< prev index next >

src/share/vm/gc/g1/g1CollectedHeap.cpp

Print this page




  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootClosures.hpp"
  48 #include "gc/g1/g1RootProcessor.hpp"
  49 #include "gc/g1/g1StringDedup.hpp"
  50 #include "gc/g1/g1YCTypes.hpp"
  51 #include "gc/g1/heapRegion.inline.hpp"
  52 #include "gc/g1/heapRegionRemSet.hpp"
  53 #include "gc/g1/heapRegionSet.inline.hpp"
  54 #include "gc/g1/suspendibleThreadSet.hpp"
  55 #include "gc/g1/vm_operations_g1.hpp"
  56 #include "gc/shared/gcHeapSummary.hpp"
  57 #include "gc/shared/gcId.hpp"
  58 #include "gc/shared/gcLocker.inline.hpp"
  59 #include "gc/shared/gcTimer.hpp"
  60 #include "gc/shared/gcTrace.hpp"
  61 #include "gc/shared/gcTraceTime.hpp"
  62 #include "gc/shared/generationSpec.hpp"
  63 #include "gc/shared/isGCActiveMark.hpp"
  64 #include "gc/shared/referenceProcessor.hpp"
  65 #include "gc/shared/taskqueue.inline.hpp"

  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)


 187   } while (hr != head);
 188   assert(hr != NULL, "invariant");
 189   hr->set_next_dirty_cards_region(NULL);
 190   return hr;
 191 }
 192 
 193 // Returns true if the reference points to an object that
 194 // can move in an incremental collection.
 195 bool G1CollectedHeap::is_scavengable(const void* p) {
 196   HeapRegion* hr = heap_region_containing(p);
 197   return !hr->is_pinned();
 198 }
 199 
 200 // Private methods.
 201 
 202 HeapRegion*
 203 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 204   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 205   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 206     if (!_secondary_free_list.is_empty()) {
 207       if (G1ConcRegionFreeingVerbose) {
 208         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 209                                "secondary_free_list has %u entries",
 210                                _secondary_free_list.length());
 211       }
 212       // It looks as if there are free regions available on the
 213       // secondary_free_list. Let's move them to the free_list and try
 214       // again to allocate from it.
 215       append_secondary_free_list();
 216 
 217       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 218              "empty we should have moved at least one entry to the free_list");
 219       HeapRegion* res = _hrm.allocate_free_region(is_old);
 220       if (G1ConcRegionFreeingVerbose) {
 221         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 222                                "allocated " HR_FORMAT " from secondary_free_list",
 223                                HR_FORMAT_PARAMS(res));
 224       }
 225       return res;
 226     }
 227 
 228     // Wait here until we get notified either when (a) there are no
 229     // more free regions coming or (b) some regions have been moved on
 230     // the secondary_free_list.
 231     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 232   }
 233 
 234   if (G1ConcRegionFreeingVerbose) {
 235     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 236                            "could not allocate from secondary_free_list");
 237   }
 238   return NULL;
 239 }
 240 
 241 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 242   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 243          "the only time we use this to allocate a humongous region is "
 244          "when we are allocating a single humongous region");
 245 
 246   HeapRegion* res;
 247   if (G1StressConcRegionFreeing) {
 248     if (!_secondary_free_list.is_empty()) {
 249       if (G1ConcRegionFreeingVerbose) {
 250         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 251                                "forced to look at the secondary_free_list");
 252       }
 253       res = new_region_try_secondary_free_list(is_old);
 254       if (res != NULL) {
 255         return res;
 256       }
 257     }
 258   }
 259 
 260   res = _hrm.allocate_free_region(is_old);
 261 
 262   if (res == NULL) {
 263     if (G1ConcRegionFreeingVerbose) {
 264       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 265                              "res == NULL, trying the secondary_free_list");
 266     }
 267     res = new_region_try_secondary_free_list(is_old);
 268   }
 269   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 270     // Currently, only attempts to allocate GC alloc regions set
 271     // do_expand to true. So, we should only reach here during a
 272     // safepoint. If this assumption changes we might have to
 273     // reconsider the use of _expand_heap_after_alloc_failure.
 274     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 275 
 276     ergo_verbose1(ErgoHeapSizing,
 277                   "attempt heap expansion",
 278                   ergo_format_reason("region allocation request failed")
 279                   ergo_format_byte("allocation request"),
 280                   word_size * HeapWordSize);

 281     if (expand(word_size * HeapWordSize)) {
 282       // Given that expand() succeeded in expanding the heap, and we
 283       // always expand the heap by an amount aligned to the heap
 284       // region size, the free list should in theory not be empty.
 285       // In either case allocate_free_region() will check for NULL.
 286       res = _hrm.allocate_free_region(is_old);
 287     } else {
 288       _expand_heap_after_alloc_failure = false;
 289     }
 290   }
 291   return res;
 292 }
 293 
 294 HeapWord*
 295 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 296                                                            uint num_regions,
 297                                                            size_t word_size,
 298                                                            AllocationContext_t context) {
 299   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 300   assert(is_humongous(word_size), "word_size should be humongous");


 431     // potentially waits for regions from the secondary free list.
 432     wait_while_free_regions_coming();
 433     append_secondary_free_list_if_not_empty_with_lock();
 434 
 435     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 436     // are lucky enough to find some.
 437     first = _hrm.find_contiguous_only_empty(obj_regions);
 438     if (first != G1_NO_HRM_INDEX) {
 439       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 440     }
 441   }
 442 
 443   if (first == G1_NO_HRM_INDEX) {
 444     // Policy: We could not find enough regions for the humongous object in the
 445     // free list. Look through the heap to find a mix of free and uncommitted regions.
 446     // If so, try expansion.
 447     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 448     if (first != G1_NO_HRM_INDEX) {
 449       // We found something. Make sure these regions are committed, i.e. expand
 450       // the heap. Alternatively we could do a defragmentation GC.
 451       ergo_verbose1(ErgoHeapSizing,
 452                     "attempt heap expansion",
 453                     ergo_format_reason("humongous allocation request failed")
 454                     ergo_format_byte("allocation request"),
 455                     word_size * HeapWordSize);
 456 

 457       _hrm.expand_at(first, obj_regions);
 458       g1_policy()->record_new_heap_size(num_regions());
 459 
 460 #ifdef ASSERT
 461       for (uint i = first; i < first + obj_regions; ++i) {
 462         HeapRegion* hr = region_at(i);
 463         assert(hr->is_free(), "sanity");
 464         assert(hr->is_empty(), "sanity");
 465         assert(is_on_master_free_list(hr), "sanity");
 466       }
 467 #endif
 468       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 469     } else {
 470       // Policy: Potentially trigger a defragmentation GC.
 471     }
 472   }
 473 
 474   HeapWord* result = NULL;
 475   if (first != G1_NO_HRM_INDEX) {
 476     result = humongous_obj_allocate_initialize_regions(first, obj_regions,


 754     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 755     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 756       start_address = start_region->end();
 757       if (start_address > last_address) {
 758         increase_used(word_size * HeapWordSize);
 759         start_region->set_top(last_address + 1);
 760         continue;
 761       }
 762       start_region->set_top(start_address);
 763       curr_range = MemRegion(start_address, last_address + 1);
 764       start_region = _hrm.addr_to_region(start_address);
 765     }
 766 
 767     // Perform the actual region allocation, exiting if it fails.
 768     // Then note how much new space we have allocated.
 769     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 770       return false;
 771     }
 772     increase_used(word_size * HeapWordSize);
 773     if (commits != 0) {
 774       ergo_verbose1(ErgoHeapSizing,
 775                     "attempt heap expansion",
 776                     ergo_format_reason("allocate archive regions")
 777                     ergo_format_byte("total size"),
 778                     HeapRegion::GrainWords * HeapWordSize * commits);

 779     }
 780 
 781     // Mark each G1 region touched by the range as archive, add it to the old set,
 782     // and set the allocation context and top.
 783     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 784     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 785     prev_last_region = last_region;
 786 
 787     while (curr_region != NULL) {
 788       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 789              "Region already in use (index %u)", curr_region->hrm_index());
 790       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 791       curr_region->set_allocation_context(AllocationContext::system());
 792       curr_region->set_archive();
 793       _old_set.add(curr_region);
 794       if (curr_region != last_region) {
 795         curr_region->set_top(curr_region->end());
 796         curr_region = _hrm.next_region_in_heap(curr_region);
 797       } else {
 798         curr_region->set_top(last_address + 1);


 939       guarantee(curr_region->is_archive(),
 940                 "Expected archive region at index %u", curr_region->hrm_index());
 941       uint curr_index = curr_region->hrm_index();
 942       _old_set.remove(curr_region);
 943       curr_region->set_free();
 944       curr_region->set_top(curr_region->bottom());
 945       if (curr_region != last_region) {
 946         curr_region = _hrm.next_region_in_heap(curr_region);
 947       } else {
 948         curr_region = NULL;
 949       }
 950       _hrm.shrink_at(curr_index, 1);
 951       uncommitted_regions++;
 952     }
 953 
 954     // Notify mark-sweep that this is no longer an archive range.
 955     G1MarkSweep::set_range_archive(ranges[i], false);
 956   }
 957 
 958   if (uncommitted_regions != 0) {
 959     ergo_verbose1(ErgoHeapSizing,
 960                   "attempt heap shrinking",
 961                   ergo_format_reason("uncommitted archive regions")
 962                   ergo_format_byte("total size"),
 963                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 964   }
 965   decrease_used(size_used);
 966 }
 967 
 968 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 969                                                         uint* gc_count_before_ret,
 970                                                         uint* gclocker_retry_count_ret) {
 971   // The structure of this method has a lot of similarities to
 972   // attempt_allocation_slow(). The reason these two were not merged
 973   // into a single one is that such a method would require several "if
 974   // allocation is not humongous do this, otherwise do that"
 975   // conditional paths which would obscure its flow. In fact, an early
 976   // version of this code did use a unified method which was harder to
 977   // follow and, as a result, it had subtle bugs that were hard to
 978   // track down. So keeping these two methods separate allows each to
 979   // be more readable. It will be good to keep these two in sync as
 980   // much as possible.
 981 
 982   assert_heap_not_locked_and_not_at_safepoint();


1180       // We only generate output for non-empty regions.
1181     } else if (hr->is_starts_humongous()) {
1182       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1183     } else if (hr->is_continues_humongous()) {
1184       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1185     } else if (hr->is_archive()) {
1186       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1187     } else if (hr->is_old()) {
1188       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1189     } else {
1190       ShouldNotReachHere();
1191     }
1192     return false;
1193   }
1194 
1195   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1196     : _hr_printer(hr_printer) { }
1197 };
1198 
1199 void G1CollectedHeap::print_hrm_post_compaction() {

1200   PostCompactionPrinterClosure cl(hr_printer());
1201   heap_region_iterate(&cl);


1202 }
1203 
1204 bool G1CollectedHeap::do_collection(bool explicit_gc,
1205                                     bool clear_all_soft_refs,
1206                                     size_t word_size) {
1207   assert_at_safepoint(true /* should_be_vm_thread */);
1208 
1209   if (GC_locker::check_active_before_gc()) {
1210     return false;
1211   }
1212 
1213   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1214   gc_timer->register_gc_start();
1215 
1216   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1217   GCIdMark gc_id_mark;
1218   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1219 
1220   SvcGCMarker sgcm(SvcGCMarker::FULL);
1221   ResourceMark rm;
1222 
1223   G1Log::update_level();
1224   print_heap_before_gc();
1225   trace_heap_before_gc(gc_tracer);
1226 
1227   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1228 
1229   verify_region_sets_optional();
1230 
1231   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1232                            collector_policy()->should_clear_all_soft_refs();
1233 
1234   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1235 
1236   {
1237     IsGCActiveMark x;
1238 
1239     // Timing
1240     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1241     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1242 
1243     {
1244       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1245       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1246       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1247 
1248       g1_policy()->record_full_collection_start();
1249 
1250       // Note: When we have a more flexible GC logging framework that
1251       // allows us to add optional attributes to a GC log record we
1252       // could consider timing and reporting how long we wait in the
1253       // following two methods.
1254       wait_while_free_regions_coming();
1255       // If we start the compaction before the CM threads finish
1256       // scanning the root regions we might trip them over as we'll
1257       // be moving objects / updating references. So let's wait until
1258       // they are done. By telling them to abort, they should complete
1259       // early.
1260       _cm->root_regions()->abort();
1261       _cm->root_regions()->wait_until_scan_finished();
1262       append_secondary_free_list_if_not_empty_with_lock();
1263 
1264       gc_prologue(true);


1275 #if defined(COMPILER2) || INCLUDE_JVMCI
1276       DerivedPointerTable::clear();
1277 #endif
1278 
1279       // Disable discovery and empty the discovered lists
1280       // for the CM ref processor.
1281       ref_processor_cm()->disable_discovery();
1282       ref_processor_cm()->abandon_partial_discovery();
1283       ref_processor_cm()->verify_no_references_recorded();
1284 
1285       // Abandon current iterations of concurrent marking and concurrent
1286       // refinement, if any are in progress. We have to do this before
1287       // wait_until_scan_finished() below.
1288       concurrent_mark()->abort();
1289 
1290       // Make sure we'll choose a new allocation region afterwards.
1291       _allocator->release_mutator_alloc_region();
1292       _allocator->abandon_gc_alloc_regions();
1293       g1_rem_set()->cleanupHRRS();
1294 
1295       // We should call this after we retire any currently active alloc
1296       // regions so that all the ALLOC / RETIRE events are generated
1297       // before the start GC event.
1298       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1299 
1300       // We may have added regions to the current incremental collection
1301       // set between the last GC or pause and now. We need to clear the
1302       // incremental collection set and then start rebuilding it afresh
1303       // after this full GC.
1304       abandon_collection_set(g1_policy()->inc_cset_head());
1305       g1_policy()->clear_incremental_cset();
1306       g1_policy()->stop_incremental_cset_building();
1307 
1308       tear_down_region_sets(false /* free_list_only */);
1309       collector_state()->set_gcs_are_young(true);
1310 
1311       // See the comments in g1CollectedHeap.hpp and
1312       // G1CollectedHeap::ref_processing_init() about
1313       // how reference processing currently works in G1.
1314 
1315       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1316       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1317 
1318       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1319       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);


1347       ClassLoaderDataGraph::purge();
1348       MetaspaceAux::verify_metrics();
1349 
1350       // Note: since we've just done a full GC, concurrent
1351       // marking is no longer active. Therefore we need not
1352       // re-enable reference discovery for the CM ref processor.
1353       // That will be done at the start of the next marking cycle.
1354       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1355       ref_processor_cm()->verify_no_references_recorded();
1356 
1357       reset_gc_time_stamp();
1358       // Since everything potentially moved, we will clear all remembered
1359       // sets, and clear all cards.  Later we will rebuild remembered
1360       // sets. We will also reset the GC time stamps of the regions.
1361       clear_rsets_post_compaction();
1362       check_gc_time_stamps();
1363 
1364       // Resize the heap if necessary.
1365       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1366 
1367       if (_hr_printer.is_active()) {
1368         // We should do this after we potentially resize the heap so
1369         // that all the COMMIT / UNCOMMIT events are generated before
1370         // the end GC event.
1371 
1372         print_hrm_post_compaction();
1373         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1374       }
1375 
1376       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1377       if (hot_card_cache->use_cache()) {
1378         hot_card_cache->reset_card_counts();
1379         hot_card_cache->reset_hot_cache();
1380       }
1381 
1382       // Rebuild remembered sets of all regions.
1383       uint n_workers =
1384         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1385                                                 workers()->active_workers(),
1386                                                 Threads::number_of_non_daemon_threads());
1387       workers()->set_active_workers(n_workers);
1388 
1389       ParRebuildRSTask rebuild_rs_task(this);
1390       workers()->run_task(&rebuild_rs_task);
1391 
1392       // Rebuild the strong code root lists for each region
1393       rebuild_strong_code_roots();
1394 


1423       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1424       // objects marked during a full GC against the previous bitmap.
1425       // But we need to clear it before calling check_bitmaps below since
1426       // the full GC has compacted objects and updated TAMS but not updated
1427       // the prev bitmap.
1428       if (G1VerifyBitmaps) {
1429         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1430       }
1431       check_bitmaps("Full GC End");
1432 
1433       // Start a new incremental collection set for the next pause
1434       assert(g1_policy()->collection_set() == NULL, "must be");
1435       g1_policy()->start_incremental_cset_building();
1436 
1437       clear_cset_fast_test();
1438 
1439       _allocator->init_mutator_alloc_region();
1440 
1441       g1_policy()->record_full_collection_end();
1442 
1443       if (G1Log::fine()) {
1444         g1_policy()->print_heap_transition();
1445       }
1446 
1447       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1448       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1449       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1450       // before any GC notifications are raised.
1451       g1mm()->update_sizes();
1452 
1453       gc_epilogue(true);
1454     }
1455 
1456     if (G1Log::finer()) {
1457       g1_policy()->print_detailed_heap_transition(true /* full */);
1458     }
1459 
1460     print_heap_after_gc();
1461     trace_heap_after_gc(gc_tracer);
1462 
1463     post_full_gc_dump(gc_timer);
1464 
1465     gc_timer->register_gc_end();
1466     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1467   }
1468 
1469   return true;
1470 }
1471 
1472 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1473   // do_collection() will return whether it succeeded in performing
1474   // the GC. Currently, there is no facility on the
1475   // do_full_collection() API to notify the caller than the collection
1476   // did not succeed (e.g., because it was locked out by the GC
1477   // locker). So, right now, we'll ignore the return value.
1478   bool dummy = do_collection(true,                /* explicit_gc */


1523 
1524   // This assert only makes sense here, before we adjust them
1525   // with respect to the min and max heap size.
1526   assert(minimum_desired_capacity <= maximum_desired_capacity,
1527          "minimum_desired_capacity = " SIZE_FORMAT ", "
1528          "maximum_desired_capacity = " SIZE_FORMAT,
1529          minimum_desired_capacity, maximum_desired_capacity);
1530 
1531   // Should not be greater than the heap max size. No need to adjust
1532   // it with respect to the heap min size as it's a lower bound (i.e.,
1533   // we'll try to make the capacity larger than it, not smaller).
1534   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1535   // Should not be less than the heap min size. No need to adjust it
1536   // with respect to the heap max size as it's an upper bound (i.e.,
1537   // we'll try to make the capacity smaller than it, not greater).
1538   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1539 
1540   if (capacity_after_gc < minimum_desired_capacity) {
1541     // Don't expand unless it's significant
1542     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1543     ergo_verbose4(ErgoHeapSizing,
1544                   "attempt heap expansion",
1545                   ergo_format_reason("capacity lower than "
1546                                      "min desired capacity after Full GC")
1547                   ergo_format_byte("capacity")
1548                   ergo_format_byte("occupancy")
1549                   ergo_format_byte_perc("min desired capacity"),
1550                   capacity_after_gc, used_after_gc,
1551                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1552     expand(expand_bytes);
1553 
1554     // No expansion, now see if we want to shrink
1555   } else if (capacity_after_gc > maximum_desired_capacity) {
1556     // Capacity too large, compute shrinking size
1557     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1558     ergo_verbose4(ErgoHeapSizing,
1559                   "attempt heap shrinking",
1560                   ergo_format_reason("capacity higher than "
1561                                      "max desired capacity after Full GC")
1562                   ergo_format_byte("capacity")
1563                   ergo_format_byte("occupancy")
1564                   ergo_format_byte_perc("max desired capacity"),
1565                   capacity_after_gc, used_after_gc,
1566                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1567     shrink(shrink_bytes);
1568   }
1569 }
1570 
1571 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1572                                                             AllocationContext_t context,
1573                                                             bool do_gc,
1574                                                             bool clear_all_soft_refs,
1575                                                             bool expect_null_mutator_alloc_region,
1576                                                             bool* gc_succeeded) {
1577   *gc_succeeded = true;
1578   // Let's attempt the allocation first.
1579   HeapWord* result =
1580     attempt_allocation_at_safepoint(word_size,
1581                                     context,
1582                                     expect_null_mutator_alloc_region);
1583   if (result != NULL) {
1584     assert(*gc_succeeded, "sanity");
1585     return result;
1586   }


1653 
1654   // What else?  We might try synchronous finalization later.  If the total
1655   // space available is large enough for the allocation, then a more
1656   // complete compaction phase than we've tried so far might be
1657   // appropriate.
1658   assert(*succeeded, "sanity");
1659   return NULL;
1660 }
1661 
1662 // Attempting to expand the heap sufficiently
1663 // to support an allocation of the given "word_size".  If
1664 // successful, perform the allocation and return the address of the
1665 // allocated block, or else "NULL".
1666 
1667 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1668   assert_at_safepoint(true /* should_be_vm_thread */);
1669 
1670   verify_region_sets_optional();
1671 
1672   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1673   ergo_verbose1(ErgoHeapSizing,
1674                 "attempt heap expansion",
1675                 ergo_format_reason("allocation request failed")
1676                 ergo_format_byte("allocation request"),
1677                 word_size * HeapWordSize);


1678   if (expand(expand_bytes)) {
1679     _hrm.verify_optional();
1680     verify_region_sets_optional();
1681     return attempt_allocation_at_safepoint(word_size,
1682                                            context,
1683                                            false /* expect_null_mutator_alloc_region */);
1684   }
1685   return NULL;
1686 }
1687 
1688 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1689   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1690   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1691                                        HeapRegion::GrainBytes);
1692   ergo_verbose2(ErgoHeapSizing,
1693                 "expand the heap",
1694                 ergo_format_byte("requested expansion amount")
1695                 ergo_format_byte("attempted expansion amount"),
1696                 expand_bytes, aligned_expand_bytes);
1697 
1698   if (is_maximal_no_gc()) {
1699     ergo_verbose0(ErgoHeapSizing,
1700                       "did not expand the heap",
1701                       ergo_format_reason("heap already fully expanded"));
1702     return false;
1703   }
1704 
1705   double expand_heap_start_time_sec = os::elapsedTime();
1706   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1707   assert(regions_to_expand > 0, "Must expand by at least one region");
1708 
1709   uint expanded_by = _hrm.expand_by(regions_to_expand);
1710   if (expand_time_ms != NULL) {
1711     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1712   }
1713 
1714   if (expanded_by > 0) {
1715     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1716     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1717     g1_policy()->record_new_heap_size(num_regions());
1718   } else {
1719     ergo_verbose0(ErgoHeapSizing,
1720                   "did not expand the heap",
1721                   ergo_format_reason("heap expansion operation failed"));
1722     // The expansion of the virtual storage space was unsuccessful.
1723     // Let's see if it was because we ran out of swap.
1724     if (G1ExitOnExpansionFailure &&
1725         _hrm.available() >= regions_to_expand) {
1726       // We had head room...
1727       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1728     }
1729   }
1730   return regions_to_expand > 0;
1731 }
1732 
1733 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1734   size_t aligned_shrink_bytes =
1735     ReservedSpace::page_align_size_down(shrink_bytes);
1736   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1737                                          HeapRegion::GrainBytes);
1738   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1739 
1740   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1741   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1742 
1743   ergo_verbose3(ErgoHeapSizing,
1744                 "shrink the heap",
1745                 ergo_format_byte("requested shrinking amount")
1746                 ergo_format_byte("aligned shrinking amount")
1747                 ergo_format_byte("attempted shrinking amount"),
1748                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1749   if (num_regions_removed > 0) {
1750     g1_policy()->record_new_heap_size(num_regions());
1751   } else {
1752     ergo_verbose0(ErgoHeapSizing,
1753                   "did not shrink the heap",
1754                   ergo_format_reason("heap shrinking operation failed"));
1755   }
1756 }
1757 
1758 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1759   verify_region_sets_optional();
1760 
1761   // We should only reach here at the end of a Full GC which means we
1762   // should not not be holding to any GC alloc regions. The method
1763   // below will make sure of that and do any remaining clean up.
1764   _allocator->abandon_gc_alloc_regions();
1765 
1766   // Instead of tearing down / rebuilding the free lists here, we
1767   // could instead use the remove_all_pending() method on free_list to
1768   // remove only the ones that we need to remove.
1769   tear_down_region_sets(true /* free_list_only */);
1770   shrink_helper(shrink_bytes);
1771   rebuild_region_sets(true /* free_list_only */);
1772 
1773   _hrm.verify_optional();
1774   verify_region_sets_optional();


1846   // Initialize the G1EvacuationFailureALot counters and flags.
1847   NOT_PRODUCT(reset_evacuation_should_fail();)
1848 
1849   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1850 }
1851 
1852 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1853                                                                  size_t size,
1854                                                                  size_t translation_factor) {
1855   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1856   // Allocate a new reserved space, preferring to use large pages.
1857   ReservedSpace rs(size, preferred_page_size);
1858   G1RegionToSpaceMapper* result  =
1859     G1RegionToSpaceMapper::create_mapper(rs,
1860                                          size,
1861                                          rs.alignment(),
1862                                          HeapRegion::GrainBytes,
1863                                          translation_factor,
1864                                          mtGC);
1865   if (TracePageSizes) {
1866     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1867                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1868   }
1869   return result;
1870 }
1871 
1872 jint G1CollectedHeap::initialize() {
1873   CollectedHeap::pre_initialize();
1874   os::enable_vtime();
1875 
1876   G1Log::init();
1877 
1878   // Necessary to satisfy locking discipline assertions.
1879 
1880   MutexLocker x(Heap_lock);
1881 
1882   // We have to initialize the printer before committing the heap, as
1883   // it will be used then.
1884   _hr_printer.set_active(G1PrintHeapRegions);
1885 
1886   // While there are no constraints in the GC code that HeapWordSize
1887   // be any particular value, there are multiple other areas in the
1888   // system which believe this to be true (e.g. oop->object_size in some
1889   // cases incorrectly returns the size in wordSize units rather than
1890   // HeapWordSize).
1891   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1892 
1893   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1894   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1895   size_t heap_alignment = collector_policy()->heap_alignment();
1896 
1897   // Ensure that the sizes are properly aligned.
1898   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1899   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1900   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1901 
1902   _refine_cte_cl = new RefineCardTableEntryClosure();
1903 
1904   jint ecode = JNI_OK;
1905   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);


2058   G1AllocRegion::setup(this, dummy_region);
2059 
2060   _allocator->init_mutator_alloc_region();
2061 
2062   // Do create of the monitoring and management support so that
2063   // values in the heap have been properly initialized.
2064   _g1mm = new G1MonitoringSupport(this);
2065 
2066   G1StringDedup::initialize();
2067 
2068   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2069   for (uint i = 0; i < ParallelGCThreads; i++) {
2070     new (&_preserved_objs[i]) OopAndMarkOopStack();
2071   }
2072 
2073   return JNI_OK;
2074 }
2075 
2076 void G1CollectedHeap::stop() {
2077   // Stop all concurrent threads. We do this to make sure these threads
2078   // do not continue to execute and access resources (e.g. gclog_or_tty)
2079   // that are destroyed during shutdown.
2080   _cg1r->stop();
2081   _cmThread->stop();
2082   if (G1StringDedup::is_enabled()) {
2083     G1StringDedup::stop();
2084   }
2085 }
2086 
2087 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2088   return HeapRegion::max_region_size();
2089 }
2090 
2091 void G1CollectedHeap::post_initialize() {
2092   CollectedHeap::post_initialize();
2093   ref_processing_init();
2094 }
2095 
2096 void G1CollectedHeap::ref_processing_init() {
2097   // Reference processing in G1 currently works as follows:
2098   //


2175 }
2176 
2177 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2178   hr->reset_gc_time_stamp();
2179 }
2180 
2181 #ifndef PRODUCT
2182 
2183 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2184 private:
2185   unsigned _gc_time_stamp;
2186   bool _failures;
2187 
2188 public:
2189   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2190     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2191 
2192   virtual bool doHeapRegion(HeapRegion* hr) {
2193     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2194     if (_gc_time_stamp != region_gc_time_stamp) {
2195       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2196                              "expected %d", HR_FORMAT_PARAMS(hr),
2197                              region_gc_time_stamp, _gc_time_stamp);
2198       _failures = true;
2199     }
2200     return false;
2201   }
2202 
2203   bool failures() { return _failures; }
2204 };
2205 
2206 void G1CollectedHeap::check_gc_time_stamps() {
2207   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2208   heap_region_iterate(&cl);
2209   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2210 }
2211 #endif // PRODUCT
2212 
2213 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2214   _cg1r->hot_card_cache()->drain(cl, worker_i);
2215 }
2216 


2760 private:
2761   G1CollectedHeap* _g1h;
2762   VerifyOption     _vo;
2763   bool             _failures;
2764 public:
2765   // _vo == UsePrevMarking -> use "prev" marking information,
2766   // _vo == UseNextMarking -> use "next" marking information,
2767   // _vo == UseMarkWord    -> use mark word from object header.
2768   VerifyRootsClosure(VerifyOption vo) :
2769     _g1h(G1CollectedHeap::heap()),
2770     _vo(vo),
2771     _failures(false) { }
2772 
2773   bool failures() { return _failures; }
2774 
2775   template <class T> void do_oop_nv(T* p) {
2776     T heap_oop = oopDesc::load_heap_oop(p);
2777     if (!oopDesc::is_null(heap_oop)) {
2778       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2779       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2780         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2781                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2782         if (_vo == VerifyOption_G1UseMarkWord) {
2783           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2784         }
2785         obj->print_on(gclog_or_tty);

2786         _failures = true;
2787       }
2788     }
2789   }
2790 
2791   void do_oop(oop* p)       { do_oop_nv(p); }
2792   void do_oop(narrowOop* p) { do_oop_nv(p); }
2793 };
2794 
2795 class G1VerifyCodeRootOopClosure: public OopClosure {
2796   G1CollectedHeap* _g1h;
2797   OopClosure* _root_cl;
2798   nmethod* _nm;
2799   VerifyOption _vo;
2800   bool _failures;
2801 
2802   template <class T> void do_oop_work(T* p) {
2803     // First verify that this root is live
2804     _root_cl->do_oop(p);
2805 


2810 
2811     // Don't check the code roots during marking verification in a full GC
2812     if (_vo == VerifyOption_G1UseMarkWord) {
2813       return;
2814     }
2815 
2816     // Now verify that the current nmethod (which contains p) is
2817     // in the code root list of the heap region containing the
2818     // object referenced by p.
2819 
2820     T heap_oop = oopDesc::load_heap_oop(p);
2821     if (!oopDesc::is_null(heap_oop)) {
2822       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2823 
2824       // Now fetch the region containing the object
2825       HeapRegion* hr = _g1h->heap_region_containing(obj);
2826       HeapRegionRemSet* hrrs = hr->rem_set();
2827       // Verify that the strong code root list for this region
2828       // contains the nmethod
2829       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2830         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2831                                "from nmethod " PTR_FORMAT " not in strong "
2832                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2833                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2834         _failures = true;
2835       }
2836     }
2837   }
2838 
2839 public:
2840   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2841     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2842 
2843   void do_oop(oop* p) { do_oop_work(p); }
2844   void do_oop(narrowOop* p) { do_oop_work(p); }
2845 
2846   void set_nmethod(nmethod* nm) { _nm = nm; }
2847   bool failures() { return _failures; }
2848 };
2849 
2850 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {


2991   }
2992 
2993   bool doHeapRegion(HeapRegion* r) {
2994     // For archive regions, verify there are no heap pointers to
2995     // non-pinned regions. For all others, verify liveness info.
2996     if (r->is_archive()) {
2997       VerifyArchiveRegionClosure verify_oop_pointers(r);
2998       r->object_iterate(&verify_oop_pointers);
2999       return true;
3000     }
3001     if (!r->is_continues_humongous()) {
3002       bool failures = false;
3003       r->verify(_vo, &failures);
3004       if (failures) {
3005         _failures = true;
3006       } else if (!r->is_starts_humongous()) {
3007         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3008         r->object_iterate(&not_dead_yet_cl);
3009         if (_vo != VerifyOption_G1UseNextMarking) {
3010           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3011             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3012                                    "max_live_bytes " SIZE_FORMAT " "
3013                                    "< calculated " SIZE_FORMAT,
3014                                    p2i(r->bottom()), p2i(r->end()),
3015                                    r->max_live_bytes(),
3016                                  not_dead_yet_cl.live_bytes());
3017             _failures = true;
3018           }
3019         } else {
3020           // When vo == UseNextMarking we cannot currently do a sanity
3021           // check on the live bytes as the calculation has not been
3022           // finalized yet.
3023         }
3024       }
3025     }
3026     return false; // stop the region iteration if we hit a failure
3027   }
3028 };
3029 
3030 // This is the task used for parallel verification of the heap regions
3031 
3032 class G1ParVerifyTask: public AbstractGangTask {
3033 private:
3034   G1CollectedHeap*  _g1h;
3035   VerifyOption      _vo;
3036   bool              _failures;


3044       AbstractGangTask("Parallel verify task"),
3045       _g1h(g1h),
3046       _vo(vo),
3047       _failures(false),
3048       _hrclaimer(g1h->workers()->active_workers()) {}
3049 
3050   bool failures() {
3051     return _failures;
3052   }
3053 
3054   void work(uint worker_id) {
3055     HandleMark hm;
3056     VerifyRegionClosure blk(true, _vo);
3057     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3058     if (blk.failures()) {
3059       _failures = true;
3060     }
3061   }
3062 };
3063 
3064 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3065   if (SafepointSynchronize::is_at_safepoint()) {



3066     assert(Thread::current()->is_VM_thread(),
3067            "Expected to be executed serially by the VM thread at this point");
3068 
3069     if (!silent) { gclog_or_tty->print("Roots "); }
3070     VerifyRootsClosure rootsCl(vo);
3071     VerifyKlassClosure klassCl(this, &rootsCl);
3072     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3073 
3074     // We apply the relevant closures to all the oops in the
3075     // system dictionary, class loader data graph, the string table
3076     // and the nmethods in the code cache.
3077     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3078     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3079 
3080     {
3081       G1RootProcessor root_processor(this, 1);
3082       root_processor.process_all_roots(&rootsCl,
3083                                        &cldCl,
3084                                        &blobsCl);
3085     }
3086 
3087     bool failures = rootsCl.failures() || codeRootsCl.failures();
3088 
3089     if (vo != VerifyOption_G1UseMarkWord) {
3090       // If we're verifying during a full GC then the region sets
3091       // will have been torn down at the start of the GC. Therefore
3092       // verifying the region sets will fail. So we only verify
3093       // the region sets when not in a full GC.
3094       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3095       verify_region_sets();
3096     }
3097 
3098     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3099     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3100 
3101       G1ParVerifyTask task(this, vo);
3102       workers()->run_task(&task);
3103       if (task.failures()) {
3104         failures = true;
3105       }
3106 
3107     } else {
3108       VerifyRegionClosure blk(false, vo);
3109       heap_region_iterate(&blk);
3110       if (blk.failures()) {
3111         failures = true;
3112       }
3113     }
3114 
3115     if (G1StringDedup::is_enabled()) {
3116       if (!silent) gclog_or_tty->print("StrDedup ");
3117       G1StringDedup::verify();
3118     }
3119 
3120     if (failures) {
3121       gclog_or_tty->print_cr("Heap:");
3122       // It helps to have the per-region information in the output to
3123       // help us track down what went wrong. This is why we call
3124       // print_extended_on() instead of print_on().
3125       print_extended_on(gclog_or_tty);
3126       gclog_or_tty->cr();
3127       gclog_or_tty->flush();
3128     }
3129     guarantee(!failures, "there should not have been any failures");
3130   } else {
3131     if (!silent) {
3132       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3133       if (G1StringDedup::is_enabled()) {
3134         gclog_or_tty->print(", StrDedup");
3135       }
3136       gclog_or_tty->print(") ");
3137     }
3138   }
3139 }
3140 
3141 void G1CollectedHeap::verify(bool silent) {
3142   verify(silent, VerifyOption_G1UsePrevMarking);
3143 }
3144 
3145 double G1CollectedHeap::verify(bool guard, const char* msg) {
3146   double verify_time_ms = 0.0;
3147 
3148   if (guard && total_collections() >= VerifyGCStartAt) {
3149     double verify_start = os::elapsedTime();
3150     HandleMark hm;  // Discard invalid handles created during verification
3151     prepare_for_verify();
3152     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3153     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3154   }
3155 
3156   return verify_time_ms;
3157 }
3158 
3159 void G1CollectedHeap::verify_before_gc() {
3160   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3161   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3162 }
3163 
3164 void G1CollectedHeap::verify_after_gc() {
3165   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3166   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3167 }
3168 
3169 class PrintRegionClosure: public HeapRegionClosure {
3170   outputStream* _st;
3171 public:
3172   PrintRegionClosure(outputStream* st) : _st(st) {}
3173   bool doHeapRegion(HeapRegion* r) {
3174     r->print_on(_st);
3175     return false;
3176   }
3177 };
3178 
3179 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3180                                        const HeapRegion* hr,
3181                                        const VerifyOption vo) const {
3182   switch (vo) {
3183   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3184   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3185   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();


3255     G1StringDedup::print_worker_threads_on(st);
3256   }
3257 }
3258 
3259 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3260   workers()->threads_do(tc);
3261   tc->do_thread(_cmThread);
3262   _cg1r->threads_do(tc);
3263   if (G1StringDedup::is_enabled()) {
3264     G1StringDedup::threads_do(tc);
3265   }
3266 }
3267 
3268 void G1CollectedHeap::print_tracing_info() const {
3269   // We'll overload this to mean "trace GC pause statistics."
3270   if (TraceYoungGenTime || TraceOldGenTime) {
3271     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3272     // to that.
3273     g1_policy()->print_tracing_info();
3274   }
3275   if (G1SummarizeRSetStats) {
3276     g1_rem_set()->print_summary_info();
3277   }
3278   if (G1SummarizeConcMark) {
3279     concurrent_mark()->print_summary_info();
3280   }
3281   g1_policy()->print_yg_surv_rate_info();
3282 }
3283 
3284 #ifndef PRODUCT
3285 // Helpful for debugging RSet issues.
3286 
3287 class PrintRSetsClosure : public HeapRegionClosure {
3288 private:
3289   const char* _msg;
3290   size_t _occupied_sum;
3291 
3292 public:
3293   bool doHeapRegion(HeapRegion* r) {
3294     HeapRegionRemSet* hrrs = r->rem_set();
3295     size_t occupied = hrrs->occupied();
3296     _occupied_sum += occupied;
3297 
3298     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3299                            HR_FORMAT_PARAMS(r));
3300     if (occupied == 0) {
3301       gclog_or_tty->print_cr("  RSet is empty");
3302     } else {
3303       hrrs->print();
3304     }
3305     gclog_or_tty->print_cr("----------");
3306     return false;
3307   }
3308 
3309   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3310     gclog_or_tty->cr();
3311     gclog_or_tty->print_cr("========================================");
3312     gclog_or_tty->print_cr("%s", msg);
3313     gclog_or_tty->cr();
3314   }
3315 
3316   ~PrintRSetsClosure() {
3317     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3318     gclog_or_tty->print_cr("========================================");
3319     gclog_or_tty->cr();
3320   }
3321 };
3322 
3323 void G1CollectedHeap::print_cset_rsets() {
3324   PrintRSetsClosure cl("Printing CSet RSets");
3325   collection_set_iterate(&cl);
3326 }
3327 
3328 void G1CollectedHeap::print_all_rsets() {
3329   PrintRSetsClosure cl("Printing All RSets");;
3330   heap_region_iterate(&cl);
3331 }
3332 #endif // PRODUCT
3333 
3334 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3335   YoungList* young_list = heap()->young_list();
3336 
3337   size_t eden_used_bytes = young_list->eden_used_bytes();
3338   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3339 


3357 
3358   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3359   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3360 }
3361 
3362 
3363 G1CollectedHeap* G1CollectedHeap::heap() {
3364   CollectedHeap* heap = Universe::heap();
3365   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3366   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3367   return (G1CollectedHeap*)heap;
3368 }
3369 
3370 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3371   // always_do_update_barrier = false;
3372   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3373   // Fill TLAB's and such
3374   accumulate_statistics_all_tlabs();
3375   ensure_parsability(true);
3376 
3377   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3378       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3379     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3380   }
3381 }
3382 
3383 void G1CollectedHeap::gc_epilogue(bool full) {
3384 
3385   if (G1SummarizeRSetStats &&
3386       (G1SummarizeRSetStatsPeriod > 0) &&
3387       // we are at the end of the GC. Total collections has already been increased.
3388       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3389     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3390   }
3391 
3392   // FIXME: what is this about?
3393   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3394   // is set.
3395 #if defined(COMPILER2) || INCLUDE_JVMCI
3396   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3397 #endif
3398   // always_do_update_barrier = true;
3399 
3400   resize_all_tlabs();
3401   allocation_context_stats().update(full);
3402 
3403   // We have just completed a GC. Update the soft reference
3404   // policy with the new heap occupancy
3405   Universe::update_heap_info_at_gc();
3406 }
3407 
3408 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3409                                                uint gc_count_before,
3410                                                bool* succeeded,


3613     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3614 
3615     // Here's a good place to add any other checks we'd like to
3616     // perform on CSet regions.
3617     return false;
3618   }
3619 };
3620 #endif // ASSERT
3621 
3622 uint G1CollectedHeap::num_task_queues() const {
3623   return _task_queues->size();
3624 }
3625 
3626 #if TASKQUEUE_STATS
3627 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3628   st->print_raw_cr("GC Task Stats");
3629   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3630   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3631 }
3632 
3633 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {







3634   print_taskqueue_stats_hdr(st);
3635 
3636   TaskQueueStats totals;
3637   const uint n = num_task_queues();
3638   for (uint i = 0; i < n; ++i) {
3639     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3640     totals += task_queue(i)->stats;
3641   }
3642   st->print_raw("tot "); totals.print(st); st->cr();
3643 
3644   DEBUG_ONLY(totals.verify());
3645 }
3646 
3647 void G1CollectedHeap::reset_taskqueue_stats() {
3648   const uint n = num_task_queues();
3649   for (uint i = 0; i < n; ++i) {
3650     task_queue(i)->stats.reset();
3651   }
3652 }
3653 #endif // TASKQUEUE_STATS
3654 
3655 void G1CollectedHeap::log_gc_header() {
3656   if (!G1Log::fine()) {
3657     return;
3658   }
3659 
3660   gclog_or_tty->gclog_stamp();
3661 
3662   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3663     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3664     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3665 
3666   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3667 }
3668 
3669 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3670   if (!G1Log::fine()) {
3671     return;
3672   }
3673 
3674   if (G1Log::finer()) {
3675     if (evacuation_failed()) {
3676       gclog_or_tty->print(" (to-space exhausted)");
3677     }
3678     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);

3679     g1_policy()->print_phases(pause_time_sec);

3680     g1_policy()->print_detailed_heap_transition();
3681   } else {
3682     if (evacuation_failed()) {
3683       gclog_or_tty->print("--");
3684     }
3685     g1_policy()->print_heap_transition();
3686     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3687   }
3688   gclog_or_tty->flush();
3689 }
3690 

3691 void G1CollectedHeap::wait_for_root_region_scanning() {
3692   double scan_wait_start = os::elapsedTime();
3693   // We have to wait until the CM threads finish scanning the
3694   // root regions as it's the only way to ensure that all the
3695   // objects on them have been correctly scanned before we start
3696   // moving them during the GC.
3697   bool waited = _cm->root_regions()->wait_until_scan_finished();
3698   double wait_time_ms = 0.0;
3699   if (waited) {
3700     double scan_wait_end = os::elapsedTime();
3701     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3702   }
3703   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3704 }
3705 
3706 bool
3707 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3708   assert_at_safepoint(true /* should_be_vm_thread */);
3709   guarantee(!is_gc_active(), "collection is not reentrant");
3710 
3711   if (GC_locker::check_active_before_gc()) {
3712     return false;
3713   }
3714 
3715   _gc_timer_stw->register_gc_start();
3716 
3717   GCIdMark gc_id_mark;
3718   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3719 
3720   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3721   ResourceMark rm;
3722 
3723   wait_for_root_region_scanning();
3724 
3725   G1Log::update_level();
3726   print_heap_before_gc();
3727   trace_heap_before_gc(_gc_tracer_stw);
3728 
3729   verify_region_sets_optional();
3730   verify_dirty_young_regions();
3731 
3732   // This call will decide whether this pause is an initial-mark
3733   // pause. If it is, during_initial_mark_pause() will return true
3734   // for the duration of this pause.
3735   g1_policy()->decide_on_conc_mark_initiation();
3736 
3737   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3738   assert(!collector_state()->during_initial_mark_pause() ||
3739           collector_state()->gcs_are_young(), "sanity");
3740 
3741   // We also do not allow mixed GCs during marking.
3742   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3743 
3744   // Record whether this pause is an initial mark. When the current
3745   // thread has completed its logging output and it's safe to signal
3746   // the CM thread, the flag's value in the policy has been reset.
3747   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3748 
3749   // Inner scope for scope based logging, timers, and stats collection
3750   {
3751     EvacuationInfo evacuation_info;
3752 
3753     if (collector_state()->during_initial_mark_pause()) {
3754       // We are about to start a marking cycle, so we increment the
3755       // full collection counter.
3756       increment_old_marking_cycles_started();
3757       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3758     }
3759 
3760     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3761 
3762     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3763 
3764     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3765                                                                   workers()->active_workers(),
3766                                                                   Threads::number_of_non_daemon_threads());
3767     workers()->set_active_workers(active_workers);










3768 
3769     double pause_start_sec = os::elapsedTime();

3770     g1_policy()->note_gc_start(active_workers);
3771     log_gc_header();
3772 
3773     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3774     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3775 
3776     // If the secondary_free_list is not empty, append it to the
3777     // free_list. No need to wait for the cleanup operation to finish;
3778     // the region allocation code will check the secondary_free_list
3779     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3780     // set, skip this step so that the region allocation code has to
3781     // get entries from the secondary_free_list.
3782     if (!G1StressConcRegionFreeing) {
3783       append_secondary_free_list_if_not_empty_with_lock();
3784     }
3785 
3786     assert(check_young_list_well_formed(), "young list should be well formed");
3787 
3788     // Don't dynamically change the number of GC threads this early.  A value of
3789     // 0 is used to indicate serial work.  When parallel work is done,
3790     // it will be set.
3791 


3805 #endif
3806 
3807       // Please see comment in g1CollectedHeap.hpp and
3808       // G1CollectedHeap::ref_processing_init() to see how
3809       // reference processing currently works in G1.
3810 
3811       // Enable discovery in the STW reference processor
3812       ref_processor_stw()->enable_discovery();
3813 
3814       {
3815         // We want to temporarily turn off discovery by the
3816         // CM ref processor, if necessary, and turn it back on
3817         // on again later if we do. Using a scoped
3818         // NoRefDiscovery object will do this.
3819         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3820 
3821         // Forget the current alloc region (we might even choose it to be part
3822         // of the collection set!).
3823         _allocator->release_mutator_alloc_region();
3824 
3825         // We should call this after we retire the mutator alloc
3826         // region(s) so that all the ALLOC / RETIRE events are generated
3827         // before the start GC event.
3828         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3829 
3830         // This timing is only used by the ergonomics to handle our pause target.
3831         // It is unclear why this should not include the full pause. We will
3832         // investigate this in CR 7178365.
3833         //
3834         // Preserving the old comment here if that helps the investigation:
3835         //
3836         // The elapsed time induced by the start time below deliberately elides
3837         // the possible verification above.
3838         double sample_start_time_sec = os::elapsedTime();
3839 
3840         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3841 
3842         if (collector_state()->during_initial_mark_pause()) {
3843           concurrent_mark()->checkpointRootsInitialPre();
3844         }
3845 
3846         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3847         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3848 
3849         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());


3926 
3927         if (collector_state()->during_initial_mark_pause()) {
3928           // We have to do this before we notify the CM threads that
3929           // they can start working to make sure that all the
3930           // appropriate initialization is done on the CM object.
3931           concurrent_mark()->checkpointRootsInitialPost();
3932           collector_state()->set_mark_in_progress(true);
3933           // Note that we don't actually trigger the CM thread at
3934           // this point. We do that later when we're sure that
3935           // the current thread has completed its logging output.
3936         }
3937 
3938         allocate_dummy_regions();
3939 
3940         _allocator->init_mutator_alloc_region();
3941 
3942         {
3943           size_t expand_bytes = g1_policy()->expansion_amount();
3944           if (expand_bytes > 0) {
3945             size_t bytes_before = capacity();
3946             // No need for an ergo verbose message here,
3947             // expansion_amount() does this when it returns a value > 0.
3948             double expand_ms;
3949             if (!expand(expand_bytes, &expand_ms)) {
3950               // We failed to expand the heap. Cannot do anything about it.
3951             }
3952             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3953           }
3954         }
3955 
3956         // We redo the verification but now wrt to the new CSet which
3957         // has just got initialized after the previous CSet was freed.
3958         _cm->verify_no_cset_oops();
3959         _cm->note_end_of_gc();
3960 
3961         // This timing is only used by the ergonomics to handle our pause target.
3962         // It is unclear why this should not include the full pause. We will
3963         // investigate this in CR 7178365.
3964         double sample_end_time_sec = os::elapsedTime();
3965         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3966         size_t total_cards_scanned = per_thread_states.total_cards_scanned();


3986         // stamp here we invalidate all the GC time stamps on all the
3987         // regions and saved_mark_word() will simply return top() for
3988         // all the regions. This is a nicer way of ensuring this rather
3989         // than iterating over the regions and fixing them. In fact, the
3990         // GC time stamp increment here also ensures that
3991         // saved_mark_word() will return top() between pauses, i.e.,
3992         // during concurrent refinement. So we don't need the
3993         // is_gc_active() check to decided which top to use when
3994         // scanning cards (see CR 7039627).
3995         increment_gc_time_stamp();
3996 
3997         verify_after_gc();
3998         check_bitmaps("GC End");
3999 
4000         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4001         ref_processor_stw()->verify_no_references_recorded();
4002 
4003         // CM reference discovery will be re-enabled if necessary.
4004       }
4005 
4006       // We should do this after we potentially expand the heap so
4007       // that all the COMMIT events are generated before the end GC
4008       // event, and after we retire the GC alloc regions so that all
4009       // RETIRE events are generated before the end GC event.
4010       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4011 
4012 #ifdef TRACESPINNING
4013       ParallelTaskTerminator::print_termination_counts();
4014 #endif
4015 
4016       gc_epilogue(false);
4017     }
4018 
4019     // Print the remainder of the GC log output.
4020     log_gc_footer(os::elapsedTime() - pause_start_sec);
4021 
4022     // It is not yet to safe to tell the concurrent mark to
4023     // start as we have some optional output below. We don't want the
4024     // output from the concurrent mark thread interfering with this
4025     // logging output either.
4026 
4027     _hrm.verify_optional();
4028     verify_region_sets_optional();
4029 
4030     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4031     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4032 
4033     print_heap_after_gc();
4034     trace_heap_after_gc(_gc_tracer_stw);
4035 
4036     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4037     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4038     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4039     // before any GC notifications are raised.
4040     g1mm()->update_sizes();
4041 
4042     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4043     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4044     _gc_timer_stw->register_gc_end();
4045     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4046   }
4047   // It should now be safe to tell the concurrent mark thread to start
4048   // without its logging output interfering with the logging output
4049   // that came from the pause.
4050 


4201 
4202       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4203 
4204       double term_sec = 0.0;
4205       size_t evac_term_attempts = 0;
4206       {
4207         double start = os::elapsedTime();
4208         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4209         evac.do_void();
4210 
4211         evac_term_attempts = evac.term_attempts();
4212         term_sec = evac.term_time();
4213         double elapsed_sec = os::elapsedTime() - start;
4214         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4215         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4216         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4217       }
4218 
4219       assert(pss->queue_is_empty(), "should be empty");
4220 
4221       if (PrintTerminationStats) {
4222         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4223         size_t lab_waste;
4224         size_t lab_undo_waste;
4225         pss->waste(lab_waste, lab_undo_waste);
4226         _g1h->print_termination_stats(gclog_or_tty,
4227                                       worker_id,
4228                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4229                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4230                                       term_sec * 1000.0,                          /* evac term time */
4231                                       evac_term_attempts,                         /* evac term attempts */
4232                                       lab_waste,                                  /* alloc buffer waste */
4233                                       lab_undo_waste                              /* undo waste */
4234                                       );
4235       }
4236 
4237       // Close the inner scope so that the ResourceMark and HandleMark
4238       // destructors are executed here and are included as part of the
4239       // "GC Worker Time".
4240     }
4241     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4242   }
4243 };
4244 
4245 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4246   st->print_raw_cr("GC Termination Stats");
4247   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4248   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4249   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");




4250 }
4251 
4252 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4253                                               uint worker_id,
4254                                               double elapsed_ms,
4255                                               double strong_roots_ms,
4256                                               double term_ms,
4257                                               size_t term_attempts,
4258                                               size_t alloc_buffer_waste,
4259                                               size_t undo_waste) const {
4260   st->print_cr("%3d %9.2f %9.2f %6.2f "

4261                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4262                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4263                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4264                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4265                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4266                alloc_buffer_waste * HeapWordSize / K,
4267                undo_waste * HeapWordSize / K);
4268 }
4269 
4270 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4271 private:
4272   BoolObjectClosure* _is_alive;
4273   int _initial_string_table_size;
4274   int _initial_symbol_table_size;
4275 
4276   bool  _process_strings;
4277   int _strings_processed;
4278   int _strings_removed;
4279 
4280   bool  _process_symbols;


4289     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4290 
4291     _initial_string_table_size = StringTable::the_table()->table_size();
4292     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4293     if (process_strings) {
4294       StringTable::clear_parallel_claimed_index();
4295     }
4296     if (process_symbols) {
4297       SymbolTable::clear_parallel_claimed_index();
4298     }
4299   }
4300 
4301   ~G1StringSymbolTableUnlinkTask() {
4302     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4303               "claim value %d after unlink less than initial string table size %d",
4304               StringTable::parallel_claimed_index(), _initial_string_table_size);
4305     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4306               "claim value %d after unlink less than initial symbol table size %d",
4307               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4308 
4309     if (G1TraceStringSymbolTableScrubbing) {
4310       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4311                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4312                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4313                              strings_processed(), strings_removed(),
4314                              symbols_processed(), symbols_removed());
4315     }
4316   }
4317 
4318   void work(uint worker_id) {
4319     int strings_processed = 0;
4320     int strings_removed = 0;
4321     int symbols_processed = 0;
4322     int symbols_removed = 0;
4323     if (_process_strings) {
4324       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4325       Atomic::add(strings_processed, &_strings_processed);
4326       Atomic::add(strings_removed, &_strings_removed);
4327     }
4328     if (_process_symbols) {
4329       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4330       Atomic::add(symbols_processed, &_symbols_processed);
4331       Atomic::add(symbols_removed, &_symbols_removed);
4332     }
4333   }
4334 
4335   size_t strings_processed() const { return (size_t)_strings_processed; }
4336   size_t strings_removed()   const { return (size_t)_strings_removed; }


5123 
5124 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5125   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5126 
5127   // Should G1EvacuationFailureALot be in effect for this GC?
5128   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5129 
5130   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5131   double start_par_time_sec = os::elapsedTime();
5132   double end_par_time_sec;
5133 
5134   {
5135     const uint n_workers = workers()->active_workers();
5136     G1RootProcessor root_processor(this, n_workers);
5137     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5138     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5139     if (collector_state()->during_initial_mark_pause()) {
5140       ClassLoaderDataGraph::clear_claimed_marks();
5141     }
5142 
5143     // The individual threads will set their evac-failure closures.
5144     if (PrintTerminationStats) {
5145       print_termination_stats_hdr(gclog_or_tty);
5146     }
5147 
5148     workers()->run_task(&g1_par_task);
5149     end_par_time_sec = os::elapsedTime();
5150 
5151     // Closing the inner scope will execute the destructor
5152     // for the G1RootProcessor object. We record the current
5153     // elapsed time before closing the scope so that time
5154     // taken for the destructor is NOT included in the
5155     // reported parallel time.
5156   }
5157 
5158   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5159 
5160   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5161   phase_times->record_par_time(par_time_ms);
5162 
5163   double code_root_fixup_time_ms =
5164         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5165   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5166 


5351   }
5352 }
5353 
5354 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5355   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5356   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5357     verify_dirty_region(hr);
5358   }
5359 }
5360 
5361 void G1CollectedHeap::verify_dirty_young_regions() {
5362   verify_dirty_young_list(_young_list->first_region());
5363 }
5364 
5365 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5366                                                HeapWord* tams, HeapWord* end) {
5367   guarantee(tams <= end,
5368             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5369   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5370   if (result < end) {
5371     gclog_or_tty->cr();
5372     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5373                            bitmap_name, p2i(result));
5374     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5375                            bitmap_name, p2i(tams), p2i(end));
5376     return false;
5377   }
5378   return true;
5379 }
5380 
5381 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5382   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5383   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5384 
5385   HeapWord* bottom = hr->bottom();
5386   HeapWord* ptams  = hr->prev_top_at_mark_start();
5387   HeapWord* ntams  = hr->next_top_at_mark_start();
5388   HeapWord* end    = hr->end();
5389 
5390   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5391 
5392   bool res_n = true;
5393   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5394   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5395   // if we happen to be in that state.
5396   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5397     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5398   }
5399   if (!res_p || !res_n) {
5400     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5401                            HR_FORMAT_PARAMS(hr));
5402     gclog_or_tty->print_cr("#### Caller: %s", caller);
5403     return false;
5404   }
5405   return true;
5406 }
5407 
5408 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5409   if (!G1VerifyBitmaps) return;
5410 
5411   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5412 }
5413 
5414 class G1VerifyBitmapClosure : public HeapRegionClosure {
5415 private:
5416   const char* _caller;
5417   G1CollectedHeap* _g1h;
5418   bool _failures;
5419 
5420 public:
5421   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5422     _caller(caller), _g1h(g1h), _failures(false) { }


5434 
5435 void G1CollectedHeap::check_bitmaps(const char* caller) {
5436   if (!G1VerifyBitmaps) return;
5437 
5438   G1VerifyBitmapClosure cl(caller, this);
5439   heap_region_iterate(&cl);
5440   guarantee(!cl.failures(), "bitmap verification");
5441 }
5442 
5443 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5444  private:
5445   bool _failures;
5446  public:
5447   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5448 
5449   virtual bool doHeapRegion(HeapRegion* hr) {
5450     uint i = hr->hrm_index();
5451     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5452     if (hr->is_humongous()) {
5453       if (hr->in_collection_set()) {
5454         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5455         _failures = true;
5456         return true;
5457       }
5458       if (cset_state.is_in_cset()) {
5459         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5460         _failures = true;
5461         return true;
5462       }
5463       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5464         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5465         _failures = true;
5466         return true;
5467       }
5468     } else {
5469       if (cset_state.is_humongous()) {
5470         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5471         _failures = true;
5472         return true;
5473       }
5474       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5475         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5476                                hr->in_collection_set(), cset_state.value(), i);
5477         _failures = true;
5478         return true;
5479       }
5480       if (cset_state.is_in_cset()) {
5481         if (hr->is_young() != (cset_state.is_young())) {
5482           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5483                                  hr->is_young(), cset_state.value(), i);
5484           _failures = true;
5485           return true;
5486         }
5487         if (hr->is_old() != (cset_state.is_old())) {
5488           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5489                                  hr->is_old(), cset_state.value(), i);
5490           _failures = true;
5491           return true;
5492         }
5493       }
5494     }
5495     return false;
5496   }
5497 
5498   bool failures() const { return _failures; }
5499 };
5500 
5501 bool G1CollectedHeap::check_cset_fast_test() {
5502   G1CheckCSetFastTableClosure cl;
5503   _hrm.iterate(&cl);
5504   return !cl.failures();
5505 }
5506 #endif // PRODUCT
5507 
5508 void G1CollectedHeap::cleanUpCardTable() {


5678     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5679     // until the end of a concurrent mark.
5680     //
5681     // It is not required to check whether the object has been found dead by marking
5682     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5683     // all objects allocated during that time are considered live.
5684     // SATB marking is even more conservative than the remembered set.
5685     // So if at this point in the collection there is no remembered set entry,
5686     // nobody has a reference to it.
5687     // At the start of collection we flush all refinement logs, and remembered sets
5688     // are completely up-to-date wrt to references to the humongous object.
5689     //
5690     // Other implementation considerations:
5691     // - never consider object arrays at this time because they would pose
5692     // considerable effort for cleaning up the the remembered sets. This is
5693     // required because stale remembered sets might reference locations that
5694     // are currently allocated into.
5695     uint region_idx = r->hrm_index();
5696     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5697         !r->rem_set()->is_empty()) {
5698 
5699       if (G1TraceEagerReclaimHumongousObjects) {
5700         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5701                                region_idx,
5702                                (size_t)obj->size() * HeapWordSize,
5703                                p2i(r->bottom()),
5704                                r->rem_set()->occupied(),
5705                                r->rem_set()->strong_code_roots_list_length(),
5706                                next_bitmap->isMarked(r->bottom()),
5707                                g1h->is_humongous_reclaim_candidate(region_idx),
5708                                obj->is_typeArray()
5709                               );
5710       }
5711 
5712       return false;
5713     }
5714 
5715     guarantee(obj->is_typeArray(),
5716               "Only eagerly reclaiming type arrays is supported, but the object "
5717               PTR_FORMAT " is not.", p2i(r->bottom()));
5718 
5719     if (G1TraceEagerReclaimHumongousObjects) {
5720       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5721                              region_idx,
5722                              (size_t)obj->size() * HeapWordSize,
5723                              p2i(r->bottom()),
5724                              r->rem_set()->occupied(),
5725                              r->rem_set()->strong_code_roots_list_length(),
5726                              next_bitmap->isMarked(r->bottom()),
5727                              g1h->is_humongous_reclaim_candidate(region_idx),
5728                              obj->is_typeArray()
5729                             );
5730     }
5731     // Need to clear mark bit of the humongous object if already set.
5732     if (next_bitmap->isMarked(r->bottom())) {
5733       next_bitmap->clear(r->bottom());
5734     }
5735     do {
5736       HeapRegion* next = g1h->next_region_in_humongous(r);
5737       _freed_bytes += r->used();
5738       r->set_containing_set(NULL);
5739       _humongous_regions_removed.increment(1u, r->capacity());
5740       g1h->free_humongous_region(r, _free_region_list, false);
5741       r = next;
5742     } while (r != NULL);
5743 
5744     return false;
5745   }
5746 
5747   HeapRegionSetCount& humongous_free_count() {
5748     return _humongous_regions_removed;
5749   }
5750 
5751   size_t bytes_freed() const {
5752     return _freed_bytes;
5753   }
5754 
5755   size_t humongous_reclaimed() const {
5756     return _humongous_regions_removed.length();
5757   }
5758 };
5759 
5760 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5761   assert_at_safepoint(true);
5762 
5763   if (!G1EagerReclaimHumongousObjects ||
5764       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5765     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5766     return;
5767   }
5768 
5769   double start_time = os::elapsedTime();
5770 
5771   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5772 
5773   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5774   heap_region_iterate(&cl);
5775 
5776   HeapRegionSetCount empty_set;
5777   remove_from_old_sets(empty_set, cl.humongous_free_count());
5778 
5779   G1HRPrinter* hrp = hr_printer();
5780   if (hrp->is_active()) {
5781     FreeRegionListIterator iter(&local_cleanup_list);
5782     while (iter.more_available()) {
5783       HeapRegion* hr = iter.get_next();
5784       hrp->cleanup(hr);


5797 // the current incremental collection set in preparation of a
5798 // full collection. After the full GC we will start to build up
5799 // the incremental collection set again.
5800 // This is only called when we're doing a full collection
5801 // and is immediately followed by the tearing down of the young list.
5802 
5803 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5804   HeapRegion* cur = cs_head;
5805 
5806   while (cur != NULL) {
5807     HeapRegion* next = cur->next_in_collection_set();
5808     assert(cur->in_collection_set(), "bad CS");
5809     cur->set_next_in_collection_set(NULL);
5810     clear_in_cset(cur);
5811     cur->set_young_index_in_cset(-1);
5812     cur = next;
5813   }
5814 }
5815 
5816 void G1CollectedHeap::set_free_regions_coming() {
5817   if (G1ConcRegionFreeingVerbose) {
5818     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5819                            "setting free regions coming");
5820   }
5821 
5822   assert(!free_regions_coming(), "pre-condition");
5823   _free_regions_coming = true;
5824 }
5825 
5826 void G1CollectedHeap::reset_free_regions_coming() {
5827   assert(free_regions_coming(), "pre-condition");
5828 
5829   {
5830     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5831     _free_regions_coming = false;
5832     SecondaryFreeList_lock->notify_all();
5833   }
5834 
5835   if (G1ConcRegionFreeingVerbose) {
5836     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5837                            "reset free regions coming");
5838   }
5839 }
5840 
5841 void G1CollectedHeap::wait_while_free_regions_coming() {
5842   // Most of the time we won't have to wait, so let's do a quick test
5843   // first before we take the lock.
5844   if (!free_regions_coming()) {
5845     return;
5846   }
5847 
5848   if (G1ConcRegionFreeingVerbose) {
5849     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5850                            "waiting for free regions");
5851   }
5852 
5853   {
5854     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5855     while (free_regions_coming()) {
5856       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5857     }
5858   }
5859 
5860   if (G1ConcRegionFreeingVerbose) {
5861     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5862                            "done waiting for free regions");
5863   }
5864 }
5865 
5866 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5867   return _allocator->is_retained_old_region(hr);
5868 }
5869 
5870 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5871   _young_list->push_region(hr);
5872 }
5873 
5874 class NoYoungRegionsClosure: public HeapRegionClosure {
5875 private:
5876   bool _success;
5877 public:
5878   NoYoungRegionsClosure() : _success(true) { }
5879   bool doHeapRegion(HeapRegion* r) {
5880     if (r->is_young()) {
5881       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5882                              p2i(r->bottom()), p2i(r->end()));
5883       _success = false;
5884     }
5885     return false;
5886   }
5887   bool success() { return _success; }
5888 };
5889 
5890 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5891   bool ret = _young_list->check_list_empty(check_sample);
5892 
5893   if (check_heap) {
5894     NoYoungRegionsClosure closure;
5895     heap_region_iterate(&closure);
5896     ret = ret && closure.success();
5897   }
5898 
5899   return ret;
5900 }
5901 


6112 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6113                                              size_t allocated_bytes,
6114                                              InCSetState dest) {
6115   bool during_im = collector_state()->during_initial_mark_pause();
6116   alloc_region->note_end_of_copying(during_im);
6117   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6118   if (dest.is_young()) {
6119     young_list()->add_survivor_region(alloc_region);
6120   } else {
6121     _old_set.add(alloc_region);
6122   }
6123   _hr_printer.retire(alloc_region);
6124 }
6125 
6126 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6127   bool expanded = false;
6128   uint index = _hrm.find_highest_free(&expanded);
6129 
6130   if (index != G1_NO_HRM_INDEX) {
6131     if (expanded) {
6132       ergo_verbose1(ErgoHeapSizing,
6133                     "attempt heap expansion",
6134                     ergo_format_reason("requested address range outside heap bounds")
6135                     ergo_format_byte("region size"),
6136                     HeapRegion::GrainWords * HeapWordSize);
6137     }
6138     _hrm.allocate_free_regions_starting_at(index, 1);
6139     return region_at(index);
6140   }
6141   return NULL;
6142 }
6143 
6144 // Heap region set verification
6145 
6146 class VerifyRegionListsClosure : public HeapRegionClosure {
6147 private:
6148   HeapRegionSet*   _old_set;
6149   HeapRegionSet*   _humongous_set;
6150   HeapRegionManager*   _hrm;
6151 
6152 public:
6153   HeapRegionSetCount _old_count;
6154   HeapRegionSetCount _humongous_count;
6155   HeapRegionSetCount _free_count;




  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"

  38 #include "gc/g1/g1EvacFailure.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"

  40 #include "gc/g1/g1MarkSweep.hpp"
  41 #include "gc/g1/g1OopClosures.inline.hpp"
  42 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  43 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  44 #include "gc/g1/g1RemSet.inline.hpp"
  45 #include "gc/g1/g1RootClosures.hpp"
  46 #include "gc/g1/g1RootProcessor.hpp"
  47 #include "gc/g1/g1StringDedup.hpp"
  48 #include "gc/g1/g1YCTypes.hpp"
  49 #include "gc/g1/heapRegion.inline.hpp"
  50 #include "gc/g1/heapRegionRemSet.hpp"
  51 #include "gc/g1/heapRegionSet.inline.hpp"
  52 #include "gc/g1/suspendibleThreadSet.hpp"
  53 #include "gc/g1/vm_operations_g1.hpp"
  54 #include "gc/shared/gcHeapSummary.hpp"
  55 #include "gc/shared/gcId.hpp"
  56 #include "gc/shared/gcLocker.inline.hpp"
  57 #include "gc/shared/gcTimer.hpp"
  58 #include "gc/shared/gcTrace.hpp"
  59 #include "gc/shared/gcTraceTime.hpp"
  60 #include "gc/shared/generationSpec.hpp"
  61 #include "gc/shared/isGCActiveMark.hpp"
  62 #include "gc/shared/referenceProcessor.hpp"
  63 #include "gc/shared/taskqueue.inline.hpp"
  64 #include "logging/log.hpp"
  65 #include "memory/allocation.hpp"
  66 #include "memory/iterator.hpp"
  67 #include "oops/oop.inline.hpp"
  68 #include "runtime/atomic.inline.hpp"
  69 #include "runtime/init.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  76 
  77 // INVARIANTS/NOTES
  78 //
  79 // All allocation activity covered by the G1CollectedHeap interface is
  80 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  81 // and allocate_new_tlab, which are the "entry" points to the
  82 // allocation code from the rest of the JVM.  (Note that this does not
  83 // apply to TLAB allocation, which is not part of this interface: it
  84 // is done by clients of this interface.)


 186   } while (hr != head);
 187   assert(hr != NULL, "invariant");
 188   hr->set_next_dirty_cards_region(NULL);
 189   return hr;
 190 }
 191 
 192 // Returns true if the reference points to an object that
 193 // can move in an incremental collection.
 194 bool G1CollectedHeap::is_scavengable(const void* p) {
 195   HeapRegion* hr = heap_region_containing(p);
 196   return !hr->is_pinned();
 197 }
 198 
 199 // Private methods.
 200 
 201 HeapRegion*
 202 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 203   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 204   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 205     if (!_secondary_free_list.is_empty()) {
 206       log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "

 207                                 "secondary_free_list has %u entries",
 208                                 _secondary_free_list.length());

 209       // It looks as if there are free regions available on the
 210       // secondary_free_list. Let's move them to the free_list and try
 211       // again to allocate from it.
 212       append_secondary_free_list();
 213 
 214       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 215              "empty we should have moved at least one entry to the free_list");
 216       HeapRegion* res = _hrm.allocate_free_region(is_old);
 217       log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "

 218                                 "allocated " HR_FORMAT " from secondary_free_list",
 219                                 HR_FORMAT_PARAMS(res));

 220       return res;
 221     }
 222 
 223     // Wait here until we get notified either when (a) there are no
 224     // more free regions coming or (b) some regions have been moved on
 225     // the secondary_free_list.
 226     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 227   }
 228 
 229   log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "

 230                             "could not allocate from secondary_free_list");

 231   return NULL;
 232 }
 233 
 234 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 235   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 236          "the only time we use this to allocate a humongous region is "
 237          "when we are allocating a single humongous region");
 238 
 239   HeapRegion* res;
 240   if (G1StressConcRegionFreeing) {
 241     if (!_secondary_free_list.is_empty()) {
 242       log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "

 243                                 "forced to look at the secondary_free_list");

 244       res = new_region_try_secondary_free_list(is_old);
 245       if (res != NULL) {
 246         return res;
 247       }
 248     }
 249   }
 250 
 251   res = _hrm.allocate_free_region(is_old);
 252 
 253   if (res == NULL) {
 254     log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "

 255                               "res == NULL, trying the secondary_free_list");

 256     res = new_region_try_secondary_free_list(is_old);
 257   }
 258   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 259     // Currently, only attempts to allocate GC alloc regions set
 260     // do_expand to true. So, we should only reach here during a
 261     // safepoint. If this assumption changes we might have to
 262     // reconsider the use of _expand_heap_after_alloc_failure.
 263     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 264 
 265     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",



 266                               word_size * HeapWordSize);
 267 
 268     if (expand(word_size * HeapWordSize)) {
 269       // Given that expand() succeeded in expanding the heap, and we
 270       // always expand the heap by an amount aligned to the heap
 271       // region size, the free list should in theory not be empty.
 272       // In either case allocate_free_region() will check for NULL.
 273       res = _hrm.allocate_free_region(is_old);
 274     } else {
 275       _expand_heap_after_alloc_failure = false;
 276     }
 277   }
 278   return res;
 279 }
 280 
 281 HeapWord*
 282 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 283                                                            uint num_regions,
 284                                                            size_t word_size,
 285                                                            AllocationContext_t context) {
 286   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 287   assert(is_humongous(word_size), "word_size should be humongous");


 418     // potentially waits for regions from the secondary free list.
 419     wait_while_free_regions_coming();
 420     append_secondary_free_list_if_not_empty_with_lock();
 421 
 422     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 423     // are lucky enough to find some.
 424     first = _hrm.find_contiguous_only_empty(obj_regions);
 425     if (first != G1_NO_HRM_INDEX) {
 426       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 427     }
 428   }
 429 
 430   if (first == G1_NO_HRM_INDEX) {
 431     // Policy: We could not find enough regions for the humongous object in the
 432     // free list. Look through the heap to find a mix of free and uncommitted regions.
 433     // If so, try expansion.
 434     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 435     if (first != G1_NO_HRM_INDEX) {
 436       // We found something. Make sure these regions are committed, i.e. expand
 437       // the heap. Alternatively we could do a defragmentation GC.
 438       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",



 439                                     word_size * HeapWordSize);
 440 
 441 
 442       _hrm.expand_at(first, obj_regions);
 443       g1_policy()->record_new_heap_size(num_regions());
 444 
 445 #ifdef ASSERT
 446       for (uint i = first; i < first + obj_regions; ++i) {
 447         HeapRegion* hr = region_at(i);
 448         assert(hr->is_free(), "sanity");
 449         assert(hr->is_empty(), "sanity");
 450         assert(is_on_master_free_list(hr), "sanity");
 451       }
 452 #endif
 453       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 454     } else {
 455       // Policy: Potentially trigger a defragmentation GC.
 456     }
 457   }
 458 
 459   HeapWord* result = NULL;
 460   if (first != G1_NO_HRM_INDEX) {
 461     result = humongous_obj_allocate_initialize_regions(first, obj_regions,


 739     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 740     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 741       start_address = start_region->end();
 742       if (start_address > last_address) {
 743         increase_used(word_size * HeapWordSize);
 744         start_region->set_top(last_address + 1);
 745         continue;
 746       }
 747       start_region->set_top(start_address);
 748       curr_range = MemRegion(start_address, last_address + 1);
 749       start_region = _hrm.addr_to_region(start_address);
 750     }
 751 
 752     // Perform the actual region allocation, exiting if it fails.
 753     // Then note how much new space we have allocated.
 754     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 755       return false;
 756     }
 757     increase_used(word_size * HeapWordSize);
 758     if (commits != 0) {
 759       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",



 760                                 HeapRegion::GrainWords * HeapWordSize * commits);
 761 
 762     }
 763 
 764     // Mark each G1 region touched by the range as archive, add it to the old set,
 765     // and set the allocation context and top.
 766     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 767     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 768     prev_last_region = last_region;
 769 
 770     while (curr_region != NULL) {
 771       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 772              "Region already in use (index %u)", curr_region->hrm_index());
 773       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 774       curr_region->set_allocation_context(AllocationContext::system());
 775       curr_region->set_archive();
 776       _old_set.add(curr_region);
 777       if (curr_region != last_region) {
 778         curr_region->set_top(curr_region->end());
 779         curr_region = _hrm.next_region_in_heap(curr_region);
 780       } else {
 781         curr_region->set_top(last_address + 1);


 922       guarantee(curr_region->is_archive(),
 923                 "Expected archive region at index %u", curr_region->hrm_index());
 924       uint curr_index = curr_region->hrm_index();
 925       _old_set.remove(curr_region);
 926       curr_region->set_free();
 927       curr_region->set_top(curr_region->bottom());
 928       if (curr_region != last_region) {
 929         curr_region = _hrm.next_region_in_heap(curr_region);
 930       } else {
 931         curr_region = NULL;
 932       }
 933       _hrm.shrink_at(curr_index, 1);
 934       uncommitted_regions++;
 935     }
 936 
 937     // Notify mark-sweep that this is no longer an archive range.
 938     G1MarkSweep::set_range_archive(ranges[i], false);
 939   }
 940 
 941   if (uncommitted_regions != 0) {
 942     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",



 943                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 944   }
 945   decrease_used(size_used);
 946 }
 947 
 948 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 949                                                         uint* gc_count_before_ret,
 950                                                         uint* gclocker_retry_count_ret) {
 951   // The structure of this method has a lot of similarities to
 952   // attempt_allocation_slow(). The reason these two were not merged
 953   // into a single one is that such a method would require several "if
 954   // allocation is not humongous do this, otherwise do that"
 955   // conditional paths which would obscure its flow. In fact, an early
 956   // version of this code did use a unified method which was harder to
 957   // follow and, as a result, it had subtle bugs that were hard to
 958   // track down. So keeping these two methods separate allows each to
 959   // be more readable. It will be good to keep these two in sync as
 960   // much as possible.
 961 
 962   assert_heap_not_locked_and_not_at_safepoint();


1160       // We only generate output for non-empty regions.
1161     } else if (hr->is_starts_humongous()) {
1162       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1163     } else if (hr->is_continues_humongous()) {
1164       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1165     } else if (hr->is_archive()) {
1166       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1167     } else if (hr->is_old()) {
1168       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1169     } else {
1170       ShouldNotReachHere();
1171     }
1172     return false;
1173   }
1174 
1175   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1176     : _hr_printer(hr_printer) { }
1177 };
1178 
1179 void G1CollectedHeap::print_hrm_post_compaction() {
1180   if (_hr_printer.is_active()) {
1181     PostCompactionPrinterClosure cl(hr_printer());
1182     heap_region_iterate(&cl);
1183   }
1184 
1185 }
1186 
1187 bool G1CollectedHeap::do_collection(bool explicit_gc,
1188                                     bool clear_all_soft_refs,
1189                                     size_t word_size) {
1190   assert_at_safepoint(true /* should_be_vm_thread */);
1191 
1192   if (GC_locker::check_active_before_gc()) {
1193     return false;
1194   }
1195 
1196   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1197   gc_timer->register_gc_start();
1198 
1199   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1200   GCIdMark gc_id_mark;
1201   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1202 
1203   SvcGCMarker sgcm(SvcGCMarker::FULL);
1204   ResourceMark rm;
1205 

1206   print_heap_before_gc();
1207   trace_heap_before_gc(gc_tracer);
1208 
1209   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1210 
1211   verify_region_sets_optional();
1212 
1213   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1214                            collector_policy()->should_clear_all_soft_refs();
1215 
1216   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1217 
1218   {
1219     IsGCActiveMark x;
1220 
1221     // Timing
1222     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1223     GCTraceCPUTime tcpu;
1224 
1225     {
1226       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1227       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1228       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1229 
1230       g1_policy()->record_full_collection_start();
1231 
1232       // Note: When we have a more flexible GC logging framework that
1233       // allows us to add optional attributes to a GC log record we
1234       // could consider timing and reporting how long we wait in the
1235       // following two methods.
1236       wait_while_free_regions_coming();
1237       // If we start the compaction before the CM threads finish
1238       // scanning the root regions we might trip them over as we'll
1239       // be moving objects / updating references. So let's wait until
1240       // they are done. By telling them to abort, they should complete
1241       // early.
1242       _cm->root_regions()->abort();
1243       _cm->root_regions()->wait_until_scan_finished();
1244       append_secondary_free_list_if_not_empty_with_lock();
1245 
1246       gc_prologue(true);


1257 #if defined(COMPILER2) || INCLUDE_JVMCI
1258       DerivedPointerTable::clear();
1259 #endif
1260 
1261       // Disable discovery and empty the discovered lists
1262       // for the CM ref processor.
1263       ref_processor_cm()->disable_discovery();
1264       ref_processor_cm()->abandon_partial_discovery();
1265       ref_processor_cm()->verify_no_references_recorded();
1266 
1267       // Abandon current iterations of concurrent marking and concurrent
1268       // refinement, if any are in progress. We have to do this before
1269       // wait_until_scan_finished() below.
1270       concurrent_mark()->abort();
1271 
1272       // Make sure we'll choose a new allocation region afterwards.
1273       _allocator->release_mutator_alloc_region();
1274       _allocator->abandon_gc_alloc_regions();
1275       g1_rem_set()->cleanupHRRS();
1276 





1277       // We may have added regions to the current incremental collection
1278       // set between the last GC or pause and now. We need to clear the
1279       // incremental collection set and then start rebuilding it afresh
1280       // after this full GC.
1281       abandon_collection_set(g1_policy()->inc_cset_head());
1282       g1_policy()->clear_incremental_cset();
1283       g1_policy()->stop_incremental_cset_building();
1284 
1285       tear_down_region_sets(false /* free_list_only */);
1286       collector_state()->set_gcs_are_young(true);
1287 
1288       // See the comments in g1CollectedHeap.hpp and
1289       // G1CollectedHeap::ref_processing_init() about
1290       // how reference processing currently works in G1.
1291 
1292       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1293       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1294 
1295       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1296       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);


1324       ClassLoaderDataGraph::purge();
1325       MetaspaceAux::verify_metrics();
1326 
1327       // Note: since we've just done a full GC, concurrent
1328       // marking is no longer active. Therefore we need not
1329       // re-enable reference discovery for the CM ref processor.
1330       // That will be done at the start of the next marking cycle.
1331       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1332       ref_processor_cm()->verify_no_references_recorded();
1333 
1334       reset_gc_time_stamp();
1335       // Since everything potentially moved, we will clear all remembered
1336       // sets, and clear all cards.  Later we will rebuild remembered
1337       // sets. We will also reset the GC time stamps of the regions.
1338       clear_rsets_post_compaction();
1339       check_gc_time_stamps();
1340 
1341       // Resize the heap if necessary.
1342       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1343 

1344       // We should do this after we potentially resize the heap so
1345       // that all the COMMIT / UNCOMMIT events are generated before
1346       // the compaction events.

1347       print_hrm_post_compaction();


1348 
1349       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1350       if (hot_card_cache->use_cache()) {
1351         hot_card_cache->reset_card_counts();
1352         hot_card_cache->reset_hot_cache();
1353       }
1354 
1355       // Rebuild remembered sets of all regions.
1356       uint n_workers =
1357         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1358                                                 workers()->active_workers(),
1359                                                 Threads::number_of_non_daemon_threads());
1360       workers()->set_active_workers(n_workers);
1361 
1362       ParRebuildRSTask rebuild_rs_task(this);
1363       workers()->run_task(&rebuild_rs_task);
1364 
1365       // Rebuild the strong code root lists for each region
1366       rebuild_strong_code_roots();
1367 


1396       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1397       // objects marked during a full GC against the previous bitmap.
1398       // But we need to clear it before calling check_bitmaps below since
1399       // the full GC has compacted objects and updated TAMS but not updated
1400       // the prev bitmap.
1401       if (G1VerifyBitmaps) {
1402         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1403       }
1404       check_bitmaps("Full GC End");
1405 
1406       // Start a new incremental collection set for the next pause
1407       assert(g1_policy()->collection_set() == NULL, "must be");
1408       g1_policy()->start_incremental_cset_building();
1409 
1410       clear_cset_fast_test();
1411 
1412       _allocator->init_mutator_alloc_region();
1413 
1414       g1_policy()->record_full_collection_end();
1415 




1416       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1417       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1418       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1419       // before any GC notifications are raised.
1420       g1mm()->update_sizes();
1421 
1422       gc_epilogue(true);
1423     }
1424 
1425     g1_policy()->print_detailed_heap_transition();


1426 
1427     print_heap_after_gc();
1428     trace_heap_after_gc(gc_tracer);
1429 
1430     post_full_gc_dump(gc_timer);
1431 
1432     gc_timer->register_gc_end();
1433     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1434   }
1435 
1436   return true;
1437 }
1438 
1439 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1440   // do_collection() will return whether it succeeded in performing
1441   // the GC. Currently, there is no facility on the
1442   // do_full_collection() API to notify the caller than the collection
1443   // did not succeed (e.g., because it was locked out by the GC
1444   // locker). So, right now, we'll ignore the return value.
1445   bool dummy = do_collection(true,                /* explicit_gc */


1490 
1491   // This assert only makes sense here, before we adjust them
1492   // with respect to the min and max heap size.
1493   assert(minimum_desired_capacity <= maximum_desired_capacity,
1494          "minimum_desired_capacity = " SIZE_FORMAT ", "
1495          "maximum_desired_capacity = " SIZE_FORMAT,
1496          minimum_desired_capacity, maximum_desired_capacity);
1497 
1498   // Should not be greater than the heap max size. No need to adjust
1499   // it with respect to the heap min size as it's a lower bound (i.e.,
1500   // we'll try to make the capacity larger than it, not smaller).
1501   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1502   // Should not be less than the heap min size. No need to adjust it
1503   // with respect to the heap max size as it's an upper bound (i.e.,
1504   // we'll try to make the capacity smaller than it, not greater).
1505   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1506 
1507   if (capacity_after_gc < minimum_desired_capacity) {
1508     // Don't expand unless it's significant
1509     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1510 
1511     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1512                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1513                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1514 




1515     expand(expand_bytes);
1516 
1517     // No expansion, now see if we want to shrink
1518   } else if (capacity_after_gc > maximum_desired_capacity) {
1519     // Capacity too large, compute shrinking size
1520     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1521 
1522     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1523                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1524                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1525 




1526     shrink(shrink_bytes);
1527   }
1528 }
1529 
1530 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1531                                                             AllocationContext_t context,
1532                                                             bool do_gc,
1533                                                             bool clear_all_soft_refs,
1534                                                             bool expect_null_mutator_alloc_region,
1535                                                             bool* gc_succeeded) {
1536   *gc_succeeded = true;
1537   // Let's attempt the allocation first.
1538   HeapWord* result =
1539     attempt_allocation_at_safepoint(word_size,
1540                                     context,
1541                                     expect_null_mutator_alloc_region);
1542   if (result != NULL) {
1543     assert(*gc_succeeded, "sanity");
1544     return result;
1545   }


1612 
1613   // What else?  We might try synchronous finalization later.  If the total
1614   // space available is large enough for the allocation, then a more
1615   // complete compaction phase than we've tried so far might be
1616   // appropriate.
1617   assert(*succeeded, "sanity");
1618   return NULL;
1619 }
1620 
1621 // Attempting to expand the heap sufficiently
1622 // to support an allocation of the given "word_size".  If
1623 // successful, perform the allocation and return the address of the
1624 // allocated block, or else "NULL".
1625 
1626 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1627   assert_at_safepoint(true /* should_be_vm_thread */);
1628 
1629   verify_region_sets_optional();
1630 
1631   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1632   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",



1633                             word_size * HeapWordSize);
1634 
1635 
1636   if (expand(expand_bytes)) {
1637     _hrm.verify_optional();
1638     verify_region_sets_optional();
1639     return attempt_allocation_at_safepoint(word_size,
1640                                            context,
1641                                            false /* expect_null_mutator_alloc_region */);
1642   }
1643   return NULL;
1644 }
1645 
1646 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1647   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1648   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1649                                        HeapRegion::GrainBytes);
1650 
1651   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",


1652                             expand_bytes, aligned_expand_bytes);
1653 
1654   if (is_maximal_no_gc()) {
1655     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");


1656     return false;
1657   }
1658 
1659   double expand_heap_start_time_sec = os::elapsedTime();
1660   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1661   assert(regions_to_expand > 0, "Must expand by at least one region");
1662 
1663   uint expanded_by = _hrm.expand_by(regions_to_expand);
1664   if (expand_time_ms != NULL) {
1665     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1666   }
1667 
1668   if (expanded_by > 0) {
1669     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1670     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1671     g1_policy()->record_new_heap_size(num_regions());
1672   } else {
1673     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1674 

1675     // The expansion of the virtual storage space was unsuccessful.
1676     // Let's see if it was because we ran out of swap.
1677     if (G1ExitOnExpansionFailure &&
1678         _hrm.available() >= regions_to_expand) {
1679       // We had head room...
1680       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1681     }
1682   }
1683   return regions_to_expand > 0;
1684 }
1685 
1686 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1687   size_t aligned_shrink_bytes =
1688     ReservedSpace::page_align_size_down(shrink_bytes);
1689   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1690                                          HeapRegion::GrainBytes);
1691   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1692 
1693   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1694   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1695 
1696 
1697   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",



1698                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1699   if (num_regions_removed > 0) {
1700     g1_policy()->record_new_heap_size(num_regions());
1701   } else {
1702     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");


1703   }
1704 }
1705 
1706 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1707   verify_region_sets_optional();
1708 
1709   // We should only reach here at the end of a Full GC which means we
1710   // should not not be holding to any GC alloc regions. The method
1711   // below will make sure of that and do any remaining clean up.
1712   _allocator->abandon_gc_alloc_regions();
1713 
1714   // Instead of tearing down / rebuilding the free lists here, we
1715   // could instead use the remove_all_pending() method on free_list to
1716   // remove only the ones that we need to remove.
1717   tear_down_region_sets(true /* free_list_only */);
1718   shrink_helper(shrink_bytes);
1719   rebuild_region_sets(true /* free_list_only */);
1720 
1721   _hrm.verify_optional();
1722   verify_region_sets_optional();


1794   // Initialize the G1EvacuationFailureALot counters and flags.
1795   NOT_PRODUCT(reset_evacuation_should_fail();)
1796 
1797   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1798 }
1799 
1800 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1801                                                                  size_t size,
1802                                                                  size_t translation_factor) {
1803   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1804   // Allocate a new reserved space, preferring to use large pages.
1805   ReservedSpace rs(size, preferred_page_size);
1806   G1RegionToSpaceMapper* result  =
1807     G1RegionToSpaceMapper::create_mapper(rs,
1808                                          size,
1809                                          rs.alignment(),
1810                                          HeapRegion::GrainBytes,
1811                                          translation_factor,
1812                                          mtGC);
1813   if (TracePageSizes) {
1814     tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1815                   description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1816   }
1817   return result;
1818 }
1819 
1820 jint G1CollectedHeap::initialize() {
1821   CollectedHeap::pre_initialize();
1822   os::enable_vtime();
1823 


1824   // Necessary to satisfy locking discipline assertions.
1825 
1826   MutexLocker x(Heap_lock);
1827 




1828   // While there are no constraints in the GC code that HeapWordSize
1829   // be any particular value, there are multiple other areas in the
1830   // system which believe this to be true (e.g. oop->object_size in some
1831   // cases incorrectly returns the size in wordSize units rather than
1832   // HeapWordSize).
1833   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1834 
1835   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1836   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1837   size_t heap_alignment = collector_policy()->heap_alignment();
1838 
1839   // Ensure that the sizes are properly aligned.
1840   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1841   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1842   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1843 
1844   _refine_cte_cl = new RefineCardTableEntryClosure();
1845 
1846   jint ecode = JNI_OK;
1847   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);


2000   G1AllocRegion::setup(this, dummy_region);
2001 
2002   _allocator->init_mutator_alloc_region();
2003 
2004   // Do create of the monitoring and management support so that
2005   // values in the heap have been properly initialized.
2006   _g1mm = new G1MonitoringSupport(this);
2007 
2008   G1StringDedup::initialize();
2009 
2010   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2011   for (uint i = 0; i < ParallelGCThreads; i++) {
2012     new (&_preserved_objs[i]) OopAndMarkOopStack();
2013   }
2014 
2015   return JNI_OK;
2016 }
2017 
2018 void G1CollectedHeap::stop() {
2019   // Stop all concurrent threads. We do this to make sure these threads
2020   // do not continue to execute and access resources (e.g. logging)
2021   // that are destroyed during shutdown.
2022   _cg1r->stop();
2023   _cmThread->stop();
2024   if (G1StringDedup::is_enabled()) {
2025     G1StringDedup::stop();
2026   }
2027 }
2028 
2029 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2030   return HeapRegion::max_region_size();
2031 }
2032 
2033 void G1CollectedHeap::post_initialize() {
2034   CollectedHeap::post_initialize();
2035   ref_processing_init();
2036 }
2037 
2038 void G1CollectedHeap::ref_processing_init() {
2039   // Reference processing in G1 currently works as follows:
2040   //


2117 }
2118 
2119 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2120   hr->reset_gc_time_stamp();
2121 }
2122 
2123 #ifndef PRODUCT
2124 
2125 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2126 private:
2127   unsigned _gc_time_stamp;
2128   bool _failures;
2129 
2130 public:
2131   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2132     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2133 
2134   virtual bool doHeapRegion(HeapRegion* hr) {
2135     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2136     if (_gc_time_stamp != region_gc_time_stamp) {
2137       log_info(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),

2138                            region_gc_time_stamp, _gc_time_stamp);
2139       _failures = true;
2140     }
2141     return false;
2142   }
2143 
2144   bool failures() { return _failures; }
2145 };
2146 
2147 void G1CollectedHeap::check_gc_time_stamps() {
2148   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2149   heap_region_iterate(&cl);
2150   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2151 }
2152 #endif // PRODUCT
2153 
2154 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2155   _cg1r->hot_card_cache()->drain(cl, worker_i);
2156 }
2157 


2701 private:
2702   G1CollectedHeap* _g1h;
2703   VerifyOption     _vo;
2704   bool             _failures;
2705 public:
2706   // _vo == UsePrevMarking -> use "prev" marking information,
2707   // _vo == UseNextMarking -> use "next" marking information,
2708   // _vo == UseMarkWord    -> use mark word from object header.
2709   VerifyRootsClosure(VerifyOption vo) :
2710     _g1h(G1CollectedHeap::heap()),
2711     _vo(vo),
2712     _failures(false) { }
2713 
2714   bool failures() { return _failures; }
2715 
2716   template <class T> void do_oop_nv(T* p) {
2717     T heap_oop = oopDesc::load_heap_oop(p);
2718     if (!oopDesc::is_null(heap_oop)) {
2719       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2720       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2721         LogHandle(gc, verify) log;
2722         log.info("Root location " PTR_FORMAT " points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2723         if (_vo == VerifyOption_G1UseMarkWord) {
2724           log.info("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2725         }
2726         ResourceMark rm;
2727         obj->print_on(log.info_stream());
2728         _failures = true;
2729       }
2730     }
2731   }
2732 
2733   void do_oop(oop* p)       { do_oop_nv(p); }
2734   void do_oop(narrowOop* p) { do_oop_nv(p); }
2735 };
2736 
2737 class G1VerifyCodeRootOopClosure: public OopClosure {
2738   G1CollectedHeap* _g1h;
2739   OopClosure* _root_cl;
2740   nmethod* _nm;
2741   VerifyOption _vo;
2742   bool _failures;
2743 
2744   template <class T> void do_oop_work(T* p) {
2745     // First verify that this root is live
2746     _root_cl->do_oop(p);
2747 


2752 
2753     // Don't check the code roots during marking verification in a full GC
2754     if (_vo == VerifyOption_G1UseMarkWord) {
2755       return;
2756     }
2757 
2758     // Now verify that the current nmethod (which contains p) is
2759     // in the code root list of the heap region containing the
2760     // object referenced by p.
2761 
2762     T heap_oop = oopDesc::load_heap_oop(p);
2763     if (!oopDesc::is_null(heap_oop)) {
2764       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2765 
2766       // Now fetch the region containing the object
2767       HeapRegion* hr = _g1h->heap_region_containing(obj);
2768       HeapRegionRemSet* hrrs = hr->rem_set();
2769       // Verify that the strong code root list for this region
2770       // contains the nmethod
2771       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2772         log_info(gc, verify)("Code root location " PTR_FORMAT " "
2773                              "from nmethod " PTR_FORMAT " not in strong "
2774                              "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2775                              p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2776         _failures = true;
2777       }
2778     }
2779   }
2780 
2781 public:
2782   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2783     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2784 
2785   void do_oop(oop* p) { do_oop_work(p); }
2786   void do_oop(narrowOop* p) { do_oop_work(p); }
2787 
2788   void set_nmethod(nmethod* nm) { _nm = nm; }
2789   bool failures() { return _failures; }
2790 };
2791 
2792 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {


2933   }
2934 
2935   bool doHeapRegion(HeapRegion* r) {
2936     // For archive regions, verify there are no heap pointers to
2937     // non-pinned regions. For all others, verify liveness info.
2938     if (r->is_archive()) {
2939       VerifyArchiveRegionClosure verify_oop_pointers(r);
2940       r->object_iterate(&verify_oop_pointers);
2941       return true;
2942     }
2943     if (!r->is_continues_humongous()) {
2944       bool failures = false;
2945       r->verify(_vo, &failures);
2946       if (failures) {
2947         _failures = true;
2948       } else if (!r->is_starts_humongous()) {
2949         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2950         r->object_iterate(&not_dead_yet_cl);
2951         if (_vo != VerifyOption_G1UseNextMarking) {
2952           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2953             log_info(gc, verify)("[" PTR_FORMAT "," PTR_FORMAT "] max_live_bytes " SIZE_FORMAT " < calculated " SIZE_FORMAT,
2954                                    p2i(r->bottom()), p2i(r->end()), r->max_live_bytes(), not_dead_yet_cl.live_bytes());




2955             _failures = true;
2956           }
2957         } else {
2958           // When vo == UseNextMarking we cannot currently do a sanity
2959           // check on the live bytes as the calculation has not been
2960           // finalized yet.
2961         }
2962       }
2963     }
2964     return false; // stop the region iteration if we hit a failure
2965   }
2966 };
2967 
2968 // This is the task used for parallel verification of the heap regions
2969 
2970 class G1ParVerifyTask: public AbstractGangTask {
2971 private:
2972   G1CollectedHeap*  _g1h;
2973   VerifyOption      _vo;
2974   bool              _failures;


2982       AbstractGangTask("Parallel verify task"),
2983       _g1h(g1h),
2984       _vo(vo),
2985       _failures(false),
2986       _hrclaimer(g1h->workers()->active_workers()) {}
2987 
2988   bool failures() {
2989     return _failures;
2990   }
2991 
2992   void work(uint worker_id) {
2993     HandleMark hm;
2994     VerifyRegionClosure blk(true, _vo);
2995     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
2996     if (blk.failures()) {
2997       _failures = true;
2998     }
2999   }
3000 };
3001 
3002 void G1CollectedHeap::verify(VerifyOption vo) {
3003   if (!SafepointSynchronize::is_at_safepoint()) {
3004     log_info(gc, verify)("Skipping verification. Not at safepoint.");
3005   }
3006 
3007   assert(Thread::current()->is_VM_thread(),
3008          "Expected to be executed serially by the VM thread at this point");
3009 
3010   log_debug(gc, verify)("Roots");
3011   VerifyRootsClosure rootsCl(vo);
3012   VerifyKlassClosure klassCl(this, &rootsCl);
3013   CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3014 
3015   // We apply the relevant closures to all the oops in the
3016   // system dictionary, class loader data graph, the string table
3017   // and the nmethods in the code cache.
3018   G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3019   G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3020 
3021   {
3022     G1RootProcessor root_processor(this, 1);
3023     root_processor.process_all_roots(&rootsCl,
3024                                      &cldCl,
3025                                      &blobsCl);
3026   }
3027 
3028   bool failures = rootsCl.failures() || codeRootsCl.failures();
3029 
3030   if (vo != VerifyOption_G1UseMarkWord) {
3031     // If we're verifying during a full GC then the region sets
3032     // will have been torn down at the start of the GC. Therefore
3033     // verifying the region sets will fail. So we only verify
3034     // the region sets when not in a full GC.
3035     log_debug(gc, verify)("HeapRegionSets");
3036     verify_region_sets();
3037   }
3038 
3039   log_debug(gc, verify)("HeapRegions");
3040   if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3041 
3042     G1ParVerifyTask task(this, vo);
3043     workers()->run_task(&task);
3044     if (task.failures()) {
3045       failures = true;
3046     }
3047 
3048   } else {
3049     VerifyRegionClosure blk(false, vo);
3050     heap_region_iterate(&blk);
3051     if (blk.failures()) {
3052       failures = true;
3053     }
3054   }
3055 
3056   if (G1StringDedup::is_enabled()) {
3057     log_debug(gc, verify)("StrDedup");
3058     G1StringDedup::verify();
3059   }
3060 
3061   if (failures) {
3062     log_info(gc, verify)("Heap after failed verification:");
3063     // It helps to have the per-region information in the output to
3064     // help us track down what went wrong. This is why we call
3065     // print_extended_on() instead of print_on().
3066     LogHandle(gc, verify) log;
3067     ResourceMark rm;
3068     print_extended_on(log.info_stream());
3069   }
3070   guarantee(!failures, "there should not have been any failures");













3071 }
3072 
3073 double G1CollectedHeap::verify(bool guard, const char* msg) {
3074   double verify_time_ms = 0.0;
3075 
3076   if (guard && total_collections() >= VerifyGCStartAt) {
3077     double verify_start = os::elapsedTime();
3078     HandleMark hm;  // Discard invalid handles created during verification
3079     prepare_for_verify();
3080     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3081     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3082   }
3083 
3084   return verify_time_ms;
3085 }
3086 
3087 void G1CollectedHeap::verify_before_gc() {
3088   double verify_time_ms = verify(VerifyBeforeGC, "Before GC");
3089   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3090 }
3091 
3092 void G1CollectedHeap::verify_after_gc() {
3093   double verify_time_ms = verify(VerifyAfterGC, "After GC");
3094   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3095 }
3096 
3097 class PrintRegionClosure: public HeapRegionClosure {
3098   outputStream* _st;
3099 public:
3100   PrintRegionClosure(outputStream* st) : _st(st) {}
3101   bool doHeapRegion(HeapRegion* r) {
3102     r->print_on(_st);
3103     return false;
3104   }
3105 };
3106 
3107 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3108                                        const HeapRegion* hr,
3109                                        const VerifyOption vo) const {
3110   switch (vo) {
3111   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3112   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3113   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();


3183     G1StringDedup::print_worker_threads_on(st);
3184   }
3185 }
3186 
3187 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3188   workers()->threads_do(tc);
3189   tc->do_thread(_cmThread);
3190   _cg1r->threads_do(tc);
3191   if (G1StringDedup::is_enabled()) {
3192     G1StringDedup::threads_do(tc);
3193   }
3194 }
3195 
3196 void G1CollectedHeap::print_tracing_info() const {
3197   // We'll overload this to mean "trace GC pause statistics."
3198   if (TraceYoungGenTime || TraceOldGenTime) {
3199     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3200     // to that.
3201     g1_policy()->print_tracing_info();
3202   }

3203   g1_rem_set()->print_summary_info();


3204   concurrent_mark()->print_summary_info();

3205   g1_policy()->print_yg_surv_rate_info();
3206 }
3207 
3208 #ifndef PRODUCT
3209 // Helpful for debugging RSet issues.
3210 
3211 class PrintRSetsClosure : public HeapRegionClosure {
3212 private:
3213   const char* _msg;
3214   size_t _occupied_sum;
3215 
3216 public:
3217   bool doHeapRegion(HeapRegion* r) {
3218     HeapRegionRemSet* hrrs = r->rem_set();
3219     size_t occupied = hrrs->occupied();
3220     _occupied_sum += occupied;
3221 
3222     tty->print_cr("Printing RSet for region " HR_FORMAT,
3223                            HR_FORMAT_PARAMS(r));
3224     if (occupied == 0) {
3225       tty->print_cr("  RSet is empty");
3226     } else {
3227       hrrs->print();
3228     }
3229     tty->print_cr("----------");
3230     return false;
3231   }
3232 
3233   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3234     tty->cr();
3235     tty->print_cr("========================================");
3236     tty->print_cr("%s", msg);
3237     tty->cr();
3238   }
3239 
3240   ~PrintRSetsClosure() {
3241     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3242     tty->print_cr("========================================");
3243     tty->cr();
3244   }
3245 };
3246 
3247 void G1CollectedHeap::print_cset_rsets() {
3248   PrintRSetsClosure cl("Printing CSet RSets");
3249   collection_set_iterate(&cl);
3250 }
3251 
3252 void G1CollectedHeap::print_all_rsets() {
3253   PrintRSetsClosure cl("Printing All RSets");;
3254   heap_region_iterate(&cl);
3255 }
3256 #endif // PRODUCT
3257 
3258 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3259   YoungList* young_list = heap()->young_list();
3260 
3261   size_t eden_used_bytes = young_list->eden_used_bytes();
3262   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3263 


3281 
3282   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3283   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3284 }
3285 
3286 
3287 G1CollectedHeap* G1CollectedHeap::heap() {
3288   CollectedHeap* heap = Universe::heap();
3289   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3290   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3291   return (G1CollectedHeap*)heap;
3292 }
3293 
3294 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3295   // always_do_update_barrier = false;
3296   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3297   // Fill TLAB's and such
3298   accumulate_statistics_all_tlabs();
3299   ensure_parsability(true);
3300 
3301   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());



3302 }
3303 
3304 void G1CollectedHeap::gc_epilogue(bool full) {



3305   // we are at the end of the GC. Total collections has already been increased.
3306   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);


3307 
3308   // FIXME: what is this about?
3309   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3310   // is set.
3311 #if defined(COMPILER2) || INCLUDE_JVMCI
3312   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3313 #endif
3314   // always_do_update_barrier = true;
3315 
3316   resize_all_tlabs();
3317   allocation_context_stats().update(full);
3318 
3319   // We have just completed a GC. Update the soft reference
3320   // policy with the new heap occupancy
3321   Universe::update_heap_info_at_gc();
3322 }
3323 
3324 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3325                                                uint gc_count_before,
3326                                                bool* succeeded,


3529     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3530 
3531     // Here's a good place to add any other checks we'd like to
3532     // perform on CSet regions.
3533     return false;
3534   }
3535 };
3536 #endif // ASSERT
3537 
3538 uint G1CollectedHeap::num_task_queues() const {
3539   return _task_queues->size();
3540 }
3541 
3542 #if TASKQUEUE_STATS
3543 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3544   st->print_raw_cr("GC Task Stats");
3545   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3546   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3547 }
3548 
3549 void G1CollectedHeap::print_taskqueue_stats() const {
3550   LogHandle(gc, task, stats) log;
3551   if (!log.is_develop()) {
3552     return;
3553   }
3554   ResourceMark rm;
3555   outputStream* st = log.develop_stream();
3556 
3557   print_taskqueue_stats_hdr(st);
3558 
3559   TaskQueueStats totals;
3560   const uint n = num_task_queues();
3561   for (uint i = 0; i < n; ++i) {
3562     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3563     totals += task_queue(i)->stats;
3564   }
3565   st->print_raw("tot "); totals.print(st); st->cr();
3566 
3567   DEBUG_ONLY(totals.verify());
3568 }
3569 
3570 void G1CollectedHeap::reset_taskqueue_stats() {
3571   const uint n = num_task_queues();
3572   for (uint i = 0; i < n; ++i) {
3573     task_queue(i)->stats.reset();
3574   }
3575 }
3576 #endif // TASKQUEUE_STATS
3577 
3578 void G1CollectedHeap::log_gc_footer(double pause_time_counter) {



















3579   if (evacuation_failed()) {
3580     log_info(gc)("To-space exhausted");
3581   }
3582 
3583   double pause_time_sec = TimeHelper::counter_to_seconds(pause_time_counter);
3584   g1_policy()->print_phases(pause_time_sec);
3585 
3586   g1_policy()->print_detailed_heap_transition();








3587 }
3588 
3589 
3590 void G1CollectedHeap::wait_for_root_region_scanning() {
3591   double scan_wait_start = os::elapsedTime();
3592   // We have to wait until the CM threads finish scanning the
3593   // root regions as it's the only way to ensure that all the
3594   // objects on them have been correctly scanned before we start
3595   // moving them during the GC.
3596   bool waited = _cm->root_regions()->wait_until_scan_finished();
3597   double wait_time_ms = 0.0;
3598   if (waited) {
3599     double scan_wait_end = os::elapsedTime();
3600     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3601   }
3602   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3603 }
3604 
3605 bool
3606 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3607   assert_at_safepoint(true /* should_be_vm_thread */);
3608   guarantee(!is_gc_active(), "collection is not reentrant");
3609 
3610   if (GC_locker::check_active_before_gc()) {
3611     return false;
3612   }
3613 
3614   _gc_timer_stw->register_gc_start();
3615 
3616   GCIdMark gc_id_mark;
3617   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3618 
3619   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3620   ResourceMark rm;
3621 
3622   wait_for_root_region_scanning();
3623 

3624   print_heap_before_gc();
3625   trace_heap_before_gc(_gc_tracer_stw);
3626 
3627   verify_region_sets_optional();
3628   verify_dirty_young_regions();
3629 
3630   // This call will decide whether this pause is an initial-mark
3631   // pause. If it is, during_initial_mark_pause() will return true
3632   // for the duration of this pause.
3633   g1_policy()->decide_on_conc_mark_initiation();
3634 
3635   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3636   assert(!collector_state()->during_initial_mark_pause() ||
3637           collector_state()->gcs_are_young(), "sanity");
3638 
3639   // We also do not allow mixed GCs during marking.
3640   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3641 
3642   // Record whether this pause is an initial mark. When the current
3643   // thread has completed its logging output and it's safe to signal
3644   // the CM thread, the flag's value in the policy has been reset.
3645   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3646 
3647   // Inner scope for scope based logging, timers, and stats collection
3648   {
3649     EvacuationInfo evacuation_info;
3650 
3651     if (collector_state()->during_initial_mark_pause()) {
3652       // We are about to start a marking cycle, so we increment the
3653       // full collection counter.
3654       increment_old_marking_cycles_started();
3655       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3656     }
3657 
3658     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3659 
3660     GCTraceCPUTime tcpu;
3661 
3662     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3663                                                                   workers()->active_workers(),
3664                                                                   Threads::number_of_non_daemon_threads());
3665     workers()->set_active_workers(active_workers);
3666     FormatBuffer<> gc_string("Pause ");
3667     if (collector_state()->during_initial_mark_pause()) {
3668       gc_string.append("Initial Mark");
3669     } else if (collector_state()->gcs_are_young()) {
3670       gc_string.append("Young");
3671     } else {
3672       gc_string.append("Mixed");
3673     }
3674     GCTraceTime(Info, gc) tm5(gc_string, NULL, gc_cause(), true);
3675 
3676 
3677     double pause_start_sec = os::elapsedTime();
3678     double pause_start_counter = os::elapsed_counter();
3679     g1_policy()->note_gc_start(active_workers);

3680 
3681     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3682     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3683 
3684     // If the secondary_free_list is not empty, append it to the
3685     // free_list. No need to wait for the cleanup operation to finish;
3686     // the region allocation code will check the secondary_free_list
3687     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3688     // set, skip this step so that the region allocation code has to
3689     // get entries from the secondary_free_list.
3690     if (!G1StressConcRegionFreeing) {
3691       append_secondary_free_list_if_not_empty_with_lock();
3692     }
3693 
3694     assert(check_young_list_well_formed(), "young list should be well formed");
3695 
3696     // Don't dynamically change the number of GC threads this early.  A value of
3697     // 0 is used to indicate serial work.  When parallel work is done,
3698     // it will be set.
3699 


3713 #endif
3714 
3715       // Please see comment in g1CollectedHeap.hpp and
3716       // G1CollectedHeap::ref_processing_init() to see how
3717       // reference processing currently works in G1.
3718 
3719       // Enable discovery in the STW reference processor
3720       ref_processor_stw()->enable_discovery();
3721 
3722       {
3723         // We want to temporarily turn off discovery by the
3724         // CM ref processor, if necessary, and turn it back on
3725         // on again later if we do. Using a scoped
3726         // NoRefDiscovery object will do this.
3727         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3728 
3729         // Forget the current alloc region (we might even choose it to be part
3730         // of the collection set!).
3731         _allocator->release_mutator_alloc_region();
3732 





3733         // This timing is only used by the ergonomics to handle our pause target.
3734         // It is unclear why this should not include the full pause. We will
3735         // investigate this in CR 7178365.
3736         //
3737         // Preserving the old comment here if that helps the investigation:
3738         //
3739         // The elapsed time induced by the start time below deliberately elides
3740         // the possible verification above.
3741         double sample_start_time_sec = os::elapsedTime();
3742 
3743         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3744 
3745         if (collector_state()->during_initial_mark_pause()) {
3746           concurrent_mark()->checkpointRootsInitialPre();
3747         }
3748 
3749         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3750         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3751 
3752         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());


3829 
3830         if (collector_state()->during_initial_mark_pause()) {
3831           // We have to do this before we notify the CM threads that
3832           // they can start working to make sure that all the
3833           // appropriate initialization is done on the CM object.
3834           concurrent_mark()->checkpointRootsInitialPost();
3835           collector_state()->set_mark_in_progress(true);
3836           // Note that we don't actually trigger the CM thread at
3837           // this point. We do that later when we're sure that
3838           // the current thread has completed its logging output.
3839         }
3840 
3841         allocate_dummy_regions();
3842 
3843         _allocator->init_mutator_alloc_region();
3844 
3845         {
3846           size_t expand_bytes = g1_policy()->expansion_amount();
3847           if (expand_bytes > 0) {
3848             size_t bytes_before = capacity();
3849             // No need for an ergo logging here,
3850             // expansion_amount() does this when it returns a value > 0.
3851             double expand_ms;
3852             if (!expand(expand_bytes, &expand_ms)) {
3853               // We failed to expand the heap. Cannot do anything about it.
3854             }
3855             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3856           }
3857         }
3858 
3859         // We redo the verification but now wrt to the new CSet which
3860         // has just got initialized after the previous CSet was freed.
3861         _cm->verify_no_cset_oops();
3862         _cm->note_end_of_gc();
3863 
3864         // This timing is only used by the ergonomics to handle our pause target.
3865         // It is unclear why this should not include the full pause. We will
3866         // investigate this in CR 7178365.
3867         double sample_end_time_sec = os::elapsedTime();
3868         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3869         size_t total_cards_scanned = per_thread_states.total_cards_scanned();


3889         // stamp here we invalidate all the GC time stamps on all the
3890         // regions and saved_mark_word() will simply return top() for
3891         // all the regions. This is a nicer way of ensuring this rather
3892         // than iterating over the regions and fixing them. In fact, the
3893         // GC time stamp increment here also ensures that
3894         // saved_mark_word() will return top() between pauses, i.e.,
3895         // during concurrent refinement. So we don't need the
3896         // is_gc_active() check to decided which top to use when
3897         // scanning cards (see CR 7039627).
3898         increment_gc_time_stamp();
3899 
3900         verify_after_gc();
3901         check_bitmaps("GC End");
3902 
3903         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3904         ref_processor_stw()->verify_no_references_recorded();
3905 
3906         // CM reference discovery will be re-enabled if necessary.
3907       }
3908 






3909 #ifdef TRACESPINNING
3910       ParallelTaskTerminator::print_termination_counts();
3911 #endif
3912 
3913       gc_epilogue(false);
3914     }
3915 
3916     // Print the remainder of the GC log output.
3917     log_gc_footer(os::elapsed_counter() - pause_start_counter);
3918 
3919     // It is not yet to safe to tell the concurrent mark to
3920     // start as we have some optional output below. We don't want the
3921     // output from the concurrent mark thread interfering with this
3922     // logging output either.
3923 
3924     _hrm.verify_optional();
3925     verify_region_sets_optional();
3926 
3927     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3928     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3929 
3930     print_heap_after_gc();
3931     trace_heap_after_gc(_gc_tracer_stw);
3932 
3933     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3934     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3935     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3936     // before any GC notifications are raised.
3937     g1mm()->update_sizes();
3938 
3939     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3940     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3941     _gc_timer_stw->register_gc_end();
3942     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3943   }
3944   // It should now be safe to tell the concurrent mark thread to start
3945   // without its logging output interfering with the logging output
3946   // that came from the pause.
3947 


4098 
4099       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4100 
4101       double term_sec = 0.0;
4102       size_t evac_term_attempts = 0;
4103       {
4104         double start = os::elapsedTime();
4105         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4106         evac.do_void();
4107 
4108         evac_term_attempts = evac.term_attempts();
4109         term_sec = evac.term_time();
4110         double elapsed_sec = os::elapsedTime() - start;
4111         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4112         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4113         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4114       }
4115 
4116       assert(pss->queue_is_empty(), "should be empty");
4117 
4118       if (log_is_enabled(Debug, gc, task, stats)) {
4119         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4120         size_t lab_waste;
4121         size_t lab_undo_waste;
4122         pss->waste(lab_waste, lab_undo_waste);
4123         _g1h->print_termination_stats(worker_id,

4124                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4125                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4126                                       term_sec * 1000.0,                          /* evac term time */
4127                                       evac_term_attempts,                         /* evac term attempts */
4128                                       lab_waste,                                  /* alloc buffer waste */
4129                                       lab_undo_waste                              /* undo waste */
4130                                       );
4131       }
4132 
4133       // Close the inner scope so that the ResourceMark and HandleMark
4134       // destructors are executed here and are included as part of the
4135       // "GC Worker Time".
4136     }
4137     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4138   }
4139 };
4140 
4141 void G1CollectedHeap::print_termination_stats_hdr() {
4142   LogHandle(gc, task, stats) log;
4143   if (!log.is_debug()) {
4144     return;
4145   }
4146   log.debug("GC Termination Stats");
4147   log.debug("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4148   log.debug("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
4149   log.debug("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4150 }
4151 
4152 void G1CollectedHeap::print_termination_stats(uint worker_id,

4153                                               double elapsed_ms,
4154                                               double strong_roots_ms,
4155                                               double term_ms,
4156                                               size_t term_attempts,
4157                                               size_t alloc_buffer_waste,
4158                                               size_t undo_waste) const {
4159   log_debug(gc, task, stats)
4160               ("%3d %9.2f %9.2f %6.2f "
4161                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4162                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4163                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4164                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4165                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4166                alloc_buffer_waste * HeapWordSize / K,
4167                undo_waste * HeapWordSize / K);
4168 }
4169 
4170 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4171 private:
4172   BoolObjectClosure* _is_alive;
4173   int _initial_string_table_size;
4174   int _initial_symbol_table_size;
4175 
4176   bool  _process_strings;
4177   int _strings_processed;
4178   int _strings_removed;
4179 
4180   bool  _process_symbols;


4189     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4190 
4191     _initial_string_table_size = StringTable::the_table()->table_size();
4192     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4193     if (process_strings) {
4194       StringTable::clear_parallel_claimed_index();
4195     }
4196     if (process_symbols) {
4197       SymbolTable::clear_parallel_claimed_index();
4198     }
4199   }
4200 
4201   ~G1StringSymbolTableUnlinkTask() {
4202     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4203               "claim value %d after unlink less than initial string table size %d",
4204               StringTable::parallel_claimed_index(), _initial_string_table_size);
4205     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4206               "claim value %d after unlink less than initial symbol table size %d",
4207               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4208 
4209     log_trace(gc, stringdedup)("Cleaned string and symbol table, "

4210                                "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4211                                "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4212                                strings_processed(), strings_removed(),
4213                                symbols_processed(), symbols_removed());
4214   }

4215 
4216   void work(uint worker_id) {
4217     int strings_processed = 0;
4218     int strings_removed = 0;
4219     int symbols_processed = 0;
4220     int symbols_removed = 0;
4221     if (_process_strings) {
4222       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4223       Atomic::add(strings_processed, &_strings_processed);
4224       Atomic::add(strings_removed, &_strings_removed);
4225     }
4226     if (_process_symbols) {
4227       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4228       Atomic::add(symbols_processed, &_symbols_processed);
4229       Atomic::add(symbols_removed, &_symbols_removed);
4230     }
4231   }
4232 
4233   size_t strings_processed() const { return (size_t)_strings_processed; }
4234   size_t strings_removed()   const { return (size_t)_strings_removed; }


5021 
5022 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5023   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5024 
5025   // Should G1EvacuationFailureALot be in effect for this GC?
5026   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5027 
5028   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5029   double start_par_time_sec = os::elapsedTime();
5030   double end_par_time_sec;
5031 
5032   {
5033     const uint n_workers = workers()->active_workers();
5034     G1RootProcessor root_processor(this, n_workers);
5035     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5036     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5037     if (collector_state()->during_initial_mark_pause()) {
5038       ClassLoaderDataGraph::clear_claimed_marks();
5039     }
5040 
5041     print_termination_stats_hdr();



5042 
5043     workers()->run_task(&g1_par_task);
5044     end_par_time_sec = os::elapsedTime();
5045 
5046     // Closing the inner scope will execute the destructor
5047     // for the G1RootProcessor object. We record the current
5048     // elapsed time before closing the scope so that time
5049     // taken for the destructor is NOT included in the
5050     // reported parallel time.
5051   }
5052 
5053   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5054 
5055   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5056   phase_times->record_par_time(par_time_ms);
5057 
5058   double code_root_fixup_time_ms =
5059         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5060   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5061 


5246   }
5247 }
5248 
5249 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5250   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5251   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5252     verify_dirty_region(hr);
5253   }
5254 }
5255 
5256 void G1CollectedHeap::verify_dirty_young_regions() {
5257   verify_dirty_young_list(_young_list->first_region());
5258 }
5259 
5260 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5261                                                HeapWord* tams, HeapWord* end) {
5262   guarantee(tams <= end,
5263             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5264   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5265   if (result < end) {
5266     log_info(gc, verify)("## wrong marked address on %s bitmap: " PTR_FORMAT, bitmap_name, p2i(result));
5267     log_info(gc, verify)("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT, bitmap_name, p2i(tams), p2i(end));



5268     return false;
5269   }
5270   return true;
5271 }
5272 
5273 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5274   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5275   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5276 
5277   HeapWord* bottom = hr->bottom();
5278   HeapWord* ptams  = hr->prev_top_at_mark_start();
5279   HeapWord* ntams  = hr->next_top_at_mark_start();
5280   HeapWord* end    = hr->end();
5281 
5282   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5283 
5284   bool res_n = true;
5285   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5286   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5287   // if we happen to be in that state.
5288   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5289     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5290   }
5291   if (!res_p || !res_n) {
5292     log_info(gc, verify)("#### Bitmap verification failed for " HR_FORMAT, HR_FORMAT_PARAMS(hr));
5293     log_info(gc, verify)("#### Caller: %s", caller);

5294     return false;
5295   }
5296   return true;
5297 }
5298 
5299 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5300   if (!G1VerifyBitmaps) return;
5301 
5302   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5303 }
5304 
5305 class G1VerifyBitmapClosure : public HeapRegionClosure {
5306 private:
5307   const char* _caller;
5308   G1CollectedHeap* _g1h;
5309   bool _failures;
5310 
5311 public:
5312   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5313     _caller(caller), _g1h(g1h), _failures(false) { }


5325 
5326 void G1CollectedHeap::check_bitmaps(const char* caller) {
5327   if (!G1VerifyBitmaps) return;
5328 
5329   G1VerifyBitmapClosure cl(caller, this);
5330   heap_region_iterate(&cl);
5331   guarantee(!cl.failures(), "bitmap verification");
5332 }
5333 
5334 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5335  private:
5336   bool _failures;
5337  public:
5338   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5339 
5340   virtual bool doHeapRegion(HeapRegion* hr) {
5341     uint i = hr->hrm_index();
5342     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5343     if (hr->is_humongous()) {
5344       if (hr->in_collection_set()) {
5345         log_info(gc, verify)("\n## humongous region %u in CSet", i);
5346         _failures = true;
5347         return true;
5348       }
5349       if (cset_state.is_in_cset()) {
5350         log_info(gc, verify)("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5351         _failures = true;
5352         return true;
5353       }
5354       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5355         log_info(gc, verify)("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5356         _failures = true;
5357         return true;
5358       }
5359     } else {
5360       if (cset_state.is_humongous()) {
5361         log_info(gc, verify)("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5362         _failures = true;
5363         return true;
5364       }
5365       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5366         log_info(gc, verify)("\n## in CSet %d / cset state %d inconsistency for region %u",
5367                              hr->in_collection_set(), cset_state.value(), i);
5368         _failures = true;
5369         return true;
5370       }
5371       if (cset_state.is_in_cset()) {
5372         if (hr->is_young() != (cset_state.is_young())) {
5373           log_info(gc, verify)("\n## is_young %d / cset state %d inconsistency for region %u",
5374                                hr->is_young(), cset_state.value(), i);
5375           _failures = true;
5376           return true;
5377         }
5378         if (hr->is_old() != (cset_state.is_old())) {
5379           log_info(gc, verify)("\n## is_old %d / cset state %d inconsistency for region %u",
5380                                hr->is_old(), cset_state.value(), i);
5381           _failures = true;
5382           return true;
5383         }
5384       }
5385     }
5386     return false;
5387   }
5388 
5389   bool failures() const { return _failures; }
5390 };
5391 
5392 bool G1CollectedHeap::check_cset_fast_test() {
5393   G1CheckCSetFastTableClosure cl;
5394   _hrm.iterate(&cl);
5395   return !cl.failures();
5396 }
5397 #endif // PRODUCT
5398 
5399 void G1CollectedHeap::cleanUpCardTable() {


5569     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5570     // until the end of a concurrent mark.
5571     //
5572     // It is not required to check whether the object has been found dead by marking
5573     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5574     // all objects allocated during that time are considered live.
5575     // SATB marking is even more conservative than the remembered set.
5576     // So if at this point in the collection there is no remembered set entry,
5577     // nobody has a reference to it.
5578     // At the start of collection we flush all refinement logs, and remembered sets
5579     // are completely up-to-date wrt to references to the humongous object.
5580     //
5581     // Other implementation considerations:
5582     // - never consider object arrays at this time because they would pose
5583     // considerable effort for cleaning up the the remembered sets. This is
5584     // required because stale remembered sets might reference locations that
5585     // are currently allocated into.
5586     uint region_idx = r->hrm_index();
5587     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5588         !r->rem_set()->is_empty()) {
5589       log_trace(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",


5590                                region_idx,
5591                                (size_t)obj->size() * HeapWordSize,
5592                                p2i(r->bottom()),
5593                                r->rem_set()->occupied(),
5594                                r->rem_set()->strong_code_roots_list_length(),
5595                                next_bitmap->isMarked(r->bottom()),
5596                                g1h->is_humongous_reclaim_candidate(region_idx),
5597                                obj->is_typeArray()
5598                               );


5599       return false;
5600     }
5601 
5602     guarantee(obj->is_typeArray(),
5603               "Only eagerly reclaiming type arrays is supported, but the object "
5604               PTR_FORMAT " is not.", p2i(r->bottom()));
5605 
5606     log_trace(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",

5607                              region_idx,
5608                              (size_t)obj->size() * HeapWordSize,
5609                              p2i(r->bottom()),
5610                              r->rem_set()->occupied(),
5611                              r->rem_set()->strong_code_roots_list_length(),
5612                              next_bitmap->isMarked(r->bottom()),
5613                              g1h->is_humongous_reclaim_candidate(region_idx),
5614                              obj->is_typeArray()
5615                             );
5616 
5617     // Need to clear mark bit of the humongous object if already set.
5618     if (next_bitmap->isMarked(r->bottom())) {
5619       next_bitmap->clear(r->bottom());
5620     }
5621     do {
5622       HeapRegion* next = g1h->next_region_in_humongous(r);
5623       _freed_bytes += r->used();
5624       r->set_containing_set(NULL);
5625       _humongous_regions_removed.increment(1u, r->capacity());
5626       g1h->free_humongous_region(r, _free_region_list, false);
5627       r = next;
5628     } while (r != NULL);
5629 
5630     return false;
5631   }
5632 
5633   HeapRegionSetCount& humongous_free_count() {
5634     return _humongous_regions_removed;
5635   }
5636 
5637   size_t bytes_freed() const {
5638     return _freed_bytes;
5639   }
5640 
5641   size_t humongous_reclaimed() const {
5642     return _humongous_regions_removed.length();
5643   }
5644 };
5645 
5646 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5647   assert_at_safepoint(true);
5648 
5649   if (!G1EagerReclaimHumongousObjects ||
5650       (!_has_humongous_reclaim_candidates && !log_is_enabled(Trace, gc, humongous))) {
5651     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5652     return;
5653   }
5654 
5655   double start_time = os::elapsedTime();
5656 
5657   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5658 
5659   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5660   heap_region_iterate(&cl);
5661 
5662   HeapRegionSetCount empty_set;
5663   remove_from_old_sets(empty_set, cl.humongous_free_count());
5664 
5665   G1HRPrinter* hrp = hr_printer();
5666   if (hrp->is_active()) {
5667     FreeRegionListIterator iter(&local_cleanup_list);
5668     while (iter.more_available()) {
5669       HeapRegion* hr = iter.get_next();
5670       hrp->cleanup(hr);


5683 // the current incremental collection set in preparation of a
5684 // full collection. After the full GC we will start to build up
5685 // the incremental collection set again.
5686 // This is only called when we're doing a full collection
5687 // and is immediately followed by the tearing down of the young list.
5688 
5689 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5690   HeapRegion* cur = cs_head;
5691 
5692   while (cur != NULL) {
5693     HeapRegion* next = cur->next_in_collection_set();
5694     assert(cur->in_collection_set(), "bad CS");
5695     cur->set_next_in_collection_set(NULL);
5696     clear_in_cset(cur);
5697     cur->set_young_index_in_cset(-1);
5698     cur = next;
5699   }
5700 }
5701 
5702 void G1CollectedHeap::set_free_regions_coming() {
5703   log_develop(gc, freelist)("G1ConcRegionFreeing [cm thread] : "

5704                             "setting free regions coming");

5705 
5706   assert(!free_regions_coming(), "pre-condition");
5707   _free_regions_coming = true;
5708 }
5709 
5710 void G1CollectedHeap::reset_free_regions_coming() {
5711   assert(free_regions_coming(), "pre-condition");
5712 
5713   {
5714     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5715     _free_regions_coming = false;
5716     SecondaryFreeList_lock->notify_all();
5717   }
5718 
5719   log_develop(gc, freelist)("G1ConcRegionFreeing [cm thread] : "

5720                             "reset free regions coming");

5721 }
5722 
5723 void G1CollectedHeap::wait_while_free_regions_coming() {
5724   // Most of the time we won't have to wait, so let's do a quick test
5725   // first before we take the lock.
5726   if (!free_regions_coming()) {
5727     return;
5728   }
5729 
5730   log_develop(gc, freelist)("G1ConcRegionFreeing [other] : "

5731                             "waiting for free regions");

5732 
5733   {
5734     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5735     while (free_regions_coming()) {
5736       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5737     }
5738   }
5739 
5740   log_develop(gc, freelist)("G1ConcRegionFreeing [other] : "

5741                             "done waiting for free regions");

5742 }
5743 
5744 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5745   return _allocator->is_retained_old_region(hr);
5746 }
5747 
5748 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5749   _young_list->push_region(hr);
5750 }
5751 
5752 class NoYoungRegionsClosure: public HeapRegionClosure {
5753 private:
5754   bool _success;
5755 public:
5756   NoYoungRegionsClosure() : _success(true) { }
5757   bool doHeapRegion(HeapRegion* r) {
5758     if (r->is_young()) {
5759       log_info(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5760                            p2i(r->bottom()), p2i(r->end()));
5761       _success = false;
5762     }
5763     return false;
5764   }
5765   bool success() { return _success; }
5766 };
5767 
5768 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5769   bool ret = _young_list->check_list_empty(check_sample);
5770 
5771   if (check_heap) {
5772     NoYoungRegionsClosure closure;
5773     heap_region_iterate(&closure);
5774     ret = ret && closure.success();
5775   }
5776 
5777   return ret;
5778 }
5779 


5990 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5991                                              size_t allocated_bytes,
5992                                              InCSetState dest) {
5993   bool during_im = collector_state()->during_initial_mark_pause();
5994   alloc_region->note_end_of_copying(during_im);
5995   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5996   if (dest.is_young()) {
5997     young_list()->add_survivor_region(alloc_region);
5998   } else {
5999     _old_set.add(alloc_region);
6000   }
6001   _hr_printer.retire(alloc_region);
6002 }
6003 
6004 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6005   bool expanded = false;
6006   uint index = _hrm.find_highest_free(&expanded);
6007 
6008   if (index != G1_NO_HRM_INDEX) {
6009     if (expanded) {
6010       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",



6011                                 HeapRegion::GrainWords * HeapWordSize);
6012     }
6013     _hrm.allocate_free_regions_starting_at(index, 1);
6014     return region_at(index);
6015   }
6016   return NULL;
6017 }
6018 
6019 // Heap region set verification
6020 
6021 class VerifyRegionListsClosure : public HeapRegionClosure {
6022 private:
6023   HeapRegionSet*   _old_set;
6024   HeapRegionSet*   _humongous_set;
6025   HeapRegionManager*   _hrm;
6026 
6027 public:
6028   HeapRegionSetCount _old_count;
6029   HeapRegionSetCount _humongous_count;
6030   HeapRegionSetCount _free_count;


< prev index next >