1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/g1/concurrentMark.inline.hpp"
  30 #include "gc/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc/g1/g1CollectedHeap.inline.hpp"
  32 #include "gc/g1/g1CollectorPolicy.hpp"
  33 #include "gc/g1/g1CollectorState.hpp"
  34 #include "gc/g1/g1ErgoVerbose.hpp"
  35 #include "gc/g1/g1Log.hpp"
  36 #include "gc/g1/g1OopClosures.inline.hpp"
  37 #include "gc/g1/g1RemSet.hpp"
  38 #include "gc/g1/g1StringDedup.hpp"
  39 #include "gc/g1/heapRegion.inline.hpp"
  40 #include "gc/g1/heapRegionManager.inline.hpp"
  41 #include "gc/g1/heapRegionRemSet.hpp"
  42 #include "gc/g1/heapRegionSet.inline.hpp"
  43 #include "gc/g1/suspendibleThreadSet.hpp"
  44 #include "gc/shared/gcId.hpp"
  45 #include "gc/shared/gcTimer.hpp"
  46 #include "gc/shared/gcTrace.hpp"
  47 #include "gc/shared/gcTraceTime.hpp"
  48 #include "gc/shared/genOopClosures.inline.hpp"
  49 #include "gc/shared/referencePolicy.hpp"
  50 #include "gc/shared/strongRootsScope.hpp"
  51 #include "gc/shared/taskqueue.inline.hpp"
  52 #include "gc/shared/vmGCOperations.hpp"
  53 #include "memory/allocation.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "runtime/atomic.inline.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/prefetch.inline.hpp"
  60 #include "services/memTracker.hpp"
  61 
  62 // Concurrent marking bit map wrapper
  63 
  64 CMBitMapRO::CMBitMapRO(int shifter) :
  65   _bm(),
  66   _shifter(shifter) {
  67   _bmStartWord = 0;
  68   _bmWordSize = 0;
  69 }
  70 
  71 HeapWord* CMBitMapRO::getNextMarkedWordAddress(const HeapWord* addr,
  72                                                const HeapWord* limit) const {
  73   // First we must round addr *up* to a possible object boundary.
  74   addr = (HeapWord*)align_size_up((intptr_t)addr,
  75                                   HeapWordSize << _shifter);
  76   size_t addrOffset = heapWordToOffset(addr);
  77   if (limit == NULL) {
  78     limit = _bmStartWord + _bmWordSize;
  79   }
  80   size_t limitOffset = heapWordToOffset(limit);
  81   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  82   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  83   assert(nextAddr >= addr, "get_next_one postcondition");
  84   assert(nextAddr == limit || isMarked(nextAddr),
  85          "get_next_one postcondition");
  86   return nextAddr;
  87 }
  88 
  89 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(const HeapWord* addr,
  90                                                  const HeapWord* limit) const {
  91   size_t addrOffset = heapWordToOffset(addr);
  92   if (limit == NULL) {
  93     limit = _bmStartWord + _bmWordSize;
  94   }
  95   size_t limitOffset = heapWordToOffset(limit);
  96   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  97   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  98   assert(nextAddr >= addr, "get_next_one postcondition");
  99   assert(nextAddr == limit || !isMarked(nextAddr),
 100          "get_next_one postcondition");
 101   return nextAddr;
 102 }
 103 
 104 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
 105   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
 106   return (int) (diff >> _shifter);
 107 }
 108 
 109 #ifndef PRODUCT
 110 bool CMBitMapRO::covers(MemRegion heap_rs) const {
 111   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 112   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 113          "size inconsistency");
 114   return _bmStartWord == (HeapWord*)(heap_rs.start()) &&
 115          _bmWordSize  == heap_rs.word_size();
 116 }
 117 #endif
 118 
 119 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 120   _bm.print_on_error(st, prefix);
 121 }
 122 
 123 size_t CMBitMap::compute_size(size_t heap_size) {
 124   return ReservedSpace::allocation_align_size_up(heap_size / mark_distance());
 125 }
 126 
 127 size_t CMBitMap::mark_distance() {
 128   return MinObjAlignmentInBytes * BitsPerByte;
 129 }
 130 
 131 void CMBitMap::initialize(MemRegion heap, G1RegionToSpaceMapper* storage) {
 132   _bmStartWord = heap.start();
 133   _bmWordSize = heap.word_size();
 134 
 135   _bm.set_map((BitMap::bm_word_t*) storage->reserved().start());
 136   _bm.set_size(_bmWordSize >> _shifter);
 137 
 138   storage->set_mapping_changed_listener(&_listener);
 139 }
 140 
 141 void CMBitMapMappingChangedListener::on_commit(uint start_region, size_t num_regions, bool zero_filled) {
 142   if (zero_filled) {
 143     return;
 144   }
 145   // We need to clear the bitmap on commit, removing any existing information.
 146   MemRegion mr(G1CollectedHeap::heap()->bottom_addr_for_region(start_region), num_regions * HeapRegion::GrainWords);
 147   _bm->clearRange(mr);
 148 }
 149 
 150 // Closure used for clearing the given mark bitmap.
 151 class ClearBitmapHRClosure : public HeapRegionClosure {
 152  private:
 153   ConcurrentMark* _cm;
 154   CMBitMap* _bitmap;
 155   bool _may_yield;      // The closure may yield during iteration. If yielded, abort the iteration.
 156  public:
 157   ClearBitmapHRClosure(ConcurrentMark* cm, CMBitMap* bitmap, bool may_yield) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap), _may_yield(may_yield) {
 158     assert(!may_yield || cm != NULL, "CM must be non-NULL if this closure is expected to yield.");
 159   }
 160 
 161   virtual bool doHeapRegion(HeapRegion* r) {
 162     size_t const chunk_size_in_words = M / HeapWordSize;
 163 
 164     HeapWord* cur = r->bottom();
 165     HeapWord* const end = r->end();
 166 
 167     while (cur < end) {
 168       MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 169       _bitmap->clearRange(mr);
 170 
 171       cur += chunk_size_in_words;
 172 
 173       // Abort iteration if after yielding the marking has been aborted.
 174       if (_may_yield && _cm->do_yield_check() && _cm->has_aborted()) {
 175         return true;
 176       }
 177       // Repeat the asserts from before the start of the closure. We will do them
 178       // as asserts here to minimize their overhead on the product. However, we
 179       // will have them as guarantees at the beginning / end of the bitmap
 180       // clearing to get some checking in the product.
 181       assert(!_may_yield || _cm->cmThread()->during_cycle(), "invariant");
 182       assert(!_may_yield || !G1CollectedHeap::heap()->collector_state()->mark_in_progress(), "invariant");
 183     }
 184 
 185     return false;
 186   }
 187 };
 188 
 189 class ParClearNextMarkBitmapTask : public AbstractGangTask {
 190   ClearBitmapHRClosure* _cl;
 191   HeapRegionClaimer     _hrclaimer;
 192   bool                  _suspendible; // If the task is suspendible, workers must join the STS.
 193 
 194 public:
 195   ParClearNextMarkBitmapTask(ClearBitmapHRClosure *cl, uint n_workers, bool suspendible) :
 196       _cl(cl), _suspendible(suspendible), AbstractGangTask("Parallel Clear Bitmap Task"), _hrclaimer(n_workers) {}
 197 
 198   void work(uint worker_id) {
 199     SuspendibleThreadSetJoiner sts_join(_suspendible);
 200     G1CollectedHeap::heap()->heap_region_par_iterate(_cl, worker_id, &_hrclaimer, true);
 201   }
 202 };
 203 
 204 void CMBitMap::clearAll() {
 205   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 206   ClearBitmapHRClosure cl(NULL, this, false /* may_yield */);
 207   uint n_workers = g1h->workers()->active_workers();
 208   ParClearNextMarkBitmapTask task(&cl, n_workers, false);
 209   g1h->workers()->run_task(&task);
 210   guarantee(cl.complete(), "Must have completed iteration.");
 211   return;
 212 }
 213 
 214 void CMBitMap::markRange(MemRegion mr) {
 215   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 216   assert(!mr.is_empty(), "unexpected empty region");
 217   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 218           ((HeapWord *) mr.end())),
 219          "markRange memory region end is not card aligned");
 220   // convert address range into offset range
 221   _bm.at_put_range(heapWordToOffset(mr.start()),
 222                    heapWordToOffset(mr.end()), true);
 223 }
 224 
 225 void CMBitMap::clearRange(MemRegion mr) {
 226   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 227   assert(!mr.is_empty(), "unexpected empty region");
 228   // convert address range into offset range
 229   _bm.at_put_range(heapWordToOffset(mr.start()),
 230                    heapWordToOffset(mr.end()), false);
 231 }
 232 
 233 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 234                                             HeapWord* end_addr) {
 235   HeapWord* start = getNextMarkedWordAddress(addr);
 236   start = MIN2(start, end_addr);
 237   HeapWord* end   = getNextUnmarkedWordAddress(start);
 238   end = MIN2(end, end_addr);
 239   assert(start <= end, "Consistency check");
 240   MemRegion mr(start, end);
 241   if (!mr.is_empty()) {
 242     clearRange(mr);
 243   }
 244   return mr;
 245 }
 246 
 247 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 248   _base(NULL), _cm(cm)
 249 {}
 250 
 251 bool CMMarkStack::allocate(size_t capacity) {
 252   // allocate a stack of the requisite depth
 253   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 254   if (!rs.is_reserved()) {
 255     warning("ConcurrentMark MarkStack allocation failure");
 256     return false;
 257   }
 258   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 259   if (!_virtual_space.initialize(rs, rs.size())) {
 260     warning("ConcurrentMark MarkStack backing store failure");
 261     // Release the virtual memory reserved for the marking stack
 262     rs.release();
 263     return false;
 264   }
 265   assert(_virtual_space.committed_size() == rs.size(),
 266          "Didn't reserve backing store for all of ConcurrentMark stack?");
 267   _base = (oop*) _virtual_space.low();
 268   setEmpty();
 269   _capacity = (jint) capacity;
 270   _saved_index = -1;
 271   _should_expand = false;
 272   return true;
 273 }
 274 
 275 void CMMarkStack::expand() {
 276   // Called, during remark, if we've overflown the marking stack during marking.
 277   assert(isEmpty(), "stack should been emptied while handling overflow");
 278   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 279   // Clear expansion flag
 280   _should_expand = false;
 281   if (_capacity == (jint) MarkStackSizeMax) {
 282     if (PrintGCDetails && Verbose) {
 283       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 284     }
 285     return;
 286   }
 287   // Double capacity if possible
 288   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 289   // Do not give up existing stack until we have managed to
 290   // get the double capacity that we desired.
 291   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 292                                                            sizeof(oop)));
 293   if (rs.is_reserved()) {
 294     // Release the backing store associated with old stack
 295     _virtual_space.release();
 296     // Reinitialize virtual space for new stack
 297     if (!_virtual_space.initialize(rs, rs.size())) {
 298       fatal("Not enough swap for expanded marking stack capacity");
 299     }
 300     _base = (oop*)(_virtual_space.low());
 301     _index = 0;
 302     _capacity = new_capacity;
 303   } else {
 304     if (PrintGCDetails && Verbose) {
 305       // Failed to double capacity, continue;
 306       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 307                           SIZE_FORMAT "K to " SIZE_FORMAT "K",
 308                           _capacity / K, new_capacity / K);
 309     }
 310   }
 311 }
 312 
 313 void CMMarkStack::set_should_expand() {
 314   // If we're resetting the marking state because of an
 315   // marking stack overflow, record that we should, if
 316   // possible, expand the stack.
 317   _should_expand = _cm->has_overflown();
 318 }
 319 
 320 CMMarkStack::~CMMarkStack() {
 321   if (_base != NULL) {
 322     _base = NULL;
 323     _virtual_space.release();
 324   }
 325 }
 326 
 327 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 328   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 329   jint start = _index;
 330   jint next_index = start + n;
 331   if (next_index > _capacity) {
 332     _overflow = true;
 333     return;
 334   }
 335   // Otherwise.
 336   _index = next_index;
 337   for (int i = 0; i < n; i++) {
 338     int ind = start + i;
 339     assert(ind < _capacity, "By overflow test above.");
 340     _base[ind] = ptr_arr[i];
 341   }
 342 }
 343 
 344 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 345   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 346   jint index = _index;
 347   if (index == 0) {
 348     *n = 0;
 349     return false;
 350   } else {
 351     int k = MIN2(max, index);
 352     jint  new_ind = index - k;
 353     for (int j = 0; j < k; j++) {
 354       ptr_arr[j] = _base[new_ind + j];
 355     }
 356     _index = new_ind;
 357     *n = k;
 358     return true;
 359   }
 360 }
 361 
 362 void CMMarkStack::note_start_of_gc() {
 363   assert(_saved_index == -1,
 364          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 365   _saved_index = _index;
 366 }
 367 
 368 void CMMarkStack::note_end_of_gc() {
 369   // This is intentionally a guarantee, instead of an assert. If we
 370   // accidentally add something to the mark stack during GC, it
 371   // will be a correctness issue so it's better if we crash. we'll
 372   // only check this once per GC anyway, so it won't be a performance
 373   // issue in any way.
 374   guarantee(_saved_index == _index,
 375             "saved index: %d index: %d", _saved_index, _index);
 376   _saved_index = -1;
 377 }
 378 
 379 CMRootRegions::CMRootRegions() :
 380   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 381   _should_abort(false),  _next_survivor(NULL) { }
 382 
 383 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 384   _young_list = g1h->young_list();
 385   _cm = cm;
 386 }
 387 
 388 void CMRootRegions::prepare_for_scan() {
 389   assert(!scan_in_progress(), "pre-condition");
 390 
 391   // Currently, only survivors can be root regions.
 392   assert(_next_survivor == NULL, "pre-condition");
 393   _next_survivor = _young_list->first_survivor_region();
 394   _scan_in_progress = (_next_survivor != NULL);
 395   _should_abort = false;
 396 }
 397 
 398 HeapRegion* CMRootRegions::claim_next() {
 399   if (_should_abort) {
 400     // If someone has set the should_abort flag, we return NULL to
 401     // force the caller to bail out of their loop.
 402     return NULL;
 403   }
 404 
 405   // Currently, only survivors can be root regions.
 406   HeapRegion* res = _next_survivor;
 407   if (res != NULL) {
 408     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 409     // Read it again in case it changed while we were waiting for the lock.
 410     res = _next_survivor;
 411     if (res != NULL) {
 412       if (res == _young_list->last_survivor_region()) {
 413         // We just claimed the last survivor so store NULL to indicate
 414         // that we're done.
 415         _next_survivor = NULL;
 416       } else {
 417         _next_survivor = res->get_next_young_region();
 418       }
 419     } else {
 420       // Someone else claimed the last survivor while we were trying
 421       // to take the lock so nothing else to do.
 422     }
 423   }
 424   assert(res == NULL || res->is_survivor(), "post-condition");
 425 
 426   return res;
 427 }
 428 
 429 void CMRootRegions::scan_finished() {
 430   assert(scan_in_progress(), "pre-condition");
 431 
 432   // Currently, only survivors can be root regions.
 433   if (!_should_abort) {
 434     assert(_next_survivor == NULL, "we should have claimed all survivors");
 435   }
 436   _next_survivor = NULL;
 437 
 438   {
 439     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 440     _scan_in_progress = false;
 441     RootRegionScan_lock->notify_all();
 442   }
 443 }
 444 
 445 bool CMRootRegions::wait_until_scan_finished() {
 446   if (!scan_in_progress()) return false;
 447 
 448   {
 449     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 450     while (scan_in_progress()) {
 451       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 452     }
 453   }
 454   return true;
 455 }
 456 
 457 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 458   return MAX2((n_par_threads + 2) / 4, 1U);
 459 }
 460 
 461 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, G1RegionToSpaceMapper* prev_bitmap_storage, G1RegionToSpaceMapper* next_bitmap_storage) :
 462   _g1h(g1h),
 463   _markBitMap1(),
 464   _markBitMap2(),
 465   _parallel_marking_threads(0),
 466   _max_parallel_marking_threads(0),
 467   _sleep_factor(0.0),
 468   _marking_task_overhead(1.0),
 469   _cleanup_sleep_factor(0.0),
 470   _cleanup_task_overhead(1.0),
 471   _cleanup_list("Cleanup List"),
 472   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 473   _card_bm((g1h->reserved_region().byte_size() + CardTableModRefBS::card_size - 1) >>
 474             CardTableModRefBS::card_shift,
 475             false /* in_resource_area*/),
 476 
 477   _prevMarkBitMap(&_markBitMap1),
 478   _nextMarkBitMap(&_markBitMap2),
 479 
 480   _markStack(this),
 481   // _finger set in set_non_marking_state
 482 
 483   _max_worker_id(ParallelGCThreads),
 484   // _active_tasks set in set_non_marking_state
 485   // _tasks set inside the constructor
 486   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 487   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 488 
 489   _has_overflown(false),
 490   _concurrent(false),
 491   _has_aborted(false),
 492   _restart_for_overflow(false),
 493   _concurrent_marking_in_progress(false),
 494 
 495   // _verbose_level set below
 496 
 497   _init_times(),
 498   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 499   _cleanup_times(),
 500   _total_counting_time(0.0),
 501   _total_rs_scrub_time(0.0),
 502 
 503   _parallel_workers(NULL),
 504 
 505   _count_card_bitmaps(NULL),
 506   _count_marked_bytes(NULL),
 507   _completed_initialization(false) {
 508 
 509   _markBitMap1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 510   _markBitMap2.initialize(g1h->reserved_region(), next_bitmap_storage);
 511 
 512   // Create & start a ConcurrentMark thread.
 513   _cmThread = new ConcurrentMarkThread(this);
 514   assert(cmThread() != NULL, "CM Thread should have been created");
 515   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 516   if (_cmThread->osthread() == NULL) {
 517       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 518   }
 519 
 520   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 521   assert(_markBitMap1.covers(g1h->reserved_region()), "_markBitMap1 inconsistency");
 522   assert(_markBitMap2.covers(g1h->reserved_region()), "_markBitMap2 inconsistency");
 523 
 524   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 525   satb_qs.set_buffer_size(G1SATBBufferSize);
 526 
 527   _root_regions.init(_g1h, this);
 528 
 529   if (ConcGCThreads > ParallelGCThreads) {
 530     warning("Can't have more ConcGCThreads (%u) "
 531             "than ParallelGCThreads (%u).",
 532             ConcGCThreads, ParallelGCThreads);
 533     return;
 534   }
 535   if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 536     // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 537     // if both are set
 538     _sleep_factor             = 0.0;
 539     _marking_task_overhead    = 1.0;
 540   } else if (G1MarkingOverheadPercent > 0) {
 541     // We will calculate the number of parallel marking threads based
 542     // on a target overhead with respect to the soft real-time goal
 543     double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 544     double overall_cm_overhead =
 545       (double) MaxGCPauseMillis * marking_overhead /
 546       (double) GCPauseIntervalMillis;
 547     double cpu_ratio = 1.0 / (double) os::processor_count();
 548     double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 549     double marking_task_overhead =
 550       overall_cm_overhead / marking_thread_num *
 551                                               (double) os::processor_count();
 552     double sleep_factor =
 553                        (1.0 - marking_task_overhead) / marking_task_overhead;
 554 
 555     FLAG_SET_ERGO(uint, ConcGCThreads, (uint) marking_thread_num);
 556     _sleep_factor             = sleep_factor;
 557     _marking_task_overhead    = marking_task_overhead;
 558   } else {
 559     // Calculate the number of parallel marking threads by scaling
 560     // the number of parallel GC threads.
 561     uint marking_thread_num = scale_parallel_threads(ParallelGCThreads);
 562     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 563     _sleep_factor             = 0.0;
 564     _marking_task_overhead    = 1.0;
 565   }
 566 
 567   assert(ConcGCThreads > 0, "Should have been set");
 568   _parallel_marking_threads = ConcGCThreads;
 569   _max_parallel_marking_threads = _parallel_marking_threads;
 570 
 571   if (parallel_marking_threads() > 1) {
 572     _cleanup_task_overhead = 1.0;
 573   } else {
 574     _cleanup_task_overhead = marking_task_overhead();
 575   }
 576   _cleanup_sleep_factor =
 577                    (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 578 
 579 #if 0
 580   gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 581   gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 582   gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 583   gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 584   gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 585 #endif
 586 
 587   _parallel_workers = new WorkGang("G1 Marker",
 588        _max_parallel_marking_threads, false, true);
 589   if (_parallel_workers == NULL) {
 590     vm_exit_during_initialization("Failed necessary allocation.");
 591   } else {
 592     _parallel_workers->initialize_workers();
 593   }
 594 
 595   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 596     size_t mark_stack_size =
 597       MIN2(MarkStackSizeMax,
 598           MAX2(MarkStackSize, (size_t) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 599     // Verify that the calculated value for MarkStackSize is in range.
 600     // It would be nice to use the private utility routine from Arguments.
 601     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 602       warning("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 603               "must be between 1 and " SIZE_FORMAT,
 604               mark_stack_size, MarkStackSizeMax);
 605       return;
 606     }
 607     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 608   } else {
 609     // Verify MarkStackSize is in range.
 610     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 611       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 612         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 613           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 614                   "must be between 1 and " SIZE_FORMAT,
 615                   MarkStackSize, MarkStackSizeMax);
 616           return;
 617         }
 618       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 619         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 620           warning("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 621                   " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 622                   MarkStackSize, MarkStackSizeMax);
 623           return;
 624         }
 625       }
 626     }
 627   }
 628 
 629   if (!_markStack.allocate(MarkStackSize)) {
 630     warning("Failed to allocate CM marking stack");
 631     return;
 632   }
 633 
 634   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 635   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 636 
 637   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 638   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 639 
 640   BitMap::idx_t card_bm_size = _card_bm.size();
 641 
 642   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 643   _active_tasks = _max_worker_id;
 644 
 645   uint max_regions = _g1h->max_regions();
 646   for (uint i = 0; i < _max_worker_id; ++i) {
 647     CMTaskQueue* task_queue = new CMTaskQueue();
 648     task_queue->initialize();
 649     _task_queues->register_queue(i, task_queue);
 650 
 651     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 652     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 653 
 654     _tasks[i] = new CMTask(i, this,
 655                            _count_marked_bytes[i],
 656                            &_count_card_bitmaps[i],
 657                            task_queue, _task_queues);
 658 
 659     _accum_task_vtime[i] = 0.0;
 660   }
 661 
 662   // Calculate the card number for the bottom of the heap. Used
 663   // in biasing indexes into the accounting card bitmaps.
 664   _heap_bottom_card_num =
 665     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 666                                 CardTableModRefBS::card_shift);
 667 
 668   // Clear all the liveness counting data
 669   clear_all_count_data();
 670 
 671   // so that the call below can read a sensible value
 672   _heap_start = g1h->reserved_region().start();
 673   set_non_marking_state();
 674   _completed_initialization = true;
 675 }
 676 
 677 void ConcurrentMark::reset() {
 678   // Starting values for these two. This should be called in a STW
 679   // phase.
 680   MemRegion reserved = _g1h->g1_reserved();
 681   _heap_start = reserved.start();
 682   _heap_end   = reserved.end();
 683 
 684   // Separated the asserts so that we know which one fires.
 685   assert(_heap_start != NULL, "heap bounds should look ok");
 686   assert(_heap_end != NULL, "heap bounds should look ok");
 687   assert(_heap_start < _heap_end, "heap bounds should look ok");
 688 
 689   // Reset all the marking data structures and any necessary flags
 690   reset_marking_state();
 691 
 692   // We do reset all of them, since different phases will use
 693   // different number of active threads. So, it's easiest to have all
 694   // of them ready.
 695   for (uint i = 0; i < _max_worker_id; ++i) {
 696     _tasks[i]->reset(_nextMarkBitMap);
 697   }
 698 
 699   // we need this to make sure that the flag is on during the evac
 700   // pause with initial mark piggy-backed
 701   set_concurrent_marking_in_progress();
 702 }
 703 
 704 
 705 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 706   _markStack.set_should_expand();
 707   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 708   if (clear_overflow) {
 709     clear_has_overflown();
 710   } else {
 711     assert(has_overflown(), "pre-condition");
 712   }
 713   _finger = _heap_start;
 714 
 715   for (uint i = 0; i < _max_worker_id; ++i) {
 716     CMTaskQueue* queue = _task_queues->queue(i);
 717     queue->set_empty();
 718   }
 719 }
 720 
 721 void ConcurrentMark::set_concurrency(uint active_tasks) {
 722   assert(active_tasks <= _max_worker_id, "we should not have more");
 723 
 724   _active_tasks = active_tasks;
 725   // Need to update the three data structures below according to the
 726   // number of active threads for this phase.
 727   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 728   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 729   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 730 }
 731 
 732 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 733   set_concurrency(active_tasks);
 734 
 735   _concurrent = concurrent;
 736   // We propagate this to all tasks, not just the active ones.
 737   for (uint i = 0; i < _max_worker_id; ++i)
 738     _tasks[i]->set_concurrent(concurrent);
 739 
 740   if (concurrent) {
 741     set_concurrent_marking_in_progress();
 742   } else {
 743     // We currently assume that the concurrent flag has been set to
 744     // false before we start remark. At this point we should also be
 745     // in a STW phase.
 746     assert(!concurrent_marking_in_progress(), "invariant");
 747     assert(out_of_regions(),
 748            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 749            p2i(_finger), p2i(_heap_end));
 750   }
 751 }
 752 
 753 void ConcurrentMark::set_non_marking_state() {
 754   // We set the global marking state to some default values when we're
 755   // not doing marking.
 756   reset_marking_state();
 757   _active_tasks = 0;
 758   clear_concurrent_marking_in_progress();
 759 }
 760 
 761 ConcurrentMark::~ConcurrentMark() {
 762   // The ConcurrentMark instance is never freed.
 763   ShouldNotReachHere();
 764 }
 765 
 766 void ConcurrentMark::clearNextBitmap() {
 767   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 768 
 769   // Make sure that the concurrent mark thread looks to still be in
 770   // the current cycle.
 771   guarantee(cmThread()->during_cycle(), "invariant");
 772 
 773   // We are finishing up the current cycle by clearing the next
 774   // marking bitmap and getting it ready for the next cycle. During
 775   // this time no other cycle can start. So, let's make sure that this
 776   // is the case.
 777   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 778 
 779   ClearBitmapHRClosure cl(this, _nextMarkBitMap, true /* may_yield */);
 780   ParClearNextMarkBitmapTask task(&cl, parallel_marking_threads(), true);
 781   _parallel_workers->run_task(&task);
 782 
 783   // Clear the liveness counting data. If the marking has been aborted, the abort()
 784   // call already did that.
 785   if (cl.complete()) {
 786     clear_all_count_data();
 787   }
 788 
 789   // Repeat the asserts from above.
 790   guarantee(cmThread()->during_cycle(), "invariant");
 791   guarantee(!g1h->collector_state()->mark_in_progress(), "invariant");
 792 }
 793 
 794 class CheckBitmapClearHRClosure : public HeapRegionClosure {
 795   CMBitMap* _bitmap;
 796   bool _error;
 797  public:
 798   CheckBitmapClearHRClosure(CMBitMap* bitmap) : _bitmap(bitmap) {
 799   }
 800 
 801   virtual bool doHeapRegion(HeapRegion* r) {
 802     // This closure can be called concurrently to the mutator, so we must make sure
 803     // that the result of the getNextMarkedWordAddress() call is compared to the
 804     // value passed to it as limit to detect any found bits.
 805     // end never changes in G1.
 806     HeapWord* end = r->end();
 807     return _bitmap->getNextMarkedWordAddress(r->bottom(), end) != end;
 808   }
 809 };
 810 
 811 bool ConcurrentMark::nextMarkBitmapIsClear() {
 812   CheckBitmapClearHRClosure cl(_nextMarkBitMap);
 813   _g1h->heap_region_iterate(&cl);
 814   return cl.complete();
 815 }
 816 
 817 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 818 public:
 819   bool doHeapRegion(HeapRegion* r) {
 820     r->note_start_of_marking();
 821     return false;
 822   }
 823 };
 824 
 825 void ConcurrentMark::checkpointRootsInitialPre() {
 826   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 827   G1CollectorPolicy* g1p = g1h->g1_policy();
 828 
 829   _has_aborted = false;
 830 
 831   // Initialize marking structures. This has to be done in a STW phase.
 832   reset();
 833 
 834   // For each region note start of marking.
 835   NoteStartOfMarkHRClosure startcl;
 836   g1h->heap_region_iterate(&startcl);
 837 }
 838 
 839 
 840 void ConcurrentMark::checkpointRootsInitialPost() {
 841   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 842 
 843   // If we force an overflow during remark, the remark operation will
 844   // actually abort and we'll restart concurrent marking. If we always
 845   // force an overflow during remark we'll never actually complete the
 846   // marking phase. So, we initialize this here, at the start of the
 847   // cycle, so that at the remaining overflow number will decrease at
 848   // every remark and we'll eventually not need to cause one.
 849   force_overflow_stw()->init();
 850 
 851   // Start Concurrent Marking weak-reference discovery.
 852   ReferenceProcessor* rp = g1h->ref_processor_cm();
 853   // enable ("weak") refs discovery
 854   rp->enable_discovery();
 855   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 856 
 857   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 858   // This is the start of  the marking cycle, we're expected all
 859   // threads to have SATB queues with active set to false.
 860   satb_mq_set.set_active_all_threads(true, /* new active value */
 861                                      false /* expected_active */);
 862 
 863   _root_regions.prepare_for_scan();
 864 
 865   // update_g1_committed() will be called at the end of an evac pause
 866   // when marking is on. So, it's also called at the end of the
 867   // initial-mark pause to update the heap end, if the heap expands
 868   // during it. No need to call it here.
 869 }
 870 
 871 /*
 872  * Notice that in the next two methods, we actually leave the STS
 873  * during the barrier sync and join it immediately afterwards. If we
 874  * do not do this, the following deadlock can occur: one thread could
 875  * be in the barrier sync code, waiting for the other thread to also
 876  * sync up, whereas another one could be trying to yield, while also
 877  * waiting for the other threads to sync up too.
 878  *
 879  * Note, however, that this code is also used during remark and in
 880  * this case we should not attempt to leave / enter the STS, otherwise
 881  * we'll either hit an assert (debug / fastdebug) or deadlock
 882  * (product). So we should only leave / enter the STS if we are
 883  * operating concurrently.
 884  *
 885  * Because the thread that does the sync barrier has left the STS, it
 886  * is possible to be suspended for a Full GC or an evacuation pause
 887  * could occur. This is actually safe, since the entering the sync
 888  * barrier is one of the last things do_marking_step() does, and it
 889  * doesn't manipulate any data structures afterwards.
 890  */
 891 
 892 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 893   bool barrier_aborted;
 894   {
 895     SuspendibleThreadSetLeaver sts_leave(concurrent());
 896     barrier_aborted = !_first_overflow_barrier_sync.enter();
 897   }
 898 
 899   // at this point everyone should have synced up and not be doing any
 900   // more work
 901 
 902   if (barrier_aborted) {
 903     // If the barrier aborted we ignore the overflow condition and
 904     // just abort the whole marking phase as quickly as possible.
 905     return;
 906   }
 907 
 908   // If we're executing the concurrent phase of marking, reset the marking
 909   // state; otherwise the marking state is reset after reference processing,
 910   // during the remark pause.
 911   // If we reset here as a result of an overflow during the remark we will
 912   // see assertion failures from any subsequent set_concurrency_and_phase()
 913   // calls.
 914   if (concurrent()) {
 915     // let the task associated with with worker 0 do this
 916     if (worker_id == 0) {
 917       // task 0 is responsible for clearing the global data structures
 918       // We should be here because of an overflow. During STW we should
 919       // not clear the overflow flag since we rely on it being true when
 920       // we exit this method to abort the pause and restart concurrent
 921       // marking.
 922       reset_marking_state(true /* clear_overflow */);
 923       force_overflow()->update();
 924 
 925       if (G1Log::fine()) {
 926         gclog_or_tty->gclog_stamp();
 927         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
 928       }
 929     }
 930   }
 931 
 932   // after this, each task should reset its own data structures then
 933   // then go into the second barrier
 934 }
 935 
 936 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 937   SuspendibleThreadSetLeaver sts_leave(concurrent());
 938   _second_overflow_barrier_sync.enter();
 939 
 940   // at this point everything should be re-initialized and ready to go
 941 }
 942 
 943 #ifndef PRODUCT
 944 void ForceOverflowSettings::init() {
 945   _num_remaining = G1ConcMarkForceOverflow;
 946   _force = false;
 947   update();
 948 }
 949 
 950 void ForceOverflowSettings::update() {
 951   if (_num_remaining > 0) {
 952     _num_remaining -= 1;
 953     _force = true;
 954   } else {
 955     _force = false;
 956   }
 957 }
 958 
 959 bool ForceOverflowSettings::should_force() {
 960   if (_force) {
 961     _force = false;
 962     return true;
 963   } else {
 964     return false;
 965   }
 966 }
 967 #endif // !PRODUCT
 968 
 969 class CMConcurrentMarkingTask: public AbstractGangTask {
 970 private:
 971   ConcurrentMark*       _cm;
 972   ConcurrentMarkThread* _cmt;
 973 
 974 public:
 975   void work(uint worker_id) {
 976     assert(Thread::current()->is_ConcurrentGC_thread(),
 977            "this should only be done by a conc GC thread");
 978     ResourceMark rm;
 979 
 980     double start_vtime = os::elapsedVTime();
 981 
 982     {
 983       SuspendibleThreadSetJoiner sts_join;
 984 
 985       assert(worker_id < _cm->active_tasks(), "invariant");
 986       CMTask* the_task = _cm->task(worker_id);
 987       the_task->record_start_time();
 988       if (!_cm->has_aborted()) {
 989         do {
 990           double start_vtime_sec = os::elapsedVTime();
 991           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
 992 
 993           the_task->do_marking_step(mark_step_duration_ms,
 994                                     true  /* do_termination */,
 995                                     false /* is_serial*/);
 996 
 997           double end_vtime_sec = os::elapsedVTime();
 998           double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
 999           _cm->clear_has_overflown();
1000 
1001           _cm->do_yield_check(worker_id);
1002 
1003           jlong sleep_time_ms;
1004           if (!_cm->has_aborted() && the_task->has_aborted()) {
1005             sleep_time_ms =
1006               (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1007             {
1008               SuspendibleThreadSetLeaver sts_leave;
1009               os::sleep(Thread::current(), sleep_time_ms, false);
1010             }
1011           }
1012         } while (!_cm->has_aborted() && the_task->has_aborted());
1013       }
1014       the_task->record_end_time();
1015       guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1016     }
1017 
1018     double end_vtime = os::elapsedVTime();
1019     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1020   }
1021 
1022   CMConcurrentMarkingTask(ConcurrentMark* cm,
1023                           ConcurrentMarkThread* cmt) :
1024       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1025 
1026   ~CMConcurrentMarkingTask() { }
1027 };
1028 
1029 // Calculates the number of active workers for a concurrent
1030 // phase.
1031 uint ConcurrentMark::calc_parallel_marking_threads() {
1032   uint n_conc_workers = 0;
1033   if (!UseDynamicNumberOfGCThreads ||
1034       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1035        !ForceDynamicNumberOfGCThreads)) {
1036     n_conc_workers = max_parallel_marking_threads();
1037   } else {
1038     n_conc_workers =
1039       AdaptiveSizePolicy::calc_default_active_workers(
1040                                    max_parallel_marking_threads(),
1041                                    1, /* Minimum workers */
1042                                    parallel_marking_threads(),
1043                                    Threads::number_of_non_daemon_threads());
1044     // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1045     // that scaling has already gone into "_max_parallel_marking_threads".
1046   }
1047   assert(n_conc_workers > 0, "Always need at least 1");
1048   return n_conc_workers;
1049 }
1050 
1051 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1052   // Currently, only survivors can be root regions.
1053   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1054   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1055 
1056   const uintx interval = PrefetchScanIntervalInBytes;
1057   HeapWord* curr = hr->bottom();
1058   const HeapWord* end = hr->top();
1059   while (curr < end) {
1060     Prefetch::read(curr, interval);
1061     oop obj = oop(curr);
1062     int size = obj->oop_iterate_size(&cl);
1063     assert(size == obj->size(), "sanity");
1064     curr += size;
1065   }
1066 }
1067 
1068 class CMRootRegionScanTask : public AbstractGangTask {
1069 private:
1070   ConcurrentMark* _cm;
1071 
1072 public:
1073   CMRootRegionScanTask(ConcurrentMark* cm) :
1074     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1075 
1076   void work(uint worker_id) {
1077     assert(Thread::current()->is_ConcurrentGC_thread(),
1078            "this should only be done by a conc GC thread");
1079 
1080     CMRootRegions* root_regions = _cm->root_regions();
1081     HeapRegion* hr = root_regions->claim_next();
1082     while (hr != NULL) {
1083       _cm->scanRootRegion(hr, worker_id);
1084       hr = root_regions->claim_next();
1085     }
1086   }
1087 };
1088 
1089 void ConcurrentMark::scanRootRegions() {
1090   double scan_start = os::elapsedTime();
1091 
1092   // Start of concurrent marking.
1093   ClassLoaderDataGraph::clear_claimed_marks();
1094 
1095   // scan_in_progress() will have been set to true only if there was
1096   // at least one root region to scan. So, if it's false, we
1097   // should not attempt to do any further work.
1098   if (root_regions()->scan_in_progress()) {
1099     if (G1Log::fine()) {
1100       gclog_or_tty->gclog_stamp();
1101       gclog_or_tty->print_cr("[GC concurrent-root-region-scan-start]");
1102     }
1103 
1104     _parallel_marking_threads = calc_parallel_marking_threads();
1105     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1106            "Maximum number of marking threads exceeded");
1107     uint active_workers = MAX2(1U, parallel_marking_threads());
1108 
1109     CMRootRegionScanTask task(this);
1110     _parallel_workers->set_active_workers(active_workers);
1111     _parallel_workers->run_task(&task);
1112 
1113     if (G1Log::fine()) {
1114       gclog_or_tty->gclog_stamp();
1115       gclog_or_tty->print_cr("[GC concurrent-root-region-scan-end, %1.7lf secs]", os::elapsedTime() - scan_start);
1116     }
1117 
1118     // It's possible that has_aborted() is true here without actually
1119     // aborting the survivor scan earlier. This is OK as it's
1120     // mainly used for sanity checking.
1121     root_regions()->scan_finished();
1122   }
1123 }
1124 
1125 void ConcurrentMark::markFromRoots() {
1126   // we might be tempted to assert that:
1127   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1128   //        "inconsistent argument?");
1129   // However that wouldn't be right, because it's possible that
1130   // a safepoint is indeed in progress as a younger generation
1131   // stop-the-world GC happens even as we mark in this generation.
1132 
1133   _restart_for_overflow = false;
1134   force_overflow_conc()->init();
1135 
1136   // _g1h has _n_par_threads
1137   _parallel_marking_threads = calc_parallel_marking_threads();
1138   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1139     "Maximum number of marking threads exceeded");
1140 
1141   uint active_workers = MAX2(1U, parallel_marking_threads());
1142   assert(active_workers > 0, "Should have been set");
1143 
1144   // Parallel task terminator is set in "set_concurrency_and_phase()"
1145   set_concurrency_and_phase(active_workers, true /* concurrent */);
1146 
1147   CMConcurrentMarkingTask markingTask(this, cmThread());
1148   _parallel_workers->set_active_workers(active_workers);
1149   _parallel_workers->run_task(&markingTask);
1150   print_stats();
1151 }
1152 
1153 // Helper class to get rid of some boilerplate code.
1154 class G1CMTraceTime : public StackObj {
1155   GCTraceTimeImpl _gc_trace_time;
1156   static bool doit_and_prepend(bool doit) {
1157     if (doit) {
1158       gclog_or_tty->put(' ');
1159     }
1160     return doit;
1161   }
1162 
1163  public:
1164   G1CMTraceTime(const char* title, bool doit)
1165     : _gc_trace_time(title, doit_and_prepend(doit), false, G1CollectedHeap::heap()->gc_timer_cm()) {
1166   }
1167 };
1168 
1169 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1170   // world is stopped at this checkpoint
1171   assert(SafepointSynchronize::is_at_safepoint(),
1172          "world should be stopped");
1173 
1174   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1175 
1176   // If a full collection has happened, we shouldn't do this.
1177   if (has_aborted()) {
1178     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1179     return;
1180   }
1181 
1182   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1183 
1184   if (VerifyDuringGC) {
1185     HandleMark hm;  // handle scope
1186     g1h->prepare_for_verify();
1187     Universe::verify(VerifyOption_G1UsePrevMarking,
1188                      " VerifyDuringGC:(before)");
1189   }
1190   g1h->check_bitmaps("Remark Start");
1191 
1192   G1CollectorPolicy* g1p = g1h->g1_policy();
1193   g1p->record_concurrent_mark_remark_start();
1194 
1195   double start = os::elapsedTime();
1196 
1197   checkpointRootsFinalWork();
1198 
1199   double mark_work_end = os::elapsedTime();
1200 
1201   weakRefsWork(clear_all_soft_refs);
1202 
1203   if (has_overflown()) {
1204     // Oops.  We overflowed.  Restart concurrent marking.
1205     _restart_for_overflow = true;
1206     if (G1TraceMarkStackOverflow) {
1207       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1208     }
1209 
1210     // Verify the heap w.r.t. the previous marking bitmap.
1211     if (VerifyDuringGC) {
1212       HandleMark hm;  // handle scope
1213       g1h->prepare_for_verify();
1214       Universe::verify(VerifyOption_G1UsePrevMarking,
1215                        " VerifyDuringGC:(overflow)");
1216     }
1217 
1218     // Clear the marking state because we will be restarting
1219     // marking due to overflowing the global mark stack.
1220     reset_marking_state();
1221   } else {
1222     {
1223       G1CMTraceTime trace("GC aggregate-data", G1Log::finer());
1224 
1225       // Aggregate the per-task counting data that we have accumulated
1226       // while marking.
1227       aggregate_count_data();
1228     }
1229 
1230     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1231     // We're done with marking.
1232     // This is the end of  the marking cycle, we're expected all
1233     // threads to have SATB queues with active set to true.
1234     satb_mq_set.set_active_all_threads(false, /* new active value */
1235                                        true /* expected_active */);
1236 
1237     if (VerifyDuringGC) {
1238       HandleMark hm;  // handle scope
1239       g1h->prepare_for_verify();
1240       Universe::verify(VerifyOption_G1UseNextMarking,
1241                        " VerifyDuringGC:(after)");
1242     }
1243     g1h->check_bitmaps("Remark End");
1244     assert(!restart_for_overflow(), "sanity");
1245     // Completely reset the marking state since marking completed
1246     set_non_marking_state();
1247   }
1248 
1249   // Expand the marking stack, if we have to and if we can.
1250   if (_markStack.should_expand()) {
1251     _markStack.expand();
1252   }
1253 
1254   // Statistics
1255   double now = os::elapsedTime();
1256   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1257   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1258   _remark_times.add((now - start) * 1000.0);
1259 
1260   g1p->record_concurrent_mark_remark_end();
1261 
1262   G1CMIsAliveClosure is_alive(g1h);
1263   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1264 }
1265 
1266 // Base class of the closures that finalize and verify the
1267 // liveness counting data.
1268 class CMCountDataClosureBase: public HeapRegionClosure {
1269 protected:
1270   G1CollectedHeap* _g1h;
1271   ConcurrentMark* _cm;
1272   CardTableModRefBS* _ct_bs;
1273 
1274   BitMap* _region_bm;
1275   BitMap* _card_bm;
1276 
1277   // Takes a region that's not empty (i.e., it has at least one
1278   // live object in it and sets its corresponding bit on the region
1279   // bitmap to 1.
1280   void set_bit_for_region(HeapRegion* hr) {
1281     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1282     _region_bm->par_at_put(index, true);
1283   }
1284 
1285 public:
1286   CMCountDataClosureBase(G1CollectedHeap* g1h,
1287                          BitMap* region_bm, BitMap* card_bm):
1288     _g1h(g1h), _cm(g1h->concurrent_mark()),
1289     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
1290     _region_bm(region_bm), _card_bm(card_bm) { }
1291 };
1292 
1293 // Closure that calculates the # live objects per region. Used
1294 // for verification purposes during the cleanup pause.
1295 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1296   CMBitMapRO* _bm;
1297   size_t _region_marked_bytes;
1298 
1299 public:
1300   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1301                          BitMap* region_bm, BitMap* card_bm) :
1302     CMCountDataClosureBase(g1h, region_bm, card_bm),
1303     _bm(bm), _region_marked_bytes(0) { }
1304 
1305   bool doHeapRegion(HeapRegion* hr) {
1306     HeapWord* ntams = hr->next_top_at_mark_start();
1307     HeapWord* start = hr->bottom();
1308 
1309     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1310            "Preconditions not met - "
1311            "start: " PTR_FORMAT ", ntams: " PTR_FORMAT ", end: " PTR_FORMAT,
1312            p2i(start), p2i(ntams), p2i(hr->end()));
1313 
1314     // Find the first marked object at or after "start".
1315     start = _bm->getNextMarkedWordAddress(start, ntams);
1316 
1317     size_t marked_bytes = 0;
1318 
1319     while (start < ntams) {
1320       oop obj = oop(start);
1321       int obj_sz = obj->size();
1322       HeapWord* obj_end = start + obj_sz;
1323 
1324       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1325       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1326 
1327       // Note: if we're looking at the last region in heap - obj_end
1328       // could be actually just beyond the end of the heap; end_idx
1329       // will then correspond to a (non-existent) card that is also
1330       // just beyond the heap.
1331       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1332         // end of object is not card aligned - increment to cover
1333         // all the cards spanned by the object
1334         end_idx += 1;
1335       }
1336 
1337       // Set the bits in the card BM for the cards spanned by this object.
1338       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1339 
1340       // Add the size of this object to the number of marked bytes.
1341       marked_bytes += (size_t)obj_sz * HeapWordSize;
1342 
1343       // This will happen if we are handling a humongous object that spans
1344       // several heap regions.
1345       if (obj_end > hr->end()) {
1346         break;
1347       }
1348       // Find the next marked object after this one.
1349       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1350     }
1351 
1352     // Mark the allocated-since-marking portion...
1353     HeapWord* top = hr->top();
1354     if (ntams < top) {
1355       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1356       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1357 
1358       // Note: if we're looking at the last region in heap - top
1359       // could be actually just beyond the end of the heap; end_idx
1360       // will then correspond to a (non-existent) card that is also
1361       // just beyond the heap.
1362       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1363         // end of object is not card aligned - increment to cover
1364         // all the cards spanned by the object
1365         end_idx += 1;
1366       }
1367       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1368 
1369       // This definitely means the region has live objects.
1370       set_bit_for_region(hr);
1371     }
1372 
1373     // Update the live region bitmap.
1374     if (marked_bytes > 0) {
1375       set_bit_for_region(hr);
1376     }
1377 
1378     // Set the marked bytes for the current region so that
1379     // it can be queried by a calling verification routine
1380     _region_marked_bytes = marked_bytes;
1381 
1382     return false;
1383   }
1384 
1385   size_t region_marked_bytes() const { return _region_marked_bytes; }
1386 };
1387 
1388 // Heap region closure used for verifying the counting data
1389 // that was accumulated concurrently and aggregated during
1390 // the remark pause. This closure is applied to the heap
1391 // regions during the STW cleanup pause.
1392 
1393 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1394   G1CollectedHeap* _g1h;
1395   ConcurrentMark* _cm;
1396   CalcLiveObjectsClosure _calc_cl;
1397   BitMap* _region_bm;   // Region BM to be verified
1398   BitMap* _card_bm;     // Card BM to be verified
1399 
1400   BitMap* _exp_region_bm; // Expected Region BM values
1401   BitMap* _exp_card_bm;   // Expected card BM values
1402 
1403   int _failures;
1404 
1405 public:
1406   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1407                                 BitMap* region_bm,
1408                                 BitMap* card_bm,
1409                                 BitMap* exp_region_bm,
1410                                 BitMap* exp_card_bm) :
1411     _g1h(g1h), _cm(g1h->concurrent_mark()),
1412     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1413     _region_bm(region_bm), _card_bm(card_bm),
1414     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1415     _failures(0) { }
1416 
1417   int failures() const { return _failures; }
1418 
1419   bool doHeapRegion(HeapRegion* hr) {
1420     int failures = 0;
1421 
1422     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1423     // this region and set the corresponding bits in the expected region
1424     // and card bitmaps.
1425     bool res = _calc_cl.doHeapRegion(hr);
1426     assert(res == false, "should be continuing");
1427 
1428     // Verify the marked bytes for this region.
1429     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1430     size_t act_marked_bytes = hr->next_marked_bytes();
1431 
1432     if (exp_marked_bytes > act_marked_bytes) {
1433       if (hr->is_starts_humongous()) {
1434         // For start_humongous regions, the size of the whole object will be
1435         // in exp_marked_bytes.
1436         HeapRegion* region = hr;
1437         int num_regions;
1438         for (num_regions = 0; region != NULL; num_regions++) {
1439           region = _g1h->next_region_in_humongous(region);
1440         }
1441         if ((num_regions-1) * HeapRegion::GrainBytes >= exp_marked_bytes) {
1442           failures += 1;
1443         } else if (num_regions * HeapRegion::GrainBytes < exp_marked_bytes) {
1444           failures += 1;
1445         }
1446       } else {
1447         // We're not OK if expected marked bytes > actual marked bytes. It means
1448         // we have missed accounting some objects during the actual marking.
1449         failures += 1;
1450       }
1451     }
1452 
1453     // Verify the bit, for this region, in the actual and expected
1454     // (which was just calculated) region bit maps.
1455     // We're not OK if the bit in the calculated expected region
1456     // bitmap is set and the bit in the actual region bitmap is not.
1457     BitMap::idx_t index = (BitMap::idx_t) hr->hrm_index();
1458 
1459     bool expected = _exp_region_bm->at(index);
1460     bool actual = _region_bm->at(index);
1461     if (expected && !actual) {
1462       failures += 1;
1463     }
1464 
1465     // Verify that the card bit maps for the cards spanned by the current
1466     // region match. We have an error if we have a set bit in the expected
1467     // bit map and the corresponding bit in the actual bitmap is not set.
1468 
1469     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1470     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1471 
1472     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1473       expected = _exp_card_bm->at(i);
1474       actual = _card_bm->at(i);
1475 
1476       if (expected && !actual) {
1477         failures += 1;
1478       }
1479     }
1480 
1481     _failures += failures;
1482 
1483     // We could stop iteration over the heap when we
1484     // find the first violating region by returning true.
1485     return false;
1486   }
1487 };
1488 
1489 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1490 protected:
1491   G1CollectedHeap* _g1h;
1492   ConcurrentMark* _cm;
1493   BitMap* _actual_region_bm;
1494   BitMap* _actual_card_bm;
1495 
1496   uint    _n_workers;
1497 
1498   BitMap* _expected_region_bm;
1499   BitMap* _expected_card_bm;
1500 
1501   int  _failures;
1502 
1503   HeapRegionClaimer _hrclaimer;
1504 
1505 public:
1506   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1507                             BitMap* region_bm, BitMap* card_bm,
1508                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1509     : AbstractGangTask("G1 verify final counting"),
1510       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1511       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1512       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1513       _failures(0),
1514       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1515     assert(VerifyDuringGC, "don't call this otherwise");
1516     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1517     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1518   }
1519 
1520   void work(uint worker_id) {
1521     assert(worker_id < _n_workers, "invariant");
1522 
1523     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1524                                             _actual_region_bm, _actual_card_bm,
1525                                             _expected_region_bm,
1526                                             _expected_card_bm);
1527 
1528     _g1h->heap_region_par_iterate(&verify_cl, worker_id, &_hrclaimer);
1529 
1530     Atomic::add(verify_cl.failures(), &_failures);
1531   }
1532 
1533   int failures() const { return _failures; }
1534 };
1535 
1536 // Closure that finalizes the liveness counting data.
1537 // Used during the cleanup pause.
1538 // Sets the bits corresponding to the interval [NTAMS, top]
1539 // (which contains the implicitly live objects) in the
1540 // card liveness bitmap. Also sets the bit for each region,
1541 // containing live data, in the region liveness bitmap.
1542 
1543 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1544  public:
1545   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1546                               BitMap* region_bm,
1547                               BitMap* card_bm) :
1548     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1549 
1550   bool doHeapRegion(HeapRegion* hr) {
1551     HeapWord* ntams = hr->next_top_at_mark_start();
1552     HeapWord* top   = hr->top();
1553 
1554     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1555 
1556     // Mark the allocated-since-marking portion...
1557     if (ntams < top) {
1558       // This definitely means the region has live objects.
1559       set_bit_for_region(hr);
1560 
1561       // Now set the bits in the card bitmap for [ntams, top)
1562       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1563       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1564 
1565       // Note: if we're looking at the last region in heap - top
1566       // could be actually just beyond the end of the heap; end_idx
1567       // will then correspond to a (non-existent) card that is also
1568       // just beyond the heap.
1569       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1570         // end of object is not card aligned - increment to cover
1571         // all the cards spanned by the object
1572         end_idx += 1;
1573       }
1574 
1575       assert(end_idx <= _card_bm->size(),
1576              "oob: end_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1577              end_idx, _card_bm->size());
1578       assert(start_idx < _card_bm->size(),
1579              "oob: start_idx=  " SIZE_FORMAT ", bitmap size= " SIZE_FORMAT,
1580              start_idx, _card_bm->size());
1581 
1582       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1583     }
1584 
1585     // Set the bit for the region if it contains live data
1586     if (hr->next_marked_bytes() > 0) {
1587       set_bit_for_region(hr);
1588     }
1589 
1590     return false;
1591   }
1592 };
1593 
1594 class G1ParFinalCountTask: public AbstractGangTask {
1595 protected:
1596   G1CollectedHeap* _g1h;
1597   ConcurrentMark* _cm;
1598   BitMap* _actual_region_bm;
1599   BitMap* _actual_card_bm;
1600 
1601   uint    _n_workers;
1602   HeapRegionClaimer _hrclaimer;
1603 
1604 public:
1605   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1606     : AbstractGangTask("G1 final counting"),
1607       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1608       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1609       _n_workers(_g1h->workers()->active_workers()), _hrclaimer(_n_workers) {
1610   }
1611 
1612   void work(uint worker_id) {
1613     assert(worker_id < _n_workers, "invariant");
1614 
1615     FinalCountDataUpdateClosure final_update_cl(_g1h,
1616                                                 _actual_region_bm,
1617                                                 _actual_card_bm);
1618 
1619     _g1h->heap_region_par_iterate(&final_update_cl, worker_id, &_hrclaimer);
1620   }
1621 };
1622 
1623 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1624   G1CollectedHeap* _g1;
1625   size_t _freed_bytes;
1626   FreeRegionList* _local_cleanup_list;
1627   HeapRegionSetCount _old_regions_removed;
1628   HeapRegionSetCount _humongous_regions_removed;
1629   HRRSCleanupTask* _hrrs_cleanup_task;
1630 
1631 public:
1632   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1633                              FreeRegionList* local_cleanup_list,
1634                              HRRSCleanupTask* hrrs_cleanup_task) :
1635     _g1(g1),
1636     _freed_bytes(0),
1637     _local_cleanup_list(local_cleanup_list),
1638     _old_regions_removed(),
1639     _humongous_regions_removed(),
1640     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1641 
1642   size_t freed_bytes() { return _freed_bytes; }
1643   const HeapRegionSetCount& old_regions_removed() { return _old_regions_removed; }
1644   const HeapRegionSetCount& humongous_regions_removed() { return _humongous_regions_removed; }
1645 
1646   bool doHeapRegion(HeapRegion *hr) {
1647     if (hr->is_archive()) {
1648       return false;
1649     }
1650     // We use a claim value of zero here because all regions
1651     // were claimed with value 1 in the FinalCount task.
1652     _g1->reset_gc_time_stamps(hr);
1653     hr->note_end_of_marking();
1654 
1655     if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
1656       _freed_bytes += hr->used();
1657       hr->set_containing_set(NULL);
1658       if (hr->is_humongous()) {
1659         _humongous_regions_removed.increment(1u, hr->capacity());
1660         _g1->free_humongous_region(hr, _local_cleanup_list, true);
1661       } else {
1662         _old_regions_removed.increment(1u, hr->capacity());
1663         _g1->free_region(hr, _local_cleanup_list, true);
1664       }
1665     } else {
1666       hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1667     }
1668 
1669     return false;
1670   }
1671 };
1672 
1673 class G1ParNoteEndTask: public AbstractGangTask {
1674   friend class G1NoteEndOfConcMarkClosure;
1675 
1676 protected:
1677   G1CollectedHeap* _g1h;
1678   FreeRegionList* _cleanup_list;
1679   HeapRegionClaimer _hrclaimer;
1680 
1681 public:
1682   G1ParNoteEndTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1683       AbstractGangTask("G1 note end"), _g1h(g1h), _cleanup_list(cleanup_list), _hrclaimer(n_workers) {
1684   }
1685 
1686   void work(uint worker_id) {
1687     FreeRegionList local_cleanup_list("Local Cleanup List");
1688     HRRSCleanupTask hrrs_cleanup_task;
1689     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, &local_cleanup_list,
1690                                            &hrrs_cleanup_task);
1691     _g1h->heap_region_par_iterate(&g1_note_end, worker_id, &_hrclaimer);
1692     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1693 
1694     // Now update the lists
1695     _g1h->remove_from_old_sets(g1_note_end.old_regions_removed(), g1_note_end.humongous_regions_removed());
1696     {
1697       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1698       _g1h->decrement_summary_bytes(g1_note_end.freed_bytes());
1699 
1700       // If we iterate over the global cleanup list at the end of
1701       // cleanup to do this printing we will not guarantee to only
1702       // generate output for the newly-reclaimed regions (the list
1703       // might not be empty at the beginning of cleanup; we might
1704       // still be working on its previous contents). So we do the
1705       // printing here, before we append the new regions to the global
1706       // cleanup list.
1707 
1708       G1HRPrinter* hr_printer = _g1h->hr_printer();
1709       if (hr_printer->is_active()) {
1710         FreeRegionListIterator iter(&local_cleanup_list);
1711         while (iter.more_available()) {
1712           HeapRegion* hr = iter.get_next();
1713           hr_printer->cleanup(hr);
1714         }
1715       }
1716 
1717       _cleanup_list->add_ordered(&local_cleanup_list);
1718       assert(local_cleanup_list.is_empty(), "post-condition");
1719 
1720       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1721     }
1722   }
1723 };
1724 
1725 class G1ParScrubRemSetTask: public AbstractGangTask {
1726 protected:
1727   G1RemSet* _g1rs;
1728   BitMap* _region_bm;
1729   BitMap* _card_bm;
1730   HeapRegionClaimer _hrclaimer;
1731 
1732 public:
1733   G1ParScrubRemSetTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm, uint n_workers) :
1734       AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()), _region_bm(region_bm), _card_bm(card_bm), _hrclaimer(n_workers) {
1735   }
1736 
1737   void work(uint worker_id) {
1738     _g1rs->scrub(_region_bm, _card_bm, worker_id, &_hrclaimer);
1739   }
1740 
1741 };
1742 
1743 void ConcurrentMark::cleanup() {
1744   // world is stopped at this checkpoint
1745   assert(SafepointSynchronize::is_at_safepoint(),
1746          "world should be stopped");
1747   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1748 
1749   // If a full collection has happened, we shouldn't do this.
1750   if (has_aborted()) {
1751     g1h->collector_state()->set_mark_in_progress(false); // So bitmap clearing isn't confused
1752     return;
1753   }
1754 
1755   g1h->verify_region_sets_optional();
1756 
1757   if (VerifyDuringGC) {
1758     HandleMark hm;  // handle scope
1759     g1h->prepare_for_verify();
1760     Universe::verify(VerifyOption_G1UsePrevMarking,
1761                      " VerifyDuringGC:(before)");
1762   }
1763   g1h->check_bitmaps("Cleanup Start");
1764 
1765   G1CollectorPolicy* g1p = g1h->g1_policy();
1766   g1p->record_concurrent_mark_cleanup_start();
1767 
1768   double start = os::elapsedTime();
1769 
1770   HeapRegionRemSet::reset_for_cleanup_tasks();
1771 
1772   // Do counting once more with the world stopped for good measure.
1773   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1774 
1775   g1h->workers()->run_task(&g1_par_count_task);
1776 
1777   if (VerifyDuringGC) {
1778     // Verify that the counting data accumulated during marking matches
1779     // that calculated by walking the marking bitmap.
1780 
1781     // Bitmaps to hold expected values
1782     BitMap expected_region_bm(_region_bm.size(), true);
1783     BitMap expected_card_bm(_card_bm.size(), true);
1784 
1785     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
1786                                                  &_region_bm,
1787                                                  &_card_bm,
1788                                                  &expected_region_bm,
1789                                                  &expected_card_bm);
1790 
1791     g1h->workers()->run_task(&g1_par_verify_task);
1792 
1793     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
1794   }
1795 
1796   size_t start_used_bytes = g1h->used();
1797   g1h->collector_state()->set_mark_in_progress(false);
1798 
1799   double count_end = os::elapsedTime();
1800   double this_final_counting_time = (count_end - start);
1801   _total_counting_time += this_final_counting_time;
1802 
1803   if (G1PrintRegionLivenessInfo) {
1804     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
1805     _g1h->heap_region_iterate(&cl);
1806   }
1807 
1808   // Install newly created mark bitMap as "prev".
1809   swapMarkBitMaps();
1810 
1811   g1h->reset_gc_time_stamp();
1812 
1813   uint n_workers = _g1h->workers()->active_workers();
1814 
1815   // Note end of marking in all heap regions.
1816   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list, n_workers);
1817   g1h->workers()->run_task(&g1_par_note_end_task);
1818   g1h->check_gc_time_stamps();
1819 
1820   if (!cleanup_list_is_empty()) {
1821     // The cleanup list is not empty, so we'll have to process it
1822     // concurrently. Notify anyone else that might be wanting free
1823     // regions that there will be more free regions coming soon.
1824     g1h->set_free_regions_coming();
1825   }
1826 
1827   // call below, since it affects the metric by which we sort the heap
1828   // regions.
1829   if (G1ScrubRemSets) {
1830     double rs_scrub_start = os::elapsedTime();
1831     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm, n_workers);
1832     g1h->workers()->run_task(&g1_par_scrub_rs_task);
1833 
1834     double rs_scrub_end = os::elapsedTime();
1835     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
1836     _total_rs_scrub_time += this_rs_scrub_time;
1837   }
1838 
1839   // this will also free any regions totally full of garbage objects,
1840   // and sort the regions.
1841   g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1842 
1843   // Statistics.
1844   double end = os::elapsedTime();
1845   _cleanup_times.add((end - start) * 1000.0);
1846 
1847   if (G1Log::fine()) {
1848     g1h->g1_policy()->print_heap_transition(start_used_bytes);
1849   }
1850 
1851   // Clean up will have freed any regions completely full of garbage.
1852   // Update the soft reference policy with the new heap occupancy.
1853   Universe::update_heap_info_at_gc();
1854 
1855   if (VerifyDuringGC) {
1856     HandleMark hm;  // handle scope
1857     g1h->prepare_for_verify();
1858     Universe::verify(VerifyOption_G1UsePrevMarking,
1859                      " VerifyDuringGC:(after)");
1860   }
1861 
1862   g1h->check_bitmaps("Cleanup End");
1863 
1864   g1h->verify_region_sets_optional();
1865 
1866   // We need to make this be a "collection" so any collection pause that
1867   // races with it goes around and waits for completeCleanup to finish.
1868   g1h->increment_total_collections();
1869 
1870   // Clean out dead classes and update Metaspace sizes.
1871   if (ClassUnloadingWithConcurrentMark) {
1872     ClassLoaderDataGraph::purge();
1873   }
1874   MetaspaceGC::compute_new_size();
1875 
1876   // We reclaimed old regions so we should calculate the sizes to make
1877   // sure we update the old gen/space data.
1878   g1h->g1mm()->update_sizes();
1879   g1h->allocation_context_stats().update_after_mark();
1880 
1881   g1h->trace_heap_after_concurrent_cycle();
1882 }
1883 
1884 void ConcurrentMark::completeCleanup() {
1885   if (has_aborted()) return;
1886 
1887   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1888 
1889   _cleanup_list.verify_optional();
1890   FreeRegionList tmp_free_list("Tmp Free List");
1891 
1892   if (G1ConcRegionFreeingVerbose) {
1893     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
1894                            "cleanup list has %u entries",
1895                            _cleanup_list.length());
1896   }
1897 
1898   // No one else should be accessing the _cleanup_list at this point,
1899   // so it is not necessary to take any locks
1900   while (!_cleanup_list.is_empty()) {
1901     HeapRegion* hr = _cleanup_list.remove_region(true /* from_head */);
1902     assert(hr != NULL, "Got NULL from a non-empty list");
1903     hr->par_clear();
1904     tmp_free_list.add_ordered(hr);
1905 
1906     // Instead of adding one region at a time to the secondary_free_list,
1907     // we accumulate them in the local list and move them a few at a
1908     // time. This also cuts down on the number of notify_all() calls
1909     // we do during this process. We'll also append the local list when
1910     // _cleanup_list is empty (which means we just removed the last
1911     // region from the _cleanup_list).
1912     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
1913         _cleanup_list.is_empty()) {
1914       if (G1ConcRegionFreeingVerbose) {
1915         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
1916                                "appending %u entries to the secondary_free_list, "
1917                                "cleanup list still has %u entries",
1918                                tmp_free_list.length(),
1919                                _cleanup_list.length());
1920       }
1921 
1922       {
1923         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1924         g1h->secondary_free_list_add(&tmp_free_list);
1925         SecondaryFreeList_lock->notify_all();
1926       }
1927 #ifndef PRODUCT
1928       if (G1StressConcRegionFreeing) {
1929         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
1930           os::sleep(Thread::current(), (jlong) 1, false);
1931         }
1932       }
1933 #endif
1934     }
1935   }
1936   assert(tmp_free_list.is_empty(), "post-condition");
1937 }
1938 
1939 // Supporting Object and Oop closures for reference discovery
1940 // and processing in during marking
1941 
1942 bool G1CMIsAliveClosure::do_object_b(oop obj) {
1943   HeapWord* addr = (HeapWord*)obj;
1944   return addr != NULL &&
1945          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
1946 }
1947 
1948 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1949 // Uses the CMTask associated with a worker thread (for serial reference
1950 // processing the CMTask for worker 0 is used) to preserve (mark) and
1951 // trace referent objects.
1952 //
1953 // Using the CMTask and embedded local queues avoids having the worker
1954 // threads operating on the global mark stack. This reduces the risk
1955 // of overflowing the stack - which we would rather avoid at this late
1956 // state. Also using the tasks' local queues removes the potential
1957 // of the workers interfering with each other that could occur if
1958 // operating on the global stack.
1959 
1960 class G1CMKeepAliveAndDrainClosure: public OopClosure {
1961   ConcurrentMark* _cm;
1962   CMTask*         _task;
1963   int             _ref_counter_limit;
1964   int             _ref_counter;
1965   bool            _is_serial;
1966  public:
1967   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
1968     _cm(cm), _task(task), _is_serial(is_serial),
1969     _ref_counter_limit(G1RefProcDrainInterval) {
1970     assert(_ref_counter_limit > 0, "sanity");
1971     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1972     _ref_counter = _ref_counter_limit;
1973   }
1974 
1975   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1976   virtual void do_oop(      oop* p) { do_oop_work(p); }
1977 
1978   template <class T> void do_oop_work(T* p) {
1979     if (!_cm->has_overflown()) {
1980       oop obj = oopDesc::load_decode_heap_oop(p);
1981       _task->deal_with_reference(obj);
1982       _ref_counter--;
1983 
1984       if (_ref_counter == 0) {
1985         // We have dealt with _ref_counter_limit references, pushing them
1986         // and objects reachable from them on to the local stack (and
1987         // possibly the global stack). Call CMTask::do_marking_step() to
1988         // process these entries.
1989         //
1990         // We call CMTask::do_marking_step() in a loop, which we'll exit if
1991         // there's nothing more to do (i.e. we're done with the entries that
1992         // were pushed as a result of the CMTask::deal_with_reference() calls
1993         // above) or we overflow.
1994         //
1995         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
1996         // flag while there may still be some work to do. (See the comment at
1997         // the beginning of CMTask::do_marking_step() for those conditions -
1998         // one of which is reaching the specified time target.) It is only
1999         // when CMTask::do_marking_step() returns without setting the
2000         // has_aborted() flag that the marking step has completed.
2001         do {
2002           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2003           _task->do_marking_step(mark_step_duration_ms,
2004                                  false      /* do_termination */,
2005                                  _is_serial);
2006         } while (_task->has_aborted() && !_cm->has_overflown());
2007         _ref_counter = _ref_counter_limit;
2008       }
2009     }
2010   }
2011 };
2012 
2013 // 'Drain' oop closure used by both serial and parallel reference processing.
2014 // Uses the CMTask associated with a given worker thread (for serial
2015 // reference processing the CMtask for worker 0 is used). Calls the
2016 // do_marking_step routine, with an unbelievably large timeout value,
2017 // to drain the marking data structures of the remaining entries
2018 // added by the 'keep alive' oop closure above.
2019 
2020 class G1CMDrainMarkingStackClosure: public VoidClosure {
2021   ConcurrentMark* _cm;
2022   CMTask*         _task;
2023   bool            _is_serial;
2024  public:
2025   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2026     _cm(cm), _task(task), _is_serial(is_serial) {
2027     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2028   }
2029 
2030   void do_void() {
2031     do {
2032       // We call CMTask::do_marking_step() to completely drain the local
2033       // and global marking stacks of entries pushed by the 'keep alive'
2034       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2035       //
2036       // CMTask::do_marking_step() is called in a loop, which we'll exit
2037       // if there's nothing more to do (i.e. we've completely drained the
2038       // entries that were pushed as a a result of applying the 'keep alive'
2039       // closure to the entries on the discovered ref lists) or we overflow
2040       // the global marking stack.
2041       //
2042       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2043       // flag while there may still be some work to do. (See the comment at
2044       // the beginning of CMTask::do_marking_step() for those conditions -
2045       // one of which is reaching the specified time target.) It is only
2046       // when CMTask::do_marking_step() returns without setting the
2047       // has_aborted() flag that the marking step has completed.
2048 
2049       _task->do_marking_step(1000000000.0 /* something very large */,
2050                              true         /* do_termination */,
2051                              _is_serial);
2052     } while (_task->has_aborted() && !_cm->has_overflown());
2053   }
2054 };
2055 
2056 // Implementation of AbstractRefProcTaskExecutor for parallel
2057 // reference processing at the end of G1 concurrent marking
2058 
2059 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2060 private:
2061   G1CollectedHeap* _g1h;
2062   ConcurrentMark*  _cm;
2063   WorkGang*        _workers;
2064   uint             _active_workers;
2065 
2066 public:
2067   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2068                           ConcurrentMark* cm,
2069                           WorkGang* workers,
2070                           uint n_workers) :
2071     _g1h(g1h), _cm(cm),
2072     _workers(workers), _active_workers(n_workers) { }
2073 
2074   // Executes the given task using concurrent marking worker threads.
2075   virtual void execute(ProcessTask& task);
2076   virtual void execute(EnqueueTask& task);
2077 };
2078 
2079 class G1CMRefProcTaskProxy: public AbstractGangTask {
2080   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2081   ProcessTask&     _proc_task;
2082   G1CollectedHeap* _g1h;
2083   ConcurrentMark*  _cm;
2084 
2085 public:
2086   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2087                      G1CollectedHeap* g1h,
2088                      ConcurrentMark* cm) :
2089     AbstractGangTask("Process reference objects in parallel"),
2090     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2091     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2092     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2093   }
2094 
2095   virtual void work(uint worker_id) {
2096     ResourceMark rm;
2097     HandleMark hm;
2098     CMTask* task = _cm->task(worker_id);
2099     G1CMIsAliveClosure g1_is_alive(_g1h);
2100     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2101     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2102 
2103     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2104   }
2105 };
2106 
2107 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2108   assert(_workers != NULL, "Need parallel worker threads.");
2109   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2110 
2111   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2112 
2113   // We need to reset the concurrency level before each
2114   // proxy task execution, so that the termination protocol
2115   // and overflow handling in CMTask::do_marking_step() knows
2116   // how many workers to wait for.
2117   _cm->set_concurrency(_active_workers);
2118   _workers->run_task(&proc_task_proxy);
2119 }
2120 
2121 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2122   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2123   EnqueueTask& _enq_task;
2124 
2125 public:
2126   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2127     AbstractGangTask("Enqueue reference objects in parallel"),
2128     _enq_task(enq_task) { }
2129 
2130   virtual void work(uint worker_id) {
2131     _enq_task.work(worker_id);
2132   }
2133 };
2134 
2135 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2136   assert(_workers != NULL, "Need parallel worker threads.");
2137   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2138 
2139   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2140 
2141   // Not strictly necessary but...
2142   //
2143   // We need to reset the concurrency level before each
2144   // proxy task execution, so that the termination protocol
2145   // and overflow handling in CMTask::do_marking_step() knows
2146   // how many workers to wait for.
2147   _cm->set_concurrency(_active_workers);
2148   _workers->run_task(&enq_task_proxy);
2149 }
2150 
2151 void ConcurrentMark::weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes) {
2152   G1CollectedHeap::heap()->parallel_cleaning(is_alive, true, true, purged_classes);
2153 }
2154 
2155 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2156   if (has_overflown()) {
2157     // Skip processing the discovered references if we have
2158     // overflown the global marking stack. Reference objects
2159     // only get discovered once so it is OK to not
2160     // de-populate the discovered reference lists. We could have,
2161     // but the only benefit would be that, when marking restarts,
2162     // less reference objects are discovered.
2163     return;
2164   }
2165 
2166   ResourceMark rm;
2167   HandleMark   hm;
2168 
2169   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2170 
2171   // Is alive closure.
2172   G1CMIsAliveClosure g1_is_alive(g1h);
2173 
2174   // Inner scope to exclude the cleaning of the string and symbol
2175   // tables from the displayed time.
2176   {
2177     G1CMTraceTime t("GC ref-proc", G1Log::finer());
2178 
2179     ReferenceProcessor* rp = g1h->ref_processor_cm();
2180 
2181     // See the comment in G1CollectedHeap::ref_processing_init()
2182     // about how reference processing currently works in G1.
2183 
2184     // Set the soft reference policy
2185     rp->setup_policy(clear_all_soft_refs);
2186     assert(_markStack.isEmpty(), "mark stack should be empty");
2187 
2188     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2189     // in serial reference processing. Note these closures are also
2190     // used for serially processing (by the the current thread) the
2191     // JNI references during parallel reference processing.
2192     //
2193     // These closures do not need to synchronize with the worker
2194     // threads involved in parallel reference processing as these
2195     // instances are executed serially by the current thread (e.g.
2196     // reference processing is not multi-threaded and is thus
2197     // performed by the current thread instead of a gang worker).
2198     //
2199     // The gang tasks involved in parallel reference processing create
2200     // their own instances of these closures, which do their own
2201     // synchronization among themselves.
2202     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2203     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2204 
2205     // We need at least one active thread. If reference processing
2206     // is not multi-threaded we use the current (VMThread) thread,
2207     // otherwise we use the work gang from the G1CollectedHeap and
2208     // we utilize all the worker threads we can.
2209     bool processing_is_mt = rp->processing_is_mt();
2210     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2211     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2212 
2213     // Parallel processing task executor.
2214     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2215                                               g1h->workers(), active_workers);
2216     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2217 
2218     // Set the concurrency level. The phase was already set prior to
2219     // executing the remark task.
2220     set_concurrency(active_workers);
2221 
2222     // Set the degree of MT processing here.  If the discovery was done MT,
2223     // the number of threads involved during discovery could differ from
2224     // the number of active workers.  This is OK as long as the discovered
2225     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2226     rp->set_active_mt_degree(active_workers);
2227 
2228     // Process the weak references.
2229     const ReferenceProcessorStats& stats =
2230         rp->process_discovered_references(&g1_is_alive,
2231                                           &g1_keep_alive,
2232                                           &g1_drain_mark_stack,
2233                                           executor,
2234                                           g1h->gc_timer_cm());
2235     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2236 
2237     // The do_oop work routines of the keep_alive and drain_marking_stack
2238     // oop closures will set the has_overflown flag if we overflow the
2239     // global marking stack.
2240 
2241     assert(_markStack.overflow() || _markStack.isEmpty(),
2242             "mark stack should be empty (unless it overflowed)");
2243 
2244     if (_markStack.overflow()) {
2245       // This should have been done already when we tried to push an
2246       // entry on to the global mark stack. But let's do it again.
2247       set_has_overflown();
2248     }
2249 
2250     assert(rp->num_q() == active_workers, "why not");
2251 
2252     rp->enqueue_discovered_references(executor);
2253 
2254     rp->verify_no_references_recorded();
2255     assert(!rp->discovery_enabled(), "Post condition");
2256   }
2257 
2258   if (has_overflown()) {
2259     // We can not trust g1_is_alive if the marking stack overflowed
2260     return;
2261   }
2262 
2263   assert(_markStack.isEmpty(), "Marking should have completed");
2264 
2265   // Unload Klasses, String, Symbols, Code Cache, etc.
2266   {
2267     G1CMTraceTime trace("Unloading", G1Log::finer());
2268 
2269     if (ClassUnloadingWithConcurrentMark) {
2270       bool purged_classes;
2271 
2272       {
2273         G1CMTraceTime trace("System Dictionary Unloading", G1Log::finest());
2274         purged_classes = SystemDictionary::do_unloading(&g1_is_alive, false /* Defer klass cleaning */);
2275       }
2276 
2277       {
2278         G1CMTraceTime trace("Parallel Unloading", G1Log::finest());
2279         weakRefsWorkParallelPart(&g1_is_alive, purged_classes);
2280       }
2281     }
2282 
2283     if (G1StringDedup::is_enabled()) {
2284       G1CMTraceTime trace("String Deduplication Unlink", G1Log::finest());
2285       G1StringDedup::unlink(&g1_is_alive);
2286     }
2287   }
2288 }
2289 
2290 void ConcurrentMark::swapMarkBitMaps() {
2291   CMBitMapRO* temp = _prevMarkBitMap;
2292   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2293   _nextMarkBitMap  = (CMBitMap*)  temp;
2294 }
2295 
2296 // Closure for marking entries in SATB buffers.
2297 class CMSATBBufferClosure : public SATBBufferClosure {
2298 private:
2299   CMTask* _task;
2300   G1CollectedHeap* _g1h;
2301 
2302   // This is very similar to CMTask::deal_with_reference, but with
2303   // more relaxed requirements for the argument, so this must be more
2304   // circumspect about treating the argument as an object.
2305   void do_entry(void* entry) const {
2306     _task->increment_refs_reached();
2307     HeapRegion* hr = _g1h->heap_region_containing(entry);
2308     if (entry < hr->next_top_at_mark_start()) {
2309       // Until we get here, we don't know whether entry refers to a valid
2310       // object; it could instead have been a stale reference.
2311       oop obj = static_cast<oop>(entry);
2312       assert(obj->is_oop(true /* ignore mark word */),
2313              "Invalid oop in SATB buffer: " PTR_FORMAT, p2i(obj));
2314       _task->make_reference_grey(obj, hr);
2315     }
2316   }
2317 
2318 public:
2319   CMSATBBufferClosure(CMTask* task, G1CollectedHeap* g1h)
2320     : _task(task), _g1h(g1h) { }
2321 
2322   virtual void do_buffer(void** buffer, size_t size) {
2323     for (size_t i = 0; i < size; ++i) {
2324       do_entry(buffer[i]);
2325     }
2326   }
2327 };
2328 
2329 class G1RemarkThreadsClosure : public ThreadClosure {
2330   CMSATBBufferClosure _cm_satb_cl;
2331   G1CMOopClosure _cm_cl;
2332   MarkingCodeBlobClosure _code_cl;
2333   int _thread_parity;
2334 
2335  public:
2336   G1RemarkThreadsClosure(G1CollectedHeap* g1h, CMTask* task) :
2337     _cm_satb_cl(task, g1h),
2338     _cm_cl(g1h, g1h->concurrent_mark(), task),
2339     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
2340     _thread_parity(Threads::thread_claim_parity()) {}
2341 
2342   void do_thread(Thread* thread) {
2343     if (thread->is_Java_thread()) {
2344       if (thread->claim_oops_do(true, _thread_parity)) {
2345         JavaThread* jt = (JavaThread*)thread;
2346 
2347         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
2348         // however the liveness of oops reachable from nmethods have very complex lifecycles:
2349         // * Alive if on the stack of an executing method
2350         // * Weakly reachable otherwise
2351         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
2352         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
2353         jt->nmethods_do(&_code_cl);
2354 
2355         jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl);
2356       }
2357     } else if (thread->is_VM_thread()) {
2358       if (thread->claim_oops_do(true, _thread_parity)) {
2359         JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
2360       }
2361     }
2362   }
2363 };
2364 
2365 class CMRemarkTask: public AbstractGangTask {
2366 private:
2367   ConcurrentMark* _cm;
2368 public:
2369   void work(uint worker_id) {
2370     // Since all available tasks are actually started, we should
2371     // only proceed if we're supposed to be active.
2372     if (worker_id < _cm->active_tasks()) {
2373       CMTask* task = _cm->task(worker_id);
2374       task->record_start_time();
2375       {
2376         ResourceMark rm;
2377         HandleMark hm;
2378 
2379         G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
2380         Threads::threads_do(&threads_f);
2381       }
2382 
2383       do {
2384         task->do_marking_step(1000000000.0 /* something very large */,
2385                               true         /* do_termination       */,
2386                               false        /* is_serial            */);
2387       } while (task->has_aborted() && !_cm->has_overflown());
2388       // If we overflow, then we do not want to restart. We instead
2389       // want to abort remark and do concurrent marking again.
2390       task->record_end_time();
2391     }
2392   }
2393 
2394   CMRemarkTask(ConcurrentMark* cm, uint active_workers) :
2395     AbstractGangTask("Par Remark"), _cm(cm) {
2396     _cm->terminator()->reset_for_reuse(active_workers);
2397   }
2398 };
2399 
2400 void ConcurrentMark::checkpointRootsFinalWork() {
2401   ResourceMark rm;
2402   HandleMark   hm;
2403   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2404 
2405   G1CMTraceTime trace("Finalize Marking", G1Log::finer());
2406 
2407   g1h->ensure_parsability(false);
2408 
2409   // this is remark, so we'll use up all active threads
2410   uint active_workers = g1h->workers()->active_workers();
2411   set_concurrency_and_phase(active_workers, false /* concurrent */);
2412   // Leave _parallel_marking_threads at it's
2413   // value originally calculated in the ConcurrentMark
2414   // constructor and pass values of the active workers
2415   // through the gang in the task.
2416 
2417   {
2418     StrongRootsScope srs(active_workers);
2419 
2420     CMRemarkTask remarkTask(this, active_workers);
2421     // We will start all available threads, even if we decide that the
2422     // active_workers will be fewer. The extra ones will just bail out
2423     // immediately.
2424     g1h->workers()->run_task(&remarkTask);
2425   }
2426 
2427   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2428   guarantee(has_overflown() ||
2429             satb_mq_set.completed_buffers_num() == 0,
2430             "Invariant: has_overflown = %s, num buffers = %d",
2431             BOOL_TO_STR(has_overflown()),
2432             satb_mq_set.completed_buffers_num());
2433 
2434   print_stats();
2435 }
2436 
2437 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2438   // Note we are overriding the read-only view of the prev map here, via
2439   // the cast.
2440   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2441 }
2442 
2443 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2444   _nextMarkBitMap->clearRange(mr);
2445 }
2446 
2447 HeapRegion*
2448 ConcurrentMark::claim_region(uint worker_id) {
2449   // "checkpoint" the finger
2450   HeapWord* finger = _finger;
2451 
2452   // _heap_end will not change underneath our feet; it only changes at
2453   // yield points.
2454   while (finger < _heap_end) {
2455     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2456 
2457     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
2458 
2459     // Above heap_region_containing may return NULL as we always scan claim
2460     // until the end of the heap. In this case, just jump to the next region.
2461     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
2462 
2463     // Is the gap between reading the finger and doing the CAS too long?
2464     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2465     if (res == finger && curr_region != NULL) {
2466       // we succeeded
2467       HeapWord*   bottom        = curr_region->bottom();
2468       HeapWord*   limit         = curr_region->next_top_at_mark_start();
2469 
2470       // notice that _finger == end cannot be guaranteed here since,
2471       // someone else might have moved the finger even further
2472       assert(_finger >= end, "the finger should have moved forward");
2473 
2474       if (limit > bottom) {
2475         return curr_region;
2476       } else {
2477         assert(limit == bottom,
2478                "the region limit should be at bottom");
2479         // we return NULL and the caller should try calling
2480         // claim_region() again.
2481         return NULL;
2482       }
2483     } else {
2484       assert(_finger > finger, "the finger should have moved forward");
2485       // read it again
2486       finger = _finger;
2487     }
2488   }
2489 
2490   return NULL;
2491 }
2492 
2493 #ifndef PRODUCT
2494 class VerifyNoCSetOops VALUE_OBJ_CLASS_SPEC {
2495 private:
2496   G1CollectedHeap* _g1h;
2497   const char* _phase;
2498   int _info;
2499 
2500 public:
2501   VerifyNoCSetOops(const char* phase, int info = -1) :
2502     _g1h(G1CollectedHeap::heap()),
2503     _phase(phase),
2504     _info(info)
2505   { }
2506 
2507   void operator()(oop obj) const {
2508     guarantee(obj->is_oop(),
2509               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
2510               p2i(obj), _phase, _info);
2511     guarantee(!_g1h->obj_in_cs(obj),
2512               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
2513               p2i(obj), _phase, _info);
2514   }
2515 };
2516 
2517 void ConcurrentMark::verify_no_cset_oops() {
2518   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2519   if (!G1CollectedHeap::heap()->collector_state()->mark_in_progress()) {
2520     return;
2521   }
2522 
2523   // Verify entries on the global mark stack
2524   _markStack.iterate(VerifyNoCSetOops("Stack"));
2525 
2526   // Verify entries on the task queues
2527   for (uint i = 0; i < _max_worker_id; ++i) {
2528     CMTaskQueue* queue = _task_queues->queue(i);
2529     queue->iterate(VerifyNoCSetOops("Queue", i));
2530   }
2531 
2532   // Verify the global finger
2533   HeapWord* global_finger = finger();
2534   if (global_finger != NULL && global_finger < _heap_end) {
2535     // Since we always iterate over all regions, we might get a NULL HeapRegion
2536     // here.
2537     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
2538     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
2539               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
2540               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
2541   }
2542 
2543   // Verify the task fingers
2544   assert(parallel_marking_threads() <= _max_worker_id, "sanity");
2545   for (uint i = 0; i < parallel_marking_threads(); ++i) {
2546     CMTask* task = _tasks[i];
2547     HeapWord* task_finger = task->finger();
2548     if (task_finger != NULL && task_finger < _heap_end) {
2549       // See above note on the global finger verification.
2550       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
2551       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
2552                 !task_hr->in_collection_set(),
2553                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
2554                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
2555     }
2556   }
2557 }
2558 #endif // PRODUCT
2559 
2560 // Aggregate the counting data that was constructed concurrently
2561 // with marking.
2562 class AggregateCountDataHRClosure: public HeapRegionClosure {
2563   G1CollectedHeap* _g1h;
2564   ConcurrentMark* _cm;
2565   CardTableModRefBS* _ct_bs;
2566   BitMap* _cm_card_bm;
2567   uint _max_worker_id;
2568 
2569  public:
2570   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
2571                               BitMap* cm_card_bm,
2572                               uint max_worker_id) :
2573     _g1h(g1h), _cm(g1h->concurrent_mark()),
2574     _ct_bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
2575     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
2576 
2577   bool doHeapRegion(HeapRegion* hr) {
2578     HeapWord* start = hr->bottom();
2579     HeapWord* limit = hr->next_top_at_mark_start();
2580     HeapWord* end = hr->end();
2581 
2582     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
2583            "Preconditions not met - "
2584            "start: " PTR_FORMAT ", limit: " PTR_FORMAT ", "
2585            "top: " PTR_FORMAT ", end: " PTR_FORMAT,
2586            p2i(start), p2i(limit), p2i(hr->top()), p2i(hr->end()));
2587 
2588     assert(hr->next_marked_bytes() == 0, "Precondition");
2589 
2590     if (start == limit) {
2591       // NTAMS of this region has not been set so nothing to do.
2592       return false;
2593     }
2594 
2595     // 'start' should be in the heap.
2596     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
2597     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
2598     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
2599 
2600     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
2601     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
2602     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
2603 
2604     // If ntams is not card aligned then we bump card bitmap index
2605     // for limit so that we get the all the cards spanned by
2606     // the object ending at ntams.
2607     // Note: if this is the last region in the heap then ntams
2608     // could be actually just beyond the end of the the heap;
2609     // limit_idx will then  correspond to a (non-existent) card
2610     // that is also outside the heap.
2611     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
2612       limit_idx += 1;
2613     }
2614 
2615     assert(limit_idx <= end_idx, "or else use atomics");
2616 
2617     // Aggregate the "stripe" in the count data associated with hr.
2618     uint hrm_index = hr->hrm_index();
2619     size_t marked_bytes = 0;
2620 
2621     for (uint i = 0; i < _max_worker_id; i += 1) {
2622       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
2623       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
2624 
2625       // Fetch the marked_bytes in this region for task i and
2626       // add it to the running total for this region.
2627       marked_bytes += marked_bytes_array[hrm_index];
2628 
2629       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
2630       // into the global card bitmap.
2631       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
2632 
2633       while (scan_idx < limit_idx) {
2634         assert(task_card_bm->at(scan_idx) == true, "should be");
2635         _cm_card_bm->set_bit(scan_idx);
2636         assert(_cm_card_bm->at(scan_idx) == true, "should be");
2637 
2638         // BitMap::get_next_one_offset() can handle the case when
2639         // its left_offset parameter is greater than its right_offset
2640         // parameter. It does, however, have an early exit if
2641         // left_offset == right_offset. So let's limit the value
2642         // passed in for left offset here.
2643         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
2644         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
2645       }
2646     }
2647 
2648     // Update the marked bytes for this region.
2649     hr->add_to_marked_bytes(marked_bytes);
2650 
2651     // Next heap region
2652     return false;
2653   }
2654 };
2655 
2656 class G1AggregateCountDataTask: public AbstractGangTask {
2657 protected:
2658   G1CollectedHeap* _g1h;
2659   ConcurrentMark* _cm;
2660   BitMap* _cm_card_bm;
2661   uint _max_worker_id;
2662   uint _active_workers;
2663   HeapRegionClaimer _hrclaimer;
2664 
2665 public:
2666   G1AggregateCountDataTask(G1CollectedHeap* g1h,
2667                            ConcurrentMark* cm,
2668                            BitMap* cm_card_bm,
2669                            uint max_worker_id,
2670                            uint n_workers) :
2671       AbstractGangTask("Count Aggregation"),
2672       _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
2673       _max_worker_id(max_worker_id),
2674       _active_workers(n_workers),
2675       _hrclaimer(_active_workers) {
2676   }
2677 
2678   void work(uint worker_id) {
2679     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
2680 
2681     _g1h->heap_region_par_iterate(&cl, worker_id, &_hrclaimer);
2682   }
2683 };
2684 
2685 
2686 void ConcurrentMark::aggregate_count_data() {
2687   uint n_workers = _g1h->workers()->active_workers();
2688 
2689   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
2690                                            _max_worker_id, n_workers);
2691 
2692   _g1h->workers()->run_task(&g1_par_agg_task);
2693 }
2694 
2695 // Clear the per-worker arrays used to store the per-region counting data
2696 void ConcurrentMark::clear_all_count_data() {
2697   // Clear the global card bitmap - it will be filled during
2698   // liveness count aggregation (during remark) and the
2699   // final counting task.
2700   _card_bm.clear();
2701 
2702   // Clear the global region bitmap - it will be filled as part
2703   // of the final counting task.
2704   _region_bm.clear();
2705 
2706   uint max_regions = _g1h->max_regions();
2707   assert(_max_worker_id > 0, "uninitialized");
2708 
2709   for (uint i = 0; i < _max_worker_id; i += 1) {
2710     BitMap* task_card_bm = count_card_bitmap_for(i);
2711     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
2712 
2713     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
2714     assert(marked_bytes_array != NULL, "uninitialized");
2715 
2716     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
2717     task_card_bm->clear();
2718   }
2719 }
2720 
2721 void ConcurrentMark::print_stats() {
2722   if (G1MarkingVerboseLevel > 0) {
2723     gclog_or_tty->print_cr("---------------------------------------------------------------------");
2724     for (size_t i = 0; i < _active_tasks; ++i) {
2725       _tasks[i]->print_stats();
2726       gclog_or_tty->print_cr("---------------------------------------------------------------------");
2727     }
2728   }
2729 }
2730 
2731 // abandon current marking iteration due to a Full GC
2732 void ConcurrentMark::abort() {
2733   if (!cmThread()->during_cycle() || _has_aborted) {
2734     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2735     return;
2736   }
2737 
2738   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2739   // concurrent bitmap clearing.
2740   _nextMarkBitMap->clearAll();
2741 
2742   // Note we cannot clear the previous marking bitmap here
2743   // since VerifyDuringGC verifies the objects marked during
2744   // a full GC against the previous bitmap.
2745 
2746   // Clear the liveness counting data
2747   clear_all_count_data();
2748   // Empty mark stack
2749   reset_marking_state();
2750   for (uint i = 0; i < _max_worker_id; ++i) {
2751     _tasks[i]->clear_region_fields();
2752   }
2753   _first_overflow_barrier_sync.abort();
2754   _second_overflow_barrier_sync.abort();
2755   _has_aborted = true;
2756 
2757   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2758   satb_mq_set.abandon_partial_marking();
2759   // This can be called either during or outside marking, we'll read
2760   // the expected_active value from the SATB queue set.
2761   satb_mq_set.set_active_all_threads(
2762                                  false, /* new active value */
2763                                  satb_mq_set.is_active() /* expected_active */);
2764 
2765   _g1h->trace_heap_after_concurrent_cycle();
2766   _g1h->register_concurrent_cycle_end();
2767 }
2768 
2769 static void print_ms_time_info(const char* prefix, const char* name,
2770                                NumberSeq& ns) {
2771   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2772                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2773   if (ns.num() > 0) {
2774     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2775                            prefix, ns.sd(), ns.maximum());
2776   }
2777 }
2778 
2779 void ConcurrentMark::print_summary_info() {
2780   gclog_or_tty->print_cr(" Concurrent marking:");
2781   print_ms_time_info("  ", "init marks", _init_times);
2782   print_ms_time_info("  ", "remarks", _remark_times);
2783   {
2784     print_ms_time_info("     ", "final marks", _remark_mark_times);
2785     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2786 
2787   }
2788   print_ms_time_info("  ", "cleanups", _cleanup_times);
2789   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
2790                          _total_counting_time,
2791                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
2792                           (double)_cleanup_times.num()
2793                          : 0.0));
2794   if (G1ScrubRemSets) {
2795     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
2796                            _total_rs_scrub_time,
2797                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
2798                             (double)_cleanup_times.num()
2799                            : 0.0));
2800   }
2801   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
2802                          (_init_times.sum() + _remark_times.sum() +
2803                           _cleanup_times.sum())/1000.0);
2804   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
2805                 "(%8.2f s marking).",
2806                 cmThread()->vtime_accum(),
2807                 cmThread()->vtime_mark_accum());
2808 }
2809 
2810 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2811   _parallel_workers->print_worker_threads_on(st);
2812 }
2813 
2814 void ConcurrentMark::print_on_error(outputStream* st) const {
2815   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2816       p2i(_prevMarkBitMap), p2i(_nextMarkBitMap));
2817   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
2818   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
2819 }
2820 
2821 // We take a break if someone is trying to stop the world.
2822 bool ConcurrentMark::do_yield_check(uint worker_id) {
2823   if (SuspendibleThreadSet::should_yield()) {
2824     if (worker_id == 0) {
2825       _g1h->g1_policy()->record_concurrent_pause();
2826     }
2827     SuspendibleThreadSet::yield();
2828     return true;
2829   } else {
2830     return false;
2831   }
2832 }
2833 
2834 // Closure for iteration over bitmaps
2835 class CMBitMapClosure : public BitMapClosure {
2836 private:
2837   // the bitmap that is being iterated over
2838   CMBitMap*                   _nextMarkBitMap;
2839   ConcurrentMark*             _cm;
2840   CMTask*                     _task;
2841 
2842 public:
2843   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
2844     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
2845 
2846   bool do_bit(size_t offset) {
2847     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
2848     assert(_nextMarkBitMap->isMarked(addr), "invariant");
2849     assert( addr < _cm->finger(), "invariant");
2850     assert(addr >= _task->finger(), "invariant");
2851 
2852     // We move that task's local finger along.
2853     _task->move_finger_to(addr);
2854 
2855     _task->scan_object(oop(addr));
2856     // we only partially drain the local queue and global stack
2857     _task->drain_local_queue(true);
2858     _task->drain_global_stack(true);
2859 
2860     // if the has_aborted flag has been raised, we need to bail out of
2861     // the iteration
2862     return !_task->has_aborted();
2863   }
2864 };
2865 
2866 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2867   ReferenceProcessor* result = NULL;
2868   if (G1UseConcMarkReferenceProcessing) {
2869     result = g1h->ref_processor_cm();
2870     assert(result != NULL, "should not be NULL");
2871   }
2872   return result;
2873 }
2874 
2875 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2876                                ConcurrentMark* cm,
2877                                CMTask* task)
2878   : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)),
2879     _g1h(g1h), _cm(cm), _task(task)
2880 { }
2881 
2882 void CMTask::setup_for_region(HeapRegion* hr) {
2883   assert(hr != NULL,
2884         "claim_region() should have filtered out NULL regions");
2885   _curr_region  = hr;
2886   _finger       = hr->bottom();
2887   update_region_limit();
2888 }
2889 
2890 void CMTask::update_region_limit() {
2891   HeapRegion* hr            = _curr_region;
2892   HeapWord* bottom          = hr->bottom();
2893   HeapWord* limit           = hr->next_top_at_mark_start();
2894 
2895   if (limit == bottom) {
2896     // The region was collected underneath our feet.
2897     // We set the finger to bottom to ensure that the bitmap
2898     // iteration that will follow this will not do anything.
2899     // (this is not a condition that holds when we set the region up,
2900     // as the region is not supposed to be empty in the first place)
2901     _finger = bottom;
2902   } else if (limit >= _region_limit) {
2903     assert(limit >= _finger, "peace of mind");
2904   } else {
2905     assert(limit < _region_limit, "only way to get here");
2906     // This can happen under some pretty unusual circumstances.  An
2907     // evacuation pause empties the region underneath our feet (NTAMS
2908     // at bottom). We then do some allocation in the region (NTAMS
2909     // stays at bottom), followed by the region being used as a GC
2910     // alloc region (NTAMS will move to top() and the objects
2911     // originally below it will be grayed). All objects now marked in
2912     // the region are explicitly grayed, if below the global finger,
2913     // and we do not need in fact to scan anything else. So, we simply
2914     // set _finger to be limit to ensure that the bitmap iteration
2915     // doesn't do anything.
2916     _finger = limit;
2917   }
2918 
2919   _region_limit = limit;
2920 }
2921 
2922 void CMTask::giveup_current_region() {
2923   assert(_curr_region != NULL, "invariant");
2924   clear_region_fields();
2925 }
2926 
2927 void CMTask::clear_region_fields() {
2928   // Values for these three fields that indicate that we're not
2929   // holding on to a region.
2930   _curr_region   = NULL;
2931   _finger        = NULL;
2932   _region_limit  = NULL;
2933 }
2934 
2935 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2936   if (cm_oop_closure == NULL) {
2937     assert(_cm_oop_closure != NULL, "invariant");
2938   } else {
2939     assert(_cm_oop_closure == NULL, "invariant");
2940   }
2941   _cm_oop_closure = cm_oop_closure;
2942 }
2943 
2944 void CMTask::reset(CMBitMap* nextMarkBitMap) {
2945   guarantee(nextMarkBitMap != NULL, "invariant");
2946   _nextMarkBitMap                = nextMarkBitMap;
2947   clear_region_fields();
2948 
2949   _calls                         = 0;
2950   _elapsed_time_ms               = 0.0;
2951   _termination_time_ms           = 0.0;
2952   _termination_start_time_ms     = 0.0;
2953 }
2954 
2955 bool CMTask::should_exit_termination() {
2956   regular_clock_call();
2957   // This is called when we are in the termination protocol. We should
2958   // quit if, for some reason, this task wants to abort or the global
2959   // stack is not empty (this means that we can get work from it).
2960   return !_cm->mark_stack_empty() || has_aborted();
2961 }
2962 
2963 void CMTask::reached_limit() {
2964   assert(_words_scanned >= _words_scanned_limit ||
2965          _refs_reached >= _refs_reached_limit ,
2966          "shouldn't have been called otherwise");
2967   regular_clock_call();
2968 }
2969 
2970 void CMTask::regular_clock_call() {
2971   if (has_aborted()) return;
2972 
2973   // First, we need to recalculate the words scanned and refs reached
2974   // limits for the next clock call.
2975   recalculate_limits();
2976 
2977   // During the regular clock call we do the following
2978 
2979   // (1) If an overflow has been flagged, then we abort.
2980   if (_cm->has_overflown()) {
2981     set_has_aborted();
2982     return;
2983   }
2984 
2985   // If we are not concurrent (i.e. we're doing remark) we don't need
2986   // to check anything else. The other steps are only needed during
2987   // the concurrent marking phase.
2988   if (!concurrent()) return;
2989 
2990   // (2) If marking has been aborted for Full GC, then we also abort.
2991   if (_cm->has_aborted()) {
2992     set_has_aborted();
2993     return;
2994   }
2995 
2996   double curr_time_ms = os::elapsedVTime() * 1000.0;
2997 
2998   // (4) We check whether we should yield. If we have to, then we abort.
2999   if (SuspendibleThreadSet::should_yield()) {
3000     // We should yield. To do this we abort the task. The caller is
3001     // responsible for yielding.
3002     set_has_aborted();
3003     return;
3004   }
3005 
3006   // (5) We check whether we've reached our time quota. If we have,
3007   // then we abort.
3008   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3009   if (elapsed_time_ms > _time_target_ms) {
3010     set_has_aborted();
3011     _has_timed_out = true;
3012     return;
3013   }
3014 
3015   // (6) Finally, we check whether there are enough completed STAB
3016   // buffers available for processing. If there are, we abort.
3017   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3018   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3019     // we do need to process SATB buffers, we'll abort and restart
3020     // the marking task to do so
3021     set_has_aborted();
3022     return;
3023   }
3024 }
3025 
3026 void CMTask::recalculate_limits() {
3027   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3028   _words_scanned_limit      = _real_words_scanned_limit;
3029 
3030   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3031   _refs_reached_limit       = _real_refs_reached_limit;
3032 }
3033 
3034 void CMTask::decrease_limits() {
3035   // This is called when we believe that we're going to do an infrequent
3036   // operation which will increase the per byte scanned cost (i.e. move
3037   // entries to/from the global stack). It basically tries to decrease the
3038   // scanning limit so that the clock is called earlier.
3039 
3040   _words_scanned_limit = _real_words_scanned_limit -
3041     3 * words_scanned_period / 4;
3042   _refs_reached_limit  = _real_refs_reached_limit -
3043     3 * refs_reached_period / 4;
3044 }
3045 
3046 void CMTask::move_entries_to_global_stack() {
3047   // local array where we'll store the entries that will be popped
3048   // from the local queue
3049   oop buffer[global_stack_transfer_size];
3050 
3051   int n = 0;
3052   oop obj;
3053   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3054     buffer[n] = obj;
3055     ++n;
3056   }
3057 
3058   if (n > 0) {
3059     // we popped at least one entry from the local queue
3060 
3061     if (!_cm->mark_stack_push(buffer, n)) {
3062       set_has_aborted();
3063     }
3064   }
3065 
3066   // this operation was quite expensive, so decrease the limits
3067   decrease_limits();
3068 }
3069 
3070 void CMTask::get_entries_from_global_stack() {
3071   // local array where we'll store the entries that will be popped
3072   // from the global stack.
3073   oop buffer[global_stack_transfer_size];
3074   int n;
3075   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3076   assert(n <= global_stack_transfer_size,
3077          "we should not pop more than the given limit");
3078   if (n > 0) {
3079     // yes, we did actually pop at least one entry
3080     for (int i = 0; i < n; ++i) {
3081       bool success = _task_queue->push(buffer[i]);
3082       // We only call this when the local queue is empty or under a
3083       // given target limit. So, we do not expect this push to fail.
3084       assert(success, "invariant");
3085     }
3086   }
3087 
3088   // this operation was quite expensive, so decrease the limits
3089   decrease_limits();
3090 }
3091 
3092 void CMTask::drain_local_queue(bool partially) {
3093   if (has_aborted()) return;
3094 
3095   // Decide what the target size is, depending whether we're going to
3096   // drain it partially (so that other tasks can steal if they run out
3097   // of things to do) or totally (at the very end).
3098   size_t target_size;
3099   if (partially) {
3100     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3101   } else {
3102     target_size = 0;
3103   }
3104 
3105   if (_task_queue->size() > target_size) {
3106     oop obj;
3107     bool ret = _task_queue->pop_local(obj);
3108     while (ret) {
3109       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3110       assert(!_g1h->is_on_master_free_list(
3111                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3112 
3113       scan_object(obj);
3114 
3115       if (_task_queue->size() <= target_size || has_aborted()) {
3116         ret = false;
3117       } else {
3118         ret = _task_queue->pop_local(obj);
3119       }
3120     }
3121   }
3122 }
3123 
3124 void CMTask::drain_global_stack(bool partially) {
3125   if (has_aborted()) return;
3126 
3127   // We have a policy to drain the local queue before we attempt to
3128   // drain the global stack.
3129   assert(partially || _task_queue->size() == 0, "invariant");
3130 
3131   // Decide what the target size is, depending whether we're going to
3132   // drain it partially (so that other tasks can steal if they run out
3133   // of things to do) or totally (at the very end).  Notice that,
3134   // because we move entries from the global stack in chunks or
3135   // because another task might be doing the same, we might in fact
3136   // drop below the target. But, this is not a problem.
3137   size_t target_size;
3138   if (partially) {
3139     target_size = _cm->partial_mark_stack_size_target();
3140   } else {
3141     target_size = 0;
3142   }
3143 
3144   if (_cm->mark_stack_size() > target_size) {
3145     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3146       get_entries_from_global_stack();
3147       drain_local_queue(partially);
3148     }
3149   }
3150 }
3151 
3152 // SATB Queue has several assumptions on whether to call the par or
3153 // non-par versions of the methods. this is why some of the code is
3154 // replicated. We should really get rid of the single-threaded version
3155 // of the code to simplify things.
3156 void CMTask::drain_satb_buffers() {
3157   if (has_aborted()) return;
3158 
3159   // We set this so that the regular clock knows that we're in the
3160   // middle of draining buffers and doesn't set the abort flag when it
3161   // notices that SATB buffers are available for draining. It'd be
3162   // very counter productive if it did that. :-)
3163   _draining_satb_buffers = true;
3164 
3165   CMSATBBufferClosure satb_cl(this, _g1h);
3166   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3167 
3168   // This keeps claiming and applying the closure to completed buffers
3169   // until we run out of buffers or we need to abort.
3170   while (!has_aborted() &&
3171          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
3172     regular_clock_call();
3173   }
3174 
3175   _draining_satb_buffers = false;
3176 
3177   assert(has_aborted() ||
3178          concurrent() ||
3179          satb_mq_set.completed_buffers_num() == 0, "invariant");
3180 
3181   // again, this was a potentially expensive operation, decrease the
3182   // limits to get the regular clock call early
3183   decrease_limits();
3184 }
3185 
3186 void CMTask::print_stats() {
3187   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3188                          _worker_id, _calls);
3189   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3190                          _elapsed_time_ms, _termination_time_ms);
3191   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3192                          _step_times_ms.num(), _step_times_ms.avg(),
3193                          _step_times_ms.sd());
3194   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3195                          _step_times_ms.maximum(), _step_times_ms.sum());
3196 }
3197 
3198 bool ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, oop& obj) {
3199   return _task_queues->steal(worker_id, hash_seed, obj);
3200 }
3201 
3202 /*****************************************************************************
3203 
3204     The do_marking_step(time_target_ms, ...) method is the building
3205     block of the parallel marking framework. It can be called in parallel
3206     with other invocations of do_marking_step() on different tasks
3207     (but only one per task, obviously) and concurrently with the
3208     mutator threads, or during remark, hence it eliminates the need
3209     for two versions of the code. When called during remark, it will
3210     pick up from where the task left off during the concurrent marking
3211     phase. Interestingly, tasks are also claimable during evacuation
3212     pauses too, since do_marking_step() ensures that it aborts before
3213     it needs to yield.
3214 
3215     The data structures that it uses to do marking work are the
3216     following:
3217 
3218       (1) Marking Bitmap. If there are gray objects that appear only
3219       on the bitmap (this happens either when dealing with an overflow
3220       or when the initial marking phase has simply marked the roots
3221       and didn't push them on the stack), then tasks claim heap
3222       regions whose bitmap they then scan to find gray objects. A
3223       global finger indicates where the end of the last claimed region
3224       is. A local finger indicates how far into the region a task has
3225       scanned. The two fingers are used to determine how to gray an
3226       object (i.e. whether simply marking it is OK, as it will be
3227       visited by a task in the future, or whether it needs to be also
3228       pushed on a stack).
3229 
3230       (2) Local Queue. The local queue of the task which is accessed
3231       reasonably efficiently by the task. Other tasks can steal from
3232       it when they run out of work. Throughout the marking phase, a
3233       task attempts to keep its local queue short but not totally
3234       empty, so that entries are available for stealing by other
3235       tasks. Only when there is no more work, a task will totally
3236       drain its local queue.
3237 
3238       (3) Global Mark Stack. This handles local queue overflow. During
3239       marking only sets of entries are moved between it and the local
3240       queues, as access to it requires a mutex and more fine-grain
3241       interaction with it which might cause contention. If it
3242       overflows, then the marking phase should restart and iterate
3243       over the bitmap to identify gray objects. Throughout the marking
3244       phase, tasks attempt to keep the global mark stack at a small
3245       length but not totally empty, so that entries are available for
3246       popping by other tasks. Only when there is no more work, tasks
3247       will totally drain the global mark stack.
3248 
3249       (4) SATB Buffer Queue. This is where completed SATB buffers are
3250       made available. Buffers are regularly removed from this queue
3251       and scanned for roots, so that the queue doesn't get too
3252       long. During remark, all completed buffers are processed, as
3253       well as the filled in parts of any uncompleted buffers.
3254 
3255     The do_marking_step() method tries to abort when the time target
3256     has been reached. There are a few other cases when the
3257     do_marking_step() method also aborts:
3258 
3259       (1) When the marking phase has been aborted (after a Full GC).
3260 
3261       (2) When a global overflow (on the global stack) has been
3262       triggered. Before the task aborts, it will actually sync up with
3263       the other tasks to ensure that all the marking data structures
3264       (local queues, stacks, fingers etc.)  are re-initialized so that
3265       when do_marking_step() completes, the marking phase can
3266       immediately restart.
3267 
3268       (3) When enough completed SATB buffers are available. The
3269       do_marking_step() method only tries to drain SATB buffers right
3270       at the beginning. So, if enough buffers are available, the
3271       marking step aborts and the SATB buffers are processed at
3272       the beginning of the next invocation.
3273 
3274       (4) To yield. when we have to yield then we abort and yield
3275       right at the end of do_marking_step(). This saves us from a lot
3276       of hassle as, by yielding we might allow a Full GC. If this
3277       happens then objects will be compacted underneath our feet, the
3278       heap might shrink, etc. We save checking for this by just
3279       aborting and doing the yield right at the end.
3280 
3281     From the above it follows that the do_marking_step() method should
3282     be called in a loop (or, otherwise, regularly) until it completes.
3283 
3284     If a marking step completes without its has_aborted() flag being
3285     true, it means it has completed the current marking phase (and
3286     also all other marking tasks have done so and have all synced up).
3287 
3288     A method called regular_clock_call() is invoked "regularly" (in
3289     sub ms intervals) throughout marking. It is this clock method that
3290     checks all the abort conditions which were mentioned above and
3291     decides when the task should abort. A work-based scheme is used to
3292     trigger this clock method: when the number of object words the
3293     marking phase has scanned or the number of references the marking
3294     phase has visited reach a given limit. Additional invocations to
3295     the method clock have been planted in a few other strategic places
3296     too. The initial reason for the clock method was to avoid calling
3297     vtime too regularly, as it is quite expensive. So, once it was in
3298     place, it was natural to piggy-back all the other conditions on it
3299     too and not constantly check them throughout the code.
3300 
3301     If do_termination is true then do_marking_step will enter its
3302     termination protocol.
3303 
3304     The value of is_serial must be true when do_marking_step is being
3305     called serially (i.e. by the VMThread) and do_marking_step should
3306     skip any synchronization in the termination and overflow code.
3307     Examples include the serial remark code and the serial reference
3308     processing closures.
3309 
3310     The value of is_serial must be false when do_marking_step is
3311     being called by any of the worker threads in a work gang.
3312     Examples include the concurrent marking code (CMMarkingTask),
3313     the MT remark code, and the MT reference processing closures.
3314 
3315  *****************************************************************************/
3316 
3317 void CMTask::do_marking_step(double time_target_ms,
3318                              bool do_termination,
3319                              bool is_serial) {
3320   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
3321   assert(concurrent() == _cm->concurrent(), "they should be the same");
3322 
3323   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
3324   assert(_task_queues != NULL, "invariant");
3325   assert(_task_queue != NULL, "invariant");
3326   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
3327 
3328   assert(!_claimed,
3329          "only one thread should claim this task at any one time");
3330 
3331   // OK, this doesn't safeguard again all possible scenarios, as it is
3332   // possible for two threads to set the _claimed flag at the same
3333   // time. But it is only for debugging purposes anyway and it will
3334   // catch most problems.
3335   _claimed = true;
3336 
3337   _start_time_ms = os::elapsedVTime() * 1000.0;
3338 
3339   // If do_stealing is true then do_marking_step will attempt to
3340   // steal work from the other CMTasks. It only makes sense to
3341   // enable stealing when the termination protocol is enabled
3342   // and do_marking_step() is not being called serially.
3343   bool do_stealing = do_termination && !is_serial;
3344 
3345   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
3346   _time_target_ms = time_target_ms - diff_prediction_ms;
3347 
3348   // set up the variables that are used in the work-based scheme to
3349   // call the regular clock method
3350   _words_scanned = 0;
3351   _refs_reached  = 0;
3352   recalculate_limits();
3353 
3354   // clear all flags
3355   clear_has_aborted();
3356   _has_timed_out = false;
3357   _draining_satb_buffers = false;
3358 
3359   ++_calls;
3360 
3361   // Set up the bitmap and oop closures. Anything that uses them is
3362   // eventually called from this method, so it is OK to allocate these
3363   // statically.
3364   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
3365   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
3366   set_cm_oop_closure(&cm_oop_closure);
3367 
3368   if (_cm->has_overflown()) {
3369     // This can happen if the mark stack overflows during a GC pause
3370     // and this task, after a yield point, restarts. We have to abort
3371     // as we need to get into the overflow protocol which happens
3372     // right at the end of this task.
3373     set_has_aborted();
3374   }
3375 
3376   // First drain any available SATB buffers. After this, we will not
3377   // look at SATB buffers before the next invocation of this method.
3378   // If enough completed SATB buffers are queued up, the regular clock
3379   // will abort this task so that it restarts.
3380   drain_satb_buffers();
3381   // ...then partially drain the local queue and the global stack
3382   drain_local_queue(true);
3383   drain_global_stack(true);
3384 
3385   do {
3386     if (!has_aborted() && _curr_region != NULL) {
3387       // This means that we're already holding on to a region.
3388       assert(_finger != NULL, "if region is not NULL, then the finger "
3389              "should not be NULL either");
3390 
3391       // We might have restarted this task after an evacuation pause
3392       // which might have evacuated the region we're holding on to
3393       // underneath our feet. Let's read its limit again to make sure
3394       // that we do not iterate over a region of the heap that
3395       // contains garbage (update_region_limit() will also move
3396       // _finger to the start of the region if it is found empty).
3397       update_region_limit();
3398       // We will start from _finger not from the start of the region,
3399       // as we might be restarting this task after aborting half-way
3400       // through scanning this region. In this case, _finger points to
3401       // the address where we last found a marked object. If this is a
3402       // fresh region, _finger points to start().
3403       MemRegion mr = MemRegion(_finger, _region_limit);
3404 
3405       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
3406              "humongous regions should go around loop once only");
3407 
3408       // Some special cases:
3409       // If the memory region is empty, we can just give up the region.
3410       // If the current region is humongous then we only need to check
3411       // the bitmap for the bit associated with the start of the object,
3412       // scan the object if it's live, and give up the region.
3413       // Otherwise, let's iterate over the bitmap of the part of the region
3414       // that is left.
3415       // If the iteration is successful, give up the region.
3416       if (mr.is_empty()) {
3417         giveup_current_region();
3418         regular_clock_call();
3419       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
3420         if (_nextMarkBitMap->isMarked(mr.start())) {
3421           // The object is marked - apply the closure
3422           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
3423           bitmap_closure.do_bit(offset);
3424         }
3425         // Even if this task aborted while scanning the humongous object
3426         // we can (and should) give up the current region.
3427         giveup_current_region();
3428         regular_clock_call();
3429       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
3430         giveup_current_region();
3431         regular_clock_call();
3432       } else {
3433         assert(has_aborted(), "currently the only way to do so");
3434         // The only way to abort the bitmap iteration is to return
3435         // false from the do_bit() method. However, inside the
3436         // do_bit() method we move the _finger to point to the
3437         // object currently being looked at. So, if we bail out, we
3438         // have definitely set _finger to something non-null.
3439         assert(_finger != NULL, "invariant");
3440 
3441         // Region iteration was actually aborted. So now _finger
3442         // points to the address of the object we last scanned. If we
3443         // leave it there, when we restart this task, we will rescan
3444         // the object. It is easy to avoid this. We move the finger by
3445         // enough to point to the next possible object header (the
3446         // bitmap knows by how much we need to move it as it knows its
3447         // granularity).
3448         assert(_finger < _region_limit, "invariant");
3449         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
3450         // Check if bitmap iteration was aborted while scanning the last object
3451         if (new_finger >= _region_limit) {
3452           giveup_current_region();
3453         } else {
3454           move_finger_to(new_finger);
3455         }
3456       }
3457     }
3458     // At this point we have either completed iterating over the
3459     // region we were holding on to, or we have aborted.
3460 
3461     // We then partially drain the local queue and the global stack.
3462     // (Do we really need this?)
3463     drain_local_queue(true);
3464     drain_global_stack(true);
3465 
3466     // Read the note on the claim_region() method on why it might
3467     // return NULL with potentially more regions available for
3468     // claiming and why we have to check out_of_regions() to determine
3469     // whether we're done or not.
3470     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
3471       // We are going to try to claim a new region. We should have
3472       // given up on the previous one.
3473       // Separated the asserts so that we know which one fires.
3474       assert(_curr_region  == NULL, "invariant");
3475       assert(_finger       == NULL, "invariant");
3476       assert(_region_limit == NULL, "invariant");
3477       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
3478       if (claimed_region != NULL) {
3479         // Yes, we managed to claim one
3480         setup_for_region(claimed_region);
3481         assert(_curr_region == claimed_region, "invariant");
3482       }
3483       // It is important to call the regular clock here. It might take
3484       // a while to claim a region if, for example, we hit a large
3485       // block of empty regions. So we need to call the regular clock
3486       // method once round the loop to make sure it's called
3487       // frequently enough.
3488       regular_clock_call();
3489     }
3490 
3491     if (!has_aborted() && _curr_region == NULL) {
3492       assert(_cm->out_of_regions(),
3493              "at this point we should be out of regions");
3494     }
3495   } while ( _curr_region != NULL && !has_aborted());
3496 
3497   if (!has_aborted()) {
3498     // We cannot check whether the global stack is empty, since other
3499     // tasks might be pushing objects to it concurrently.
3500     assert(_cm->out_of_regions(),
3501            "at this point we should be out of regions");
3502     // Try to reduce the number of available SATB buffers so that
3503     // remark has less work to do.
3504     drain_satb_buffers();
3505   }
3506 
3507   // Since we've done everything else, we can now totally drain the
3508   // local queue and global stack.
3509   drain_local_queue(false);
3510   drain_global_stack(false);
3511 
3512   // Attempt at work stealing from other task's queues.
3513   if (do_stealing && !has_aborted()) {
3514     // We have not aborted. This means that we have finished all that
3515     // we could. Let's try to do some stealing...
3516 
3517     // We cannot check whether the global stack is empty, since other
3518     // tasks might be pushing objects to it concurrently.
3519     assert(_cm->out_of_regions() && _task_queue->size() == 0,
3520            "only way to reach here");
3521     while (!has_aborted()) {
3522       oop obj;
3523       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
3524         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
3525                "any stolen object should be marked");
3526         scan_object(obj);
3527 
3528         // And since we're towards the end, let's totally drain the
3529         // local queue and global stack.
3530         drain_local_queue(false);
3531         drain_global_stack(false);
3532       } else {
3533         break;
3534       }
3535     }
3536   }
3537 
3538   // If we are about to wrap up and go into termination, check if we
3539   // should raise the overflow flag.
3540   if (do_termination && !has_aborted()) {
3541     if (_cm->force_overflow()->should_force()) {
3542       _cm->set_has_overflown();
3543       regular_clock_call();
3544     }
3545   }
3546 
3547   // We still haven't aborted. Now, let's try to get into the
3548   // termination protocol.
3549   if (do_termination && !has_aborted()) {
3550     // We cannot check whether the global stack is empty, since other
3551     // tasks might be concurrently pushing objects on it.
3552     // Separated the asserts so that we know which one fires.
3553     assert(_cm->out_of_regions(), "only way to reach here");
3554     assert(_task_queue->size() == 0, "only way to reach here");
3555     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
3556 
3557     // The CMTask class also extends the TerminatorTerminator class,
3558     // hence its should_exit_termination() method will also decide
3559     // whether to exit the termination protocol or not.
3560     bool finished = (is_serial ||
3561                      _cm->terminator()->offer_termination(this));
3562     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
3563     _termination_time_ms +=
3564       termination_end_time_ms - _termination_start_time_ms;
3565 
3566     if (finished) {
3567       // We're all done.
3568 
3569       if (_worker_id == 0) {
3570         // let's allow task 0 to do this
3571         if (concurrent()) {
3572           assert(_cm->concurrent_marking_in_progress(), "invariant");
3573           // we need to set this to false before the next
3574           // safepoint. This way we ensure that the marking phase
3575           // doesn't observe any more heap expansions.
3576           _cm->clear_concurrent_marking_in_progress();
3577         }
3578       }
3579 
3580       // We can now guarantee that the global stack is empty, since
3581       // all other tasks have finished. We separated the guarantees so
3582       // that, if a condition is false, we can immediately find out
3583       // which one.
3584       guarantee(_cm->out_of_regions(), "only way to reach here");
3585       guarantee(_cm->mark_stack_empty(), "only way to reach here");
3586       guarantee(_task_queue->size() == 0, "only way to reach here");
3587       guarantee(!_cm->has_overflown(), "only way to reach here");
3588       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
3589     } else {
3590       // Apparently there's more work to do. Let's abort this task. It
3591       // will restart it and we can hopefully find more things to do.
3592       set_has_aborted();
3593     }
3594   }
3595 
3596   // Mainly for debugging purposes to make sure that a pointer to the
3597   // closure which was statically allocated in this frame doesn't
3598   // escape it by accident.
3599   set_cm_oop_closure(NULL);
3600   double end_time_ms = os::elapsedVTime() * 1000.0;
3601   double elapsed_time_ms = end_time_ms - _start_time_ms;
3602   // Update the step history.
3603   _step_times_ms.add(elapsed_time_ms);
3604 
3605   if (has_aborted()) {
3606     // The task was aborted for some reason.
3607     if (_has_timed_out) {
3608       double diff_ms = elapsed_time_ms - _time_target_ms;
3609       // Keep statistics of how well we did with respect to hitting
3610       // our target only if we actually timed out (if we aborted for
3611       // other reasons, then the results might get skewed).
3612       _marking_step_diffs_ms.add(diff_ms);
3613     }
3614 
3615     if (_cm->has_overflown()) {
3616       // This is the interesting one. We aborted because a global
3617       // overflow was raised. This means we have to restart the
3618       // marking phase and start iterating over regions. However, in
3619       // order to do this we have to make sure that all tasks stop
3620       // what they are doing and re-initialize in a safe manner. We
3621       // will achieve this with the use of two barrier sync points.
3622 
3623       if (!is_serial) {
3624         // We only need to enter the sync barrier if being called
3625         // from a parallel context
3626         _cm->enter_first_sync_barrier(_worker_id);
3627 
3628         // When we exit this sync barrier we know that all tasks have
3629         // stopped doing marking work. So, it's now safe to
3630         // re-initialize our data structures. At the end of this method,
3631         // task 0 will clear the global data structures.
3632       }
3633 
3634       // We clear the local state of this task...
3635       clear_region_fields();
3636 
3637       if (!is_serial) {
3638         // ...and enter the second barrier.
3639         _cm->enter_second_sync_barrier(_worker_id);
3640       }
3641       // At this point, if we're during the concurrent phase of
3642       // marking, everything has been re-initialized and we're
3643       // ready to restart.
3644     }
3645   }
3646 
3647   _claimed = false;
3648 }
3649 
3650 CMTask::CMTask(uint worker_id,
3651                ConcurrentMark* cm,
3652                size_t* marked_bytes,
3653                BitMap* card_bm,
3654                CMTaskQueue* task_queue,
3655                CMTaskQueueSet* task_queues)
3656   : _g1h(G1CollectedHeap::heap()),
3657     _worker_id(worker_id), _cm(cm),
3658     _claimed(false),
3659     _nextMarkBitMap(NULL), _hash_seed(17),
3660     _task_queue(task_queue),
3661     _task_queues(task_queues),
3662     _cm_oop_closure(NULL),
3663     _marked_bytes_array(marked_bytes),
3664     _card_bm(card_bm) {
3665   guarantee(task_queue != NULL, "invariant");
3666   guarantee(task_queues != NULL, "invariant");
3667 
3668   _marking_step_diffs_ms.add(0.5);
3669 }
3670 
3671 // These are formatting macros that are used below to ensure
3672 // consistent formatting. The *_H_* versions are used to format the
3673 // header for a particular value and they should be kept consistent
3674 // with the corresponding macro. Also note that most of the macros add
3675 // the necessary white space (as a prefix) which makes them a bit
3676 // easier to compose.
3677 
3678 // All the output lines are prefixed with this string to be able to
3679 // identify them easily in a large log file.
3680 #define G1PPRL_LINE_PREFIX            "###"
3681 
3682 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
3683 #ifdef _LP64
3684 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
3685 #else // _LP64
3686 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
3687 #endif // _LP64
3688 
3689 // For per-region info
3690 #define G1PPRL_TYPE_FORMAT            "   %-4s"
3691 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
3692 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
3693 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
3694 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
3695 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
3696 
3697 // For summary info
3698 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
3699 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
3700 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
3701 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
3702 
3703 G1PrintRegionLivenessInfoClosure::
3704 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
3705   : _out(out),
3706     _total_used_bytes(0), _total_capacity_bytes(0),
3707     _total_prev_live_bytes(0), _total_next_live_bytes(0),
3708     _hum_used_bytes(0), _hum_capacity_bytes(0),
3709     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
3710     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
3711   G1CollectedHeap* g1h = G1CollectedHeap::heap();
3712   MemRegion g1_reserved = g1h->g1_reserved();
3713   double now = os::elapsedTime();
3714 
3715   // Print the header of the output.
3716   _out->cr();
3717   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
3718   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
3719                  G1PPRL_SUM_ADDR_FORMAT("reserved")
3720                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
3721                  p2i(g1_reserved.start()), p2i(g1_reserved.end()),
3722                  HeapRegion::GrainBytes);
3723   _out->print_cr(G1PPRL_LINE_PREFIX);
3724   _out->print_cr(G1PPRL_LINE_PREFIX
3725                 G1PPRL_TYPE_H_FORMAT
3726                 G1PPRL_ADDR_BASE_H_FORMAT
3727                 G1PPRL_BYTE_H_FORMAT
3728                 G1PPRL_BYTE_H_FORMAT
3729                 G1PPRL_BYTE_H_FORMAT
3730                 G1PPRL_DOUBLE_H_FORMAT
3731                 G1PPRL_BYTE_H_FORMAT
3732                 G1PPRL_BYTE_H_FORMAT,
3733                 "type", "address-range",
3734                 "used", "prev-live", "next-live", "gc-eff",
3735                 "remset", "code-roots");
3736   _out->print_cr(G1PPRL_LINE_PREFIX
3737                 G1PPRL_TYPE_H_FORMAT
3738                 G1PPRL_ADDR_BASE_H_FORMAT
3739                 G1PPRL_BYTE_H_FORMAT
3740                 G1PPRL_BYTE_H_FORMAT
3741                 G1PPRL_BYTE_H_FORMAT
3742                 G1PPRL_DOUBLE_H_FORMAT
3743                 G1PPRL_BYTE_H_FORMAT
3744                 G1PPRL_BYTE_H_FORMAT,
3745                 "", "",
3746                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
3747                 "(bytes)", "(bytes)");
3748 }
3749 
3750 // It takes as a parameter a reference to one of the _hum_* fields, it
3751 // deduces the corresponding value for a region in a humongous region
3752 // series (either the region size, or what's left if the _hum_* field
3753 // is < the region size), and updates the _hum_* field accordingly.
3754 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
3755   size_t bytes = 0;
3756   // The > 0 check is to deal with the prev and next live bytes which
3757   // could be 0.
3758   if (*hum_bytes > 0) {
3759     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
3760     *hum_bytes -= bytes;
3761   }
3762   return bytes;
3763 }
3764 
3765 // It deduces the values for a region in a humongous region series
3766 // from the _hum_* fields and updates those accordingly. It assumes
3767 // that that _hum_* fields have already been set up from the "starts
3768 // humongous" region and we visit the regions in address order.
3769 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
3770                                                      size_t* capacity_bytes,
3771                                                      size_t* prev_live_bytes,
3772                                                      size_t* next_live_bytes) {
3773   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
3774   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
3775   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
3776   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
3777   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
3778 }
3779 
3780 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
3781   const char* type       = r->get_type_str();
3782   HeapWord* bottom       = r->bottom();
3783   HeapWord* end          = r->end();
3784   size_t capacity_bytes  = r->capacity();
3785   size_t used_bytes      = r->used();
3786   size_t prev_live_bytes = r->live_bytes();
3787   size_t next_live_bytes = r->next_live_bytes();
3788   double gc_eff          = r->gc_efficiency();
3789   size_t remset_bytes    = r->rem_set()->mem_size();
3790   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3791 
3792   if (r->is_starts_humongous()) {
3793     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
3794            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
3795            "they should have been zeroed after the last time we used them");
3796     // Set up the _hum_* fields.
3797     _hum_capacity_bytes  = capacity_bytes;
3798     _hum_used_bytes      = used_bytes;
3799     _hum_prev_live_bytes = prev_live_bytes;
3800     _hum_next_live_bytes = next_live_bytes;
3801     get_hum_bytes(&used_bytes, &capacity_bytes,
3802                   &prev_live_bytes, &next_live_bytes);
3803     end = bottom + HeapRegion::GrainWords;
3804   } else if (r->is_continues_humongous()) {
3805     get_hum_bytes(&used_bytes, &capacity_bytes,
3806                   &prev_live_bytes, &next_live_bytes);
3807     assert(end == bottom + HeapRegion::GrainWords, "invariant");
3808   }
3809 
3810   _total_used_bytes      += used_bytes;
3811   _total_capacity_bytes  += capacity_bytes;
3812   _total_prev_live_bytes += prev_live_bytes;
3813   _total_next_live_bytes += next_live_bytes;
3814   _total_remset_bytes    += remset_bytes;
3815   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3816 
3817   // Print a line for this particular region.
3818   _out->print_cr(G1PPRL_LINE_PREFIX
3819                  G1PPRL_TYPE_FORMAT
3820                  G1PPRL_ADDR_BASE_FORMAT
3821                  G1PPRL_BYTE_FORMAT
3822                  G1PPRL_BYTE_FORMAT
3823                  G1PPRL_BYTE_FORMAT
3824                  G1PPRL_DOUBLE_FORMAT
3825                  G1PPRL_BYTE_FORMAT
3826                  G1PPRL_BYTE_FORMAT,
3827                  type, p2i(bottom), p2i(end),
3828                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3829                  remset_bytes, strong_code_roots_bytes);
3830 
3831   return false;
3832 }
3833 
3834 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3835   // add static memory usages to remembered set sizes
3836   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3837   // Print the footer of the output.
3838   _out->print_cr(G1PPRL_LINE_PREFIX);
3839   _out->print_cr(G1PPRL_LINE_PREFIX
3840                  " SUMMARY"
3841                  G1PPRL_SUM_MB_FORMAT("capacity")
3842                  G1PPRL_SUM_MB_PERC_FORMAT("used")
3843                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3844                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3845                  G1PPRL_SUM_MB_FORMAT("remset")
3846                  G1PPRL_SUM_MB_FORMAT("code-roots"),
3847                  bytes_to_mb(_total_capacity_bytes),
3848                  bytes_to_mb(_total_used_bytes),
3849                  perc(_total_used_bytes, _total_capacity_bytes),
3850                  bytes_to_mb(_total_prev_live_bytes),
3851                  perc(_total_prev_live_bytes, _total_capacity_bytes),
3852                  bytes_to_mb(_total_next_live_bytes),
3853                  perc(_total_next_live_bytes, _total_capacity_bytes),
3854                  bytes_to_mb(_total_remset_bytes),
3855                  bytes_to_mb(_total_strong_code_roots_bytes));
3856   _out->cr();
3857 }