< prev index next >

src/share/vm/gc/g1/g1CollectedHeap.cpp

Print this page




  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootClosures.hpp"
  48 #include "gc/g1/g1RootProcessor.hpp"
  49 #include "gc/g1/g1StringDedup.hpp"
  50 #include "gc/g1/g1YCTypes.hpp"
  51 #include "gc/g1/heapRegion.inline.hpp"
  52 #include "gc/g1/heapRegionRemSet.hpp"
  53 #include "gc/g1/heapRegionSet.inline.hpp"
  54 #include "gc/g1/suspendibleThreadSet.hpp"
  55 #include "gc/g1/vm_operations_g1.hpp"
  56 #include "gc/shared/gcHeapSummary.hpp"
  57 #include "gc/shared/gcId.hpp"
  58 #include "gc/shared/gcLocker.inline.hpp"
  59 #include "gc/shared/gcTimer.hpp"
  60 #include "gc/shared/gcTrace.hpp"
  61 #include "gc/shared/gcTraceTime.hpp"
  62 #include "gc/shared/generationSpec.hpp"
  63 #include "gc/shared/isGCActiveMark.hpp"
  64 #include "gc/shared/referenceProcessor.hpp"
  65 #include "gc/shared/taskqueue.inline.hpp"

  66 #include "memory/allocation.hpp"
  67 #include "memory/iterator.hpp"
  68 #include "oops/oop.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/init.hpp"
  71 #include "runtime/orderAccess.inline.hpp"
  72 #include "runtime/vmThread.hpp"
  73 #include "utilities/globalDefinitions.hpp"
  74 #include "utilities/stack.inline.hpp"
  75 
  76 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  77 
  78 // INVARIANTS/NOTES
  79 //
  80 // All allocation activity covered by the G1CollectedHeap interface is
  81 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  82 // and allocate_new_tlab, which are the "entry" points to the
  83 // allocation code from the rest of the JVM.  (Note that this does not
  84 // apply to TLAB allocation, which is not part of this interface: it
  85 // is done by clients of this interface.)


 187   } while (hr != head);
 188   assert(hr != NULL, "invariant");
 189   hr->set_next_dirty_cards_region(NULL);
 190   return hr;
 191 }
 192 
 193 // Returns true if the reference points to an object that
 194 // can move in an incremental collection.
 195 bool G1CollectedHeap::is_scavengable(const void* p) {
 196   HeapRegion* hr = heap_region_containing(p);
 197   return !hr->is_pinned();
 198 }
 199 
 200 // Private methods.
 201 
 202 HeapRegion*
 203 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 204   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 205   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 206     if (!_secondary_free_list.is_empty()) {
 207       if (G1ConcRegionFreeingVerbose) {
 208         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 209                                "secondary_free_list has %u entries",
 210                                _secondary_free_list.length());
 211       }
 212       // It looks as if there are free regions available on the
 213       // secondary_free_list. Let's move them to the free_list and try
 214       // again to allocate from it.
 215       append_secondary_free_list();
 216 
 217       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 218              "empty we should have moved at least one entry to the free_list");
 219       HeapRegion* res = _hrm.allocate_free_region(is_old);
 220       if (G1ConcRegionFreeingVerbose) {
 221         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 222                                "allocated " HR_FORMAT " from secondary_free_list",
 223                                HR_FORMAT_PARAMS(res));
 224       }
 225       return res;
 226     }
 227 
 228     // Wait here until we get notified either when (a) there are no
 229     // more free regions coming or (b) some regions have been moved on
 230     // the secondary_free_list.
 231     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 232   }
 233 
 234   if (G1ConcRegionFreeingVerbose) {
 235     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 236                            "could not allocate from secondary_free_list");
 237   }
 238   return NULL;
 239 }
 240 
 241 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 242   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 243          "the only time we use this to allocate a humongous region is "
 244          "when we are allocating a single humongous region");
 245 
 246   HeapRegion* res;
 247   if (G1StressConcRegionFreeing) {
 248     if (!_secondary_free_list.is_empty()) {
 249       if (G1ConcRegionFreeingVerbose) {
 250         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 251                                "forced to look at the secondary_free_list");
 252       }
 253       res = new_region_try_secondary_free_list(is_old);
 254       if (res != NULL) {
 255         return res;
 256       }
 257     }
 258   }
 259 
 260   res = _hrm.allocate_free_region(is_old);
 261 
 262   if (res == NULL) {
 263     if (G1ConcRegionFreeingVerbose) {
 264       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 265                              "res == NULL, trying the secondary_free_list");
 266     }
 267     res = new_region_try_secondary_free_list(is_old);
 268   }
 269   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 270     // Currently, only attempts to allocate GC alloc regions set
 271     // do_expand to true. So, we should only reach here during a
 272     // safepoint. If this assumption changes we might have to
 273     // reconsider the use of _expand_heap_after_alloc_failure.
 274     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 275 
 276     ergo_verbose1(ErgoHeapSizing,
 277                   "attempt heap expansion",
 278                   ergo_format_reason("region allocation request failed")
 279                   ergo_format_byte("allocation request"),
 280                   word_size * HeapWordSize);

 281     if (expand(word_size * HeapWordSize)) {
 282       // Given that expand() succeeded in expanding the heap, and we
 283       // always expand the heap by an amount aligned to the heap
 284       // region size, the free list should in theory not be empty.
 285       // In either case allocate_free_region() will check for NULL.
 286       res = _hrm.allocate_free_region(is_old);
 287     } else {
 288       _expand_heap_after_alloc_failure = false;
 289     }
 290   }
 291   return res;
 292 }
 293 
 294 HeapWord*
 295 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 296                                                            uint num_regions,
 297                                                            size_t word_size,
 298                                                            AllocationContext_t context) {
 299   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 300   assert(is_humongous(word_size), "word_size should be humongous");


 431     // potentially waits for regions from the secondary free list.
 432     wait_while_free_regions_coming();
 433     append_secondary_free_list_if_not_empty_with_lock();
 434 
 435     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 436     // are lucky enough to find some.
 437     first = _hrm.find_contiguous_only_empty(obj_regions);
 438     if (first != G1_NO_HRM_INDEX) {
 439       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 440     }
 441   }
 442 
 443   if (first == G1_NO_HRM_INDEX) {
 444     // Policy: We could not find enough regions for the humongous object in the
 445     // free list. Look through the heap to find a mix of free and uncommitted regions.
 446     // If so, try expansion.
 447     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 448     if (first != G1_NO_HRM_INDEX) {
 449       // We found something. Make sure these regions are committed, i.e. expand
 450       // the heap. Alternatively we could do a defragmentation GC.
 451       ergo_verbose1(ErgoHeapSizing,
 452                     "attempt heap expansion",
 453                     ergo_format_reason("humongous allocation request failed")
 454                     ergo_format_byte("allocation request"),
 455                     word_size * HeapWordSize);
 456 

 457       _hrm.expand_at(first, obj_regions);
 458       g1_policy()->record_new_heap_size(num_regions());
 459 
 460 #ifdef ASSERT
 461       for (uint i = first; i < first + obj_regions; ++i) {
 462         HeapRegion* hr = region_at(i);
 463         assert(hr->is_free(), "sanity");
 464         assert(hr->is_empty(), "sanity");
 465         assert(is_on_master_free_list(hr), "sanity");
 466       }
 467 #endif
 468       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 469     } else {
 470       // Policy: Potentially trigger a defragmentation GC.
 471     }
 472   }
 473 
 474   HeapWord* result = NULL;
 475   if (first != G1_NO_HRM_INDEX) {
 476     result = humongous_obj_allocate_initialize_regions(first, obj_regions,


 754     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 755     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 756       start_address = start_region->end();
 757       if (start_address > last_address) {
 758         increase_used(word_size * HeapWordSize);
 759         start_region->set_top(last_address + 1);
 760         continue;
 761       }
 762       start_region->set_top(start_address);
 763       curr_range = MemRegion(start_address, last_address + 1);
 764       start_region = _hrm.addr_to_region(start_address);
 765     }
 766 
 767     // Perform the actual region allocation, exiting if it fails.
 768     // Then note how much new space we have allocated.
 769     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 770       return false;
 771     }
 772     increase_used(word_size * HeapWordSize);
 773     if (commits != 0) {
 774       ergo_verbose1(ErgoHeapSizing,
 775                     "attempt heap expansion",
 776                     ergo_format_reason("allocate archive regions")
 777                     ergo_format_byte("total size"),
 778                     HeapRegion::GrainWords * HeapWordSize * commits);

 779     }
 780 
 781     // Mark each G1 region touched by the range as archive, add it to the old set,
 782     // and set the allocation context and top.
 783     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 784     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 785     prev_last_region = last_region;
 786 
 787     while (curr_region != NULL) {
 788       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 789              "Region already in use (index %u)", curr_region->hrm_index());
 790       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 791       curr_region->set_allocation_context(AllocationContext::system());
 792       curr_region->set_archive();
 793       _old_set.add(curr_region);
 794       if (curr_region != last_region) {
 795         curr_region->set_top(curr_region->end());
 796         curr_region = _hrm.next_region_in_heap(curr_region);
 797       } else {
 798         curr_region->set_top(last_address + 1);


 939       guarantee(curr_region->is_archive(),
 940                 "Expected archive region at index %u", curr_region->hrm_index());
 941       uint curr_index = curr_region->hrm_index();
 942       _old_set.remove(curr_region);
 943       curr_region->set_free();
 944       curr_region->set_top(curr_region->bottom());
 945       if (curr_region != last_region) {
 946         curr_region = _hrm.next_region_in_heap(curr_region);
 947       } else {
 948         curr_region = NULL;
 949       }
 950       _hrm.shrink_at(curr_index, 1);
 951       uncommitted_regions++;
 952     }
 953 
 954     // Notify mark-sweep that this is no longer an archive range.
 955     G1MarkSweep::set_range_archive(ranges[i], false);
 956   }
 957 
 958   if (uncommitted_regions != 0) {
 959     ergo_verbose1(ErgoHeapSizing,
 960                   "attempt heap shrinking",
 961                   ergo_format_reason("uncommitted archive regions")
 962                   ergo_format_byte("total size"),
 963                   HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 964   }
 965   decrease_used(size_used);
 966 }
 967 
 968 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 969                                                         uint* gc_count_before_ret,
 970                                                         uint* gclocker_retry_count_ret) {
 971   // The structure of this method has a lot of similarities to
 972   // attempt_allocation_slow(). The reason these two were not merged
 973   // into a single one is that such a method would require several "if
 974   // allocation is not humongous do this, otherwise do that"
 975   // conditional paths which would obscure its flow. In fact, an early
 976   // version of this code did use a unified method which was harder to
 977   // follow and, as a result, it had subtle bugs that were hard to
 978   // track down. So keeping these two methods separate allows each to
 979   // be more readable. It will be good to keep these two in sync as
 980   // much as possible.
 981 
 982   assert_heap_not_locked_and_not_at_safepoint();


1180       // We only generate output for non-empty regions.
1181     } else if (hr->is_starts_humongous()) {
1182       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1183     } else if (hr->is_continues_humongous()) {
1184       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1185     } else if (hr->is_archive()) {
1186       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1187     } else if (hr->is_old()) {
1188       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1189     } else {
1190       ShouldNotReachHere();
1191     }
1192     return false;
1193   }
1194 
1195   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1196     : _hr_printer(hr_printer) { }
1197 };
1198 
1199 void G1CollectedHeap::print_hrm_post_compaction() {

1200   PostCompactionPrinterClosure cl(hr_printer());
1201   heap_region_iterate(&cl);


1202 }
1203 
1204 bool G1CollectedHeap::do_collection(bool explicit_gc,
1205                                     bool clear_all_soft_refs,
1206                                     size_t word_size) {
1207   assert_at_safepoint(true /* should_be_vm_thread */);
1208 
1209   if (GC_locker::check_active_before_gc()) {
1210     return false;
1211   }
1212 
1213   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1214   gc_timer->register_gc_start();
1215 
1216   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1217   GCIdMark gc_id_mark;
1218   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1219 
1220   SvcGCMarker sgcm(SvcGCMarker::FULL);
1221   ResourceMark rm;
1222 
1223   G1Log::update_level();
1224   print_heap_before_gc();
1225   trace_heap_before_gc(gc_tracer);
1226 
1227   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1228 
1229   verify_region_sets_optional();
1230 
1231   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1232                            collector_policy()->should_clear_all_soft_refs();
1233 
1234   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1235 
1236   {
1237     IsGCActiveMark x;
1238 
1239     // Timing
1240     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1241     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1242 
1243     {
1244       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1245       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1246       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1247 
1248       g1_policy()->record_full_collection_start();
1249 
1250       // Note: When we have a more flexible GC logging framework that
1251       // allows us to add optional attributes to a GC log record we
1252       // could consider timing and reporting how long we wait in the
1253       // following two methods.
1254       wait_while_free_regions_coming();
1255       // If we start the compaction before the CM threads finish
1256       // scanning the root regions we might trip them over as we'll
1257       // be moving objects / updating references. So let's wait until
1258       // they are done. By telling them to abort, they should complete
1259       // early.
1260       _cm->root_regions()->abort();
1261       _cm->root_regions()->wait_until_scan_finished();
1262       append_secondary_free_list_if_not_empty_with_lock();
1263 
1264       gc_prologue(true);


1275 #if defined(COMPILER2) || INCLUDE_JVMCI
1276       DerivedPointerTable::clear();
1277 #endif
1278 
1279       // Disable discovery and empty the discovered lists
1280       // for the CM ref processor.
1281       ref_processor_cm()->disable_discovery();
1282       ref_processor_cm()->abandon_partial_discovery();
1283       ref_processor_cm()->verify_no_references_recorded();
1284 
1285       // Abandon current iterations of concurrent marking and concurrent
1286       // refinement, if any are in progress. We have to do this before
1287       // wait_until_scan_finished() below.
1288       concurrent_mark()->abort();
1289 
1290       // Make sure we'll choose a new allocation region afterwards.
1291       _allocator->release_mutator_alloc_region();
1292       _allocator->abandon_gc_alloc_regions();
1293       g1_rem_set()->cleanupHRRS();
1294 
1295       // We should call this after we retire any currently active alloc
1296       // regions so that all the ALLOC / RETIRE events are generated
1297       // before the start GC event.
1298       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1299 
1300       // We may have added regions to the current incremental collection
1301       // set between the last GC or pause and now. We need to clear the
1302       // incremental collection set and then start rebuilding it afresh
1303       // after this full GC.
1304       abandon_collection_set(g1_policy()->inc_cset_head());
1305       g1_policy()->clear_incremental_cset();
1306       g1_policy()->stop_incremental_cset_building();
1307 
1308       tear_down_region_sets(false /* free_list_only */);
1309       collector_state()->set_gcs_are_young(true);
1310 
1311       // See the comments in g1CollectedHeap.hpp and
1312       // G1CollectedHeap::ref_processing_init() about
1313       // how reference processing currently works in G1.
1314 
1315       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1316       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1317 
1318       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1319       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);


1347       ClassLoaderDataGraph::purge();
1348       MetaspaceAux::verify_metrics();
1349 
1350       // Note: since we've just done a full GC, concurrent
1351       // marking is no longer active. Therefore we need not
1352       // re-enable reference discovery for the CM ref processor.
1353       // That will be done at the start of the next marking cycle.
1354       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1355       ref_processor_cm()->verify_no_references_recorded();
1356 
1357       reset_gc_time_stamp();
1358       // Since everything potentially moved, we will clear all remembered
1359       // sets, and clear all cards.  Later we will rebuild remembered
1360       // sets. We will also reset the GC time stamps of the regions.
1361       clear_rsets_post_compaction();
1362       check_gc_time_stamps();
1363 
1364       // Resize the heap if necessary.
1365       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1366 
1367       if (_hr_printer.is_active()) {
1368         // We should do this after we potentially resize the heap so
1369         // that all the COMMIT / UNCOMMIT events are generated before
1370         // the end GC event.
1371 
1372         print_hrm_post_compaction();
1373         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1374       }
1375 
1376       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1377       if (hot_card_cache->use_cache()) {
1378         hot_card_cache->reset_card_counts();
1379         hot_card_cache->reset_hot_cache();
1380       }
1381 
1382       // Rebuild remembered sets of all regions.
1383       uint n_workers =
1384         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1385                                                 workers()->active_workers(),
1386                                                 Threads::number_of_non_daemon_threads());
1387       workers()->set_active_workers(n_workers);
1388 
1389       ParRebuildRSTask rebuild_rs_task(this);
1390       workers()->run_task(&rebuild_rs_task);
1391 
1392       // Rebuild the strong code root lists for each region
1393       rebuild_strong_code_roots();
1394 


1423       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1424       // objects marked during a full GC against the previous bitmap.
1425       // But we need to clear it before calling check_bitmaps below since
1426       // the full GC has compacted objects and updated TAMS but not updated
1427       // the prev bitmap.
1428       if (G1VerifyBitmaps) {
1429         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1430       }
1431       check_bitmaps("Full GC End");
1432 
1433       // Start a new incremental collection set for the next pause
1434       assert(g1_policy()->collection_set() == NULL, "must be");
1435       g1_policy()->start_incremental_cset_building();
1436 
1437       clear_cset_fast_test();
1438 
1439       _allocator->init_mutator_alloc_region();
1440 
1441       g1_policy()->record_full_collection_end();
1442 
1443       if (G1Log::fine()) {
1444         g1_policy()->print_heap_transition();
1445       }
1446 
1447       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1448       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1449       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1450       // before any GC notifications are raised.
1451       g1mm()->update_sizes();
1452 
1453       gc_epilogue(true);
1454     }
1455 
1456     if (G1Log::finer()) {
1457       g1_policy()->print_detailed_heap_transition(true /* full */);
1458     }
1459 
1460     print_heap_after_gc();
1461     trace_heap_after_gc(gc_tracer);
1462 
1463     post_full_gc_dump(gc_timer);
1464 
1465     gc_timer->register_gc_end();
1466     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1467   }
1468 
1469   return true;
1470 }
1471 
1472 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1473   // do_collection() will return whether it succeeded in performing
1474   // the GC. Currently, there is no facility on the
1475   // do_full_collection() API to notify the caller than the collection
1476   // did not succeed (e.g., because it was locked out by the GC
1477   // locker). So, right now, we'll ignore the return value.
1478   bool dummy = do_collection(true,                /* explicit_gc */


1523 
1524   // This assert only makes sense here, before we adjust them
1525   // with respect to the min and max heap size.
1526   assert(minimum_desired_capacity <= maximum_desired_capacity,
1527          "minimum_desired_capacity = " SIZE_FORMAT ", "
1528          "maximum_desired_capacity = " SIZE_FORMAT,
1529          minimum_desired_capacity, maximum_desired_capacity);
1530 
1531   // Should not be greater than the heap max size. No need to adjust
1532   // it with respect to the heap min size as it's a lower bound (i.e.,
1533   // we'll try to make the capacity larger than it, not smaller).
1534   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1535   // Should not be less than the heap min size. No need to adjust it
1536   // with respect to the heap max size as it's an upper bound (i.e.,
1537   // we'll try to make the capacity smaller than it, not greater).
1538   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1539 
1540   if (capacity_after_gc < minimum_desired_capacity) {
1541     // Don't expand unless it's significant
1542     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1543     ergo_verbose4(ErgoHeapSizing,
1544                   "attempt heap expansion",
1545                   ergo_format_reason("capacity lower than "
1546                                      "min desired capacity after Full GC")
1547                   ergo_format_byte("capacity")
1548                   ergo_format_byte("occupancy")
1549                   ergo_format_byte_perc("min desired capacity"),
1550                   capacity_after_gc, used_after_gc,
1551                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1552     expand(expand_bytes);
1553 
1554     // No expansion, now see if we want to shrink
1555   } else if (capacity_after_gc > maximum_desired_capacity) {
1556     // Capacity too large, compute shrinking size
1557     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1558     ergo_verbose4(ErgoHeapSizing,
1559                   "attempt heap shrinking",
1560                   ergo_format_reason("capacity higher than "
1561                                      "max desired capacity after Full GC")
1562                   ergo_format_byte("capacity")
1563                   ergo_format_byte("occupancy")
1564                   ergo_format_byte_perc("max desired capacity"),
1565                   capacity_after_gc, used_after_gc,
1566                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1567     shrink(shrink_bytes);
1568   }
1569 }
1570 
1571 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1572                                                             AllocationContext_t context,
1573                                                             bool do_gc,
1574                                                             bool clear_all_soft_refs,
1575                                                             bool expect_null_mutator_alloc_region,
1576                                                             bool* gc_succeeded) {
1577   *gc_succeeded = true;
1578   // Let's attempt the allocation first.
1579   HeapWord* result =
1580     attempt_allocation_at_safepoint(word_size,
1581                                     context,
1582                                     expect_null_mutator_alloc_region);
1583   if (result != NULL) {
1584     assert(*gc_succeeded, "sanity");
1585     return result;
1586   }


1653 
1654   // What else?  We might try synchronous finalization later.  If the total
1655   // space available is large enough for the allocation, then a more
1656   // complete compaction phase than we've tried so far might be
1657   // appropriate.
1658   assert(*succeeded, "sanity");
1659   return NULL;
1660 }
1661 
1662 // Attempting to expand the heap sufficiently
1663 // to support an allocation of the given "word_size".  If
1664 // successful, perform the allocation and return the address of the
1665 // allocated block, or else "NULL".
1666 
1667 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1668   assert_at_safepoint(true /* should_be_vm_thread */);
1669 
1670   verify_region_sets_optional();
1671 
1672   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1673   ergo_verbose1(ErgoHeapSizing,
1674                 "attempt heap expansion",
1675                 ergo_format_reason("allocation request failed")
1676                 ergo_format_byte("allocation request"),
1677                 word_size * HeapWordSize);


1678   if (expand(expand_bytes)) {
1679     _hrm.verify_optional();
1680     verify_region_sets_optional();
1681     return attempt_allocation_at_safepoint(word_size,
1682                                            context,
1683                                            false /* expect_null_mutator_alloc_region */);
1684   }
1685   return NULL;
1686 }
1687 
1688 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1689   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1690   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1691                                        HeapRegion::GrainBytes);
1692   ergo_verbose2(ErgoHeapSizing,
1693                 "expand the heap",
1694                 ergo_format_byte("requested expansion amount")
1695                 ergo_format_byte("attempted expansion amount"),
1696                 expand_bytes, aligned_expand_bytes);
1697 
1698   if (is_maximal_no_gc()) {
1699     ergo_verbose0(ErgoHeapSizing,
1700                       "did not expand the heap",
1701                       ergo_format_reason("heap already fully expanded"));
1702     return false;
1703   }
1704 
1705   double expand_heap_start_time_sec = os::elapsedTime();
1706   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1707   assert(regions_to_expand > 0, "Must expand by at least one region");
1708 
1709   uint expanded_by = _hrm.expand_by(regions_to_expand);
1710   if (expand_time_ms != NULL) {
1711     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1712   }
1713 
1714   if (expanded_by > 0) {
1715     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1716     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1717     g1_policy()->record_new_heap_size(num_regions());
1718   } else {
1719     ergo_verbose0(ErgoHeapSizing,
1720                   "did not expand the heap",
1721                   ergo_format_reason("heap expansion operation failed"));
1722     // The expansion of the virtual storage space was unsuccessful.
1723     // Let's see if it was because we ran out of swap.
1724     if (G1ExitOnExpansionFailure &&
1725         _hrm.available() >= regions_to_expand) {
1726       // We had head room...
1727       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1728     }
1729   }
1730   return regions_to_expand > 0;
1731 }
1732 
1733 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1734   size_t aligned_shrink_bytes =
1735     ReservedSpace::page_align_size_down(shrink_bytes);
1736   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1737                                          HeapRegion::GrainBytes);
1738   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1739 
1740   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1741   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1742 
1743   ergo_verbose3(ErgoHeapSizing,
1744                 "shrink the heap",
1745                 ergo_format_byte("requested shrinking amount")
1746                 ergo_format_byte("aligned shrinking amount")
1747                 ergo_format_byte("attempted shrinking amount"),
1748                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1749   if (num_regions_removed > 0) {
1750     g1_policy()->record_new_heap_size(num_regions());
1751   } else {
1752     ergo_verbose0(ErgoHeapSizing,
1753                   "did not shrink the heap",
1754                   ergo_format_reason("heap shrinking operation failed"));
1755   }
1756 }
1757 
1758 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1759   verify_region_sets_optional();
1760 
1761   // We should only reach here at the end of a Full GC which means we
1762   // should not not be holding to any GC alloc regions. The method
1763   // below will make sure of that and do any remaining clean up.
1764   _allocator->abandon_gc_alloc_regions();
1765 
1766   // Instead of tearing down / rebuilding the free lists here, we
1767   // could instead use the remove_all_pending() method on free_list to
1768   // remove only the ones that we need to remove.
1769   tear_down_region_sets(true /* free_list_only */);
1770   shrink_helper(shrink_bytes);
1771   rebuild_region_sets(true /* free_list_only */);
1772 
1773   _hrm.verify_optional();
1774   verify_region_sets_optional();


1846   // Initialize the G1EvacuationFailureALot counters and flags.
1847   NOT_PRODUCT(reset_evacuation_should_fail();)
1848 
1849   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1850 }
1851 
1852 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1853                                                                  size_t size,
1854                                                                  size_t translation_factor) {
1855   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1856   // Allocate a new reserved space, preferring to use large pages.
1857   ReservedSpace rs(size, preferred_page_size);
1858   G1RegionToSpaceMapper* result  =
1859     G1RegionToSpaceMapper::create_mapper(rs,
1860                                          size,
1861                                          rs.alignment(),
1862                                          HeapRegion::GrainBytes,
1863                                          translation_factor,
1864                                          mtGC);
1865   if (TracePageSizes) {
1866     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1867                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1868   }
1869   return result;
1870 }
1871 
1872 jint G1CollectedHeap::initialize() {
1873   CollectedHeap::pre_initialize();
1874   os::enable_vtime();
1875 
1876   G1Log::init();
1877 
1878   // Necessary to satisfy locking discipline assertions.
1879 
1880   MutexLocker x(Heap_lock);
1881 
1882   // We have to initialize the printer before committing the heap, as
1883   // it will be used then.
1884   _hr_printer.set_active(G1PrintHeapRegions);
1885 
1886   // While there are no constraints in the GC code that HeapWordSize
1887   // be any particular value, there are multiple other areas in the
1888   // system which believe this to be true (e.g. oop->object_size in some
1889   // cases incorrectly returns the size in wordSize units rather than
1890   // HeapWordSize).
1891   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1892 
1893   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1894   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1895   size_t heap_alignment = collector_policy()->heap_alignment();
1896 
1897   // Ensure that the sizes are properly aligned.
1898   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1899   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1900   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1901 
1902   _refine_cte_cl = new RefineCardTableEntryClosure();
1903 
1904   jint ecode = JNI_OK;
1905   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);


2058   G1AllocRegion::setup(this, dummy_region);
2059 
2060   _allocator->init_mutator_alloc_region();
2061 
2062   // Do create of the monitoring and management support so that
2063   // values in the heap have been properly initialized.
2064   _g1mm = new G1MonitoringSupport(this);
2065 
2066   G1StringDedup::initialize();
2067 
2068   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2069   for (uint i = 0; i < ParallelGCThreads; i++) {
2070     new (&_preserved_objs[i]) OopAndMarkOopStack();
2071   }
2072 
2073   return JNI_OK;
2074 }
2075 
2076 void G1CollectedHeap::stop() {
2077   // Stop all concurrent threads. We do this to make sure these threads
2078   // do not continue to execute and access resources (e.g. gclog_or_tty)
2079   // that are destroyed during shutdown.
2080   _cg1r->stop();
2081   _cmThread->stop();
2082   if (G1StringDedup::is_enabled()) {
2083     G1StringDedup::stop();
2084   }
2085 }
2086 
2087 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2088   return HeapRegion::max_region_size();
2089 }
2090 
2091 void G1CollectedHeap::post_initialize() {
2092   CollectedHeap::post_initialize();
2093   ref_processing_init();
2094 }
2095 
2096 void G1CollectedHeap::ref_processing_init() {
2097   // Reference processing in G1 currently works as follows:
2098   //


2175 }
2176 
2177 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2178   hr->reset_gc_time_stamp();
2179 }
2180 
2181 #ifndef PRODUCT
2182 
2183 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2184 private:
2185   unsigned _gc_time_stamp;
2186   bool _failures;
2187 
2188 public:
2189   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2190     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2191 
2192   virtual bool doHeapRegion(HeapRegion* hr) {
2193     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2194     if (_gc_time_stamp != region_gc_time_stamp) {
2195       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2196                              "expected %d", HR_FORMAT_PARAMS(hr),
2197                              region_gc_time_stamp, _gc_time_stamp);
2198       _failures = true;
2199     }
2200     return false;
2201   }
2202 
2203   bool failures() { return _failures; }
2204 };
2205 
2206 void G1CollectedHeap::check_gc_time_stamps() {
2207   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2208   heap_region_iterate(&cl);
2209   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2210 }
2211 #endif // PRODUCT
2212 
2213 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2214   _cg1r->hot_card_cache()->drain(cl, worker_i);
2215 }
2216 


2764 private:
2765   G1CollectedHeap* _g1h;
2766   VerifyOption     _vo;
2767   bool             _failures;
2768 public:
2769   // _vo == UsePrevMarking -> use "prev" marking information,
2770   // _vo == UseNextMarking -> use "next" marking information,
2771   // _vo == UseMarkWord    -> use mark word from object header.
2772   VerifyRootsClosure(VerifyOption vo) :
2773     _g1h(G1CollectedHeap::heap()),
2774     _vo(vo),
2775     _failures(false) { }
2776 
2777   bool failures() { return _failures; }
2778 
2779   template <class T> void do_oop_nv(T* p) {
2780     T heap_oop = oopDesc::load_heap_oop(p);
2781     if (!oopDesc::is_null(heap_oop)) {
2782       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2783       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2784         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2785                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2786         if (_vo == VerifyOption_G1UseMarkWord) {
2787           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2788         }
2789         obj->print_on(gclog_or_tty);

2790         _failures = true;
2791       }
2792     }
2793   }
2794 
2795   void do_oop(oop* p)       { do_oop_nv(p); }
2796   void do_oop(narrowOop* p) { do_oop_nv(p); }
2797 };
2798 
2799 class G1VerifyCodeRootOopClosure: public OopClosure {
2800   G1CollectedHeap* _g1h;
2801   OopClosure* _root_cl;
2802   nmethod* _nm;
2803   VerifyOption _vo;
2804   bool _failures;
2805 
2806   template <class T> void do_oop_work(T* p) {
2807     // First verify that this root is live
2808     _root_cl->do_oop(p);
2809 


2814 
2815     // Don't check the code roots during marking verification in a full GC
2816     if (_vo == VerifyOption_G1UseMarkWord) {
2817       return;
2818     }
2819 
2820     // Now verify that the current nmethod (which contains p) is
2821     // in the code root list of the heap region containing the
2822     // object referenced by p.
2823 
2824     T heap_oop = oopDesc::load_heap_oop(p);
2825     if (!oopDesc::is_null(heap_oop)) {
2826       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2827 
2828       // Now fetch the region containing the object
2829       HeapRegion* hr = _g1h->heap_region_containing(obj);
2830       HeapRegionRemSet* hrrs = hr->rem_set();
2831       // Verify that the strong code root list for this region
2832       // contains the nmethod
2833       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2834         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2835                                "from nmethod " PTR_FORMAT " not in strong "
2836                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2837                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2838         _failures = true;
2839       }
2840     }
2841   }
2842 
2843 public:
2844   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2845     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2846 
2847   void do_oop(oop* p) { do_oop_work(p); }
2848   void do_oop(narrowOop* p) { do_oop_work(p); }
2849 
2850   void set_nmethod(nmethod* nm) { _nm = nm; }
2851   bool failures() { return _failures; }
2852 };
2853 
2854 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {


2995   }
2996 
2997   bool doHeapRegion(HeapRegion* r) {
2998     // For archive regions, verify there are no heap pointers to
2999     // non-pinned regions. For all others, verify liveness info.
3000     if (r->is_archive()) {
3001       VerifyArchiveRegionClosure verify_oop_pointers(r);
3002       r->object_iterate(&verify_oop_pointers);
3003       return true;
3004     }
3005     if (!r->is_continues_humongous()) {
3006       bool failures = false;
3007       r->verify(_vo, &failures);
3008       if (failures) {
3009         _failures = true;
3010       } else if (!r->is_starts_humongous()) {
3011         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3012         r->object_iterate(&not_dead_yet_cl);
3013         if (_vo != VerifyOption_G1UseNextMarking) {
3014           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3015             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3016                                    "max_live_bytes " SIZE_FORMAT " "
3017                                    "< calculated " SIZE_FORMAT,
3018                                    p2i(r->bottom()), p2i(r->end()),
3019                                    r->max_live_bytes(),
3020                                  not_dead_yet_cl.live_bytes());
3021             _failures = true;
3022           }
3023         } else {
3024           // When vo == UseNextMarking we cannot currently do a sanity
3025           // check on the live bytes as the calculation has not been
3026           // finalized yet.
3027         }
3028       }
3029     }
3030     return false; // stop the region iteration if we hit a failure
3031   }
3032 };
3033 
3034 // This is the task used for parallel verification of the heap regions
3035 
3036 class G1ParVerifyTask: public AbstractGangTask {
3037 private:
3038   G1CollectedHeap*  _g1h;
3039   VerifyOption      _vo;
3040   bool              _failures;


3048       AbstractGangTask("Parallel verify task"),
3049       _g1h(g1h),
3050       _vo(vo),
3051       _failures(false),
3052       _hrclaimer(g1h->workers()->active_workers()) {}
3053 
3054   bool failures() {
3055     return _failures;
3056   }
3057 
3058   void work(uint worker_id) {
3059     HandleMark hm;
3060     VerifyRegionClosure blk(true, _vo);
3061     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3062     if (blk.failures()) {
3063       _failures = true;
3064     }
3065   }
3066 };
3067 
3068 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3069   if (SafepointSynchronize::is_at_safepoint()) {



3070     assert(Thread::current()->is_VM_thread(),
3071            "Expected to be executed serially by the VM thread at this point");
3072 
3073     if (!silent) { gclog_or_tty->print("Roots "); }
3074     VerifyRootsClosure rootsCl(vo);
3075     VerifyKlassClosure klassCl(this, &rootsCl);
3076     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3077 
3078     // We apply the relevant closures to all the oops in the
3079     // system dictionary, class loader data graph, the string table
3080     // and the nmethods in the code cache.
3081     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3082     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3083 
3084     {
3085       G1RootProcessor root_processor(this, 1);
3086       root_processor.process_all_roots(&rootsCl,
3087                                        &cldCl,
3088                                        &blobsCl);
3089     }
3090 
3091     bool failures = rootsCl.failures() || codeRootsCl.failures();
3092 
3093     if (vo != VerifyOption_G1UseMarkWord) {
3094       // If we're verifying during a full GC then the region sets
3095       // will have been torn down at the start of the GC. Therefore
3096       // verifying the region sets will fail. So we only verify
3097       // the region sets when not in a full GC.
3098       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3099       verify_region_sets();
3100     }
3101 
3102     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3103     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3104 
3105       G1ParVerifyTask task(this, vo);
3106       workers()->run_task(&task);
3107       if (task.failures()) {
3108         failures = true;
3109       }
3110 
3111     } else {
3112       VerifyRegionClosure blk(false, vo);
3113       heap_region_iterate(&blk);
3114       if (blk.failures()) {
3115         failures = true;
3116       }
3117     }
3118 
3119     if (G1StringDedup::is_enabled()) {
3120       if (!silent) gclog_or_tty->print("StrDedup ");
3121       G1StringDedup::verify();
3122     }
3123 
3124     if (failures) {
3125       gclog_or_tty->print_cr("Heap:");
3126       // It helps to have the per-region information in the output to
3127       // help us track down what went wrong. This is why we call
3128       // print_extended_on() instead of print_on().
3129       print_extended_on(gclog_or_tty);
3130       gclog_or_tty->cr();
3131       gclog_or_tty->flush();
3132     }
3133     guarantee(!failures, "there should not have been any failures");
3134   } else {
3135     if (!silent) {
3136       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3137       if (G1StringDedup::is_enabled()) {
3138         gclog_or_tty->print(", StrDedup");
3139       }
3140       gclog_or_tty->print(") ");
3141     }
3142   }
3143 }
3144 
3145 void G1CollectedHeap::verify(bool silent) {
3146   verify(silent, VerifyOption_G1UsePrevMarking);
3147 }
3148 
3149 double G1CollectedHeap::verify(bool guard, const char* msg) {
3150   double verify_time_ms = 0.0;
3151 
3152   if (guard && total_collections() >= VerifyGCStartAt) {
3153     double verify_start = os::elapsedTime();
3154     HandleMark hm;  // Discard invalid handles created during verification
3155     prepare_for_verify();
3156     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3157     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3158   }
3159 
3160   return verify_time_ms;
3161 }
3162 
3163 void G1CollectedHeap::verify_before_gc() {
3164   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3165   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3166 }
3167 
3168 void G1CollectedHeap::verify_after_gc() {
3169   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3170   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3171 }
3172 
3173 class PrintRegionClosure: public HeapRegionClosure {
3174   outputStream* _st;
3175 public:
3176   PrintRegionClosure(outputStream* st) : _st(st) {}
3177   bool doHeapRegion(HeapRegion* r) {
3178     r->print_on(_st);
3179     return false;
3180   }
3181 };
3182 
3183 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3184                                        const HeapRegion* hr,
3185                                        const VerifyOption vo) const {
3186   switch (vo) {
3187   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3188   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3189   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();


3259     G1StringDedup::print_worker_threads_on(st);
3260   }
3261 }
3262 
3263 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3264   workers()->threads_do(tc);
3265   tc->do_thread(_cmThread);
3266   _cg1r->threads_do(tc);
3267   if (G1StringDedup::is_enabled()) {
3268     G1StringDedup::threads_do(tc);
3269   }
3270 }
3271 
3272 void G1CollectedHeap::print_tracing_info() const {
3273   // We'll overload this to mean "trace GC pause statistics."
3274   if (TraceYoungGenTime || TraceOldGenTime) {
3275     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3276     // to that.
3277     g1_policy()->print_tracing_info();
3278   }
3279   if (G1SummarizeRSetStats) {
3280     g1_rem_set()->print_summary_info();
3281   }
3282   if (G1SummarizeConcMark) {
3283     concurrent_mark()->print_summary_info();
3284   }
3285   g1_policy()->print_yg_surv_rate_info();
3286 }
3287 
3288 #ifndef PRODUCT
3289 // Helpful for debugging RSet issues.
3290 
3291 class PrintRSetsClosure : public HeapRegionClosure {
3292 private:
3293   const char* _msg;
3294   size_t _occupied_sum;
3295 
3296 public:
3297   bool doHeapRegion(HeapRegion* r) {
3298     HeapRegionRemSet* hrrs = r->rem_set();
3299     size_t occupied = hrrs->occupied();
3300     _occupied_sum += occupied;
3301 
3302     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3303                            HR_FORMAT_PARAMS(r));
3304     if (occupied == 0) {
3305       gclog_or_tty->print_cr("  RSet is empty");
3306     } else {
3307       hrrs->print();
3308     }
3309     gclog_or_tty->print_cr("----------");
3310     return false;
3311   }
3312 
3313   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3314     gclog_or_tty->cr();
3315     gclog_or_tty->print_cr("========================================");
3316     gclog_or_tty->print_cr("%s", msg);
3317     gclog_or_tty->cr();
3318   }
3319 
3320   ~PrintRSetsClosure() {
3321     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3322     gclog_or_tty->print_cr("========================================");
3323     gclog_or_tty->cr();
3324   }
3325 };
3326 
3327 void G1CollectedHeap::print_cset_rsets() {
3328   PrintRSetsClosure cl("Printing CSet RSets");
3329   collection_set_iterate(&cl);
3330 }
3331 
3332 void G1CollectedHeap::print_all_rsets() {
3333   PrintRSetsClosure cl("Printing All RSets");;
3334   heap_region_iterate(&cl);
3335 }
3336 #endif // PRODUCT
3337 
3338 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3339   YoungList* young_list = heap()->young_list();
3340 
3341   size_t eden_used_bytes = young_list->eden_used_bytes();
3342   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3343 


3361 
3362   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3363   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3364 }
3365 
3366 
3367 G1CollectedHeap* G1CollectedHeap::heap() {
3368   CollectedHeap* heap = Universe::heap();
3369   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3370   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3371   return (G1CollectedHeap*)heap;
3372 }
3373 
3374 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3375   // always_do_update_barrier = false;
3376   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3377   // Fill TLAB's and such
3378   accumulate_statistics_all_tlabs();
3379   ensure_parsability(true);
3380 
3381   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3382       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3383     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3384   }
3385 }
3386 
3387 void G1CollectedHeap::gc_epilogue(bool full) {
3388 
3389   if (G1SummarizeRSetStats &&
3390       (G1SummarizeRSetStatsPeriod > 0) &&
3391       // we are at the end of the GC. Total collections has already been increased.
3392       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3393     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3394   }
3395 
3396   // FIXME: what is this about?
3397   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3398   // is set.
3399 #if defined(COMPILER2) || INCLUDE_JVMCI
3400   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3401 #endif
3402   // always_do_update_barrier = true;
3403 
3404   resize_all_tlabs();
3405   allocation_context_stats().update(full);
3406 
3407   // We have just completed a GC. Update the soft reference
3408   // policy with the new heap occupancy
3409   Universe::update_heap_info_at_gc();
3410 }
3411 
3412 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3413                                                uint gc_count_before,
3414                                                bool* succeeded,


3620     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3621 
3622     // Here's a good place to add any other checks we'd like to
3623     // perform on CSet regions.
3624     return false;
3625   }
3626 };
3627 #endif // ASSERT
3628 
3629 uint G1CollectedHeap::num_task_queues() const {
3630   return _task_queues->size();
3631 }
3632 
3633 #if TASKQUEUE_STATS
3634 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3635   st->print_raw_cr("GC Task Stats");
3636   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3637   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3638 }
3639 
3640 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {







3641   print_taskqueue_stats_hdr(st);
3642 
3643   TaskQueueStats totals;
3644   const uint n = num_task_queues();
3645   for (uint i = 0; i < n; ++i) {
3646     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3647     totals += task_queue(i)->stats;
3648   }
3649   st->print_raw("tot "); totals.print(st); st->cr();
3650 
3651   DEBUG_ONLY(totals.verify());
3652 }
3653 
3654 void G1CollectedHeap::reset_taskqueue_stats() {
3655   const uint n = num_task_queues();
3656   for (uint i = 0; i < n; ++i) {
3657     task_queue(i)->stats.reset();
3658   }
3659 }
3660 #endif // TASKQUEUE_STATS
3661 
3662 void G1CollectedHeap::log_gc_header() {
3663   if (!G1Log::fine()) {
3664     return;
3665   }
3666 
3667   gclog_or_tty->gclog_stamp();
3668 
3669   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3670     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3671     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3672 
3673   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3674 }
3675 
3676 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3677   if (!G1Log::fine()) {
3678     return;
3679   }
3680 
3681   if (G1Log::finer()) {
3682     if (evacuation_failed()) {
3683       gclog_or_tty->print(" (to-space exhausted)");
3684     }
3685     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);

3686     g1_policy()->print_phases(pause_time_sec);

3687     g1_policy()->print_detailed_heap_transition();
3688   } else {
3689     if (evacuation_failed()) {
3690       gclog_or_tty->print("--");
3691     }
3692     g1_policy()->print_heap_transition();
3693     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3694   }
3695   gclog_or_tty->flush();
3696 }
3697 

3698 void G1CollectedHeap::wait_for_root_region_scanning() {
3699   double scan_wait_start = os::elapsedTime();
3700   // We have to wait until the CM threads finish scanning the
3701   // root regions as it's the only way to ensure that all the
3702   // objects on them have been correctly scanned before we start
3703   // moving them during the GC.
3704   bool waited = _cm->root_regions()->wait_until_scan_finished();
3705   double wait_time_ms = 0.0;
3706   if (waited) {
3707     double scan_wait_end = os::elapsedTime();
3708     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3709   }
3710   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3711 }
3712 
3713 bool
3714 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3715   assert_at_safepoint(true /* should_be_vm_thread */);
3716   guarantee(!is_gc_active(), "collection is not reentrant");
3717 
3718   if (GC_locker::check_active_before_gc()) {
3719     return false;
3720   }
3721 
3722   _gc_timer_stw->register_gc_start();
3723 
3724   GCIdMark gc_id_mark;
3725   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3726 
3727   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3728   ResourceMark rm;
3729 
3730   wait_for_root_region_scanning();
3731 
3732   G1Log::update_level();
3733   print_heap_before_gc();
3734   trace_heap_before_gc(_gc_tracer_stw);
3735 
3736   verify_region_sets_optional();
3737   verify_dirty_young_regions();
3738 
3739   // This call will decide whether this pause is an initial-mark
3740   // pause. If it is, during_initial_mark_pause() will return true
3741   // for the duration of this pause.
3742   g1_policy()->decide_on_conc_mark_initiation();
3743 
3744   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3745   assert(!collector_state()->during_initial_mark_pause() ||
3746           collector_state()->gcs_are_young(), "sanity");
3747 
3748   // We also do not allow mixed GCs during marking.
3749   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3750 
3751   // Record whether this pause is an initial mark. When the current
3752   // thread has completed its logging output and it's safe to signal
3753   // the CM thread, the flag's value in the policy has been reset.
3754   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3755 
3756   // Inner scope for scope based logging, timers, and stats collection
3757   {
3758     EvacuationInfo evacuation_info;
3759 
3760     if (collector_state()->during_initial_mark_pause()) {
3761       // We are about to start a marking cycle, so we increment the
3762       // full collection counter.
3763       increment_old_marking_cycles_started();
3764       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3765     }
3766 
3767     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3768 
3769     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3770 
3771     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3772                                                                   workers()->active_workers(),
3773                                                                   Threads::number_of_non_daemon_threads());
3774     workers()->set_active_workers(active_workers);










3775 
3776     double pause_start_sec = os::elapsedTime();

3777     g1_policy()->note_gc_start(active_workers);
3778     log_gc_header();
3779 
3780     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3781     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3782 
3783     // If the secondary_free_list is not empty, append it to the
3784     // free_list. No need to wait for the cleanup operation to finish;
3785     // the region allocation code will check the secondary_free_list
3786     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3787     // set, skip this step so that the region allocation code has to
3788     // get entries from the secondary_free_list.
3789     if (!G1StressConcRegionFreeing) {
3790       append_secondary_free_list_if_not_empty_with_lock();
3791     }
3792 
3793     assert(check_young_list_well_formed(), "young list should be well formed");
3794 
3795     // Don't dynamically change the number of GC threads this early.  A value of
3796     // 0 is used to indicate serial work.  When parallel work is done,
3797     // it will be set.
3798 


3812 #endif
3813 
3814       // Please see comment in g1CollectedHeap.hpp and
3815       // G1CollectedHeap::ref_processing_init() to see how
3816       // reference processing currently works in G1.
3817 
3818       // Enable discovery in the STW reference processor
3819       ref_processor_stw()->enable_discovery();
3820 
3821       {
3822         // We want to temporarily turn off discovery by the
3823         // CM ref processor, if necessary, and turn it back on
3824         // on again later if we do. Using a scoped
3825         // NoRefDiscovery object will do this.
3826         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3827 
3828         // Forget the current alloc region (we might even choose it to be part
3829         // of the collection set!).
3830         _allocator->release_mutator_alloc_region();
3831 
3832         // We should call this after we retire the mutator alloc
3833         // region(s) so that all the ALLOC / RETIRE events are generated
3834         // before the start GC event.
3835         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3836 
3837         // This timing is only used by the ergonomics to handle our pause target.
3838         // It is unclear why this should not include the full pause. We will
3839         // investigate this in CR 7178365.
3840         //
3841         // Preserving the old comment here if that helps the investigation:
3842         //
3843         // The elapsed time induced by the start time below deliberately elides
3844         // the possible verification above.
3845         double sample_start_time_sec = os::elapsedTime();
3846 
3847         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3848 
3849         if (collector_state()->during_initial_mark_pause()) {
3850           concurrent_mark()->checkpointRootsInitialPre();
3851         }
3852 
3853         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3854         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3855 
3856         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());


3940 
3941         if (collector_state()->during_initial_mark_pause()) {
3942           // We have to do this before we notify the CM threads that
3943           // they can start working to make sure that all the
3944           // appropriate initialization is done on the CM object.
3945           concurrent_mark()->checkpointRootsInitialPost();
3946           collector_state()->set_mark_in_progress(true);
3947           // Note that we don't actually trigger the CM thread at
3948           // this point. We do that later when we're sure that
3949           // the current thread has completed its logging output.
3950         }
3951 
3952         allocate_dummy_regions();
3953 
3954         _allocator->init_mutator_alloc_region();
3955 
3956         {
3957           size_t expand_bytes = g1_policy()->expansion_amount();
3958           if (expand_bytes > 0) {
3959             size_t bytes_before = capacity();
3960             // No need for an ergo verbose message here,
3961             // expansion_amount() does this when it returns a value > 0.
3962             double expand_ms;
3963             if (!expand(expand_bytes, &expand_ms)) {
3964               // We failed to expand the heap. Cannot do anything about it.
3965             }
3966             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3967           }
3968         }
3969 
3970         // We redo the verification but now wrt to the new CSet which
3971         // has just got initialized after the previous CSet was freed.
3972         _cm->verify_no_cset_oops();
3973         _cm->note_end_of_gc();
3974 
3975         // This timing is only used by the ergonomics to handle our pause target.
3976         // It is unclear why this should not include the full pause. We will
3977         // investigate this in CR 7178365.
3978         double sample_end_time_sec = os::elapsedTime();
3979         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3980         size_t total_cards_scanned = per_thread_states.total_cards_scanned();


4000         // stamp here we invalidate all the GC time stamps on all the
4001         // regions and saved_mark_word() will simply return top() for
4002         // all the regions. This is a nicer way of ensuring this rather
4003         // than iterating over the regions and fixing them. In fact, the
4004         // GC time stamp increment here also ensures that
4005         // saved_mark_word() will return top() between pauses, i.e.,
4006         // during concurrent refinement. So we don't need the
4007         // is_gc_active() check to decided which top to use when
4008         // scanning cards (see CR 7039627).
4009         increment_gc_time_stamp();
4010 
4011         verify_after_gc();
4012         check_bitmaps("GC End");
4013 
4014         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4015         ref_processor_stw()->verify_no_references_recorded();
4016 
4017         // CM reference discovery will be re-enabled if necessary.
4018       }
4019 
4020       // We should do this after we potentially expand the heap so
4021       // that all the COMMIT events are generated before the end GC
4022       // event, and after we retire the GC alloc regions so that all
4023       // RETIRE events are generated before the end GC event.
4024       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4025 
4026 #ifdef TRACESPINNING
4027       ParallelTaskTerminator::print_termination_counts();
4028 #endif
4029 
4030       gc_epilogue(false);
4031     }
4032 
4033     // Print the remainder of the GC log output.
4034     log_gc_footer(os::elapsedTime() - pause_start_sec);
4035 
4036     // It is not yet to safe to tell the concurrent mark to
4037     // start as we have some optional output below. We don't want the
4038     // output from the concurrent mark thread interfering with this
4039     // logging output either.
4040 
4041     _hrm.verify_optional();
4042     verify_region_sets_optional();
4043 
4044     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4045     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4046 
4047     print_heap_after_gc();
4048     trace_heap_after_gc(_gc_tracer_stw);
4049 
4050     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4051     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4052     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4053     // before any GC notifications are raised.
4054     g1mm()->update_sizes();
4055 
4056     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4057     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4058     _gc_timer_stw->register_gc_end();
4059     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4060   }
4061   // It should now be safe to tell the concurrent mark thread to start
4062   // without its logging output interfering with the logging output
4063   // that came from the pause.
4064 


4215 
4216       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4217 
4218       double term_sec = 0.0;
4219       size_t evac_term_attempts = 0;
4220       {
4221         double start = os::elapsedTime();
4222         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4223         evac.do_void();
4224 
4225         evac_term_attempts = evac.term_attempts();
4226         term_sec = evac.term_time();
4227         double elapsed_sec = os::elapsedTime() - start;
4228         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4229         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4230         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4231       }
4232 
4233       assert(pss->queue_is_empty(), "should be empty");
4234 
4235       if (PrintTerminationStats) {
4236         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4237         size_t lab_waste;
4238         size_t lab_undo_waste;
4239         pss->waste(lab_waste, lab_undo_waste);
4240         _g1h->print_termination_stats(gclog_or_tty,
4241                                       worker_id,
4242                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4243                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4244                                       term_sec * 1000.0,                          /* evac term time */
4245                                       evac_term_attempts,                         /* evac term attempts */
4246                                       lab_waste,                                  /* alloc buffer waste */
4247                                       lab_undo_waste                              /* undo waste */
4248                                       );
4249       }
4250 
4251       // Close the inner scope so that the ResourceMark and HandleMark
4252       // destructors are executed here and are included as part of the
4253       // "GC Worker Time".
4254     }
4255     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4256   }
4257 };
4258 
4259 void G1CollectedHeap::print_termination_stats_hdr(outputStream* const st) {
4260   st->print_raw_cr("GC Termination Stats");
4261   st->print_raw_cr("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4262   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts  total   alloc    undo");
4263   st->print_raw_cr("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");




4264 }
4265 
4266 void G1CollectedHeap::print_termination_stats(outputStream* const st,
4267                                               uint worker_id,
4268                                               double elapsed_ms,
4269                                               double strong_roots_ms,
4270                                               double term_ms,
4271                                               size_t term_attempts,
4272                                               size_t alloc_buffer_waste,
4273                                               size_t undo_waste) const {
4274   st->print_cr("%3d %9.2f %9.2f %6.2f "

4275                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4276                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4277                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4278                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4279                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4280                alloc_buffer_waste * HeapWordSize / K,
4281                undo_waste * HeapWordSize / K);
4282 }
4283 
4284 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4285 private:
4286   BoolObjectClosure* _is_alive;
4287   int _initial_string_table_size;
4288   int _initial_symbol_table_size;
4289 
4290   bool  _process_strings;
4291   int _strings_processed;
4292   int _strings_removed;
4293 
4294   bool  _process_symbols;


4303     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4304 
4305     _initial_string_table_size = StringTable::the_table()->table_size();
4306     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4307     if (process_strings) {
4308       StringTable::clear_parallel_claimed_index();
4309     }
4310     if (process_symbols) {
4311       SymbolTable::clear_parallel_claimed_index();
4312     }
4313   }
4314 
4315   ~G1StringSymbolTableUnlinkTask() {
4316     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4317               "claim value %d after unlink less than initial string table size %d",
4318               StringTable::parallel_claimed_index(), _initial_string_table_size);
4319     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4320               "claim value %d after unlink less than initial symbol table size %d",
4321               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4322 
4323     if (G1TraceStringSymbolTableScrubbing) {
4324       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4325                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4326                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4327                              strings_processed(), strings_removed(),
4328                              symbols_processed(), symbols_removed());
4329     }
4330   }
4331 
4332   void work(uint worker_id) {
4333     int strings_processed = 0;
4334     int strings_removed = 0;
4335     int symbols_processed = 0;
4336     int symbols_removed = 0;
4337     if (_process_strings) {
4338       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4339       Atomic::add(strings_processed, &_strings_processed);
4340       Atomic::add(strings_removed, &_strings_removed);
4341     }
4342     if (_process_symbols) {
4343       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4344       Atomic::add(symbols_processed, &_symbols_processed);
4345       Atomic::add(symbols_removed, &_symbols_removed);
4346     }
4347   }
4348 
4349   size_t strings_processed() const { return (size_t)_strings_processed; }
4350   size_t strings_removed()   const { return (size_t)_strings_removed; }


5137 
5138 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5139   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5140 
5141   // Should G1EvacuationFailureALot be in effect for this GC?
5142   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5143 
5144   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5145   double start_par_time_sec = os::elapsedTime();
5146   double end_par_time_sec;
5147 
5148   {
5149     const uint n_workers = workers()->active_workers();
5150     G1RootProcessor root_processor(this, n_workers);
5151     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5152     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5153     if (collector_state()->during_initial_mark_pause()) {
5154       ClassLoaderDataGraph::clear_claimed_marks();
5155     }
5156 
5157     // The individual threads will set their evac-failure closures.
5158     if (PrintTerminationStats) {
5159       print_termination_stats_hdr(gclog_or_tty);
5160     }
5161 
5162     workers()->run_task(&g1_par_task);
5163     end_par_time_sec = os::elapsedTime();
5164 
5165     // Closing the inner scope will execute the destructor
5166     // for the G1RootProcessor object. We record the current
5167     // elapsed time before closing the scope so that time
5168     // taken for the destructor is NOT included in the
5169     // reported parallel time.
5170   }
5171 
5172   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5173 
5174   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5175   phase_times->record_par_time(par_time_ms);
5176 
5177   double code_root_fixup_time_ms =
5178         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5179   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5180 


5368   }
5369 }
5370 
5371 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5372   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5373   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5374     verify_dirty_region(hr);
5375   }
5376 }
5377 
5378 void G1CollectedHeap::verify_dirty_young_regions() {
5379   verify_dirty_young_list(_young_list->first_region());
5380 }
5381 
5382 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5383                                                HeapWord* tams, HeapWord* end) {
5384   guarantee(tams <= end,
5385             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5386   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5387   if (result < end) {
5388     gclog_or_tty->cr();
5389     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5390                            bitmap_name, p2i(result));
5391     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5392                            bitmap_name, p2i(tams), p2i(end));
5393     return false;
5394   }
5395   return true;
5396 }
5397 
5398 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5399   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5400   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5401 
5402   HeapWord* bottom = hr->bottom();
5403   HeapWord* ptams  = hr->prev_top_at_mark_start();
5404   HeapWord* ntams  = hr->next_top_at_mark_start();
5405   HeapWord* end    = hr->end();
5406 
5407   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5408 
5409   bool res_n = true;
5410   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5411   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5412   // if we happen to be in that state.
5413   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5414     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5415   }
5416   if (!res_p || !res_n) {
5417     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5418                            HR_FORMAT_PARAMS(hr));
5419     gclog_or_tty->print_cr("#### Caller: %s", caller);
5420     return false;
5421   }
5422   return true;
5423 }
5424 
5425 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5426   if (!G1VerifyBitmaps) return;
5427 
5428   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5429 }
5430 
5431 class G1VerifyBitmapClosure : public HeapRegionClosure {
5432 private:
5433   const char* _caller;
5434   G1CollectedHeap* _g1h;
5435   bool _failures;
5436 
5437 public:
5438   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5439     _caller(caller), _g1h(g1h), _failures(false) { }


5451 
5452 void G1CollectedHeap::check_bitmaps(const char* caller) {
5453   if (!G1VerifyBitmaps) return;
5454 
5455   G1VerifyBitmapClosure cl(caller, this);
5456   heap_region_iterate(&cl);
5457   guarantee(!cl.failures(), "bitmap verification");
5458 }
5459 
5460 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5461  private:
5462   bool _failures;
5463  public:
5464   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5465 
5466   virtual bool doHeapRegion(HeapRegion* hr) {
5467     uint i = hr->hrm_index();
5468     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5469     if (hr->is_humongous()) {
5470       if (hr->in_collection_set()) {
5471         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5472         _failures = true;
5473         return true;
5474       }
5475       if (cset_state.is_in_cset()) {
5476         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5477         _failures = true;
5478         return true;
5479       }
5480       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5481         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5482         _failures = true;
5483         return true;
5484       }
5485     } else {
5486       if (cset_state.is_humongous()) {
5487         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5488         _failures = true;
5489         return true;
5490       }
5491       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5492         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5493                                hr->in_collection_set(), cset_state.value(), i);
5494         _failures = true;
5495         return true;
5496       }
5497       if (cset_state.is_in_cset()) {
5498         if (hr->is_young() != (cset_state.is_young())) {
5499           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5500                                  hr->is_young(), cset_state.value(), i);
5501           _failures = true;
5502           return true;
5503         }
5504         if (hr->is_old() != (cset_state.is_old())) {
5505           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5506                                  hr->is_old(), cset_state.value(), i);
5507           _failures = true;
5508           return true;
5509         }
5510       }
5511     }
5512     return false;
5513   }
5514 
5515   bool failures() const { return _failures; }
5516 };
5517 
5518 bool G1CollectedHeap::check_cset_fast_test() {
5519   G1CheckCSetFastTableClosure cl;
5520   _hrm.iterate(&cl);
5521   return !cl.failures();
5522 }
5523 #endif // PRODUCT
5524 
5525 void G1CollectedHeap::cleanUpCardTable() {


5695     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5696     // until the end of a concurrent mark.
5697     //
5698     // It is not required to check whether the object has been found dead by marking
5699     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5700     // all objects allocated during that time are considered live.
5701     // SATB marking is even more conservative than the remembered set.
5702     // So if at this point in the collection there is no remembered set entry,
5703     // nobody has a reference to it.
5704     // At the start of collection we flush all refinement logs, and remembered sets
5705     // are completely up-to-date wrt to references to the humongous object.
5706     //
5707     // Other implementation considerations:
5708     // - never consider object arrays at this time because they would pose
5709     // considerable effort for cleaning up the the remembered sets. This is
5710     // required because stale remembered sets might reference locations that
5711     // are currently allocated into.
5712     uint region_idx = r->hrm_index();
5713     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5714         !r->rem_set()->is_empty()) {
5715 
5716       if (G1TraceEagerReclaimHumongousObjects) {
5717         gclog_or_tty->print_cr("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5718                                region_idx,
5719                                (size_t)obj->size() * HeapWordSize,
5720                                p2i(r->bottom()),
5721                                r->rem_set()->occupied(),
5722                                r->rem_set()->strong_code_roots_list_length(),
5723                                next_bitmap->isMarked(r->bottom()),
5724                                g1h->is_humongous_reclaim_candidate(region_idx),
5725                                obj->is_typeArray()
5726                               );
5727       }
5728 
5729       return false;
5730     }
5731 
5732     guarantee(obj->is_typeArray(),
5733               "Only eagerly reclaiming type arrays is supported, but the object "
5734               PTR_FORMAT " is not.", p2i(r->bottom()));
5735 
5736     if (G1TraceEagerReclaimHumongousObjects) {
5737       gclog_or_tty->print_cr("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
5738                              region_idx,
5739                              (size_t)obj->size() * HeapWordSize,
5740                              p2i(r->bottom()),
5741                              r->rem_set()->occupied(),
5742                              r->rem_set()->strong_code_roots_list_length(),
5743                              next_bitmap->isMarked(r->bottom()),
5744                              g1h->is_humongous_reclaim_candidate(region_idx),
5745                              obj->is_typeArray()
5746                             );
5747     }
5748     // Need to clear mark bit of the humongous object if already set.
5749     if (next_bitmap->isMarked(r->bottom())) {
5750       next_bitmap->clear(r->bottom());
5751     }
5752     do {
5753       HeapRegion* next = g1h->next_region_in_humongous(r);
5754       _freed_bytes += r->used();
5755       r->set_containing_set(NULL);
5756       _humongous_regions_removed.increment(1u, r->capacity());
5757       g1h->free_humongous_region(r, _free_region_list, false);
5758       r = next;
5759     } while (r != NULL);
5760 
5761     return false;
5762   }
5763 
5764   HeapRegionSetCount& humongous_free_count() {
5765     return _humongous_regions_removed;
5766   }
5767 
5768   size_t bytes_freed() const {
5769     return _freed_bytes;
5770   }
5771 
5772   size_t humongous_reclaimed() const {
5773     return _humongous_regions_removed.length();
5774   }
5775 };
5776 
5777 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5778   assert_at_safepoint(true);
5779 
5780   if (!G1EagerReclaimHumongousObjects ||
5781       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5782     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5783     return;
5784   }
5785 
5786   double start_time = os::elapsedTime();
5787 
5788   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5789 
5790   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5791   heap_region_iterate(&cl);
5792 
5793   HeapRegionSetCount empty_set;
5794   remove_from_old_sets(empty_set, cl.humongous_free_count());
5795 
5796   G1HRPrinter* hrp = hr_printer();
5797   if (hrp->is_active()) {
5798     FreeRegionListIterator iter(&local_cleanup_list);
5799     while (iter.more_available()) {
5800       HeapRegion* hr = iter.get_next();
5801       hrp->cleanup(hr);


5814 // the current incremental collection set in preparation of a
5815 // full collection. After the full GC we will start to build up
5816 // the incremental collection set again.
5817 // This is only called when we're doing a full collection
5818 // and is immediately followed by the tearing down of the young list.
5819 
5820 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5821   HeapRegion* cur = cs_head;
5822 
5823   while (cur != NULL) {
5824     HeapRegion* next = cur->next_in_collection_set();
5825     assert(cur->in_collection_set(), "bad CS");
5826     cur->set_next_in_collection_set(NULL);
5827     clear_in_cset(cur);
5828     cur->set_young_index_in_cset(-1);
5829     cur = next;
5830   }
5831 }
5832 
5833 void G1CollectedHeap::set_free_regions_coming() {
5834   if (G1ConcRegionFreeingVerbose) {
5835     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5836                            "setting free regions coming");
5837   }
5838 
5839   assert(!free_regions_coming(), "pre-condition");
5840   _free_regions_coming = true;
5841 }
5842 
5843 void G1CollectedHeap::reset_free_regions_coming() {
5844   assert(free_regions_coming(), "pre-condition");
5845 
5846   {
5847     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5848     _free_regions_coming = false;
5849     SecondaryFreeList_lock->notify_all();
5850   }
5851 
5852   if (G1ConcRegionFreeingVerbose) {
5853     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
5854                            "reset free regions coming");
5855   }
5856 }
5857 
5858 void G1CollectedHeap::wait_while_free_regions_coming() {
5859   // Most of the time we won't have to wait, so let's do a quick test
5860   // first before we take the lock.
5861   if (!free_regions_coming()) {
5862     return;
5863   }
5864 
5865   if (G1ConcRegionFreeingVerbose) {
5866     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5867                            "waiting for free regions");
5868   }
5869 
5870   {
5871     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5872     while (free_regions_coming()) {
5873       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5874     }
5875   }
5876 
5877   if (G1ConcRegionFreeingVerbose) {
5878     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
5879                            "done waiting for free regions");
5880   }
5881 }
5882 
5883 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5884   return _allocator->is_retained_old_region(hr);
5885 }
5886 
5887 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5888   _young_list->push_region(hr);
5889 }
5890 
5891 class NoYoungRegionsClosure: public HeapRegionClosure {
5892 private:
5893   bool _success;
5894 public:
5895   NoYoungRegionsClosure() : _success(true) { }
5896   bool doHeapRegion(HeapRegion* r) {
5897     if (r->is_young()) {
5898       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5899                              p2i(r->bottom()), p2i(r->end()));
5900       _success = false;
5901     }
5902     return false;
5903   }
5904   bool success() { return _success; }
5905 };
5906 
5907 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5908   bool ret = _young_list->check_list_empty(check_sample);
5909 
5910   if (check_heap) {
5911     NoYoungRegionsClosure closure;
5912     heap_region_iterate(&closure);
5913     ret = ret && closure.success();
5914   }
5915 
5916   return ret;
5917 }
5918 


6129 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6130                                              size_t allocated_bytes,
6131                                              InCSetState dest) {
6132   bool during_im = collector_state()->during_initial_mark_pause();
6133   alloc_region->note_end_of_copying(during_im);
6134   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6135   if (dest.is_young()) {
6136     young_list()->add_survivor_region(alloc_region);
6137   } else {
6138     _old_set.add(alloc_region);
6139   }
6140   _hr_printer.retire(alloc_region);
6141 }
6142 
6143 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6144   bool expanded = false;
6145   uint index = _hrm.find_highest_free(&expanded);
6146 
6147   if (index != G1_NO_HRM_INDEX) {
6148     if (expanded) {
6149       ergo_verbose1(ErgoHeapSizing,
6150                     "attempt heap expansion",
6151                     ergo_format_reason("requested address range outside heap bounds")
6152                     ergo_format_byte("region size"),
6153                     HeapRegion::GrainWords * HeapWordSize);
6154     }
6155     _hrm.allocate_free_regions_starting_at(index, 1);
6156     return region_at(index);
6157   }
6158   return NULL;
6159 }
6160 
6161 // Heap region set verification
6162 
6163 class VerifyRegionListsClosure : public HeapRegionClosure {
6164 private:
6165   HeapRegionSet*   _old_set;
6166   HeapRegionSet*   _humongous_set;
6167   HeapRegionManager*   _hrm;
6168 
6169 public:
6170   HeapRegionSetCount _old_count;
6171   HeapRegionSetCount _humongous_count;
6172   HeapRegionSetCount _free_count;




  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1Allocator.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"

  38 #include "gc/g1/g1EvacFailure.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"

  40 #include "gc/g1/g1MarkSweep.hpp"
  41 #include "gc/g1/g1OopClosures.inline.hpp"
  42 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  43 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  44 #include "gc/g1/g1RemSet.inline.hpp"
  45 #include "gc/g1/g1RootClosures.hpp"
  46 #include "gc/g1/g1RootProcessor.hpp"
  47 #include "gc/g1/g1StringDedup.hpp"
  48 #include "gc/g1/g1YCTypes.hpp"
  49 #include "gc/g1/heapRegion.inline.hpp"
  50 #include "gc/g1/heapRegionRemSet.hpp"
  51 #include "gc/g1/heapRegionSet.inline.hpp"
  52 #include "gc/g1/suspendibleThreadSet.hpp"
  53 #include "gc/g1/vm_operations_g1.hpp"
  54 #include "gc/shared/gcHeapSummary.hpp"
  55 #include "gc/shared/gcId.hpp"
  56 #include "gc/shared/gcLocker.inline.hpp"
  57 #include "gc/shared/gcTimer.hpp"
  58 #include "gc/shared/gcTrace.hpp"
  59 #include "gc/shared/gcTraceTime.hpp"
  60 #include "gc/shared/generationSpec.hpp"
  61 #include "gc/shared/isGCActiveMark.hpp"
  62 #include "gc/shared/referenceProcessor.hpp"
  63 #include "gc/shared/taskqueue.inline.hpp"
  64 #include "logging/log.hpp"
  65 #include "memory/allocation.hpp"
  66 #include "memory/iterator.hpp"
  67 #include "oops/oop.inline.hpp"
  68 #include "runtime/atomic.inline.hpp"
  69 #include "runtime/init.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 #include "utilities/stack.inline.hpp"
  74 
  75 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  76 
  77 // INVARIANTS/NOTES
  78 //
  79 // All allocation activity covered by the G1CollectedHeap interface is
  80 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  81 // and allocate_new_tlab, which are the "entry" points to the
  82 // allocation code from the rest of the JVM.  (Note that this does not
  83 // apply to TLAB allocation, which is not part of this interface: it
  84 // is done by clients of this interface.)


 186   } while (hr != head);
 187   assert(hr != NULL, "invariant");
 188   hr->set_next_dirty_cards_region(NULL);
 189   return hr;
 190 }
 191 
 192 // Returns true if the reference points to an object that
 193 // can move in an incremental collection.
 194 bool G1CollectedHeap::is_scavengable(const void* p) {
 195   HeapRegion* hr = heap_region_containing(p);
 196   return !hr->is_pinned();
 197 }
 198 
 199 // Private methods.
 200 
 201 HeapRegion*
 202 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 203   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 204   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 205     if (!_secondary_free_list.is_empty()) {
 206       log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "

 207                                 "secondary_free_list has %u entries",
 208                                 _secondary_free_list.length());

 209       // It looks as if there are free regions available on the
 210       // secondary_free_list. Let's move them to the free_list and try
 211       // again to allocate from it.
 212       append_secondary_free_list();
 213 
 214       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 215              "empty we should have moved at least one entry to the free_list");
 216       HeapRegion* res = _hrm.allocate_free_region(is_old);
 217       log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "

 218                                 "allocated " HR_FORMAT " from secondary_free_list",
 219                                 HR_FORMAT_PARAMS(res));

 220       return res;
 221     }
 222 
 223     // Wait here until we get notified either when (a) there are no
 224     // more free regions coming or (b) some regions have been moved on
 225     // the secondary_free_list.
 226     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 227   }
 228 
 229   log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "

 230                             "could not allocate from secondary_free_list");

 231   return NULL;
 232 }
 233 
 234 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 235   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 236          "the only time we use this to allocate a humongous region is "
 237          "when we are allocating a single humongous region");
 238 
 239   HeapRegion* res;
 240   if (G1StressConcRegionFreeing) {
 241     if (!_secondary_free_list.is_empty()) {
 242       log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "

 243                                 "forced to look at the secondary_free_list");

 244       res = new_region_try_secondary_free_list(is_old);
 245       if (res != NULL) {
 246         return res;
 247       }
 248     }
 249   }
 250 
 251   res = _hrm.allocate_free_region(is_old);
 252 
 253   if (res == NULL) {
 254     log_develop(gc, freelist)("G1ConcRegionFreeing [region alloc] : "

 255                               "res == NULL, trying the secondary_free_list");

 256     res = new_region_try_secondary_free_list(is_old);
 257   }
 258   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 259     // Currently, only attempts to allocate GC alloc regions set
 260     // do_expand to true. So, we should only reach here during a
 261     // safepoint. If this assumption changes we might have to
 262     // reconsider the use of _expand_heap_after_alloc_failure.
 263     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 264 
 265     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",



 266                               word_size * HeapWordSize);
 267 
 268     if (expand(word_size * HeapWordSize)) {
 269       // Given that expand() succeeded in expanding the heap, and we
 270       // always expand the heap by an amount aligned to the heap
 271       // region size, the free list should in theory not be empty.
 272       // In either case allocate_free_region() will check for NULL.
 273       res = _hrm.allocate_free_region(is_old);
 274     } else {
 275       _expand_heap_after_alloc_failure = false;
 276     }
 277   }
 278   return res;
 279 }
 280 
 281 HeapWord*
 282 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 283                                                            uint num_regions,
 284                                                            size_t word_size,
 285                                                            AllocationContext_t context) {
 286   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 287   assert(is_humongous(word_size), "word_size should be humongous");


 418     // potentially waits for regions from the secondary free list.
 419     wait_while_free_regions_coming();
 420     append_secondary_free_list_if_not_empty_with_lock();
 421 
 422     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 423     // are lucky enough to find some.
 424     first = _hrm.find_contiguous_only_empty(obj_regions);
 425     if (first != G1_NO_HRM_INDEX) {
 426       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 427     }
 428   }
 429 
 430   if (first == G1_NO_HRM_INDEX) {
 431     // Policy: We could not find enough regions for the humongous object in the
 432     // free list. Look through the heap to find a mix of free and uncommitted regions.
 433     // If so, try expansion.
 434     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 435     if (first != G1_NO_HRM_INDEX) {
 436       // We found something. Make sure these regions are committed, i.e. expand
 437       // the heap. Alternatively we could do a defragmentation GC.
 438       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",



 439                                     word_size * HeapWordSize);
 440 
 441 
 442       _hrm.expand_at(first, obj_regions);
 443       g1_policy()->record_new_heap_size(num_regions());
 444 
 445 #ifdef ASSERT
 446       for (uint i = first; i < first + obj_regions; ++i) {
 447         HeapRegion* hr = region_at(i);
 448         assert(hr->is_free(), "sanity");
 449         assert(hr->is_empty(), "sanity");
 450         assert(is_on_master_free_list(hr), "sanity");
 451       }
 452 #endif
 453       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 454     } else {
 455       // Policy: Potentially trigger a defragmentation GC.
 456     }
 457   }
 458 
 459   HeapWord* result = NULL;
 460   if (first != G1_NO_HRM_INDEX) {
 461     result = humongous_obj_allocate_initialize_regions(first, obj_regions,


 739     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 740     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 741       start_address = start_region->end();
 742       if (start_address > last_address) {
 743         increase_used(word_size * HeapWordSize);
 744         start_region->set_top(last_address + 1);
 745         continue;
 746       }
 747       start_region->set_top(start_address);
 748       curr_range = MemRegion(start_address, last_address + 1);
 749       start_region = _hrm.addr_to_region(start_address);
 750     }
 751 
 752     // Perform the actual region allocation, exiting if it fails.
 753     // Then note how much new space we have allocated.
 754     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
 755       return false;
 756     }
 757     increase_used(word_size * HeapWordSize);
 758     if (commits != 0) {
 759       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",



 760                                 HeapRegion::GrainWords * HeapWordSize * commits);
 761 
 762     }
 763 
 764     // Mark each G1 region touched by the range as archive, add it to the old set,
 765     // and set the allocation context and top.
 766     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 767     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 768     prev_last_region = last_region;
 769 
 770     while (curr_region != NULL) {
 771       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 772              "Region already in use (index %u)", curr_region->hrm_index());
 773       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
 774       curr_region->set_allocation_context(AllocationContext::system());
 775       curr_region->set_archive();
 776       _old_set.add(curr_region);
 777       if (curr_region != last_region) {
 778         curr_region->set_top(curr_region->end());
 779         curr_region = _hrm.next_region_in_heap(curr_region);
 780       } else {
 781         curr_region->set_top(last_address + 1);


 922       guarantee(curr_region->is_archive(),
 923                 "Expected archive region at index %u", curr_region->hrm_index());
 924       uint curr_index = curr_region->hrm_index();
 925       _old_set.remove(curr_region);
 926       curr_region->set_free();
 927       curr_region->set_top(curr_region->bottom());
 928       if (curr_region != last_region) {
 929         curr_region = _hrm.next_region_in_heap(curr_region);
 930       } else {
 931         curr_region = NULL;
 932       }
 933       _hrm.shrink_at(curr_index, 1);
 934       uncommitted_regions++;
 935     }
 936 
 937     // Notify mark-sweep that this is no longer an archive range.
 938     G1MarkSweep::set_range_archive(ranges[i], false);
 939   }
 940 
 941   if (uncommitted_regions != 0) {
 942     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",



 943                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 944   }
 945   decrease_used(size_used);
 946 }
 947 
 948 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 949                                                         uint* gc_count_before_ret,
 950                                                         uint* gclocker_retry_count_ret) {
 951   // The structure of this method has a lot of similarities to
 952   // attempt_allocation_slow(). The reason these two were not merged
 953   // into a single one is that such a method would require several "if
 954   // allocation is not humongous do this, otherwise do that"
 955   // conditional paths which would obscure its flow. In fact, an early
 956   // version of this code did use a unified method which was harder to
 957   // follow and, as a result, it had subtle bugs that were hard to
 958   // track down. So keeping these two methods separate allows each to
 959   // be more readable. It will be good to keep these two in sync as
 960   // much as possible.
 961 
 962   assert_heap_not_locked_and_not_at_safepoint();


1160       // We only generate output for non-empty regions.
1161     } else if (hr->is_starts_humongous()) {
1162       _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1163     } else if (hr->is_continues_humongous()) {
1164       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1165     } else if (hr->is_archive()) {
1166       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1167     } else if (hr->is_old()) {
1168       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1169     } else {
1170       ShouldNotReachHere();
1171     }
1172     return false;
1173   }
1174 
1175   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1176     : _hr_printer(hr_printer) { }
1177 };
1178 
1179 void G1CollectedHeap::print_hrm_post_compaction() {
1180   if (_hr_printer.is_active()) {
1181     PostCompactionPrinterClosure cl(hr_printer());
1182     heap_region_iterate(&cl);
1183   }
1184 
1185 }
1186 
1187 bool G1CollectedHeap::do_collection(bool explicit_gc,
1188                                     bool clear_all_soft_refs,
1189                                     size_t word_size) {
1190   assert_at_safepoint(true /* should_be_vm_thread */);
1191 
1192   if (GC_locker::check_active_before_gc()) {
1193     return false;
1194   }
1195 
1196   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1197   gc_timer->register_gc_start();
1198 
1199   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1200   GCIdMark gc_id_mark;
1201   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1202 
1203   SvcGCMarker sgcm(SvcGCMarker::FULL);
1204   ResourceMark rm;
1205 

1206   print_heap_before_gc();
1207   trace_heap_before_gc(gc_tracer);
1208 
1209   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1210 
1211   verify_region_sets_optional();
1212 
1213   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1214                            collector_policy()->should_clear_all_soft_refs();
1215 
1216   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1217 
1218   {
1219     IsGCActiveMark x;
1220 
1221     // Timing
1222     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1223     GCTraceCPUTime tcpu;
1224 
1225     {
1226       GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1227       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1228       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1229 
1230       g1_policy()->record_full_collection_start();
1231 
1232       // Note: When we have a more flexible GC logging framework that
1233       // allows us to add optional attributes to a GC log record we
1234       // could consider timing and reporting how long we wait in the
1235       // following two methods.
1236       wait_while_free_regions_coming();
1237       // If we start the compaction before the CM threads finish
1238       // scanning the root regions we might trip them over as we'll
1239       // be moving objects / updating references. So let's wait until
1240       // they are done. By telling them to abort, they should complete
1241       // early.
1242       _cm->root_regions()->abort();
1243       _cm->root_regions()->wait_until_scan_finished();
1244       append_secondary_free_list_if_not_empty_with_lock();
1245 
1246       gc_prologue(true);


1257 #if defined(COMPILER2) || INCLUDE_JVMCI
1258       DerivedPointerTable::clear();
1259 #endif
1260 
1261       // Disable discovery and empty the discovered lists
1262       // for the CM ref processor.
1263       ref_processor_cm()->disable_discovery();
1264       ref_processor_cm()->abandon_partial_discovery();
1265       ref_processor_cm()->verify_no_references_recorded();
1266 
1267       // Abandon current iterations of concurrent marking and concurrent
1268       // refinement, if any are in progress. We have to do this before
1269       // wait_until_scan_finished() below.
1270       concurrent_mark()->abort();
1271 
1272       // Make sure we'll choose a new allocation region afterwards.
1273       _allocator->release_mutator_alloc_region();
1274       _allocator->abandon_gc_alloc_regions();
1275       g1_rem_set()->cleanupHRRS();
1276 





1277       // We may have added regions to the current incremental collection
1278       // set between the last GC or pause and now. We need to clear the
1279       // incremental collection set and then start rebuilding it afresh
1280       // after this full GC.
1281       abandon_collection_set(g1_policy()->inc_cset_head());
1282       g1_policy()->clear_incremental_cset();
1283       g1_policy()->stop_incremental_cset_building();
1284 
1285       tear_down_region_sets(false /* free_list_only */);
1286       collector_state()->set_gcs_are_young(true);
1287 
1288       // See the comments in g1CollectedHeap.hpp and
1289       // G1CollectedHeap::ref_processing_init() about
1290       // how reference processing currently works in G1.
1291 
1292       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1293       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1294 
1295       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1296       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);


1324       ClassLoaderDataGraph::purge();
1325       MetaspaceAux::verify_metrics();
1326 
1327       // Note: since we've just done a full GC, concurrent
1328       // marking is no longer active. Therefore we need not
1329       // re-enable reference discovery for the CM ref processor.
1330       // That will be done at the start of the next marking cycle.
1331       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1332       ref_processor_cm()->verify_no_references_recorded();
1333 
1334       reset_gc_time_stamp();
1335       // Since everything potentially moved, we will clear all remembered
1336       // sets, and clear all cards.  Later we will rebuild remembered
1337       // sets. We will also reset the GC time stamps of the regions.
1338       clear_rsets_post_compaction();
1339       check_gc_time_stamps();
1340 
1341       // Resize the heap if necessary.
1342       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1343 

1344       // We should do this after we potentially resize the heap so
1345       // that all the COMMIT / UNCOMMIT events are generated before
1346       // the compaction events.

1347       print_hrm_post_compaction();


1348 
1349       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1350       if (hot_card_cache->use_cache()) {
1351         hot_card_cache->reset_card_counts();
1352         hot_card_cache->reset_hot_cache();
1353       }
1354 
1355       // Rebuild remembered sets of all regions.
1356       uint n_workers =
1357         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1358                                                 workers()->active_workers(),
1359                                                 Threads::number_of_non_daemon_threads());
1360       workers()->set_active_workers(n_workers);
1361 
1362       ParRebuildRSTask rebuild_rs_task(this);
1363       workers()->run_task(&rebuild_rs_task);
1364 
1365       // Rebuild the strong code root lists for each region
1366       rebuild_strong_code_roots();
1367 


1396       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1397       // objects marked during a full GC against the previous bitmap.
1398       // But we need to clear it before calling check_bitmaps below since
1399       // the full GC has compacted objects and updated TAMS but not updated
1400       // the prev bitmap.
1401       if (G1VerifyBitmaps) {
1402         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1403       }
1404       check_bitmaps("Full GC End");
1405 
1406       // Start a new incremental collection set for the next pause
1407       assert(g1_policy()->collection_set() == NULL, "must be");
1408       g1_policy()->start_incremental_cset_building();
1409 
1410       clear_cset_fast_test();
1411 
1412       _allocator->init_mutator_alloc_region();
1413 
1414       g1_policy()->record_full_collection_end();
1415 




1416       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1417       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1418       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1419       // before any GC notifications are raised.
1420       g1mm()->update_sizes();
1421 
1422       gc_epilogue(true);
1423     }
1424 
1425     g1_policy()->print_detailed_heap_transition();


1426 
1427     print_heap_after_gc();
1428     trace_heap_after_gc(gc_tracer);
1429 
1430     post_full_gc_dump(gc_timer);
1431 
1432     gc_timer->register_gc_end();
1433     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1434   }
1435 
1436   return true;
1437 }
1438 
1439 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1440   // do_collection() will return whether it succeeded in performing
1441   // the GC. Currently, there is no facility on the
1442   // do_full_collection() API to notify the caller than the collection
1443   // did not succeed (e.g., because it was locked out by the GC
1444   // locker). So, right now, we'll ignore the return value.
1445   bool dummy = do_collection(true,                /* explicit_gc */


1490 
1491   // This assert only makes sense here, before we adjust them
1492   // with respect to the min and max heap size.
1493   assert(minimum_desired_capacity <= maximum_desired_capacity,
1494          "minimum_desired_capacity = " SIZE_FORMAT ", "
1495          "maximum_desired_capacity = " SIZE_FORMAT,
1496          minimum_desired_capacity, maximum_desired_capacity);
1497 
1498   // Should not be greater than the heap max size. No need to adjust
1499   // it with respect to the heap min size as it's a lower bound (i.e.,
1500   // we'll try to make the capacity larger than it, not smaller).
1501   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1502   // Should not be less than the heap min size. No need to adjust it
1503   // with respect to the heap max size as it's an upper bound (i.e.,
1504   // we'll try to make the capacity smaller than it, not greater).
1505   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1506 
1507   if (capacity_after_gc < minimum_desired_capacity) {
1508     // Don't expand unless it's significant
1509     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1510 
1511     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1512                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1513                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1514 




1515     expand(expand_bytes);
1516 
1517     // No expansion, now see if we want to shrink
1518   } else if (capacity_after_gc > maximum_desired_capacity) {
1519     // Capacity too large, compute shrinking size
1520     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1521 
1522     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1523                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1524                               capacity_after_gc, used_after_gc, minimum_desired_capacity, MinHeapFreeRatio);
1525 




1526     shrink(shrink_bytes);
1527   }
1528 }
1529 
1530 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1531                                                             AllocationContext_t context,
1532                                                             bool do_gc,
1533                                                             bool clear_all_soft_refs,
1534                                                             bool expect_null_mutator_alloc_region,
1535                                                             bool* gc_succeeded) {
1536   *gc_succeeded = true;
1537   // Let's attempt the allocation first.
1538   HeapWord* result =
1539     attempt_allocation_at_safepoint(word_size,
1540                                     context,
1541                                     expect_null_mutator_alloc_region);
1542   if (result != NULL) {
1543     assert(*gc_succeeded, "sanity");
1544     return result;
1545   }


1612 
1613   // What else?  We might try synchronous finalization later.  If the total
1614   // space available is large enough for the allocation, then a more
1615   // complete compaction phase than we've tried so far might be
1616   // appropriate.
1617   assert(*succeeded, "sanity");
1618   return NULL;
1619 }
1620 
1621 // Attempting to expand the heap sufficiently
1622 // to support an allocation of the given "word_size".  If
1623 // successful, perform the allocation and return the address of the
1624 // allocated block, or else "NULL".
1625 
1626 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1627   assert_at_safepoint(true /* should_be_vm_thread */);
1628 
1629   verify_region_sets_optional();
1630 
1631   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1632   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",



1633                             word_size * HeapWordSize);
1634 
1635 
1636   if (expand(expand_bytes)) {
1637     _hrm.verify_optional();
1638     verify_region_sets_optional();
1639     return attempt_allocation_at_safepoint(word_size,
1640                                            context,
1641                                            false /* expect_null_mutator_alloc_region */);
1642   }
1643   return NULL;
1644 }
1645 
1646 bool G1CollectedHeap::expand(size_t expand_bytes, double* expand_time_ms) {
1647   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1648   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1649                                        HeapRegion::GrainBytes);
1650 
1651   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount:" SIZE_FORMAT "B expansion amount:" SIZE_FORMAT "B",


1652                             expand_bytes, aligned_expand_bytes);
1653 
1654   if (is_maximal_no_gc()) {
1655     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");


1656     return false;
1657   }
1658 
1659   double expand_heap_start_time_sec = os::elapsedTime();
1660   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1661   assert(regions_to_expand > 0, "Must expand by at least one region");
1662 
1663   uint expanded_by = _hrm.expand_by(regions_to_expand);
1664   if (expand_time_ms != NULL) {
1665     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1666   }
1667 
1668   if (expanded_by > 0) {
1669     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1670     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1671     g1_policy()->record_new_heap_size(num_regions());
1672   } else {
1673     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1674 

1675     // The expansion of the virtual storage space was unsuccessful.
1676     // Let's see if it was because we ran out of swap.
1677     if (G1ExitOnExpansionFailure &&
1678         _hrm.available() >= regions_to_expand) {
1679       // We had head room...
1680       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1681     }
1682   }
1683   return regions_to_expand > 0;
1684 }
1685 
1686 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1687   size_t aligned_shrink_bytes =
1688     ReservedSpace::page_align_size_down(shrink_bytes);
1689   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1690                                          HeapRegion::GrainBytes);
1691   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1692 
1693   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1694   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1695 
1696 
1697   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",



1698                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1699   if (num_regions_removed > 0) {
1700     g1_policy()->record_new_heap_size(num_regions());
1701   } else {
1702     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");


1703   }
1704 }
1705 
1706 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1707   verify_region_sets_optional();
1708 
1709   // We should only reach here at the end of a Full GC which means we
1710   // should not not be holding to any GC alloc regions. The method
1711   // below will make sure of that and do any remaining clean up.
1712   _allocator->abandon_gc_alloc_regions();
1713 
1714   // Instead of tearing down / rebuilding the free lists here, we
1715   // could instead use the remove_all_pending() method on free_list to
1716   // remove only the ones that we need to remove.
1717   tear_down_region_sets(true /* free_list_only */);
1718   shrink_helper(shrink_bytes);
1719   rebuild_region_sets(true /* free_list_only */);
1720 
1721   _hrm.verify_optional();
1722   verify_region_sets_optional();


1794   // Initialize the G1EvacuationFailureALot counters and flags.
1795   NOT_PRODUCT(reset_evacuation_should_fail();)
1796 
1797   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1798 }
1799 
1800 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1801                                                                  size_t size,
1802                                                                  size_t translation_factor) {
1803   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1804   // Allocate a new reserved space, preferring to use large pages.
1805   ReservedSpace rs(size, preferred_page_size);
1806   G1RegionToSpaceMapper* result  =
1807     G1RegionToSpaceMapper::create_mapper(rs,
1808                                          size,
1809                                          rs.alignment(),
1810                                          HeapRegion::GrainBytes,
1811                                          translation_factor,
1812                                          mtGC);
1813   if (TracePageSizes) {
1814     tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1815                   description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1816   }
1817   return result;
1818 }
1819 
1820 jint G1CollectedHeap::initialize() {
1821   CollectedHeap::pre_initialize();
1822   os::enable_vtime();
1823 


1824   // Necessary to satisfy locking discipline assertions.
1825 
1826   MutexLocker x(Heap_lock);
1827 




1828   // While there are no constraints in the GC code that HeapWordSize
1829   // be any particular value, there are multiple other areas in the
1830   // system which believe this to be true (e.g. oop->object_size in some
1831   // cases incorrectly returns the size in wordSize units rather than
1832   // HeapWordSize).
1833   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1834 
1835   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1836   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1837   size_t heap_alignment = collector_policy()->heap_alignment();
1838 
1839   // Ensure that the sizes are properly aligned.
1840   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1841   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1842   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1843 
1844   _refine_cte_cl = new RefineCardTableEntryClosure();
1845 
1846   jint ecode = JNI_OK;
1847   _cg1r = ConcurrentG1Refine::create(this, _refine_cte_cl, &ecode);


2000   G1AllocRegion::setup(this, dummy_region);
2001 
2002   _allocator->init_mutator_alloc_region();
2003 
2004   // Do create of the monitoring and management support so that
2005   // values in the heap have been properly initialized.
2006   _g1mm = new G1MonitoringSupport(this);
2007 
2008   G1StringDedup::initialize();
2009 
2010   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2011   for (uint i = 0; i < ParallelGCThreads; i++) {
2012     new (&_preserved_objs[i]) OopAndMarkOopStack();
2013   }
2014 
2015   return JNI_OK;
2016 }
2017 
2018 void G1CollectedHeap::stop() {
2019   // Stop all concurrent threads. We do this to make sure these threads
2020   // do not continue to execute and access resources (e.g. logging)
2021   // that are destroyed during shutdown.
2022   _cg1r->stop();
2023   _cmThread->stop();
2024   if (G1StringDedup::is_enabled()) {
2025     G1StringDedup::stop();
2026   }
2027 }
2028 
2029 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2030   return HeapRegion::max_region_size();
2031 }
2032 
2033 void G1CollectedHeap::post_initialize() {
2034   CollectedHeap::post_initialize();
2035   ref_processing_init();
2036 }
2037 
2038 void G1CollectedHeap::ref_processing_init() {
2039   // Reference processing in G1 currently works as follows:
2040   //


2117 }
2118 
2119 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2120   hr->reset_gc_time_stamp();
2121 }
2122 
2123 #ifndef PRODUCT
2124 
2125 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2126 private:
2127   unsigned _gc_time_stamp;
2128   bool _failures;
2129 
2130 public:
2131   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2132     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2133 
2134   virtual bool doHeapRegion(HeapRegion* hr) {
2135     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2136     if (_gc_time_stamp != region_gc_time_stamp) {
2137       log_info(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),

2138                            region_gc_time_stamp, _gc_time_stamp);
2139       _failures = true;
2140     }
2141     return false;
2142   }
2143 
2144   bool failures() { return _failures; }
2145 };
2146 
2147 void G1CollectedHeap::check_gc_time_stamps() {
2148   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2149   heap_region_iterate(&cl);
2150   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2151 }
2152 #endif // PRODUCT
2153 
2154 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2155   _cg1r->hot_card_cache()->drain(cl, worker_i);
2156 }
2157 


2705 private:
2706   G1CollectedHeap* _g1h;
2707   VerifyOption     _vo;
2708   bool             _failures;
2709 public:
2710   // _vo == UsePrevMarking -> use "prev" marking information,
2711   // _vo == UseNextMarking -> use "next" marking information,
2712   // _vo == UseMarkWord    -> use mark word from object header.
2713   VerifyRootsClosure(VerifyOption vo) :
2714     _g1h(G1CollectedHeap::heap()),
2715     _vo(vo),
2716     _failures(false) { }
2717 
2718   bool failures() { return _failures; }
2719 
2720   template <class T> void do_oop_nv(T* p) {
2721     T heap_oop = oopDesc::load_heap_oop(p);
2722     if (!oopDesc::is_null(heap_oop)) {
2723       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2724       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2725         LogHandle(gc, verify) log;
2726         log.info("Root location " PTR_FORMAT " points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2727         if (_vo == VerifyOption_G1UseMarkWord) {
2728           log.info("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2729         }
2730         ResourceMark rm;
2731         obj->print_on(log.info_stream());
2732         _failures = true;
2733       }
2734     }
2735   }
2736 
2737   void do_oop(oop* p)       { do_oop_nv(p); }
2738   void do_oop(narrowOop* p) { do_oop_nv(p); }
2739 };
2740 
2741 class G1VerifyCodeRootOopClosure: public OopClosure {
2742   G1CollectedHeap* _g1h;
2743   OopClosure* _root_cl;
2744   nmethod* _nm;
2745   VerifyOption _vo;
2746   bool _failures;
2747 
2748   template <class T> void do_oop_work(T* p) {
2749     // First verify that this root is live
2750     _root_cl->do_oop(p);
2751 


2756 
2757     // Don't check the code roots during marking verification in a full GC
2758     if (_vo == VerifyOption_G1UseMarkWord) {
2759       return;
2760     }
2761 
2762     // Now verify that the current nmethod (which contains p) is
2763     // in the code root list of the heap region containing the
2764     // object referenced by p.
2765 
2766     T heap_oop = oopDesc::load_heap_oop(p);
2767     if (!oopDesc::is_null(heap_oop)) {
2768       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2769 
2770       // Now fetch the region containing the object
2771       HeapRegion* hr = _g1h->heap_region_containing(obj);
2772       HeapRegionRemSet* hrrs = hr->rem_set();
2773       // Verify that the strong code root list for this region
2774       // contains the nmethod
2775       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2776         log_info(gc, verify)("Code root location " PTR_FORMAT " "
2777                              "from nmethod " PTR_FORMAT " not in strong "
2778                              "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2779                              p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2780         _failures = true;
2781       }
2782     }
2783   }
2784 
2785 public:
2786   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2787     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2788 
2789   void do_oop(oop* p) { do_oop_work(p); }
2790   void do_oop(narrowOop* p) { do_oop_work(p); }
2791 
2792   void set_nmethod(nmethod* nm) { _nm = nm; }
2793   bool failures() { return _failures; }
2794 };
2795 
2796 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {


2937   }
2938 
2939   bool doHeapRegion(HeapRegion* r) {
2940     // For archive regions, verify there are no heap pointers to
2941     // non-pinned regions. For all others, verify liveness info.
2942     if (r->is_archive()) {
2943       VerifyArchiveRegionClosure verify_oop_pointers(r);
2944       r->object_iterate(&verify_oop_pointers);
2945       return true;
2946     }
2947     if (!r->is_continues_humongous()) {
2948       bool failures = false;
2949       r->verify(_vo, &failures);
2950       if (failures) {
2951         _failures = true;
2952       } else if (!r->is_starts_humongous()) {
2953         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2954         r->object_iterate(&not_dead_yet_cl);
2955         if (_vo != VerifyOption_G1UseNextMarking) {
2956           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2957             log_info(gc, verify)("[" PTR_FORMAT "," PTR_FORMAT "] max_live_bytes " SIZE_FORMAT " < calculated " SIZE_FORMAT,
2958                                    p2i(r->bottom()), p2i(r->end()), r->max_live_bytes(), not_dead_yet_cl.live_bytes());




2959             _failures = true;
2960           }
2961         } else {
2962           // When vo == UseNextMarking we cannot currently do a sanity
2963           // check on the live bytes as the calculation has not been
2964           // finalized yet.
2965         }
2966       }
2967     }
2968     return false; // stop the region iteration if we hit a failure
2969   }
2970 };
2971 
2972 // This is the task used for parallel verification of the heap regions
2973 
2974 class G1ParVerifyTask: public AbstractGangTask {
2975 private:
2976   G1CollectedHeap*  _g1h;
2977   VerifyOption      _vo;
2978   bool              _failures;


2986       AbstractGangTask("Parallel verify task"),
2987       _g1h(g1h),
2988       _vo(vo),
2989       _failures(false),
2990       _hrclaimer(g1h->workers()->active_workers()) {}
2991 
2992   bool failures() {
2993     return _failures;
2994   }
2995 
2996   void work(uint worker_id) {
2997     HandleMark hm;
2998     VerifyRegionClosure blk(true, _vo);
2999     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3000     if (blk.failures()) {
3001       _failures = true;
3002     }
3003   }
3004 };
3005 
3006 void G1CollectedHeap::verify(VerifyOption vo) {
3007   if (!SafepointSynchronize::is_at_safepoint()) {
3008     log_info(gc, verify)("Skipping verification. Not at safepoint.");
3009   }
3010 
3011   assert(Thread::current()->is_VM_thread(),
3012          "Expected to be executed serially by the VM thread at this point");
3013 
3014   log_debug(gc, verify)("Roots");
3015   VerifyRootsClosure rootsCl(vo);
3016   VerifyKlassClosure klassCl(this, &rootsCl);
3017   CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3018 
3019   // We apply the relevant closures to all the oops in the
3020   // system dictionary, class loader data graph, the string table
3021   // and the nmethods in the code cache.
3022   G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3023   G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3024 
3025   {
3026     G1RootProcessor root_processor(this, 1);
3027     root_processor.process_all_roots(&rootsCl,
3028                                      &cldCl,
3029                                      &blobsCl);
3030   }
3031 
3032   bool failures = rootsCl.failures() || codeRootsCl.failures();
3033 
3034   if (vo != VerifyOption_G1UseMarkWord) {
3035     // If we're verifying during a full GC then the region sets
3036     // will have been torn down at the start of the GC. Therefore
3037     // verifying the region sets will fail. So we only verify
3038     // the region sets when not in a full GC.
3039     log_debug(gc, verify)("HeapRegionSets");
3040     verify_region_sets();
3041   }
3042 
3043   log_debug(gc, verify)("HeapRegions");
3044   if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3045 
3046     G1ParVerifyTask task(this, vo);
3047     workers()->run_task(&task);
3048     if (task.failures()) {
3049       failures = true;
3050     }
3051 
3052   } else {
3053     VerifyRegionClosure blk(false, vo);
3054     heap_region_iterate(&blk);
3055     if (blk.failures()) {
3056       failures = true;
3057     }
3058   }
3059 
3060   if (G1StringDedup::is_enabled()) {
3061     log_debug(gc, verify)("StrDedup");
3062     G1StringDedup::verify();
3063   }
3064 
3065   if (failures) {
3066     log_info(gc, verify)("Heap after failed verification:");
3067     // It helps to have the per-region information in the output to
3068     // help us track down what went wrong. This is why we call
3069     // print_extended_on() instead of print_on().
3070     LogHandle(gc, verify) log;
3071     ResourceMark rm;
3072     print_extended_on(log.info_stream());
3073   }
3074   guarantee(!failures, "there should not have been any failures");













3075 }
3076 
3077 double G1CollectedHeap::verify(bool guard, const char* msg) {
3078   double verify_time_ms = 0.0;
3079 
3080   if (guard && total_collections() >= VerifyGCStartAt) {
3081     double verify_start = os::elapsedTime();
3082     HandleMark hm;  // Discard invalid handles created during verification
3083     prepare_for_verify();
3084     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3085     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3086   }
3087 
3088   return verify_time_ms;
3089 }
3090 
3091 void G1CollectedHeap::verify_before_gc() {
3092   double verify_time_ms = verify(VerifyBeforeGC, "Before GC");
3093   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3094 }
3095 
3096 void G1CollectedHeap::verify_after_gc() {
3097   double verify_time_ms = verify(VerifyAfterGC, "After GC");
3098   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3099 }
3100 
3101 class PrintRegionClosure: public HeapRegionClosure {
3102   outputStream* _st;
3103 public:
3104   PrintRegionClosure(outputStream* st) : _st(st) {}
3105   bool doHeapRegion(HeapRegion* r) {
3106     r->print_on(_st);
3107     return false;
3108   }
3109 };
3110 
3111 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3112                                        const HeapRegion* hr,
3113                                        const VerifyOption vo) const {
3114   switch (vo) {
3115   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3116   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3117   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();


3187     G1StringDedup::print_worker_threads_on(st);
3188   }
3189 }
3190 
3191 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3192   workers()->threads_do(tc);
3193   tc->do_thread(_cmThread);
3194   _cg1r->threads_do(tc);
3195   if (G1StringDedup::is_enabled()) {
3196     G1StringDedup::threads_do(tc);
3197   }
3198 }
3199 
3200 void G1CollectedHeap::print_tracing_info() const {
3201   // We'll overload this to mean "trace GC pause statistics."
3202   if (TraceYoungGenTime || TraceOldGenTime) {
3203     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3204     // to that.
3205     g1_policy()->print_tracing_info();
3206   }

3207   g1_rem_set()->print_summary_info();


3208   concurrent_mark()->print_summary_info();

3209   g1_policy()->print_yg_surv_rate_info();
3210 }
3211 
3212 #ifndef PRODUCT
3213 // Helpful for debugging RSet issues.
3214 
3215 class PrintRSetsClosure : public HeapRegionClosure {
3216 private:
3217   const char* _msg;
3218   size_t _occupied_sum;
3219 
3220 public:
3221   bool doHeapRegion(HeapRegion* r) {
3222     HeapRegionRemSet* hrrs = r->rem_set();
3223     size_t occupied = hrrs->occupied();
3224     _occupied_sum += occupied;
3225 
3226     tty->print_cr("Printing RSet for region " HR_FORMAT,
3227                            HR_FORMAT_PARAMS(r));
3228     if (occupied == 0) {
3229       tty->print_cr("  RSet is empty");
3230     } else {
3231       hrrs->print();
3232     }
3233     tty->print_cr("----------");
3234     return false;
3235   }
3236 
3237   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3238     tty->cr();
3239     tty->print_cr("========================================");
3240     tty->print_cr("%s", msg);
3241     tty->cr();
3242   }
3243 
3244   ~PrintRSetsClosure() {
3245     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3246     tty->print_cr("========================================");
3247     tty->cr();
3248   }
3249 };
3250 
3251 void G1CollectedHeap::print_cset_rsets() {
3252   PrintRSetsClosure cl("Printing CSet RSets");
3253   collection_set_iterate(&cl);
3254 }
3255 
3256 void G1CollectedHeap::print_all_rsets() {
3257   PrintRSetsClosure cl("Printing All RSets");;
3258   heap_region_iterate(&cl);
3259 }
3260 #endif // PRODUCT
3261 
3262 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3263   YoungList* young_list = heap()->young_list();
3264 
3265   size_t eden_used_bytes = young_list->eden_used_bytes();
3266   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3267 


3285 
3286   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3287   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3288 }
3289 
3290 
3291 G1CollectedHeap* G1CollectedHeap::heap() {
3292   CollectedHeap* heap = Universe::heap();
3293   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3294   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3295   return (G1CollectedHeap*)heap;
3296 }
3297 
3298 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3299   // always_do_update_barrier = false;
3300   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3301   // Fill TLAB's and such
3302   accumulate_statistics_all_tlabs();
3303   ensure_parsability(true);
3304 
3305   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());



3306 }
3307 
3308 void G1CollectedHeap::gc_epilogue(bool full) {



3309   // we are at the end of the GC. Total collections has already been increased.
3310   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);


3311 
3312   // FIXME: what is this about?
3313   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3314   // is set.
3315 #if defined(COMPILER2) || INCLUDE_JVMCI
3316   assert(DerivedPointerTable::is_empty(), "derived pointer present");
3317 #endif
3318   // always_do_update_barrier = true;
3319 
3320   resize_all_tlabs();
3321   allocation_context_stats().update(full);
3322 
3323   // We have just completed a GC. Update the soft reference
3324   // policy with the new heap occupancy
3325   Universe::update_heap_info_at_gc();
3326 }
3327 
3328 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3329                                                uint gc_count_before,
3330                                                bool* succeeded,


3536     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3537 
3538     // Here's a good place to add any other checks we'd like to
3539     // perform on CSet regions.
3540     return false;
3541   }
3542 };
3543 #endif // ASSERT
3544 
3545 uint G1CollectedHeap::num_task_queues() const {
3546   return _task_queues->size();
3547 }
3548 
3549 #if TASKQUEUE_STATS
3550 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3551   st->print_raw_cr("GC Task Stats");
3552   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3553   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3554 }
3555 
3556 void G1CollectedHeap::print_taskqueue_stats() const {
3557   LogHandle(gc, task, stats) log;
3558   if (!log.is_develop()) {
3559     return;
3560   }
3561   ResourceMark rm;
3562   outputStream* st = log.develop_stream();
3563 
3564   print_taskqueue_stats_hdr(st);
3565 
3566   TaskQueueStats totals;
3567   const uint n = num_task_queues();
3568   for (uint i = 0; i < n; ++i) {
3569     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3570     totals += task_queue(i)->stats;
3571   }
3572   st->print_raw("tot "); totals.print(st); st->cr();
3573 
3574   DEBUG_ONLY(totals.verify());
3575 }
3576 
3577 void G1CollectedHeap::reset_taskqueue_stats() {
3578   const uint n = num_task_queues();
3579   for (uint i = 0; i < n; ++i) {
3580     task_queue(i)->stats.reset();
3581   }
3582 }
3583 #endif // TASKQUEUE_STATS
3584 
3585 void G1CollectedHeap::log_gc_footer(double pause_time_counter) {



















3586   if (evacuation_failed()) {
3587     log_info(gc)("To-space exhausted");
3588   }
3589 
3590   double pause_time_sec = TimeHelper::counter_to_seconds(pause_time_counter);
3591   g1_policy()->print_phases(pause_time_sec);
3592 
3593   g1_policy()->print_detailed_heap_transition();








3594 }
3595 
3596 
3597 void G1CollectedHeap::wait_for_root_region_scanning() {
3598   double scan_wait_start = os::elapsedTime();
3599   // We have to wait until the CM threads finish scanning the
3600   // root regions as it's the only way to ensure that all the
3601   // objects on them have been correctly scanned before we start
3602   // moving them during the GC.
3603   bool waited = _cm->root_regions()->wait_until_scan_finished();
3604   double wait_time_ms = 0.0;
3605   if (waited) {
3606     double scan_wait_end = os::elapsedTime();
3607     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3608   }
3609   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3610 }
3611 
3612 bool
3613 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3614   assert_at_safepoint(true /* should_be_vm_thread */);
3615   guarantee(!is_gc_active(), "collection is not reentrant");
3616 
3617   if (GC_locker::check_active_before_gc()) {
3618     return false;
3619   }
3620 
3621   _gc_timer_stw->register_gc_start();
3622 
3623   GCIdMark gc_id_mark;
3624   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3625 
3626   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3627   ResourceMark rm;
3628 
3629   wait_for_root_region_scanning();
3630 

3631   print_heap_before_gc();
3632   trace_heap_before_gc(_gc_tracer_stw);
3633 
3634   verify_region_sets_optional();
3635   verify_dirty_young_regions();
3636 
3637   // This call will decide whether this pause is an initial-mark
3638   // pause. If it is, during_initial_mark_pause() will return true
3639   // for the duration of this pause.
3640   g1_policy()->decide_on_conc_mark_initiation();
3641 
3642   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3643   assert(!collector_state()->during_initial_mark_pause() ||
3644           collector_state()->gcs_are_young(), "sanity");
3645 
3646   // We also do not allow mixed GCs during marking.
3647   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3648 
3649   // Record whether this pause is an initial mark. When the current
3650   // thread has completed its logging output and it's safe to signal
3651   // the CM thread, the flag's value in the policy has been reset.
3652   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3653 
3654   // Inner scope for scope based logging, timers, and stats collection
3655   {
3656     EvacuationInfo evacuation_info;
3657 
3658     if (collector_state()->during_initial_mark_pause()) {
3659       // We are about to start a marking cycle, so we increment the
3660       // full collection counter.
3661       increment_old_marking_cycles_started();
3662       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3663     }
3664 
3665     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3666 
3667     GCTraceCPUTime tcpu;
3668 
3669     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3670                                                                   workers()->active_workers(),
3671                                                                   Threads::number_of_non_daemon_threads());
3672     workers()->set_active_workers(active_workers);
3673     FormatBuffer<> gc_string("Pause ");
3674     if (collector_state()->during_initial_mark_pause()) {
3675       gc_string.append("Initial Mark");
3676     } else if (collector_state()->gcs_are_young()) {
3677       gc_string.append("Young");
3678     } else {
3679       gc_string.append("Mixed");
3680     }
3681     GCTraceTime(Info, gc) tm5(gc_string, NULL, gc_cause(), true);
3682 
3683 
3684     double pause_start_sec = os::elapsedTime();
3685     double pause_start_counter = os::elapsed_counter();
3686     g1_policy()->note_gc_start(active_workers);

3687 
3688     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3689     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3690 
3691     // If the secondary_free_list is not empty, append it to the
3692     // free_list. No need to wait for the cleanup operation to finish;
3693     // the region allocation code will check the secondary_free_list
3694     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3695     // set, skip this step so that the region allocation code has to
3696     // get entries from the secondary_free_list.
3697     if (!G1StressConcRegionFreeing) {
3698       append_secondary_free_list_if_not_empty_with_lock();
3699     }
3700 
3701     assert(check_young_list_well_formed(), "young list should be well formed");
3702 
3703     // Don't dynamically change the number of GC threads this early.  A value of
3704     // 0 is used to indicate serial work.  When parallel work is done,
3705     // it will be set.
3706 


3720 #endif
3721 
3722       // Please see comment in g1CollectedHeap.hpp and
3723       // G1CollectedHeap::ref_processing_init() to see how
3724       // reference processing currently works in G1.
3725 
3726       // Enable discovery in the STW reference processor
3727       ref_processor_stw()->enable_discovery();
3728 
3729       {
3730         // We want to temporarily turn off discovery by the
3731         // CM ref processor, if necessary, and turn it back on
3732         // on again later if we do. Using a scoped
3733         // NoRefDiscovery object will do this.
3734         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3735 
3736         // Forget the current alloc region (we might even choose it to be part
3737         // of the collection set!).
3738         _allocator->release_mutator_alloc_region();
3739 





3740         // This timing is only used by the ergonomics to handle our pause target.
3741         // It is unclear why this should not include the full pause. We will
3742         // investigate this in CR 7178365.
3743         //
3744         // Preserving the old comment here if that helps the investigation:
3745         //
3746         // The elapsed time induced by the start time below deliberately elides
3747         // the possible verification above.
3748         double sample_start_time_sec = os::elapsedTime();
3749 
3750         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3751 
3752         if (collector_state()->during_initial_mark_pause()) {
3753           concurrent_mark()->checkpointRootsInitialPre();
3754         }
3755 
3756         double time_remaining_ms = g1_policy()->finalize_young_cset_part(target_pause_time_ms);
3757         g1_policy()->finalize_old_cset_part(time_remaining_ms);
3758 
3759         evacuation_info.set_collectionset_regions(g1_policy()->cset_region_length());


3843 
3844         if (collector_state()->during_initial_mark_pause()) {
3845           // We have to do this before we notify the CM threads that
3846           // they can start working to make sure that all the
3847           // appropriate initialization is done on the CM object.
3848           concurrent_mark()->checkpointRootsInitialPost();
3849           collector_state()->set_mark_in_progress(true);
3850           // Note that we don't actually trigger the CM thread at
3851           // this point. We do that later when we're sure that
3852           // the current thread has completed its logging output.
3853         }
3854 
3855         allocate_dummy_regions();
3856 
3857         _allocator->init_mutator_alloc_region();
3858 
3859         {
3860           size_t expand_bytes = g1_policy()->expansion_amount();
3861           if (expand_bytes > 0) {
3862             size_t bytes_before = capacity();
3863             // No need for an ergo logging here,
3864             // expansion_amount() does this when it returns a value > 0.
3865             double expand_ms;
3866             if (!expand(expand_bytes, &expand_ms)) {
3867               // We failed to expand the heap. Cannot do anything about it.
3868             }
3869             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3870           }
3871         }
3872 
3873         // We redo the verification but now wrt to the new CSet which
3874         // has just got initialized after the previous CSet was freed.
3875         _cm->verify_no_cset_oops();
3876         _cm->note_end_of_gc();
3877 
3878         // This timing is only used by the ergonomics to handle our pause target.
3879         // It is unclear why this should not include the full pause. We will
3880         // investigate this in CR 7178365.
3881         double sample_end_time_sec = os::elapsedTime();
3882         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3883         size_t total_cards_scanned = per_thread_states.total_cards_scanned();


3903         // stamp here we invalidate all the GC time stamps on all the
3904         // regions and saved_mark_word() will simply return top() for
3905         // all the regions. This is a nicer way of ensuring this rather
3906         // than iterating over the regions and fixing them. In fact, the
3907         // GC time stamp increment here also ensures that
3908         // saved_mark_word() will return top() between pauses, i.e.,
3909         // during concurrent refinement. So we don't need the
3910         // is_gc_active() check to decided which top to use when
3911         // scanning cards (see CR 7039627).
3912         increment_gc_time_stamp();
3913 
3914         verify_after_gc();
3915         check_bitmaps("GC End");
3916 
3917         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3918         ref_processor_stw()->verify_no_references_recorded();
3919 
3920         // CM reference discovery will be re-enabled if necessary.
3921       }
3922 






3923 #ifdef TRACESPINNING
3924       ParallelTaskTerminator::print_termination_counts();
3925 #endif
3926 
3927       gc_epilogue(false);
3928     }
3929 
3930     // Print the remainder of the GC log output.
3931     log_gc_footer(os::elapsed_counter() - pause_start_counter);
3932 
3933     // It is not yet to safe to tell the concurrent mark to
3934     // start as we have some optional output below. We don't want the
3935     // output from the concurrent mark thread interfering with this
3936     // logging output either.
3937 
3938     _hrm.verify_optional();
3939     verify_region_sets_optional();
3940 
3941     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3942     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3943 
3944     print_heap_after_gc();
3945     trace_heap_after_gc(_gc_tracer_stw);
3946 
3947     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3948     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3949     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3950     // before any GC notifications are raised.
3951     g1mm()->update_sizes();
3952 
3953     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3954     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3955     _gc_timer_stw->register_gc_end();
3956     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3957   }
3958   // It should now be safe to tell the concurrent mark thread to start
3959   // without its logging output interfering with the logging output
3960   // that came from the pause.
3961 


4112 
4113       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
4114 
4115       double term_sec = 0.0;
4116       size_t evac_term_attempts = 0;
4117       {
4118         double start = os::elapsedTime();
4119         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
4120         evac.do_void();
4121 
4122         evac_term_attempts = evac.term_attempts();
4123         term_sec = evac.term_time();
4124         double elapsed_sec = os::elapsedTime() - start;
4125         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4126         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4127         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
4128       }
4129 
4130       assert(pss->queue_is_empty(), "should be empty");
4131 
4132       if (log_is_enabled(Debug, gc, task, stats)) {
4133         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
4134         size_t lab_waste;
4135         size_t lab_undo_waste;
4136         pss->waste(lab_waste, lab_undo_waste);
4137         _g1h->print_termination_stats(worker_id,

4138                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
4139                                       strong_roots_sec * 1000.0,                  /* strong roots time */
4140                                       term_sec * 1000.0,                          /* evac term time */
4141                                       evac_term_attempts,                         /* evac term attempts */
4142                                       lab_waste,                                  /* alloc buffer waste */
4143                                       lab_undo_waste                              /* undo waste */
4144                                       );
4145       }
4146 
4147       // Close the inner scope so that the ResourceMark and HandleMark
4148       // destructors are executed here and are included as part of the
4149       // "GC Worker Time".
4150     }
4151     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4152   }
4153 };
4154 
4155 void G1CollectedHeap::print_termination_stats_hdr() {
4156   LogHandle(gc, task, stats) log;
4157   if (!log.is_debug()) {
4158     return;
4159   }
4160   log.debug("GC Termination Stats");
4161   log.debug("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
4162   log.debug("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
4163   log.debug("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
4164 }
4165 
4166 void G1CollectedHeap::print_termination_stats(uint worker_id,

4167                                               double elapsed_ms,
4168                                               double strong_roots_ms,
4169                                               double term_ms,
4170                                               size_t term_attempts,
4171                                               size_t alloc_buffer_waste,
4172                                               size_t undo_waste) const {
4173   log_debug(gc, task, stats)
4174               ("%3d %9.2f %9.2f %6.2f "
4175                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4176                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4177                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
4178                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
4179                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
4180                alloc_buffer_waste * HeapWordSize / K,
4181                undo_waste * HeapWordSize / K);
4182 }
4183 
4184 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4185 private:
4186   BoolObjectClosure* _is_alive;
4187   int _initial_string_table_size;
4188   int _initial_symbol_table_size;
4189 
4190   bool  _process_strings;
4191   int _strings_processed;
4192   int _strings_removed;
4193 
4194   bool  _process_symbols;


4203     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4204 
4205     _initial_string_table_size = StringTable::the_table()->table_size();
4206     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4207     if (process_strings) {
4208       StringTable::clear_parallel_claimed_index();
4209     }
4210     if (process_symbols) {
4211       SymbolTable::clear_parallel_claimed_index();
4212     }
4213   }
4214 
4215   ~G1StringSymbolTableUnlinkTask() {
4216     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4217               "claim value %d after unlink less than initial string table size %d",
4218               StringTable::parallel_claimed_index(), _initial_string_table_size);
4219     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4220               "claim value %d after unlink less than initial symbol table size %d",
4221               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
4222 
4223     log_trace(gc, stringdedup)("Cleaned string and symbol table, "

4224                                "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4225                                "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4226                                strings_processed(), strings_removed(),
4227                                symbols_processed(), symbols_removed());
4228   }

4229 
4230   void work(uint worker_id) {
4231     int strings_processed = 0;
4232     int strings_removed = 0;
4233     int symbols_processed = 0;
4234     int symbols_removed = 0;
4235     if (_process_strings) {
4236       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4237       Atomic::add(strings_processed, &_strings_processed);
4238       Atomic::add(strings_removed, &_strings_removed);
4239     }
4240     if (_process_symbols) {
4241       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4242       Atomic::add(symbols_processed, &_symbols_processed);
4243       Atomic::add(symbols_removed, &_symbols_removed);
4244     }
4245   }
4246 
4247   size_t strings_processed() const { return (size_t)_strings_processed; }
4248   size_t strings_removed()   const { return (size_t)_strings_removed; }


5035 
5036 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
5037   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5038 
5039   // Should G1EvacuationFailureALot be in effect for this GC?
5040   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5041 
5042   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5043   double start_par_time_sec = os::elapsedTime();
5044   double end_par_time_sec;
5045 
5046   {
5047     const uint n_workers = workers()->active_workers();
5048     G1RootProcessor root_processor(this, n_workers);
5049     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
5050     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5051     if (collector_state()->during_initial_mark_pause()) {
5052       ClassLoaderDataGraph::clear_claimed_marks();
5053     }
5054 
5055     print_termination_stats_hdr();



5056 
5057     workers()->run_task(&g1_par_task);
5058     end_par_time_sec = os::elapsedTime();
5059 
5060     // Closing the inner scope will execute the destructor
5061     // for the G1RootProcessor object. We record the current
5062     // elapsed time before closing the scope so that time
5063     // taken for the destructor is NOT included in the
5064     // reported parallel time.
5065   }
5066 
5067   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5068 
5069   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5070   phase_times->record_par_time(par_time_ms);
5071 
5072   double code_root_fixup_time_ms =
5073         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5074   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5075 


5263   }
5264 }
5265 
5266 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5267   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5268   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5269     verify_dirty_region(hr);
5270   }
5271 }
5272 
5273 void G1CollectedHeap::verify_dirty_young_regions() {
5274   verify_dirty_young_list(_young_list->first_region());
5275 }
5276 
5277 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5278                                                HeapWord* tams, HeapWord* end) {
5279   guarantee(tams <= end,
5280             "tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end));
5281   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5282   if (result < end) {
5283     log_info(gc, verify)("## wrong marked address on %s bitmap: " PTR_FORMAT, bitmap_name, p2i(result));
5284     log_info(gc, verify)("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT, bitmap_name, p2i(tams), p2i(end));



5285     return false;
5286   }
5287   return true;
5288 }
5289 
5290 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5291   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5292   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5293 
5294   HeapWord* bottom = hr->bottom();
5295   HeapWord* ptams  = hr->prev_top_at_mark_start();
5296   HeapWord* ntams  = hr->next_top_at_mark_start();
5297   HeapWord* end    = hr->end();
5298 
5299   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5300 
5301   bool res_n = true;
5302   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5303   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5304   // if we happen to be in that state.
5305   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5306     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5307   }
5308   if (!res_p || !res_n) {
5309     log_info(gc, verify)("#### Bitmap verification failed for " HR_FORMAT, HR_FORMAT_PARAMS(hr));
5310     log_info(gc, verify)("#### Caller: %s", caller);

5311     return false;
5312   }
5313   return true;
5314 }
5315 
5316 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5317   if (!G1VerifyBitmaps) return;
5318 
5319   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5320 }
5321 
5322 class G1VerifyBitmapClosure : public HeapRegionClosure {
5323 private:
5324   const char* _caller;
5325   G1CollectedHeap* _g1h;
5326   bool _failures;
5327 
5328 public:
5329   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5330     _caller(caller), _g1h(g1h), _failures(false) { }


5342 
5343 void G1CollectedHeap::check_bitmaps(const char* caller) {
5344   if (!G1VerifyBitmaps) return;
5345 
5346   G1VerifyBitmapClosure cl(caller, this);
5347   heap_region_iterate(&cl);
5348   guarantee(!cl.failures(), "bitmap verification");
5349 }
5350 
5351 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5352  private:
5353   bool _failures;
5354  public:
5355   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5356 
5357   virtual bool doHeapRegion(HeapRegion* hr) {
5358     uint i = hr->hrm_index();
5359     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5360     if (hr->is_humongous()) {
5361       if (hr->in_collection_set()) {
5362         log_info(gc, verify)("\n## humongous region %u in CSet", i);
5363         _failures = true;
5364         return true;
5365       }
5366       if (cset_state.is_in_cset()) {
5367         log_info(gc, verify)("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5368         _failures = true;
5369         return true;
5370       }
5371       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5372         log_info(gc, verify)("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5373         _failures = true;
5374         return true;
5375       }
5376     } else {
5377       if (cset_state.is_humongous()) {
5378         log_info(gc, verify)("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5379         _failures = true;
5380         return true;
5381       }
5382       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5383         log_info(gc, verify)("\n## in CSet %d / cset state %d inconsistency for region %u",
5384                              hr->in_collection_set(), cset_state.value(), i);
5385         _failures = true;
5386         return true;
5387       }
5388       if (cset_state.is_in_cset()) {
5389         if (hr->is_young() != (cset_state.is_young())) {
5390           log_info(gc, verify)("\n## is_young %d / cset state %d inconsistency for region %u",
5391                                hr->is_young(), cset_state.value(), i);
5392           _failures = true;
5393           return true;
5394         }
5395         if (hr->is_old() != (cset_state.is_old())) {
5396           log_info(gc, verify)("\n## is_old %d / cset state %d inconsistency for region %u",
5397                                hr->is_old(), cset_state.value(), i);
5398           _failures = true;
5399           return true;
5400         }
5401       }
5402     }
5403     return false;
5404   }
5405 
5406   bool failures() const { return _failures; }
5407 };
5408 
5409 bool G1CollectedHeap::check_cset_fast_test() {
5410   G1CheckCSetFastTableClosure cl;
5411   _hrm.iterate(&cl);
5412   return !cl.failures();
5413 }
5414 #endif // PRODUCT
5415 
5416 void G1CollectedHeap::cleanUpCardTable() {


5586     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5587     // until the end of a concurrent mark.
5588     //
5589     // It is not required to check whether the object has been found dead by marking
5590     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5591     // all objects allocated during that time are considered live.
5592     // SATB marking is even more conservative than the remembered set.
5593     // So if at this point in the collection there is no remembered set entry,
5594     // nobody has a reference to it.
5595     // At the start of collection we flush all refinement logs, and remembered sets
5596     // are completely up-to-date wrt to references to the humongous object.
5597     //
5598     // Other implementation considerations:
5599     // - never consider object arrays at this time because they would pose
5600     // considerable effort for cleaning up the the remembered sets. This is
5601     // required because stale remembered sets might reference locations that
5602     // are currently allocated into.
5603     uint region_idx = r->hrm_index();
5604     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5605         !r->rem_set()->is_empty()) {
5606       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",


5607                                region_idx,
5608                                (size_t)obj->size() * HeapWordSize,
5609                                p2i(r->bottom()),
5610                                r->rem_set()->occupied(),
5611                                r->rem_set()->strong_code_roots_list_length(),
5612                                next_bitmap->isMarked(r->bottom()),
5613                                g1h->is_humongous_reclaim_candidate(region_idx),
5614                                obj->is_typeArray()
5615                               );


5616       return false;
5617     }
5618 
5619     guarantee(obj->is_typeArray(),
5620               "Only eagerly reclaiming type arrays is supported, but the object "
5621               PTR_FORMAT " is not.", p2i(r->bottom()));
5622 
5623     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",

5624                              region_idx,
5625                              (size_t)obj->size() * HeapWordSize,
5626                              p2i(r->bottom()),
5627                              r->rem_set()->occupied(),
5628                              r->rem_set()->strong_code_roots_list_length(),
5629                              next_bitmap->isMarked(r->bottom()),
5630                              g1h->is_humongous_reclaim_candidate(region_idx),
5631                              obj->is_typeArray()
5632                             );
5633 
5634     // Need to clear mark bit of the humongous object if already set.
5635     if (next_bitmap->isMarked(r->bottom())) {
5636       next_bitmap->clear(r->bottom());
5637     }
5638     do {
5639       HeapRegion* next = g1h->next_region_in_humongous(r);
5640       _freed_bytes += r->used();
5641       r->set_containing_set(NULL);
5642       _humongous_regions_removed.increment(1u, r->capacity());
5643       g1h->free_humongous_region(r, _free_region_list, false);
5644       r = next;
5645     } while (r != NULL);
5646 
5647     return false;
5648   }
5649 
5650   HeapRegionSetCount& humongous_free_count() {
5651     return _humongous_regions_removed;
5652   }
5653 
5654   size_t bytes_freed() const {
5655     return _freed_bytes;
5656   }
5657 
5658   size_t humongous_reclaimed() const {
5659     return _humongous_regions_removed.length();
5660   }
5661 };
5662 
5663 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5664   assert_at_safepoint(true);
5665 
5666   if (!G1EagerReclaimHumongousObjects ||
5667       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
5668     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5669     return;
5670   }
5671 
5672   double start_time = os::elapsedTime();
5673 
5674   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5675 
5676   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5677   heap_region_iterate(&cl);
5678 
5679   HeapRegionSetCount empty_set;
5680   remove_from_old_sets(empty_set, cl.humongous_free_count());
5681 
5682   G1HRPrinter* hrp = hr_printer();
5683   if (hrp->is_active()) {
5684     FreeRegionListIterator iter(&local_cleanup_list);
5685     while (iter.more_available()) {
5686       HeapRegion* hr = iter.get_next();
5687       hrp->cleanup(hr);


5700 // the current incremental collection set in preparation of a
5701 // full collection. After the full GC we will start to build up
5702 // the incremental collection set again.
5703 // This is only called when we're doing a full collection
5704 // and is immediately followed by the tearing down of the young list.
5705 
5706 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
5707   HeapRegion* cur = cs_head;
5708 
5709   while (cur != NULL) {
5710     HeapRegion* next = cur->next_in_collection_set();
5711     assert(cur->in_collection_set(), "bad CS");
5712     cur->set_next_in_collection_set(NULL);
5713     clear_in_cset(cur);
5714     cur->set_young_index_in_cset(-1);
5715     cur = next;
5716   }
5717 }
5718 
5719 void G1CollectedHeap::set_free_regions_coming() {
5720   log_develop(gc, freelist)("G1ConcRegionFreeing [cm thread] : "

5721                             "setting free regions coming");

5722 
5723   assert(!free_regions_coming(), "pre-condition");
5724   _free_regions_coming = true;
5725 }
5726 
5727 void G1CollectedHeap::reset_free_regions_coming() {
5728   assert(free_regions_coming(), "pre-condition");
5729 
5730   {
5731     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5732     _free_regions_coming = false;
5733     SecondaryFreeList_lock->notify_all();
5734   }
5735 
5736   log_develop(gc, freelist)("G1ConcRegionFreeing [cm thread] : "

5737                             "reset free regions coming");

5738 }
5739 
5740 void G1CollectedHeap::wait_while_free_regions_coming() {
5741   // Most of the time we won't have to wait, so let's do a quick test
5742   // first before we take the lock.
5743   if (!free_regions_coming()) {
5744     return;
5745   }
5746 
5747   log_develop(gc, freelist)("G1ConcRegionFreeing [other] : "

5748                             "waiting for free regions");

5749 
5750   {
5751     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5752     while (free_regions_coming()) {
5753       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5754     }
5755   }
5756 
5757   log_develop(gc, freelist)("G1ConcRegionFreeing [other] : "

5758                             "done waiting for free regions");

5759 }
5760 
5761 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5762   return _allocator->is_retained_old_region(hr);
5763 }
5764 
5765 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5766   _young_list->push_region(hr);
5767 }
5768 
5769 class NoYoungRegionsClosure: public HeapRegionClosure {
5770 private:
5771   bool _success;
5772 public:
5773   NoYoungRegionsClosure() : _success(true) { }
5774   bool doHeapRegion(HeapRegion* r) {
5775     if (r->is_young()) {
5776       log_info(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5777                            p2i(r->bottom()), p2i(r->end()));
5778       _success = false;
5779     }
5780     return false;
5781   }
5782   bool success() { return _success; }
5783 };
5784 
5785 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
5786   bool ret = _young_list->check_list_empty(check_sample);
5787 
5788   if (check_heap) {
5789     NoYoungRegionsClosure closure;
5790     heap_region_iterate(&closure);
5791     ret = ret && closure.success();
5792   }
5793 
5794   return ret;
5795 }
5796 


6007 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6008                                              size_t allocated_bytes,
6009                                              InCSetState dest) {
6010   bool during_im = collector_state()->during_initial_mark_pause();
6011   alloc_region->note_end_of_copying(during_im);
6012   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6013   if (dest.is_young()) {
6014     young_list()->add_survivor_region(alloc_region);
6015   } else {
6016     _old_set.add(alloc_region);
6017   }
6018   _hr_printer.retire(alloc_region);
6019 }
6020 
6021 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6022   bool expanded = false;
6023   uint index = _hrm.find_highest_free(&expanded);
6024 
6025   if (index != G1_NO_HRM_INDEX) {
6026     if (expanded) {
6027       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",



6028                                 HeapRegion::GrainWords * HeapWordSize);
6029     }
6030     _hrm.allocate_free_regions_starting_at(index, 1);
6031     return region_at(index);
6032   }
6033   return NULL;
6034 }
6035 
6036 // Heap region set verification
6037 
6038 class VerifyRegionListsClosure : public HeapRegionClosure {
6039 private:
6040   HeapRegionSet*   _old_set;
6041   HeapRegionSet*   _humongous_set;
6042   HeapRegionManager*   _hrm;
6043 
6044 public:
6045   HeapRegionSetCount _old_count;
6046   HeapRegionSetCount _humongous_count;
6047   HeapRegionSetCount _free_count;


< prev index next >