< prev index next >

src/hotspot/cpu/aarch64/immediate_aarch64.cpp

Print this page
8248238: Adding Windows support to OpenJDK on AArch64

Summary: LP64 vs LLP64 changes to add Windows support

Contributed-by: Monica Beckwith <monica.beckwith@microsoft.com>, Ludovic Henry <luhenry@microsoft.com>
Reviewed-by:

*** 20,30 **** * or visit www.oracle.com if you need additional information or have any * questions. * */ ! #include <stdlib.h> #include "immediate_aarch64.hpp" // there are at most 2^13 possible logical immediate encodings // however, some combinations of immr and imms are invalid static const unsigned LI_TABLE_SIZE = (1 << 13); --- 20,30 ---- * or visit www.oracle.com if you need additional information or have any * questions. * */ ! #include "utilities/globalDefinitions.hpp" #include "immediate_aarch64.hpp" // there are at most 2^13 possible logical immediate encodings // however, some combinations of immr and imms are invalid static const unsigned LI_TABLE_SIZE = (1 << 13);
*** 32,49 **** static int li_table_entry_count; // for forward lookup we just use a direct array lookup // and assume that the cient has supplied a valid encoding // table[encoding] = immediate ! static u_int64_t LITable[LI_TABLE_SIZE]; // for reverse lookup we need a sparse map so we store a table of // immediate and encoding pairs sorted by immediate value struct li_pair { ! u_int64_t immediate; ! u_int32_t encoding; }; static struct li_pair InverseLITable[LI_TABLE_SIZE]; // comparator to sort entries in the inverse table --- 32,49 ---- static int li_table_entry_count; // for forward lookup we just use a direct array lookup // and assume that the cient has supplied a valid encoding // table[encoding] = immediate ! static uint64_t LITable[LI_TABLE_SIZE]; // for reverse lookup we need a sparse map so we store a table of // immediate and encoding pairs sorted by immediate value struct li_pair { ! uint64_t immediate; ! uint32_t encoding; }; static struct li_pair InverseLITable[LI_TABLE_SIZE]; // comparator to sort entries in the inverse table
*** 61,135 **** } // helper functions used by expandLogicalImmediate // for i = 1, ... N result<i-1> = 1 other bits are zero ! static inline u_int64_t ones(int N) { ! return (N == 64 ? (u_int64_t)-1UL : ((1UL << N) - 1)); } /* * bit twiddling helpers for instruction decode */ // 32 bit mask with bits [hi,...,lo] set ! static inline u_int32_t mask32(int hi = 31, int lo = 0) { int nbits = (hi + 1) - lo; return ((1 << nbits) - 1) << lo; } ! static inline u_int64_t mask64(int hi = 63, int lo = 0) { int nbits = (hi + 1) - lo; return ((1L << nbits) - 1) << lo; } // pick bits [hi,...,lo] from val ! static inline u_int32_t pick32(u_int32_t val, int hi = 31, int lo = 0) { return (val & mask32(hi, lo)); } // pick bits [hi,...,lo] from val ! static inline u_int64_t pick64(u_int64_t val, int hi = 31, int lo = 0) { return (val & mask64(hi, lo)); } // mask [hi,lo] and shift down to start at bit 0 ! static inline u_int32_t pickbits32(u_int32_t val, int hi = 31, int lo = 0) { return (pick32(val, hi, lo) >> lo); } // mask [hi,lo] and shift down to start at bit 0 ! static inline u_int64_t pickbits64(u_int64_t val, int hi = 63, int lo = 0) { return (pick64(val, hi, lo) >> lo); } // result<0> to val<N> ! static inline u_int64_t pickbit(u_int64_t val, int N) { return pickbits64(val, N, N); } ! static inline u_int32_t uimm(u_int32_t val, int hi, int lo) { return pickbits32(val, hi, lo); } // SPEC bits(M*N) Replicate(bits(M) x, integer N); // this is just an educated guess ! u_int64_t replicate(u_int64_t bits, int nbits, int count) { ! u_int64_t result = 0; // nbits may be 64 in which case we want mask to be -1 ! u_int64_t mask = ones(nbits); for (int i = 0; i < count ; i++) { result <<= nbits; result |= (bits & mask); } return result; --- 61,135 ---- } // helper functions used by expandLogicalImmediate // for i = 1, ... N result<i-1> = 1 other bits are zero ! static inline uint64_t ones(int N) { ! return (N == 64 ? (uint64_t)-1ULL : ((1ULL << N) - 1)); } /* * bit twiddling helpers for instruction decode */ // 32 bit mask with bits [hi,...,lo] set ! static inline uint32_t mask32(int hi = 31, int lo = 0) { int nbits = (hi + 1) - lo; return ((1 << nbits) - 1) << lo; } ! static inline uint64_t mask64(int hi = 63, int lo = 0) { int nbits = (hi + 1) - lo; return ((1L << nbits) - 1) << lo; } // pick bits [hi,...,lo] from val ! static inline uint32_t pick32(uint32_t val, int hi = 31, int lo = 0) { return (val & mask32(hi, lo)); } // pick bits [hi,...,lo] from val ! static inline uint64_t pick64(uint64_t val, int hi = 31, int lo = 0) { return (val & mask64(hi, lo)); } // mask [hi,lo] and shift down to start at bit 0 ! static inline uint32_t pickbits32(uint32_t val, int hi = 31, int lo = 0) { return (pick32(val, hi, lo) >> lo); } // mask [hi,lo] and shift down to start at bit 0 ! static inline uint64_t pickbits64(uint64_t val, int hi = 63, int lo = 0) { return (pick64(val, hi, lo) >> lo); } // result<0> to val<N> ! static inline uint64_t pickbit(uint64_t val, int N) { return pickbits64(val, N, N); } ! static inline uint32_t uimm(uint32_t val, int hi, int lo) { return pickbits32(val, hi, lo); } // SPEC bits(M*N) Replicate(bits(M) x, integer N); // this is just an educated guess ! uint64_t replicate(uint64_t bits, int nbits, int count) { ! uint64_t result = 0; // nbits may be 64 in which case we want mask to be -1 ! uint64_t mask = ones(nbits); for (int i = 0; i < count ; i++) { result <<= nbits; result |= (bits & mask); } return result;
*** 138,165 **** // this function writes the supplied bimm reference and returns a // boolean to indicate success (1) or fail (0) because an illegal // encoding must be treated as an UNALLOC instruction // construct a 32 bit immediate value for a logical immediate operation ! int expandLogicalImmediate(u_int32_t immN, u_int32_t immr, ! u_int32_t imms, u_int64_t &bimm) { int len; // ought to be <= 6 ! u_int32_t levels; // 6 bits ! u_int32_t tmask_and; // 6 bits ! u_int32_t wmask_and; // 6 bits ! u_int32_t tmask_or; // 6 bits ! u_int32_t wmask_or; // 6 bits ! u_int64_t imm64; // 64 bits ! u_int64_t tmask, wmask; // 64 bits ! u_int32_t S, R, diff; // 6 bits? if (immN == 1) { len = 6; // looks like 7 given the spec above but this cannot be! } else { len = 0; ! u_int32_t val = (~imms & 0x3f); for (int i = 5; i > 0; i--) { if (val & (1 << i)) { len = i; break; } --- 138,165 ---- // this function writes the supplied bimm reference and returns a // boolean to indicate success (1) or fail (0) because an illegal // encoding must be treated as an UNALLOC instruction // construct a 32 bit immediate value for a logical immediate operation ! int expandLogicalImmediate(uint32_t immN, uint32_t immr, ! uint32_t imms, uint64_t &bimm) { int len; // ought to be <= 6 ! uint32_t levels; // 6 bits ! uint32_t tmask_and; // 6 bits ! uint32_t wmask_and; // 6 bits ! uint32_t tmask_or; // 6 bits ! uint32_t wmask_or; // 6 bits ! uint64_t imm64; // 64 bits ! uint64_t tmask, wmask; // 64 bits ! uint32_t S, R, diff; // 6 bits? if (immN == 1) { len = 6; // looks like 7 given the spec above but this cannot be! } else { len = 0; ! uint32_t val = (~imms & 0x3f); for (int i = 5; i > 0; i--) { if (val & (1 << i)) { len = i; break; }
*** 168,178 **** return 0; } // for valid inputs leading 1s in immr must be less than leading // zeros in imms int len2 = 0; // ought to be < len ! u_int32_t val2 = (~immr & 0x3f); for (int i = 5; i > 0; i--) { if (!(val2 & (1 << i))) { len2 = i; break; } --- 168,178 ---- return 0; } // for valid inputs leading 1s in immr must be less than leading // zeros in imms int len2 = 0; // ought to be < len ! uint32_t val2 = (~immr & 0x3f); for (int i = 5; i > 0; i--) { if (!(val2 & (1 << i))) { len2 = i; break; }
*** 197,212 **** tmask_or = (diff & levels) & 0x3f; tmask = 0xffffffffffffffffULL; for (int i = 0; i < 6; i++) { int nbits = 1 << i; ! u_int64_t and_bit = pickbit(tmask_and, i); ! u_int64_t or_bit = pickbit(tmask_or, i); ! u_int64_t and_bits_sub = replicate(and_bit, 1, nbits); ! u_int64_t or_bits_sub = replicate(or_bit, 1, nbits); ! u_int64_t and_bits_top = (and_bits_sub << nbits) | ones(nbits); ! u_int64_t or_bits_top = (0 << nbits) | or_bits_sub; tmask = ((tmask & (replicate(and_bits_top, 2 * nbits, 32 / nbits))) | replicate(or_bits_top, 2 * nbits, 32 / nbits)); } --- 197,212 ---- tmask_or = (diff & levels) & 0x3f; tmask = 0xffffffffffffffffULL; for (int i = 0; i < 6; i++) { int nbits = 1 << i; ! uint64_t and_bit = pickbit(tmask_and, i); ! uint64_t or_bit = pickbit(tmask_or, i); ! uint64_t and_bits_sub = replicate(and_bit, 1, nbits); ! uint64_t or_bits_sub = replicate(or_bit, 1, nbits); ! uint64_t and_bits_top = (and_bits_sub << nbits) | ones(nbits); ! uint64_t or_bits_top = (0 << nbits) | or_bits_sub; tmask = ((tmask & (replicate(and_bits_top, 2 * nbits, 32 / nbits))) | replicate(or_bits_top, 2 * nbits, 32 / nbits)); }
*** 216,231 **** wmask = 0; for (int i = 0; i < 6; i++) { int nbits = 1 << i; ! u_int64_t and_bit = pickbit(wmask_and, i); ! u_int64_t or_bit = pickbit(wmask_or, i); ! u_int64_t and_bits_sub = replicate(and_bit, 1, nbits); ! u_int64_t or_bits_sub = replicate(or_bit, 1, nbits); ! u_int64_t and_bits_top = (ones(nbits) << nbits) | and_bits_sub; ! u_int64_t or_bits_top = (or_bits_sub << nbits) | 0; wmask = ((wmask & (replicate(and_bits_top, 2 * nbits, 32 / nbits))) | replicate(or_bits_top, 2 * nbits, 32 / nbits)); } --- 216,231 ---- wmask = 0; for (int i = 0; i < 6; i++) { int nbits = 1 << i; ! uint64_t and_bit = pickbit(wmask_and, i); ! uint64_t or_bit = pickbit(wmask_or, i); ! uint64_t and_bits_sub = replicate(and_bit, 1, nbits); ! uint64_t or_bits_sub = replicate(or_bit, 1, nbits); ! uint64_t and_bits_top = (ones(nbits) << nbits) | and_bits_sub; ! uint64_t or_bits_top = (or_bits_sub << nbits) | 0; wmask = ((wmask & (replicate(and_bits_top, 2 * nbits, 32 / nbits))) | replicate(or_bits_top, 2 * nbits, 32 / nbits)); }
*** 246,258 **** static void initLITables() __attribute__ ((constructor)); static void initLITables() { li_table_entry_count = 0; for (unsigned index = 0; index < LI_TABLE_SIZE; index++) { ! u_int32_t N = uimm(index, 12, 12); ! u_int32_t immr = uimm(index, 11, 6); ! u_int32_t imms = uimm(index, 5, 0); if (expandLogicalImmediate(N, immr, imms, LITable[index])) { InverseLITable[li_table_entry_count].immediate = LITable[index]; InverseLITable[li_table_entry_count].encoding = index; li_table_entry_count++; } --- 246,258 ---- static void initLITables() __attribute__ ((constructor)); static void initLITables() { li_table_entry_count = 0; for (unsigned index = 0; index < LI_TABLE_SIZE; index++) { ! uint32_t N = uimm(index, 12, 12); ! uint32_t immr = uimm(index, 11, 6); ! uint32_t imms = uimm(index, 5, 0); if (expandLogicalImmediate(N, immr, imms, LITable[index])) { InverseLITable[li_table_entry_count].immediate = LITable[index]; InverseLITable[li_table_entry_count].encoding = index; li_table_entry_count++; }
*** 262,277 **** sizeof(InverseLITable[0]), compare_immediate_pair); } // public APIs provided for logical immediate lookup and reverse lookup ! u_int64_t logical_immediate_for_encoding(u_int32_t encoding) { return LITable[encoding]; } ! u_int32_t encoding_for_logical_immediate(u_int64_t immediate) { struct li_pair pair; struct li_pair *result; pair.immediate = immediate; --- 262,277 ---- sizeof(InverseLITable[0]), compare_immediate_pair); } // public APIs provided for logical immediate lookup and reverse lookup ! uint64_t logical_immediate_for_encoding(uint32_t encoding) { return LITable[encoding]; } ! uint32_t encoding_for_logical_immediate(uint64_t immediate) { struct li_pair pair; struct li_pair *result; pair.immediate = immediate;
*** 291,309 **** // fpimm[7] = sign bit // fpimm[6:4] = signed exponent // fpimm[3:0] = fraction (assuming leading 1) // i.e. F = s * 1.f * 2^(e - b) ! u_int64_t fp_immediate_for_encoding(u_int32_t imm8, int is_dp) { union { float fpval; double dpval; ! u_int64_t val; }; ! u_int32_t s, e, f; s = (imm8 >> 7 ) & 0x1; e = (imm8 >> 4) & 0x7; f = imm8 & 0xf; // the fp value is s * n/16 * 2r where n is 16+e fpval = (16.0 + f) / 16.0; --- 291,309 ---- // fpimm[7] = sign bit // fpimm[6:4] = signed exponent // fpimm[3:0] = fraction (assuming leading 1) // i.e. F = s * 1.f * 2^(e - b) ! uint64_t fp_immediate_for_encoding(uint32_t imm8, int is_dp) { union { float fpval; double dpval; ! uint64_t val; }; ! uint32_t s, e, f; s = (imm8 >> 7 ) & 0x1; e = (imm8 >> 4) & 0x7; f = imm8 & 0xf; // the fp value is s * n/16 * 2r where n is 16+e fpval = (16.0 + f) / 16.0;
*** 327,337 **** dpval = (double)fpval; } return val; } ! u_int32_t encoding_for_fp_immediate(float immediate) { // given a float which is of the form // // s * n/16 * 2r // --- 327,337 ---- dpval = (double)fpval; } return val; } ! uint32_t encoding_for_fp_immediate(float immediate) { // given a float which is of the form // // s * n/16 * 2r //
*** 339,352 **** // return the imm8 result [s:r:f] // union { float fpval; ! u_int32_t val; }; fpval = immediate; ! u_int32_t s, r, f, res; // sign bit is 31 s = (val >> 31) & 0x1; // exponent is bits 30-23 but we only want the bottom 3 bits // strictly we ought to check that the bits bits 30-25 are // either all 1s or all 0s --- 339,352 ---- // return the imm8 result [s:r:f] // union { float fpval; ! uint32_t val; }; fpval = immediate; ! uint32_t s, r, f, res; // sign bit is 31 s = (val >> 31) & 0x1; // exponent is bits 30-23 but we only want the bottom 3 bits // strictly we ought to check that the bits bits 30-25 are // either all 1s or all 0s
< prev index next >