1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.hpp"
  32 #include "gc/shared/referencePolicy.hpp"
  33 #include "gc/shared/referenceProcessor.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/allocation.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/jniHandles.hpp"
  39 
  40 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  41 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  42 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  43 
  44 void referenceProcessor_init() {
  45   ReferenceProcessor::init_statics();
  46 }
  47 
  48 void ReferenceProcessor::init_statics() {
  49   // We need a monotonically non-decreasing time in ms but
  50   // os::javaTimeMillis() does not guarantee monotonicity.
  51   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  52 
  53   // Initialize the soft ref timestamp clock.
  54   _soft_ref_timestamp_clock = now;
  55   // Also update the soft ref clock in j.l.r.SoftReference
  56   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  57 
  58   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  59 #if defined(COMPILER2) || INCLUDE_JVMCI
  60   _default_soft_ref_policy      = new LRUMaxHeapPolicy();
  61 #else
  62   _default_soft_ref_policy      = new LRUCurrentHeapPolicy();
  63 #endif
  64   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  65     vm_exit_during_initialization("Could not allocate reference policy object");
  66   }
  67   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  68             RefDiscoveryPolicy == ReferentBasedDiscovery,
  69             "Unrecognized RefDiscoveryPolicy");
  70 }
  71 
  72 void ReferenceProcessor::enable_discovery(bool check_no_refs) {
  73 #ifdef ASSERT
  74   // Verify that we're not currently discovering refs
  75   assert(!_discovering_refs, "nested call?");
  76 
  77   if (check_no_refs) {
  78     // Verify that the discovered lists are empty
  79     verify_no_references_recorded();
  80   }
  81 #endif // ASSERT
  82 
  83   // Someone could have modified the value of the static
  84   // field in the j.l.r.SoftReference class that holds the
  85   // soft reference timestamp clock using reflection or
  86   // Unsafe between GCs. Unconditionally update the static
  87   // field in ReferenceProcessor here so that we use the new
  88   // value during reference discovery.
  89 
  90   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  91   _discovering_refs = true;
  92 }
  93 
  94 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  95                                        bool      mt_processing,
  96                                        uint      mt_processing_degree,
  97                                        bool      mt_discovery,
  98                                        uint      mt_discovery_degree,
  99                                        bool      atomic_discovery,
 100                                        BoolObjectClosure* is_alive_non_header)  :
 101   _discovering_refs(false),
 102   _enqueuing_is_done(false),
 103   _is_alive_non_header(is_alive_non_header),
 104   _processing_is_mt(mt_processing),
 105   _next_id(0)
 106 {
 107   _span = span;
 108   _discovery_is_atomic = atomic_discovery;
 109   _discovery_is_mt     = mt_discovery;
 110   _num_q               = MAX2(1U, mt_processing_degree);
 111   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 112   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 113             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 114 
 115   if (_discovered_refs == NULL) {
 116     vm_exit_during_initialization("Could not allocated RefProc Array");
 117   }
 118   _discoveredSoftRefs    = &_discovered_refs[0];
 119   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 120   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 121   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 122   _discoveredCleanerRefs = &_discoveredPhantomRefs[_max_num_q];
 123 
 124   // Initialize all entries to NULL
 125   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 126     _discovered_refs[i].set_head(NULL);
 127     _discovered_refs[i].set_length(0);
 128   }
 129 
 130   setup_policy(false /* default soft ref policy */);
 131 }
 132 
 133 #ifndef PRODUCT
 134 void ReferenceProcessor::verify_no_references_recorded() {
 135   guarantee(!_discovering_refs, "Discovering refs?");
 136   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 137     guarantee(_discovered_refs[i].is_empty(),
 138               "Found non-empty discovered list");
 139   }
 140 }
 141 #endif
 142 
 143 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 144   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 145     if (UseCompressedOops) {
 146       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 147     } else {
 148       f->do_oop((oop*)_discovered_refs[i].adr_head());
 149     }
 150   }
 151 }
 152 
 153 void ReferenceProcessor::update_soft_ref_master_clock() {
 154   // Update (advance) the soft ref master clock field. This must be done
 155   // after processing the soft ref list.
 156 
 157   // We need a monotonically non-decreasing time in ms but
 158   // os::javaTimeMillis() does not guarantee monotonicity.
 159   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 160   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 161   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 162 
 163   NOT_PRODUCT(
 164   if (now < _soft_ref_timestamp_clock) {
 165     warning("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
 166             _soft_ref_timestamp_clock, now);
 167   }
 168   )
 169   // The values of now and _soft_ref_timestamp_clock are set using
 170   // javaTimeNanos(), which is guaranteed to be monotonically
 171   // non-decreasing provided the underlying platform provides such
 172   // a time source (and it is bug free).
 173   // In product mode, however, protect ourselves from non-monotonicity.
 174   if (now > _soft_ref_timestamp_clock) {
 175     _soft_ref_timestamp_clock = now;
 176     java_lang_ref_SoftReference::set_clock(now);
 177   }
 178   // Else leave clock stalled at its old value until time progresses
 179   // past clock value.
 180 }
 181 
 182 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
 183   size_t total = 0;
 184   for (uint i = 0; i < _max_num_q; ++i) {
 185     total += lists[i].length();
 186   }
 187   return total;
 188 }
 189 
 190 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 191   BoolObjectClosure*           is_alive,
 192   OopClosure*                  keep_alive,
 193   VoidClosure*                 complete_gc,
 194   AbstractRefProcTaskExecutor* task_executor,
 195   GCTimer*                     gc_timer) {
 196 
 197   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 198   // Stop treating discovered references specially.
 199   disable_discovery();
 200 
 201   // If discovery was concurrent, someone could have modified
 202   // the value of the static field in the j.l.r.SoftReference
 203   // class that holds the soft reference timestamp clock using
 204   // reflection or Unsafe between when discovery was enabled and
 205   // now. Unconditionally update the static field in ReferenceProcessor
 206   // here so that we use the new value during processing of the
 207   // discovered soft refs.
 208 
 209   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 210 
 211   // Include cleaners in phantom statistics.  We expect Cleaner
 212   // references to be temporary, and don't want to deal with
 213   // possible incompatibilities arising from making it more visible.
 214   ReferenceProcessorStats stats(
 215       total_count(_discoveredSoftRefs),
 216       total_count(_discoveredWeakRefs),
 217       total_count(_discoveredFinalRefs),
 218       total_count(_discoveredPhantomRefs) + total_count(_discoveredCleanerRefs));
 219 
 220   // Soft references
 221   {
 222     GCTraceTime(Debug, gc, ref) tt("SoftReference", gc_timer);
 223     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 224                                is_alive, keep_alive, complete_gc, task_executor);
 225   }
 226 
 227   update_soft_ref_master_clock();
 228 
 229   // Weak references
 230   {
 231     GCTraceTime(Debug, gc, ref) tt("WeakReference", gc_timer);
 232     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 233                                is_alive, keep_alive, complete_gc, task_executor);
 234   }
 235 
 236   // Final references
 237   {
 238         GCTraceTime(Debug, gc, ref) tt("FinalReference", gc_timer);
 239     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 240                                is_alive, keep_alive, complete_gc, task_executor);
 241   }
 242 
 243   // Phantom references
 244   {
 245     GCTraceTime(Debug, gc, ref) tt("PhantomReference", gc_timer);
 246     process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 247                                is_alive, keep_alive, complete_gc, task_executor);
 248 
 249     // Process cleaners, but include them in phantom timing.  We expect
 250     // Cleaner references to be temporary, and don't want to deal with
 251     // possible incompatibilities arising from making it more visible.
 252     process_discovered_reflist(_discoveredCleanerRefs, NULL, true,
 253                                  is_alive, keep_alive, complete_gc, task_executor);
 254   }
 255 
 256   // Weak global JNI references. It would make more sense (semantically) to
 257   // traverse these simultaneously with the regular weak references above, but
 258   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 259   // thus use JNI weak references to circumvent the phantom references and
 260   // resurrect a "post-mortem" object.
 261   {
 262     GCTraceTime(Debug, gc, ref) tt("JNI Weak Reference", gc_timer);
 263     if (task_executor != NULL) {
 264       task_executor->set_single_threaded_mode();
 265     }
 266     process_phaseJNI(is_alive, keep_alive, complete_gc);
 267   }
 268 
 269   log_debug(gc, ref)("Ref Counts: Soft: " SIZE_FORMAT " Weak: " SIZE_FORMAT " Final: " SIZE_FORMAT " Phantom: " SIZE_FORMAT,
 270                   stats.soft_count(), stats.weak_count(), stats.final_count(), stats.phantom_count());
 271   log_develop(gc, ref)("JNI Weak Reference count: " SIZE_FORMAT, count_jni_refs());
 272 
 273   return stats;
 274 }
 275 
 276 #ifndef PRODUCT
 277 // Calculate the number of jni handles.
 278 size_t ReferenceProcessor::count_jni_refs() {
 279   class AlwaysAliveClosure: public BoolObjectClosure {
 280   public:
 281     virtual bool do_object_b(oop obj) { return true; }
 282   };
 283 
 284   class CountHandleClosure: public OopClosure {
 285   private:
 286     size_t _count;
 287   public:
 288     CountHandleClosure(): _count(0) {}
 289     void do_oop(oop* unused)       { _count++; }
 290     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 291     size_t count() { return _count; }
 292   };
 293   CountHandleClosure global_handle_count;
 294   AlwaysAliveClosure always_alive;
 295   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 296   return global_handle_count.count();
 297 }
 298 #endif
 299 
 300 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 301                                           OopClosure*        keep_alive,
 302                                           VoidClosure*       complete_gc) {
 303   JNIHandles::weak_oops_do(is_alive, keep_alive);
 304   complete_gc->do_void();
 305 }
 306 
 307 
 308 template <class T>
 309 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 310                                    AbstractRefProcTaskExecutor* task_executor) {
 311 
 312   // Remember old value of pending references list
 313   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 314   T old_pending_list_value = *pending_list_addr;
 315 
 316   // Enqueue references that are not made active again, and
 317   // clear the decks for the next collection (cycle).
 318   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 319   // Do the post-barrier on pending_list_addr missed in
 320   // enqueue_discovered_reflist.
 321   oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 322 
 323   // Stop treating discovered references specially.
 324   ref->disable_discovery();
 325 
 326   // Return true if new pending references were added
 327   return old_pending_list_value != *pending_list_addr;
 328 }
 329 
 330 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 331   if (UseCompressedOops) {
 332     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 333   } else {
 334     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 335   }
 336 }
 337 
 338 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 339                                                     HeapWord* pending_list_addr) {
 340   // Given a list of refs linked through the "discovered" field
 341   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 342   // thus distinguishing them from active References, then
 343   // prepend them to the pending list.
 344   //
 345   // The Java threads will see the Reference objects linked together through
 346   // the discovered field. Instead of trying to do the write barrier updates
 347   // in all places in the reference processor where we manipulate the discovered
 348   // field we make sure to do the barrier here where we anyway iterate through
 349   // all linked Reference objects. Note that it is important to not dirty any
 350   // cards during reference processing since this will cause card table
 351   // verification to fail for G1.
 352   log_develop(gc, ref)("ReferenceProcessor::enqueue_discovered_reflist list " INTPTR_FORMAT, p2i(refs_list.head()));
 353 
 354   oop obj = NULL;
 355   oop next_d = refs_list.head();
 356   // Walk down the list, self-looping the next field
 357   // so that the References are not considered active.
 358   while (obj != next_d) {
 359     obj = next_d;
 360     assert(obj->is_instance(), "should be an instance object");
 361     assert(InstanceKlass::cast(obj->klass())->is_reference_instance_klass(), "should be reference object");
 362     next_d = java_lang_ref_Reference::discovered(obj);
 363     log_develop(gc, ref)("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT, p2i(obj), p2i(next_d));
 364     assert(java_lang_ref_Reference::next(obj) == NULL,
 365            "Reference not active; should not be discovered");
 366     // Self-loop next, so as to make Ref not active.
 367     java_lang_ref_Reference::set_next_raw(obj, obj);
 368     if (next_d != obj) {
 369       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
 370     } else {
 371       // This is the last object.
 372       // Swap refs_list into pending_list_addr and
 373       // set obj's discovered to what we read from pending_list_addr.
 374       oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 375       // Need post-barrier on pending_list_addr. See enqueue_discovered_ref_helper() above.
 376       java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
 377       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
 378     }
 379   }
 380 }
 381 
 382 // Parallel enqueue task
 383 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 384 public:
 385   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 386                      DiscoveredList      discovered_refs[],
 387                      HeapWord*           pending_list_addr,
 388                      int                 n_queues)
 389     : EnqueueTask(ref_processor, discovered_refs,
 390                   pending_list_addr, n_queues)
 391   { }
 392 
 393   virtual void work(unsigned int work_id) {
 394     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 395     // Simplest first cut: static partitioning.
 396     int index = work_id;
 397     // The increment on "index" must correspond to the maximum number of queues
 398     // (n_queues) with which that ReferenceProcessor was created.  That
 399     // is because of the "clever" way the discovered references lists were
 400     // allocated and are indexed into.
 401     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 402     for (int j = 0;
 403          j < ReferenceProcessor::number_of_subclasses_of_ref();
 404          j++, index += _n_queues) {
 405       _ref_processor.enqueue_discovered_reflist(
 406         _refs_lists[index], _pending_list_addr);
 407       _refs_lists[index].set_head(NULL);
 408       _refs_lists[index].set_length(0);
 409     }
 410   }
 411 };
 412 
 413 // Enqueue references that are not made active again
 414 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 415   AbstractRefProcTaskExecutor* task_executor) {
 416   if (_processing_is_mt && task_executor != NULL) {
 417     // Parallel code
 418     RefProcEnqueueTask tsk(*this, _discovered_refs,
 419                            pending_list_addr, _max_num_q);
 420     task_executor->execute(tsk);
 421   } else {
 422     // Serial code: call the parent class's implementation
 423     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 424       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
 425       _discovered_refs[i].set_head(NULL);
 426       _discovered_refs[i].set_length(0);
 427     }
 428   }
 429 }
 430 
 431 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 432   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 433   oop discovered = java_lang_ref_Reference::discovered(_ref);
 434   assert(_discovered_addr && discovered->is_oop_or_null(),
 435          "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
 436   _next = discovered;
 437   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 438   _referent = java_lang_ref_Reference::referent(_ref);
 439   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 440          "Wrong oop found in java.lang.Reference object");
 441   assert(allow_null_referent ?
 442              _referent->is_oop_or_null()
 443            : _referent->is_oop(),
 444          "Expected an oop%s for referent field at " PTR_FORMAT,
 445          (allow_null_referent ? " or NULL" : ""),
 446          p2i(_referent));
 447 }
 448 
 449 void DiscoveredListIterator::remove() {
 450   assert(_ref->is_oop(), "Dropping a bad reference");
 451   oop_store_raw(_discovered_addr, NULL);
 452 
 453   // First _prev_next ref actually points into DiscoveredList (gross).
 454   oop new_next;
 455   if (_next == _ref) {
 456     // At the end of the list, we should make _prev point to itself.
 457     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 458     // and _prev will be NULL.
 459     new_next = _prev;
 460   } else {
 461     new_next = _next;
 462   }
 463   // Remove Reference object from discovered list. Note that G1 does not need a
 464   // pre-barrier here because we know the Reference has already been found/marked,
 465   // that's how it ended up in the discovered list in the first place.
 466   oop_store_raw(_prev_next, new_next);
 467   NOT_PRODUCT(_removed++);
 468   _refs_list.dec_length(1);
 469 }
 470 
 471 void DiscoveredListIterator::clear_referent() {
 472   oop_store_raw(_referent_addr, NULL);
 473 }
 474 
 475 // NOTE: process_phase*() are largely similar, and at a high level
 476 // merely iterate over the extant list applying a predicate to
 477 // each of its elements and possibly removing that element from the
 478 // list and applying some further closures to that element.
 479 // We should consider the possibility of replacing these
 480 // process_phase*() methods by abstracting them into
 481 // a single general iterator invocation that receives appropriate
 482 // closures that accomplish this work.
 483 
 484 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 485 // referents are not alive, but that should be kept alive for policy reasons.
 486 // Keep alive the transitive closure of all such referents.
 487 void
 488 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 489                                    ReferencePolicy*   policy,
 490                                    BoolObjectClosure* is_alive,
 491                                    OopClosure*        keep_alive,
 492                                    VoidClosure*       complete_gc) {
 493   assert(policy != NULL, "Must have a non-NULL policy");
 494   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 495   // Decide which softly reachable refs should be kept alive.
 496   while (iter.has_next()) {
 497     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 498     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 499     if (referent_is_dead &&
 500         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 501       log_develop(gc, ref)("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 502                                p2i(iter.obj()), iter.obj()->klass()->internal_name());
 503       // Remove Reference object from list
 504       iter.remove();
 505       // keep the referent around
 506       iter.make_referent_alive();
 507       iter.move_to_next();
 508     } else {
 509       iter.next();
 510     }
 511   }
 512   // Close the reachable set
 513   complete_gc->do_void();
 514   log_develop(gc, ref)(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT " discovered Refs by policy, from list " INTPTR_FORMAT,
 515         iter.removed(), iter.processed(), p2i(refs_list.head()));
 516     }
 517 
 518 // Traverse the list and remove any Refs that are not active, or
 519 // whose referents are either alive or NULL.
 520 void
 521 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 522                              BoolObjectClosure* is_alive,
 523                              OopClosure*        keep_alive) {
 524   assert(discovery_is_atomic(), "Error");
 525   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 526   while (iter.has_next()) {
 527     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 528     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 529     assert(next == NULL, "Should not discover inactive Reference");
 530     if (iter.is_referent_alive()) {
 531       log_develop(gc, ref)("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 532                                p2i(iter.obj()), iter.obj()->klass()->internal_name());
 533       // The referent is reachable after all.
 534       // Remove Reference object from list.
 535       iter.remove();
 536       // Update the referent pointer as necessary: Note that this
 537       // should not entail any recursive marking because the
 538       // referent must already have been traversed.
 539       iter.make_referent_alive();
 540       iter.move_to_next();
 541     } else {
 542       iter.next();
 543     }
 544   }
 545   NOT_PRODUCT(
 546     if (iter.processed() > 0) {
 547       log_develop(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 548         " Refs in discovered list " INTPTR_FORMAT,
 549         iter.removed(), iter.processed(), p2i(refs_list.head()));
 550     }
 551   )
 552 }
 553 
 554 void
 555 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 556                                                   BoolObjectClosure* is_alive,
 557                                                   OopClosure*        keep_alive,
 558                                                   VoidClosure*       complete_gc) {
 559   assert(!discovery_is_atomic(), "Error");
 560   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 561   while (iter.has_next()) {
 562     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 563     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 564     oop next = java_lang_ref_Reference::next(iter.obj());
 565     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 566          next != NULL)) {
 567       assert(next->is_oop_or_null(), "Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next));
 568       // Remove Reference object from list
 569       iter.remove();
 570       // Trace the cohorts
 571       iter.make_referent_alive();
 572       if (UseCompressedOops) {
 573         keep_alive->do_oop((narrowOop*)next_addr);
 574       } else {
 575         keep_alive->do_oop((oop*)next_addr);
 576       }
 577       iter.move_to_next();
 578     } else {
 579       iter.next();
 580     }
 581   }
 582   // Now close the newly reachable set
 583   complete_gc->do_void();
 584   NOT_PRODUCT(
 585     if (iter.processed() > 0) {
 586       log_develop(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 587         " Refs in discovered list " INTPTR_FORMAT,
 588         iter.removed(), iter.processed(), p2i(refs_list.head()));
 589     }
 590   )
 591 }
 592 
 593 // Traverse the list and process the referents, by either
 594 // clearing them or keeping them (and their reachable
 595 // closure) alive.
 596 void
 597 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 598                                    bool               clear_referent,
 599                                    BoolObjectClosure* is_alive,
 600                                    OopClosure*        keep_alive,
 601                                    VoidClosure*       complete_gc) {
 602   ResourceMark rm;
 603   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 604   while (iter.has_next()) {
 605     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 606     if (clear_referent) {
 607       // NULL out referent pointer
 608       iter.clear_referent();
 609     } else {
 610       // keep the referent around
 611       iter.make_referent_alive();
 612     }
 613     log_develop(gc, ref)("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 614                          clear_referent ? "cleared " : "", p2i(iter.obj()), iter.obj()->klass()->internal_name());
 615     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 616     iter.next();
 617   }
 618   // Close the reachable set
 619   complete_gc->do_void();
 620 }
 621 
 622 void
 623 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 624   oop obj = NULL;
 625   oop next = refs_list.head();
 626   while (next != obj) {
 627     obj = next;
 628     next = java_lang_ref_Reference::discovered(obj);
 629     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 630   }
 631   refs_list.set_head(NULL);
 632   refs_list.set_length(0);
 633 }
 634 
 635 void ReferenceProcessor::abandon_partial_discovery() {
 636   // loop over the lists
 637   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 638     if ((i % _max_num_q) == 0) {
 639       log_develop(gc, ref)("\nAbandoning %s discovered list", list_name(i));
 640     }
 641     clear_discovered_references(_discovered_refs[i]);
 642   }
 643 }
 644 
 645 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 646 public:
 647   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 648                     DiscoveredList      refs_lists[],
 649                     ReferencePolicy*    policy,
 650                     bool                marks_oops_alive)
 651     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 652       _policy(policy)
 653   { }
 654   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 655                     OopClosure& keep_alive,
 656                     VoidClosure& complete_gc)
 657   {
 658     Thread* thr = Thread::current();
 659     int refs_list_index = ((WorkerThread*)thr)->id();
 660     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 661                                   &is_alive, &keep_alive, &complete_gc);
 662   }
 663 private:
 664   ReferencePolicy* _policy;
 665 };
 666 
 667 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 668 public:
 669   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 670                     DiscoveredList      refs_lists[],
 671                     bool                marks_oops_alive)
 672     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 673   { }
 674   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 675                     OopClosure& keep_alive,
 676                     VoidClosure& complete_gc)
 677   {
 678     _ref_processor.process_phase2(_refs_lists[i],
 679                                   &is_alive, &keep_alive, &complete_gc);
 680   }
 681 };
 682 
 683 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 684 public:
 685   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 686                     DiscoveredList      refs_lists[],
 687                     bool                clear_referent,
 688                     bool                marks_oops_alive)
 689     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 690       _clear_referent(clear_referent)
 691   { }
 692   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 693                     OopClosure& keep_alive,
 694                     VoidClosure& complete_gc)
 695   {
 696     // Don't use "refs_list_index" calculated in this way because
 697     // balance_queues() has moved the Ref's into the first n queues.
 698     // Thread* thr = Thread::current();
 699     // int refs_list_index = ((WorkerThread*)thr)->id();
 700     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 701     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 702                                   &is_alive, &keep_alive, &complete_gc);
 703   }
 704 private:
 705   bool _clear_referent;
 706 };
 707 
 708 #ifndef PRODUCT
 709 void ReferenceProcessor::log_reflist_counts(DiscoveredList ref_lists[], size_t total_refs) {
 710   if (!Log<LogTag::gc, LogTag::ref>::is_level(LogLevel::Trace)) {
 711     return;
 712   }
 713 
 714   stringStream st;
 715   for (uint i = 0; i < _max_num_q; ++i) {
 716     st.print(SIZE_FORMAT " ", ref_lists[i].length());
 717   }
 718   log_develop(gc, ref)("%s= " SIZE_FORMAT, st.as_string(), total_refs);
 719 }
 720 #endif
 721 
 722 // Balances reference queues.
 723 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 724 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 725 // corresponding to the active workers will be processed.
 726 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 727 {
 728   // calculate total length
 729   size_t total_refs = 0;
 730   log_develop(gc, ref)("Balance ref_lists ");
 731 
 732   for (uint i = 0; i < _max_num_q; ++i) {
 733     total_refs += ref_lists[i].length();
 734     }
 735   log_reflist_counts(ref_lists, total_refs);
 736   size_t avg_refs = total_refs / _num_q + 1;
 737   uint to_idx = 0;
 738   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 739     bool move_all = false;
 740     if (from_idx >= _num_q) {
 741       move_all = ref_lists[from_idx].length() > 0;
 742     }
 743     while ((ref_lists[from_idx].length() > avg_refs) ||
 744            move_all) {
 745       assert(to_idx < _num_q, "Sanity Check!");
 746       if (ref_lists[to_idx].length() < avg_refs) {
 747         // move superfluous refs
 748         size_t refs_to_move;
 749         // Move all the Ref's if the from queue will not be processed.
 750         if (move_all) {
 751           refs_to_move = MIN2(ref_lists[from_idx].length(),
 752                               avg_refs - ref_lists[to_idx].length());
 753         } else {
 754           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 755                               avg_refs - ref_lists[to_idx].length());
 756         }
 757 
 758         assert(refs_to_move > 0, "otherwise the code below will fail");
 759 
 760         oop move_head = ref_lists[from_idx].head();
 761         oop move_tail = move_head;
 762         oop new_head  = move_head;
 763         // find an element to split the list on
 764         for (size_t j = 0; j < refs_to_move; ++j) {
 765           move_tail = new_head;
 766           new_head = java_lang_ref_Reference::discovered(new_head);
 767         }
 768 
 769         // Add the chain to the to list.
 770         if (ref_lists[to_idx].head() == NULL) {
 771           // to list is empty. Make a loop at the end.
 772           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 773         } else {
 774           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 775         }
 776         ref_lists[to_idx].set_head(move_head);
 777         ref_lists[to_idx].inc_length(refs_to_move);
 778 
 779         // Remove the chain from the from list.
 780         if (move_tail == new_head) {
 781           // We found the end of the from list.
 782           ref_lists[from_idx].set_head(NULL);
 783         } else {
 784           ref_lists[from_idx].set_head(new_head);
 785         }
 786         ref_lists[from_idx].dec_length(refs_to_move);
 787         if (ref_lists[from_idx].length() == 0) {
 788           break;
 789         }
 790       } else {
 791         to_idx = (to_idx + 1) % _num_q;
 792       }
 793     }
 794   }
 795 #ifdef ASSERT
 796   size_t balanced_total_refs = 0;
 797   for (uint i = 0; i < _max_num_q; ++i) {
 798     balanced_total_refs += ref_lists[i].length();
 799     }
 800   log_reflist_counts(ref_lists, balanced_total_refs);
 801   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 802 #endif
 803 }
 804 
 805 void ReferenceProcessor::balance_all_queues() {
 806   balance_queues(_discoveredSoftRefs);
 807   balance_queues(_discoveredWeakRefs);
 808   balance_queues(_discoveredFinalRefs);
 809   balance_queues(_discoveredPhantomRefs);
 810   balance_queues(_discoveredCleanerRefs);
 811 }
 812 
 813 void ReferenceProcessor::process_discovered_reflist(
 814   DiscoveredList               refs_lists[],
 815   ReferencePolicy*             policy,
 816   bool                         clear_referent,
 817   BoolObjectClosure*           is_alive,
 818   OopClosure*                  keep_alive,
 819   VoidClosure*                 complete_gc,
 820   AbstractRefProcTaskExecutor* task_executor)
 821 {
 822   bool mt_processing = task_executor != NULL && _processing_is_mt;
 823   // If discovery used MT and a dynamic number of GC threads, then
 824   // the queues must be balanced for correctness if fewer than the
 825   // maximum number of queues were used.  The number of queue used
 826   // during discovery may be different than the number to be used
 827   // for processing so don't depend of _num_q < _max_num_q as part
 828   // of the test.
 829   bool must_balance = _discovery_is_mt;
 830 
 831   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 832       must_balance) {
 833     balance_queues(refs_lists);
 834   }
 835 
 836   // Phase 1 (soft refs only):
 837   // . Traverse the list and remove any SoftReferences whose
 838   //   referents are not alive, but that should be kept alive for
 839   //   policy reasons. Keep alive the transitive closure of all
 840   //   such referents.
 841   if (policy != NULL) {
 842     if (mt_processing) {
 843       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 844       task_executor->execute(phase1);
 845     } else {
 846       for (uint i = 0; i < _max_num_q; i++) {
 847         process_phase1(refs_lists[i], policy,
 848                        is_alive, keep_alive, complete_gc);
 849       }
 850     }
 851   } else { // policy == NULL
 852     assert(refs_lists != _discoveredSoftRefs,
 853            "Policy must be specified for soft references.");
 854   }
 855 
 856   // Phase 2:
 857   // . Traverse the list and remove any refs whose referents are alive.
 858   if (mt_processing) {
 859     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 860     task_executor->execute(phase2);
 861   } else {
 862     for (uint i = 0; i < _max_num_q; i++) {
 863       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 864     }
 865   }
 866 
 867   // Phase 3:
 868   // . Traverse the list and process referents as appropriate.
 869   if (mt_processing) {
 870     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 871     task_executor->execute(phase3);
 872   } else {
 873     for (uint i = 0; i < _max_num_q; i++) {
 874       process_phase3(refs_lists[i], clear_referent,
 875                      is_alive, keep_alive, complete_gc);
 876     }
 877   }
 878 }
 879 
 880 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 881   uint id = 0;
 882   // Determine the queue index to use for this object.
 883   if (_discovery_is_mt) {
 884     // During a multi-threaded discovery phase,
 885     // each thread saves to its "own" list.
 886     Thread* thr = Thread::current();
 887     id = thr->as_Worker_thread()->id();
 888   } else {
 889     // single-threaded discovery, we save in round-robin
 890     // fashion to each of the lists.
 891     if (_processing_is_mt) {
 892       id = next_id();
 893     }
 894   }
 895   assert(id < _max_num_q, "Id is out-of-bounds (call Freud?)");
 896 
 897   // Get the discovered queue to which we will add
 898   DiscoveredList* list = NULL;
 899   switch (rt) {
 900     case REF_OTHER:
 901       // Unknown reference type, no special treatment
 902       break;
 903     case REF_SOFT:
 904       list = &_discoveredSoftRefs[id];
 905       break;
 906     case REF_WEAK:
 907       list = &_discoveredWeakRefs[id];
 908       break;
 909     case REF_FINAL:
 910       list = &_discoveredFinalRefs[id];
 911       break;
 912     case REF_PHANTOM:
 913       list = &_discoveredPhantomRefs[id];
 914       break;
 915     case REF_CLEANER:
 916       list = &_discoveredCleanerRefs[id];
 917       break;
 918     case REF_NONE:
 919       // we should not reach here if we are an InstanceRefKlass
 920     default:
 921       ShouldNotReachHere();
 922   }
 923   log_develop(gc, ref)("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
 924   return list;
 925 }
 926 
 927 inline void
 928 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
 929                                               oop             obj,
 930                                               HeapWord*       discovered_addr) {
 931   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
 932   // First we must make sure this object is only enqueued once. CAS in a non null
 933   // discovered_addr.
 934   oop current_head = refs_list.head();
 935   // The last ref must have its discovered field pointing to itself.
 936   oop next_discovered = (current_head != NULL) ? current_head : obj;
 937 
 938   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
 939                                                     NULL);
 940   if (retest == NULL) {
 941     // This thread just won the right to enqueue the object.
 942     // We have separate lists for enqueueing, so no synchronization
 943     // is necessary.
 944     refs_list.set_head(obj);
 945     refs_list.inc_length(1);
 946 
 947     log_develop(gc, ref)("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
 948         p2i(obj), obj->klass()->internal_name());
 949   } else {
 950     // If retest was non NULL, another thread beat us to it:
 951     // The reference has already been discovered...
 952         log_develop(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
 953             p2i(obj), obj->klass()->internal_name());
 954     }
 955   }
 956 
 957 #ifndef PRODUCT
 958 // Non-atomic (i.e. concurrent) discovery might allow us
 959 // to observe j.l.References with NULL referents, being those
 960 // cleared concurrently by mutators during (or after) discovery.
 961 void ReferenceProcessor::verify_referent(oop obj) {
 962   bool da = discovery_is_atomic();
 963   oop referent = java_lang_ref_Reference::referent(obj);
 964   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
 965          "Bad referent " INTPTR_FORMAT " found in Reference "
 966          INTPTR_FORMAT " during %satomic discovery ",
 967          p2i(referent), p2i(obj), da ? "" : "non-");
 968 }
 969 #endif
 970 
 971 // We mention two of several possible choices here:
 972 // #0: if the reference object is not in the "originating generation"
 973 //     (or part of the heap being collected, indicated by our "span"
 974 //     we don't treat it specially (i.e. we scan it as we would
 975 //     a normal oop, treating its references as strong references).
 976 //     This means that references can't be discovered unless their
 977 //     referent is also in the same span. This is the simplest,
 978 //     most "local" and most conservative approach, albeit one
 979 //     that may cause weak references to be enqueued least promptly.
 980 //     We call this choice the "ReferenceBasedDiscovery" policy.
 981 // #1: the reference object may be in any generation (span), but if
 982 //     the referent is in the generation (span) being currently collected
 983 //     then we can discover the reference object, provided
 984 //     the object has not already been discovered by
 985 //     a different concurrently running collector (as may be the
 986 //     case, for instance, if the reference object is in CMS and
 987 //     the referent in DefNewGeneration), and provided the processing
 988 //     of this reference object by the current collector will
 989 //     appear atomic to every other collector in the system.
 990 //     (Thus, for instance, a concurrent collector may not
 991 //     discover references in other generations even if the
 992 //     referent is in its own generation). This policy may,
 993 //     in certain cases, enqueue references somewhat sooner than
 994 //     might Policy #0 above, but at marginally increased cost
 995 //     and complexity in processing these references.
 996 //     We call this choice the "RefeferentBasedDiscovery" policy.
 997 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
 998   // Make sure we are discovering refs (rather than processing discovered refs).
 999   if (!_discovering_refs || !RegisterReferences) {
1000     return false;
1001   }
1002   // We only discover active references.
1003   oop next = java_lang_ref_Reference::next(obj);
1004   if (next != NULL) {   // Ref is no longer active
1005     return false;
1006   }
1007 
1008   HeapWord* obj_addr = (HeapWord*)obj;
1009   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1010       !_span.contains(obj_addr)) {
1011     // Reference is not in the originating generation;
1012     // don't treat it specially (i.e. we want to scan it as a normal
1013     // object with strong references).
1014     return false;
1015   }
1016 
1017   // We only discover references whose referents are not (yet)
1018   // known to be strongly reachable.
1019   if (is_alive_non_header() != NULL) {
1020     verify_referent(obj);
1021     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1022       return false;  // referent is reachable
1023     }
1024   }
1025   if (rt == REF_SOFT) {
1026     // For soft refs we can decide now if these are not
1027     // current candidates for clearing, in which case we
1028     // can mark through them now, rather than delaying that
1029     // to the reference-processing phase. Since all current
1030     // time-stamp policies advance the soft-ref clock only
1031     // at a full collection cycle, this is always currently
1032     // accurate.
1033     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1034       return false;
1035     }
1036   }
1037 
1038   ResourceMark rm;      // Needed for tracing.
1039 
1040   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1041   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1042   assert(discovered->is_oop_or_null(), "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
1043   if (discovered != NULL) {
1044     // The reference has already been discovered...
1045         log_develop(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
1046                              p2i(obj), obj->klass()->internal_name());
1047     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1048       // assumes that an object is not processed twice;
1049       // if it's been already discovered it must be on another
1050       // generation's discovered list; so we won't discover it.
1051       return false;
1052     } else {
1053       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1054              "Unrecognized policy");
1055       // Check assumption that an object is not potentially
1056       // discovered twice except by concurrent collectors that potentially
1057       // trace the same Reference object twice.
1058       assert(UseConcMarkSweepGC || UseG1GC,
1059              "Only possible with a concurrent marking collector");
1060       return true;
1061     }
1062   }
1063 
1064   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1065     verify_referent(obj);
1066     // Discover if and only if EITHER:
1067     // .. reference is in our span, OR
1068     // .. we are an atomic collector and referent is in our span
1069     if (_span.contains(obj_addr) ||
1070         (discovery_is_atomic() &&
1071          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1072       // should_enqueue = true;
1073     } else {
1074       return false;
1075     }
1076   } else {
1077     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1078            _span.contains(obj_addr), "code inconsistency");
1079   }
1080 
1081   // Get the right type of discovered queue head.
1082   DiscoveredList* list = get_discovered_list(rt);
1083   if (list == NULL) {
1084     return false;   // nothing special needs to be done
1085   }
1086 
1087   if (_discovery_is_mt) {
1088     add_to_discovered_list_mt(*list, obj, discovered_addr);
1089   } else {
1090     // We do a raw store here: the field will be visited later when processing
1091     // the discovered references.
1092     oop current_head = list->head();
1093     // The last ref must have its discovered field pointing to itself.
1094     oop next_discovered = (current_head != NULL) ? current_head : obj;
1095 
1096     assert(discovered == NULL, "control point invariant");
1097     oop_store_raw(discovered_addr, next_discovered);
1098     list->set_head(obj);
1099     list->inc_length(1);
1100 
1101     log_develop(gc, ref)("Discovered reference (" INTPTR_FORMAT ": %s)", p2i(obj), obj->klass()->internal_name());
1102   }
1103   assert(obj->is_oop(), "Discovered a bad reference");
1104   verify_referent(obj);
1105   return true;
1106 }
1107 
1108 // Preclean the discovered references by removing those
1109 // whose referents are alive, and by marking from those that
1110 // are not active. These lists can be handled here
1111 // in any order and, indeed, concurrently.
1112 void ReferenceProcessor::preclean_discovered_references(
1113   BoolObjectClosure* is_alive,
1114   OopClosure* keep_alive,
1115   VoidClosure* complete_gc,
1116   YieldClosure* yield,
1117   GCTimer* gc_timer) {
1118 
1119   // Soft references
1120   {
1121     GCTraceTime(Debug, gc, ref) tm("Preclean SoftReferences", gc_timer);
1122     for (uint i = 0; i < _max_num_q; i++) {
1123       if (yield->should_return()) {
1124         return;
1125       }
1126       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1127                                   keep_alive, complete_gc, yield);
1128     }
1129   }
1130 
1131   // Weak references
1132   {
1133     GCTraceTime(Debug, gc, ref) tm("Preclean WeakReferences", gc_timer);
1134     for (uint i = 0; i < _max_num_q; i++) {
1135       if (yield->should_return()) {
1136         return;
1137       }
1138       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1139                                   keep_alive, complete_gc, yield);
1140     }
1141   }
1142 
1143   // Final references
1144   {
1145     GCTraceTime(Debug, gc, ref) tm("Preclean FinalReferences", gc_timer);
1146     for (uint i = 0; i < _max_num_q; i++) {
1147       if (yield->should_return()) {
1148         return;
1149       }
1150       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1151                                   keep_alive, complete_gc, yield);
1152     }
1153   }
1154 
1155   // Phantom references
1156   {
1157     GCTraceTime(Debug, gc, ref) tm("Preclean PhantomReferences", gc_timer);
1158     for (uint i = 0; i < _max_num_q; i++) {
1159       if (yield->should_return()) {
1160         return;
1161       }
1162       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1163                                   keep_alive, complete_gc, yield);
1164     }
1165 
1166     // Cleaner references.  Included in timing for phantom references.  We
1167     // expect Cleaner references to be temporary, and don't want to deal with
1168     // possible incompatibilities arising from making it more visible.
1169     for (uint i = 0; i < _max_num_q; i++) {
1170       if (yield->should_return()) {
1171         return;
1172       }
1173       preclean_discovered_reflist(_discoveredCleanerRefs[i], is_alive,
1174                                   keep_alive, complete_gc, yield);
1175     }
1176   }
1177 }
1178 
1179 // Walk the given discovered ref list, and remove all reference objects
1180 // whose referents are still alive, whose referents are NULL or which
1181 // are not active (have a non-NULL next field). NOTE: When we are
1182 // thus precleaning the ref lists (which happens single-threaded today),
1183 // we do not disable refs discovery to honor the correct semantics of
1184 // java.lang.Reference. As a result, we need to be careful below
1185 // that ref removal steps interleave safely with ref discovery steps
1186 // (in this thread).
1187 void
1188 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1189                                                 BoolObjectClosure* is_alive,
1190                                                 OopClosure*        keep_alive,
1191                                                 VoidClosure*       complete_gc,
1192                                                 YieldClosure*      yield) {
1193   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1194   while (iter.has_next()) {
1195     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1196     oop obj = iter.obj();
1197     oop next = java_lang_ref_Reference::next(obj);
1198     if (iter.referent() == NULL || iter.is_referent_alive() ||
1199         next != NULL) {
1200       // The referent has been cleared, or is alive, or the Reference is not
1201       // active; we need to trace and mark its cohort.
1202       log_develop(gc, ref)("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1203                                p2i(iter.obj()), iter.obj()->klass()->internal_name());
1204       // Remove Reference object from list
1205       iter.remove();
1206       // Keep alive its cohort.
1207       iter.make_referent_alive();
1208       if (UseCompressedOops) {
1209         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1210         keep_alive->do_oop(next_addr);
1211       } else {
1212         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1213         keep_alive->do_oop(next_addr);
1214       }
1215       iter.move_to_next();
1216     } else {
1217       iter.next();
1218     }
1219   }
1220   // Close the reachable set
1221   complete_gc->do_void();
1222 
1223   NOT_PRODUCT(
1224     if (iter.processed() > 0) {
1225       log_develop(gc, ref)(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT " Refs in discovered list " INTPTR_FORMAT,
1226         iter.removed(), iter.processed(), p2i(refs_list.head()));
1227     }
1228   )
1229 }
1230 
1231 const char* ReferenceProcessor::list_name(uint i) {
1232    assert(i <= _max_num_q * number_of_subclasses_of_ref(),
1233           "Out of bounds index");
1234 
1235    int j = i / _max_num_q;
1236    switch (j) {
1237      case 0: return "SoftRef";
1238      case 1: return "WeakRef";
1239      case 2: return "FinalRef";
1240      case 3: return "PhantomRef";
1241      case 4: return "CleanerRef";
1242    }
1243    ShouldNotReachHere();
1244    return NULL;
1245 }
1246