1 /*
   2  * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  29 #include "memory/collectorPolicy.hpp"
  30 #include "memory/generation.hpp"
  31 #include "memory/sharedHeap.hpp"
  32 
  33 class SubTasksDone;
  34 
  35 // A "GenCollectedHeap" is a SharedHeap that uses generational
  36 // collection.  It is represented with a sequence of Generation's.
  37 class GenCollectedHeap : public SharedHeap {
  38   friend class GenCollectorPolicy;
  39   friend class Generation;
  40   friend class DefNewGeneration;
  41   friend class TenuredGeneration;
  42   friend class ConcurrentMarkSweepGeneration;
  43   friend class CMSCollector;
  44   friend class GenMarkSweep;
  45   friend class VM_GenCollectForAllocation;
  46   friend class VM_GenCollectFull;
  47   friend class VM_GenCollectFullConcurrent;
  48   friend class VM_GC_HeapInspection;
  49   friend class VM_HeapDumper;
  50   friend class HeapInspection;
  51   friend class GCCauseSetter;
  52   friend class VMStructs;
  53 public:
  54   enum SomeConstants {
  55     max_gens = 10
  56   };
  57 
  58   friend class VM_PopulateDumpSharedSpace;
  59 
  60  protected:
  61   // Fields:
  62   static GenCollectedHeap* _gch;
  63 
  64  private:
  65   int _n_gens;
  66   Generation* _gens[max_gens];
  67   GenerationSpec** _gen_specs;
  68 
  69   // The generational collector policy.
  70   GenCollectorPolicy* _gen_policy;
  71 
  72   // Indicates that the most recent previous incremental collection failed.
  73   // The flag is cleared when an action is taken that might clear the
  74   // condition that caused that incremental collection to fail.
  75   bool _incremental_collection_failed;
  76 
  77   // In support of ExplicitGCInvokesConcurrent functionality
  78   unsigned int _full_collections_completed;
  79 
  80   // Data structure for claiming the (potentially) parallel tasks in
  81   // (gen-specific) roots processing.
  82   SubTasksDone* _process_strong_tasks;
  83 
  84   // In block contents verification, the number of header words to skip
  85   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  86 
  87 protected:
  88   // Helper functions for allocation
  89   HeapWord* attempt_allocation(size_t size,
  90                                bool   is_tlab,
  91                                bool   first_only);
  92 
  93   // Helper function for two callbacks below.
  94   // Considers collection of the first max_level+1 generations.
  95   void do_collection(bool   full,
  96                      bool   clear_all_soft_refs,
  97                      size_t size,
  98                      bool   is_tlab,
  99                      int    max_level);
 100 
 101   // Callback from VM_GenCollectForAllocation operation.
 102   // This function does everything necessary/possible to satisfy an
 103   // allocation request that failed in the youngest generation that should
 104   // have handled it (including collection, expansion, etc.)
 105   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 106 
 107   // Callback from VM_GenCollectFull operation.
 108   // Perform a full collection of the first max_level+1 generations.
 109   virtual void do_full_collection(bool clear_all_soft_refs);
 110   void do_full_collection(bool clear_all_soft_refs, int max_level);
 111 
 112   // Does the "cause" of GC indicate that
 113   // we absolutely __must__ clear soft refs?
 114   bool must_clear_all_soft_refs();
 115 
 116 public:
 117   GenCollectedHeap(GenCollectorPolicy *policy);
 118 
 119   GCStats* gc_stats(int level) const;
 120 
 121   // Returns JNI_OK on success
 122   virtual jint initialize();
 123   char* allocate(size_t alignment,
 124                  size_t* _total_reserved, int* _n_covered_regions,
 125                  ReservedSpace* heap_rs);
 126 
 127   // Does operations required after initialization has been done.
 128   void post_initialize();
 129 
 130   // Initialize ("weak") refs processing support
 131   virtual void ref_processing_init();
 132 
 133   virtual CollectedHeap::Name kind() const {
 134     return CollectedHeap::GenCollectedHeap;
 135   }
 136 
 137   // The generational collector policy.
 138   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 139   virtual CollectorPolicy* collector_policy() const { return (CollectorPolicy*) gen_policy(); }
 140 
 141   // Adaptive size policy
 142   virtual AdaptiveSizePolicy* size_policy() {
 143     return gen_policy()->size_policy();
 144   }
 145 
 146   // Return the (conservative) maximum heap alignment
 147   static size_t conservative_max_heap_alignment() {
 148     return Generation::GenGrain;
 149   }
 150 
 151   size_t capacity() const;
 152   size_t used() const;
 153 
 154   // Save the "used_region" for generations level and lower.
 155   void save_used_regions(int level);
 156 
 157   size_t max_capacity() const;
 158 
 159   HeapWord* mem_allocate(size_t size,
 160                          bool*  gc_overhead_limit_was_exceeded);
 161 
 162   // We may support a shared contiguous allocation area, if the youngest
 163   // generation does.
 164   bool supports_inline_contig_alloc() const;
 165   HeapWord** top_addr() const;
 166   HeapWord** end_addr() const;
 167 
 168   // Does this heap support heap inspection? (+PrintClassHistogram)
 169   virtual bool supports_heap_inspection() const { return true; }
 170 
 171   // Perform a full collection of the heap; intended for use in implementing
 172   // "System.gc". This implies as full a collection as the CollectedHeap
 173   // supports. Caller does not hold the Heap_lock on entry.
 174   void collect(GCCause::Cause cause);
 175 
 176   // The same as above but assume that the caller holds the Heap_lock.
 177   void collect_locked(GCCause::Cause cause);
 178 
 179   // Perform a full collection of the first max_level+1 generations.
 180   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 181   void collect(GCCause::Cause cause, int max_level);
 182 
 183   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 184   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 185   // be expensive to compute in general, so, to prevent
 186   // their inadvertent use in product jvm's, we restrict their use to
 187   // assertion checking or verification only.
 188   bool is_in(const void* p) const;
 189 
 190   // override
 191   bool is_in_closed_subset(const void* p) const {
 192     if (UseConcMarkSweepGC) {
 193       return is_in_reserved(p);
 194     } else {
 195       return is_in(p);
 196     }
 197   }
 198 
 199   // Returns true if the reference is to an object in the reserved space
 200   // for the young generation.
 201   // Assumes the the young gen address range is less than that of the old gen.
 202   bool is_in_young(oop p);
 203 
 204 #ifdef ASSERT
 205   virtual bool is_in_partial_collection(const void* p);
 206 #endif
 207 
 208   virtual bool is_scavengable(const void* addr) {
 209     return is_in_young((oop)addr);
 210   }
 211 
 212   // Iteration functions.
 213   void oop_iterate(ExtendedOopClosure* cl);
 214   void object_iterate(ObjectClosure* cl);
 215   void safe_object_iterate(ObjectClosure* cl);
 216   Space* space_containing(const void* addr) const;
 217 
 218   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 219   // each address in the (reserved) heap is a member of exactly
 220   // one block.  The defining characteristic of a block is that it is
 221   // possible to find its size, and thus to progress forward to the next
 222   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 223   // represent Java objects, or they might be free blocks in a
 224   // free-list-based heap (or subheap), as long as the two kinds are
 225   // distinguishable and the size of each is determinable.
 226 
 227   // Returns the address of the start of the "block" that contains the
 228   // address "addr".  We say "blocks" instead of "object" since some heaps
 229   // may not pack objects densely; a chunk may either be an object or a
 230   // non-object.
 231   virtual HeapWord* block_start(const void* addr) const;
 232 
 233   // Requires "addr" to be the start of a chunk, and returns its size.
 234   // "addr + size" is required to be the start of a new chunk, or the end
 235   // of the active area of the heap. Assumes (and verifies in non-product
 236   // builds) that addr is in the allocated part of the heap and is
 237   // the start of a chunk.
 238   virtual size_t block_size(const HeapWord* addr) const;
 239 
 240   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 241   // the block is an object. Assumes (and verifies in non-product
 242   // builds) that addr is in the allocated part of the heap and is
 243   // the start of a chunk.
 244   virtual bool block_is_obj(const HeapWord* addr) const;
 245 
 246   // Section on TLAB's.
 247   virtual bool supports_tlab_allocation() const;
 248   virtual size_t tlab_capacity(Thread* thr) const;
 249   virtual size_t tlab_used(Thread* thr) const;
 250   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 251   virtual HeapWord* allocate_new_tlab(size_t size);
 252 
 253   // Can a compiler initialize a new object without store barriers?
 254   // This permission only extends from the creation of a new object
 255   // via a TLAB up to the first subsequent safepoint.
 256   virtual bool can_elide_tlab_store_barriers() const {
 257     return true;
 258   }
 259 
 260   virtual bool card_mark_must_follow_store() const {
 261     return UseConcMarkSweepGC;
 262   }
 263 
 264   // We don't need barriers for stores to objects in the
 265   // young gen and, a fortiori, for initializing stores to
 266   // objects therein. This applies to {DefNew,ParNew}+{Tenured,CMS}
 267   // only and may need to be re-examined in case other
 268   // kinds of collectors are implemented in the future.
 269   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 270     // We wanted to assert that:-
 271     // assert(UseParNewGC || UseSerialGC || UseConcMarkSweepGC,
 272     //       "Check can_elide_initializing_store_barrier() for this collector");
 273     // but unfortunately the flag UseSerialGC need not necessarily always
 274     // be set when DefNew+Tenured are being used.
 275     return is_in_young(new_obj);
 276   }
 277 
 278   // The "requestor" generation is performing some garbage collection
 279   // action for which it would be useful to have scratch space.  The
 280   // requestor promises to allocate no more than "max_alloc_words" in any
 281   // older generation (via promotion say.)   Any blocks of space that can
 282   // be provided are returned as a list of ScratchBlocks, sorted by
 283   // decreasing size.
 284   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 285   // Allow each generation to reset any scratch space that it has
 286   // contributed as it needs.
 287   void release_scratch();
 288 
 289   // Ensure parsability: override
 290   virtual void ensure_parsability(bool retire_tlabs);
 291 
 292   // Time in ms since the longest time a collector ran in
 293   // in any generation.
 294   virtual jlong millis_since_last_gc();
 295 
 296   // Total number of full collections completed.
 297   unsigned int total_full_collections_completed() {
 298     assert(_full_collections_completed <= _total_full_collections,
 299            "Can't complete more collections than were started");
 300     return _full_collections_completed;
 301   }
 302 
 303   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 304   unsigned int update_full_collections_completed();
 305   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 306   unsigned int update_full_collections_completed(unsigned int count);
 307 
 308   // Update "time of last gc" for all constituent generations
 309   // to "now".
 310   void update_time_of_last_gc(jlong now) {
 311     for (int i = 0; i < _n_gens; i++) {
 312       _gens[i]->update_time_of_last_gc(now);
 313     }
 314   }
 315 
 316   // Update the gc statistics for each generation.
 317   // "level" is the level of the lastest collection
 318   void update_gc_stats(int current_level, bool full) {
 319     for (int i = 0; i < _n_gens; i++) {
 320       _gens[i]->update_gc_stats(current_level, full);
 321     }
 322   }
 323 
 324   // Override.
 325   bool no_gc_in_progress() { return !is_gc_active(); }
 326 
 327   // Override.
 328   void prepare_for_verify();
 329 
 330   // Override.
 331   void verify(bool silent, VerifyOption option);
 332 
 333   // Override.
 334   virtual void print_on(outputStream* st) const;
 335   virtual void print_gc_threads_on(outputStream* st) const;
 336   virtual void gc_threads_do(ThreadClosure* tc) const;
 337   virtual void print_tracing_info() const;
 338   virtual void print_on_error(outputStream* st) const;
 339 
 340   // PrintGC, PrintGCDetails support
 341   void print_heap_change(size_t prev_used) const;
 342 
 343   // The functions below are helper functions that a subclass of
 344   // "CollectedHeap" can use in the implementation of its virtual
 345   // functions.
 346 
 347   class GenClosure : public StackObj {
 348    public:
 349     virtual void do_generation(Generation* gen) = 0;
 350   };
 351 
 352   // Apply "cl.do_generation" to all generations in the heap
 353   // If "old_to_young" determines the order.
 354   void generation_iterate(GenClosure* cl, bool old_to_young);
 355 
 356   void space_iterate(SpaceClosure* cl);
 357 
 358   // Return "true" if all generations have reached the
 359   // maximal committed limit that they can reach, without a garbage
 360   // collection.
 361   virtual bool is_maximal_no_gc() const;
 362 
 363   // Return the generation before "gen".
 364   Generation* prev_gen(Generation* gen) const {
 365     int l = gen->level();
 366     guarantee(l > 0, "Out of bounds");
 367     return _gens[l-1];
 368   }
 369 
 370   // Return the generation after "gen".
 371   Generation* next_gen(Generation* gen) const {
 372     int l = gen->level() + 1;
 373     guarantee(l < _n_gens, "Out of bounds");
 374     return _gens[l];
 375   }
 376 
 377   Generation* get_gen(int i) const {
 378     guarantee(i >= 0 && i < _n_gens, "Out of bounds");
 379     return _gens[i];
 380   }
 381 
 382   int n_gens() const {
 383     assert(_n_gens == gen_policy()->number_of_generations(), "Sanity");
 384     return _n_gens;
 385   }
 386 
 387   // Convenience function to be used in situations where the heap type can be
 388   // asserted to be this type.
 389   static GenCollectedHeap* heap();
 390 
 391   void set_par_threads(uint t);
 392   void set_n_termination(uint t);
 393 
 394   // Invoke the "do_oop" method of one of the closures "not_older_gens"
 395   // or "older_gens" on root locations for the generation at
 396   // "level".  (The "older_gens" closure is used for scanning references
 397   // from older generations; "not_older_gens" is used everywhere else.)
 398   // If "younger_gens_as_roots" is false, younger generations are
 399   // not scanned as roots; in this case, the caller must be arranging to
 400   // scan the younger generations itself.  (For example, a generation might
 401   // explicitly mark reachable objects in younger generations, to avoid
 402   // excess storage retention.)
 403   // The "so" argument determines which of the roots
 404   // the closure is applied to:
 405   // "SO_None" does none;
 406   enum ScanningOption {
 407     SO_None                =  0x0,
 408     SO_AllCodeCache        =  0x8,
 409     SO_ScavengeCodeCache   = 0x10
 410   };
 411 
 412  private:
 413   void process_roots(bool activate_scope,
 414                      ScanningOption so,
 415                      OopClosure* strong_roots,
 416                      OopClosure* weak_roots,
 417                      CLDClosure* strong_cld_closure,
 418                      CLDClosure* weak_cld_closure,
 419                      CodeBlobClosure* code_roots);
 420 
 421   void gen_process_roots(int level,
 422                          bool younger_gens_as_roots,
 423                          bool activate_scope,
 424                          ScanningOption so,
 425                          OopsInGenClosure* not_older_gens,
 426                          OopsInGenClosure* weak_roots,
 427                          OopsInGenClosure* older_gens,
 428                          CLDClosure* cld_closure,
 429                          CLDClosure* weak_cld_closure,
 430                          CodeBlobClosure* code_closure);
 431 
 432  public:
 433   static const bool StrongAndWeakRoots = false;
 434   static const bool StrongRootsOnly    = true;
 435 
 436   void gen_process_roots(int level,
 437                          bool younger_gens_as_roots,
 438                          bool activate_scope,
 439                          ScanningOption so,
 440                          bool only_strong_roots,
 441                          OopsInGenClosure* not_older_gens,
 442                          OopsInGenClosure* older_gens,
 443                          CLDClosure* cld_closure);
 444 
 445   // Apply "root_closure" to all the weak roots of the system.
 446   // These include JNI weak roots, string table,
 447   // and referents of reachable weak refs.
 448   void gen_process_weak_roots(OopClosure* root_closure);
 449 
 450   // Set the saved marks of generations, if that makes sense.
 451   // In particular, if any generation might iterate over the oops
 452   // in other generations, it should call this method.
 453   void save_marks();
 454 
 455   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 456   // allocated since the last call to save_marks in generations at or above
 457   // "level".  The "cur" closure is
 458   // applied to references in the generation at "level", and the "older"
 459   // closure to older generations.
 460 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 461   void oop_since_save_marks_iterate(int level,                          \
 462                                     OopClosureType* cur,                \
 463                                     OopClosureType* older);
 464 
 465   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 466 
 467 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 468 
 469   // Returns "true" iff no allocations have occurred in any generation at
 470   // "level" or above since the last
 471   // call to "save_marks".
 472   bool no_allocs_since_save_marks(int level);
 473 
 474   // Returns true if an incremental collection is likely to fail.
 475   // We optionally consult the young gen, if asked to do so;
 476   // otherwise we base our answer on whether the previous incremental
 477   // collection attempt failed with no corrective action as of yet.
 478   bool incremental_collection_will_fail(bool consult_young) {
 479     // Assumes a 2-generation system; the first disjunct remembers if an
 480     // incremental collection failed, even when we thought (second disjunct)
 481     // that it would not.
 482     assert(heap()->collector_policy()->is_two_generation_policy(),
 483            "the following definition may not be suitable for an n(>2)-generation system");
 484     return incremental_collection_failed() ||
 485            (consult_young && !get_gen(0)->collection_attempt_is_safe());
 486   }
 487 
 488   // If a generation bails out of an incremental collection,
 489   // it sets this flag.
 490   bool incremental_collection_failed() const {
 491     return _incremental_collection_failed;
 492   }
 493   void set_incremental_collection_failed() {
 494     _incremental_collection_failed = true;
 495   }
 496   void clear_incremental_collection_failed() {
 497     _incremental_collection_failed = false;
 498   }
 499 
 500   // Promotion of obj into gen failed.  Try to promote obj to higher
 501   // gens in ascending order; return the new location of obj if successful.
 502   // Otherwise, try expand-and-allocate for obj in both the young and old
 503   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 504   oop handle_failed_promotion(Generation* old_gen,
 505                               oop obj,
 506                               size_t obj_size);
 507 
 508 private:
 509   // Accessor for memory state verification support
 510   NOT_PRODUCT(
 511     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 512   )
 513 
 514   // Override
 515   void check_for_non_bad_heap_word_value(HeapWord* addr,
 516     size_t size) PRODUCT_RETURN;
 517 
 518   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 519   // in an essential way: compaction is performed across generations, by
 520   // iterating over spaces.
 521   void prepare_for_compaction();
 522 
 523   // Perform a full collection of the first max_level+1 generations.
 524   // This is the low level interface used by the public versions of
 525   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 526   void collect_locked(GCCause::Cause cause, int max_level);
 527 
 528   // Returns success or failure.
 529   bool create_cms_collector();
 530 
 531   // In support of ExplicitGCInvokesConcurrent functionality
 532   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 533   void collect_mostly_concurrent(GCCause::Cause cause);
 534 
 535   // Save the tops of the spaces in all generations
 536   void record_gen_tops_before_GC() PRODUCT_RETURN;
 537 
 538 protected:
 539   virtual void gc_prologue(bool full);
 540   virtual void gc_epilogue(bool full);
 541 };
 542 
 543 #endif // SHARE_VM_MEMORY_GENCOLLECTEDHEAP_HPP