030   if (vo != VerifyOption_G1UseMarkWord) {
3031     // If we're verifying during a full GC then the region sets
3032     // will have been torn down at the start of the GC. Therefore
3033     // verifying the region sets will fail. So we only verify
3034     // the region sets when not in a full GC.
3035     log_debug(gc, verify)("HeapRegionSets");
3036     verify_region_sets();
3037   }
3038 
3039   log_debug(gc, verify)("HeapRegions");
3040   if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3041 
3042     G1ParVerifyTask task(this, vo);
3043     workers()->run_task(&task);
3044     if (task.failures()) {
3045       failures = true;
3046     }
3047 
3048   } else {
3049     VerifyRegionClosure blk(false, vo);
3050     heap_region_iterate(&blk);
3051     if (blk.failures()) {
3052       failures = true;
3053     }
3054   }
3055 
3056   if (G1StringDedup::is_enabled()) {
3057     log_debug(gc, verify)("StrDedup");
3058     G1StringDedup::verify();
3059   }
3060 
3061   if (failures) {
3062     log_info(gc, verify)("Heap after failed verification:");
3063     // It helps to have the per-region information in the output to
3064     // help us track down what went wrong. This is why we call
3065     // print_extended_on() instead of print_on().
3066     LogHandle(gc, verify) log;
3067     ResourceMark rm;
3068     print_extended_on(log.info_stream());
3069   }
3070   guarantee(!failures, "there should not have been any failures");
3071 }
3072 
3073 double G1CollectedHeap::verify(bool guard, const char* msg) {
3074   double verify_time_ms = 0.0;
3075 
3076   if (guard && total_collections() >= VerifyGCStartAt) {
3077     double verify_start = os::elapsedTime();
3078     HandleMark hm;  // Discard invalid handles created during verification
3079     prepare_for_verify();
3080     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3081     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3082   }
3083 
3084   return verify_time_ms;
3085 }
3086 
3087 void G1CollectedHeap::verify_before_gc() {
3088   double verify_time_ms = verify(VerifyBeforeGC, "Before GC");
3089   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3090 }
3091 
3092 void G1CollectedHeap::verify_after_gc() {
3093   double verify_time_ms = verify(VerifyAfterGC, "After GC");
3094   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3095 }
3096 
3097 class PrintRegionClosure: public HeapRegionClosure {
3098   outputStream* _st;
3099 public:
3100   PrintRegionClosure(outputStream* st) : _st(st) {}
3101   bool doHeapRegion(HeapRegion* r) {
3102     r->print_on(_st);
3103     return false;
3104   }
3105 };
3106 
3107 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3108                                        const HeapRegion* hr,
3109                                        const VerifyOption vo) const {
3110   switch (vo) {
3111   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3112   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3113   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3114   default:                            ShouldNotReachHere();
3115   }
3116   return false; // keep some compilers happy
3117 }
3118 
3119 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3120                                        const VerifyOption vo) const {
3121   switch (vo) {
3122   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3123   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3124   case VerifyOption_G1UseMarkWord: {
3125     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3126     return !obj->is_gc_marked() && !hr->is_archive();
3127   }
3128   default:                            ShouldNotReachHere();
3129   }
3130   return false; // keep some compilers happy
3131 }
3132 
3133 void G1CollectedHeap::print_on(outputStream* st) const {
3134   st->print(" %-20s", "garbage-first heap");
3135   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3136             capacity()/K, used_unlocked()/K);
3137   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3138             p2i(_hrm.reserved().start()),
3139             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3140             p2i(_hrm.reserved().end()));
3141   st->cr();
3142   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3143   uint young_regions = _young_list->length();
3144   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3145             (size_t) young_regions * HeapRegion::GrainBytes / K);
3146   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3147   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3148             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3149   st->cr();
3150   MetaspaceAux::print_on(st);
3151 }
3152 
3153 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3154   print_on(st);
3155 
3156   // Print the per-region information.
3157   st->cr();
3158   st->print_cr("Heap Regions: (E=young(eden), S=young(survivor), O=old, "
3159                "HS=humongous(starts), HC=humongous(continues), "
3160                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3161                "PTAMS=previous top-at-mark-start, "
3162                "NTAMS=next top-at-mark-start)");
3163   PrintRegionClosure blk(st);
3164   heap_region_iterate(&blk);
3165 }
3166 
3167 void G1CollectedHeap::print_on_error(outputStream* st) const {
3168   this->CollectedHeap::print_on_error(st);
3169 
3170   if (_cm != NULL) {
3171     st->cr();
3172     _cm->print_on_error(st);
3173   }
3174 }
3175 
3176 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3177   workers()->print_worker_threads_on(st);
3178   _cmThread->print_on(st);
3179   st->cr();
3180   _cm->print_worker_threads_on(st);
3181   _cg1r->print_worker_threads_on(st);
3182   if (G1StringDedup::is_enabled()) {
3183     G1StringDedup::print_worker_threads_on(st);
3184   }
3185 }
3186 
3187 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3188   workers()->threads_do(tc);
3189   tc->do_thread(_cmThread);
3190   _cg1r->threads_do(tc);
3191   if (G1StringDedup::is_enabled()) {
3192     G1StringDedup::threads_do(tc);
3193   }
3194 }
3195 
3196 void G1CollectedHeap::print_tracing_info() const {
3197   // We'll overload this to mean "trace GC pause statistics."
3198   if (TraceYoungGenTime || TraceOldGenTime) {
3199     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3200     // to that.
3201     g1_policy()->print_tracing_info();
3202   }
3203   g1_rem_set()->print_summary_info();
3204   concurrent_mark()->print_summary_info();
3205   g1_policy()->print_yg_surv_rate_info();
3206 }
3207 
3208 #ifndef PRODUCT
3209 // Helpful for debugging RSet issues.
3210 
3211 class PrintRSetsClosure : public HeapRegionClosure {
3212 private:
3213   const char* _msg;
3214   size_t _occupied_sum;
3215 
3216 public:
3217   bool doHeapRegion(HeapRegion* r) {
3218     HeapRegionRemSet* hrrs = r->rem_set();
3219     size_t occupied = hrrs->occupied();
3220     _occupied_sum += occupied;
3221 
3222     tty->print_cr("Printing RSet for region " HR_FORMAT,
3223                            HR_FORMAT_PARAMS(r));
3224     if (occupied == 0) {
3225       tty->print_cr("  RSet is empty");
3226     } else {
3227       hrrs->print();
3228     }
3229     tty->print_cr("----------");
3230     return false;
3231   }
3232 
3233   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3234     tty->cr();
3235     tty->print_cr("========================================");
3236     tty->print_cr("%s", msg);
3237     tty->cr();
3238   }
3239 
3240   ~PrintRSetsClosure() {
3241     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3242     tty->print_cr("========================================");
3243     tty->cr();
3244   }
3245 };
3246 
3247 void G1CollectedHeap::print_cset_rsets() {
3248   PrintRSetsClosure cl("Printing CSet RSets");
3249   collection_set_iterate(&cl);
3250 }
3251 
3252 void G1CollectedHeap::print_all_rsets() {
3253   PrintRSetsClosure cl("Printing All RSets");;
3254   heap_region_iterate(&cl);
3255 }
3256 #endif // PRODUCT
3257 
3258 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3259   YoungList* young_list = heap()->young_list();
3260 
3261   size_t eden_used_bytes = young_list->eden_used_bytes();
3262   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3263 
3264   size_t eden_capacity_bytes =
3265     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3266 
3267   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3268   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3269 }
3270 
3271 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
3272   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
3273                        stats->unused(), stats->used(), stats->region_end_waste(),
3274                        stats->regions_filled(), stats->direct_allocated(),
3275                        stats->failure_used(), stats->failure_waste());
3276 }
3277 
3278 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3279   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3280   gc_tracer->report_gc_heap_summary(when, heap_summary);
3281 
3282   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3283   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3284 }
3285 
3286 
3287 G1CollectedHeap* G1CollectedHeap::heap() {
3288   CollectedHeap* heap = Universe::heap();
3289   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3290   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3291   return (G1CollectedHeap*)heap;
3292 }
3293 
3294 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3295   // always_do_update_barrier = false;
3296   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3297   // Fill TLAB's and such
3298   accumulate_statistics_all_tlabs();
3299   ensure_parsability(true);
3300 
3301   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
3302 }
3303 
3304 void G1CollectedHeap::gc_epilogue(bool full) {
3305   // we are at the end of the GC. Total collections has already been increased.
3306   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
3307 
3308   // FIXME: what is this about?
3309   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3310   // is set.
3311 #if defined(COMPILER2) || INCLUDE_JVMCI
3312   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3313 #endif
3314   // always_do_update_barrier = true;
3315 
3316   resize_all_tlabs();
3317   allocation_context_stats().update(full);
3318 
3319   // We have just completed a GC. Update the soft reference
3320   // policy with the new heap occupancy
3321   Universe::update_heap_info_at_gc();
3322 }
3323 
3324 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3325                                                uint gc_count_before,
3326                                                bool* succeeded,
3327                                                GCCause::Cause gc_cause) {
3328   assert_heap_not_locked_and_not_at_safepoint();
3329   g1_policy()->record_stop_world_start();
3330   VM_G1IncCollectionPause op(gc_count_before,
3331                              word_size,
3332                              false, /* should_initiate_conc_mark */
3333                              g1_policy()->max_pause_time_ms(),
3334                              gc_cause);
3335 
3336   op.set_allocation_context(AllocationContext::current());
3337   VMThread::execute(&op);
3338 
3339   HeapWord* result = op.result();
3340   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3341   assert(result == NULL || ret_succeeded,
3342          "the result should be NULL if the VM did not succeed");
3343   *succeeded = ret_succeeded;
3344 
3345   assert_heap_not_locked();
3346   return result;
3347 }
3348 
3349 void
3350 G1CollectedHeap::doConcurrentMark() {
3351   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3352   if (!_cmThread->in_progress()) {
3353     _cmThread->set_started();
3354     CGC_lock->notify();
3355   }
3356 }
3357 
3358 size_t G1CollectedHeap::pending_card_num() {
3359   size_t extra_cards = 0;
3360   JavaThread *curr = Threads::first();
3361   while (curr != NULL) {
3362     DirtyCardQueue& dcq = curr->dirty_card_queue();
3363     extra_cards += dcq.size();
3364     curr = curr->next();
3365   }
3366   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3367   size_t buffer_size = dcqs.buffer_size();
3368   size_t buffer_num = dcqs.completed_buffers_num();
3369 
3370   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3371   // in bytes - not the number of 'entries'. We need to convert
3372   // into a number of cards.
3373   return (buffer_size * buffer_num + extra_cards) / oopSize;
3374 }
3375 
3376 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3377  private:
3378   size_t _total_humongous;
3379   size_t _candidate_humongous;
3380 
3381   DirtyCardQueue _dcq;
3382 
3383   // We don't nominate objects with many remembered set entries, on
3384   // the assumption that such objects are likely still live.
3385   bool is_remset_small(HeapRegion* region) const {
3386     HeapRegionRemSet* const rset = region->rem_set();
3387     return G1EagerReclaimHumongousObjectsWithStaleRefs
3388       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3389       : rset->is_empty();
3390   }
3391 
3392   bool is_typeArray_region(HeapRegion* region) const {
3393     return oop(region->bottom())->is_typeArray();
3394   }
3395 
3396   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3397     assert(region->is_starts_humongous(), "Must start a humongous object");
3398 
3399     // Candidate selection must satisfy the following constraints
3400     // while concurrent marking is in progress:
3401     //
3402     // * In order to maintain SATB invariants, an object must not be
3403     // reclaimed if it was allocated before the start of marking and
3404     // has not had its references scanned.  Such an object must have
3405     // its references (including type metadata) scanned to ensure no
3406     // live objects are missed by the marking process.  Objects
3407     // allocated after the start of concurrent marking don't need to
3408     // be scanned.
3409     //
3410     // * An object must not be reclaimed if it is on the concurrent
3411     // mark stack.  Objects allocated after the start of concurrent
3412     // marking are never pushed on the mark stack.
3413     //
3414     // Nominating only objects allocated after the start of concurrent
3415     // marking is sufficient to meet both constraints.  This may miss
3416     // some objects that satisfy the constraints, but the marking data
3417     // structures don't support efficiently performing the needed
3418     // additional tests or scrubbing of the mark stack.
3419     //
3420     // However, we presently only nominate is_typeArray() objects.
3421     // A humongous object containing references induces remembered
3422     // set entries on other regions.  In order to reclaim such an
3423     // object, those remembered sets would need to be cleaned up.
3424     //
3425     // We also treat is_typeArray() objects specially, allowing them
3426     // to be reclaimed even if allocated before the start of
3427     // concurrent mark.  For this we rely on mark stack insertion to
3428     // exclude is_typeArray() objects, preventing reclaiming an object
3429     // that is in the mark stack.  We also rely on the metadata for
3430     // such objects to be built-in and so ensured to be kept live.
3431     // Frequent allocation and drop of large binary blobs is an
3432     // important use case for eager reclaim, and this special handling
3433     // may reduce needed headroom.
3434 
3435     return is_typeArray_region(region) && is_remset_small(region);
3436   }
3437 
3438  public:
3439   RegisterHumongousWithInCSetFastTestClosure()
3440   : _total_humongous(0),
3441     _candidate_humongous(0),
3442     _dcq(&JavaThread::dirty_card_queue_set()) {
3443   }
3444 
3445   virtual bool doHeapRegion(HeapRegion* r) {
3446     if (!r->is_starts_humongous()) {
3447       return false;
3448     }
3449     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3450 
3451     bool is_candidate = humongous_region_is_candidate(g1h, r);
3452     uint rindex = r->hrm_index();
3453     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3454     if (is_candidate) {
3455       _candidate_humongous++;
3456       g1h->register_humongous_region_with_cset(rindex);
3457       // Is_candidate already filters out humongous object with large remembered sets.
3458       // If we have a humongous object with a few remembered sets, we simply flush these
3459       // remembered set entries into the DCQS. That will result in automatic
3460       // re-evaluation of their remembered set entries during the following evacuation
3461       // phase.
3462       if (!r->rem_set()->is_empty()) {
3463         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3464                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3465         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3466         HeapRegionRemSetIterator hrrs(r->rem_set());
3467         size_t card_index;
3468         while (hrrs.has_next(card_index)) {
3469           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3470           // The remembered set might contain references to already freed
3471           // regions. Filter out such entries to avoid failing card table
3472           // verification.
3473           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
3474             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3475               *card_ptr = CardTableModRefBS::dirty_card_val();
3476               _dcq.enqueue(card_ptr);
3477             }
3478           }
3479         }
3480         r->rem_set()->clear_locked();
3481       }
3482       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3483     }
3484     _total_humongous++;
3485 
3486     return false;
3487   }
3488 
3489   size_t total_humongous() const { return _total_humongous; }
3490   size_t candidate_humongous() const { return _candidate_humongous; }
3491 
3492   void flush_rem_set_entries() { _dcq.flush(); }
3493 };
3494 
3495 void G1CollectedHeap::register_humongous_regions_with_cset() {
3496   if (!G1EagerReclaimHumongousObjects) {
3497     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3498     return;
3499   }
3500   double time = os::elapsed_counter();
3501 
3502   // Collect reclaim candidate information and register candidates with cset.
3503   RegisterHumongousWithInCSetFastTestClosure cl;
3504   heap_region_iterate(&cl);
3505 
3506   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3507   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3508                                                                   cl.total_humongous(),
3509                                                                   cl.candidate_humongous());
3510   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3511 
3512   // Finally flush all remembered set entries to re-check into the global DCQS.
3513   cl.flush_rem_set_entries();
3514 }
3515 
3516 #ifdef ASSERT
3517 class VerifyCSetClosure: public HeapRegionClosure {
3518 public:
3519   bool doHeapRegion(HeapRegion* hr) {
3520     // Here we check that the CSet region's RSet is ready for parallel
3521     // iteration. The fields that we'll verify are only manipulated
3522     // when the region is part of a CSet and is collected. Afterwards,
3523     // we reset these fields when we clear the region's RSet (when the
3524     // region is freed) so they are ready when the region is
3525     // re-allocated. The only exception to this is if there's an
3526     // evacuation failure and instead of freeing the region we leave
3527     // it in the heap. In that case, we reset these fields during
3528     // evacuation failure handling.
3529     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3530 
3531     // Here's a good place to add any other checks we'd like to
3532     // perform on CSet regions.
3533     return false;
3534   }
3535 };
3536 #endif // ASSERT
3537 
3538 uint G1CollectedHeap::num_task_queues() const {
3539   return _task_queues->size();
3540 }
3541 
3542 #if TASKQUEUE_STATS
3543 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3544   st->print_raw_cr("GC Task Stats");
3545   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3546   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3547 }
3548 
3549 void G1CollectedHeap::print_taskqueue_stats() const {
3550   LogHandle(gc, task, stats) log;
3551   if (!log.is_develop()) {
3552     return;
3553   }
3554   ResourceMark rm;
3555   outputStream* st = log.develop_stream();
3556 
3557   print_taskqueue_stats_hdr(st);
3558 
3559   TaskQueueStats totals;
3560   const uint n = num_task_queues();
3561   for (uint i = 0; i < n; ++i) {
3562     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3563     totals += task_queue(i)->stats;
3564   }
3565   st->print_raw("tot "); totals.print(st); st->cr();
3566 
3567   DEBUG_ONLY(totals.verify());
3568 }
3569 
3570 void G1CollectedHeap::reset_taskqueue_stats() {
3571   const uint n = num_task_queues();
3572   for (uint i = 0; i < n; ++i) {
3573     task_queue(i)->stats.reset();
3574   }
3575 }
3576 #endif // TASKQUEUE_STATS
3577 
3578 void G1CollectedHeap::log_gc_footer(double pause_time_counter) {
3579   if (evacuation_failed()) {
3580     log_info(gc)("To-space exhausted");
3581   }
3582 
3583   double pause_time_sec = TimeHelper::counter_to_seconds(pause_time_counter);
3584   g1_policy()->print_phases(pause_time_sec);
3585 
3586   g1_policy()->print_detailed_heap_transition();
3587 }
3588 
3589 
3590 void G1CollectedHeap::wait_for_root_region_scanning() {
3591   double scan_wait_start = os::elapsedTime();
3592   // We have to wait until the CM threads finish scanning the
3593   // root regions as it's the only way to ensure that all the
3594   // objects on them have been correctly scanned before we start
3595   // moving them during the GC.
3596   bool waited = _cm->root_regions()->wait_until_scan_finished();
3597   double wait_time_ms = 0.0;
3598   if (waited) {
3599     double scan_wait_end = os::elapsedTime();
3600     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3601   }
3602   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3603 }
3604 
3605 bool
3606 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3607   assert_at_safepoint(true /* should_be_vm_thread */);
3608   guarantee(!is_gc_active(), "collection is not reentrant");
3609 
3610   if (GC_locker::check_active_before_gc()) {
3611     return false;
3612   }
3613 
3614   _gc_timer_stw->register_gc_start();
3615 
3616   GCIdMark gc_id_mark;
3617   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3618 
3619   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3620   ResourceMark rm;
3621 
3622   wait_for_root_region_scanning();
3623 
3624   print_heap_before_gc();
3625   trace_heap_before_gc(_gc_tracer_stw);
3626 
3627   verify_region_sets_optional();
3628   verify_dirty_young_regions();
3629 
3630   // This call will decide whether this pause is an initial-mark
3631   // pause. If it is, during_initial_mark_pause() will return true
3632   // for the duration of this pause.
3633   g1_policy()->decide_on_conc_mark_initiation();
3634 
3635   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3636   assert(!collector_state()->during_initial_mark_pause() ||
3637           collector_state()->gcs_are_young(), "sanity");
3638 
3639   // We also do not allow mixed GCs during marking.
3640   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3641 
3642   // Record whether this pause is an initial mark. When the current
3643   // thread has completed its logging output and it's safe to signal
3644   // the CM thread, the flag's value in the policy has been reset.
3645   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3646 
3647   // Inner scope for scope based logging, timers, and stats collection
3648   {
3649     EvacuationInfo evacuation_info;
3650 
3651     if (collector_state()->during_initial_mark_pause()) {
3652       // We are about to start a marking cycle, so we increment the
3653       // full collection counter.
3654       increment_old_marking_cycles_started();
3655       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3656     }
3657 
3658     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3659 
3660     GCTraceCPUTime tcpu;
3661 
3662     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3663                                                                   workers()->active_workers(),
3664                                                                   Threads::number_of_non_daemon_threads());
3665     workers()->set_active_workers(active_workers);
3666     FormatBuffer<> gc_string("Pause ");
3667     if (collector_state()->during_initial_mark_pause()) {
3668       gc_string.append("Initial Mark");
3669     } else if (collector_state()->gcs_are_young()) {
3670       gc_string.append("Young");
3671     } else {
3672       gc_string.append("Mixed");
3673     }
3674     GCTraceTime(Info, gc) tm5(gc_string, NULL, gc_cause(), true);
3675 
3676 
3677     double pause_start_sec = os::elapsedTime();
3678     double pause_start_counter = os::elapsed_counter();
3679     g1_policy()->note_gc_start(active_workers);
3680 
3681     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3682     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3683 
3684     // If the secondary_free_list is not empty, append it to the
3685     // free_list. No need to wait for the cleanup operation to finish;
3686     // the region allocation code will check the secondary_free_list
3687     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3688     // set, skip this step so that the region allocation code has to
3689     // get entries from the secondary_free_list.
3690     if (!G1StressConcRegionFreeing) {
3691       append_secondary_free_list_if_not_empty_with_lock();
3692     }
3693 
3694     assert(check_young_list_well_formed(), "young list should be well formed");
3695 
3696     // Don't dynamically change the number of GC threads this early.  A value of
3697     // 0 is used to indicate serial work.  When parallel work is done,
3698     // it will be set.
3699 
3700     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3701       IsGCActiveMark x;
3702 
3703       gc_prologue(false);
3704       increment_total_collections(false /* full gc */);
3705       increment_gc_time_stamp();
3706 
3707       verify_before_gc();
3708 
3709       check_bitmaps("GC Start");
3710 
3711 #if defined(COMPILER2) || INCLUDE_JVMCI
3712       DerivedPointerTable::clear();
3713 #endif
3714 
3715       // Please see comment in g1CollectedHeap.hpp and
3716       // G1CollectedHeap::ref_processing_init() to see how
3717       // reference processing currently works in G1.
3718 
3719       // Enable discovery in the STW reference processor
3720       ref_processor_stw()->enable_discovery();
3721 
3722       {
3723         // We want to temporarily turn off discovery by the
3724         // CM ref processor, if necessary, and turn it back on
3725         // on again later if we do. Using a scoped
3726         // NoRefDiscovery object will do this.
3727         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3728 
3729         // Forget the current alloc region (we might even choose it to be part
3730         // of the collection set!).
3731         _allocator->release_mutator_alloc_region();
3732 
3733         // This timing is only used by the ergonomics to handle our pause target.
3734         // It is unclear why this should not include the full pause. We will
3735         // investigate this in CR 7178365.
3736         //
3737         // Preserving the old comment here if that helps the investigation:
3738         //
3739         // The elapsed time induced by the start time below deliberately elides
3740         // the possible verification above.
3741         double sample_start_time_sec = os::elapsedTime();
3742 
3743         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3744 
3745         if (collector_state()->during_initial_mark_pause()) {
3746           concurrent_mark()->checkpointRootsInitialPre();
3747         }
3748 
3749         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3750         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3751 
3752         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());
3753 
3754         register_humongous_regions_with_cset();
3755 
3756         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3757 
3758         _cm->note_start_of_gc();
3759         // We call this after finalize_cset() to
3760         // ensure that the CSet has been finalized.
3761         _cm->verify_no_cset_oops();
3762 
3763         if (_hr_printer.is_active()) {
3764           HeapRegion* hr = g1_policy()->collection_set();
3765           while (hr != NULL) {
3766             _hr_printer.cset(hr);
3767             hr = hr->next_in_collection_set();
3768           }
3769         }
3770 
3771 #ifdef ASSERT
3772         VerifyCSetClosure cl;
3773         collection_set_iterate(&cl);
3774 #endif // ASSERT
3775 
3776         // Initialize the GC alloc regions.
3777         _allocator->init_gc_alloc_regions(evacuation_info);
3778 
3779         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), g1_policy()->young_cset_region_length());
3780         pre_evacuate_collection_set();
3781 
3782         // Actually do the work...
3783         evacuate_collection_set(evacuation_info, &per_thread_states);
3784 
3785         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3786 
3787         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3788         free_collection_set(g1_policy()->collection_set(), evacuation_info, surviving_young_words);
3789 
3790         eagerly_reclaim_humongous_regions();
3791 
3792         g1_policy()->clear_collection_set();
3793 
3794         // Start a new incremental collection set for the next pause.
3795         g1_policy()->start_incremental_cset_building();
3796 
3797         clear_cset_fast_test();
3798 
3799         _young_list->reset_sampled_info();
3800 
3801         // Don't check the whole heap at this point as the
3802         // GC alloc regions from this pause have been tagged
3803         // as survivors and moved on to the survivor list.
3804         // Survivor regions will fail the !is_young() check.
3805         assert(check_young_list_empty(false /* check_heap */),
3806           "young list should be empty");
3807 
3808         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3809                                              _young_list->first_survivor_region(),
3810                                              _young_list->last_survivor_region());
3811 
3812         _young_list->reset_auxilary_lists();
3813 
3814         if (evacuation_failed()) {
3815           set_used(recalculate_used());
3816           if (_archive_allocator != NULL) {
3817             _archive_allocator->clear_used();
3818           }
3819           for (uint i = 0; i < ParallelGCThreads; i++) {
3820             if (_evacuation_failed_info_array[i].has_failed()) {
3821               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3822             }
3823           }
3824         } else {
3825           // The "used" of the the collection set have already been subtracted
3826           // when they were freed.  Add in the bytes evacuated.
3827           increase_used(g1_policy()->bytes_copied_during_gc());
3828         }
3829 
3830         if (collector_state()->during_initial_mark_pause()) {
3831           // We have to do this before we notify the CM threads that
3832           // they can start working to make sure that all the
3833           // appropriate initialization is done on the CM object.
3834           concurrent_mark()->checkpointRootsInitialPost();
3835           collector_state()->set_mark_in_progress(true);
3836           // Note that we don't actually trigger the CM thread at
3837           // this point. We do that later when we're sure that
3838           // the current thread has completed its logging output.
3839         }
3840 
3841         allocate_dummy_regions();
3842 
3843         _allocator->init_mutator_alloc_region();
3844 
3845         {
3846           size_t expand_bytes = g1_policy()->expansion_amount();
3847           if (expand_bytes > 0) {
3848             size_t bytes_before = capacity();
3849             // No need for an ergo logging here,
3850             // expansion_amount() does this when it returns a value > 0.
3851             double expand_ms;
3852             if (!expand(expand_bytes, &expand_ms)) {
3853               // We failed to expand the heap. Cannot do anything about it.
3854             }
3855             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3856           }
3857         }
3858 
3859         // We redo the verification but now wrt to the new CSet which
3860         // has just got initialized after the previous CSet was freed.
3861         _cm->verify_no_cset_oops();
3862         _cm->note_end_of_gc();
3863 
3864         // This timing is only used by the ergonomics to handle our pause target.
3865         // It is unclear why this should not include the full pause. We will
3866         // investigate this in CR 7178365.
3867         double sample_end_time_sec = os::elapsedTime();
3868         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3869         size_t total_cards_scanned = per_thread_states.total_cards_scanned();
3870         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned);
3871 
3872         evacuation_info.set_collectionset_used_before(g1_policy()->collection_set_bytes_used_before());
3873         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3874 
3875         MemoryService::track_memory_usage();
3876 
3877         // In prepare_for_verify() below we'll need to scan the deferred
3878         // update buffers to bring the RSets up-to-date if
3879         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3880         // the update buffers we'll probably need to scan cards on the
3881         // regions we just allocated to (i.e., the GC alloc
3882         // regions). However, during the last GC we called
3883         // set_saved_mark() on all the GC alloc regions, so card
3884         // scanning might skip the [saved_mark_word()...top()] area of
3885         // those regions (i.e., the area we allocated objects into
3886         // during the last GC). But it shouldn't. Given that
3887         // saved_mark_word() is conditional on whether the GC time stamp
3888         // on the region is current or not, by incrementing the GC time
3889         // stamp here we invalidate all the GC time stamps on all the
3890         // regions and saved_mark_word() will simply return top() for
3891         // all the regions. This is a nicer way of ensuring this rather
3892         // than iterating over the regions and fixing them. In fact, the
3893         // GC time stamp increment here also ensures that
3894         // saved_mark_word() will return top() between pauses, i.e.,
3895         // during concurrent refinement. So we don't need the
3896         // is_gc_active() check to decided which top to use when
3897         // scanning cards (see CR 7039627).
3898         increment_gc_time_stamp();
3899 
3900         verify_after_gc();
3901         check_bitmaps("GC End");
3902 
3903         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3904         ref_processor_stw()->verify_no_references_recorded();
3905 
3906         // CM reference discovery will be re-enabled if necessary.
3907       }
3908 
3909 #ifdef TRACESPINNING
3910       ParallelTaskTerminator::print_termination_counts();
3911 #endif
3912 
3913       gc_epilogue(false);
3914     }
3915 
3916     // Print the remainder of the GC log output.
3917     log_gc_footer(os::elapsed_counter() - pause_start_counter);
3918 
3919     // It is not yet to safe to tell the concurrent mark to
3920     // start as we have some optional output below. We don't want the
3921     // output from the concurrent mark thread interfering with this
3922     // logging output either.
3923 
3924     _hrm.verify_optional();
3925     verify_region_sets_optional();
3926 
3927     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3928     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3929 
3930     print_heap_after_gc();
3931     trace_heap_after_gc(_gc_tracer_stw);
3932 
3933     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3934     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3935     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3936     // before any GC notifications are raised.
3937     g1mm()->update_sizes();
3938 
3939     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3940     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3941     _gc_timer_stw->register_gc_end();
3942     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3943   }
3944   // It should now be safe to tell the concurrent mark thread to start
3945   // without its logging output interfering with the logging output
3946   // that came from the pause.
3947 
3948   if (should_start_conc_mark) {
3949     // CAUTION: after the doConcurrentMark() call below,
3950     // the concurrent marking thread(s) could be running
3951     // concurrently with us. Make sure that anything after
3952     // this point does not assume that we are the only GC thread
3953     // running. Note: of course, the actual marking work will
3954     // not start until the safepoint itself is released in
3955     // SuspendibleThreadSet::desynchronize().
3956     doConcurrentMark();
3957   }
3958 
3959   return true;
3960 }
3961 
3962 void G1CollectedHeap::remove_self_forwarding_pointers() {
3963   double remove_self_forwards_start = os::elapsedTime();
3964 
3965   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3966   workers()->run_task(&rsfp_task);
3967 
3968   // Now restore saved marks, if any.
3969   for (uint i = 0; i < ParallelGCThreads; i++) {
3970     OopAndMarkOopStack& cur = _preserved_objs[i];
3971     while (!cur.is_empty()) {
3972       OopAndMarkOop elem = cur.pop();
3973       elem.set_mark();
3974     }
3975     cur.clear(true);
3976   }
3977 
3978   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3979 }
3980 
3981 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3982   if (!_evacuation_failed) {
3983     _evacuation_failed = true;
3984   }
3985 
3986   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3987 
3988   // We want to call the "for_promotion_failure" version only in the
3989   // case of a promotion failure.
3990   if (m->must_be_preserved_for_promotion_failure(obj)) {
3991     OopAndMarkOop elem(obj, m);
3992     _preserved_objs[worker_id].push(elem);
3993   }
3994 }
3995 
3996 class G1ParEvacuateFollowersClosure : public VoidClosure {
3997 private:
3998   double _start_term;
3999   double _term_time;
4000   size_t _term_attempts;
4001 
4002   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
4003   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
4004 protected:
4005   G1CollectedHeap*              _g1h;
4006   G1ParScanThreadState*         _par_scan_state;
4007   RefToScanQueueSet*            _queues;
4008   ParallelTaskTerminator*       _terminator;
4009 
4010   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4011   RefToScanQueueSet*      queues()         { return _queues; }
4012   ParallelTaskTerminator* terminator()     { return _terminator; }
4013 
4014 public:
4015   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4016                                 G1ParScanThreadState* par_scan_state,
4017                                 RefToScanQueueSet* queues,
4018                                 ParallelTaskTerminator* terminator)
4019     : _g1h(g1h), _par_scan_state(par_scan_state),
4020       _queues(queues), _terminator(terminator),
4021       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
4022 
4023   void do_void();
4024 
4025   double term_time() const { return _term_time; }
4026   size_t term_attempts() const { return _term_attempts; }
4027 
4028 private:
4029   inline bool offer_termination();
4030 };
4031 
4032 bool G1ParEvacuateFollowersClosure::offer_termination() {
4033   G1ParScanThreadState* const pss = par_scan_state();
4034   start_term_time();
4035   const bool res = terminator()->offer_termination();
4036   end_term_time();
4037   return res;
4038 }
4039 
4040 void G1ParEvacuateFollowersClosure::do_void() {
4041   G1ParScanThreadState* const pss = par_scan_state();
4042   pss->trim_queue();
4043   do {
4044     pss->steal_and_trim_queue(queues());
4045   } while (!offer_termination());
4046 }
4047 
4048 class G1ParTask : public AbstractGangTask {
4049 protected:
4050   G1CollectedHeap*         _g1h;
4051   G1ParScanThreadStateSet* _pss;
4052   RefToScanQueueSet*       _queues;
4053   G1RootProcessor*         _root_processor;
4054   ParallelTaskTerminator   _terminator;
4055   uint                     _n_workers;
4056 
4057 public:
4058   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4059     : AbstractGangTask("G1 collection"),
4060       _g1h(g1h),
4061       _pss(per_thread_states),
4062       _queues(task_queues),
4063       _root_processor(root_processor),
4064       _terminator(n_workers, _queues),
4065       _n_workers(n_workers)
4066   {}
4067 
4068   void work(uint worker_id) {
4069     if (worker_id >= _n_workers) return;  // no work needed this round
4070 
4071     double start_sec = os::elapsedTime();
4072     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
4073 
4074     {
4075       ResourceMark rm;
4076       HandleMark   hm;
4077 
4078       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4079 
4080       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
4081       pss->set_ref_processor(rp);
4082 
4083       double start_strong_roots_sec = os::elapsedTime();
4084 
4085       _root_processor->evacuate_roots(pss->closures(), worker_id);
4086 
4087       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, pss);
4088 
4089       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
4090       // treating the nmethods visited to act as roots for concurrent marking.
4091       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
4092       // objects copied by the current evacuation.
4093       size_t cards_scanned = _g1h->g1_rem_set()->oops_into_collection_set_do(&push_heap_rs_cl,
4094                                                                              pss->closures()->weak_codeblobs(),
4095                                                                              worker_id);
4096 
4097       _pss->add_cards_scanned(worker_id, cards_scanned);
4098 
4099       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4100 
4101       double term_sec = 0.0;
4102       size_t evac_term_attempts = 0;
4103       {
4104         double start = os::elapsedTime();
4105         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4106         evac.do_void();
4107 
4108         evac_term_attempts = evac.term_attempts();
4109         term_sec = evac.term_time();
4110         double elapsed_sec = os::elapsedTime() - start;
4111         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4112         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4113         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4114       }
4115 
4116       assert(pss->queue_is_empty(), "should be empty");
4117 
4118       if (log_is_enabled(Debug, gc, task, stats)) {
4119         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4120         size_t lab_waste;
4121         size_t lab_undo_waste;
4122         pss->waste(lab_waste, lab_undo_waste);
4123         _g1h->print_termination_stats(worker_id,
4124                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4125                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4126                                       term_sec * 1000.0,                          /* evac term time */
4127                                       evac_term_attempts,                         /* evac term attempts */
4128                                       lab_waste,                                  /* alloc buffer waste */
4129                                       lab_undo_waste                              /* undo waste */
4130                                       );
4131       }
4132 
4133       // Close the inner scope so that the ResourceMark and HandleMark
4134       // destructors are executed here and are included as part of the
4135       // "GC Worker Time".
4136     }
4137     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4138   }
4139 };
4140 
4141 void G1CollectedHeap::print_termination_stats_hdr() {
4142   LogHandle(gc, task, stats) log;
4143   if (!log.is_debug()) {
4144     return;
4145   }
4146   log.debug("GC Termination Stats");
4147   log.debug("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4148   log.debug("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
4149   log.debug("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4150 }
4151 
4152 void G1CollectedHeap::print_termination_stats(uint worker_id,
4153                                               double elapsed_ms,
4154                                               double strong_roots_ms,
4155                                               double term_ms,
4156                                               size_t term_attempts,
4157                                               size_t alloc_buffer_waste,
4158                                               size_t undo_waste) const {
4159   log_debug(gc, task, stats)
4160               ("%3d %9.2f %9.2f %6.2f "
4161                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4162                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4163                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4164                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4165                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4166                alloc_buffer_waste * HeapWordSize / K,
4167                undo_waste * HeapWordSize / K);
4168 }
4169 
4170 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4171 private:
4172   BoolObjectClosure* _is_alive;
4173   int _initial_string_table_size;
4174   int _initial_symbol_table_size;
4175 
4176   bool  _process_strings;
4177   int _strings_processed;
4178   int _strings_removed;
4179 
4180   bool  _process_symbols;
4181   int _symbols_processed;
4182   int _symbols_removed;
4183 
4184 public:
4185   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4186     AbstractGangTask("String/Symbol Unlinking"),
4187     _is_alive(is_alive),
4188     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4189     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4190 
4191     _initial_string_table_size = StringTable::the_table()->table_size();
4192     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4193     if (process_strings) {
4194       StringTable::clear_parallel_claimed_index();
4195     }
4196     if (process_symbols) {
4197       SymbolTable::clear_parallel_claimed_index();
4198     }
4199   }
4200 
4201   ~G1StringSymbolTableUnlinkTask() {
4202     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4203               "claim value %d after unlink less than initial string table size %d",
4204               StringTable::parallel_claimed_index(), _initial_string_table_size);
4205     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4206               "claim value %d after unlink less than initial symbol table size %d",
4207               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4208 
4209     log_trace(gc, stringdedup)("Cleaned string and symbol table, "
4210                                "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4211                                "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4212                                strings_processed(), strings_removed(),
4213                                symbols_processed(), symbols_removed());
4214   }
4215 
4216   void work(uint worker_id) {
4217     int strings_processed = 0;
4218     int strings_removed = 0;
4219     int symbols_processed = 0;
4220     int symbols_removed = 0;
4221     if (_process_strings) {
4222       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4223       Atomic::add(strings_processed, &_strings_processed);
4224       Atomic::add(strings_removed, &_strings_removed);
4225     }
4226     if (_process_symbols) {
4227       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4228       Atomic::add(symbols_processed, &_symbols_processed);
4229       Atomic::add(symbols_removed, &_symbols_removed);
4230     }
4231   }
4232 
4233   size_t strings_processed() const { return (size_t)_strings_processed; }
4234   size_t strings_removed()   const { return (size_t)_strings_removed; }
4235 
4236   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4237   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4238 };
4239 
4240 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4241 private:
4242   static Monitor* _lock;
4243 
4244   BoolObjectClosure* const _is_alive;
4245   const bool               _unloading_occurred;
4246   const uint               _num_workers;
4247 
4248   // Variables used to claim nmethods.
4249   nmethod* _first_nmethod;
4250   volatile nmethod* _claimed_nmethod;
4251 
4252   // The list of nmethods that need to be processed by the second pass.
4253   volatile nmethod* _postponed_list;
4254   volatile uint     _num_entered_barrier;
4255 
4256  public:
4257   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4258       _is_alive(is_alive),
4259       _unloading_occurred(unloading_occurred),
4260       _num_workers(num_workers),
4261       _first_nmethod(NULL),
4262       _claimed_nmethod(NULL),
4263       _postponed_list(NULL),
4264       _num_entered_barrier(0)
4265   {
4266     nmethod::increase_unloading_clock();
4267     // Get first alive nmethod
4268     NMethodIterator iter = NMethodIterator();
4269     if(iter.next_alive()) {
4270       _first_nmethod = iter.method();
4271     }
4272     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4273   }
4274 
4275   ~G1CodeCacheUnloadingTask() {
4276     CodeCache::verify_clean_inline_caches();
4277 
4278     CodeCache::set_needs_cache_clean(false);
4279     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4280 
4281     CodeCache::verify_icholder_relocations();
4282   }
4283 
4284  private:
4285   void add_to_postponed_list(nmethod* nm) {
4286       nmethod* old;
4287       do {
4288         old = (nmethod*)_postponed_list;
4289         nm->set_unloading_next(old);
4290       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4291   }
4292 
4293   void clean_nmethod(nmethod* nm) {
4294     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4295 
4296     if (postponed) {
4297       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4298       add_to_postponed_list(nm);
4299     }
4300 
4301     // Mark that this thread has been cleaned/unloaded.
4302     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4303     nm->set_unloading_clock(nmethod::global_unloading_clock());
4304   }
4305 
4306   void clean_nmethod_postponed(nmethod* nm) {
4307     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4308   }
4309 
4310   static const int MaxClaimNmethods = 16;
4311 
4312   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4313     nmethod* first;
4314     NMethodIterator last;
4315 
4316     do {
4317       *num_claimed_nmethods = 0;
4318 
4319       first = (nmethod*)_claimed_nmethod;
4320       last = NMethodIterator(first);
4321 
4322       if (first != NULL) {
4323 
4324         for (int i = 0; i < MaxClaimNmethods; i++) {
4325           if (!last.next_alive()) {
4326             break;
4327           }
4328           claimed_nmethods[i] = last.method();
4329           (*num_claimed_nmethods)++;
4330         }
4331       }
4332 
4333     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4334   }
4335 
4336   nmethod* claim_postponed_nmethod() {
4337     nmethod* claim;
4338     nmethod* next;
4339 
4340     do {
4341       claim = (nmethod*)_postponed_list;
4342       if (claim == NULL) {
4343         return NULL;
4344       }
4345 
4346       next = claim->unloading_next();
4347 
4348     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4349 
4350     return claim;
4351   }
4352 
4353  public:
4354   // Mark that we're done with the first pass of nmethod cleaning.
4355   void barrier_mark(uint worker_id) {
4356     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4357     _num_entered_barrier++;
4358     if (_num_entered_barrier == _num_workers) {
4359       ml.notify_all();
4360     }
4361   }
4362 
4363   // See if we have to wait for the other workers to
4364   // finish their first-pass nmethod cleaning work.
4365   void barrier_wait(uint worker_id) {
4366     if (_num_entered_barrier < _num_workers) {
4367       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4368       while (_num_entered_barrier < _num_workers) {
4369           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4370       }
4371     }
4372   }
4373 
4374   // Cleaning and unloading of nmethods. Some work has to be postponed
4375   // to the second pass, when we know which nmethods survive.
4376   void work_first_pass(uint worker_id) {
4377     // The first nmethods is claimed by the first worker.
4378     if (worker_id == 0 && _first_nmethod != NULL) {
4379       clean_nmethod(_first_nmethod);
4380       _first_nmethod = NULL;
4381     }
4382 
4383     int num_claimed_nmethods;
4384     nmethod* claimed_nmethods[MaxClaimNmethods];
4385 
4386     while (true) {
4387       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4388 
4389       if (num_claimed_nmethods == 0) {
4390         break;
4391       }
4392 
4393       for (int i = 0; i < num_claimed_nmethods; i++) {
4394         clean_nmethod(claimed_nmethods[i]);
4395       }
4396     }
4397   }
4398 
4399   void work_second_pass(uint worker_id) {
4400     nmethod* nm;
4401     // Take care of postponed nmethods.
4402     while ((nm = claim_postponed_nmethod()) != NULL) {
4403       clean_nmethod_postponed(nm);
4404     }
4405   }
4406 };
4407 
4408 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4409 
4410 class G1KlassCleaningTask : public StackObj {
4411   BoolObjectClosure*                      _is_alive;
4412   volatile jint                           _clean_klass_tree_claimed;
4413   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4414 
4415  public:
4416   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4417       _is_alive(is_alive),
4418       _clean_klass_tree_claimed(0),
4419       _klass_iterator() {
4420   }
4421 
4422  private:
4423   bool claim_clean_klass_tree_task() {
4424     if (_clean_klass_tree_claimed) {
4425       return false;
4426     }
4427 
4428     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4429   }
4430 
4431   InstanceKlass* claim_next_klass() {
4432     Klass* klass;
4433     do {
4434       klass =_klass_iterator.next_klass();
4435     } while (klass != NULL && !klass->is_instance_klass());
4436 
4437     // this can be null so don't call InstanceKlass::cast
4438     return static_cast<InstanceKlass*>(klass);
4439   }
4440 
4441 public:
4442 
4443   void clean_klass(InstanceKlass* ik) {
4444     ik->clean_weak_instanceklass_links(_is_alive);
4445   }
4446 
4447   void work() {
4448     ResourceMark rm;
4449 
4450     // One worker will clean the subklass/sibling klass tree.
4451     if (claim_clean_klass_tree_task()) {
4452       Klass::clean_subklass_tree(_is_alive);
4453     }
4454 
4455     // All workers will help cleaning the classes,
4456     InstanceKlass* klass;
4457     while ((klass = claim_next_klass()) != NULL) {
4458       clean_klass(klass);
4459     }
4460   }
4461 };
4462 
4463 // To minimize the remark pause times, the tasks below are done in parallel.
4464 class G1ParallelCleaningTask : public AbstractGangTask {
4465 private:
4466   G1StringSymbolTableUnlinkTask _string_symbol_task;
4467   G1CodeCacheUnloadingTask      _code_cache_task;
4468   G1KlassCleaningTask           _klass_cleaning_task;
4469 
4470 public:
4471   // The constructor is run in the VMThread.
4472   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4473       AbstractGangTask("Parallel Cleaning"),
4474       _string_symbol_task(is_alive, process_strings, process_symbols),
4475       _code_cache_task(num_workers, is_alive, unloading_occurred),
4476       _klass_cleaning_task(is_alive) {
4477   }
4478 
4479   // The parallel work done by all worker threads.
4480   void work(uint worker_id) {
4481     // Do first pass of code cache cleaning.
4482     _code_cache_task.work_first_pass(worker_id);
4483 
4484     // Let the threads mark that the first pass is done.
4485     _code_cache_task.barrier_mark(worker_id);
4486 
4487     // Clean the Strings and Symbols.
4488     _string_symbol_task.work(worker_id);
4489 
4490     // Wait for all workers to finish the first code cache cleaning pass.
4491     _code_cache_task.barrier_wait(worker_id);
4492 
4493     // Do the second code cache cleaning work, which realize on
4494     // the liveness information gathered during the first pass.
4495     _code_cache_task.work_second_pass(worker_id);
4496 
4497     // Clean all klasses that were not unloaded.
4498     _klass_cleaning_task.work();
4499   }
4500 };
4501 
4502 
4503 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4504                                         bool process_strings,
4505                                         bool process_symbols,
4506                                         bool class_unloading_occurred) {
4507   uint n_workers = workers()->active_workers();
4508 
4509   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4510                                         n_workers, class_unloading_occurred);
4511   workers()->run_task(&g1_unlink_task);
4512 }
4513 
4514 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4515                                                      bool process_strings, bool process_symbols) {
4516   {
4517     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4518     workers()->run_task(&g1_unlink_task);
4519   }
4520 
4521   if (G1StringDedup::is_enabled()) {
4522     G1StringDedup::unlink(is_alive);
4523   }
4524 }
4525 
4526 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4527  private:
4528   DirtyCardQueueSet* _queue;
4529  public:
4530   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4531 
4532   virtual void work(uint worker_id) {
4533     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4534     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4535 
4536     RedirtyLoggedCardTableEntryClosure cl;
4537     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4538 
4539     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4540   }
4541 };
4542 
4543 void G1CollectedHeap::redirty_logged_cards() {
4544   double redirty_logged_cards_start = os::elapsedTime();
4545 
4546   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4547   dirty_card_queue_set().reset_for_par_iteration();
4548   workers()->run_task(&redirty_task);
4549 
4550   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4551   dcq.merge_bufferlists(&dirty_card_queue_set());
4552   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4553 
4554   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4555 }
4556 
4557 // Weak Reference Processing support
4558 
4559 // An always "is_alive" closure that is used to preserve referents.
4560 // If the object is non-null then it's alive.  Used in the preservation
4561 // of referent objects that are pointed to by reference objects
4562 // discovered by the CM ref processor.
4563 class G1AlwaysAliveClosure: public BoolObjectClosure {
4564   G1CollectedHeap* _g1;
4565 public:
4566   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4567   bool do_object_b(oop p) {
4568     if (p != NULL) {
4569       return true;
4570     }
4571     return false;
4572   }
4573 };
4574 
4575 bool G1STWIsAliveClosure::do_object_b(oop p) {
4576   // An object is reachable if it is outside the collection set,
4577   // or is inside and copied.
4578   return !_g1->is_in_cset(p) || p->is_forwarded();
4579 }
4580 
4581 // Non Copying Keep Alive closure
4582 class G1KeepAliveClosure: public OopClosure {
4583   G1CollectedHeap* _g1;
4584 public:
4585   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4586   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4587   void do_oop(oop* p) {
4588     oop obj = *p;
4589     assert(obj != NULL, "the caller should have filtered out NULL values");
4590 
4591     const InCSetState cset_state = _g1->in_cset_state(obj);
4592     if (!cset_state.is_in_cset_or_humongous()) {
4593       return;
4594     }
4595     if (cset_state.is_in_cset()) {
4596       assert( obj->is_forwarded(), "invariant" );
4597       *p = obj->forwardee();
4598     } else {
4599       assert(!obj->is_forwarded(), "invariant" );
4600       assert(cset_state.is_humongous(),
4601              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
4602       _g1->set_humongous_is_live(obj);
4603     }
4604   }
4605 };
4606 
4607 // Copying Keep Alive closure - can be called from both
4608 // serial and parallel code as long as different worker
4609 // threads utilize different G1ParScanThreadState instances
4610 // and different queues.
4611 
4612 class G1CopyingKeepAliveClosure: public OopClosure {
4613   G1CollectedHeap*         _g1h;
4614   OopClosure*              _copy_non_heap_obj_cl;
4615   G1ParScanThreadState*    _par_scan_state;
4616 
4617 public:
4618   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4619                             OopClosure* non_heap_obj_cl,
4620                             G1ParScanThreadState* pss):
4621     _g1h(g1h),
4622     _copy_non_heap_obj_cl(non_heap_obj_cl),
4623     _par_scan_state(pss)
4624   {}
4625 
4626   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4627   virtual void do_oop(      oop* p) { do_oop_work(p); }
4628 
4629   template <class T> void do_oop_work(T* p) {
4630     oop obj = oopDesc::load_decode_heap_oop(p);
4631 
4632     if (_g1h->is_in_cset_or_humongous(obj)) {
4633       // If the referent object has been forwarded (either copied
4634       // to a new location or to itself in the event of an
4635       // evacuation failure) then we need to update the reference
4636       // field and, if both reference and referent are in the G1
4637       // heap, update the RSet for the referent.
4638       //
4639       // If the referent has not been forwarded then we have to keep
4640       // it alive by policy. Therefore we have copy the referent.
4641       //
4642       // If the reference field is in the G1 heap then we can push
4643       // on the PSS queue. When the queue is drained (after each
4644       // phase of reference processing) the object and it's followers
4645       // will be copied, the reference field set to point to the
4646       // new location, and the RSet updated. Otherwise we need to
4647       // use the the non-heap or metadata closures directly to copy
4648       // the referent object and update the pointer, while avoiding
4649       // updating the RSet.
4650 
4651       if (_g1h->is_in_g1_reserved(p)) {
4652         _par_scan_state->push_on_queue(p);
4653       } else {
4654         assert(!Metaspace::contains((const void*)p),
4655                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
4656         _copy_non_heap_obj_cl->do_oop(p);
4657       }
4658     }
4659   }
4660 };
4661 
4662 // Serial drain queue closure. Called as the 'complete_gc'
4663 // closure for each discovered list in some of the
4664 // reference processing phases.
4665 
4666 class G1STWDrainQueueClosure: public VoidClosure {
4667 protected:
4668   G1CollectedHeap* _g1h;
4669   G1ParScanThreadState* _par_scan_state;
4670 
4671   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4672 
4673 public:
4674   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4675     _g1h(g1h),
4676     _par_scan_state(pss)
4677   { }
4678 
4679   void do_void() {
4680     G1ParScanThreadState* const pss = par_scan_state();
4681     pss->trim_queue();
4682   }
4683 };
4684 
4685 // Parallel Reference Processing closures
4686 
4687 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4688 // processing during G1 evacuation pauses.
4689 
4690 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4691 private:
4692   G1CollectedHeap*          _g1h;
4693   G1ParScanThreadStateSet*  _pss;
4694   RefToScanQueueSet*        _queues;
4695   WorkGang*                 _workers;
4696   uint                      _active_workers;
4697 
4698 public:
4699   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4700                            G1ParScanThreadStateSet* per_thread_states,
4701                            WorkGang* workers,
4702                            RefToScanQueueSet *task_queues,
4703                            uint n_workers) :
4704     _g1h(g1h),
4705     _pss(per_thread_states),
4706     _queues(task_queues),
4707     _workers(workers),
4708     _active_workers(n_workers)
4709   {
4710     assert(n_workers > 0, "shouldn't call this otherwise");
4711   }
4712 
4713   // Executes the given task using concurrent marking worker threads.
4714   virtual void execute(ProcessTask& task);
4715   virtual void execute(EnqueueTask& task);
4716 };
4717 
4718 // Gang task for possibly parallel reference processing
4719 
4720 class G1STWRefProcTaskProxy: public AbstractGangTask {
4721   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4722   ProcessTask&     _proc_task;
4723   G1CollectedHeap* _g1h;
4724   G1ParScanThreadStateSet* _pss;
4725   RefToScanQueueSet* _task_queues;
4726   ParallelTaskTerminator* _terminator;
4727 
4728 public:
4729   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4730                         G1CollectedHeap* g1h,
4731                         G1ParScanThreadStateSet* per_thread_states,
4732                         RefToScanQueueSet *task_queues,
4733                         ParallelTaskTerminator* terminator) :
4734     AbstractGangTask("Process reference objects in parallel"),
4735     _proc_task(proc_task),
4736     _g1h(g1h),
4737     _pss(per_thread_states),
4738     _task_queues(task_queues),
4739     _terminator(terminator)
4740   {}
4741 
4742   virtual void work(uint worker_id) {
4743     // The reference processing task executed by a single worker.
4744     ResourceMark rm;
4745     HandleMark   hm;
4746 
4747     G1STWIsAliveClosure is_alive(_g1h);
4748 
4749     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4750     pss->set_ref_processor(NULL);
4751 
4752     // Keep alive closure.
4753     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4754 
4755     // Complete GC closure
4756     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4757 
4758     // Call the reference processing task's work routine.
4759     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4760 
4761     // Note we cannot assert that the refs array is empty here as not all
4762     // of the processing tasks (specifically phase2 - pp2_work) execute
4763     // the complete_gc closure (which ordinarily would drain the queue) so
4764     // the queue may not be empty.
4765   }
4766 };
4767 
4768 // Driver routine for parallel reference processing.
4769 // Creates an instance of the ref processing gang
4770 // task and has the worker threads execute it.
4771 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4772   assert(_workers != NULL, "Need parallel worker threads.");
4773 
4774   ParallelTaskTerminator terminator(_active_workers, _queues);
4775   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4776 
4777   _workers->run_task(&proc_task_proxy);
4778 }
4779 
4780 // Gang task for parallel reference enqueueing.
4781 
4782 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4783   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4784   EnqueueTask& _enq_task;
4785 
4786 public:
4787   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4788     AbstractGangTask("Enqueue reference objects in parallel"),
4789     _enq_task(enq_task)
4790   { }
4791 
4792   virtual void work(uint worker_id) {
4793     _enq_task.work(worker_id);
4794   }
4795 };
4796 
4797 // Driver routine for parallel reference enqueueing.
4798 // Creates an instance of the ref enqueueing gang
4799 // task and has the worker threads execute it.
4800 
4801 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4802   assert(_workers != NULL, "Need parallel worker threads.");
4803 
4804   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4805 
4806   _workers->run_task(&enq_task_proxy);
4807 }
4808 
4809 // End of weak reference support closures
4810 
4811 // Abstract task used to preserve (i.e. copy) any referent objects
4812 // that are in the collection set and are pointed to by reference
4813 // objects discovered by the CM ref processor.
4814 
4815 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4816 protected:
4817   G1CollectedHeap*         _g1h;
4818   G1ParScanThreadStateSet* _pss;
4819   RefToScanQueueSet*       _queues;
4820   ParallelTaskTerminator   _terminator;
4821   uint                     _n_workers;
4822 
4823 public:
4824   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4825     AbstractGangTask("ParPreserveCMReferents"),
4826     _g1h(g1h),
4827     _pss(per_thread_states),
4828     _queues(task_queues),
4829     _terminator(workers, _queues),
4830     _n_workers(workers)
4831   { }
4832 
4833   void work(uint worker_id) {
4834     ResourceMark rm;
4835     HandleMark   hm;
4836 
4837     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4838     pss->set_ref_processor(NULL);
4839     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4840 
4841     // Is alive closure
4842     G1AlwaysAliveClosure always_alive(_g1h);
4843 
4844     // Copying keep alive closure. Applied to referent objects that need
4845     // to be copied.
4846     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4847 
4848     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4849 
4850     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4851     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4852 
4853     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4854     // So this must be true - but assert just in case someone decides to
4855     // change the worker ids.
4856     assert(worker_id < limit, "sanity");
4857     assert(!rp->discovery_is_atomic(), "check this code");
4858 
4859     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4860     for (uint idx = worker_id; idx < limit; idx += stride) {
4861       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4862 
4863       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4864       while (iter.has_next()) {
4865         // Since discovery is not atomic for the CM ref processor, we
4866         // can see some null referent objects.
4867         iter.load_ptrs(DEBUG_ONLY(true));
4868         oop ref = iter.obj();
4869 
4870         // This will filter nulls.
4871         if (iter.is_referent_alive()) {
4872           iter.make_referent_alive();
4873         }
4874         iter.move_to_next();
4875       }
4876     }
4877 
4878     // Drain the queue - which may cause stealing
4879     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4880     drain_queue.do_void();
4881     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4882     assert(pss->queue_is_empty(), "should be");
4883   }
4884 };
4885 
4886 // Weak Reference processing during an evacuation pause (part 1).
4887 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4888   double ref_proc_start = os::elapsedTime();
4889 
4890   ReferenceProcessor* rp = _ref_processor_stw;
4891   assert(rp->discovery_enabled(), "should have been enabled");
4892 
4893   // Any reference objects, in the collection set, that were 'discovered'
4894   // by the CM ref processor should have already been copied (either by
4895   // applying the external root copy closure to the discovered lists, or
4896   // by following an RSet entry).
4897   //
4898   // But some of the referents, that are in the collection set, that these
4899   // reference objects point to may not have been copied: the STW ref
4900   // processor would have seen that the reference object had already
4901   // been 'discovered' and would have skipped discovering the reference,
4902   // but would not have treated the reference object as a regular oop.
4903   // As a result the copy closure would not have been applied to the
4904   // referent object.
4905   //
4906   // We need to explicitly copy these referent objects - the references
4907   // will be processed at the end of remarking.
4908   //
4909   // We also need to do this copying before we process the reference
4910   // objects discovered by the STW ref processor in case one of these
4911   // referents points to another object which is also referenced by an
4912   // object discovered by the STW ref processor.
4913 
4914   uint no_of_gc_workers = workers()->active_workers();
4915 
4916   G1ParPreserveCMReferentsTask keep_cm_referents(this,
4917                                                  per_thread_states,
4918                                                  no_of_gc_workers,
4919                                                  _task_queues);
4920 
4921   workers()->run_task(&keep_cm_referents);
4922 
4923   // Closure to test whether a referent is alive.
4924   G1STWIsAliveClosure is_alive(this);
4925 
4926   // Even when parallel reference processing is enabled, the processing
4927   // of JNI refs is serial and performed serially by the current thread
4928   // rather than by a worker. The following PSS will be used for processing
4929   // JNI refs.
4930 
4931   // Use only a single queue for this PSS.
4932   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4933   pss->set_ref_processor(NULL);
4934   assert(pss->queue_is_empty(), "pre-condition");
4935 
4936   // Keep alive closure.
4937   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4938 
4939   // Serial Complete GC closure
4940   G1STWDrainQueueClosure drain_queue(this, pss);
4941 
4942   // Setup the soft refs policy...
4943   rp->setup_policy(false);
4944 
4945   ReferenceProcessorStats stats;
4946   if (!rp->processing_is_mt()) {
4947     // Serial reference processing...
4948     stats = rp->process_discovered_references(&is_alive,
4949                                               &keep_alive,
4950                                               &drain_queue,
4951                                               NULL,
4952                                               _gc_timer_stw);
4953   } else {
4954     // Parallel reference processing
4955     assert(rp->num_q() == no_of_gc_workers, "sanity");
4956     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
4957 
4958     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4959     stats = rp->process_discovered_references(&is_alive,
4960                                               &keep_alive,
4961                                               &drain_queue,
4962                                               &par_task_executor,
4963                                               _gc_timer_stw);
4964   }
4965 
4966   _gc_tracer_stw->report_gc_reference_stats(stats);
4967 
4968   // We have completed copying any necessary live referent objects.
4969   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4970 
4971   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4972   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4973 }
4974 
4975 // Weak Reference processing during an evacuation pause (part 2).
4976 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4977   double ref_enq_start = os::elapsedTime();
4978 
4979   ReferenceProcessor* rp = _ref_processor_stw;
4980   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4981 
4982   // Now enqueue any remaining on the discovered lists on to
4983   // the pending list.
4984   if (!rp->processing_is_mt()) {
4985     // Serial reference processing...
4986     rp->enqueue_discovered_references();
4987   } else {
4988     // Parallel reference enqueueing
4989 
4990     uint n_workers = workers()->active_workers();
4991 
4992     assert(rp->num_q() == n_workers, "sanity");
4993     assert(n_workers <= rp->max_num_q(), "sanity");
4994 
4995     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4996     rp->enqueue_discovered_references(&par_task_executor);
4997   }
4998 
4999   rp->verify_no_references_recorded();
5000   assert(!rp->discovery_enabled(), "should have been disabled");
5001 
5002   // FIXME
5003   // CM's reference processing also cleans up the string and symbol tables.
5004   // Should we do that here also? We could, but it is a serial operation
5005   // and could significantly increase the pause time.
5006 
5007   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5008   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5009 }
5010 
5011 void G1CollectedHeap::pre_evacuate_collection_set() {
5012   _expand_heap_after_alloc_failure = true;
5013   _evacuation_failed = false;
5014 
5015   // Disable the hot card cache.
5016   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5017   hot_card_cache->reset_hot_cache_claimed_index();
5018   hot_card_cache->set_use_cache(false);
5019 
5020 }
5021 
5022 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5023   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5024 
5025   // Should G1EvacuationFailureALot be in effect for this GC?
5026   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5027 
5028   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5029   double start_par_time_sec = os::elapsedTime();
5030   double end_par_time_sec;
5031 
5032   {
5033     const uint n_workers = workers()->active_workers();
5034     G1RootProcessor root_processor(this, n_workers);
5035     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5036     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5037     if (collector_state()->during_initial_mark_pause()) {
5038       ClassLoaderDataGraph::clear_claimed_marks();
5039     }
5040 
5041     print_termination_stats_hdr();
5042 
5043     workers()->run_task(&g1_par_task);
5044     end_par_time_sec = os::elapsedTime();
5045 
5046     // Closing the inner scope will execute the destructor
5047     // for the G1RootProcessor object. We record the current
5048     // elapsed time before closing the scope so that time
5049     // taken for the destructor is NOT included in the
5050     // reported parallel time.
5051   }
5052 
5053   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5054 
5055   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5056   phase_times->record_par_time(par_time_ms);
5057 
5058   double code_root_fixup_time_ms =
5059         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5060   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5061 
5062   // Process any discovered reference objects - we have
5063   // to do this _before_ we retire the GC alloc regions
5064   // as we may have to copy some 'reachable' referent
5065   // objects (and their reachable sub-graphs) that were
5066   // not copied during the pause.
5067   process_discovered_references(per_thread_states);
5068 
5069   if (G1StringDedup::is_enabled()) {
5070     double fixup_start = os::elapsedTime();
5071 
5072     G1STWIsAliveClosure is_alive(this);
5073     G1KeepAliveClosure keep_alive(this);
5074     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5075 
5076     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5077     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5078   }
5079 
5080   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5081 
5082   if (evacuation_failed()) {
5083     remove_self_forwarding_pointers();
5084 
5085     // Reset the G1EvacuationFailureALot counters and flags
5086     // Note: the values are reset only when an actual
5087     // evacuation failure occurs.
5088     NOT_PRODUCT(reset_evacuation_should_fail();)
5089   }
5090 
5091   // Enqueue any remaining references remaining on the STW
5092   // reference processor's discovered lists. We need to do
5093   // this after the card table is cleaned (and verified) as
5094   // the act of enqueueing entries on to the pending list
5095   // will log these updates (and dirty their associated
5096   // cards). We need these updates logged to update any
5097   // RSets.
5098   enqueue_discovered_references(per_thread_states);
5099 }
5100 
5101 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5102   _allocator->release_gc_alloc_regions(evacuation_info);
5103 
5104   per_thread_states->flush();
5105 
5106   record_obj_copy_mem_stats();
5107 
5108   // Reset and re-enable the hot card cache.
5109   // Note the counts for the cards in the regions in the
5110   // collection set are reset when the collection set is freed.
5111   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5112   hot_card_cache->reset_hot_cache();
5113   hot_card_cache->set_use_cache(true);
5114 
5115   purge_code_root_memory();
5116 
5117   redirty_logged_cards();
5118 #if defined(COMPILER2) || INCLUDE_JVMCI
5119   DerivedPointerTable::update_pointers();
5120 #endif
5121 }
5122 
5123 void G1CollectedHeap::record_obj_copy_mem_stats() {
5124   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
5125                                                create_g1_evac_summary(&_old_evac_stats));
5126 }
5127 
5128 void G1CollectedHeap::free_region(HeapRegion* hr,
5129                                   FreeRegionList* free_list,
5130                                   bool par,
5131                                   bool locked) {
5132   assert(!hr->is_free(), "the region should not be free");
5133   assert(!hr->is_empty(), "the region should not be empty");
5134   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5135   assert(free_list != NULL, "pre-condition");
5136 
5137   if (G1VerifyBitmaps) {
5138     MemRegion mr(hr->bottom(), hr->end());
5139     concurrent_mark()->clearRangePrevBitmap(mr);
5140   }
5141 
5142   // Clear the card counts for this region.
5143   // Note: we only need to do this if the region is not young
5144   // (since we don't refine cards in young regions).
5145   if (!hr->is_young()) {
5146     _cg1r->hot_card_cache()->reset_card_counts(hr);
5147   }
5148   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5149   free_list->add_ordered(hr);
5150 }
5151 
5152 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5153                                             FreeRegionList* free_list,
5154                                             bool par) {
5155   assert(hr->is_humongous(), "this is only for humongous regions");
5156   assert(free_list != NULL, "pre-condition");
5157   hr->clear_humongous();
5158   free_region(hr, free_list, par);
5159 }
5160 
5161 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5162                                            const HeapRegionSetCount& humongous_regions_removed) {
5163   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5164     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5165     _old_set.bulk_remove(old_regions_removed);
5166     _humongous_set.bulk_remove(humongous_regions_removed);
5167   }
5168 
5169 }
5170 
5171 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5172   assert(list != NULL, "list can't be null");
5173   if (!list->is_empty()) {
5174     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5175     _hrm.insert_list_into_free_list(list);
5176   }
5177 }
5178 
5179 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5180   decrease_used(bytes);
5181 }
5182 
5183 class G1ParCleanupCTTask : public AbstractGangTask {
5184   G1SATBCardTableModRefBS* _ct_bs;
5185   G1CollectedHeap* _g1h;
5186   HeapRegion* volatile _su_head;
5187 public:
5188   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5189                      G1CollectedHeap* g1h) :
5190     AbstractGangTask("G1 Par Cleanup CT Task"),
5191     _ct_bs(ct_bs), _g1h(g1h) { }
5192 
5193   void work(uint worker_id) {
5194     HeapRegion* r;
5195     while (r = _g1h->pop_dirty_cards_region()) {
5196       clear_cards(r);
5197     }
5198   }
5199 
5200   void clear_cards(HeapRegion* r) {
5201     // Cards of the survivors should have already been dirtied.
5202     if (!r->is_survivor()) {
5203       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5204     }
5205   }
5206 };
5207 
5208 #ifndef PRODUCT
5209 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5210   G1CollectedHeap* _g1h;
5211   G1SATBCardTableModRefBS* _ct_bs;
5212 public:
5213   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5214     : _g1h(g1h), _ct_bs(ct_bs) { }
5215   virtual bool doHeapRegion(HeapRegion* r) {
5216     if (r->is_survivor()) {
5217       _g1h->verify_dirty_region(r);
5218     } else {
5219       _g1h->verify_not_dirty_region(r);
5220     }
5221     return false;
5222   }
5223 };
5224 
5225 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5226   // All of the region should be clean.
5227   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5228   MemRegion mr(hr->bottom(), hr->end());
5229   ct_bs->verify_not_dirty_region(mr);
5230 }
5231 
5232 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5233   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5234   // dirty allocated blocks as they allocate them. The thread that
5235   // retires each region and replaces it with a new one will do a
5236   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5237   // not dirty that area (one less thing to have to do while holding
5238   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5239   // is dirty.
5240   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5241   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5242   if (hr->is_young()) {
5243     ct_bs->verify_g1_young_region(mr);
5244   } else {
5245     ct_bs->verify_dirty_region(mr);
5246   }
5247 }
5248 
5249 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5250   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5251   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5252     verify_dirty_region(hr);
5253   }
5254 }
5255 
5256 void G1CollectedHeap::verify_dirty_young_regions() {
5257   verify_dirty_young_list(_young_list->first_region());
5258 }
5259 
5260 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5261                                                HeapWord* tams, HeapWord* end) {
5262   guarantee(tams <= end,
5263             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5264   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5265   if (result < end) {
5266     log_info(gc, verify)("## wrong marked address on %s bitmap: " PTR_FORMAT, bitmap_name, p2i(result));
5267     log_info(gc, verify)("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT, bitmap_name, p2i(tams), p2i(end));
5268     return false;
5269   }
5270   return true;
5271 }
5272 
5273 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5274   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5275   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5276 
5277   HeapWord* bottom = hr->bottom();
5278   HeapWord* ptams  = hr->prev_top_at_mark_start();
5279   HeapWord* ntams  = hr->next_top_at_mark_start();
5280   HeapWord* end    = hr->end();
5281 
5282   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5283 
5284   bool res_n = true;
5285   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5286   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5287   // if we happen to be in that state.
5288   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5289     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5290   }
5291   if (!res_p || !res_n) {
5292     log_info(gc, verify)("#### Bitmap verification failed for " HR_FORMAT, HR_FORMAT_PARAMS(hr));
5293     log_info(gc, verify)("#### Caller: %s", caller);
5294     return false;
5295   }
5296   return true;
5297 }
5298 
5299 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5300   if (!G1VerifyBitmaps) return;
5301 
5302   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5303 }
5304 
5305 class G1VerifyBitmapClosure : public HeapRegionClosure {
5306 private:
5307   const char* _caller;
5308   G1CollectedHeap* _g1h;
5309   bool _failures;
5310 
5311 public:
5312   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5313     _caller(caller), _g1h(g1h), _failures(false) { }
5314 
5315   bool failures() { return _failures; }
5316 
5317   virtual bool doHeapRegion(HeapRegion* hr) {
5318     bool result = _g1h->verify_bitmaps(_caller, hr);
5319     if (!result) {
5320       _failures = true;
5321     }
5322     return false;
5323   }
5324 };
5325 
5326 void G1CollectedHeap::check_bitmaps(const char* caller) {
5327   if (!G1VerifyBitmaps) return;
5328 
5329   G1VerifyBitmapClosure cl(caller, this);
5330   heap_region_iterate(&cl);
5331   guarantee(!cl.failures(), "bitmap verification");
5332 }
5333 
5334 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5335  private:
5336   bool _failures;
5337  public:
5338   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5339 
5340   virtual bool doHeapRegion(HeapRegion* hr) {
5341     uint i = hr->hrm_index();
5342     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5343     if (hr->is_humongous()) {
5344       if (hr->in_collection_set()) {
5345         log_info(gc, verify)("\n## humongous region %u in CSet", i);
5346         _failures = true;
5347         return true;
5348       }
5349       if (cset_state.is_in_cset()) {
5350         log_info(gc, verify)("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5351         _failures = true;
5352         return true;
5353       }
5354       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5355         log_info(gc, verify)("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5356         _failures = true;
5357         return true;
5358       }
5359     } else {
5360       if (cset_state.is_humongous()) {
5361         log_info(gc, verify)("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5362         _failures = true;
5363         return true;
5364       }
5365       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5366         log_info(gc, verify)("\n## in CSet %d / cset state %d inconsistency for region %u",
5367                              hr->in_collection_set(), cset_state.value(), i);
5368         _failures = true;
5369         return true;
5370       }
5371       if (cset_state.is_in_cset()) {
5372         if (hr->is_young() != (cset_state.is_young())) {
5373           log_info(gc, verify)("\n## is_young %d / cset state %d inconsistency for region %u",
5374                                hr->is_young(), cset_state.value(), i);
5375           _failures = true;
5376           return true;
5377         }
5378         if (hr->is_old() != (cset_state.is_old())) {
5379           log_info(gc, verify)("\n## is_old %d / cset state %d inconsistency for region %u",
5380                                hr->is_old(), cset_state.value(), i);
5381           _failures = true;
5382           return true;
5383         }
5384       }
5385     }
5386     return false;
5387   }
5388 
5389   bool failures() const { return _failures; }
5390 };
5391 
5392 bool G1CollectedHeap::check_cset_fast_test() {
5393   G1CheckCSetFastTableClosure cl;
5394   _hrm.iterate(&cl);
5395   return !cl.failures();
5396 }
5397 #endif // PRODUCT
5398 
5399 void G1CollectedHeap::cleanUpCardTable() {
5400   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5401   double start = os::elapsedTime();
5402 
5403   {
5404     // Iterate over the dirty cards region list.
5405     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5406 
5407     workers()->run_task(&cleanup_task);
5408 #ifndef PRODUCT
5409     if (G1VerifyCTCleanup || VerifyAfterGC) {
5410       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5411       heap_region_iterate(&cleanup_verifier);
5412     }
5413 #endif
5414   }
5415 
5416   double elapsed = os::elapsedTime() - start;
5417   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5418 }
5419 
5420 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
5421   size_t pre_used = 0;
5422   FreeRegionList local_free_list("Local List for CSet Freeing");
5423 
5424   double young_time_ms     = 0.0;
5425   double non_young_time_ms = 0.0;
5426 
5427   // Since the collection set is a superset of the the young list,
5428   // all we need to do to clear the young list is clear its
5429   // head and length, and unlink any young regions in the code below
5430   _young_list->clear();
5431 
5432   G1CollectorPolicy* policy = g1_policy();
5433 
5434   double start_sec = os::elapsedTime();
5435   bool non_young = true;
5436 
5437   HeapRegion* cur = cs_head;
5438   int age_bound = -1;
5439   size_t rs_lengths = 0;
5440 
5441   while (cur != NULL) {
5442     assert(!is_on_master_free_list(cur), "sanity");
5443     if (non_young) {
5444       if (cur->is_young()) {
5445         double end_sec = os::elapsedTime();
5446         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5447         non_young_time_ms += elapsed_ms;
5448 
5449         start_sec = os::elapsedTime();
5450         non_young = false;
5451       }
5452     } else {
5453       if (!cur->is_young()) {
5454         double end_sec = os::elapsedTime();
5455         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5456         young_time_ms += elapsed_ms;
5457 
5458         start_sec = os::elapsedTime();
5459         non_young = true;
5460       }
5461     }
5462 
5463     rs_lengths += cur->rem_set()->occupied_locked();
5464 
5465     HeapRegion* next = cur->next_in_collection_set();
5466     assert(cur->in_collection_set(), "bad CS");
5467     cur->set_next_in_collection_set(NULL);
5468     clear_in_cset(cur);
5469 
5470     if (cur->is_young()) {
5471       int index = cur->young_index_in_cset();
5472       assert(index != -1, "invariant");
5473       assert((uint) index < policy->young_cset_region_length(), "invariant");
5474       size_t words_survived = surviving_young_words[index];
5475       cur->record_surv_words_in_group(words_survived);
5476 
5477       // At this point the we have 'popped' cur from the collection set
5478       // (linked via next_in_collection_set()) but it is still in the
5479       // young list (linked via next_young_region()). Clear the
5480       // _next_young_region field.
5481       cur->set_next_young_region(NULL);
5482     } else {
5483       int index = cur->young_index_in_cset();
5484       assert(index == -1, "invariant");
5485     }
5486 
5487     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5488             (!cur->is_young() && cur->young_index_in_cset() == -1),
5489             "invariant" );
5490 
5491     if (!cur->evacuation_failed()) {
5492       MemRegion used_mr = cur->used_region();
5493 
5494       // And the region is empty.
5495       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5496       pre_used += cur->used();
5497       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5498     } else {
5499       cur->uninstall_surv_rate_group();
5500       if (cur->is_young()) {
5501         cur->set_young_index_in_cset(-1);
5502       }
5503       cur->set_evacuation_failed(false);
5504       // The region is now considered to be old.
5505       cur->set_old();
5506       // Do some allocation statistics accounting. Regions that failed evacuation
5507       // are always made old, so there is no need to update anything in the young
5508       // gen statistics, but we need to update old gen statistics.
5509       size_t used_words = cur->marked_bytes() / HeapWordSize;
5510       _old_evac_stats.add_failure_used_and_waste(used_words, HeapRegion::GrainWords - used_words);
5511       _old_set.add(cur);
5512       evacuation_info.increment_collectionset_used_after(cur->used());
5513     }
5514     cur = next;
5515   }
5516 
5517   evacuation_info.set_regions_freed(local_free_list.length());
5518   policy->record_max_rs_lengths(rs_lengths);
5519   policy->cset_regions_freed();
5520 
5521   double end_sec = os::elapsedTime();
5522   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5523 
5524   if (non_young) {
5525     non_young_time_ms += elapsed_ms;
5526   } else {
5527     young_time_ms += elapsed_ms;
5528   }
5529 
5530   prepend_to_freelist(&local_free_list);
5531   decrement_summary_bytes(pre_used);
5532   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5533   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5534 }
5535 
5536 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5537  private:
5538   FreeRegionList* _free_region_list;
5539   HeapRegionSet* _proxy_set;
5540   HeapRegionSetCount _humongous_regions_removed;
5541   size_t _freed_bytes;
5542  public:
5543 
5544   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5545     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5546   }
5547 
5548   virtual bool doHeapRegion(HeapRegion* r) {
5549     if (!r->is_starts_humongous()) {
5550       return false;
5551     }
5552 
5553     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5554 
5555     oop obj = (oop)r->bottom();
5556     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5557 
5558     // The following checks whether the humongous object is live are sufficient.
5559     // The main additional check (in addition to having a reference from the roots
5560     // or the young gen) is whether the humongous object has a remembered set entry.
5561     //
5562     // A humongous object cannot be live if there is no remembered set for it
5563     // because:
5564     // - there can be no references from within humongous starts regions referencing
5565     // the object because we never allocate other objects into them.
5566     // (I.e. there are no intra-region references that may be missed by the
5567     // remembered set)
5568     // - as soon there is a remembered set entry to the humongous starts region
5569     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5570     // until the end of a concurrent mark.
5571     //
5572     // It is not required to check whether the object has been found dead by marking
5573     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5574     // all objects allocated during that time are considered live.
5575     // SATB marking is even more conservative than the remembered set.
5576     // So if at this point in the collection there is no remembered set entry,
5577     // nobody has a reference to it.
5578     // At the start of collection we flush all refinement logs, and remembered sets
5579     // are completely up-to-date wrt to references to the humongous object.
5580     //
5581     // Other implementation considerations:
5582     // - never consider object arrays at this time because they would pose
5583     // considerable effort for cleaning up the the remembered sets. This is
5584     // required because stale remembered sets might reference locations that
5585     // are currently allocated into.
5586     uint region_idx = r->hrm_index();
5587     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5588         !r->rem_set()->is_empty()) {
5589       log_trace(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5590                                region_idx,
5591                                (size_t)obj->size() * HeapWordSize,
5592                                p2i(r->bottom()),
5593                                r->rem_set()->occupied(),
5594                                r->rem_set()->strong_code_roots_list_length(),
5595                                next_bitmap->isMarked(r->bottom()),
5596                                g1h->is_humongous_reclaim_candidate(region_idx),
5597                                obj->is_typeArray()
5598                               );
5599       return false;
5600     }
5601 
5602     guarantee(obj->is_typeArray(),
5603               "Only eagerly reclaiming type arrays is supported, but the object "
5604               PTR_FORMAT " is not.", p2i(r->bottom()));
5605 
5606     log_trace(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5607                              region_idx,
5608                              (size_t)obj->size() * HeapWordSize,
5609                              p2i(r->bottom()),
5610                              r->rem_set()->occupied(),
5611                              r->rem_set()->strong_code_roots_list_length(),
5612                              next_bitmap->isMarked(r->bottom()),
5613                              g1h->is_humongous_reclaim_candidate(region_idx),
5614                              obj->is_typeArray()
5615                             );
5616 
5617     // Need to clear mark bit of the humongous object if already set.
5618     if (next_bitmap->isMarked(r->bottom())) {
5619       next_bitmap->clear(r->bottom());
5620     }
5621     do {
5622       HeapRegion* next = g1h->next_region_in_humongous(r);
5623       _freed_bytes += r->used();
5624       r->set_containing_set(NULL);
5625       _humongous_regions_removed.increment(1u, r->capacity());
5626       g1h->free_humongous_region(r, _free_region_list, false);
5627       r = next;
5628     } while (r != NULL);
5629 
5630     return false;
5631   }
5632 
5633   HeapRegionSetCount& humongous_free_count() {
5634     return _humongous_regions_removed;
5635   }
5636 
5637   size_t bytes_freed() const {
5638     return _freed_bytes;
5639   }
5640 
5641   size_t humongous_reclaimed() const {
5642     return _humongous_regions_removed.length();
5643   }
5644 };
5645 
5646 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5647   assert_at_safepoint(true);
5648 
5649   if (!G1EagerReclaimHumongousObjects ||
5650       (!_has_humongous_reclaim_candidates && !log_is_enabled(Trace, gc, humongous))) {
5651     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5652     return;
5653   }
5654 
5655   double start_time = os::elapsedTime();
5656 
5657   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5658 
5659   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5660   heap_region_iterate(&cl);
5661 
5662   HeapRegionSetCount empty_set;
5663   remove_from_old_sets(empty_set, cl.humongous_free_count());
5664 
5665   G1HRPrinter* hrp = hr_printer();
5666   if (hrp->is_active()) {
5667     FreeRegionListIterator iter(&local_cleanup_list);
5668     while (iter.more_available()) {
5669       HeapRegion* hr = iter.get_next();
5670       hrp->cleanup(hr);
5671     }
5672   }
5673 
5674   prepend_to_freelist(&local_cleanup_list);
5675   decrement_summary_bytes(cl.bytes_freed());
5676 
5677   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5678                                                                     cl.humongous_reclaimed());
5679 }
5680 
5681 // This routine is similar to the above but does not record
5682 // any policy statistics or update free lists; we are abandoning
5683 // the current incremental collection set in preparation of a
5684 // full collection. After the full GC we will start to build up
5685 // the incremental collection set again.
5686 // This is only called when we're doing a full collection
5687 // and is immediately followed by the tearing down of the young list.
5688 
5689 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5690   HeapRegion* cur = cs_head;
5691 
5692   while (cur != NULL) {
5693     HeapRegion* next = cur->next_in_collection_set();
5694     assert(cur->in_collection_set(), "bad CS");
5695     cur->set_next_in_collection_set(NULL);
5696     clear_in_cset(cur);
5697     cur->set_young_index_in_cset(-1);
5698     cur = next;
5699   }
5700 }
5701 
5702 void G1CollectedHeap::set_free_regions_coming() {
5703   log_develop(gc, freelist)("G1ConcRegionFreeing [cm thread] : "
5704                             "setting free regions coming");
5705 
5706   assert(!free_regions_coming(), "pre-condition");
5707   _free_regions_coming = true;
5708 }
5709 
5710 void G1CollectedHeap::reset_free_regions_coming() {
5711   assert(free_regions_coming(), "pre-condition");
5712 
5713   {
5714     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5715     _free_regions_coming = false;
5716     SecondaryFreeList_lock->notify_all();
5717   }
5718 
5719   log_develop(gc, freelist)("G1ConcRegionFreeing [cm thread] : "
5720                             "reset free regions coming");
5721 }
5722 
5723 void G1CollectedHeap::wait_while_free_regions_coming() {
5724   // Most of the time we won't have to wait, so let's do a quick test
5725   // first before we take the lock.
5726   if (!free_regions_coming()) {
5727     return;
5728   }
5729 
5730   log_develop(gc, freelist)("G1ConcRegionFreeing [other] : "
5731                             "waiting for free regions");
5732 
5733   {
5734     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5735     while (free_regions_coming()) {
5736       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5737     }
5738   }
5739 
5740   log_develop(gc, freelist)("G1ConcRegionFreeing [other] : "
5741                             "done waiting for free regions");
5742 }
5743 
5744 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5745   return _allocator->is_retained_old_region(hr);
5746 }
5747 
5748 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5749   _young_list->push_region(hr);
5750 }
5751 
5752 class NoYoungRegionsClosure: public HeapRegionClosure {
5753 private:
5754   bool _success;
5755 public:
5756   NoYoungRegionsClosure() : _success(true) { }
5757   bool doHeapRegion(HeapRegion* r) {
5758     if (r->is_young()) {
5759       log_info(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5760                            p2i(r->bottom()), p2i(r->end()));
5761       _success = false;
5762     }
5763     return false;
5764   }
5765   bool success() { return _success; }
5766 };
5767 
5768 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5769   bool ret = _young_list->check_list_empty(check_sample);
5770 
5771   if (check_heap) {
5772     NoYoungRegionsClosure closure;
5773     heap_region_iterate(&closure);
5774     ret = ret && closure.success();
5775   }
5776 
5777   return ret;
5778 }
5779 
5780 class TearDownRegionSetsClosure : public HeapRegionClosure {
5781 private:
5782   HeapRegionSet *_old_set;
5783 
5784 public:
5785   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5786 
5787   bool doHeapRegion(HeapRegion* r) {
5788     if (r->is_old()) {
5789       _old_set->remove(r);
5790     } else {
5791       // We ignore free regions, we'll empty the free list afterwards.
5792       // We ignore young regions, we'll empty the young list afterwards.
5793       // We ignore humongous regions, we're not tearing down the
5794       // humongous regions set.
5795       assert(r->is_free() || r->is_young() || r->is_humongous(),
5796              "it cannot be another type");
5797     }
5798     return false;
5799   }
5800 
5801   ~TearDownRegionSetsClosure() {
5802     assert(_old_set->is_empty(), "post-condition");
5803   }
5804 };
5805 
5806 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5807   assert_at_safepoint(true /* should_be_vm_thread */);
5808 
5809   if (!free_list_only) {
5810     TearDownRegionSetsClosure cl(&_old_set);
5811     heap_region_iterate(&cl);
5812 
5813     // Note that emptying the _young_list is postponed and instead done as
5814     // the first step when rebuilding the regions sets again. The reason for
5815     // this is that during a full GC string deduplication needs to know if
5816     // a collected region was young or old when the full GC was initiated.
5817   }
5818   _hrm.remove_all_free_regions();
5819 }
5820 
5821 void G1CollectedHeap::increase_used(size_t bytes) {
5822   _summary_bytes_used += bytes;
5823 }
5824 
5825 void G1CollectedHeap::decrease_used(size_t bytes) {
5826   assert(_summary_bytes_used >= bytes,
5827          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5828          _summary_bytes_used, bytes);
5829   _summary_bytes_used -= bytes;
5830 }
5831 
5832 void G1CollectedHeap::set_used(size_t bytes) {
5833   _summary_bytes_used = bytes;
5834 }
5835 
5836 class RebuildRegionSetsClosure : public HeapRegionClosure {
5837 private:
5838   bool            _free_list_only;
5839   HeapRegionSet*   _old_set;
5840   HeapRegionManager*   _hrm;
5841   size_t          _total_used;
5842 
5843 public:
5844   RebuildRegionSetsClosure(bool free_list_only,
5845                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5846     _free_list_only(free_list_only),
5847     _old_set(old_set), _hrm(hrm), _total_used(0) {
5848     assert(_hrm->num_free_regions() == 0, "pre-condition");
5849     if (!free_list_only) {
5850       assert(_old_set->is_empty(), "pre-condition");
5851     }
5852   }
5853 
5854   bool doHeapRegion(HeapRegion* r) {
5855     if (r->is_empty()) {
5856       // Add free regions to the free list
5857       r->set_free();
5858       r->set_allocation_context(AllocationContext::system());
5859       _hrm->insert_into_free_list(r);
5860     } else if (!_free_list_only) {
5861       assert(!r->is_young(), "we should not come across young regions");
5862 
5863       if (r->is_humongous()) {
5864         // We ignore humongous regions. We left the humongous set unchanged.
5865       } else {
5866         // Objects that were compacted would have ended up on regions
5867         // that were previously old or free.  Archive regions (which are
5868         // old) will not have been touched.
5869         assert(r->is_free() || r->is_old(), "invariant");
5870         // We now consider them old, so register as such. Leave
5871         // archive regions set that way, however, while still adding
5872         // them to the old set.
5873         if (!r->is_archive()) {
5874           r->set_old();
5875         }
5876         _old_set->add(r);
5877       }
5878       _total_used += r->used();
5879     }
5880 
5881     return false;
5882   }
5883 
5884   size_t total_used() {
5885     return _total_used;
5886   }
5887 };
5888 
5889 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5890   assert_at_safepoint(true /* should_be_vm_thread */);
5891 
5892   if (!free_list_only) {
5893     _young_list->empty_list();
5894   }
5895 
5896   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5897   heap_region_iterate(&cl);
5898 
5899   if (!free_list_only) {
5900     set_used(cl.total_used());
5901     if (_archive_allocator != NULL) {
5902       _archive_allocator->clear_used();
5903     }
5904   }
5905   assert(used_unlocked() == recalculate_used(),
5906          "inconsistent used_unlocked(), "
5907          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5908          used_unlocked(), recalculate_used());
5909 }
5910 
5911 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
5912   _refine_cte_cl->set_concurrent(concurrent);
5913 }
5914 
5915 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5916   HeapRegion* hr = heap_region_containing(p);
5917   return hr->is_in(p);
5918 }
5919 
5920 // Methods for the mutator alloc region
5921 
5922 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5923                                                       bool force) {
5924   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5925   assert(!force || g1_policy()->can_expand_young_list(),
5926          "if force is true we should be able to expand the young list");
5927   bool young_list_full = g1_policy()->is_young_list_full();
5928   if (force || !young_list_full) {
5929     HeapRegion* new_alloc_region = new_region(word_size,
5930                                               false /* is_old */,
5931                                               false /* do_expand */);
5932     if (new_alloc_region != NULL) {
5933       set_region_short_lived_locked(new_alloc_region);
5934       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
5935       check_bitmaps("Mutator Region Allocation", new_alloc_region);
5936       return new_alloc_region;
5937     }
5938   }
5939   return NULL;
5940 }
5941 
5942 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5943                                                   size_t allocated_bytes) {
5944   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5945   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5946 
5947   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
5948   increase_used(allocated_bytes);
5949   _hr_printer.retire(alloc_region);
5950   // We update the eden sizes here, when the region is retired,
5951   // instead of when it's allocated, since this is the point that its
5952   // used space has been recored in _summary_bytes_used.
5953   g1mm()->update_eden_size();
5954 }
5955 
5956 // Methods for the GC alloc regions
5957 
5958 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
5959                                                  uint count,
5960                                                  InCSetState dest) {
5961   assert(FreeList_lock->owned_by_self(), "pre-condition");
5962 
5963   if (count < g1_policy()->max_regions(dest)) {
5964     const bool is_survivor = (dest.is_young());
5965     HeapRegion* new_alloc_region = new_region(word_size,
5966                                               !is_survivor,
5967                                               true /* do_expand */);
5968     if (new_alloc_region != NULL) {
5969       // We really only need to do this for old regions given that we
5970       // should never scan survivors. But it doesn't hurt to do it
5971       // for survivors too.
5972       new_alloc_region->record_timestamp();
5973       if (is_survivor) {
5974         new_alloc_region->set_survivor();
5975         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
5976         check_bitmaps("Survivor Region Allocation", new_alloc_region);
5977       } else {
5978         new_alloc_region->set_old();
5979         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
5980         check_bitmaps("Old Region Allocation", new_alloc_region);
5981       }
5982       bool during_im = collector_state()->during_initial_mark_pause();
5983       new_alloc_region->note_start_of_copying(during_im);
5984       return new_alloc_region;
5985     }
5986   }
5987   return NULL;
5988 }
5989 
5990 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5991                                              size_t allocated_bytes,
5992                                              InCSetState dest) {
5993   bool during_im = collector_state()->during_initial_mark_pause();
5994   alloc_region->note_end_of_copying(during_im);
5995   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5996   if (dest.is_young()) {
5997     young_list()->add_survivor_region(alloc_region);
5998   } else {
5999     _old_set.add(alloc_region);
6000   }
6001   _hr_printer.retire(alloc_region);
6002 }
6003 
6004 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6005   bool expanded = false;
6006   uint index = _hrm.find_highest_free(&expanded);
6007 
6008   if (index != G1_NO_HRM_INDEX) {
6009     if (expanded) {
6010       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
6011                                 HeapRegion::GrainWords * HeapWordSize);
6012     }
6013     _hrm.allocate_free_regions_starting_at(index, 1);
6014     return region_at(index);
6015   }
6016   return NULL;
6017 }
6018 
6019 // Heap region set verification
6020 
6021 class VerifyRegionListsClosure : public HeapRegionClosure {
6022 private:
6023   HeapRegionSet*   _old_set;
6024   HeapRegionSet*   _humongous_set;
6025   HeapRegionManager*   _hrm;
6026 
6027 public:
6028   HeapRegionSetCount _old_count;
6029   HeapRegionSetCount _humongous_count;
6030   HeapRegionSetCount _free_count;
6031 
6032   VerifyRegionListsClosure(HeapRegionSet* old_set,
6033                            HeapRegionSet* humongous_set,
6034                            HeapRegionManager* hrm) :
6035     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6036     _old_count(), _humongous_count(), _free_count(){ }
6037 
6038   bool doHeapRegion(HeapRegion* hr) {
6039     if (hr->is_young()) {
6040       // TODO
6041     } else if (hr->is_humongous()) {
6042       assert(hr->containing_set() == _humongous_set, "Heap region %u is humongous but not in humongous set.", hr->hrm_index());
6043       _humongous_count.increment(1u, hr->capacity());
6044     } else if (hr->is_empty()) {
6045       assert(_hrm->is_free(hr), "Heap region %u is empty but not on the free list.", hr->hrm_index());
6046       _free_count.increment(1u, hr->capacity());
6047     } else if (hr->is_old()) {
6048       assert(hr->containing_set() == _old_set, "Heap region %u is old but not in the old set.", hr->hrm_index());
6049       _old_count.increment(1u, hr->capacity());
6050     } else {
6051       // There are no other valid region types. Check for one invalid
6052       // one we can identify: pinned without old or humongous set.
6053       assert(!hr->is_pinned(), "Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index());
6054       ShouldNotReachHere();
6055     }
6056     return false;
6057   }
6058 
6059   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6060     guarantee(old_set->length() == _old_count.length(), "Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length());
6061     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), "Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6062               old_set->total_capacity_bytes(), _old_count.capacity());
6063 
6064     guarantee(humongous_set->length() == _humongous_count.length(), "Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length());
6065     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), "Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6066               humongous_set->total_capacity_bytes(), _humongous_count.capacity());
6067 
6068     guarantee(free_list->num_free_regions() == _free_count.length(), "Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length());
6069     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), "Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6070               free_list->total_capacity_bytes(), _free_count.capacity());
6071   }
6072 };
6073 
6074 void G1CollectedHeap::verify_region_sets() {
6075   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6076 
6077   // First, check the explicit lists.
6078   _hrm.verify();
6079   {
6080     // Given that a concurrent operation might be adding regions to
6081     // the secondary free list we have to take the lock before
6082     // verifying it.
6083     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6084     _secondary_free_list.verify_list();
6085   }
6086 
6087   // If a concurrent region freeing operation is in progress it will
6088   // be difficult to correctly attributed any free regions we come
6089   // across to the correct free list given that they might belong to
6090   // one of several (free_list, secondary_free_list, any local lists,
6091   // etc.). So, if that's the case we will skip the rest of the
6092   // verification operation. Alternatively, waiting for the concurrent
6093   // operation to complete will have a non-trivial effect on the GC's
6094   // operation (no concurrent operation will last longer than the
6095   // interval between two calls to verification) and it might hide
6096   // any issues that we would like to catch during testing.
6097   if (free_regions_coming()) {
6098     return;
6099   }
6100 
6101   // Make sure we append the secondary_free_list on the free_list so
6102   // that all free regions we will come across can be safely
6103   // attributed to the free_list.
6104   append_secondary_free_list_if_not_empty_with_lock();
6105 
6106   // Finally, make sure that the region accounting in the lists is
6107   // consistent with what we see in the heap.
6108 
6109   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6110   heap_region_iterate(&cl);
6111   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6112 }
6113 
6114 // Optimized nmethod scanning
6115 
6116 class RegisterNMethodOopClosure: public OopClosure {
6117   G1CollectedHeap* _g1h;
6118   nmethod* _nm;
6119 
6120   template <class T> void do_oop_work(T* p) {
6121     T heap_oop = oopDesc::load_heap_oop(p);
6122     if (!oopDesc::is_null(heap_oop)) {
6123       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6124       HeapRegion* hr = _g1h->heap_region_containing(obj);
6125       assert(!hr->is_continues_humongous(),
6126              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6127              " starting at " HR_FORMAT,
6128              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6129 
6130       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6131       hr->add_strong_code_root_locked(_nm);
6132     }
6133   }
6134 
6135 public:
6136   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6137     _g1h(g1h), _nm(nm) {}
6138 
6139   void do_oop(oop* p)       { do_oop_work(p); }
6140   void do_oop(narrowOop* p) { do_oop_work(p); }
6141 };
6142 
6143 class UnregisterNMethodOopClosure: public OopClosure {
6144   G1CollectedHeap* _g1h;
6145   nmethod* _nm;
6146 
6147   template <class T> void do_oop_work(T* p) {
6148     T heap_oop = oopDesc::load_heap_oop(p);
6149     if (!oopDesc::is_null(heap_oop)) {
6150       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6151       HeapRegion* hr = _g1h->heap_region_containing(obj);
6152       assert(!hr->is_continues_humongous(),
6153              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6154              " starting at " HR_FORMAT,
6155              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
6156 
6157       hr->remove_strong_code_root(_nm);
6158     }
6159   }
6160 
6161 public:
6162   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6163     _g1h(g1h), _nm(nm) {}
6164 
6165   void do_oop(oop* p)       { do_oop_work(p); }
6166   void do_oop(narrowOop* p) { do_oop_work(p); }
6167 };
6168 
6169 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6170   CollectedHeap::register_nmethod(nm);
6171 
6172   guarantee(nm != NULL, "sanity");
6173   RegisterNMethodOopClosure reg_cl(this, nm);
6174   nm->oops_do(&reg_cl);
6175 }
6176 
6177 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6178   CollectedHeap::unregister_nmethod(nm);
6179 
6180   guarantee(nm != NULL, "sanity");
6181   UnregisterNMethodOopClosure reg_cl(this, nm);
6182   nm->oops_do(&reg_cl, true);
6183 }
6184 
6185 void G1CollectedHeap::purge_code_root_memory() {
6186   double purge_start = os::elapsedTime();
6187   G1CodeRootSet::purge();
6188   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6189   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6190 }
6191 
6192 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6193   G1CollectedHeap* _g1h;
6194 
6195 public:
6196   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6197     _g1h(g1h) {}
6198 
6199   void do_code_blob(CodeBlob* cb) {
6200     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6201     if (nm == NULL) {
6202       return;
6203     }
6204 
6205     if (ScavengeRootsInCode) {
6206       _g1h->register_nmethod(nm);
6207     }
6208   }
6209 };
6210 
6211 void G1CollectedHeap::rebuild_strong_code_roots() {
6212   RebuildStrongCodeRootClosure blob_cl(this);
6213   CodeCache::blobs_do(&blob_cl);
6214 }