1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 #define ATTRIBUTE_PRINTF(x,y) // FIXME, formats are a mess.
  27 #endif
  28 
  29 #include "precompiled.hpp"
  30 #include "classfile/metadataOnStackMark.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  34 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  35 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  36 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  37 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  38 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  39 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  40 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  41 #include "gc_implementation/g1/g1EvacFailure.hpp"
  42 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  43 #include "gc_implementation/g1/g1Log.hpp"
  44 #include "gc_implementation/g1/g1MarkSweep.hpp"
  45 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  46 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  47 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  48 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  49 #include "gc_implementation/g1/g1RootProcessor.hpp"
  50 #include "gc_implementation/g1/g1StringDedup.hpp"
  51 #include "gc_implementation/g1/g1YCTypes.hpp"
  52 #include "gc_implementation/g1/heapRegion.inline.hpp"
  53 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  54 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  55 #include "gc_implementation/g1/vm_operations_g1.hpp"
  56 #include "gc_implementation/shared/gcHeapSummary.hpp"
  57 #include "gc_implementation/shared/gcTimer.hpp"
  58 #include "gc_implementation/shared/gcTrace.hpp"
  59 #include "gc_implementation/shared/gcTraceTime.hpp"
  60 #include "gc_implementation/shared/isGCActiveMark.hpp"
  61 #include "memory/allocation.hpp"
  62 #include "memory/gcLocker.inline.hpp"
  63 #include "memory/generationSpec.hpp"
  64 #include "memory/iterator.hpp"
  65 #include "memory/referenceProcessor.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "oops/oop.pcgc.inline.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/vmThread.hpp"
  70 
  71 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  72 
  73 // turn it on so that the contents of the young list (scan-only /
  74 // to-be-collected) are printed at "strategic" points before / during
  75 // / after the collection --- this is useful for debugging
  76 #define YOUNG_LIST_VERBOSE 0
  77 // CURRENT STATUS
  78 // This file is under construction.  Search for "FIXME".
  79 
  80 // INVARIANTS/NOTES
  81 //
  82 // All allocation activity covered by the G1CollectedHeap interface is
  83 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  84 // and allocate_new_tlab, which are the "entry" points to the
  85 // allocation code from the rest of the JVM.  (Note that this does not
  86 // apply to TLAB allocation, which is not part of this interface: it
  87 // is done by clients of this interface.)
  88 
  89 // Local to this file.
  90 
  91 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  92   bool _concurrent;
  93 public:
  94   RefineCardTableEntryClosure() : _concurrent(true) { }
  95 
  96   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  97     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  98     // This path is executed by the concurrent refine or mutator threads,
  99     // concurrently, and so we do not care if card_ptr contains references
 100     // that point into the collection set.
 101     assert(!oops_into_cset, "should be");
 102 
 103     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 104       // Caller will actually yield.
 105       return false;
 106     }
 107     // Otherwise, we finished successfully; return true.
 108     return true;
 109   }
 110 
 111   void set_concurrent(bool b) { _concurrent = b; }
 112 };
 113 
 114 
 115 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 116   size_t _num_processed;
 117   CardTableModRefBS* _ctbs;
 118   int _histo[256];
 119 
 120  public:
 121   ClearLoggedCardTableEntryClosure() :
 122     _num_processed(0), _ctbs(G1CollectedHeap::heap()->g1_barrier_set())
 123   {
 124     for (int i = 0; i < 256; i++) _histo[i] = 0;
 125   }
 126 
 127   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 128     unsigned char* ujb = (unsigned char*)card_ptr;
 129     int ind = (int)(*ujb);
 130     _histo[ind]++;
 131 
 132     *card_ptr = (jbyte)CardTableModRefBS::clean_card_val();
 133     _num_processed++;
 134 
 135     return true;
 136   }
 137 
 138   size_t num_processed() { return _num_processed; }
 139 
 140   void print_histo() {
 141     gclog_or_tty->print_cr("Card table value histogram:");
 142     for (int i = 0; i < 256; i++) {
 143       if (_histo[i] != 0) {
 144         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 145       }
 146     }
 147   }
 148 };
 149 
 150 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 151  private:
 152   size_t _num_processed;
 153 
 154  public:
 155   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 156 
 157   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 158     *card_ptr = CardTableModRefBS::dirty_card_val();
 159     _num_processed++;
 160     return true;
 161   }
 162 
 163   size_t num_processed() const { return _num_processed; }
 164 };
 165 
 166 YoungList::YoungList(G1CollectedHeap* g1h) :
 167     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 168     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 169   guarantee(check_list_empty(false), "just making sure...");
 170 }
 171 
 172 void YoungList::push_region(HeapRegion *hr) {
 173   assert(!hr->is_young(), "should not already be young");
 174   assert(hr->get_next_young_region() == NULL, "cause it should!");
 175 
 176   hr->set_next_young_region(_head);
 177   _head = hr;
 178 
 179   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 180   ++_length;
 181 }
 182 
 183 void YoungList::add_survivor_region(HeapRegion* hr) {
 184   assert(hr->is_survivor(), "should be flagged as survivor region");
 185   assert(hr->get_next_young_region() == NULL, "cause it should!");
 186 
 187   hr->set_next_young_region(_survivor_head);
 188   if (_survivor_head == NULL) {
 189     _survivor_tail = hr;
 190   }
 191   _survivor_head = hr;
 192   ++_survivor_length;
 193 }
 194 
 195 void YoungList::empty_list(HeapRegion* list) {
 196   while (list != NULL) {
 197     HeapRegion* next = list->get_next_young_region();
 198     list->set_next_young_region(NULL);
 199     list->uninstall_surv_rate_group();
 200     // This is called before a Full GC and all the non-empty /
 201     // non-humongous regions at the end of the Full GC will end up as
 202     // old anyway.
 203     list->set_old();
 204     list = next;
 205   }
 206 }
 207 
 208 void YoungList::empty_list() {
 209   assert(check_list_well_formed(), "young list should be well formed");
 210 
 211   empty_list(_head);
 212   _head = NULL;
 213   _length = 0;
 214 
 215   empty_list(_survivor_head);
 216   _survivor_head = NULL;
 217   _survivor_tail = NULL;
 218   _survivor_length = 0;
 219 
 220   _last_sampled_rs_lengths = 0;
 221 
 222   assert(check_list_empty(false), "just making sure...");
 223 }
 224 
 225 bool YoungList::check_list_well_formed() {
 226   bool ret = true;
 227 
 228   uint length = 0;
 229   HeapRegion* curr = _head;
 230   HeapRegion* last = NULL;
 231   while (curr != NULL) {
 232     if (!curr->is_young()) {
 233       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 234                              "incorrectly tagged (y: %d, surv: %d)",
 235                              curr->bottom(), curr->end(),
 236                              curr->is_young(), curr->is_survivor());
 237       ret = false;
 238     }
 239     ++length;
 240     last = curr;
 241     curr = curr->get_next_young_region();
 242   }
 243   ret = ret && (length == _length);
 244 
 245   if (!ret) {
 246     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 247     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 248                            length, _length);
 249   }
 250 
 251   return ret;
 252 }
 253 
 254 bool YoungList::check_list_empty(bool check_sample) {
 255   bool ret = true;
 256 
 257   if (_length != 0) {
 258     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 259                   _length);
 260     ret = false;
 261   }
 262   if (check_sample && _last_sampled_rs_lengths != 0) {
 263     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 264     ret = false;
 265   }
 266   if (_head != NULL) {
 267     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 268     ret = false;
 269   }
 270   if (!ret) {
 271     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 272   }
 273 
 274   return ret;
 275 }
 276 
 277 void
 278 YoungList::rs_length_sampling_init() {
 279   _sampled_rs_lengths = 0;
 280   _curr               = _head;
 281 }
 282 
 283 bool
 284 YoungList::rs_length_sampling_more() {
 285   return _curr != NULL;
 286 }
 287 
 288 void
 289 YoungList::rs_length_sampling_next() {
 290   assert( _curr != NULL, "invariant" );
 291   size_t rs_length = _curr->rem_set()->occupied();
 292 
 293   _sampled_rs_lengths += rs_length;
 294 
 295   // The current region may not yet have been added to the
 296   // incremental collection set (it gets added when it is
 297   // retired as the current allocation region).
 298   if (_curr->in_collection_set()) {
 299     // Update the collection set policy information for this region
 300     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 301   }
 302 
 303   _curr = _curr->get_next_young_region();
 304   if (_curr == NULL) {
 305     _last_sampled_rs_lengths = _sampled_rs_lengths;
 306     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 307   }
 308 }
 309 
 310 void
 311 YoungList::reset_auxilary_lists() {
 312   guarantee( is_empty(), "young list should be empty" );
 313   assert(check_list_well_formed(), "young list should be well formed");
 314 
 315   // Add survivor regions to SurvRateGroup.
 316   _g1h->g1_policy()->note_start_adding_survivor_regions();
 317   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 318 
 319   int young_index_in_cset = 0;
 320   for (HeapRegion* curr = _survivor_head;
 321        curr != NULL;
 322        curr = curr->get_next_young_region()) {
 323     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 324 
 325     // The region is a non-empty survivor so let's add it to
 326     // the incremental collection set for the next evacuation
 327     // pause.
 328     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 329     young_index_in_cset += 1;
 330   }
 331   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 332   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 333 
 334   _head   = _survivor_head;
 335   _length = _survivor_length;
 336   if (_survivor_head != NULL) {
 337     assert(_survivor_tail != NULL, "cause it shouldn't be");
 338     assert(_survivor_length > 0, "invariant");
 339     _survivor_tail->set_next_young_region(NULL);
 340   }
 341 
 342   // Don't clear the survivor list handles until the start of
 343   // the next evacuation pause - we need it in order to re-tag
 344   // the survivor regions from this evacuation pause as 'young'
 345   // at the start of the next.
 346 
 347   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 348 
 349   assert(check_list_well_formed(), "young list should be well formed");
 350 }
 351 
 352 void YoungList::print() {
 353   HeapRegion* lists[] = {_head,   _survivor_head};
 354   const char* names[] = {"YOUNG", "SURVIVOR"};
 355 
 356   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 357     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 358     HeapRegion *curr = lists[list];
 359     if (curr == NULL)
 360       gclog_or_tty->print_cr("  empty");
 361     while (curr != NULL) {
 362       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 363                              HR_FORMAT_PARAMS(curr),
 364                              curr->prev_top_at_mark_start(),
 365                              curr->next_top_at_mark_start(),
 366                              curr->age_in_surv_rate_group_cond());
 367       curr = curr->get_next_young_region();
 368     }
 369   }
 370 
 371   gclog_or_tty->cr();
 372 }
 373 
 374 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 375   OtherRegionsTable::invalidate(start_idx, num_regions);
 376 }
 377 
 378 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 379   // The from card cache is not the memory that is actually committed. So we cannot
 380   // take advantage of the zero_filled parameter.
 381   reset_from_card_cache(start_idx, num_regions);
 382 }
 383 
 384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 385 {
 386   // Claim the right to put the region on the dirty cards region list
 387   // by installing a self pointer.
 388   HeapRegion* next = hr->get_next_dirty_cards_region();
 389   if (next == NULL) {
 390     HeapRegion* res = (HeapRegion*)
 391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 392                           NULL);
 393     if (res == NULL) {
 394       HeapRegion* head;
 395       do {
 396         // Put the region to the dirty cards region list.
 397         head = _dirty_cards_region_list;
 398         next = (HeapRegion*)
 399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 400         if (next == head) {
 401           assert(hr->get_next_dirty_cards_region() == hr,
 402                  "hr->get_next_dirty_cards_region() != hr");
 403           if (next == NULL) {
 404             // The last region in the list points to itself.
 405             hr->set_next_dirty_cards_region(hr);
 406           } else {
 407             hr->set_next_dirty_cards_region(next);
 408           }
 409         }
 410       } while (next != head);
 411     }
 412   }
 413 }
 414 
 415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 416 {
 417   HeapRegion* head;
 418   HeapRegion* hr;
 419   do {
 420     head = _dirty_cards_region_list;
 421     if (head == NULL) {
 422       return NULL;
 423     }
 424     HeapRegion* new_head = head->get_next_dirty_cards_region();
 425     if (head == new_head) {
 426       // The last region.
 427       new_head = NULL;
 428     }
 429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 430                                           head);
 431   } while (hr != head);
 432   assert(hr != NULL, "invariant");
 433   hr->set_next_dirty_cards_region(NULL);
 434   return hr;
 435 }
 436 
 437 #ifdef ASSERT
 438 // A region is added to the collection set as it is retired
 439 // so an address p can point to a region which will be in the
 440 // collection set but has not yet been retired.  This method
 441 // therefore is only accurate during a GC pause after all
 442 // regions have been retired.  It is used for debugging
 443 // to check if an nmethod has references to objects that can
 444 // be move during a partial collection.  Though it can be
 445 // inaccurate, it is sufficient for G1 because the conservative
 446 // implementation of is_scavengable() for G1 will indicate that
 447 // all nmethods must be scanned during a partial collection.
 448 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 449   if (p == NULL) {
 450     return false;
 451   }
 452   return heap_region_containing(p)->in_collection_set();
 453 }
 454 #endif
 455 
 456 // Returns true if the reference points to an object that
 457 // can move in an incremental collection.
 458 bool G1CollectedHeap::is_scavengable(const void* p) {
 459   HeapRegion* hr = heap_region_containing(p);
 460   return !hr->isHumongous();
 461 }
 462 
 463 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 464   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 465   CardTableModRefBS* ct_bs = g1_barrier_set();
 466 
 467   // Count the dirty cards at the start.
 468   CountNonCleanMemRegionClosure count1(this);
 469   ct_bs->mod_card_iterate(&count1);
 470   int orig_count = count1.n();
 471 
 472   // First clear the logged cards.
 473   ClearLoggedCardTableEntryClosure clear;
 474   dcqs.apply_closure_to_all_completed_buffers(&clear);
 475   dcqs.iterate_closure_all_threads(&clear, false);
 476   clear.print_histo();
 477 
 478   // Now ensure that there's no dirty cards.
 479   CountNonCleanMemRegionClosure count2(this);
 480   ct_bs->mod_card_iterate(&count2);
 481   if (count2.n() != 0) {
 482     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 483                            count2.n(), orig_count);
 484   }
 485   guarantee(count2.n() == 0, "Card table should be clean.");
 486 
 487   RedirtyLoggedCardTableEntryClosure redirty;
 488   dcqs.apply_closure_to_all_completed_buffers(&redirty);
 489   dcqs.iterate_closure_all_threads(&redirty, false);
 490   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 491                          clear.num_processed(), orig_count);
 492   guarantee(redirty.num_processed() == clear.num_processed(),
 493             err_msg("Redirtied "SIZE_FORMAT" cards, bug cleared "SIZE_FORMAT,
 494                     redirty.num_processed(), clear.num_processed()));
 495 
 496   CountNonCleanMemRegionClosure count3(this);
 497   ct_bs->mod_card_iterate(&count3);
 498   if (count3.n() != orig_count) {
 499     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 500                            orig_count, count3.n());
 501     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 502   }
 503 }
 504 
 505 // Private class members.
 506 
 507 G1CollectedHeap* G1CollectedHeap::_g1h;
 508 
 509 // Private methods.
 510 
 511 HeapRegion*
 512 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 513   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 514   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 515     if (!_secondary_free_list.is_empty()) {
 516       if (G1ConcRegionFreeingVerbose) {
 517         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 518                                "secondary_free_list has %u entries",
 519                                _secondary_free_list.length());
 520       }
 521       // It looks as if there are free regions available on the
 522       // secondary_free_list. Let's move them to the free_list and try
 523       // again to allocate from it.
 524       append_secondary_free_list();
 525 
 526       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 527              "empty we should have moved at least one entry to the free_list");
 528       HeapRegion* res = _hrm.allocate_free_region(is_old);
 529       if (G1ConcRegionFreeingVerbose) {
 530         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 531                                "allocated "HR_FORMAT" from secondary_free_list",
 532                                HR_FORMAT_PARAMS(res));
 533       }
 534       return res;
 535     }
 536 
 537     // Wait here until we get notified either when (a) there are no
 538     // more free regions coming or (b) some regions have been moved on
 539     // the secondary_free_list.
 540     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 541   }
 542 
 543   if (G1ConcRegionFreeingVerbose) {
 544     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 545                            "could not allocate from secondary_free_list");
 546   }
 547   return NULL;
 548 }
 549 
 550 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 551   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 552          "the only time we use this to allocate a humongous region is "
 553          "when we are allocating a single humongous region");
 554 
 555   HeapRegion* res;
 556   if (G1StressConcRegionFreeing) {
 557     if (!_secondary_free_list.is_empty()) {
 558       if (G1ConcRegionFreeingVerbose) {
 559         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 560                                "forced to look at the secondary_free_list");
 561       }
 562       res = new_region_try_secondary_free_list(is_old);
 563       if (res != NULL) {
 564         return res;
 565       }
 566     }
 567   }
 568 
 569   res = _hrm.allocate_free_region(is_old);
 570 
 571   if (res == NULL) {
 572     if (G1ConcRegionFreeingVerbose) {
 573       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 574                              "res == NULL, trying the secondary_free_list");
 575     }
 576     res = new_region_try_secondary_free_list(is_old);
 577   }
 578   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 579     // Currently, only attempts to allocate GC alloc regions set
 580     // do_expand to true. So, we should only reach here during a
 581     // safepoint. If this assumption changes we might have to
 582     // reconsider the use of _expand_heap_after_alloc_failure.
 583     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 584 
 585     ergo_verbose1(ErgoHeapSizing,
 586                   "attempt heap expansion",
 587                   ergo_format_reason("region allocation request failed")
 588                   ergo_format_byte("allocation request"),
 589                   word_size * HeapWordSize);
 590     if (expand(word_size * HeapWordSize)) {
 591       // Given that expand() succeeded in expanding the heap, and we
 592       // always expand the heap by an amount aligned to the heap
 593       // region size, the free list should in theory not be empty.
 594       // In either case allocate_free_region() will check for NULL.
 595       res = _hrm.allocate_free_region(is_old);
 596     } else {
 597       _expand_heap_after_alloc_failure = false;
 598     }
 599   }
 600   return res;
 601 }
 602 
 603 HeapWord*
 604 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 605                                                            uint num_regions,
 606                                                            size_t word_size,
 607                                                            AllocationContext_t context) {
 608   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 609   assert(isHumongous(word_size), "word_size should be humongous");
 610   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 611 
 612   // Index of last region in the series + 1.
 613   uint last = first + num_regions;
 614 
 615   // We need to initialize the region(s) we just discovered. This is
 616   // a bit tricky given that it can happen concurrently with
 617   // refinement threads refining cards on these regions and
 618   // potentially wanting to refine the BOT as they are scanning
 619   // those cards (this can happen shortly after a cleanup; see CR
 620   // 6991377). So we have to set up the region(s) carefully and in
 621   // a specific order.
 622 
 623   // The word size sum of all the regions we will allocate.
 624   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 625   assert(word_size <= word_size_sum, "sanity");
 626 
 627   // This will be the "starts humongous" region.
 628   HeapRegion* first_hr = region_at(first);
 629   // The header of the new object will be placed at the bottom of
 630   // the first region.
 631   HeapWord* new_obj = first_hr->bottom();
 632   // This will be the new end of the first region in the series that
 633   // should also match the end of the last region in the series.
 634   HeapWord* new_end = new_obj + word_size_sum;
 635   // This will be the new top of the first region that will reflect
 636   // this allocation.
 637   HeapWord* new_top = new_obj + word_size;
 638 
 639   // First, we need to zero the header of the space that we will be
 640   // allocating. When we update top further down, some refinement
 641   // threads might try to scan the region. By zeroing the header we
 642   // ensure that any thread that will try to scan the region will
 643   // come across the zero klass word and bail out.
 644   //
 645   // NOTE: It would not have been correct to have used
 646   // CollectedHeap::fill_with_object() and make the space look like
 647   // an int array. The thread that is doing the allocation will
 648   // later update the object header to a potentially different array
 649   // type and, for a very short period of time, the klass and length
 650   // fields will be inconsistent. This could cause a refinement
 651   // thread to calculate the object size incorrectly.
 652   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 653 
 654   // We will set up the first region as "starts humongous". This
 655   // will also update the BOT covering all the regions to reflect
 656   // that there is a single object that starts at the bottom of the
 657   // first region.
 658   first_hr->set_startsHumongous(new_top, new_end);
 659   first_hr->set_allocation_context(context);
 660   // Then, if there are any, we will set up the "continues
 661   // humongous" regions.
 662   HeapRegion* hr = NULL;
 663   for (uint i = first + 1; i < last; ++i) {
 664     hr = region_at(i);
 665     hr->set_continuesHumongous(first_hr);
 666     hr->set_allocation_context(context);
 667   }
 668   // If we have "continues humongous" regions (hr != NULL), then the
 669   // end of the last one should match new_end.
 670   assert(hr == NULL || hr->end() == new_end, "sanity");
 671 
 672   // Up to this point no concurrent thread would have been able to
 673   // do any scanning on any region in this series. All the top
 674   // fields still point to bottom, so the intersection between
 675   // [bottom,top] and [card_start,card_end] will be empty. Before we
 676   // update the top fields, we'll do a storestore to make sure that
 677   // no thread sees the update to top before the zeroing of the
 678   // object header and the BOT initialization.
 679   OrderAccess::storestore();
 680 
 681   // Now that the BOT and the object header have been initialized,
 682   // we can update top of the "starts humongous" region.
 683   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 684          "new_top should be in this region");
 685   first_hr->set_top(new_top);
 686   if (_hr_printer.is_active()) {
 687     HeapWord* bottom = first_hr->bottom();
 688     HeapWord* end = first_hr->orig_end();
 689     if ((first + 1) == last) {
 690       // the series has a single humongous region
 691       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 692     } else {
 693       // the series has more than one humongous regions
 694       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 695     }
 696   }
 697 
 698   // Now, we will update the top fields of the "continues humongous"
 699   // regions. The reason we need to do this is that, otherwise,
 700   // these regions would look empty and this will confuse parts of
 701   // G1. For example, the code that looks for a consecutive number
 702   // of empty regions will consider them empty and try to
 703   // re-allocate them. We can extend is_empty() to also include
 704   // !continuesHumongous(), but it is easier to just update the top
 705   // fields here. The way we set top for all regions (i.e., top ==
 706   // end for all regions but the last one, top == new_top for the
 707   // last one) is actually used when we will free up the humongous
 708   // region in free_humongous_region().
 709   hr = NULL;
 710   for (uint i = first + 1; i < last; ++i) {
 711     hr = region_at(i);
 712     if ((i + 1) == last) {
 713       // last continues humongous region
 714       assert(hr->bottom() < new_top && new_top <= hr->end(),
 715              "new_top should fall on this region");
 716       hr->set_top(new_top);
 717       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 718     } else {
 719       // not last one
 720       assert(new_top > hr->end(), "new_top should be above this region");
 721       hr->set_top(hr->end());
 722       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 723     }
 724   }
 725   // If we have continues humongous regions (hr != NULL), then the
 726   // end of the last one should match new_end and its top should
 727   // match new_top.
 728   assert(hr == NULL ||
 729          (hr->end() == new_end && hr->top() == new_top), "sanity");
 730   check_bitmaps("Humongous Region Allocation", first_hr);
 731 
 732   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 733   _allocator->increase_used(first_hr->used());
 734   _humongous_set.add(first_hr);
 735 
 736   return new_obj;
 737 }
 738 
 739 // If could fit into free regions w/o expansion, try.
 740 // Otherwise, if can expand, do so.
 741 // Otherwise, if using ex regions might help, try with ex given back.
 742 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 743   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 744 
 745   verify_region_sets_optional();
 746 
 747   uint first = G1_NO_HRM_INDEX;
 748   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 749 
 750   if (obj_regions == 1) {
 751     // Only one region to allocate, try to use a fast path by directly allocating
 752     // from the free lists. Do not try to expand here, we will potentially do that
 753     // later.
 754     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 755     if (hr != NULL) {
 756       first = hr->hrm_index();
 757     }
 758   } else {
 759     // We can't allocate humongous regions spanning more than one region while
 760     // cleanupComplete() is running, since some of the regions we find to be
 761     // empty might not yet be added to the free list. It is not straightforward
 762     // to know in which list they are on so that we can remove them. We only
 763     // need to do this if we need to allocate more than one region to satisfy the
 764     // current humongous allocation request. If we are only allocating one region
 765     // we use the one-region region allocation code (see above), that already
 766     // potentially waits for regions from the secondary free list.
 767     wait_while_free_regions_coming();
 768     append_secondary_free_list_if_not_empty_with_lock();
 769 
 770     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 771     // are lucky enough to find some.
 772     first = _hrm.find_contiguous_only_empty(obj_regions);
 773     if (first != G1_NO_HRM_INDEX) {
 774       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 775     }
 776   }
 777 
 778   if (first == G1_NO_HRM_INDEX) {
 779     // Policy: We could not find enough regions for the humongous object in the
 780     // free list. Look through the heap to find a mix of free and uncommitted regions.
 781     // If so, try expansion.
 782     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 783     if (first != G1_NO_HRM_INDEX) {
 784       // We found something. Make sure these regions are committed, i.e. expand
 785       // the heap. Alternatively we could do a defragmentation GC.
 786       ergo_verbose1(ErgoHeapSizing,
 787                     "attempt heap expansion",
 788                     ergo_format_reason("humongous allocation request failed")
 789                     ergo_format_byte("allocation request"),
 790                     word_size * HeapWordSize);
 791 
 792       _hrm.expand_at(first, obj_regions);
 793       g1_policy()->record_new_heap_size(num_regions());
 794 
 795 #ifdef ASSERT
 796       for (uint i = first; i < first + obj_regions; ++i) {
 797         HeapRegion* hr = region_at(i);
 798         assert(hr->is_free(), "sanity");
 799         assert(hr->is_empty(), "sanity");
 800         assert(is_on_master_free_list(hr), "sanity");
 801       }
 802 #endif
 803       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 804     } else {
 805       // Policy: Potentially trigger a defragmentation GC.
 806     }
 807   }
 808 
 809   HeapWord* result = NULL;
 810   if (first != G1_NO_HRM_INDEX) {
 811     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 812                                                        word_size, context);
 813     assert(result != NULL, "it should always return a valid result");
 814 
 815     // A successful humongous object allocation changes the used space
 816     // information of the old generation so we need to recalculate the
 817     // sizes and update the jstat counters here.
 818     g1mm()->update_sizes();
 819   }
 820 
 821   verify_region_sets_optional();
 822 
 823   return result;
 824 }
 825 
 826 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 827   assert_heap_not_locked_and_not_at_safepoint();
 828   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 829 
 830   unsigned int dummy_gc_count_before;
 831   int dummy_gclocker_retry_count = 0;
 832   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 833 }
 834 
 835 HeapWord*
 836 G1CollectedHeap::mem_allocate(size_t word_size,
 837                               bool*  gc_overhead_limit_was_exceeded) {
 838   assert_heap_not_locked_and_not_at_safepoint();
 839 
 840   // Loop until the allocation is satisfied, or unsatisfied after GC.
 841   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 842     unsigned int gc_count_before;
 843 
 844     HeapWord* result = NULL;
 845     if (!isHumongous(word_size)) {
 846       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 847     } else {
 848       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 849     }
 850     if (result != NULL) {
 851       return result;
 852     }
 853 
 854     // Create the garbage collection operation...
 855     VM_G1CollectForAllocation op(gc_count_before, word_size);
 856     op.set_allocation_context(AllocationContext::current());
 857 
 858     // ...and get the VM thread to execute it.
 859     VMThread::execute(&op);
 860 
 861     if (op.prologue_succeeded() && op.pause_succeeded()) {
 862       // If the operation was successful we'll return the result even
 863       // if it is NULL. If the allocation attempt failed immediately
 864       // after a Full GC, it's unlikely we'll be able to allocate now.
 865       HeapWord* result = op.result();
 866       if (result != NULL && !isHumongous(word_size)) {
 867         // Allocations that take place on VM operations do not do any
 868         // card dirtying and we have to do it here. We only have to do
 869         // this for non-humongous allocations, though.
 870         dirty_young_block(result, word_size);
 871       }
 872       return result;
 873     } else {
 874       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 875         return NULL;
 876       }
 877       assert(op.result() == NULL,
 878              "the result should be NULL if the VM op did not succeed");
 879     }
 880 
 881     // Give a warning if we seem to be looping forever.
 882     if ((QueuedAllocationWarningCount > 0) &&
 883         (try_count % QueuedAllocationWarningCount == 0)) {
 884       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 885     }
 886   }
 887 
 888   ShouldNotReachHere();
 889   return NULL;
 890 }
 891 
 892 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 893                                                    AllocationContext_t context,
 894                                                    unsigned int *gc_count_before_ret,
 895                                                    int* gclocker_retry_count_ret) {
 896   // Make sure you read the note in attempt_allocation_humongous().
 897 
 898   assert_heap_not_locked_and_not_at_safepoint();
 899   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 900          "be called for humongous allocation requests");
 901 
 902   // We should only get here after the first-level allocation attempt
 903   // (attempt_allocation()) failed to allocate.
 904 
 905   // We will loop until a) we manage to successfully perform the
 906   // allocation or b) we successfully schedule a collection which
 907   // fails to perform the allocation. b) is the only case when we'll
 908   // return NULL.
 909   HeapWord* result = NULL;
 910   for (int try_count = 1; /* we'll return */; try_count += 1) {
 911     bool should_try_gc;
 912     unsigned int gc_count_before;
 913 
 914     {
 915       MutexLockerEx x(Heap_lock);
 916       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 917                                                                                     false /* bot_updates */);
 918       if (result != NULL) {
 919         return result;
 920       }
 921 
 922       // If we reach here, attempt_allocation_locked() above failed to
 923       // allocate a new region. So the mutator alloc region should be NULL.
 924       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 925 
 926       if (GC_locker::is_active_and_needs_gc()) {
 927         if (g1_policy()->can_expand_young_list()) {
 928           // No need for an ergo verbose message here,
 929           // can_expand_young_list() does this when it returns true.
 930           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 931                                                                                        false /* bot_updates */);
 932           if (result != NULL) {
 933             return result;
 934           }
 935         }
 936         should_try_gc = false;
 937       } else {
 938         // The GCLocker may not be active but the GCLocker initiated
 939         // GC may not yet have been performed (GCLocker::needs_gc()
 940         // returns true). In this case we do not try this GC and
 941         // wait until the GCLocker initiated GC is performed, and
 942         // then retry the allocation.
 943         if (GC_locker::needs_gc()) {
 944           should_try_gc = false;
 945         } else {
 946           // Read the GC count while still holding the Heap_lock.
 947           gc_count_before = total_collections();
 948           should_try_gc = true;
 949         }
 950       }
 951     }
 952 
 953     if (should_try_gc) {
 954       bool succeeded;
 955       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 956           GCCause::_g1_inc_collection_pause);
 957       if (result != NULL) {
 958         assert(succeeded, "only way to get back a non-NULL result");
 959         return result;
 960       }
 961 
 962       if (succeeded) {
 963         // If we get here we successfully scheduled a collection which
 964         // failed to allocate. No point in trying to allocate
 965         // further. We'll just return NULL.
 966         MutexLockerEx x(Heap_lock);
 967         *gc_count_before_ret = total_collections();
 968         return NULL;
 969       }
 970     } else {
 971       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 972         MutexLockerEx x(Heap_lock);
 973         *gc_count_before_ret = total_collections();
 974         return NULL;
 975       }
 976       // The GCLocker is either active or the GCLocker initiated
 977       // GC has not yet been performed. Stall until it is and
 978       // then retry the allocation.
 979       GC_locker::stall_until_clear();
 980       (*gclocker_retry_count_ret) += 1;
 981     }
 982 
 983     // We can reach here if we were unsuccessful in scheduling a
 984     // collection (because another thread beat us to it) or if we were
 985     // stalled due to the GC locker. In either can we should retry the
 986     // allocation attempt in case another thread successfully
 987     // performed a collection and reclaimed enough space. We do the
 988     // first attempt (without holding the Heap_lock) here and the
 989     // follow-on attempt will be at the start of the next loop
 990     // iteration (after taking the Heap_lock).
 991     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 992                                                                            false /* bot_updates */);
 993     if (result != NULL) {
 994       return result;
 995     }
 996 
 997     // Give a warning if we seem to be looping forever.
 998     if ((QueuedAllocationWarningCount > 0) &&
 999         (try_count % QueuedAllocationWarningCount == 0)) {
1000       warning("G1CollectedHeap::attempt_allocation_slow() "
1001               "retries %d times", try_count);
1002     }
1003   }
1004 
1005   ShouldNotReachHere();
1006   return NULL;
1007 }
1008 
1009 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1010                                                         unsigned int * gc_count_before_ret,
1011                                                         int* gclocker_retry_count_ret) {
1012   // The structure of this method has a lot of similarities to
1013   // attempt_allocation_slow(). The reason these two were not merged
1014   // into a single one is that such a method would require several "if
1015   // allocation is not humongous do this, otherwise do that"
1016   // conditional paths which would obscure its flow. In fact, an early
1017   // version of this code did use a unified method which was harder to
1018   // follow and, as a result, it had subtle bugs that were hard to
1019   // track down. So keeping these two methods separate allows each to
1020   // be more readable. It will be good to keep these two in sync as
1021   // much as possible.
1022 
1023   assert_heap_not_locked_and_not_at_safepoint();
1024   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1025          "should only be called for humongous allocations");
1026 
1027   // Humongous objects can exhaust the heap quickly, so we should check if we
1028   // need to start a marking cycle at each humongous object allocation. We do
1029   // the check before we do the actual allocation. The reason for doing it
1030   // before the allocation is that we avoid having to keep track of the newly
1031   // allocated memory while we do a GC.
1032   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1033                                            word_size)) {
1034     collect(GCCause::_g1_humongous_allocation);
1035   }
1036 
1037   // We will loop until a) we manage to successfully perform the
1038   // allocation or b) we successfully schedule a collection which
1039   // fails to perform the allocation. b) is the only case when we'll
1040   // return NULL.
1041   HeapWord* result = NULL;
1042   for (int try_count = 1; /* we'll return */; try_count += 1) {
1043     bool should_try_gc;
1044     unsigned int gc_count_before;
1045 
1046     {
1047       MutexLockerEx x(Heap_lock);
1048 
1049       // Given that humongous objects are not allocated in young
1050       // regions, we'll first try to do the allocation without doing a
1051       // collection hoping that there's enough space in the heap.
1052       result = humongous_obj_allocate(word_size, AllocationContext::current());
1053       if (result != NULL) {
1054         return result;
1055       }
1056 
1057       if (GC_locker::is_active_and_needs_gc()) {
1058         should_try_gc = false;
1059       } else {
1060          // The GCLocker may not be active but the GCLocker initiated
1061         // GC may not yet have been performed (GCLocker::needs_gc()
1062         // returns true). In this case we do not try this GC and
1063         // wait until the GCLocker initiated GC is performed, and
1064         // then retry the allocation.
1065         if (GC_locker::needs_gc()) {
1066           should_try_gc = false;
1067         } else {
1068           // Read the GC count while still holding the Heap_lock.
1069           gc_count_before = total_collections();
1070           should_try_gc = true;
1071         }
1072       }
1073     }
1074 
1075     if (should_try_gc) {
1076       // If we failed to allocate the humongous object, we should try to
1077       // do a collection pause (if we're allowed) in case it reclaims
1078       // enough space for the allocation to succeed after the pause.
1079 
1080       bool succeeded;
1081       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1082           GCCause::_g1_humongous_allocation);
1083       if (result != NULL) {
1084         assert(succeeded, "only way to get back a non-NULL result");
1085         return result;
1086       }
1087 
1088       if (succeeded) {
1089         // If we get here we successfully scheduled a collection which
1090         // failed to allocate. No point in trying to allocate
1091         // further. We'll just return NULL.
1092         MutexLockerEx x(Heap_lock);
1093         *gc_count_before_ret = total_collections();
1094         return NULL;
1095       }
1096     } else {
1097       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1098         MutexLockerEx x(Heap_lock);
1099         *gc_count_before_ret = total_collections();
1100         return NULL;
1101       }
1102       // The GCLocker is either active or the GCLocker initiated
1103       // GC has not yet been performed. Stall until it is and
1104       // then retry the allocation.
1105       GC_locker::stall_until_clear();
1106       (*gclocker_retry_count_ret) += 1;
1107     }
1108 
1109     // We can reach here if we were unsuccessful in scheduling a
1110     // collection (because another thread beat us to it) or if we were
1111     // stalled due to the GC locker. In either can we should retry the
1112     // allocation attempt in case another thread successfully
1113     // performed a collection and reclaimed enough space.  Give a
1114     // warning if we seem to be looping forever.
1115 
1116     if ((QueuedAllocationWarningCount > 0) &&
1117         (try_count % QueuedAllocationWarningCount == 0)) {
1118       warning("G1CollectedHeap::attempt_allocation_humongous() "
1119               "retries %d times", try_count);
1120     }
1121   }
1122 
1123   ShouldNotReachHere();
1124   return NULL;
1125 }
1126 
1127 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1128                                                            AllocationContext_t context,
1129                                                            bool expect_null_mutator_alloc_region) {
1130   assert_at_safepoint(true /* should_be_vm_thread */);
1131   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1132                                              !expect_null_mutator_alloc_region,
1133          "the current alloc region was unexpectedly found to be non-NULL");
1134 
1135   if (!isHumongous(word_size)) {
1136     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1137                                                       false /* bot_updates */);
1138   } else {
1139     HeapWord* result = humongous_obj_allocate(word_size, context);
1140     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1141       g1_policy()->set_initiate_conc_mark_if_possible();
1142     }
1143     return result;
1144   }
1145 
1146   ShouldNotReachHere();
1147 }
1148 
1149 class PostMCRemSetClearClosure: public HeapRegionClosure {
1150   G1CollectedHeap* _g1h;
1151   ModRefBarrierSet* _mr_bs;
1152 public:
1153   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1154     _g1h(g1h), _mr_bs(mr_bs) {}
1155 
1156   bool doHeapRegion(HeapRegion* r) {
1157     HeapRegionRemSet* hrrs = r->rem_set();
1158 
1159     if (r->continuesHumongous()) {
1160       // We'll assert that the strong code root list and RSet is empty
1161       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1162       assert(hrrs->occupied() == 0, "RSet should be empty");
1163       return false;
1164     }
1165 
1166     _g1h->reset_gc_time_stamps(r);
1167     hrrs->clear();
1168     // You might think here that we could clear just the cards
1169     // corresponding to the used region.  But no: if we leave a dirty card
1170     // in a region we might allocate into, then it would prevent that card
1171     // from being enqueued, and cause it to be missed.
1172     // Re: the performance cost: we shouldn't be doing full GC anyway!
1173     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1174 
1175     return false;
1176   }
1177 };
1178 
1179 void G1CollectedHeap::clear_rsets_post_compaction() {
1180   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1181   heap_region_iterate(&rs_clear);
1182 }
1183 
1184 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1185   G1CollectedHeap*   _g1h;
1186   UpdateRSOopClosure _cl;
1187   int                _worker_i;
1188 public:
1189   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1190     _cl(g1->g1_rem_set(), worker_i),
1191     _worker_i(worker_i),
1192     _g1h(g1)
1193   { }
1194 
1195   bool doHeapRegion(HeapRegion* r) {
1196     if (!r->continuesHumongous()) {
1197       _cl.set_from(r);
1198       r->oop_iterate(&_cl);
1199     }
1200     return false;
1201   }
1202 };
1203 
1204 class ParRebuildRSTask: public AbstractGangTask {
1205   G1CollectedHeap* _g1;
1206 public:
1207   ParRebuildRSTask(G1CollectedHeap* g1)
1208     : AbstractGangTask("ParRebuildRSTask"),
1209       _g1(g1)
1210   { }
1211 
1212   void work(uint worker_id) {
1213     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1214     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1215                                           _g1->workers()->active_workers(),
1216                                          HeapRegion::RebuildRSClaimValue);
1217   }
1218 };
1219 
1220 class PostCompactionPrinterClosure: public HeapRegionClosure {
1221 private:
1222   G1HRPrinter* _hr_printer;
1223 public:
1224   bool doHeapRegion(HeapRegion* hr) {
1225     assert(!hr->is_young(), "not expecting to find young regions");
1226     if (hr->is_free()) {
1227       // We only generate output for non-empty regions.
1228     } else if (hr->startsHumongous()) {
1229       if (hr->region_num() == 1) {
1230         // single humongous region
1231         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1232       } else {
1233         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1234       }
1235     } else if (hr->continuesHumongous()) {
1236       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1237     } else if (hr->is_old()) {
1238       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1239     } else {
1240       ShouldNotReachHere();
1241     }
1242     return false;
1243   }
1244 
1245   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1246     : _hr_printer(hr_printer) { }
1247 };
1248 
1249 void G1CollectedHeap::print_hrm_post_compaction() {
1250   PostCompactionPrinterClosure cl(hr_printer());
1251   heap_region_iterate(&cl);
1252 }
1253 
1254 bool G1CollectedHeap::do_collection(bool explicit_gc,
1255                                     bool clear_all_soft_refs,
1256                                     size_t word_size) {
1257   assert_at_safepoint(true /* should_be_vm_thread */);
1258 
1259   if (GC_locker::check_active_before_gc()) {
1260     return false;
1261   }
1262 
1263   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1264   gc_timer->register_gc_start();
1265 
1266   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1267   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1268 
1269   SvcGCMarker sgcm(SvcGCMarker::FULL);
1270   ResourceMark rm;
1271 
1272   print_heap_before_gc();
1273   trace_heap_before_gc(gc_tracer);
1274 
1275   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1276 
1277   verify_region_sets_optional();
1278 
1279   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1280                            collector_policy()->should_clear_all_soft_refs();
1281 
1282   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1283 
1284   {
1285     IsGCActiveMark x;
1286 
1287     // Timing
1288     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1289     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1290 
1291     {
1292       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1293       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1294       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1295 
1296       double start = os::elapsedTime();
1297       g1_policy()->record_full_collection_start();
1298 
1299       // Note: When we have a more flexible GC logging framework that
1300       // allows us to add optional attributes to a GC log record we
1301       // could consider timing and reporting how long we wait in the
1302       // following two methods.
1303       wait_while_free_regions_coming();
1304       // If we start the compaction before the CM threads finish
1305       // scanning the root regions we might trip them over as we'll
1306       // be moving objects / updating references. So let's wait until
1307       // they are done. By telling them to abort, they should complete
1308       // early.
1309       _cm->root_regions()->abort();
1310       _cm->root_regions()->wait_until_scan_finished();
1311       append_secondary_free_list_if_not_empty_with_lock();
1312 
1313       gc_prologue(true);
1314       increment_total_collections(true /* full gc */);
1315       increment_old_marking_cycles_started();
1316 
1317       assert(used() == recalculate_used(), "Should be equal");
1318 
1319       verify_before_gc();
1320 
1321       check_bitmaps("Full GC Start");
1322       pre_full_gc_dump(gc_timer);
1323 
1324       COMPILER2_PRESENT(DerivedPointerTable::clear());
1325 
1326       // Disable discovery and empty the discovered lists
1327       // for the CM ref processor.
1328       ref_processor_cm()->disable_discovery();
1329       ref_processor_cm()->abandon_partial_discovery();
1330       ref_processor_cm()->verify_no_references_recorded();
1331 
1332       // Abandon current iterations of concurrent marking and concurrent
1333       // refinement, if any are in progress. We have to do this before
1334       // wait_until_scan_finished() below.
1335       concurrent_mark()->abort();
1336 
1337       // Make sure we'll choose a new allocation region afterwards.
1338       _allocator->release_mutator_alloc_region();
1339       _allocator->abandon_gc_alloc_regions();
1340       g1_rem_set()->cleanupHRRS();
1341 
1342       // We should call this after we retire any currently active alloc
1343       // regions so that all the ALLOC / RETIRE events are generated
1344       // before the start GC event.
1345       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1346 
1347       // We may have added regions to the current incremental collection
1348       // set between the last GC or pause and now. We need to clear the
1349       // incremental collection set and then start rebuilding it afresh
1350       // after this full GC.
1351       abandon_collection_set(g1_policy()->inc_cset_head());
1352       g1_policy()->clear_incremental_cset();
1353       g1_policy()->stop_incremental_cset_building();
1354 
1355       tear_down_region_sets(false /* free_list_only */);
1356       g1_policy()->set_gcs_are_young(true);
1357 
1358       // See the comments in g1CollectedHeap.hpp and
1359       // G1CollectedHeap::ref_processing_init() about
1360       // how reference processing currently works in G1.
1361 
1362       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1363       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1364 
1365       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1366       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1367 
1368       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1369       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1370 
1371       // Do collection work
1372       {
1373         HandleMark hm;  // Discard invalid handles created during gc
1374         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1375       }
1376 
1377       assert(num_free_regions() == 0, "we should not have added any free regions");
1378       rebuild_region_sets(false /* free_list_only */);
1379 
1380       // Enqueue any discovered reference objects that have
1381       // not been removed from the discovered lists.
1382       ref_processor_stw()->enqueue_discovered_references();
1383 
1384       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1385 
1386       MemoryService::track_memory_usage();
1387 
1388       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1389       ref_processor_stw()->verify_no_references_recorded();
1390 
1391       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1392       ClassLoaderDataGraph::purge();
1393       MetaspaceAux::verify_metrics();
1394 
1395       // Note: since we've just done a full GC, concurrent
1396       // marking is no longer active. Therefore we need not
1397       // re-enable reference discovery for the CM ref processor.
1398       // That will be done at the start of the next marking cycle.
1399       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1400       ref_processor_cm()->verify_no_references_recorded();
1401 
1402       reset_gc_time_stamp();
1403       // Since everything potentially moved, we will clear all remembered
1404       // sets, and clear all cards.  Later we will rebuild remembered
1405       // sets. We will also reset the GC time stamps of the regions.
1406       clear_rsets_post_compaction();
1407       check_gc_time_stamps();
1408 
1409       // Resize the heap if necessary.
1410       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1411 
1412       if (_hr_printer.is_active()) {
1413         // We should do this after we potentially resize the heap so
1414         // that all the COMMIT / UNCOMMIT events are generated before
1415         // the end GC event.
1416 
1417         print_hrm_post_compaction();
1418         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1419       }
1420 
1421       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1422       if (hot_card_cache->use_cache()) {
1423         hot_card_cache->reset_card_counts();
1424         hot_card_cache->reset_hot_cache();
1425       }
1426 
1427       // Rebuild remembered sets of all regions.
1428       if (G1CollectedHeap::use_parallel_gc_threads()) {
1429         uint n_workers =
1430           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1431                                                   workers()->active_workers(),
1432                                                   Threads::number_of_non_daemon_threads());
1433         assert(UseDynamicNumberOfGCThreads ||
1434                n_workers == workers()->total_workers(),
1435                "If not dynamic should be using all the  workers");
1436         workers()->set_active_workers(n_workers);
1437         // Set parallel threads in the heap (_n_par_threads) only
1438         // before a parallel phase and always reset it to 0 after
1439         // the phase so that the number of parallel threads does
1440         // no get carried forward to a serial phase where there
1441         // may be code that is "possibly_parallel".
1442         set_par_threads(n_workers);
1443 
1444         ParRebuildRSTask rebuild_rs_task(this);
1445         assert(check_heap_region_claim_values(
1446                HeapRegion::InitialClaimValue), "sanity check");
1447         assert(UseDynamicNumberOfGCThreads ||
1448                workers()->active_workers() == workers()->total_workers(),
1449                "Unless dynamic should use total workers");
1450         // Use the most recent number of  active workers
1451         assert(workers()->active_workers() > 0,
1452                "Active workers not properly set");
1453         set_par_threads(workers()->active_workers());
1454         workers()->run_task(&rebuild_rs_task);
1455         set_par_threads(0);
1456         assert(check_heap_region_claim_values(
1457                HeapRegion::RebuildRSClaimValue), "sanity check");
1458         reset_heap_region_claim_values();
1459       } else {
1460         RebuildRSOutOfRegionClosure rebuild_rs(this);
1461         heap_region_iterate(&rebuild_rs);
1462       }
1463 
1464       // Rebuild the strong code root lists for each region
1465       rebuild_strong_code_roots();
1466 
1467       if (true) { // FIXME
1468         MetaspaceGC::compute_new_size();
1469       }
1470 
1471 #ifdef TRACESPINNING
1472       ParallelTaskTerminator::print_termination_counts();
1473 #endif
1474 
1475       // Discard all rset updates
1476       JavaThread::dirty_card_queue_set().abandon_logs();
1477       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1478 
1479       _young_list->reset_sampled_info();
1480       // At this point there should be no regions in the
1481       // entire heap tagged as young.
1482       assert(check_young_list_empty(true /* check_heap */),
1483              "young list should be empty at this point");
1484 
1485       // Update the number of full collections that have been completed.
1486       increment_old_marking_cycles_completed(false /* concurrent */);
1487 
1488       _hrm.verify_optional();
1489       verify_region_sets_optional();
1490 
1491       verify_after_gc();
1492 
1493       // Clear the previous marking bitmap, if needed for bitmap verification.
1494       // Note we cannot do this when we clear the next marking bitmap in
1495       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1496       // objects marked during a full GC against the previous bitmap.
1497       // But we need to clear it before calling check_bitmaps below since
1498       // the full GC has compacted objects and updated TAMS but not updated
1499       // the prev bitmap.
1500       if (G1VerifyBitmaps) {
1501         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1502       }
1503       check_bitmaps("Full GC End");
1504 
1505       // Start a new incremental collection set for the next pause
1506       assert(g1_policy()->collection_set() == NULL, "must be");
1507       g1_policy()->start_incremental_cset_building();
1508 
1509       clear_cset_fast_test();
1510 
1511       _allocator->init_mutator_alloc_region();
1512 
1513       double end = os::elapsedTime();
1514       g1_policy()->record_full_collection_end();
1515 
1516       if (G1Log::fine()) {
1517         g1_policy()->print_heap_transition();
1518       }
1519 
1520       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1521       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1522       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1523       // before any GC notifications are raised.
1524       g1mm()->update_sizes();
1525 
1526       gc_epilogue(true);
1527     }
1528 
1529     if (G1Log::finer()) {
1530       g1_policy()->print_detailed_heap_transition(true /* full */);
1531     }
1532 
1533     print_heap_after_gc();
1534     trace_heap_after_gc(gc_tracer);
1535 
1536     post_full_gc_dump(gc_timer);
1537 
1538     gc_timer->register_gc_end();
1539     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1540   }
1541 
1542   return true;
1543 }
1544 
1545 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1546   // do_collection() will return whether it succeeded in performing
1547   // the GC. Currently, there is no facility on the
1548   // do_full_collection() API to notify the caller than the collection
1549   // did not succeed (e.g., because it was locked out by the GC
1550   // locker). So, right now, we'll ignore the return value.
1551   bool dummy = do_collection(true,                /* explicit_gc */
1552                              clear_all_soft_refs,
1553                              0                    /* word_size */);
1554 }
1555 
1556 // This code is mostly copied from TenuredGeneration.
1557 void
1558 G1CollectedHeap::
1559 resize_if_necessary_after_full_collection(size_t word_size) {
1560   // Include the current allocation, if any, and bytes that will be
1561   // pre-allocated to support collections, as "used".
1562   const size_t used_after_gc = used();
1563   const size_t capacity_after_gc = capacity();
1564   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1565 
1566   // This is enforced in arguments.cpp.
1567   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1568          "otherwise the code below doesn't make sense");
1569 
1570   // We don't have floating point command-line arguments
1571   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1572   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1573   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1574   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1575 
1576   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1577   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1578 
1579   // We have to be careful here as these two calculations can overflow
1580   // 32-bit size_t's.
1581   double used_after_gc_d = (double) used_after_gc;
1582   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1583   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1584 
1585   // Let's make sure that they are both under the max heap size, which
1586   // by default will make them fit into a size_t.
1587   double desired_capacity_upper_bound = (double) max_heap_size;
1588   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1589                                     desired_capacity_upper_bound);
1590   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1591                                     desired_capacity_upper_bound);
1592 
1593   // We can now safely turn them into size_t's.
1594   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1595   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1596 
1597   // This assert only makes sense here, before we adjust them
1598   // with respect to the min and max heap size.
1599   assert(minimum_desired_capacity <= maximum_desired_capacity,
1600          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1601                  "maximum_desired_capacity = "SIZE_FORMAT,
1602                  minimum_desired_capacity, maximum_desired_capacity));
1603 
1604   // Should not be greater than the heap max size. No need to adjust
1605   // it with respect to the heap min size as it's a lower bound (i.e.,
1606   // we'll try to make the capacity larger than it, not smaller).
1607   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1608   // Should not be less than the heap min size. No need to adjust it
1609   // with respect to the heap max size as it's an upper bound (i.e.,
1610   // we'll try to make the capacity smaller than it, not greater).
1611   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1612 
1613   if (capacity_after_gc < minimum_desired_capacity) {
1614     // Don't expand unless it's significant
1615     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1616     ergo_verbose4(ErgoHeapSizing,
1617                   "attempt heap expansion",
1618                   ergo_format_reason("capacity lower than "
1619                                      "min desired capacity after Full GC")
1620                   ergo_format_byte("capacity")
1621                   ergo_format_byte("occupancy")
1622                   ergo_format_byte_perc("min desired capacity"),
1623                   capacity_after_gc, used_after_gc,
1624                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1625     expand(expand_bytes);
1626 
1627     // No expansion, now see if we want to shrink
1628   } else if (capacity_after_gc > maximum_desired_capacity) {
1629     // Capacity too large, compute shrinking size
1630     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1631     ergo_verbose4(ErgoHeapSizing,
1632                   "attempt heap shrinking",
1633                   ergo_format_reason("capacity higher than "
1634                                      "max desired capacity after Full GC")
1635                   ergo_format_byte("capacity")
1636                   ergo_format_byte("occupancy")
1637                   ergo_format_byte_perc("max desired capacity"),
1638                   capacity_after_gc, used_after_gc,
1639                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1640     shrink(shrink_bytes);
1641   }
1642 }
1643 
1644 
1645 HeapWord*
1646 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1647                                            AllocationContext_t context,
1648                                            bool* succeeded) {
1649   assert_at_safepoint(true /* should_be_vm_thread */);
1650 
1651   *succeeded = true;
1652   // Let's attempt the allocation first.
1653   HeapWord* result =
1654     attempt_allocation_at_safepoint(word_size,
1655                                     context,
1656                                     false /* expect_null_mutator_alloc_region */);
1657   if (result != NULL) {
1658     assert(*succeeded, "sanity");
1659     return result;
1660   }
1661 
1662   // In a G1 heap, we're supposed to keep allocation from failing by
1663   // incremental pauses.  Therefore, at least for now, we'll favor
1664   // expansion over collection.  (This might change in the future if we can
1665   // do something smarter than full collection to satisfy a failed alloc.)
1666   result = expand_and_allocate(word_size, context);
1667   if (result != NULL) {
1668     assert(*succeeded, "sanity");
1669     return result;
1670   }
1671 
1672   // Expansion didn't work, we'll try to do a Full GC.
1673   bool gc_succeeded = do_collection(false, /* explicit_gc */
1674                                     false, /* clear_all_soft_refs */
1675                                     word_size);
1676   if (!gc_succeeded) {
1677     *succeeded = false;
1678     return NULL;
1679   }
1680 
1681   // Retry the allocation
1682   result = attempt_allocation_at_safepoint(word_size,
1683                                            context,
1684                                            true /* expect_null_mutator_alloc_region */);
1685   if (result != NULL) {
1686     assert(*succeeded, "sanity");
1687     return result;
1688   }
1689 
1690   // Then, try a Full GC that will collect all soft references.
1691   gc_succeeded = do_collection(false, /* explicit_gc */
1692                                true,  /* clear_all_soft_refs */
1693                                word_size);
1694   if (!gc_succeeded) {
1695     *succeeded = false;
1696     return NULL;
1697   }
1698 
1699   // Retry the allocation once more
1700   result = attempt_allocation_at_safepoint(word_size,
1701                                            context,
1702                                            true /* expect_null_mutator_alloc_region */);
1703   if (result != NULL) {
1704     assert(*succeeded, "sanity");
1705     return result;
1706   }
1707 
1708   assert(!collector_policy()->should_clear_all_soft_refs(),
1709          "Flag should have been handled and cleared prior to this point");
1710 
1711   // What else?  We might try synchronous finalization later.  If the total
1712   // space available is large enough for the allocation, then a more
1713   // complete compaction phase than we've tried so far might be
1714   // appropriate.
1715   assert(*succeeded, "sanity");
1716   return NULL;
1717 }
1718 
1719 // Attempting to expand the heap sufficiently
1720 // to support an allocation of the given "word_size".  If
1721 // successful, perform the allocation and return the address of the
1722 // allocated block, or else "NULL".
1723 
1724 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1725   assert_at_safepoint(true /* should_be_vm_thread */);
1726 
1727   verify_region_sets_optional();
1728 
1729   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1730   ergo_verbose1(ErgoHeapSizing,
1731                 "attempt heap expansion",
1732                 ergo_format_reason("allocation request failed")
1733                 ergo_format_byte("allocation request"),
1734                 word_size * HeapWordSize);
1735   if (expand(expand_bytes)) {
1736     _hrm.verify_optional();
1737     verify_region_sets_optional();
1738     return attempt_allocation_at_safepoint(word_size,
1739                                            context,
1740                                            false /* expect_null_mutator_alloc_region */);
1741   }
1742   return NULL;
1743 }
1744 
1745 bool G1CollectedHeap::expand(size_t expand_bytes) {
1746   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1747   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1748                                        HeapRegion::GrainBytes);
1749   ergo_verbose2(ErgoHeapSizing,
1750                 "expand the heap",
1751                 ergo_format_byte("requested expansion amount")
1752                 ergo_format_byte("attempted expansion amount"),
1753                 expand_bytes, aligned_expand_bytes);
1754 
1755   if (is_maximal_no_gc()) {
1756     ergo_verbose0(ErgoHeapSizing,
1757                       "did not expand the heap",
1758                       ergo_format_reason("heap already fully expanded"));
1759     return false;
1760   }
1761 
1762   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1763   assert(regions_to_expand > 0, "Must expand by at least one region");
1764 
1765   uint expanded_by = _hrm.expand_by(regions_to_expand);
1766 
1767   if (expanded_by > 0) {
1768     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1769     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1770     g1_policy()->record_new_heap_size(num_regions());
1771   } else {
1772     ergo_verbose0(ErgoHeapSizing,
1773                   "did not expand the heap",
1774                   ergo_format_reason("heap expansion operation failed"));
1775     // The expansion of the virtual storage space was unsuccessful.
1776     // Let's see if it was because we ran out of swap.
1777     if (G1ExitOnExpansionFailure &&
1778         _hrm.available() >= regions_to_expand) {
1779       // We had head room...
1780       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1781     }
1782   }
1783   return regions_to_expand > 0;
1784 }
1785 
1786 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1787   size_t aligned_shrink_bytes =
1788     ReservedSpace::page_align_size_down(shrink_bytes);
1789   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1790                                          HeapRegion::GrainBytes);
1791   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1792 
1793   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1794   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1795 
1796   ergo_verbose3(ErgoHeapSizing,
1797                 "shrink the heap",
1798                 ergo_format_byte("requested shrinking amount")
1799                 ergo_format_byte("aligned shrinking amount")
1800                 ergo_format_byte("attempted shrinking amount"),
1801                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1802   if (num_regions_removed > 0) {
1803     g1_policy()->record_new_heap_size(num_regions());
1804   } else {
1805     ergo_verbose0(ErgoHeapSizing,
1806                   "did not shrink the heap",
1807                   ergo_format_reason("heap shrinking operation failed"));
1808   }
1809 }
1810 
1811 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1812   verify_region_sets_optional();
1813 
1814   // We should only reach here at the end of a Full GC which means we
1815   // should not not be holding to any GC alloc regions. The method
1816   // below will make sure of that and do any remaining clean up.
1817   _allocator->abandon_gc_alloc_regions();
1818 
1819   // Instead of tearing down / rebuilding the free lists here, we
1820   // could instead use the remove_all_pending() method on free_list to
1821   // remove only the ones that we need to remove.
1822   tear_down_region_sets(true /* free_list_only */);
1823   shrink_helper(shrink_bytes);
1824   rebuild_region_sets(true /* free_list_only */);
1825 
1826   _hrm.verify_optional();
1827   verify_region_sets_optional();
1828 }
1829 
1830 // Public methods.
1831 
1832 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1833 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1834 #endif // _MSC_VER
1835 
1836 
1837 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1838   SharedHeap(policy_),
1839   _g1_policy(policy_),
1840   _dirty_card_queue_set(false),
1841   _into_cset_dirty_card_queue_set(false),
1842   _is_alive_closure_cm(this),
1843   _is_alive_closure_stw(this),
1844   _ref_processor_cm(NULL),
1845   _ref_processor_stw(NULL),
1846   _bot_shared(NULL),
1847   _evac_failure_scan_stack(NULL),
1848   _mark_in_progress(false),
1849   _cg1r(NULL),
1850   _g1mm(NULL),
1851   _refine_cte_cl(NULL),
1852   _full_collection(false),
1853   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1854   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1855   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1856   _humongous_is_live(),
1857   _has_humongous_reclaim_candidates(false),
1858   _free_regions_coming(false),
1859   _young_list(new YoungList(this)),
1860   _gc_time_stamp(0),
1861   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1862   _old_plab_stats(OldPLABSize, PLABWeight),
1863   _expand_heap_after_alloc_failure(true),
1864   _surviving_young_words(NULL),
1865   _old_marking_cycles_started(0),
1866   _old_marking_cycles_completed(0),
1867   _concurrent_cycle_started(false),
1868   _in_cset_fast_test(),
1869   _dirty_cards_region_list(NULL),
1870   _worker_cset_start_region(NULL),
1871   _worker_cset_start_region_time_stamp(NULL),
1872   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1873   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1874   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1875   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1876 
1877   _g1h = this;
1878 
1879   _allocator = G1Allocator::create_allocator(_g1h);
1880   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1881 
1882   int n_queues = MAX2((int)ParallelGCThreads, 1);
1883   _task_queues = new RefToScanQueueSet(n_queues);
1884 
1885   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1886   assert(n_rem_sets > 0, "Invariant.");
1887 
1888   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1889   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1890   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1891 
1892   for (int i = 0; i < n_queues; i++) {
1893     RefToScanQueue* q = new RefToScanQueue();
1894     q->initialize();
1895     _task_queues->register_queue(i, q);
1896     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1897   }
1898   clear_cset_start_regions();
1899 
1900   // Initialize the G1EvacuationFailureALot counters and flags.
1901   NOT_PRODUCT(reset_evacuation_should_fail();)
1902 
1903   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1904 }
1905 
1906 jint G1CollectedHeap::initialize() {
1907   CollectedHeap::pre_initialize();
1908   os::enable_vtime();
1909 
1910   G1Log::init();
1911 
1912   // Necessary to satisfy locking discipline assertions.
1913 
1914   MutexLocker x(Heap_lock);
1915 
1916   // We have to initialize the printer before committing the heap, as
1917   // it will be used then.
1918   _hr_printer.set_active(G1PrintHeapRegions);
1919 
1920   // While there are no constraints in the GC code that HeapWordSize
1921   // be any particular value, there are multiple other areas in the
1922   // system which believe this to be true (e.g. oop->object_size in some
1923   // cases incorrectly returns the size in wordSize units rather than
1924   // HeapWordSize).
1925   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1926 
1927   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1928   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1929   size_t heap_alignment = collector_policy()->heap_alignment();
1930 
1931   // Ensure that the sizes are properly aligned.
1932   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1933   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1934   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1935 
1936   _refine_cte_cl = new RefineCardTableEntryClosure();
1937 
1938   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1939 
1940   // Reserve the maximum.
1941 
1942   // When compressed oops are enabled, the preferred heap base
1943   // is calculated by subtracting the requested size from the
1944   // 32Gb boundary and using the result as the base address for
1945   // heap reservation. If the requested size is not aligned to
1946   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1947   // into the ReservedHeapSpace constructor) then the actual
1948   // base of the reserved heap may end up differing from the
1949   // address that was requested (i.e. the preferred heap base).
1950   // If this happens then we could end up using a non-optimal
1951   // compressed oops mode.
1952 
1953   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1954                                                  heap_alignment);
1955 
1956   // It is important to do this in a way such that concurrent readers can't
1957   // temporarily think something is in the heap.  (I've actually seen this
1958   // happen in asserts: DLD.)
1959   _reserved.set_word_size(0);
1960   _reserved.set_start((HeapWord*)heap_rs.base());
1961   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
1962 
1963   // Create the gen rem set (and barrier set) for the entire reserved region.
1964   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
1965   set_barrier_set(rem_set()->bs());
1966   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
1967     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
1968     return JNI_ENOMEM;
1969   }
1970 
1971   // Also create a G1 rem set.
1972   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1973 
1974   // Carve out the G1 part of the heap.
1975 
1976   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1977   G1RegionToSpaceMapper* heap_storage =
1978     G1RegionToSpaceMapper::create_mapper(g1_rs,
1979                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1980                                          HeapRegion::GrainBytes,
1981                                          1,
1982                                          mtJavaHeap);
1983   heap_storage->set_mapping_changed_listener(&_listener);
1984 
1985   // Reserve space for the block offset table. We do not support automatic uncommit
1986   // for the card table at this time. BOT only.
1987   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1988   G1RegionToSpaceMapper* bot_storage =
1989     G1RegionToSpaceMapper::create_mapper(bot_rs,
1990                                          os::vm_page_size(),
1991                                          HeapRegion::GrainBytes,
1992                                          G1BlockOffsetSharedArray::N_bytes,
1993                                          mtGC);
1994 
1995   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1996   G1RegionToSpaceMapper* cardtable_storage =
1997     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
1998                                          os::vm_page_size(),
1999                                          HeapRegion::GrainBytes,
2000                                          G1BlockOffsetSharedArray::N_bytes,
2001                                          mtGC);
2002 
2003   // Reserve space for the card counts table.
2004   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
2005   G1RegionToSpaceMapper* card_counts_storage =
2006     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
2007                                          os::vm_page_size(),
2008                                          HeapRegion::GrainBytes,
2009                                          G1BlockOffsetSharedArray::N_bytes,
2010                                          mtGC);
2011 
2012   // Reserve space for prev and next bitmap.
2013   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2014 
2015   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
2016   G1RegionToSpaceMapper* prev_bitmap_storage =
2017     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
2018                                          os::vm_page_size(),
2019                                          HeapRegion::GrainBytes,
2020                                          CMBitMap::mark_distance(),
2021                                          mtGC);
2022 
2023   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
2024   G1RegionToSpaceMapper* next_bitmap_storage =
2025     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
2026                                          os::vm_page_size(),
2027                                          HeapRegion::GrainBytes,
2028                                          CMBitMap::mark_distance(),
2029                                          mtGC);
2030 
2031   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2032   g1_barrier_set()->initialize(cardtable_storage);
2033    // Do later initialization work for concurrent refinement.
2034   _cg1r->init(card_counts_storage);
2035 
2036   // 6843694 - ensure that the maximum region index can fit
2037   // in the remembered set structures.
2038   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2039   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2040 
2041   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2042   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2043   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2044             "too many cards per region");
2045 
2046   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2047 
2048   _bot_shared = new G1BlockOffsetSharedArray(_reserved, bot_storage);
2049 
2050   _g1h = this;
2051 
2052   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
2053   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
2054 
2055   // Create the ConcurrentMark data structure and thread.
2056   // (Must do this late, so that "max_regions" is defined.)
2057   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2058   if (_cm == NULL || !_cm->completed_initialization()) {
2059     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2060     return JNI_ENOMEM;
2061   }
2062   _cmThread = _cm->cmThread();
2063 
2064   // Initialize the from_card cache structure of HeapRegionRemSet.
2065   HeapRegionRemSet::init_heap(max_regions());
2066 
2067   // Now expand into the initial heap size.
2068   if (!expand(init_byte_size)) {
2069     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2070     return JNI_ENOMEM;
2071   }
2072 
2073   // Perform any initialization actions delegated to the policy.
2074   g1_policy()->init();
2075 
2076   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2077                                                SATB_Q_FL_lock,
2078                                                G1SATBProcessCompletedThreshold,
2079                                                Shared_SATB_Q_lock);
2080 
2081   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2082                                                 DirtyCardQ_CBL_mon,
2083                                                 DirtyCardQ_FL_lock,
2084                                                 concurrent_g1_refine()->yellow_zone(),
2085                                                 concurrent_g1_refine()->red_zone(),
2086                                                 Shared_DirtyCardQ_lock);
2087 
2088   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2089                                     DirtyCardQ_CBL_mon,
2090                                     DirtyCardQ_FL_lock,
2091                                     -1, // never trigger processing
2092                                     -1, // no limit on length
2093                                     Shared_DirtyCardQ_lock,
2094                                     &JavaThread::dirty_card_queue_set());
2095 
2096   // Initialize the card queue set used to hold cards containing
2097   // references into the collection set.
2098   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2099                                              DirtyCardQ_CBL_mon,
2100                                              DirtyCardQ_FL_lock,
2101                                              -1, // never trigger processing
2102                                              -1, // no limit on length
2103                                              Shared_DirtyCardQ_lock,
2104                                              &JavaThread::dirty_card_queue_set());
2105 
2106   // In case we're keeping closure specialization stats, initialize those
2107   // counts and that mechanism.
2108   SpecializationStats::clear();
2109 
2110   // Here we allocate the dummy HeapRegion that is required by the
2111   // G1AllocRegion class.
2112   HeapRegion* dummy_region = _hrm.get_dummy_region();
2113 
2114   // We'll re-use the same region whether the alloc region will
2115   // require BOT updates or not and, if it doesn't, then a non-young
2116   // region will complain that it cannot support allocations without
2117   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2118   dummy_region->set_eden();
2119   // Make sure it's full.
2120   dummy_region->set_top(dummy_region->end());
2121   G1AllocRegion::setup(this, dummy_region);
2122 
2123   _allocator->init_mutator_alloc_region();
2124 
2125   // Do create of the monitoring and management support so that
2126   // values in the heap have been properly initialized.
2127   _g1mm = new G1MonitoringSupport(this);
2128 
2129   G1StringDedup::initialize();
2130 
2131   return JNI_OK;
2132 }
2133 
2134 void G1CollectedHeap::stop() {
2135   // Stop all concurrent threads. We do this to make sure these threads
2136   // do not continue to execute and access resources (e.g. gclog_or_tty)
2137   // that are destroyed during shutdown.
2138   _cg1r->stop();
2139   _cmThread->stop();
2140   if (G1StringDedup::is_enabled()) {
2141     G1StringDedup::stop();
2142   }
2143 }
2144 
2145 void G1CollectedHeap::clear_humongous_is_live_table() {
2146   guarantee(G1ReclaimDeadHumongousObjectsAtYoungGC, "Should only be called if true");
2147   _humongous_is_live.clear();
2148 }
2149 
2150 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2151   return HeapRegion::max_region_size();
2152 }
2153 
2154 void G1CollectedHeap::ref_processing_init() {
2155   // Reference processing in G1 currently works as follows:
2156   //
2157   // * There are two reference processor instances. One is
2158   //   used to record and process discovered references
2159   //   during concurrent marking; the other is used to
2160   //   record and process references during STW pauses
2161   //   (both full and incremental).
2162   // * Both ref processors need to 'span' the entire heap as
2163   //   the regions in the collection set may be dotted around.
2164   //
2165   // * For the concurrent marking ref processor:
2166   //   * Reference discovery is enabled at initial marking.
2167   //   * Reference discovery is disabled and the discovered
2168   //     references processed etc during remarking.
2169   //   * Reference discovery is MT (see below).
2170   //   * Reference discovery requires a barrier (see below).
2171   //   * Reference processing may or may not be MT
2172   //     (depending on the value of ParallelRefProcEnabled
2173   //     and ParallelGCThreads).
2174   //   * A full GC disables reference discovery by the CM
2175   //     ref processor and abandons any entries on it's
2176   //     discovered lists.
2177   //
2178   // * For the STW processor:
2179   //   * Non MT discovery is enabled at the start of a full GC.
2180   //   * Processing and enqueueing during a full GC is non-MT.
2181   //   * During a full GC, references are processed after marking.
2182   //
2183   //   * Discovery (may or may not be MT) is enabled at the start
2184   //     of an incremental evacuation pause.
2185   //   * References are processed near the end of a STW evacuation pause.
2186   //   * For both types of GC:
2187   //     * Discovery is atomic - i.e. not concurrent.
2188   //     * Reference discovery will not need a barrier.
2189 
2190   SharedHeap::ref_processing_init();
2191   MemRegion mr = reserved_region();
2192 
2193   // Concurrent Mark ref processor
2194   _ref_processor_cm =
2195     new ReferenceProcessor(mr,    // span
2196                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2197                                 // mt processing
2198                            (int) ParallelGCThreads,
2199                                 // degree of mt processing
2200                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2201                                 // mt discovery
2202                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2203                                 // degree of mt discovery
2204                            false,
2205                                 // Reference discovery is not atomic
2206                            &_is_alive_closure_cm);
2207                                 // is alive closure
2208                                 // (for efficiency/performance)
2209 
2210   // STW ref processor
2211   _ref_processor_stw =
2212     new ReferenceProcessor(mr,    // span
2213                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2214                                 // mt processing
2215                            MAX2((int)ParallelGCThreads, 1),
2216                                 // degree of mt processing
2217                            (ParallelGCThreads > 1),
2218                                 // mt discovery
2219                            MAX2((int)ParallelGCThreads, 1),
2220                                 // degree of mt discovery
2221                            true,
2222                                 // Reference discovery is atomic
2223                            &_is_alive_closure_stw);
2224                                 // is alive closure
2225                                 // (for efficiency/performance)
2226 }
2227 
2228 size_t G1CollectedHeap::capacity() const {
2229   return _hrm.length() * HeapRegion::GrainBytes;
2230 }
2231 
2232 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2233   assert(!hr->continuesHumongous(), "pre-condition");
2234   hr->reset_gc_time_stamp();
2235   if (hr->startsHumongous()) {
2236     uint first_index = hr->hrm_index() + 1;
2237     uint last_index = hr->last_hc_index();
2238     for (uint i = first_index; i < last_index; i += 1) {
2239       HeapRegion* chr = region_at(i);
2240       assert(chr->continuesHumongous(), "sanity");
2241       chr->reset_gc_time_stamp();
2242     }
2243   }
2244 }
2245 
2246 #ifndef PRODUCT
2247 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2248 private:
2249   unsigned _gc_time_stamp;
2250   bool _failures;
2251 
2252 public:
2253   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2254     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2255 
2256   virtual bool doHeapRegion(HeapRegion* hr) {
2257     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2258     if (_gc_time_stamp != region_gc_time_stamp) {
2259       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2260                              "expected %d", HR_FORMAT_PARAMS(hr),
2261                              region_gc_time_stamp, _gc_time_stamp);
2262       _failures = true;
2263     }
2264     return false;
2265   }
2266 
2267   bool failures() { return _failures; }
2268 };
2269 
2270 void G1CollectedHeap::check_gc_time_stamps() {
2271   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2272   heap_region_iterate(&cl);
2273   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2274 }
2275 #endif // PRODUCT
2276 
2277 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2278                                                  DirtyCardQueue* into_cset_dcq,
2279                                                  bool concurrent,
2280                                                  uint worker_i) {
2281   // Clean cards in the hot card cache
2282   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2283   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2284 
2285   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2286   size_t n_completed_buffers = 0;
2287   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2288     n_completed_buffers++;
2289   }
2290   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2291   dcqs.clear_n_completed_buffers();
2292   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2293 }
2294 
2295 
2296 // Computes the sum of the storage used by the various regions.
2297 size_t G1CollectedHeap::used() const {
2298   return _allocator->used();
2299 }
2300 
2301 size_t G1CollectedHeap::used_unlocked() const {
2302   return _allocator->used_unlocked();
2303 }
2304 
2305 class SumUsedClosure: public HeapRegionClosure {
2306   size_t _used;
2307 public:
2308   SumUsedClosure() : _used(0) {}
2309   bool doHeapRegion(HeapRegion* r) {
2310     if (!r->continuesHumongous()) {
2311       _used += r->used();
2312     }
2313     return false;
2314   }
2315   size_t result() { return _used; }
2316 };
2317 
2318 size_t G1CollectedHeap::recalculate_used() const {
2319   double recalculate_used_start = os::elapsedTime();
2320 
2321   SumUsedClosure blk;
2322   heap_region_iterate(&blk);
2323 
2324   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2325   return blk.result();
2326 }
2327 
2328 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2329   switch (cause) {
2330     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2331     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2332     case GCCause::_g1_humongous_allocation: return true;
2333     case GCCause::_update_allocation_context_stats_inc: return true;
2334     default:                                return false;
2335   }
2336 }
2337 
2338 #ifndef PRODUCT
2339 void G1CollectedHeap::allocate_dummy_regions() {
2340   // Let's fill up most of the region
2341   size_t word_size = HeapRegion::GrainWords - 1024;
2342   // And as a result the region we'll allocate will be humongous.
2343   guarantee(isHumongous(word_size), "sanity");
2344 
2345   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2346     // Let's use the existing mechanism for the allocation
2347     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2348                                                  AllocationContext::system());
2349     if (dummy_obj != NULL) {
2350       MemRegion mr(dummy_obj, word_size);
2351       CollectedHeap::fill_with_object(mr);
2352     } else {
2353       // If we can't allocate once, we probably cannot allocate
2354       // again. Let's get out of the loop.
2355       break;
2356     }
2357   }
2358 }
2359 #endif // !PRODUCT
2360 
2361 void G1CollectedHeap::increment_old_marking_cycles_started() {
2362   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2363     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2364     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2365     _old_marking_cycles_started, _old_marking_cycles_completed));
2366 
2367   _old_marking_cycles_started++;
2368 }
2369 
2370 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2371   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2372 
2373   // We assume that if concurrent == true, then the caller is a
2374   // concurrent thread that was joined the Suspendible Thread
2375   // Set. If there's ever a cheap way to check this, we should add an
2376   // assert here.
2377 
2378   // Given that this method is called at the end of a Full GC or of a
2379   // concurrent cycle, and those can be nested (i.e., a Full GC can
2380   // interrupt a concurrent cycle), the number of full collections
2381   // completed should be either one (in the case where there was no
2382   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2383   // behind the number of full collections started.
2384 
2385   // This is the case for the inner caller, i.e. a Full GC.
2386   assert(concurrent ||
2387          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2388          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2389          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2390                  "is inconsistent with _old_marking_cycles_completed = %u",
2391                  _old_marking_cycles_started, _old_marking_cycles_completed));
2392 
2393   // This is the case for the outer caller, i.e. the concurrent cycle.
2394   assert(!concurrent ||
2395          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2396          err_msg("for outer caller (concurrent cycle): "
2397                  "_old_marking_cycles_started = %u "
2398                  "is inconsistent with _old_marking_cycles_completed = %u",
2399                  _old_marking_cycles_started, _old_marking_cycles_completed));
2400 
2401   _old_marking_cycles_completed += 1;
2402 
2403   // We need to clear the "in_progress" flag in the CM thread before
2404   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2405   // is set) so that if a waiter requests another System.gc() it doesn't
2406   // incorrectly see that a marking cycle is still in progress.
2407   if (concurrent) {
2408     _cmThread->clear_in_progress();
2409   }
2410 
2411   // This notify_all() will ensure that a thread that called
2412   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2413   // and it's waiting for a full GC to finish will be woken up. It is
2414   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2415   FullGCCount_lock->notify_all();
2416 }
2417 
2418 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2419   _concurrent_cycle_started = true;
2420   _gc_timer_cm->register_gc_start(start_time);
2421 
2422   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2423   trace_heap_before_gc(_gc_tracer_cm);
2424 }
2425 
2426 void G1CollectedHeap::register_concurrent_cycle_end() {
2427   if (_concurrent_cycle_started) {
2428     if (_cm->has_aborted()) {
2429       _gc_tracer_cm->report_concurrent_mode_failure();
2430     }
2431 
2432     _gc_timer_cm->register_gc_end();
2433     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2434 
2435     _concurrent_cycle_started = false;
2436   }
2437 }
2438 
2439 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2440   if (_concurrent_cycle_started) {
2441     trace_heap_after_gc(_gc_tracer_cm);
2442   }
2443 }
2444 
2445 G1YCType G1CollectedHeap::yc_type() {
2446   bool is_young = g1_policy()->gcs_are_young();
2447   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2448   bool is_during_mark = mark_in_progress();
2449 
2450   if (is_initial_mark) {
2451     return InitialMark;
2452   } else if (is_during_mark) {
2453     return DuringMark;
2454   } else if (is_young) {
2455     return Normal;
2456   } else {
2457     return Mixed;
2458   }
2459 }
2460 
2461 void G1CollectedHeap::collect(GCCause::Cause cause) {
2462   assert_heap_not_locked();
2463 
2464   unsigned int gc_count_before;
2465   unsigned int old_marking_count_before;
2466   unsigned int full_gc_count_before;
2467   bool retry_gc;
2468 
2469   do {
2470     retry_gc = false;
2471 
2472     {
2473       MutexLocker ml(Heap_lock);
2474 
2475       // Read the GC count while holding the Heap_lock
2476       gc_count_before = total_collections();
2477       full_gc_count_before = total_full_collections();
2478       old_marking_count_before = _old_marking_cycles_started;
2479     }
2480 
2481     if (should_do_concurrent_full_gc(cause)) {
2482       // Schedule an initial-mark evacuation pause that will start a
2483       // concurrent cycle. We're setting word_size to 0 which means that
2484       // we are not requesting a post-GC allocation.
2485       VM_G1IncCollectionPause op(gc_count_before,
2486                                  0,     /* word_size */
2487                                  true,  /* should_initiate_conc_mark */
2488                                  g1_policy()->max_pause_time_ms(),
2489                                  cause);
2490       op.set_allocation_context(AllocationContext::current());
2491 
2492       VMThread::execute(&op);
2493       if (!op.pause_succeeded()) {
2494         if (old_marking_count_before == _old_marking_cycles_started) {
2495           retry_gc = op.should_retry_gc();
2496         } else {
2497           // A Full GC happened while we were trying to schedule the
2498           // initial-mark GC. No point in starting a new cycle given
2499           // that the whole heap was collected anyway.
2500         }
2501 
2502         if (retry_gc) {
2503           if (GC_locker::is_active_and_needs_gc()) {
2504             GC_locker::stall_until_clear();
2505           }
2506         }
2507       }
2508     } else {
2509       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2510           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2511 
2512         // Schedule a standard evacuation pause. We're setting word_size
2513         // to 0 which means that we are not requesting a post-GC allocation.
2514         VM_G1IncCollectionPause op(gc_count_before,
2515                                    0,     /* word_size */
2516                                    false, /* should_initiate_conc_mark */
2517                                    g1_policy()->max_pause_time_ms(),
2518                                    cause);
2519         VMThread::execute(&op);
2520       } else {
2521         // Schedule a Full GC.
2522         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2523         VMThread::execute(&op);
2524       }
2525     }
2526   } while (retry_gc);
2527 }
2528 
2529 bool G1CollectedHeap::is_in(const void* p) const {
2530   if (_hrm.reserved().contains(p)) {
2531     // Given that we know that p is in the reserved space,
2532     // heap_region_containing_raw() should successfully
2533     // return the containing region.
2534     HeapRegion* hr = heap_region_containing_raw(p);
2535     return hr->is_in(p);
2536   } else {
2537     return false;
2538   }
2539 }
2540 
2541 #ifdef ASSERT
2542 bool G1CollectedHeap::is_in_exact(const void* p) const {
2543   bool contains = reserved_region().contains(p);
2544   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2545   if (contains && available) {
2546     return true;
2547   } else {
2548     return false;
2549   }
2550 }
2551 #endif
2552 
2553 // Iteration functions.
2554 
2555 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2556 
2557 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2558   ExtendedOopClosure* _cl;
2559 public:
2560   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2561   bool doHeapRegion(HeapRegion* r) {
2562     if (!r->continuesHumongous()) {
2563       r->oop_iterate(_cl);
2564     }
2565     return false;
2566   }
2567 };
2568 
2569 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2570   IterateOopClosureRegionClosure blk(cl);
2571   heap_region_iterate(&blk);
2572 }
2573 
2574 // Iterates an ObjectClosure over all objects within a HeapRegion.
2575 
2576 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2577   ObjectClosure* _cl;
2578 public:
2579   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2580   bool doHeapRegion(HeapRegion* r) {
2581     if (! r->continuesHumongous()) {
2582       r->object_iterate(_cl);
2583     }
2584     return false;
2585   }
2586 };
2587 
2588 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2589   IterateObjectClosureRegionClosure blk(cl);
2590   heap_region_iterate(&blk);
2591 }
2592 
2593 // Calls a SpaceClosure on a HeapRegion.
2594 
2595 class SpaceClosureRegionClosure: public HeapRegionClosure {
2596   SpaceClosure* _cl;
2597 public:
2598   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2599   bool doHeapRegion(HeapRegion* r) {
2600     _cl->do_space(r);
2601     return false;
2602   }
2603 };
2604 
2605 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2606   SpaceClosureRegionClosure blk(cl);
2607   heap_region_iterate(&blk);
2608 }
2609 
2610 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2611   _hrm.iterate(cl);
2612 }
2613 
2614 void
2615 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2616                                                  uint worker_id,
2617                                                  uint num_workers,
2618                                                  jint claim_value) const {
2619   _hrm.par_iterate(cl, worker_id, num_workers, claim_value);
2620 }
2621 
2622 class ResetClaimValuesClosure: public HeapRegionClosure {
2623 public:
2624   bool doHeapRegion(HeapRegion* r) {
2625     r->set_claim_value(HeapRegion::InitialClaimValue);
2626     return false;
2627   }
2628 };
2629 
2630 void G1CollectedHeap::reset_heap_region_claim_values() {
2631   ResetClaimValuesClosure blk;
2632   heap_region_iterate(&blk);
2633 }
2634 
2635 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2636   ResetClaimValuesClosure blk;
2637   collection_set_iterate(&blk);
2638 }
2639 
2640 #ifdef ASSERT
2641 // This checks whether all regions in the heap have the correct claim
2642 // value. I also piggy-backed on this a check to ensure that the
2643 // humongous_start_region() information on "continues humongous"
2644 // regions is correct.
2645 
2646 class CheckClaimValuesClosure : public HeapRegionClosure {
2647 private:
2648   jint _claim_value;
2649   uint _failures;
2650   HeapRegion* _sh_region;
2651 
2652 public:
2653   CheckClaimValuesClosure(jint claim_value) :
2654     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2655   bool doHeapRegion(HeapRegion* r) {
2656     if (r->claim_value() != _claim_value) {
2657       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2658                              "claim value = %d, should be %d",
2659                              HR_FORMAT_PARAMS(r),
2660                              r->claim_value(), _claim_value);
2661       ++_failures;
2662     }
2663     if (!r->isHumongous()) {
2664       _sh_region = NULL;
2665     } else if (r->startsHumongous()) {
2666       _sh_region = r;
2667     } else if (r->continuesHumongous()) {
2668       if (r->humongous_start_region() != _sh_region) {
2669         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2670                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2671                                HR_FORMAT_PARAMS(r),
2672                                r->humongous_start_region(),
2673                                _sh_region);
2674         ++_failures;
2675       }
2676     }
2677     return false;
2678   }
2679   uint failures() { return _failures; }
2680 };
2681 
2682 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2683   CheckClaimValuesClosure cl(claim_value);
2684   heap_region_iterate(&cl);
2685   return cl.failures() == 0;
2686 }
2687 
2688 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2689 private:
2690   jint _claim_value;
2691   uint _failures;
2692 
2693 public:
2694   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2695     _claim_value(claim_value), _failures(0) { }
2696 
2697   uint failures() { return _failures; }
2698 
2699   bool doHeapRegion(HeapRegion* hr) {
2700     assert(hr->in_collection_set(), "how?");
2701     assert(!hr->isHumongous(), "H-region in CSet");
2702     if (hr->claim_value() != _claim_value) {
2703       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2704                              "claim value = %d, should be %d",
2705                              HR_FORMAT_PARAMS(hr),
2706                              hr->claim_value(), _claim_value);
2707       _failures += 1;
2708     }
2709     return false;
2710   }
2711 };
2712 
2713 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2714   CheckClaimValuesInCSetHRClosure cl(claim_value);
2715   collection_set_iterate(&cl);
2716   return cl.failures() == 0;
2717 }
2718 #endif // ASSERT
2719 
2720 // Clear the cached CSet starting regions and (more importantly)
2721 // the time stamps. Called when we reset the GC time stamp.
2722 void G1CollectedHeap::clear_cset_start_regions() {
2723   assert(_worker_cset_start_region != NULL, "sanity");
2724   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2725 
2726   int n_queues = MAX2((int)ParallelGCThreads, 1);
2727   for (int i = 0; i < n_queues; i++) {
2728     _worker_cset_start_region[i] = NULL;
2729     _worker_cset_start_region_time_stamp[i] = 0;
2730   }
2731 }
2732 
2733 // Given the id of a worker, obtain or calculate a suitable
2734 // starting region for iterating over the current collection set.
2735 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2736   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2737 
2738   HeapRegion* result = NULL;
2739   unsigned gc_time_stamp = get_gc_time_stamp();
2740 
2741   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2742     // Cached starting region for current worker was set
2743     // during the current pause - so it's valid.
2744     // Note: the cached starting heap region may be NULL
2745     // (when the collection set is empty).
2746     result = _worker_cset_start_region[worker_i];
2747     assert(result == NULL || result->in_collection_set(), "sanity");
2748     return result;
2749   }
2750 
2751   // The cached entry was not valid so let's calculate
2752   // a suitable starting heap region for this worker.
2753 
2754   // We want the parallel threads to start their collection
2755   // set iteration at different collection set regions to
2756   // avoid contention.
2757   // If we have:
2758   //          n collection set regions
2759   //          p threads
2760   // Then thread t will start at region floor ((t * n) / p)
2761 
2762   result = g1_policy()->collection_set();
2763   if (G1CollectedHeap::use_parallel_gc_threads()) {
2764     uint cs_size = g1_policy()->cset_region_length();
2765     uint active_workers = workers()->active_workers();
2766     assert(UseDynamicNumberOfGCThreads ||
2767              active_workers == workers()->total_workers(),
2768              "Unless dynamic should use total workers");
2769 
2770     uint end_ind   = (cs_size * worker_i) / active_workers;
2771     uint start_ind = 0;
2772 
2773     if (worker_i > 0 &&
2774         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2775       // Previous workers starting region is valid
2776       // so let's iterate from there
2777       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2778       result = _worker_cset_start_region[worker_i - 1];
2779     }
2780 
2781     for (uint i = start_ind; i < end_ind; i++) {
2782       result = result->next_in_collection_set();
2783     }
2784   }
2785 
2786   // Note: the calculated starting heap region may be NULL
2787   // (when the collection set is empty).
2788   assert(result == NULL || result->in_collection_set(), "sanity");
2789   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2790          "should be updated only once per pause");
2791   _worker_cset_start_region[worker_i] = result;
2792   OrderAccess::storestore();
2793   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2794   return result;
2795 }
2796 
2797 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2798   HeapRegion* r = g1_policy()->collection_set();
2799   while (r != NULL) {
2800     HeapRegion* next = r->next_in_collection_set();
2801     if (cl->doHeapRegion(r)) {
2802       cl->incomplete();
2803       return;
2804     }
2805     r = next;
2806   }
2807 }
2808 
2809 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2810                                                   HeapRegionClosure *cl) {
2811   if (r == NULL) {
2812     // The CSet is empty so there's nothing to do.
2813     return;
2814   }
2815 
2816   assert(r->in_collection_set(),
2817          "Start region must be a member of the collection set.");
2818   HeapRegion* cur = r;
2819   while (cur != NULL) {
2820     HeapRegion* next = cur->next_in_collection_set();
2821     if (cl->doHeapRegion(cur) && false) {
2822       cl->incomplete();
2823       return;
2824     }
2825     cur = next;
2826   }
2827   cur = g1_policy()->collection_set();
2828   while (cur != r) {
2829     HeapRegion* next = cur->next_in_collection_set();
2830     if (cl->doHeapRegion(cur) && false) {
2831       cl->incomplete();
2832       return;
2833     }
2834     cur = next;
2835   }
2836 }
2837 
2838 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2839   HeapRegion* result = _hrm.next_region_in_heap(from);
2840   while (result != NULL && result->isHumongous()) {
2841     result = _hrm.next_region_in_heap(result);
2842   }
2843   return result;
2844 }
2845 
2846 Space* G1CollectedHeap::space_containing(const void* addr) const {
2847   return heap_region_containing(addr);
2848 }
2849 
2850 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2851   Space* sp = space_containing(addr);
2852   return sp->block_start(addr);
2853 }
2854 
2855 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2856   Space* sp = space_containing(addr);
2857   return sp->block_size(addr);
2858 }
2859 
2860 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2861   Space* sp = space_containing(addr);
2862   return sp->block_is_obj(addr);
2863 }
2864 
2865 bool G1CollectedHeap::supports_tlab_allocation() const {
2866   return true;
2867 }
2868 
2869 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2870   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2871 }
2872 
2873 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2874   return young_list()->eden_used_bytes();
2875 }
2876 
2877 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2878 // must be smaller than the humongous object limit.
2879 size_t G1CollectedHeap::max_tlab_size() const {
2880   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2881 }
2882 
2883 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2884   // Return the remaining space in the cur alloc region, but not less than
2885   // the min TLAB size.
2886 
2887   // Also, this value can be at most the humongous object threshold,
2888   // since we can't allow tlabs to grow big enough to accommodate
2889   // humongous objects.
2890 
2891   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2892   size_t max_tlab = max_tlab_size() * wordSize;
2893   if (hr == NULL) {
2894     return max_tlab;
2895   } else {
2896     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2897   }
2898 }
2899 
2900 size_t G1CollectedHeap::max_capacity() const {
2901   return _hrm.reserved().byte_size();
2902 }
2903 
2904 jlong G1CollectedHeap::millis_since_last_gc() {
2905   // assert(false, "NYI");
2906   return 0;
2907 }
2908 
2909 void G1CollectedHeap::prepare_for_verify() {
2910   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2911     ensure_parsability(false);
2912   }
2913   g1_rem_set()->prepare_for_verify();
2914 }
2915 
2916 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2917                                               VerifyOption vo) {
2918   switch (vo) {
2919   case VerifyOption_G1UsePrevMarking:
2920     return hr->obj_allocated_since_prev_marking(obj);
2921   case VerifyOption_G1UseNextMarking:
2922     return hr->obj_allocated_since_next_marking(obj);
2923   case VerifyOption_G1UseMarkWord:
2924     return false;
2925   default:
2926     ShouldNotReachHere();
2927   }
2928   return false; // keep some compilers happy
2929 }
2930 
2931 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2932   switch (vo) {
2933   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2934   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2935   case VerifyOption_G1UseMarkWord:    return NULL;
2936   default:                            ShouldNotReachHere();
2937   }
2938   return NULL; // keep some compilers happy
2939 }
2940 
2941 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2942   switch (vo) {
2943   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2944   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2945   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2946   default:                            ShouldNotReachHere();
2947   }
2948   return false; // keep some compilers happy
2949 }
2950 
2951 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2952   switch (vo) {
2953   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2954   case VerifyOption_G1UseNextMarking: return "NTAMS";
2955   case VerifyOption_G1UseMarkWord:    return "NONE";
2956   default:                            ShouldNotReachHere();
2957   }
2958   return NULL; // keep some compilers happy
2959 }
2960 
2961 class VerifyRootsClosure: public OopClosure {
2962 private:
2963   G1CollectedHeap* _g1h;
2964   VerifyOption     _vo;
2965   bool             _failures;
2966 public:
2967   // _vo == UsePrevMarking -> use "prev" marking information,
2968   // _vo == UseNextMarking -> use "next" marking information,
2969   // _vo == UseMarkWord    -> use mark word from object header.
2970   VerifyRootsClosure(VerifyOption vo) :
2971     _g1h(G1CollectedHeap::heap()),
2972     _vo(vo),
2973     _failures(false) { }
2974 
2975   bool failures() { return _failures; }
2976 
2977   template <class T> void do_oop_nv(T* p) {
2978     T heap_oop = oopDesc::load_heap_oop(p);
2979     if (!oopDesc::is_null(heap_oop)) {
2980       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2981       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2982         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2983                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2984         if (_vo == VerifyOption_G1UseMarkWord) {
2985           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2986         }
2987         obj->print_on(gclog_or_tty);
2988         _failures = true;
2989       }
2990     }
2991   }
2992 
2993   void do_oop(oop* p)       { do_oop_nv(p); }
2994   void do_oop(narrowOop* p) { do_oop_nv(p); }
2995 };
2996 
2997 class G1VerifyCodeRootOopClosure: public OopClosure {
2998   G1CollectedHeap* _g1h;
2999   OopClosure* _root_cl;
3000   nmethod* _nm;
3001   VerifyOption _vo;
3002   bool _failures;
3003 
3004   template <class T> void do_oop_work(T* p) {
3005     // First verify that this root is live
3006     _root_cl->do_oop(p);
3007 
3008     if (!G1VerifyHeapRegionCodeRoots) {
3009       // We're not verifying the code roots attached to heap region.
3010       return;
3011     }
3012 
3013     // Don't check the code roots during marking verification in a full GC
3014     if (_vo == VerifyOption_G1UseMarkWord) {
3015       return;
3016     }
3017 
3018     // Now verify that the current nmethod (which contains p) is
3019     // in the code root list of the heap region containing the
3020     // object referenced by p.
3021 
3022     T heap_oop = oopDesc::load_heap_oop(p);
3023     if (!oopDesc::is_null(heap_oop)) {
3024       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3025 
3026       // Now fetch the region containing the object
3027       HeapRegion* hr = _g1h->heap_region_containing(obj);
3028       HeapRegionRemSet* hrrs = hr->rem_set();
3029       // Verify that the strong code root list for this region
3030       // contains the nmethod
3031       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3032         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3033                               "from nmethod "PTR_FORMAT" not in strong "
3034                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3035                               p, _nm, hr->bottom(), hr->end());
3036         _failures = true;
3037       }
3038     }
3039   }
3040 
3041 public:
3042   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3043     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3044 
3045   void do_oop(oop* p) { do_oop_work(p); }
3046   void do_oop(narrowOop* p) { do_oop_work(p); }
3047 
3048   void set_nmethod(nmethod* nm) { _nm = nm; }
3049   bool failures() { return _failures; }
3050 };
3051 
3052 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3053   G1VerifyCodeRootOopClosure* _oop_cl;
3054 
3055 public:
3056   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3057     _oop_cl(oop_cl) {}
3058 
3059   void do_code_blob(CodeBlob* cb) {
3060     nmethod* nm = cb->as_nmethod_or_null();
3061     if (nm != NULL) {
3062       _oop_cl->set_nmethod(nm);
3063       nm->oops_do(_oop_cl);
3064     }
3065   }
3066 };
3067 
3068 class YoungRefCounterClosure : public OopClosure {
3069   G1CollectedHeap* _g1h;
3070   int              _count;
3071  public:
3072   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3073   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3074   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3075 
3076   int count() { return _count; }
3077   void reset_count() { _count = 0; };
3078 };
3079 
3080 class VerifyKlassClosure: public KlassClosure {
3081   YoungRefCounterClosure _young_ref_counter_closure;
3082   OopClosure *_oop_closure;
3083  public:
3084   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3085   void do_klass(Klass* k) {
3086     k->oops_do(_oop_closure);
3087 
3088     _young_ref_counter_closure.reset_count();
3089     k->oops_do(&_young_ref_counter_closure);
3090     if (_young_ref_counter_closure.count() > 0) {
3091       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3092     }
3093   }
3094 };
3095 
3096 class VerifyLivenessOopClosure: public OopClosure {
3097   G1CollectedHeap* _g1h;
3098   VerifyOption _vo;
3099 public:
3100   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3101     _g1h(g1h), _vo(vo)
3102   { }
3103   void do_oop(narrowOop *p) { do_oop_work(p); }
3104   void do_oop(      oop *p) { do_oop_work(p); }
3105 
3106   template <class T> void do_oop_work(T *p) {
3107     oop obj = oopDesc::load_decode_heap_oop(p);
3108     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3109               "Dead object referenced by a not dead object");
3110   }
3111 };
3112 
3113 class VerifyObjsInRegionClosure: public ObjectClosure {
3114 private:
3115   G1CollectedHeap* _g1h;
3116   size_t _live_bytes;
3117   HeapRegion *_hr;
3118   VerifyOption _vo;
3119 public:
3120   // _vo == UsePrevMarking -> use "prev" marking information,
3121   // _vo == UseNextMarking -> use "next" marking information,
3122   // _vo == UseMarkWord    -> use mark word from object header.
3123   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3124     : _live_bytes(0), _hr(hr), _vo(vo) {
3125     _g1h = G1CollectedHeap::heap();
3126   }
3127   void do_object(oop o) {
3128     VerifyLivenessOopClosure isLive(_g1h, _vo);
3129     assert(o != NULL, "Huh?");
3130     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3131       // If the object is alive according to the mark word,
3132       // then verify that the marking information agrees.
3133       // Note we can't verify the contra-positive of the
3134       // above: if the object is dead (according to the mark
3135       // word), it may not be marked, or may have been marked
3136       // but has since became dead, or may have been allocated
3137       // since the last marking.
3138       if (_vo == VerifyOption_G1UseMarkWord) {
3139         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3140       }
3141 
3142       o->oop_iterate_no_header(&isLive);
3143       if (!_hr->obj_allocated_since_prev_marking(o)) {
3144         size_t obj_size = o->size();    // Make sure we don't overflow
3145         _live_bytes += (obj_size * HeapWordSize);
3146       }
3147     }
3148   }
3149   size_t live_bytes() { return _live_bytes; }
3150 };
3151 
3152 class PrintObjsInRegionClosure : public ObjectClosure {
3153   HeapRegion *_hr;
3154   G1CollectedHeap *_g1;
3155 public:
3156   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3157     _g1 = G1CollectedHeap::heap();
3158   };
3159 
3160   void do_object(oop o) {
3161     if (o != NULL) {
3162       HeapWord *start = (HeapWord *) o;
3163       size_t word_sz = o->size();
3164       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3165                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3166                           (void*) o, word_sz,
3167                           _g1->isMarkedPrev(o),
3168                           _g1->isMarkedNext(o),
3169                           _hr->obj_allocated_since_prev_marking(o));
3170       HeapWord *end = start + word_sz;
3171       HeapWord *cur;
3172       int *val;
3173       for (cur = start; cur < end; cur++) {
3174         val = (int *) cur;
3175         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3176       }
3177     }
3178   }
3179 };
3180 
3181 class VerifyRegionClosure: public HeapRegionClosure {
3182 private:
3183   bool             _par;
3184   VerifyOption     _vo;
3185   bool             _failures;
3186 public:
3187   // _vo == UsePrevMarking -> use "prev" marking information,
3188   // _vo == UseNextMarking -> use "next" marking information,
3189   // _vo == UseMarkWord    -> use mark word from object header.
3190   VerifyRegionClosure(bool par, VerifyOption vo)
3191     : _par(par),
3192       _vo(vo),
3193       _failures(false) {}
3194 
3195   bool failures() {
3196     return _failures;
3197   }
3198 
3199   bool doHeapRegion(HeapRegion* r) {
3200     if (!r->continuesHumongous()) {
3201       bool failures = false;
3202       r->verify(_vo, &failures);
3203       if (failures) {
3204         _failures = true;
3205       } else {
3206         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3207         r->object_iterate(&not_dead_yet_cl);
3208         if (_vo != VerifyOption_G1UseNextMarking) {
3209           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3210             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3211                                    "max_live_bytes "SIZE_FORMAT" "
3212                                    "< calculated "SIZE_FORMAT,
3213                                    r->bottom(), r->end(),
3214                                    r->max_live_bytes(),
3215                                  not_dead_yet_cl.live_bytes());
3216             _failures = true;
3217           }
3218         } else {
3219           // When vo == UseNextMarking we cannot currently do a sanity
3220           // check on the live bytes as the calculation has not been
3221           // finalized yet.
3222         }
3223       }
3224     }
3225     return false; // stop the region iteration if we hit a failure
3226   }
3227 };
3228 
3229 // This is the task used for parallel verification of the heap regions
3230 
3231 class G1ParVerifyTask: public AbstractGangTask {
3232 private:
3233   G1CollectedHeap* _g1h;
3234   VerifyOption     _vo;
3235   bool             _failures;
3236 
3237 public:
3238   // _vo == UsePrevMarking -> use "prev" marking information,
3239   // _vo == UseNextMarking -> use "next" marking information,
3240   // _vo == UseMarkWord    -> use mark word from object header.
3241   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3242     AbstractGangTask("Parallel verify task"),
3243     _g1h(g1h),
3244     _vo(vo),
3245     _failures(false) { }
3246 
3247   bool failures() {
3248     return _failures;
3249   }
3250 
3251   void work(uint worker_id) {
3252     HandleMark hm;
3253     VerifyRegionClosure blk(true, _vo);
3254     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3255                                           _g1h->workers()->active_workers(),
3256                                           HeapRegion::ParVerifyClaimValue);
3257     if (blk.failures()) {
3258       _failures = true;
3259     }
3260   }
3261 };
3262 
3263 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3264   if (SafepointSynchronize::is_at_safepoint()) {
3265     assert(Thread::current()->is_VM_thread(),
3266            "Expected to be executed serially by the VM thread at this point");
3267 
3268     if (!silent) { gclog_or_tty->print("Roots "); }
3269     VerifyRootsClosure rootsCl(vo);
3270     VerifyKlassClosure klassCl(this, &rootsCl);
3271     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3272 
3273     // We apply the relevant closures to all the oops in the
3274     // system dictionary, class loader data graph, the string table
3275     // and the nmethods in the code cache.
3276     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3277     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3278 
3279     {
3280       G1RootProcessor root_processor(this);
3281       root_processor.process_all_roots(&rootsCl,
3282                                        &cldCl,
3283                                        &blobsCl);
3284     }
3285 
3286     bool failures = rootsCl.failures() || codeRootsCl.failures();
3287 
3288     if (vo != VerifyOption_G1UseMarkWord) {
3289       // If we're verifying during a full GC then the region sets
3290       // will have been torn down at the start of the GC. Therefore
3291       // verifying the region sets will fail. So we only verify
3292       // the region sets when not in a full GC.
3293       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3294       verify_region_sets();
3295     }
3296 
3297     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3298     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3299       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3300              "sanity check");
3301 
3302       G1ParVerifyTask task(this, vo);
3303       assert(UseDynamicNumberOfGCThreads ||
3304         workers()->active_workers() == workers()->total_workers(),
3305         "If not dynamic should be using all the workers");
3306       int n_workers = workers()->active_workers();
3307       set_par_threads(n_workers);
3308       workers()->run_task(&task);
3309       set_par_threads(0);
3310       if (task.failures()) {
3311         failures = true;
3312       }
3313 
3314       // Checks that the expected amount of parallel work was done.
3315       // The implication is that n_workers is > 0.
3316       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3317              "sanity check");
3318 
3319       reset_heap_region_claim_values();
3320 
3321       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3322              "sanity check");
3323     } else {
3324       VerifyRegionClosure blk(false, vo);
3325       heap_region_iterate(&blk);
3326       if (blk.failures()) {
3327         failures = true;
3328       }
3329     }
3330     if (!silent) gclog_or_tty->print("RemSet ");
3331     rem_set()->verify();
3332 
3333     if (G1StringDedup::is_enabled()) {
3334       if (!silent) gclog_or_tty->print("StrDedup ");
3335       G1StringDedup::verify();
3336     }
3337 
3338     if (failures) {
3339       gclog_or_tty->print_cr("Heap:");
3340       // It helps to have the per-region information in the output to
3341       // help us track down what went wrong. This is why we call
3342       // print_extended_on() instead of print_on().
3343       print_extended_on(gclog_or_tty);
3344       gclog_or_tty->cr();
3345 #ifndef PRODUCT
3346       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3347         concurrent_mark()->print_reachable("at-verification-failure",
3348                                            vo, false /* all */);
3349       }
3350 #endif
3351       gclog_or_tty->flush();
3352     }
3353     guarantee(!failures, "there should not have been any failures");
3354   } else {
3355     if (!silent) {
3356       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3357       if (G1StringDedup::is_enabled()) {
3358         gclog_or_tty->print(", StrDedup");
3359       }
3360       gclog_or_tty->print(") ");
3361     }
3362   }
3363 }
3364 
3365 void G1CollectedHeap::verify(bool silent) {
3366   verify(silent, VerifyOption_G1UsePrevMarking);
3367 }
3368 
3369 double G1CollectedHeap::verify(bool guard, const char* msg) {
3370   double verify_time_ms = 0.0;
3371 
3372   if (guard && total_collections() >= VerifyGCStartAt) {
3373     double verify_start = os::elapsedTime();
3374     HandleMark hm;  // Discard invalid handles created during verification
3375     prepare_for_verify();
3376     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3377     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3378   }
3379 
3380   return verify_time_ms;
3381 }
3382 
3383 void G1CollectedHeap::verify_before_gc() {
3384   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3385   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3386 }
3387 
3388 void G1CollectedHeap::verify_after_gc() {
3389   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3390   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3391 }
3392 
3393 class PrintRegionClosure: public HeapRegionClosure {
3394   outputStream* _st;
3395 public:
3396   PrintRegionClosure(outputStream* st) : _st(st) {}
3397   bool doHeapRegion(HeapRegion* r) {
3398     r->print_on(_st);
3399     return false;
3400   }
3401 };
3402 
3403 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3404                                        const HeapRegion* hr,
3405                                        const VerifyOption vo) const {
3406   switch (vo) {
3407   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3408   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3409   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3410   default:                            ShouldNotReachHere();
3411   }
3412   return false; // keep some compilers happy
3413 }
3414 
3415 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3416                                        const VerifyOption vo) const {
3417   switch (vo) {
3418   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3419   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3420   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3421   default:                            ShouldNotReachHere();
3422   }
3423   return false; // keep some compilers happy
3424 }
3425 
3426 void G1CollectedHeap::print_on(outputStream* st) const {
3427   st->print(" %-20s", "garbage-first heap");
3428   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3429             capacity()/K, used_unlocked()/K);
3430   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3431             _hrm.reserved().start(),
3432             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3433             _hrm.reserved().end());
3434   st->cr();
3435   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3436   uint young_regions = _young_list->length();
3437   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3438             (size_t) young_regions * HeapRegion::GrainBytes / K);
3439   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3440   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3441             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3442   st->cr();
3443   MetaspaceAux::print_on(st);
3444 }
3445 
3446 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3447   print_on(st);
3448 
3449   // Print the per-region information.
3450   st->cr();
3451   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3452                "HS=humongous(starts), HC=humongous(continues), "
3453                "CS=collection set, F=free, TS=gc time stamp, "
3454                "PTAMS=previous top-at-mark-start, "
3455                "NTAMS=next top-at-mark-start)");
3456   PrintRegionClosure blk(st);
3457   heap_region_iterate(&blk);
3458 }
3459 
3460 void G1CollectedHeap::print_on_error(outputStream* st) const {
3461   this->CollectedHeap::print_on_error(st);
3462 
3463   if (_cm != NULL) {
3464     st->cr();
3465     _cm->print_on_error(st);
3466   }
3467 }
3468 
3469 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3470   if (G1CollectedHeap::use_parallel_gc_threads()) {
3471     workers()->print_worker_threads_on(st);
3472   }
3473   _cmThread->print_on(st);
3474   st->cr();
3475   _cm->print_worker_threads_on(st);
3476   _cg1r->print_worker_threads_on(st);
3477   if (G1StringDedup::is_enabled()) {
3478     G1StringDedup::print_worker_threads_on(st);
3479   }
3480 }
3481 
3482 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3483   if (G1CollectedHeap::use_parallel_gc_threads()) {
3484     workers()->threads_do(tc);
3485   }
3486   tc->do_thread(_cmThread);
3487   _cg1r->threads_do(tc);
3488   if (G1StringDedup::is_enabled()) {
3489     G1StringDedup::threads_do(tc);
3490   }
3491 }
3492 
3493 void G1CollectedHeap::print_tracing_info() const {
3494   // We'll overload this to mean "trace GC pause statistics."
3495   if (TraceGen0Time || TraceGen1Time) {
3496     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3497     // to that.
3498     g1_policy()->print_tracing_info();
3499   }
3500   if (G1SummarizeRSetStats) {
3501     g1_rem_set()->print_summary_info();
3502   }
3503   if (G1SummarizeConcMark) {
3504     concurrent_mark()->print_summary_info();
3505   }
3506   g1_policy()->print_yg_surv_rate_info();
3507   SpecializationStats::print();
3508 }
3509 
3510 #ifndef PRODUCT
3511 // Helpful for debugging RSet issues.
3512 
3513 class PrintRSetsClosure : public HeapRegionClosure {
3514 private:
3515   const char* _msg;
3516   size_t _occupied_sum;
3517 
3518 public:
3519   bool doHeapRegion(HeapRegion* r) {
3520     HeapRegionRemSet* hrrs = r->rem_set();
3521     size_t occupied = hrrs->occupied();
3522     _occupied_sum += occupied;
3523 
3524     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3525                            HR_FORMAT_PARAMS(r));
3526     if (occupied == 0) {
3527       gclog_or_tty->print_cr("  RSet is empty");
3528     } else {
3529       hrrs->print();
3530     }
3531     gclog_or_tty->print_cr("----------");
3532     return false;
3533   }
3534 
3535   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3536     gclog_or_tty->cr();
3537     gclog_or_tty->print_cr("========================================");
3538     gclog_or_tty->print_cr("%s", msg);
3539     gclog_or_tty->cr();
3540   }
3541 
3542   ~PrintRSetsClosure() {
3543     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3544     gclog_or_tty->print_cr("========================================");
3545     gclog_or_tty->cr();
3546   }
3547 };
3548 
3549 void G1CollectedHeap::print_cset_rsets() {
3550   PrintRSetsClosure cl("Printing CSet RSets");
3551   collection_set_iterate(&cl);
3552 }
3553 
3554 void G1CollectedHeap::print_all_rsets() {
3555   PrintRSetsClosure cl("Printing All RSets");;
3556   heap_region_iterate(&cl);
3557 }
3558 #endif // PRODUCT
3559 
3560 G1CollectedHeap* G1CollectedHeap::heap() {
3561   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3562          "not a garbage-first heap");
3563   return _g1h;
3564 }
3565 
3566 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3567   // always_do_update_barrier = false;
3568   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3569   // Fill TLAB's and such
3570   accumulate_statistics_all_tlabs();
3571   ensure_parsability(true);
3572 
3573   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3574       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3575     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3576   }
3577 }
3578 
3579 void G1CollectedHeap::gc_epilogue(bool full) {
3580 
3581   if (G1SummarizeRSetStats &&
3582       (G1SummarizeRSetStatsPeriod > 0) &&
3583       // we are at the end of the GC. Total collections has already been increased.
3584       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3585     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3586   }
3587 
3588   // FIXME: what is this about?
3589   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3590   // is set.
3591   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3592                         "derived pointer present"));
3593   // always_do_update_barrier = true;
3594 
3595   resize_all_tlabs();
3596   allocation_context_stats().update(full);
3597 
3598   // We have just completed a GC. Update the soft reference
3599   // policy with the new heap occupancy
3600   Universe::update_heap_info_at_gc();
3601 }
3602 
3603 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3604                                                unsigned int gc_count_before,
3605                                                bool* succeeded,
3606                                                GCCause::Cause gc_cause) {
3607   assert_heap_not_locked_and_not_at_safepoint();
3608   g1_policy()->record_stop_world_start();
3609   VM_G1IncCollectionPause op(gc_count_before,
3610                              word_size,
3611                              false, /* should_initiate_conc_mark */
3612                              g1_policy()->max_pause_time_ms(),
3613                              gc_cause);
3614 
3615   op.set_allocation_context(AllocationContext::current());
3616   VMThread::execute(&op);
3617 
3618   HeapWord* result = op.result();
3619   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3620   assert(result == NULL || ret_succeeded,
3621          "the result should be NULL if the VM did not succeed");
3622   *succeeded = ret_succeeded;
3623 
3624   assert_heap_not_locked();
3625   return result;
3626 }
3627 
3628 void
3629 G1CollectedHeap::doConcurrentMark() {
3630   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3631   if (!_cmThread->in_progress()) {
3632     _cmThread->set_started();
3633     CGC_lock->notify();
3634   }
3635 }
3636 
3637 size_t G1CollectedHeap::pending_card_num() {
3638   size_t extra_cards = 0;
3639   JavaThread *curr = Threads::first();
3640   while (curr != NULL) {
3641     DirtyCardQueue& dcq = curr->dirty_card_queue();
3642     extra_cards += dcq.size();
3643     curr = curr->next();
3644   }
3645   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3646   size_t buffer_size = dcqs.buffer_size();
3647   size_t buffer_num = dcqs.completed_buffers_num();
3648 
3649   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3650   // in bytes - not the number of 'entries'. We need to convert
3651   // into a number of cards.
3652   return (buffer_size * buffer_num + extra_cards) / oopSize;
3653 }
3654 
3655 size_t G1CollectedHeap::cards_scanned() {
3656   return g1_rem_set()->cardsScanned();
3657 }
3658 
3659 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3660   HeapRegion* region = region_at(index);
3661   assert(region->startsHumongous(), "Must start a humongous object");
3662   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3663 }
3664 
3665 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3666  private:
3667   size_t _total_humongous;
3668   size_t _candidate_humongous;
3669  public:
3670   RegisterHumongousWithInCSetFastTestClosure() : _total_humongous(0), _candidate_humongous(0) {
3671   }
3672 
3673   virtual bool doHeapRegion(HeapRegion* r) {
3674     if (!r->startsHumongous()) {
3675       return false;
3676     }
3677     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3678 
3679     uint region_idx = r->hrm_index();
3680     bool is_candidate = !g1h->humongous_region_is_always_live(region_idx);
3681     // Is_candidate already filters out humongous regions with some remembered set.
3682     // This will not lead to humongous object that we mistakenly keep alive because
3683     // during young collection the remembered sets will only be added to.
3684     if (is_candidate) {
3685       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
3686       _candidate_humongous++;
3687     }
3688     _total_humongous++;
3689 
3690     return false;
3691   }
3692 
3693   size_t total_humongous() const { return _total_humongous; }
3694   size_t candidate_humongous() const { return _candidate_humongous; }
3695 };
3696 
3697 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3698   if (!G1ReclaimDeadHumongousObjectsAtYoungGC) {
3699     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0, 0);
3700     return;
3701   }
3702 
3703   RegisterHumongousWithInCSetFastTestClosure cl;
3704   heap_region_iterate(&cl);
3705   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(cl.total_humongous(),
3706                                                                   cl.candidate_humongous());
3707   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3708 
3709   if (_has_humongous_reclaim_candidates || G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
3710     clear_humongous_is_live_table();
3711   }
3712 }
3713 
3714 void
3715 G1CollectedHeap::setup_surviving_young_words() {
3716   assert(_surviving_young_words == NULL, "pre-condition");
3717   uint array_length = g1_policy()->young_cset_region_length();
3718   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3719   if (_surviving_young_words == NULL) {
3720     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3721                           "Not enough space for young surv words summary.");
3722   }
3723   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3724 #ifdef ASSERT
3725   for (uint i = 0;  i < array_length; ++i) {
3726     assert( _surviving_young_words[i] == 0, "memset above" );
3727   }
3728 #endif // !ASSERT
3729 }
3730 
3731 void
3732 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3733   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3734   uint array_length = g1_policy()->young_cset_region_length();
3735   for (uint i = 0; i < array_length; ++i) {
3736     _surviving_young_words[i] += surv_young_words[i];
3737   }
3738 }
3739 
3740 void
3741 G1CollectedHeap::cleanup_surviving_young_words() {
3742   guarantee( _surviving_young_words != NULL, "pre-condition" );
3743   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3744   _surviving_young_words = NULL;
3745 }
3746 
3747 #ifdef ASSERT
3748 class VerifyCSetClosure: public HeapRegionClosure {
3749 public:
3750   bool doHeapRegion(HeapRegion* hr) {
3751     // Here we check that the CSet region's RSet is ready for parallel
3752     // iteration. The fields that we'll verify are only manipulated
3753     // when the region is part of a CSet and is collected. Afterwards,
3754     // we reset these fields when we clear the region's RSet (when the
3755     // region is freed) so they are ready when the region is
3756     // re-allocated. The only exception to this is if there's an
3757     // evacuation failure and instead of freeing the region we leave
3758     // it in the heap. In that case, we reset these fields during
3759     // evacuation failure handling.
3760     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3761 
3762     // Here's a good place to add any other checks we'd like to
3763     // perform on CSet regions.
3764     return false;
3765   }
3766 };
3767 #endif // ASSERT
3768 
3769 #if TASKQUEUE_STATS
3770 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3771   st->print_raw_cr("GC Task Stats");
3772   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3773   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3774 }
3775 
3776 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3777   print_taskqueue_stats_hdr(st);
3778 
3779   TaskQueueStats totals;
3780   const int n = workers() != NULL ? workers()->total_workers() : 1;
3781   for (int i = 0; i < n; ++i) {
3782     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3783     totals += task_queue(i)->stats;
3784   }
3785   st->print_raw("tot "); totals.print(st); st->cr();
3786 
3787   DEBUG_ONLY(totals.verify());
3788 }
3789 
3790 void G1CollectedHeap::reset_taskqueue_stats() {
3791   const int n = workers() != NULL ? workers()->total_workers() : 1;
3792   for (int i = 0; i < n; ++i) {
3793     task_queue(i)->stats.reset();
3794   }
3795 }
3796 #endif // TASKQUEUE_STATS
3797 
3798 void G1CollectedHeap::log_gc_header() {
3799   if (!G1Log::fine()) {
3800     return;
3801   }
3802 
3803   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3804 
3805   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3806     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3807     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3808 
3809   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3810 }
3811 
3812 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3813   if (!G1Log::fine()) {
3814     return;
3815   }
3816 
3817   if (G1Log::finer()) {
3818     if (evacuation_failed()) {
3819       gclog_or_tty->print(" (to-space exhausted)");
3820     }
3821     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3822     g1_policy()->phase_times()->note_gc_end();
3823     g1_policy()->phase_times()->print(pause_time_sec);
3824     g1_policy()->print_detailed_heap_transition();
3825   } else {
3826     if (evacuation_failed()) {
3827       gclog_or_tty->print("--");
3828     }
3829     g1_policy()->print_heap_transition();
3830     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3831   }
3832   gclog_or_tty->flush();
3833 }
3834 
3835 bool
3836 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3837   assert_at_safepoint(true /* should_be_vm_thread */);
3838   guarantee(!is_gc_active(), "collection is not reentrant");
3839 
3840   if (GC_locker::check_active_before_gc()) {
3841     return false;
3842   }
3843 
3844   _gc_timer_stw->register_gc_start();
3845 
3846   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3847 
3848   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3849   ResourceMark rm;
3850 
3851   print_heap_before_gc();
3852   trace_heap_before_gc(_gc_tracer_stw);
3853 
3854   verify_region_sets_optional();
3855   verify_dirty_young_regions();
3856 
3857   // This call will decide whether this pause is an initial-mark
3858   // pause. If it is, during_initial_mark_pause() will return true
3859   // for the duration of this pause.
3860   g1_policy()->decide_on_conc_mark_initiation();
3861 
3862   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3863   assert(!g1_policy()->during_initial_mark_pause() ||
3864           g1_policy()->gcs_are_young(), "sanity");
3865 
3866   // We also do not allow mixed GCs during marking.
3867   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3868 
3869   // Record whether this pause is an initial mark. When the current
3870   // thread has completed its logging output and it's safe to signal
3871   // the CM thread, the flag's value in the policy has been reset.
3872   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3873 
3874   // Inner scope for scope based logging, timers, and stats collection
3875   {
3876     EvacuationInfo evacuation_info;
3877 
3878     if (g1_policy()->during_initial_mark_pause()) {
3879       // We are about to start a marking cycle, so we increment the
3880       // full collection counter.
3881       increment_old_marking_cycles_started();
3882       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3883     }
3884 
3885     _gc_tracer_stw->report_yc_type(yc_type());
3886 
3887     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3888 
3889     uint active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3890                                 workers()->active_workers() : 1);
3891     double pause_start_sec = os::elapsedTime();
3892     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3893     log_gc_header();
3894 
3895     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3896     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3897 
3898     // If the secondary_free_list is not empty, append it to the
3899     // free_list. No need to wait for the cleanup operation to finish;
3900     // the region allocation code will check the secondary_free_list
3901     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3902     // set, skip this step so that the region allocation code has to
3903     // get entries from the secondary_free_list.
3904     if (!G1StressConcRegionFreeing) {
3905       append_secondary_free_list_if_not_empty_with_lock();
3906     }
3907 
3908     assert(check_young_list_well_formed(), "young list should be well formed");
3909     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3910            "sanity check");
3911 
3912     // Don't dynamically change the number of GC threads this early.  A value of
3913     // 0 is used to indicate serial work.  When parallel work is done,
3914     // it will be set.
3915 
3916     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3917       IsGCActiveMark x;
3918 
3919       gc_prologue(false);
3920       increment_total_collections(false /* full gc */);
3921       increment_gc_time_stamp();
3922 
3923       verify_before_gc();
3924       check_bitmaps("GC Start");
3925 
3926       COMPILER2_PRESENT(DerivedPointerTable::clear());
3927 
3928       // Please see comment in g1CollectedHeap.hpp and
3929       // G1CollectedHeap::ref_processing_init() to see how
3930       // reference processing currently works in G1.
3931 
3932       // Enable discovery in the STW reference processor
3933       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3934                                             true /*verify_no_refs*/);
3935 
3936       {
3937         // We want to temporarily turn off discovery by the
3938         // CM ref processor, if necessary, and turn it back on
3939         // on again later if we do. Using a scoped
3940         // NoRefDiscovery object will do this.
3941         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3942 
3943         // Forget the current alloc region (we might even choose it to be part
3944         // of the collection set!).
3945         _allocator->release_mutator_alloc_region();
3946 
3947         // We should call this after we retire the mutator alloc
3948         // region(s) so that all the ALLOC / RETIRE events are generated
3949         // before the start GC event.
3950         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3951 
3952         // This timing is only used by the ergonomics to handle our pause target.
3953         // It is unclear why this should not include the full pause. We will
3954         // investigate this in CR 7178365.
3955         //
3956         // Preserving the old comment here if that helps the investigation:
3957         //
3958         // The elapsed time induced by the start time below deliberately elides
3959         // the possible verification above.
3960         double sample_start_time_sec = os::elapsedTime();
3961 
3962 #if YOUNG_LIST_VERBOSE
3963         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3964         _young_list->print();
3965         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3966 #endif // YOUNG_LIST_VERBOSE
3967 
3968         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3969 
3970         double scan_wait_start = os::elapsedTime();
3971         // We have to wait until the CM threads finish scanning the
3972         // root regions as it's the only way to ensure that all the
3973         // objects on them have been correctly scanned before we start
3974         // moving them during the GC.
3975         bool waited = _cm->root_regions()->wait_until_scan_finished();
3976         double wait_time_ms = 0.0;
3977         if (waited) {
3978           double scan_wait_end = os::elapsedTime();
3979           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3980         }
3981         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3982 
3983 #if YOUNG_LIST_VERBOSE
3984         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3985         _young_list->print();
3986 #endif // YOUNG_LIST_VERBOSE
3987 
3988         if (g1_policy()->during_initial_mark_pause()) {
3989           concurrent_mark()->checkpointRootsInitialPre();
3990         }
3991 
3992 #if YOUNG_LIST_VERBOSE
3993         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3994         _young_list->print();
3995         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3996 #endif // YOUNG_LIST_VERBOSE
3997 
3998         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3999 
4000         register_humongous_regions_with_in_cset_fast_test();
4001 
4002         _cm->note_start_of_gc();
4003         // We should not verify the per-thread SATB buffers given that
4004         // we have not filtered them yet (we'll do so during the
4005         // GC). We also call this after finalize_cset() to
4006         // ensure that the CSet has been finalized.
4007         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4008                                  true  /* verify_enqueued_buffers */,
4009                                  false /* verify_thread_buffers */,
4010                                  true  /* verify_fingers */);
4011 
4012         if (_hr_printer.is_active()) {
4013           HeapRegion* hr = g1_policy()->collection_set();
4014           while (hr != NULL) {
4015             _hr_printer.cset(hr);
4016             hr = hr->next_in_collection_set();
4017           }
4018         }
4019 
4020 #ifdef ASSERT
4021         VerifyCSetClosure cl;
4022         collection_set_iterate(&cl);
4023 #endif // ASSERT
4024 
4025         setup_surviving_young_words();
4026 
4027         // Initialize the GC alloc regions.
4028         _allocator->init_gc_alloc_regions(evacuation_info);
4029 
4030         // Actually do the work...
4031         evacuate_collection_set(evacuation_info);
4032 
4033         // We do this to mainly verify the per-thread SATB buffers
4034         // (which have been filtered by now) since we didn't verify
4035         // them earlier. No point in re-checking the stacks / enqueued
4036         // buffers given that the CSet has not changed since last time
4037         // we checked.
4038         _cm->verify_no_cset_oops(false /* verify_stacks */,
4039                                  false /* verify_enqueued_buffers */,
4040                                  true  /* verify_thread_buffers */,
4041                                  true  /* verify_fingers */);
4042 
4043         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4044 
4045         eagerly_reclaim_humongous_regions();
4046 
4047         g1_policy()->clear_collection_set();
4048 
4049         cleanup_surviving_young_words();
4050 
4051         // Start a new incremental collection set for the next pause.
4052         g1_policy()->start_incremental_cset_building();
4053 
4054         clear_cset_fast_test();
4055 
4056         _young_list->reset_sampled_info();
4057 
4058         // Don't check the whole heap at this point as the
4059         // GC alloc regions from this pause have been tagged
4060         // as survivors and moved on to the survivor list.
4061         // Survivor regions will fail the !is_young() check.
4062         assert(check_young_list_empty(false /* check_heap */),
4063           "young list should be empty");
4064 
4065 #if YOUNG_LIST_VERBOSE
4066         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4067         _young_list->print();
4068 #endif // YOUNG_LIST_VERBOSE
4069 
4070         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4071                                              _young_list->first_survivor_region(),
4072                                              _young_list->last_survivor_region());
4073 
4074         _young_list->reset_auxilary_lists();
4075 
4076         if (evacuation_failed()) {
4077           _allocator->set_used(recalculate_used());
4078           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4079           for (uint i = 0; i < n_queues; i++) {
4080             if (_evacuation_failed_info_array[i].has_failed()) {
4081               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4082             }
4083           }
4084         } else {
4085           // The "used" of the the collection set have already been subtracted
4086           // when they were freed.  Add in the bytes evacuated.
4087           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4088         }
4089 
4090         if (g1_policy()->during_initial_mark_pause()) {
4091           // We have to do this before we notify the CM threads that
4092           // they can start working to make sure that all the
4093           // appropriate initialization is done on the CM object.
4094           concurrent_mark()->checkpointRootsInitialPost();
4095           set_marking_started();
4096           // Note that we don't actually trigger the CM thread at
4097           // this point. We do that later when we're sure that
4098           // the current thread has completed its logging output.
4099         }
4100 
4101         allocate_dummy_regions();
4102 
4103 #if YOUNG_LIST_VERBOSE
4104         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4105         _young_list->print();
4106         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4107 #endif // YOUNG_LIST_VERBOSE
4108 
4109         _allocator->init_mutator_alloc_region();
4110 
4111         {
4112           size_t expand_bytes = g1_policy()->expansion_amount();
4113           if (expand_bytes > 0) {
4114             size_t bytes_before = capacity();
4115             // No need for an ergo verbose message here,
4116             // expansion_amount() does this when it returns a value > 0.
4117             if (!expand(expand_bytes)) {
4118               // We failed to expand the heap. Cannot do anything about it.
4119             }
4120           }
4121         }
4122 
4123         // We redo the verification but now wrt to the new CSet which
4124         // has just got initialized after the previous CSet was freed.
4125         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4126                                  true  /* verify_enqueued_buffers */,
4127                                  true  /* verify_thread_buffers */,
4128                                  true  /* verify_fingers */);
4129         _cm->note_end_of_gc();
4130 
4131         // This timing is only used by the ergonomics to handle our pause target.
4132         // It is unclear why this should not include the full pause. We will
4133         // investigate this in CR 7178365.
4134         double sample_end_time_sec = os::elapsedTime();
4135         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4136         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4137 
4138         MemoryService::track_memory_usage();
4139 
4140         // In prepare_for_verify() below we'll need to scan the deferred
4141         // update buffers to bring the RSets up-to-date if
4142         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4143         // the update buffers we'll probably need to scan cards on the
4144         // regions we just allocated to (i.e., the GC alloc
4145         // regions). However, during the last GC we called
4146         // set_saved_mark() on all the GC alloc regions, so card
4147         // scanning might skip the [saved_mark_word()...top()] area of
4148         // those regions (i.e., the area we allocated objects into
4149         // during the last GC). But it shouldn't. Given that
4150         // saved_mark_word() is conditional on whether the GC time stamp
4151         // on the region is current or not, by incrementing the GC time
4152         // stamp here we invalidate all the GC time stamps on all the
4153         // regions and saved_mark_word() will simply return top() for
4154         // all the regions. This is a nicer way of ensuring this rather
4155         // than iterating over the regions and fixing them. In fact, the
4156         // GC time stamp increment here also ensures that
4157         // saved_mark_word() will return top() between pauses, i.e.,
4158         // during concurrent refinement. So we don't need the
4159         // is_gc_active() check to decided which top to use when
4160         // scanning cards (see CR 7039627).
4161         increment_gc_time_stamp();
4162 
4163         verify_after_gc();
4164         check_bitmaps("GC End");
4165 
4166         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4167         ref_processor_stw()->verify_no_references_recorded();
4168 
4169         // CM reference discovery will be re-enabled if necessary.
4170       }
4171 
4172       // We should do this after we potentially expand the heap so
4173       // that all the COMMIT events are generated before the end GC
4174       // event, and after we retire the GC alloc regions so that all
4175       // RETIRE events are generated before the end GC event.
4176       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4177 
4178 #ifdef TRACESPINNING
4179       ParallelTaskTerminator::print_termination_counts();
4180 #endif
4181 
4182       gc_epilogue(false);
4183     }
4184 
4185     // Print the remainder of the GC log output.
4186     log_gc_footer(os::elapsedTime() - pause_start_sec);
4187 
4188     // It is not yet to safe to tell the concurrent mark to
4189     // start as we have some optional output below. We don't want the
4190     // output from the concurrent mark thread interfering with this
4191     // logging output either.
4192 
4193     _hrm.verify_optional();
4194     verify_region_sets_optional();
4195 
4196     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4197     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4198 
4199     print_heap_after_gc();
4200     trace_heap_after_gc(_gc_tracer_stw);
4201 
4202     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4203     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4204     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4205     // before any GC notifications are raised.
4206     g1mm()->update_sizes();
4207 
4208     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4209     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4210     _gc_timer_stw->register_gc_end();
4211     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4212   }
4213   // It should now be safe to tell the concurrent mark thread to start
4214   // without its logging output interfering with the logging output
4215   // that came from the pause.
4216 
4217   if (should_start_conc_mark) {
4218     // CAUTION: after the doConcurrentMark() call below,
4219     // the concurrent marking thread(s) could be running
4220     // concurrently with us. Make sure that anything after
4221     // this point does not assume that we are the only GC thread
4222     // running. Note: of course, the actual marking work will
4223     // not start until the safepoint itself is released in
4224     // SuspendibleThreadSet::desynchronize().
4225     doConcurrentMark();
4226   }
4227 
4228   return true;
4229 }
4230 
4231 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4232 {
4233   size_t gclab_word_size;
4234   switch (purpose) {
4235     case GCAllocForSurvived:
4236       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4237       break;
4238     case GCAllocForTenured:
4239       gclab_word_size = _old_plab_stats.desired_plab_sz();
4240       break;
4241     default:
4242       assert(false, "unknown GCAllocPurpose");
4243       gclab_word_size = _old_plab_stats.desired_plab_sz();
4244       break;
4245   }
4246 
4247   // Prevent humongous PLAB sizes for two reasons:
4248   // * PLABs are allocated using a similar paths as oops, but should
4249   //   never be in a humongous region
4250   // * Allowing humongous PLABs needlessly churns the region free lists
4251   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4252 }
4253 
4254 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4255   _drain_in_progress = false;
4256   set_evac_failure_closure(cl);
4257   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4258 }
4259 
4260 void G1CollectedHeap::finalize_for_evac_failure() {
4261   assert(_evac_failure_scan_stack != NULL &&
4262          _evac_failure_scan_stack->length() == 0,
4263          "Postcondition");
4264   assert(!_drain_in_progress, "Postcondition");
4265   delete _evac_failure_scan_stack;
4266   _evac_failure_scan_stack = NULL;
4267 }
4268 
4269 void G1CollectedHeap::remove_self_forwarding_pointers() {
4270   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4271 
4272   double remove_self_forwards_start = os::elapsedTime();
4273 
4274   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4275 
4276   if (G1CollectedHeap::use_parallel_gc_threads()) {
4277     set_par_threads();
4278     workers()->run_task(&rsfp_task);
4279     set_par_threads(0);
4280   } else {
4281     rsfp_task.work(0);
4282   }
4283 
4284   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4285 
4286   // Reset the claim values in the regions in the collection set.
4287   reset_cset_heap_region_claim_values();
4288 
4289   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4290 
4291   // Now restore saved marks, if any.
4292   assert(_objs_with_preserved_marks.size() ==
4293             _preserved_marks_of_objs.size(), "Both or none.");
4294   while (!_objs_with_preserved_marks.is_empty()) {
4295     oop obj = _objs_with_preserved_marks.pop();
4296     markOop m = _preserved_marks_of_objs.pop();
4297     obj->set_mark(m);
4298   }
4299   _objs_with_preserved_marks.clear(true);
4300   _preserved_marks_of_objs.clear(true);
4301 
4302   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4303 }
4304 
4305 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4306   _evac_failure_scan_stack->push(obj);
4307 }
4308 
4309 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4310   assert(_evac_failure_scan_stack != NULL, "precondition");
4311 
4312   while (_evac_failure_scan_stack->length() > 0) {
4313      oop obj = _evac_failure_scan_stack->pop();
4314      _evac_failure_closure->set_region(heap_region_containing(obj));
4315      obj->oop_iterate_backwards(_evac_failure_closure);
4316   }
4317 }
4318 
4319 oop
4320 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4321                                                oop old) {
4322   assert(obj_in_cs(old),
4323          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4324                  (HeapWord*) old));
4325   markOop m = old->mark();
4326   oop forward_ptr = old->forward_to_atomic(old);
4327   if (forward_ptr == NULL) {
4328     // Forward-to-self succeeded.
4329     assert(_par_scan_state != NULL, "par scan state");
4330     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4331     uint queue_num = _par_scan_state->queue_num();
4332 
4333     _evacuation_failed = true;
4334     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4335     if (_evac_failure_closure != cl) {
4336       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4337       assert(!_drain_in_progress,
4338              "Should only be true while someone holds the lock.");
4339       // Set the global evac-failure closure to the current thread's.
4340       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4341       set_evac_failure_closure(cl);
4342       // Now do the common part.
4343       handle_evacuation_failure_common(old, m);
4344       // Reset to NULL.
4345       set_evac_failure_closure(NULL);
4346     } else {
4347       // The lock is already held, and this is recursive.
4348       assert(_drain_in_progress, "This should only be the recursive case.");
4349       handle_evacuation_failure_common(old, m);
4350     }
4351     return old;
4352   } else {
4353     // Forward-to-self failed. Either someone else managed to allocate
4354     // space for this object (old != forward_ptr) or they beat us in
4355     // self-forwarding it (old == forward_ptr).
4356     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4357            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4358                    "should not be in the CSet",
4359                    (HeapWord*) old, (HeapWord*) forward_ptr));
4360     return forward_ptr;
4361   }
4362 }
4363 
4364 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4365   preserve_mark_if_necessary(old, m);
4366 
4367   HeapRegion* r = heap_region_containing(old);
4368   if (!r->evacuation_failed()) {
4369     r->set_evacuation_failed(true);
4370     _hr_printer.evac_failure(r);
4371   }
4372 
4373   push_on_evac_failure_scan_stack(old);
4374 
4375   if (!_drain_in_progress) {
4376     // prevent recursion in copy_to_survivor_space()
4377     _drain_in_progress = true;
4378     drain_evac_failure_scan_stack();
4379     _drain_in_progress = false;
4380   }
4381 }
4382 
4383 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4384   assert(evacuation_failed(), "Oversaving!");
4385   // We want to call the "for_promotion_failure" version only in the
4386   // case of a promotion failure.
4387   if (m->must_be_preserved_for_promotion_failure(obj)) {
4388     _objs_with_preserved_marks.push(obj);
4389     _preserved_marks_of_objs.push(m);
4390   }
4391 }
4392 
4393 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4394                                                   size_t word_size,
4395                                                   AllocationContext_t context) {
4396   if (purpose == GCAllocForSurvived) {
4397     HeapWord* result = survivor_attempt_allocation(word_size, context);
4398     if (result != NULL) {
4399       return result;
4400     } else {
4401       // Let's try to allocate in the old gen in case we can fit the
4402       // object there.
4403       return old_attempt_allocation(word_size, context);
4404     }
4405   } else {
4406     assert(purpose ==  GCAllocForTenured, "sanity");
4407     HeapWord* result = old_attempt_allocation(word_size, context);
4408     if (result != NULL) {
4409       return result;
4410     } else {
4411       // Let's try to allocate in the survivors in case we can fit the
4412       // object there.
4413       return survivor_attempt_allocation(word_size, context);
4414     }
4415   }
4416 
4417   ShouldNotReachHere();
4418   // Trying to keep some compilers happy.
4419   return NULL;
4420 }
4421 
4422 void G1ParCopyHelper::mark_object(oop obj) {
4423   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4424 
4425   // We know that the object is not moving so it's safe to read its size.
4426   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4427 }
4428 
4429 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4430   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4431   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4432   assert(from_obj != to_obj, "should not be self-forwarded");
4433 
4434   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4435   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4436 
4437   // The object might be in the process of being copied by another
4438   // worker so we cannot trust that its to-space image is
4439   // well-formed. So we have to read its size from its from-space
4440   // image which we know should not be changing.
4441   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4442 }
4443 
4444 template <class T>
4445 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4446   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4447     _scanned_klass->record_modified_oops();
4448   }
4449 }
4450 
4451 template <G1Barrier barrier, G1Mark do_mark_object>
4452 template <class T>
4453 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4454   T heap_oop = oopDesc::load_heap_oop(p);
4455 
4456   if (oopDesc::is_null(heap_oop)) {
4457     return;
4458   }
4459 
4460   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4461 
4462   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4463 
4464   G1CollectedHeap::in_cset_state_t state = _g1->in_cset_state(obj);
4465 
4466   if (state == G1CollectedHeap::InCSet) {
4467     oop forwardee;
4468     markOop m = obj->mark();
4469     if (m->is_marked()) {
4470       forwardee = (oop) m->decode_pointer();
4471     } else {
4472       forwardee = _par_scan_state->copy_to_survivor_space(obj, m);
4473     }
4474     assert(forwardee != NULL, "forwardee should not be NULL");
4475     oopDesc::encode_store_heap_oop(p, forwardee);
4476     if (do_mark_object != G1MarkNone && forwardee != obj) {
4477       // If the object is self-forwarded we don't need to explicitly
4478       // mark it, the evacuation failure protocol will do so.
4479       mark_forwarded_object(obj, forwardee);
4480     }
4481 
4482     if (barrier == G1BarrierKlass) {
4483       do_klass_barrier(p, forwardee);
4484     }
4485   } else {
4486     if (state == G1CollectedHeap::IsHumongous) {
4487       _g1->set_humongous_is_live(obj);
4488     }
4489     // The object is not in collection set. If we're a root scanning
4490     // closure during an initial mark pause then attempt to mark the object.
4491     if (do_mark_object == G1MarkFromRoot) {
4492       mark_object(obj);
4493     }
4494   }
4495 
4496   if (barrier == G1BarrierEvac) {
4497     _par_scan_state->update_rs(_from, p, _worker_id);
4498   }
4499 }
4500 
4501 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4502 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4503 
4504 class G1ParEvacuateFollowersClosure : public VoidClosure {
4505 protected:
4506   G1CollectedHeap*              _g1h;
4507   G1ParScanThreadState*         _par_scan_state;
4508   RefToScanQueueSet*            _queues;
4509   ParallelTaskTerminator*       _terminator;
4510 
4511   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4512   RefToScanQueueSet*      queues()         { return _queues; }
4513   ParallelTaskTerminator* terminator()     { return _terminator; }
4514 
4515 public:
4516   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4517                                 G1ParScanThreadState* par_scan_state,
4518                                 RefToScanQueueSet* queues,
4519                                 ParallelTaskTerminator* terminator)
4520     : _g1h(g1h), _par_scan_state(par_scan_state),
4521       _queues(queues), _terminator(terminator) {}
4522 
4523   void do_void();
4524 
4525 private:
4526   inline bool offer_termination();
4527 };
4528 
4529 bool G1ParEvacuateFollowersClosure::offer_termination() {
4530   G1ParScanThreadState* const pss = par_scan_state();
4531   pss->start_term_time();
4532   const bool res = terminator()->offer_termination();
4533   pss->end_term_time();
4534   return res;
4535 }
4536 
4537 void G1ParEvacuateFollowersClosure::do_void() {
4538   G1ParScanThreadState* const pss = par_scan_state();
4539   pss->trim_queue();
4540   do {
4541     pss->steal_and_trim_queue(queues());
4542   } while (!offer_termination());
4543 }
4544 
4545 class G1KlassScanClosure : public KlassClosure {
4546  G1ParCopyHelper* _closure;
4547  bool             _process_only_dirty;
4548  int              _count;
4549  public:
4550   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4551       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4552   void do_klass(Klass* klass) {
4553     // If the klass has not been dirtied we know that there's
4554     // no references into  the young gen and we can skip it.
4555    if (!_process_only_dirty || klass->has_modified_oops()) {
4556       // Clean the klass since we're going to scavenge all the metadata.
4557       klass->clear_modified_oops();
4558 
4559       // Tell the closure that this klass is the Klass to scavenge
4560       // and is the one to dirty if oops are left pointing into the young gen.
4561       _closure->set_scanned_klass(klass);
4562 
4563       klass->oops_do(_closure);
4564 
4565       _closure->set_scanned_klass(NULL);
4566     }
4567     _count++;
4568   }
4569 };
4570 
4571 class G1ParTask : public AbstractGangTask {
4572 protected:
4573   G1CollectedHeap*       _g1h;
4574   RefToScanQueueSet      *_queues;
4575   G1RootProcessor*       _root_processor;
4576   ParallelTaskTerminator _terminator;
4577   uint _n_workers;
4578 
4579   Mutex _stats_lock;
4580   Mutex* stats_lock() { return &_stats_lock; }
4581 
4582 public:
4583   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor)
4584     : AbstractGangTask("G1 collection"),
4585       _g1h(g1h),
4586       _queues(task_queues),
4587       _root_processor(root_processor),
4588       _terminator(0, _queues),
4589       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4590   {}
4591 
4592   RefToScanQueueSet* queues() { return _queues; }
4593 
4594   RefToScanQueue *work_queue(int i) {
4595     return queues()->queue(i);
4596   }
4597 
4598   ParallelTaskTerminator* terminator() { return &_terminator; }
4599 
4600   virtual void set_for_termination(int active_workers) {
4601     _root_processor->set_num_workers(active_workers);
4602     terminator()->reset_for_reuse(active_workers);
4603     _n_workers = active_workers;
4604   }
4605 
4606   // Helps out with CLD processing.
4607   //
4608   // During InitialMark we need to:
4609   // 1) Scavenge all CLDs for the young GC.
4610   // 2) Mark all objects directly reachable from strong CLDs.
4611   template <G1Mark do_mark_object>
4612   class G1CLDClosure : public CLDClosure {
4613     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4614     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4615     G1KlassScanClosure                                _klass_in_cld_closure;
4616     bool                                              _claim;
4617 
4618    public:
4619     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4620                  bool only_young, bool claim)
4621         : _oop_closure(oop_closure),
4622           _oop_in_klass_closure(oop_closure->g1(),
4623                                 oop_closure->pss(),
4624                                 oop_closure->rp()),
4625           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4626           _claim(claim) {
4627 
4628     }
4629 
4630     void do_cld(ClassLoaderData* cld) {
4631       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4632     }
4633   };
4634 
4635   void work(uint worker_id) {
4636     if (worker_id >= _n_workers) return;  // no work needed this round
4637 
4638     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4639 
4640     {
4641       ResourceMark rm;
4642       HandleMark   hm;
4643 
4644       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4645 
4646       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4647       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4648 
4649       pss.set_evac_failure_closure(&evac_failure_cl);
4650 
4651       bool only_young = _g1h->g1_policy()->gcs_are_young();
4652 
4653       // Non-IM young GC.
4654       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4655       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4656                                                                                only_young, // Only process dirty klasses.
4657                                                                                false);     // No need to claim CLDs.
4658       // IM young GC.
4659       //    Strong roots closures.
4660       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4661       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4662                                                                                false, // Process all klasses.
4663                                                                                true); // Need to claim CLDs.
4664       //    Weak roots closures.
4665       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4666       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4667                                                                                     false, // Process all klasses.
4668                                                                                     true); // Need to claim CLDs.
4669 
4670       OopClosure* strong_root_cl;
4671       OopClosure* weak_root_cl;
4672       CLDClosure* strong_cld_cl;
4673       CLDClosure* weak_cld_cl;
4674 
4675       bool trace_metadata = false;
4676 
4677       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4678         // We also need to mark copied objects.
4679         strong_root_cl = &scan_mark_root_cl;
4680         strong_cld_cl  = &scan_mark_cld_cl;
4681         if (ClassUnloadingWithConcurrentMark) {
4682           weak_root_cl = &scan_mark_weak_root_cl;
4683           weak_cld_cl  = &scan_mark_weak_cld_cl;
4684           trace_metadata = true;
4685         } else {
4686           weak_root_cl = &scan_mark_root_cl;
4687           weak_cld_cl  = &scan_mark_cld_cl;
4688         }
4689       } else {
4690         strong_root_cl = &scan_only_root_cl;
4691         weak_root_cl   = &scan_only_root_cl;
4692         strong_cld_cl  = &scan_only_cld_cl;
4693         weak_cld_cl    = &scan_only_cld_cl;
4694       }
4695 
4696       pss.start_strong_roots();
4697 
4698       _root_processor->evacuate_roots(strong_root_cl,
4699                                       weak_root_cl,
4700                                       strong_cld_cl,
4701                                       weak_cld_cl,
4702                                       trace_metadata,
4703                                       worker_id);
4704 
4705       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4706       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4707                                             weak_root_cl,
4708                                             worker_id);
4709       pss.end_strong_roots();
4710 
4711       {
4712         double start = os::elapsedTime();
4713         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4714         evac.do_void();
4715         double elapsed_sec = os::elapsedTime() - start;
4716         double term_sec = pss.term_time();
4717         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4718         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4719         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4720       }
4721       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4722       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4723 
4724       if (ParallelGCVerbose) {
4725         MutexLocker x(stats_lock());
4726         pss.print_termination_stats(worker_id);
4727       }
4728 
4729       assert(pss.queue_is_empty(), "should be empty");
4730 
4731       // Close the inner scope so that the ResourceMark and HandleMark
4732       // destructors are executed here and are included as part of the
4733       // "GC Worker Time".
4734     }
4735     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4736   }
4737 };
4738 
4739 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4740 private:
4741   BoolObjectClosure* _is_alive;
4742   int _initial_string_table_size;
4743   int _initial_symbol_table_size;
4744 
4745   bool  _process_strings;
4746   int _strings_processed;
4747   int _strings_removed;
4748 
4749   bool  _process_symbols;
4750   int _symbols_processed;
4751   int _symbols_removed;
4752 
4753   bool _do_in_parallel;
4754 public:
4755   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4756     AbstractGangTask("String/Symbol Unlinking"),
4757     _is_alive(is_alive),
4758     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
4759     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4760     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4761 
4762     _initial_string_table_size = StringTable::the_table()->table_size();
4763     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4764     if (process_strings) {
4765       StringTable::clear_parallel_claimed_index();
4766     }
4767     if (process_symbols) {
4768       SymbolTable::clear_parallel_claimed_index();
4769     }
4770   }
4771 
4772   ~G1StringSymbolTableUnlinkTask() {
4773     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4774               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
4775                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4776     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4777               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
4778                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4779 
4780     if (G1TraceStringSymbolTableScrubbing) {
4781       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4782                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4783                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4784                              strings_processed(), strings_removed(),
4785                              symbols_processed(), symbols_removed());
4786     }
4787   }
4788 
4789   void work(uint worker_id) {
4790     if (_do_in_parallel) {
4791       int strings_processed = 0;
4792       int strings_removed = 0;
4793       int symbols_processed = 0;
4794       int symbols_removed = 0;
4795       if (_process_strings) {
4796         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4797         Atomic::add(strings_processed, &_strings_processed);
4798         Atomic::add(strings_removed, &_strings_removed);
4799       }
4800       if (_process_symbols) {
4801         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4802         Atomic::add(symbols_processed, &_symbols_processed);
4803         Atomic::add(symbols_removed, &_symbols_removed);
4804       }
4805     } else {
4806       if (_process_strings) {
4807         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
4808       }
4809       if (_process_symbols) {
4810         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
4811       }
4812     }
4813   }
4814 
4815   size_t strings_processed() const { return (size_t)_strings_processed; }
4816   size_t strings_removed()   const { return (size_t)_strings_removed; }
4817 
4818   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4819   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4820 };
4821 
4822 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4823 private:
4824   static Monitor* _lock;
4825 
4826   BoolObjectClosure* const _is_alive;
4827   const bool               _unloading_occurred;
4828   const uint               _num_workers;
4829 
4830   // Variables used to claim nmethods.
4831   nmethod* _first_nmethod;
4832   volatile nmethod* _claimed_nmethod;
4833 
4834   // The list of nmethods that need to be processed by the second pass.
4835   volatile nmethod* _postponed_list;
4836   volatile uint     _num_entered_barrier;
4837 
4838  public:
4839   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4840       _is_alive(is_alive),
4841       _unloading_occurred(unloading_occurred),
4842       _num_workers(num_workers),
4843       _first_nmethod(NULL),
4844       _claimed_nmethod(NULL),
4845       _postponed_list(NULL),
4846       _num_entered_barrier(0)
4847   {
4848     nmethod::increase_unloading_clock();
4849     _first_nmethod = CodeCache::alive_nmethod(CodeCache::first());
4850     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4851   }
4852 
4853   ~G1CodeCacheUnloadingTask() {
4854     CodeCache::verify_clean_inline_caches();
4855 
4856     CodeCache::set_needs_cache_clean(false);
4857     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4858 
4859     CodeCache::verify_icholder_relocations();
4860   }
4861 
4862  private:
4863   void add_to_postponed_list(nmethod* nm) {
4864       nmethod* old;
4865       do {
4866         old = (nmethod*)_postponed_list;
4867         nm->set_unloading_next(old);
4868       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4869   }
4870 
4871   void clean_nmethod(nmethod* nm) {
4872     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4873 
4874     if (postponed) {
4875       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4876       add_to_postponed_list(nm);
4877     }
4878 
4879     // Mark that this thread has been cleaned/unloaded.
4880     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4881     nm->set_unloading_clock(nmethod::global_unloading_clock());
4882   }
4883 
4884   void clean_nmethod_postponed(nmethod* nm) {
4885     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4886   }
4887 
4888   static const int MaxClaimNmethods = 16;
4889 
4890   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4891     nmethod* first;
4892     nmethod* last;
4893 
4894     do {
4895       *num_claimed_nmethods = 0;
4896 
4897       first = last = (nmethod*)_claimed_nmethod;
4898 
4899       if (first != NULL) {
4900         for (int i = 0; i < MaxClaimNmethods; i++) {
4901           last = CodeCache::alive_nmethod(CodeCache::next(last));
4902 
4903           if (last == NULL) {
4904             break;
4905           }
4906 
4907           claimed_nmethods[i] = last;
4908           (*num_claimed_nmethods)++;
4909         }
4910       }
4911 
4912     } while ((nmethod*)Atomic::cmpxchg_ptr(last, &_claimed_nmethod, first) != first);
4913   }
4914 
4915   nmethod* claim_postponed_nmethod() {
4916     nmethod* claim;
4917     nmethod* next;
4918 
4919     do {
4920       claim = (nmethod*)_postponed_list;
4921       if (claim == NULL) {
4922         return NULL;
4923       }
4924 
4925       next = claim->unloading_next();
4926 
4927     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4928 
4929     return claim;
4930   }
4931 
4932  public:
4933   // Mark that we're done with the first pass of nmethod cleaning.
4934   void barrier_mark(uint worker_id) {
4935     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4936     _num_entered_barrier++;
4937     if (_num_entered_barrier == _num_workers) {
4938       ml.notify_all();
4939     }
4940   }
4941 
4942   // See if we have to wait for the other workers to
4943   // finish their first-pass nmethod cleaning work.
4944   void barrier_wait(uint worker_id) {
4945     if (_num_entered_barrier < _num_workers) {
4946       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4947       while (_num_entered_barrier < _num_workers) {
4948           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4949       }
4950     }
4951   }
4952 
4953   // Cleaning and unloading of nmethods. Some work has to be postponed
4954   // to the second pass, when we know which nmethods survive.
4955   void work_first_pass(uint worker_id) {
4956     // The first nmethods is claimed by the first worker.
4957     if (worker_id == 0 && _first_nmethod != NULL) {
4958       clean_nmethod(_first_nmethod);
4959       _first_nmethod = NULL;
4960     }
4961 
4962     int num_claimed_nmethods;
4963     nmethod* claimed_nmethods[MaxClaimNmethods];
4964 
4965     while (true) {
4966       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4967 
4968       if (num_claimed_nmethods == 0) {
4969         break;
4970       }
4971 
4972       for (int i = 0; i < num_claimed_nmethods; i++) {
4973         clean_nmethod(claimed_nmethods[i]);
4974       }
4975     }
4976 
4977     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
4978     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
4979     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
4980   }
4981 
4982   void work_second_pass(uint worker_id) {
4983     nmethod* nm;
4984     // Take care of postponed nmethods.
4985     while ((nm = claim_postponed_nmethod()) != NULL) {
4986       clean_nmethod_postponed(nm);
4987     }
4988   }
4989 };
4990 
4991 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock");
4992 
4993 class G1KlassCleaningTask : public StackObj {
4994   BoolObjectClosure*                      _is_alive;
4995   volatile jint                           _clean_klass_tree_claimed;
4996   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4997 
4998  public:
4999   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
5000       _is_alive(is_alive),
5001       _clean_klass_tree_claimed(0),
5002       _klass_iterator() {
5003   }
5004 
5005  private:
5006   bool claim_clean_klass_tree_task() {
5007     if (_clean_klass_tree_claimed) {
5008       return false;
5009     }
5010 
5011     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
5012   }
5013 
5014   InstanceKlass* claim_next_klass() {
5015     Klass* klass;
5016     do {
5017       klass =_klass_iterator.next_klass();
5018     } while (klass != NULL && !klass->oop_is_instance());
5019 
5020     return (InstanceKlass*)klass;
5021   }
5022 
5023 public:
5024 
5025   void clean_klass(InstanceKlass* ik) {
5026     ik->clean_implementors_list(_is_alive);
5027     ik->clean_method_data(_is_alive);
5028 
5029     // G1 specific cleanup work that has
5030     // been moved here to be done in parallel.
5031     ik->clean_dependent_nmethods();
5032     if (JvmtiExport::has_redefined_a_class()) {
5033       InstanceKlass::purge_previous_versions(ik);
5034     }
5035   }
5036 
5037   void work() {
5038     ResourceMark rm;
5039 
5040     // One worker will clean the subklass/sibling klass tree.
5041     if (claim_clean_klass_tree_task()) {
5042       Klass::clean_subklass_tree(_is_alive);
5043     }
5044 
5045     // All workers will help cleaning the classes,
5046     InstanceKlass* klass;
5047     while ((klass = claim_next_klass()) != NULL) {
5048       clean_klass(klass);
5049     }
5050   }
5051 };
5052 
5053 // To minimize the remark pause times, the tasks below are done in parallel.
5054 class G1ParallelCleaningTask : public AbstractGangTask {
5055 private:
5056   G1StringSymbolTableUnlinkTask _string_symbol_task;
5057   G1CodeCacheUnloadingTask      _code_cache_task;
5058   G1KlassCleaningTask           _klass_cleaning_task;
5059 
5060 public:
5061   // The constructor is run in the VMThread.
5062   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5063       AbstractGangTask("Parallel Cleaning"),
5064       _string_symbol_task(is_alive, process_strings, process_symbols),
5065       _code_cache_task(num_workers, is_alive, unloading_occurred),
5066       _klass_cleaning_task(is_alive) {
5067   }
5068 
5069   void pre_work_verification() {
5070     // The VM Thread will have registered Metadata during the single-threaded phase of MetadataStackOnMark.
5071     assert(Thread::current()->is_VM_thread()
5072            || !MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5073   }
5074 
5075   void post_work_verification() {
5076     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5077   }
5078 
5079   // The parallel work done by all worker threads.
5080   void work(uint worker_id) {
5081     pre_work_verification();
5082 
5083     // Do first pass of code cache cleaning.
5084     _code_cache_task.work_first_pass(worker_id);
5085 
5086     // Let the threads mark that the first pass is done.
5087     _code_cache_task.barrier_mark(worker_id);
5088 
5089     // Clean the Strings and Symbols.
5090     _string_symbol_task.work(worker_id);
5091 
5092     // Wait for all workers to finish the first code cache cleaning pass.
5093     _code_cache_task.barrier_wait(worker_id);
5094 
5095     // Do the second code cache cleaning work, which realize on
5096     // the liveness information gathered during the first pass.
5097     _code_cache_task.work_second_pass(worker_id);
5098 
5099     // Clean all klasses that were not unloaded.
5100     _klass_cleaning_task.work();
5101 
5102     post_work_verification();
5103   }
5104 };
5105 
5106 
5107 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5108                                         bool process_strings,
5109                                         bool process_symbols,
5110                                         bool class_unloading_occurred) {
5111   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5112                     workers()->active_workers() : 1);
5113 
5114   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5115                                         n_workers, class_unloading_occurred);
5116   if (G1CollectedHeap::use_parallel_gc_threads()) {
5117     set_par_threads(n_workers);
5118     workers()->run_task(&g1_unlink_task);
5119     set_par_threads(0);
5120   } else {
5121     g1_unlink_task.work(0);
5122   }
5123 }
5124 
5125 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5126                                                      bool process_strings, bool process_symbols) {
5127   {
5128     uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5129                      _g1h->workers()->active_workers() : 1);
5130     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5131     if (G1CollectedHeap::use_parallel_gc_threads()) {
5132       set_par_threads(n_workers);
5133       workers()->run_task(&g1_unlink_task);
5134       set_par_threads(0);
5135     } else {
5136       g1_unlink_task.work(0);
5137     }
5138   }
5139 
5140   if (G1StringDedup::is_enabled()) {
5141     G1StringDedup::unlink(is_alive);
5142   }
5143 }
5144 
5145 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5146  private:
5147   DirtyCardQueueSet* _queue;
5148  public:
5149   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5150 
5151   virtual void work(uint worker_id) {
5152     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
5153     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
5154 
5155     RedirtyLoggedCardTableEntryClosure cl;
5156     if (G1CollectedHeap::heap()->use_parallel_gc_threads()) {
5157       _queue->par_apply_closure_to_all_completed_buffers(&cl);
5158     } else {
5159       _queue->apply_closure_to_all_completed_buffers(&cl);
5160     }
5161 
5162     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
5163   }
5164 };
5165 
5166 void G1CollectedHeap::redirty_logged_cards() {
5167   double redirty_logged_cards_start = os::elapsedTime();
5168 
5169   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5170                    _g1h->workers()->active_workers() : 1);
5171 
5172   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5173   dirty_card_queue_set().reset_for_par_iteration();
5174   if (use_parallel_gc_threads()) {
5175     set_par_threads(n_workers);
5176     workers()->run_task(&redirty_task);
5177     set_par_threads(0);
5178   } else {
5179     redirty_task.work(0);
5180   }
5181 
5182   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5183   dcq.merge_bufferlists(&dirty_card_queue_set());
5184   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5185 
5186   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5187 }
5188 
5189 // Weak Reference Processing support
5190 
5191 // An always "is_alive" closure that is used to preserve referents.
5192 // If the object is non-null then it's alive.  Used in the preservation
5193 // of referent objects that are pointed to by reference objects
5194 // discovered by the CM ref processor.
5195 class G1AlwaysAliveClosure: public BoolObjectClosure {
5196   G1CollectedHeap* _g1;
5197 public:
5198   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5199   bool do_object_b(oop p) {
5200     if (p != NULL) {
5201       return true;
5202     }
5203     return false;
5204   }
5205 };
5206 
5207 bool G1STWIsAliveClosure::do_object_b(oop p) {
5208   // An object is reachable if it is outside the collection set,
5209   // or is inside and copied.
5210   return !_g1->obj_in_cs(p) || p->is_forwarded();
5211 }
5212 
5213 // Non Copying Keep Alive closure
5214 class G1KeepAliveClosure: public OopClosure {
5215   G1CollectedHeap* _g1;
5216 public:
5217   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5218   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5219   void do_oop(oop* p) {
5220     oop obj = *p;
5221     assert(obj != NULL, "the caller should have filtered out NULL values");
5222 
5223     G1CollectedHeap::in_cset_state_t cset_state = _g1->in_cset_state(obj);
5224     if (cset_state == G1CollectedHeap::InNeither) {
5225       return;
5226     }
5227     if (cset_state == G1CollectedHeap::InCSet) {
5228       assert( obj->is_forwarded(), "invariant" );
5229       *p = obj->forwardee();
5230     } else {
5231       assert(!obj->is_forwarded(), "invariant" );
5232       assert(cset_state == G1CollectedHeap::IsHumongous,
5233              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state));
5234       _g1->set_humongous_is_live(obj);
5235     }
5236   }
5237 };
5238 
5239 // Copying Keep Alive closure - can be called from both
5240 // serial and parallel code as long as different worker
5241 // threads utilize different G1ParScanThreadState instances
5242 // and different queues.
5243 
5244 class G1CopyingKeepAliveClosure: public OopClosure {
5245   G1CollectedHeap*         _g1h;
5246   OopClosure*              _copy_non_heap_obj_cl;
5247   G1ParScanThreadState*    _par_scan_state;
5248 
5249 public:
5250   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5251                             OopClosure* non_heap_obj_cl,
5252                             G1ParScanThreadState* pss):
5253     _g1h(g1h),
5254     _copy_non_heap_obj_cl(non_heap_obj_cl),
5255     _par_scan_state(pss)
5256   {}
5257 
5258   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5259   virtual void do_oop(      oop* p) { do_oop_work(p); }
5260 
5261   template <class T> void do_oop_work(T* p) {
5262     oop obj = oopDesc::load_decode_heap_oop(p);
5263 
5264     if (_g1h->is_in_cset_or_humongous(obj)) {
5265       // If the referent object has been forwarded (either copied
5266       // to a new location or to itself in the event of an
5267       // evacuation failure) then we need to update the reference
5268       // field and, if both reference and referent are in the G1
5269       // heap, update the RSet for the referent.
5270       //
5271       // If the referent has not been forwarded then we have to keep
5272       // it alive by policy. Therefore we have copy the referent.
5273       //
5274       // If the reference field is in the G1 heap then we can push
5275       // on the PSS queue. When the queue is drained (after each
5276       // phase of reference processing) the object and it's followers
5277       // will be copied, the reference field set to point to the
5278       // new location, and the RSet updated. Otherwise we need to
5279       // use the the non-heap or metadata closures directly to copy
5280       // the referent object and update the pointer, while avoiding
5281       // updating the RSet.
5282 
5283       if (_g1h->is_in_g1_reserved(p)) {
5284         _par_scan_state->push_on_queue(p);
5285       } else {
5286         assert(!Metaspace::contains((const void*)p),
5287                err_msg("Unexpectedly found a pointer from metadata: "
5288                               PTR_FORMAT, p));
5289         _copy_non_heap_obj_cl->do_oop(p);
5290       }
5291     }
5292   }
5293 };
5294 
5295 // Serial drain queue closure. Called as the 'complete_gc'
5296 // closure for each discovered list in some of the
5297 // reference processing phases.
5298 
5299 class G1STWDrainQueueClosure: public VoidClosure {
5300 protected:
5301   G1CollectedHeap* _g1h;
5302   G1ParScanThreadState* _par_scan_state;
5303 
5304   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5305 
5306 public:
5307   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5308     _g1h(g1h),
5309     _par_scan_state(pss)
5310   { }
5311 
5312   void do_void() {
5313     G1ParScanThreadState* const pss = par_scan_state();
5314     pss->trim_queue();
5315   }
5316 };
5317 
5318 // Parallel Reference Processing closures
5319 
5320 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5321 // processing during G1 evacuation pauses.
5322 
5323 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5324 private:
5325   G1CollectedHeap*   _g1h;
5326   RefToScanQueueSet* _queues;
5327   FlexibleWorkGang*  _workers;
5328   int                _active_workers;
5329 
5330 public:
5331   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5332                         FlexibleWorkGang* workers,
5333                         RefToScanQueueSet *task_queues,
5334                         int n_workers) :
5335     _g1h(g1h),
5336     _queues(task_queues),
5337     _workers(workers),
5338     _active_workers(n_workers)
5339   {
5340     assert(n_workers > 0, "shouldn't call this otherwise");
5341   }
5342 
5343   // Executes the given task using concurrent marking worker threads.
5344   virtual void execute(ProcessTask& task);
5345   virtual void execute(EnqueueTask& task);
5346 };
5347 
5348 // Gang task for possibly parallel reference processing
5349 
5350 class G1STWRefProcTaskProxy: public AbstractGangTask {
5351   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5352   ProcessTask&     _proc_task;
5353   G1CollectedHeap* _g1h;
5354   RefToScanQueueSet *_task_queues;
5355   ParallelTaskTerminator* _terminator;
5356 
5357 public:
5358   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5359                      G1CollectedHeap* g1h,
5360                      RefToScanQueueSet *task_queues,
5361                      ParallelTaskTerminator* terminator) :
5362     AbstractGangTask("Process reference objects in parallel"),
5363     _proc_task(proc_task),
5364     _g1h(g1h),
5365     _task_queues(task_queues),
5366     _terminator(terminator)
5367   {}
5368 
5369   virtual void work(uint worker_id) {
5370     // The reference processing task executed by a single worker.
5371     ResourceMark rm;
5372     HandleMark   hm;
5373 
5374     G1STWIsAliveClosure is_alive(_g1h);
5375 
5376     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5377     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5378 
5379     pss.set_evac_failure_closure(&evac_failure_cl);
5380 
5381     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5382 
5383     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5384 
5385     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5386 
5387     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5388       // We also need to mark copied objects.
5389       copy_non_heap_cl = &copy_mark_non_heap_cl;
5390     }
5391 
5392     // Keep alive closure.
5393     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5394 
5395     // Complete GC closure
5396     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5397 
5398     // Call the reference processing task's work routine.
5399     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5400 
5401     // Note we cannot assert that the refs array is empty here as not all
5402     // of the processing tasks (specifically phase2 - pp2_work) execute
5403     // the complete_gc closure (which ordinarily would drain the queue) so
5404     // the queue may not be empty.
5405   }
5406 };
5407 
5408 // Driver routine for parallel reference processing.
5409 // Creates an instance of the ref processing gang
5410 // task and has the worker threads execute it.
5411 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5412   assert(_workers != NULL, "Need parallel worker threads.");
5413 
5414   ParallelTaskTerminator terminator(_active_workers, _queues);
5415   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5416 
5417   _g1h->set_par_threads(_active_workers);
5418   _workers->run_task(&proc_task_proxy);
5419   _g1h->set_par_threads(0);
5420 }
5421 
5422 // Gang task for parallel reference enqueueing.
5423 
5424 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5425   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5426   EnqueueTask& _enq_task;
5427 
5428 public:
5429   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5430     AbstractGangTask("Enqueue reference objects in parallel"),
5431     _enq_task(enq_task)
5432   { }
5433 
5434   virtual void work(uint worker_id) {
5435     _enq_task.work(worker_id);
5436   }
5437 };
5438 
5439 // Driver routine for parallel reference enqueueing.
5440 // Creates an instance of the ref enqueueing gang
5441 // task and has the worker threads execute it.
5442 
5443 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5444   assert(_workers != NULL, "Need parallel worker threads.");
5445 
5446   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5447 
5448   _g1h->set_par_threads(_active_workers);
5449   _workers->run_task(&enq_task_proxy);
5450   _g1h->set_par_threads(0);
5451 }
5452 
5453 // End of weak reference support closures
5454 
5455 // Abstract task used to preserve (i.e. copy) any referent objects
5456 // that are in the collection set and are pointed to by reference
5457 // objects discovered by the CM ref processor.
5458 
5459 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5460 protected:
5461   G1CollectedHeap* _g1h;
5462   RefToScanQueueSet      *_queues;
5463   ParallelTaskTerminator _terminator;
5464   uint _n_workers;
5465 
5466 public:
5467   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5468     AbstractGangTask("ParPreserveCMReferents"),
5469     _g1h(g1h),
5470     _queues(task_queues),
5471     _terminator(workers, _queues),
5472     _n_workers(workers)
5473   { }
5474 
5475   void work(uint worker_id) {
5476     ResourceMark rm;
5477     HandleMark   hm;
5478 
5479     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5480     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5481 
5482     pss.set_evac_failure_closure(&evac_failure_cl);
5483 
5484     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5485 
5486     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5487 
5488     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5489 
5490     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5491 
5492     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5493       // We also need to mark copied objects.
5494       copy_non_heap_cl = &copy_mark_non_heap_cl;
5495     }
5496 
5497     // Is alive closure
5498     G1AlwaysAliveClosure always_alive(_g1h);
5499 
5500     // Copying keep alive closure. Applied to referent objects that need
5501     // to be copied.
5502     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5503 
5504     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5505 
5506     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5507     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5508 
5509     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5510     // So this must be true - but assert just in case someone decides to
5511     // change the worker ids.
5512     assert(0 <= worker_id && worker_id < limit, "sanity");
5513     assert(!rp->discovery_is_atomic(), "check this code");
5514 
5515     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5516     for (uint idx = worker_id; idx < limit; idx += stride) {
5517       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5518 
5519       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5520       while (iter.has_next()) {
5521         // Since discovery is not atomic for the CM ref processor, we
5522         // can see some null referent objects.
5523         iter.load_ptrs(DEBUG_ONLY(true));
5524         oop ref = iter.obj();
5525 
5526         // This will filter nulls.
5527         if (iter.is_referent_alive()) {
5528           iter.make_referent_alive();
5529         }
5530         iter.move_to_next();
5531       }
5532     }
5533 
5534     // Drain the queue - which may cause stealing
5535     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5536     drain_queue.do_void();
5537     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5538     assert(pss.queue_is_empty(), "should be");
5539   }
5540 };
5541 
5542 // Weak Reference processing during an evacuation pause (part 1).
5543 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5544   double ref_proc_start = os::elapsedTime();
5545 
5546   ReferenceProcessor* rp = _ref_processor_stw;
5547   assert(rp->discovery_enabled(), "should have been enabled");
5548 
5549   // Any reference objects, in the collection set, that were 'discovered'
5550   // by the CM ref processor should have already been copied (either by
5551   // applying the external root copy closure to the discovered lists, or
5552   // by following an RSet entry).
5553   //
5554   // But some of the referents, that are in the collection set, that these
5555   // reference objects point to may not have been copied: the STW ref
5556   // processor would have seen that the reference object had already
5557   // been 'discovered' and would have skipped discovering the reference,
5558   // but would not have treated the reference object as a regular oop.
5559   // As a result the copy closure would not have been applied to the
5560   // referent object.
5561   //
5562   // We need to explicitly copy these referent objects - the references
5563   // will be processed at the end of remarking.
5564   //
5565   // We also need to do this copying before we process the reference
5566   // objects discovered by the STW ref processor in case one of these
5567   // referents points to another object which is also referenced by an
5568   // object discovered by the STW ref processor.
5569 
5570   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5571            no_of_gc_workers == workers()->active_workers(),
5572            "Need to reset active GC workers");
5573 
5574   set_par_threads(no_of_gc_workers);
5575   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5576                                                  no_of_gc_workers,
5577                                                  _task_queues);
5578 
5579   if (G1CollectedHeap::use_parallel_gc_threads()) {
5580     workers()->run_task(&keep_cm_referents);
5581   } else {
5582     keep_cm_referents.work(0);
5583   }
5584 
5585   set_par_threads(0);
5586 
5587   // Closure to test whether a referent is alive.
5588   G1STWIsAliveClosure is_alive(this);
5589 
5590   // Even when parallel reference processing is enabled, the processing
5591   // of JNI refs is serial and performed serially by the current thread
5592   // rather than by a worker. The following PSS will be used for processing
5593   // JNI refs.
5594 
5595   // Use only a single queue for this PSS.
5596   G1ParScanThreadState            pss(this, 0, NULL);
5597 
5598   // We do not embed a reference processor in the copying/scanning
5599   // closures while we're actually processing the discovered
5600   // reference objects.
5601   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5602 
5603   pss.set_evac_failure_closure(&evac_failure_cl);
5604 
5605   assert(pss.queue_is_empty(), "pre-condition");
5606 
5607   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5608 
5609   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5610 
5611   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5612 
5613   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5614     // We also need to mark copied objects.
5615     copy_non_heap_cl = &copy_mark_non_heap_cl;
5616   }
5617 
5618   // Keep alive closure.
5619   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5620 
5621   // Serial Complete GC closure
5622   G1STWDrainQueueClosure drain_queue(this, &pss);
5623 
5624   // Setup the soft refs policy...
5625   rp->setup_policy(false);
5626 
5627   ReferenceProcessorStats stats;
5628   if (!rp->processing_is_mt()) {
5629     // Serial reference processing...
5630     stats = rp->process_discovered_references(&is_alive,
5631                                               &keep_alive,
5632                                               &drain_queue,
5633                                               NULL,
5634                                               _gc_timer_stw,
5635                                               _gc_tracer_stw->gc_id());
5636   } else {
5637     // Parallel reference processing
5638     assert(rp->num_q() == no_of_gc_workers, "sanity");
5639     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5640 
5641     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5642     stats = rp->process_discovered_references(&is_alive,
5643                                               &keep_alive,
5644                                               &drain_queue,
5645                                               &par_task_executor,
5646                                               _gc_timer_stw,
5647                                               _gc_tracer_stw->gc_id());
5648   }
5649 
5650   _gc_tracer_stw->report_gc_reference_stats(stats);
5651 
5652   // We have completed copying any necessary live referent objects.
5653   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5654 
5655   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5656   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5657 }
5658 
5659 // Weak Reference processing during an evacuation pause (part 2).
5660 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5661   double ref_enq_start = os::elapsedTime();
5662 
5663   ReferenceProcessor* rp = _ref_processor_stw;
5664   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5665 
5666   // Now enqueue any remaining on the discovered lists on to
5667   // the pending list.
5668   if (!rp->processing_is_mt()) {
5669     // Serial reference processing...
5670     rp->enqueue_discovered_references();
5671   } else {
5672     // Parallel reference enqueueing
5673 
5674     assert(no_of_gc_workers == workers()->active_workers(),
5675            "Need to reset active workers");
5676     assert(rp->num_q() == no_of_gc_workers, "sanity");
5677     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5678 
5679     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5680     rp->enqueue_discovered_references(&par_task_executor);
5681   }
5682 
5683   rp->verify_no_references_recorded();
5684   assert(!rp->discovery_enabled(), "should have been disabled");
5685 
5686   // FIXME
5687   // CM's reference processing also cleans up the string and symbol tables.
5688   // Should we do that here also? We could, but it is a serial operation
5689   // and could significantly increase the pause time.
5690 
5691   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5692   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5693 }
5694 
5695 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5696   _expand_heap_after_alloc_failure = true;
5697   _evacuation_failed = false;
5698 
5699   // Should G1EvacuationFailureALot be in effect for this GC?
5700   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5701 
5702   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5703 
5704   // Disable the hot card cache.
5705   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5706   hot_card_cache->reset_hot_cache_claimed_index();
5707   hot_card_cache->set_use_cache(false);
5708 
5709   uint n_workers;
5710   if (G1CollectedHeap::use_parallel_gc_threads()) {
5711     n_workers =
5712       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5713                                      workers()->active_workers(),
5714                                      Threads::number_of_non_daemon_threads());
5715     assert(UseDynamicNumberOfGCThreads ||
5716            n_workers == workers()->total_workers(),
5717            "If not dynamic should be using all the  workers");
5718     workers()->set_active_workers(n_workers);
5719     set_par_threads(n_workers);
5720   } else {
5721     assert(n_par_threads() == 0,
5722            "Should be the original non-parallel value");
5723     n_workers = 1;
5724   }
5725 
5726 
5727   init_for_evac_failure(NULL);
5728 
5729   rem_set()->prepare_for_younger_refs_iterate(true);
5730 
5731   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5732   double start_par_time_sec = os::elapsedTime();
5733   double end_par_time_sec;
5734 
5735   {
5736     G1RootProcessor root_processor(this);
5737     G1ParTask g1_par_task(this, _task_queues, &root_processor);
5738     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5739     if (g1_policy()->during_initial_mark_pause()) {
5740       ClassLoaderDataGraph::clear_claimed_marks();
5741     }
5742 
5743     if (G1CollectedHeap::use_parallel_gc_threads()) {
5744       // The individual threads will set their evac-failure closures.
5745       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5746       // These tasks use ShareHeap::_process_strong_tasks
5747       assert(UseDynamicNumberOfGCThreads ||
5748              workers()->active_workers() == workers()->total_workers(),
5749              "If not dynamic should be using all the  workers");
5750       workers()->run_task(&g1_par_task);
5751     } else {
5752       g1_par_task.set_for_termination(n_workers);
5753       g1_par_task.work(0);
5754     }
5755     end_par_time_sec = os::elapsedTime();
5756 
5757     // Closing the inner scope will execute the destructor
5758     // for the G1RootProcessor object. We record the current
5759     // elapsed time before closing the scope so that time
5760     // taken for the destructor is NOT included in the
5761     // reported parallel time.
5762   }
5763 
5764   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5765 
5766   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5767   phase_times->record_par_time(par_time_ms);
5768 
5769   double code_root_fixup_time_ms =
5770         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5771   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5772 
5773   set_par_threads(0);
5774 
5775   // Process any discovered reference objects - we have
5776   // to do this _before_ we retire the GC alloc regions
5777   // as we may have to copy some 'reachable' referent
5778   // objects (and their reachable sub-graphs) that were
5779   // not copied during the pause.
5780   process_discovered_references(n_workers);
5781 
5782   if (G1StringDedup::is_enabled()) {
5783     double fixup_start = os::elapsedTime();
5784 
5785     G1STWIsAliveClosure is_alive(this);
5786     G1KeepAliveClosure keep_alive(this);
5787     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5788 
5789     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5790     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5791   }
5792 
5793   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5794   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5795 
5796   // Reset and re-enable the hot card cache.
5797   // Note the counts for the cards in the regions in the
5798   // collection set are reset when the collection set is freed.
5799   hot_card_cache->reset_hot_cache();
5800   hot_card_cache->set_use_cache(true);
5801 
5802   purge_code_root_memory();
5803 
5804   if (g1_policy()->during_initial_mark_pause()) {
5805     // Reset the claim values set during marking the strong code roots
5806     reset_heap_region_claim_values();
5807   }
5808 
5809   finalize_for_evac_failure();
5810 
5811   if (evacuation_failed()) {
5812     remove_self_forwarding_pointers();
5813 
5814     // Reset the G1EvacuationFailureALot counters and flags
5815     // Note: the values are reset only when an actual
5816     // evacuation failure occurs.
5817     NOT_PRODUCT(reset_evacuation_should_fail();)
5818   }
5819 
5820   // Enqueue any remaining references remaining on the STW
5821   // reference processor's discovered lists. We need to do
5822   // this after the card table is cleaned (and verified) as
5823   // the act of enqueueing entries on to the pending list
5824   // will log these updates (and dirty their associated
5825   // cards). We need these updates logged to update any
5826   // RSets.
5827   enqueue_discovered_references(n_workers);
5828 
5829   redirty_logged_cards();
5830   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5831 }
5832 
5833 void G1CollectedHeap::free_region(HeapRegion* hr,
5834                                   FreeRegionList* free_list,
5835                                   bool par,
5836                                   bool locked) {
5837   assert(!hr->is_free(), "the region should not be free");
5838   assert(!hr->is_empty(), "the region should not be empty");
5839   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5840   assert(free_list != NULL, "pre-condition");
5841 
5842   if (G1VerifyBitmaps) {
5843     MemRegion mr(hr->bottom(), hr->end());
5844     concurrent_mark()->clearRangePrevBitmap(mr);
5845   }
5846 
5847   // Clear the card counts for this region.
5848   // Note: we only need to do this if the region is not young
5849   // (since we don't refine cards in young regions).
5850   if (!hr->is_young()) {
5851     _cg1r->hot_card_cache()->reset_card_counts(hr);
5852   }
5853   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5854   free_list->add_ordered(hr);
5855 }
5856 
5857 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5858                                      FreeRegionList* free_list,
5859                                      bool par) {
5860   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5861   assert(free_list != NULL, "pre-condition");
5862 
5863   size_t hr_capacity = hr->capacity();
5864   // We need to read this before we make the region non-humongous,
5865   // otherwise the information will be gone.
5866   uint last_index = hr->last_hc_index();
5867   hr->clear_humongous();
5868   free_region(hr, free_list, par);
5869 
5870   uint i = hr->hrm_index() + 1;
5871   while (i < last_index) {
5872     HeapRegion* curr_hr = region_at(i);
5873     assert(curr_hr->continuesHumongous(), "invariant");
5874     curr_hr->clear_humongous();
5875     free_region(curr_hr, free_list, par);
5876     i += 1;
5877   }
5878 }
5879 
5880 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5881                                        const HeapRegionSetCount& humongous_regions_removed) {
5882   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5883     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5884     _old_set.bulk_remove(old_regions_removed);
5885     _humongous_set.bulk_remove(humongous_regions_removed);
5886   }
5887 
5888 }
5889 
5890 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5891   assert(list != NULL, "list can't be null");
5892   if (!list->is_empty()) {
5893     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5894     _hrm.insert_list_into_free_list(list);
5895   }
5896 }
5897 
5898 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5899   _allocator->decrease_used(bytes);
5900 }
5901 
5902 class G1ParCleanupCTTask : public AbstractGangTask {
5903   G1SATBCardTableModRefBS* _ct_bs;
5904   G1CollectedHeap* _g1h;
5905   HeapRegion* volatile _su_head;
5906 public:
5907   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5908                      G1CollectedHeap* g1h) :
5909     AbstractGangTask("G1 Par Cleanup CT Task"),
5910     _ct_bs(ct_bs), _g1h(g1h) { }
5911 
5912   void work(uint worker_id) {
5913     HeapRegion* r;
5914     while (r = _g1h->pop_dirty_cards_region()) {
5915       clear_cards(r);
5916     }
5917   }
5918 
5919   void clear_cards(HeapRegion* r) {
5920     // Cards of the survivors should have already been dirtied.
5921     if (!r->is_survivor()) {
5922       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5923     }
5924   }
5925 };
5926 
5927 #ifndef PRODUCT
5928 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5929   G1CollectedHeap* _g1h;
5930   G1SATBCardTableModRefBS* _ct_bs;
5931 public:
5932   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5933     : _g1h(g1h), _ct_bs(ct_bs) { }
5934   virtual bool doHeapRegion(HeapRegion* r) {
5935     if (r->is_survivor()) {
5936       _g1h->verify_dirty_region(r);
5937     } else {
5938       _g1h->verify_not_dirty_region(r);
5939     }
5940     return false;
5941   }
5942 };
5943 
5944 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5945   // All of the region should be clean.
5946   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5947   MemRegion mr(hr->bottom(), hr->end());
5948   ct_bs->verify_not_dirty_region(mr);
5949 }
5950 
5951 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5952   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5953   // dirty allocated blocks as they allocate them. The thread that
5954   // retires each region and replaces it with a new one will do a
5955   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5956   // not dirty that area (one less thing to have to do while holding
5957   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5958   // is dirty.
5959   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5960   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5961   if (hr->is_young()) {
5962     ct_bs->verify_g1_young_region(mr);
5963   } else {
5964     ct_bs->verify_dirty_region(mr);
5965   }
5966 }
5967 
5968 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5969   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5970   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5971     verify_dirty_region(hr);
5972   }
5973 }
5974 
5975 void G1CollectedHeap::verify_dirty_young_regions() {
5976   verify_dirty_young_list(_young_list->first_region());
5977 }
5978 
5979 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5980                                                HeapWord* tams, HeapWord* end) {
5981   guarantee(tams <= end,
5982             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5983   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5984   if (result < end) {
5985     gclog_or_tty->cr();
5986     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5987                            bitmap_name, result);
5988     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5989                            bitmap_name, tams, end);
5990     return false;
5991   }
5992   return true;
5993 }
5994 
5995 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5996   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5997   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5998 
5999   HeapWord* bottom = hr->bottom();
6000   HeapWord* ptams  = hr->prev_top_at_mark_start();
6001   HeapWord* ntams  = hr->next_top_at_mark_start();
6002   HeapWord* end    = hr->end();
6003 
6004   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
6005 
6006   bool res_n = true;
6007   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
6008   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
6009   // if we happen to be in that state.
6010   if (mark_in_progress() || !_cmThread->in_progress()) {
6011     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
6012   }
6013   if (!res_p || !res_n) {
6014     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
6015                            HR_FORMAT_PARAMS(hr));
6016     gclog_or_tty->print_cr("#### Caller: %s", caller);
6017     return false;
6018   }
6019   return true;
6020 }
6021 
6022 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
6023   if (!G1VerifyBitmaps) return;
6024 
6025   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
6026 }
6027 
6028 class G1VerifyBitmapClosure : public HeapRegionClosure {
6029 private:
6030   const char* _caller;
6031   G1CollectedHeap* _g1h;
6032   bool _failures;
6033 
6034 public:
6035   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
6036     _caller(caller), _g1h(g1h), _failures(false) { }
6037 
6038   bool failures() { return _failures; }
6039 
6040   virtual bool doHeapRegion(HeapRegion* hr) {
6041     if (hr->continuesHumongous()) return false;
6042 
6043     bool result = _g1h->verify_bitmaps(_caller, hr);
6044     if (!result) {
6045       _failures = true;
6046     }
6047     return false;
6048   }
6049 };
6050 
6051 void G1CollectedHeap::check_bitmaps(const char* caller) {
6052   if (!G1VerifyBitmaps) return;
6053 
6054   G1VerifyBitmapClosure cl(caller, this);
6055   heap_region_iterate(&cl);
6056   guarantee(!cl.failures(), "bitmap verification");
6057 }
6058 #endif // PRODUCT
6059 
6060 void G1CollectedHeap::cleanUpCardTable() {
6061   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6062   double start = os::elapsedTime();
6063 
6064   {
6065     // Iterate over the dirty cards region list.
6066     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6067 
6068     if (G1CollectedHeap::use_parallel_gc_threads()) {
6069       set_par_threads();
6070       workers()->run_task(&cleanup_task);
6071       set_par_threads(0);
6072     } else {
6073       while (_dirty_cards_region_list) {
6074         HeapRegion* r = _dirty_cards_region_list;
6075         cleanup_task.clear_cards(r);
6076         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6077         if (_dirty_cards_region_list == r) {
6078           // The last region.
6079           _dirty_cards_region_list = NULL;
6080         }
6081         r->set_next_dirty_cards_region(NULL);
6082       }
6083     }
6084 #ifndef PRODUCT
6085     if (G1VerifyCTCleanup || VerifyAfterGC) {
6086       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6087       heap_region_iterate(&cleanup_verifier);
6088     }
6089 #endif
6090   }
6091 
6092   double elapsed = os::elapsedTime() - start;
6093   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6094 }
6095 
6096 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6097   size_t pre_used = 0;
6098   FreeRegionList local_free_list("Local List for CSet Freeing");
6099 
6100   double young_time_ms     = 0.0;
6101   double non_young_time_ms = 0.0;
6102 
6103   // Since the collection set is a superset of the the young list,
6104   // all we need to do to clear the young list is clear its
6105   // head and length, and unlink any young regions in the code below
6106   _young_list->clear();
6107 
6108   G1CollectorPolicy* policy = g1_policy();
6109 
6110   double start_sec = os::elapsedTime();
6111   bool non_young = true;
6112 
6113   HeapRegion* cur = cs_head;
6114   int age_bound = -1;
6115   size_t rs_lengths = 0;
6116 
6117   while (cur != NULL) {
6118     assert(!is_on_master_free_list(cur), "sanity");
6119     if (non_young) {
6120       if (cur->is_young()) {
6121         double end_sec = os::elapsedTime();
6122         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6123         non_young_time_ms += elapsed_ms;
6124 
6125         start_sec = os::elapsedTime();
6126         non_young = false;
6127       }
6128     } else {
6129       if (!cur->is_young()) {
6130         double end_sec = os::elapsedTime();
6131         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6132         young_time_ms += elapsed_ms;
6133 
6134         start_sec = os::elapsedTime();
6135         non_young = true;
6136       }
6137     }
6138 
6139     rs_lengths += cur->rem_set()->occupied_locked();
6140 
6141     HeapRegion* next = cur->next_in_collection_set();
6142     assert(cur->in_collection_set(), "bad CS");
6143     cur->set_next_in_collection_set(NULL);
6144     cur->set_in_collection_set(false);
6145 
6146     if (cur->is_young()) {
6147       int index = cur->young_index_in_cset();
6148       assert(index != -1, "invariant");
6149       assert((uint) index < policy->young_cset_region_length(), "invariant");
6150       size_t words_survived = _surviving_young_words[index];
6151       cur->record_surv_words_in_group(words_survived);
6152 
6153       // At this point the we have 'popped' cur from the collection set
6154       // (linked via next_in_collection_set()) but it is still in the
6155       // young list (linked via next_young_region()). Clear the
6156       // _next_young_region field.
6157       cur->set_next_young_region(NULL);
6158     } else {
6159       int index = cur->young_index_in_cset();
6160       assert(index == -1, "invariant");
6161     }
6162 
6163     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6164             (!cur->is_young() && cur->young_index_in_cset() == -1),
6165             "invariant" );
6166 
6167     if (!cur->evacuation_failed()) {
6168       MemRegion used_mr = cur->used_region();
6169 
6170       // And the region is empty.
6171       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6172       pre_used += cur->used();
6173       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6174     } else {
6175       cur->uninstall_surv_rate_group();
6176       if (cur->is_young()) {
6177         cur->set_young_index_in_cset(-1);
6178       }
6179       cur->set_evacuation_failed(false);
6180       // The region is now considered to be old.
6181       cur->set_old();
6182       _old_set.add(cur);
6183       evacuation_info.increment_collectionset_used_after(cur->used());
6184     }
6185     cur = next;
6186   }
6187 
6188   evacuation_info.set_regions_freed(local_free_list.length());
6189   policy->record_max_rs_lengths(rs_lengths);
6190   policy->cset_regions_freed();
6191 
6192   double end_sec = os::elapsedTime();
6193   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6194 
6195   if (non_young) {
6196     non_young_time_ms += elapsed_ms;
6197   } else {
6198     young_time_ms += elapsed_ms;
6199   }
6200 
6201   prepend_to_freelist(&local_free_list);
6202   decrement_summary_bytes(pre_used);
6203   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6204   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6205 }
6206 
6207 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6208  private:
6209   FreeRegionList* _free_region_list;
6210   HeapRegionSet* _proxy_set;
6211   HeapRegionSetCount _humongous_regions_removed;
6212   size_t _freed_bytes;
6213  public:
6214 
6215   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6216     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6217   }
6218 
6219   virtual bool doHeapRegion(HeapRegion* r) {
6220     if (!r->startsHumongous()) {
6221       return false;
6222     }
6223 
6224     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6225 
6226     oop obj = (oop)r->bottom();
6227     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6228 
6229     // The following checks whether the humongous object is live are sufficient.
6230     // The main additional check (in addition to having a reference from the roots
6231     // or the young gen) is whether the humongous object has a remembered set entry.
6232     //
6233     // A humongous object cannot be live if there is no remembered set for it
6234     // because:
6235     // - there can be no references from within humongous starts regions referencing
6236     // the object because we never allocate other objects into them.
6237     // (I.e. there are no intra-region references that may be missed by the
6238     // remembered set)
6239     // - as soon there is a remembered set entry to the humongous starts region
6240     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6241     // until the end of a concurrent mark.
6242     //
6243     // It is not required to check whether the object has been found dead by marking
6244     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6245     // all objects allocated during that time are considered live.
6246     // SATB marking is even more conservative than the remembered set.
6247     // So if at this point in the collection there is no remembered set entry,
6248     // nobody has a reference to it.
6249     // At the start of collection we flush all refinement logs, and remembered sets
6250     // are completely up-to-date wrt to references to the humongous object.
6251     //
6252     // Other implementation considerations:
6253     // - never consider object arrays: while they are a valid target, they have not
6254     // been observed to be used as temporary objects.
6255     // - they would also pose considerable effort for cleaning up the the remembered
6256     // sets.
6257     // While this cleanup is not strictly necessary to be done (or done instantly),
6258     // given that their occurrence is very low, this saves us this additional
6259     // complexity.
6260     uint region_idx = r->hrm_index();
6261     if (g1h->humongous_is_live(region_idx) ||
6262         g1h->humongous_region_is_always_live(region_idx)) {
6263 
6264       if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6265         gclog_or_tty->print_cr("Live humongous %d region %d size "SIZE_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6266                                r->isHumongous(),
6267                                region_idx,
6268                                obj->size()*HeapWordSize,
6269                                r->rem_set()->occupied(),
6270                                r->rem_set()->strong_code_roots_list_length(),
6271                                next_bitmap->isMarked(r->bottom()),
6272                                g1h->humongous_is_live(region_idx),
6273                                obj->is_objArray()
6274                               );
6275       }
6276 
6277       return false;
6278     }
6279 
6280     guarantee(!obj->is_objArray(),
6281               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6282                       r->bottom()));
6283 
6284     if (G1TraceReclaimDeadHumongousObjectsAtYoungGC) {
6285       gclog_or_tty->print_cr("Reclaim humongous region %d size "SIZE_FORMAT" start "PTR_FORMAT" region %d length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other ",
6286                              r->isHumongous(),
6287                              obj->size()*HeapWordSize,
6288                              r->bottom(),
6289                              region_idx,
6290                              r->region_num(),
6291                              r->rem_set()->occupied(),
6292                              r->rem_set()->strong_code_roots_list_length(),
6293                              next_bitmap->isMarked(r->bottom()),
6294                              g1h->humongous_is_live(region_idx),
6295                              obj->is_objArray()
6296                             );
6297     }
6298     // Need to clear mark bit of the humongous object if already set.
6299     if (next_bitmap->isMarked(r->bottom())) {
6300       next_bitmap->clear(r->bottom());
6301     }
6302     _freed_bytes += r->used();
6303     r->set_containing_set(NULL);
6304     _humongous_regions_removed.increment(1u, r->capacity());
6305     g1h->free_humongous_region(r, _free_region_list, false);
6306 
6307     return false;
6308   }
6309 
6310   HeapRegionSetCount& humongous_free_count() {
6311     return _humongous_regions_removed;
6312   }
6313 
6314   size_t bytes_freed() const {
6315     return _freed_bytes;
6316   }
6317 
6318   size_t humongous_reclaimed() const {
6319     return _humongous_regions_removed.length();
6320   }
6321 };
6322 
6323 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6324   assert_at_safepoint(true);
6325 
6326   if (!G1ReclaimDeadHumongousObjectsAtYoungGC ||
6327       (!_has_humongous_reclaim_candidates && !G1TraceReclaimDeadHumongousObjectsAtYoungGC)) {
6328     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6329     return;
6330   }
6331 
6332   double start_time = os::elapsedTime();
6333 
6334   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6335 
6336   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6337   heap_region_iterate(&cl);
6338 
6339   HeapRegionSetCount empty_set;
6340   remove_from_old_sets(empty_set, cl.humongous_free_count());
6341 
6342   G1HRPrinter* hr_printer = _g1h->hr_printer();
6343   if (hr_printer->is_active()) {
6344     FreeRegionListIterator iter(&local_cleanup_list);
6345     while (iter.more_available()) {
6346       HeapRegion* hr = iter.get_next();
6347       hr_printer->cleanup(hr);
6348     }
6349   }
6350 
6351   prepend_to_freelist(&local_cleanup_list);
6352   decrement_summary_bytes(cl.bytes_freed());
6353 
6354   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6355                                                                     cl.humongous_reclaimed());
6356 }
6357 
6358 // This routine is similar to the above but does not record
6359 // any policy statistics or update free lists; we are abandoning
6360 // the current incremental collection set in preparation of a
6361 // full collection. After the full GC we will start to build up
6362 // the incremental collection set again.
6363 // This is only called when we're doing a full collection
6364 // and is immediately followed by the tearing down of the young list.
6365 
6366 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6367   HeapRegion* cur = cs_head;
6368 
6369   while (cur != NULL) {
6370     HeapRegion* next = cur->next_in_collection_set();
6371     assert(cur->in_collection_set(), "bad CS");
6372     cur->set_next_in_collection_set(NULL);
6373     cur->set_in_collection_set(false);
6374     cur->set_young_index_in_cset(-1);
6375     cur = next;
6376   }
6377 }
6378 
6379 void G1CollectedHeap::set_free_regions_coming() {
6380   if (G1ConcRegionFreeingVerbose) {
6381     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6382                            "setting free regions coming");
6383   }
6384 
6385   assert(!free_regions_coming(), "pre-condition");
6386   _free_regions_coming = true;
6387 }
6388 
6389 void G1CollectedHeap::reset_free_regions_coming() {
6390   assert(free_regions_coming(), "pre-condition");
6391 
6392   {
6393     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6394     _free_regions_coming = false;
6395     SecondaryFreeList_lock->notify_all();
6396   }
6397 
6398   if (G1ConcRegionFreeingVerbose) {
6399     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6400                            "reset free regions coming");
6401   }
6402 }
6403 
6404 void G1CollectedHeap::wait_while_free_regions_coming() {
6405   // Most of the time we won't have to wait, so let's do a quick test
6406   // first before we take the lock.
6407   if (!free_regions_coming()) {
6408     return;
6409   }
6410 
6411   if (G1ConcRegionFreeingVerbose) {
6412     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6413                            "waiting for free regions");
6414   }
6415 
6416   {
6417     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6418     while (free_regions_coming()) {
6419       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6420     }
6421   }
6422 
6423   if (G1ConcRegionFreeingVerbose) {
6424     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6425                            "done waiting for free regions");
6426   }
6427 }
6428 
6429 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6430   assert(heap_lock_held_for_gc(),
6431               "the heap lock should already be held by or for this thread");
6432   _young_list->push_region(hr);
6433 }
6434 
6435 class NoYoungRegionsClosure: public HeapRegionClosure {
6436 private:
6437   bool _success;
6438 public:
6439   NoYoungRegionsClosure() : _success(true) { }
6440   bool doHeapRegion(HeapRegion* r) {
6441     if (r->is_young()) {
6442       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6443                              r->bottom(), r->end());
6444       _success = false;
6445     }
6446     return false;
6447   }
6448   bool success() { return _success; }
6449 };
6450 
6451 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6452   bool ret = _young_list->check_list_empty(check_sample);
6453 
6454   if (check_heap) {
6455     NoYoungRegionsClosure closure;
6456     heap_region_iterate(&closure);
6457     ret = ret && closure.success();
6458   }
6459 
6460   return ret;
6461 }
6462 
6463 class TearDownRegionSetsClosure : public HeapRegionClosure {
6464 private:
6465   HeapRegionSet *_old_set;
6466 
6467 public:
6468   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6469 
6470   bool doHeapRegion(HeapRegion* r) {
6471     if (r->is_old()) {
6472       _old_set->remove(r);
6473     } else {
6474       // We ignore free regions, we'll empty the free list afterwards.
6475       // We ignore young regions, we'll empty the young list afterwards.
6476       // We ignore humongous regions, we're not tearing down the
6477       // humongous regions set.
6478       assert(r->is_free() || r->is_young() || r->isHumongous(),
6479              "it cannot be another type");
6480     }
6481     return false;
6482   }
6483 
6484   ~TearDownRegionSetsClosure() {
6485     assert(_old_set->is_empty(), "post-condition");
6486   }
6487 };
6488 
6489 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6490   assert_at_safepoint(true /* should_be_vm_thread */);
6491 
6492   if (!free_list_only) {
6493     TearDownRegionSetsClosure cl(&_old_set);
6494     heap_region_iterate(&cl);
6495 
6496     // Note that emptying the _young_list is postponed and instead done as
6497     // the first step when rebuilding the regions sets again. The reason for
6498     // this is that during a full GC string deduplication needs to know if
6499     // a collected region was young or old when the full GC was initiated.
6500   }
6501   _hrm.remove_all_free_regions();
6502 }
6503 
6504 class RebuildRegionSetsClosure : public HeapRegionClosure {
6505 private:
6506   bool            _free_list_only;
6507   HeapRegionSet*   _old_set;
6508   HeapRegionManager*   _hrm;
6509   size_t          _total_used;
6510 
6511 public:
6512   RebuildRegionSetsClosure(bool free_list_only,
6513                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6514     _free_list_only(free_list_only),
6515     _old_set(old_set), _hrm(hrm), _total_used(0) {
6516     assert(_hrm->num_free_regions() == 0, "pre-condition");
6517     if (!free_list_only) {
6518       assert(_old_set->is_empty(), "pre-condition");
6519     }
6520   }
6521 
6522   bool doHeapRegion(HeapRegion* r) {
6523     if (r->continuesHumongous()) {
6524       return false;
6525     }
6526 
6527     if (r->is_empty()) {
6528       // Add free regions to the free list
6529       r->set_free();
6530       r->set_allocation_context(AllocationContext::system());
6531       _hrm->insert_into_free_list(r);
6532     } else if (!_free_list_only) {
6533       assert(!r->is_young(), "we should not come across young regions");
6534 
6535       if (r->isHumongous()) {
6536         // We ignore humongous regions, we left the humongous set unchanged
6537       } else {
6538         // Objects that were compacted would have ended up on regions
6539         // that were previously old or free.
6540         assert(r->is_free() || r->is_old(), "invariant");
6541         // We now consider them old, so register as such.
6542         r->set_old();
6543         _old_set->add(r);
6544       }
6545       _total_used += r->used();
6546     }
6547 
6548     return false;
6549   }
6550 
6551   size_t total_used() {
6552     return _total_used;
6553   }
6554 };
6555 
6556 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6557   assert_at_safepoint(true /* should_be_vm_thread */);
6558 
6559   if (!free_list_only) {
6560     _young_list->empty_list();
6561   }
6562 
6563   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6564   heap_region_iterate(&cl);
6565 
6566   if (!free_list_only) {
6567     _allocator->set_used(cl.total_used());
6568   }
6569   assert(_allocator->used_unlocked() == recalculate_used(),
6570          err_msg("inconsistent _allocator->used_unlocked(), "
6571                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6572                  _allocator->used_unlocked(), recalculate_used()));
6573 }
6574 
6575 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6576   _refine_cte_cl->set_concurrent(concurrent);
6577 }
6578 
6579 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6580   HeapRegion* hr = heap_region_containing(p);
6581   return hr->is_in(p);
6582 }
6583 
6584 // Methods for the mutator alloc region
6585 
6586 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6587                                                       bool force) {
6588   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6589   assert(!force || g1_policy()->can_expand_young_list(),
6590          "if force is true we should be able to expand the young list");
6591   bool young_list_full = g1_policy()->is_young_list_full();
6592   if (force || !young_list_full) {
6593     HeapRegion* new_alloc_region = new_region(word_size,
6594                                               false /* is_old */,
6595                                               false /* do_expand */);
6596     if (new_alloc_region != NULL) {
6597       set_region_short_lived_locked(new_alloc_region);
6598       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6599       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6600       return new_alloc_region;
6601     }
6602   }
6603   return NULL;
6604 }
6605 
6606 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6607                                                   size_t allocated_bytes) {
6608   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6609   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6610 
6611   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6612   _allocator->increase_used(allocated_bytes);
6613   _hr_printer.retire(alloc_region);
6614   // We update the eden sizes here, when the region is retired,
6615   // instead of when it's allocated, since this is the point that its
6616   // used space has been recored in _summary_bytes_used.
6617   g1mm()->update_eden_size();
6618 }
6619 
6620 void G1CollectedHeap::set_par_threads() {
6621   // Don't change the number of workers.  Use the value previously set
6622   // in the workgroup.
6623   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6624   uint n_workers = workers()->active_workers();
6625   assert(UseDynamicNumberOfGCThreads ||
6626            n_workers == workers()->total_workers(),
6627       "Otherwise should be using the total number of workers");
6628   if (n_workers == 0) {
6629     assert(false, "Should have been set in prior evacuation pause.");
6630     n_workers = ParallelGCThreads;
6631     workers()->set_active_workers(n_workers);
6632   }
6633   set_par_threads(n_workers);
6634 }
6635 
6636 // Methods for the GC alloc regions
6637 
6638 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6639                                                  uint count,
6640                                                  GCAllocPurpose ap) {
6641   assert(FreeList_lock->owned_by_self(), "pre-condition");
6642 
6643   if (count < g1_policy()->max_regions(ap)) {
6644     bool survivor = (ap == GCAllocForSurvived);
6645     HeapRegion* new_alloc_region = new_region(word_size,
6646                                               !survivor,
6647                                               true /* do_expand */);
6648     if (new_alloc_region != NULL) {
6649       // We really only need to do this for old regions given that we
6650       // should never scan survivors. But it doesn't hurt to do it
6651       // for survivors too.
6652       new_alloc_region->record_top_and_timestamp();
6653       if (survivor) {
6654         new_alloc_region->set_survivor();
6655         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6656         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6657       } else {
6658         new_alloc_region->set_old();
6659         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6660         check_bitmaps("Old Region Allocation", new_alloc_region);
6661       }
6662       bool during_im = g1_policy()->during_initial_mark_pause();
6663       new_alloc_region->note_start_of_copying(during_im);
6664       return new_alloc_region;
6665     } else {
6666       g1_policy()->note_alloc_region_limit_reached(ap);
6667     }
6668   }
6669   return NULL;
6670 }
6671 
6672 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6673                                              size_t allocated_bytes,
6674                                              GCAllocPurpose ap) {
6675   bool during_im = g1_policy()->during_initial_mark_pause();
6676   alloc_region->note_end_of_copying(during_im);
6677   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6678   if (ap == GCAllocForSurvived) {
6679     young_list()->add_survivor_region(alloc_region);
6680   } else {
6681     _old_set.add(alloc_region);
6682   }
6683   _hr_printer.retire(alloc_region);
6684 }
6685 
6686 // Heap region set verification
6687 
6688 class VerifyRegionListsClosure : public HeapRegionClosure {
6689 private:
6690   HeapRegionSet*   _old_set;
6691   HeapRegionSet*   _humongous_set;
6692   HeapRegionManager*   _hrm;
6693 
6694 public:
6695   HeapRegionSetCount _old_count;
6696   HeapRegionSetCount _humongous_count;
6697   HeapRegionSetCount _free_count;
6698 
6699   VerifyRegionListsClosure(HeapRegionSet* old_set,
6700                            HeapRegionSet* humongous_set,
6701                            HeapRegionManager* hrm) :
6702     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6703     _old_count(), _humongous_count(), _free_count(){ }
6704 
6705   bool doHeapRegion(HeapRegion* hr) {
6706     if (hr->continuesHumongous()) {
6707       return false;
6708     }
6709 
6710     if (hr->is_young()) {
6711       // TODO
6712     } else if (hr->startsHumongous()) {
6713       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6714       _humongous_count.increment(1u, hr->capacity());
6715     } else if (hr->is_empty()) {
6716       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6717       _free_count.increment(1u, hr->capacity());
6718     } else if (hr->is_old()) {
6719       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6720       _old_count.increment(1u, hr->capacity());
6721     } else {
6722       ShouldNotReachHere();
6723     }
6724     return false;
6725   }
6726 
6727   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6728     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6729     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6730         old_set->total_capacity_bytes(), _old_count.capacity()));
6731 
6732     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6733     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6734         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6735 
6736     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6737     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6738         free_list->total_capacity_bytes(), _free_count.capacity()));
6739   }
6740 };
6741 
6742 void G1CollectedHeap::verify_region_sets() {
6743   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6744 
6745   // First, check the explicit lists.
6746   _hrm.verify();
6747   {
6748     // Given that a concurrent operation might be adding regions to
6749     // the secondary free list we have to take the lock before
6750     // verifying it.
6751     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6752     _secondary_free_list.verify_list();
6753   }
6754 
6755   // If a concurrent region freeing operation is in progress it will
6756   // be difficult to correctly attributed any free regions we come
6757   // across to the correct free list given that they might belong to
6758   // one of several (free_list, secondary_free_list, any local lists,
6759   // etc.). So, if that's the case we will skip the rest of the
6760   // verification operation. Alternatively, waiting for the concurrent
6761   // operation to complete will have a non-trivial effect on the GC's
6762   // operation (no concurrent operation will last longer than the
6763   // interval between two calls to verification) and it might hide
6764   // any issues that we would like to catch during testing.
6765   if (free_regions_coming()) {
6766     return;
6767   }
6768 
6769   // Make sure we append the secondary_free_list on the free_list so
6770   // that all free regions we will come across can be safely
6771   // attributed to the free_list.
6772   append_secondary_free_list_if_not_empty_with_lock();
6773 
6774   // Finally, make sure that the region accounting in the lists is
6775   // consistent with what we see in the heap.
6776 
6777   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6778   heap_region_iterate(&cl);
6779   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6780 }
6781 
6782 // Optimized nmethod scanning
6783 
6784 class RegisterNMethodOopClosure: public OopClosure {
6785   G1CollectedHeap* _g1h;
6786   nmethod* _nm;
6787 
6788   template <class T> void do_oop_work(T* p) {
6789     T heap_oop = oopDesc::load_heap_oop(p);
6790     if (!oopDesc::is_null(heap_oop)) {
6791       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6792       HeapRegion* hr = _g1h->heap_region_containing(obj);
6793       assert(!hr->continuesHumongous(),
6794              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6795                      " starting at "HR_FORMAT,
6796                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6797 
6798       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6799       hr->add_strong_code_root_locked(_nm);
6800     }
6801   }
6802 
6803 public:
6804   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6805     _g1h(g1h), _nm(nm) {}
6806 
6807   void do_oop(oop* p)       { do_oop_work(p); }
6808   void do_oop(narrowOop* p) { do_oop_work(p); }
6809 };
6810 
6811 class UnregisterNMethodOopClosure: public OopClosure {
6812   G1CollectedHeap* _g1h;
6813   nmethod* _nm;
6814 
6815   template <class T> void do_oop_work(T* p) {
6816     T heap_oop = oopDesc::load_heap_oop(p);
6817     if (!oopDesc::is_null(heap_oop)) {
6818       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6819       HeapRegion* hr = _g1h->heap_region_containing(obj);
6820       assert(!hr->continuesHumongous(),
6821              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6822                      " starting at "HR_FORMAT,
6823                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6824 
6825       hr->remove_strong_code_root(_nm);
6826     }
6827   }
6828 
6829 public:
6830   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6831     _g1h(g1h), _nm(nm) {}
6832 
6833   void do_oop(oop* p)       { do_oop_work(p); }
6834   void do_oop(narrowOop* p) { do_oop_work(p); }
6835 };
6836 
6837 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6838   CollectedHeap::register_nmethod(nm);
6839 
6840   guarantee(nm != NULL, "sanity");
6841   RegisterNMethodOopClosure reg_cl(this, nm);
6842   nm->oops_do(&reg_cl);
6843 }
6844 
6845 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6846   CollectedHeap::unregister_nmethod(nm);
6847 
6848   guarantee(nm != NULL, "sanity");
6849   UnregisterNMethodOopClosure reg_cl(this, nm);
6850   nm->oops_do(&reg_cl, true);
6851 }
6852 
6853 void G1CollectedHeap::purge_code_root_memory() {
6854   double purge_start = os::elapsedTime();
6855   G1CodeRootSet::purge();
6856   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6857   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6858 }
6859 
6860 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6861   G1CollectedHeap* _g1h;
6862 
6863 public:
6864   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6865     _g1h(g1h) {}
6866 
6867   void do_code_blob(CodeBlob* cb) {
6868     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6869     if (nm == NULL) {
6870       return;
6871     }
6872 
6873     if (ScavengeRootsInCode) {
6874       _g1h->register_nmethod(nm);
6875     }
6876   }
6877 };
6878 
6879 void G1CollectedHeap::rebuild_strong_code_roots() {
6880   RebuildStrongCodeRootClosure blob_cl(this);
6881   CodeCache::blobs_do(&blob_cl);
6882 }