1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/cardTableModRefBS.inline.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "gc/shared/genCollectedHeap.hpp"
  29 #include "gc/shared/space.inline.hpp"
  30 #include "memory/virtualspace.hpp"
  31 #include "services/memTracker.hpp"
  32 #include "utilities/macros.hpp"
  33 
  34 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
  35 // enumerate ref fields that have been modified (since the last
  36 // enumeration.)
  37 
  38 size_t CardTableModRefBS::compute_byte_map_size()
  39 {
  40   assert(_guard_index == cards_required(_whole_heap.word_size()) - 1,
  41                                         "uninitialized, check declaration order");
  42   assert(_page_size != 0, "uninitialized, check declaration order");
  43   const size_t granularity = os::vm_allocation_granularity();
  44   return align_size_up(_guard_index + 1, MAX2(_page_size, granularity));
  45 }
  46 
  47 CardTableModRefBS::CardTableModRefBS(
  48   MemRegion whole_heap,
  49   const BarrierSet::FakeRtti& fake_rtti) :
  50   ModRefBarrierSet(fake_rtti.add_tag(BarrierSet::CardTableModRef)),
  51   _whole_heap(whole_heap),
  52   _guard_index(0),
  53   _guard_region(),
  54   _last_valid_index(0),
  55   _page_size(os::vm_page_size()),
  56   _byte_map_size(0),
  57   _covered(NULL),
  58   _committed(NULL),
  59   _cur_covered_regions(0),
  60   _byte_map(NULL),
  61   byte_map_base(NULL)
  62 {
  63   assert((uintptr_t(_whole_heap.start())  & (card_size - 1))  == 0, "heap must start at card boundary");
  64   assert((uintptr_t(_whole_heap.end()) & (card_size - 1))  == 0, "heap must end at card boundary");
  65 
  66   assert(card_size <= 512, "card_size must be less than 512"); // why?
  67 
  68   _covered   = new MemRegion[_max_covered_regions];
  69   if (_covered == NULL) {
  70     vm_exit_during_initialization("Could not allocate card table covered region set.");
  71   }
  72 }
  73 
  74 void CardTableModRefBS::initialize() {
  75   _guard_index = cards_required(_whole_heap.word_size()) - 1;
  76   _last_valid_index = _guard_index - 1;
  77 
  78   _byte_map_size = compute_byte_map_size();
  79 
  80   HeapWord* low_bound  = _whole_heap.start();
  81   HeapWord* high_bound = _whole_heap.end();
  82 
  83   _cur_covered_regions = 0;
  84   _committed = new MemRegion[_max_covered_regions];
  85   if (_committed == NULL) {
  86     vm_exit_during_initialization("Could not allocate card table committed region set.");
  87   }
  88 
  89   const size_t rs_align = _page_size == (size_t) os::vm_page_size() ? 0 :
  90     MAX2(_page_size, (size_t) os::vm_allocation_granularity());
  91   ReservedSpace heap_rs(_byte_map_size, rs_align, false);
  92 
  93   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtGC);
  94 
  95   os::trace_page_sizes("card table", _guard_index + 1, _guard_index + 1,
  96                        _page_size, heap_rs.base(), heap_rs.size());
  97   if (!heap_rs.is_reserved()) {
  98     vm_exit_during_initialization("Could not reserve enough space for the "
  99                                   "card marking array");
 100   }
 101 
 102   // The assembler store_check code will do an unsigned shift of the oop,
 103   // then add it to byte_map_base, i.e.
 104   //
 105   //   _byte_map = byte_map_base + (uintptr_t(low_bound) >> card_shift)
 106   _byte_map = (jbyte*) heap_rs.base();
 107   byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
 108   assert(byte_for(low_bound) == &_byte_map[0], "Checking start of map");
 109   assert(byte_for(high_bound-1) <= &_byte_map[_last_valid_index], "Checking end of map");
 110 
 111   jbyte* guard_card = &_byte_map[_guard_index];
 112   uintptr_t guard_page = align_size_down((uintptr_t)guard_card, _page_size);
 113   _guard_region = MemRegion((HeapWord*)guard_page, _page_size);
 114   os::commit_memory_or_exit((char*)guard_page, _page_size, _page_size,
 115                             !ExecMem, "card table last card");
 116   *guard_card = last_card;
 117 
 118   if (TraceCardTableModRefBS) {
 119     gclog_or_tty->print_cr("CardTableModRefBS::CardTableModRefBS: ");
 120     gclog_or_tty->print_cr("  "
 121                   "  &_byte_map[0]: " INTPTR_FORMAT
 122                   "  &_byte_map[_last_valid_index]: " INTPTR_FORMAT,
 123                   p2i(&_byte_map[0]),
 124                   p2i(&_byte_map[_last_valid_index]));
 125     gclog_or_tty->print_cr("  "
 126                   "  byte_map_base: " INTPTR_FORMAT,
 127                   p2i(byte_map_base));
 128   }
 129 }
 130 
 131 CardTableModRefBS::~CardTableModRefBS() {
 132   if (_covered) {
 133     delete[] _covered;
 134     _covered = NULL;
 135   }
 136   if (_committed) {
 137     delete[] _committed;
 138     _committed = NULL;
 139   }
 140 }
 141 
 142 int CardTableModRefBS::find_covering_region_by_base(HeapWord* base) {
 143   int i;
 144   for (i = 0; i < _cur_covered_regions; i++) {
 145     if (_covered[i].start() == base) return i;
 146     if (_covered[i].start() > base) break;
 147   }
 148   // If we didn't find it, create a new one.
 149   assert(_cur_covered_regions < _max_covered_regions,
 150          "too many covered regions");
 151   // Move the ones above up, to maintain sorted order.
 152   for (int j = _cur_covered_regions; j > i; j--) {
 153     _covered[j] = _covered[j-1];
 154     _committed[j] = _committed[j-1];
 155   }
 156   int res = i;
 157   _cur_covered_regions++;
 158   _covered[res].set_start(base);
 159   _covered[res].set_word_size(0);
 160   jbyte* ct_start = byte_for(base);
 161   uintptr_t ct_start_aligned = align_size_down((uintptr_t)ct_start, _page_size);
 162   _committed[res].set_start((HeapWord*)ct_start_aligned);
 163   _committed[res].set_word_size(0);
 164   return res;
 165 }
 166 
 167 int CardTableModRefBS::find_covering_region_containing(HeapWord* addr) {
 168   for (int i = 0; i < _cur_covered_regions; i++) {
 169     if (_covered[i].contains(addr)) {
 170       return i;
 171     }
 172   }
 173   assert(0, "address outside of heap?");
 174   return -1;
 175 }
 176 
 177 HeapWord* CardTableModRefBS::largest_prev_committed_end(int ind) const {
 178   HeapWord* max_end = NULL;
 179   for (int j = 0; j < ind; j++) {
 180     HeapWord* this_end = _committed[j].end();
 181     if (this_end > max_end) max_end = this_end;
 182   }
 183   return max_end;
 184 }
 185 
 186 MemRegion CardTableModRefBS::committed_unique_to_self(int self,
 187                                                       MemRegion mr) const {
 188   MemRegion result = mr;
 189   for (int r = 0; r < _cur_covered_regions; r += 1) {
 190     if (r != self) {
 191       result = result.minus(_committed[r]);
 192     }
 193   }
 194   // Never include the guard page.
 195   result = result.minus(_guard_region);
 196   return result;
 197 }
 198 
 199 void CardTableModRefBS::resize_covered_region(MemRegion new_region) {
 200   // We don't change the start of a region, only the end.
 201   assert(_whole_heap.contains(new_region),
 202            "attempt to cover area not in reserved area");
 203   debug_only(verify_guard();)
 204   // collided is true if the expansion would push into another committed region
 205   debug_only(bool collided = false;)
 206   int const ind = find_covering_region_by_base(new_region.start());
 207   MemRegion const old_region = _covered[ind];
 208   assert(old_region.start() == new_region.start(), "just checking");
 209   if (new_region.word_size() != old_region.word_size()) {
 210     // Commit new or uncommit old pages, if necessary.
 211     MemRegion cur_committed = _committed[ind];
 212     // Extend the end of this _committed region
 213     // to cover the end of any lower _committed regions.
 214     // This forms overlapping regions, but never interior regions.
 215     HeapWord* const max_prev_end = largest_prev_committed_end(ind);
 216     if (max_prev_end > cur_committed.end()) {
 217       cur_committed.set_end(max_prev_end);
 218     }
 219     // Align the end up to a page size (starts are already aligned).
 220     jbyte* const new_end = byte_after(new_region.last());
 221     HeapWord* new_end_aligned =
 222       (HeapWord*) align_size_up((uintptr_t)new_end, _page_size);
 223     assert(new_end_aligned >= (HeapWord*) new_end,
 224            "align up, but less");
 225     // Check the other regions (excludes "ind") to ensure that
 226     // the new_end_aligned does not intrude onto the committed
 227     // space of another region.
 228     int ri = 0;
 229     for (ri = ind + 1; ri < _cur_covered_regions; ri++) {
 230       if (new_end_aligned > _committed[ri].start()) {
 231         assert(new_end_aligned <= _committed[ri].end(),
 232                "An earlier committed region can't cover a later committed region");
 233         // Any region containing the new end
 234         // should start at or beyond the region found (ind)
 235         // for the new end (committed regions are not expected to
 236         // be proper subsets of other committed regions).
 237         assert(_committed[ri].start() >= _committed[ind].start(),
 238                "New end of committed region is inconsistent");
 239         new_end_aligned = _committed[ri].start();
 240         // new_end_aligned can be equal to the start of its
 241         // committed region (i.e., of "ind") if a second
 242         // region following "ind" also start at the same location
 243         // as "ind".
 244         assert(new_end_aligned >= _committed[ind].start(),
 245           "New end of committed region is before start");
 246         debug_only(collided = true;)
 247         // Should only collide with 1 region
 248         break;
 249       }
 250     }
 251 #ifdef ASSERT
 252     for (++ri; ri < _cur_covered_regions; ri++) {
 253       assert(!_committed[ri].contains(new_end_aligned),
 254         "New end of committed region is in a second committed region");
 255     }
 256 #endif
 257     // The guard page is always committed and should not be committed over.
 258     // "guarded" is used for assertion checking below and recalls the fact
 259     // that the would-be end of the new committed region would have
 260     // penetrated the guard page.
 261     HeapWord* new_end_for_commit = new_end_aligned;
 262 
 263     DEBUG_ONLY(bool guarded = false;)
 264     if (new_end_for_commit > _guard_region.start()) {
 265       new_end_for_commit = _guard_region.start();
 266       DEBUG_ONLY(guarded = true;)
 267     }
 268 
 269     if (new_end_for_commit > cur_committed.end()) {
 270       // Must commit new pages.
 271       MemRegion const new_committed =
 272         MemRegion(cur_committed.end(), new_end_for_commit);
 273 
 274       assert(!new_committed.is_empty(), "Region should not be empty here");
 275       os::commit_memory_or_exit((char*)new_committed.start(),
 276                                 new_committed.byte_size(), _page_size,
 277                                 !ExecMem, "card table expansion");
 278     // Use new_end_aligned (as opposed to new_end_for_commit) because
 279     // the cur_committed region may include the guard region.
 280     } else if (new_end_aligned < cur_committed.end()) {
 281       // Must uncommit pages.
 282       MemRegion const uncommit_region =
 283         committed_unique_to_self(ind, MemRegion(new_end_aligned,
 284                                                 cur_committed.end()));
 285       if (!uncommit_region.is_empty()) {
 286         // It is not safe to uncommit cards if the boundary between
 287         // the generations is moving.  A shrink can uncommit cards
 288         // owned by generation A but being used by generation B.
 289         if (!UseAdaptiveGCBoundary) {
 290           if (!os::uncommit_memory((char*)uncommit_region.start(),
 291                                    uncommit_region.byte_size())) {
 292             assert(false, "Card table contraction failed");
 293             // The call failed so don't change the end of the
 294             // committed region.  This is better than taking the
 295             // VM down.
 296             new_end_aligned = _committed[ind].end();
 297           }
 298         } else {
 299           new_end_aligned = _committed[ind].end();
 300         }
 301       }
 302     }
 303     // In any case, we can reset the end of the current committed entry.
 304     _committed[ind].set_end(new_end_aligned);
 305 
 306 #ifdef ASSERT
 307     // Check that the last card in the new region is committed according
 308     // to the tables.
 309     bool covered = false;
 310     for (int cr = 0; cr < _cur_covered_regions; cr++) {
 311       if (_committed[cr].contains(new_end - 1)) {
 312         covered = true;
 313         break;
 314       }
 315     }
 316     assert(covered, "Card for end of new region not committed");
 317 #endif
 318 
 319     // The default of 0 is not necessarily clean cards.
 320     jbyte* entry;
 321     if (old_region.last() < _whole_heap.start()) {
 322       entry = byte_for(_whole_heap.start());
 323     } else {
 324       entry = byte_after(old_region.last());
 325     }
 326     assert(index_for(new_region.last()) <  _guard_index,
 327       "The guard card will be overwritten");
 328     // This line commented out cleans the newly expanded region and
 329     // not the aligned up expanded region.
 330     // jbyte* const end = byte_after(new_region.last());
 331     jbyte* const end = (jbyte*) new_end_for_commit;
 332     assert((end >= byte_after(new_region.last())) || collided || guarded,
 333       "Expect to be beyond new region unless impacting another region");
 334     // do nothing if we resized downward.
 335 #ifdef ASSERT
 336     for (int ri = 0; ri < _cur_covered_regions; ri++) {
 337       if (ri != ind) {
 338         // The end of the new committed region should not
 339         // be in any existing region unless it matches
 340         // the start of the next region.
 341         assert(!_committed[ri].contains(end) ||
 342                (_committed[ri].start() == (HeapWord*) end),
 343                "Overlapping committed regions");
 344       }
 345     }
 346 #endif
 347     if (entry < end) {
 348       memset(entry, clean_card, pointer_delta(end, entry, sizeof(jbyte)));
 349     }
 350   }
 351   // In any case, the covered size changes.
 352   _covered[ind].set_word_size(new_region.word_size());
 353   if (TraceCardTableModRefBS) {
 354     gclog_or_tty->print_cr("CardTableModRefBS::resize_covered_region: ");
 355     gclog_or_tty->print_cr("  "
 356                   "  _covered[%d].start(): " INTPTR_FORMAT
 357                   "  _covered[%d].last(): " INTPTR_FORMAT,
 358                   ind, p2i(_covered[ind].start()),
 359                   ind, p2i(_covered[ind].last()));
 360     gclog_or_tty->print_cr("  "
 361                   "  _committed[%d].start(): " INTPTR_FORMAT
 362                   "  _committed[%d].last(): " INTPTR_FORMAT,
 363                   ind, p2i(_committed[ind].start()),
 364                   ind, p2i(_committed[ind].last()));
 365     gclog_or_tty->print_cr("  "
 366                   "  byte_for(start): " INTPTR_FORMAT
 367                   "  byte_for(last): " INTPTR_FORMAT,
 368                   p2i(byte_for(_covered[ind].start())),
 369                   p2i(byte_for(_covered[ind].last())));
 370     gclog_or_tty->print_cr("  "
 371                   "  addr_for(start): " INTPTR_FORMAT
 372                   "  addr_for(last): " INTPTR_FORMAT,
 373                   p2i(addr_for((jbyte*) _committed[ind].start())),
 374                   p2i(addr_for((jbyte*) _committed[ind].last())));
 375   }
 376   // Touch the last card of the covered region to show that it
 377   // is committed (or SEGV).
 378   debug_only((void) (*byte_for(_covered[ind].last()));)
 379   debug_only(verify_guard();)
 380 }
 381 
 382 // Note that these versions are precise!  The scanning code has to handle the
 383 // fact that the write barrier may be either precise or imprecise.
 384 
 385 void CardTableModRefBS::write_ref_field_work(void* field, oop newVal, bool release) {
 386   inline_write_ref_field(field, newVal, release);
 387 }
 388 
 389 
 390 void CardTableModRefBS::dirty_MemRegion(MemRegion mr) {
 391   assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
 392   assert((HeapWord*)align_size_up  ((uintptr_t)mr.end(),   HeapWordSize) == mr.end(),   "Unaligned end"  );
 393   jbyte* cur  = byte_for(mr.start());
 394   jbyte* last = byte_after(mr.last());
 395   while (cur < last) {
 396     *cur = dirty_card;
 397     cur++;
 398   }
 399 }
 400 
 401 void CardTableModRefBS::invalidate(MemRegion mr, bool whole_heap) {
 402   assert((HeapWord*)align_size_down((uintptr_t)mr.start(), HeapWordSize) == mr.start(), "Unaligned start");
 403   assert((HeapWord*)align_size_up  ((uintptr_t)mr.end(),   HeapWordSize) == mr.end(),   "Unaligned end"  );
 404   for (int i = 0; i < _cur_covered_regions; i++) {
 405     MemRegion mri = mr.intersection(_covered[i]);
 406     if (!mri.is_empty()) dirty_MemRegion(mri);
 407   }
 408 }
 409 
 410 void CardTableModRefBS::clear_MemRegion(MemRegion mr) {
 411   // Be conservative: only clean cards entirely contained within the
 412   // region.
 413   jbyte* cur;
 414   if (mr.start() == _whole_heap.start()) {
 415     cur = byte_for(mr.start());
 416   } else {
 417     assert(mr.start() > _whole_heap.start(), "mr is not covered.");
 418     cur = byte_after(mr.start() - 1);
 419   }
 420   jbyte* last = byte_after(mr.last());
 421   memset(cur, clean_card, pointer_delta(last, cur, sizeof(jbyte)));
 422 }
 423 
 424 void CardTableModRefBS::clear(MemRegion mr) {
 425   for (int i = 0; i < _cur_covered_regions; i++) {
 426     MemRegion mri = mr.intersection(_covered[i]);
 427     if (!mri.is_empty()) clear_MemRegion(mri);
 428   }
 429 }
 430 
 431 void CardTableModRefBS::dirty(MemRegion mr) {
 432   jbyte* first = byte_for(mr.start());
 433   jbyte* last  = byte_after(mr.last());
 434   memset(first, dirty_card, last-first);
 435 }
 436 
 437 // Unlike several other card table methods, dirty_card_iterate()
 438 // iterates over dirty cards ranges in increasing address order.
 439 void CardTableModRefBS::dirty_card_iterate(MemRegion mr,
 440                                            MemRegionClosure* cl) {
 441   for (int i = 0; i < _cur_covered_regions; i++) {
 442     MemRegion mri = mr.intersection(_covered[i]);
 443     if (!mri.is_empty()) {
 444       jbyte *cur_entry, *next_entry, *limit;
 445       for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
 446            cur_entry <= limit;
 447            cur_entry  = next_entry) {
 448         next_entry = cur_entry + 1;
 449         if (*cur_entry == dirty_card) {
 450           size_t dirty_cards;
 451           // Accumulate maximal dirty card range, starting at cur_entry
 452           for (dirty_cards = 1;
 453                next_entry <= limit && *next_entry == dirty_card;
 454                dirty_cards++, next_entry++);
 455           MemRegion cur_cards(addr_for(cur_entry),
 456                               dirty_cards*card_size_in_words);
 457           cl->do_MemRegion(cur_cards);
 458         }
 459       }
 460     }
 461   }
 462 }
 463 
 464 MemRegion CardTableModRefBS::dirty_card_range_after_reset(MemRegion mr,
 465                                                           bool reset,
 466                                                           int reset_val) {
 467   for (int i = 0; i < _cur_covered_regions; i++) {
 468     MemRegion mri = mr.intersection(_covered[i]);
 469     if (!mri.is_empty()) {
 470       jbyte* cur_entry, *next_entry, *limit;
 471       for (cur_entry = byte_for(mri.start()), limit = byte_for(mri.last());
 472            cur_entry <= limit;
 473            cur_entry  = next_entry) {
 474         next_entry = cur_entry + 1;
 475         if (*cur_entry == dirty_card) {
 476           size_t dirty_cards;
 477           // Accumulate maximal dirty card range, starting at cur_entry
 478           for (dirty_cards = 1;
 479                next_entry <= limit && *next_entry == dirty_card;
 480                dirty_cards++, next_entry++);
 481           MemRegion cur_cards(addr_for(cur_entry),
 482                               dirty_cards*card_size_in_words);
 483           if (reset) {
 484             for (size_t i = 0; i < dirty_cards; i++) {
 485               cur_entry[i] = reset_val;
 486             }
 487           }
 488           return cur_cards;
 489         }
 490       }
 491     }
 492   }
 493   return MemRegion(mr.end(), mr.end());
 494 }
 495 
 496 uintx CardTableModRefBS::ct_max_alignment_constraint() {
 497   return card_size * os::vm_page_size();
 498 }
 499 
 500 void CardTableModRefBS::verify_guard() {
 501   // For product build verification
 502   guarantee(_byte_map[_guard_index] == last_card,
 503             "card table guard has been modified");
 504 }
 505 
 506 void CardTableModRefBS::verify() {
 507   verify_guard();
 508 }
 509 
 510 #ifndef PRODUCT
 511 void CardTableModRefBS::verify_region(MemRegion mr,
 512                                       jbyte val, bool val_equals) {
 513   jbyte* start    = byte_for(mr.start());
 514   jbyte* end      = byte_for(mr.last());
 515   bool failures = false;
 516   for (jbyte* curr = start; curr <= end; ++curr) {
 517     jbyte curr_val = *curr;
 518     bool failed = (val_equals) ? (curr_val != val) : (curr_val == val);
 519     if (failed) {
 520       if (!failures) {
 521         tty->cr();
 522         tty->print_cr("== CT verification failed: [" INTPTR_FORMAT "," INTPTR_FORMAT "]", p2i(start), p2i(end));
 523         tty->print_cr("==   %sexpecting value: %d",
 524                       (val_equals) ? "" : "not ", val);
 525         failures = true;
 526       }
 527       tty->print_cr("==   card " PTR_FORMAT " [" PTR_FORMAT "," PTR_FORMAT "], "
 528                     "val: %d", p2i(curr), p2i(addr_for(curr)),
 529                     p2i((HeapWord*) (((size_t) addr_for(curr)) + card_size)),
 530                     (int) curr_val);
 531     }
 532   }
 533   guarantee(!failures, "there should not have been any failures");
 534 }
 535 
 536 void CardTableModRefBS::verify_not_dirty_region(MemRegion mr) {
 537   verify_region(mr, dirty_card, false /* val_equals */);
 538 }
 539 
 540 void CardTableModRefBS::verify_dirty_region(MemRegion mr) {
 541   verify_region(mr, dirty_card, true /* val_equals */);
 542 }
 543 #endif
 544 
 545 void CardTableModRefBS::print_on(outputStream* st) const {
 546   st->print_cr("Card table byte_map: [" INTPTR_FORMAT "," INTPTR_FORMAT "] byte_map_base: " INTPTR_FORMAT,
 547                p2i(_byte_map), p2i(_byte_map + _byte_map_size), p2i(byte_map_base));
 548 }
 549