1 /*
   2  * Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_Instruction.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_LIRGenerator.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArray.hpp"
  36 #include "ci/ciObjArrayKlass.hpp"
  37 #include "ci/ciTypeArrayKlass.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "utilities/powerOfTwo.hpp"
  41 #include "vmreg_aarch64.inline.hpp"
  42 
  43 #ifdef ASSERT
  44 #define __ gen()->lir(__FILE__, __LINE__)->
  45 #else
  46 #define __ gen()->lir()->
  47 #endif
  48 
  49 // Item will be loaded into a byte register; Intel only
  50 void LIRItem::load_byte_item() {
  51   load_item();
  52 }
  53 
  54 
  55 void LIRItem::load_nonconstant() {
  56   LIR_Opr r = value()->operand();
  57   if (r->is_constant()) {
  58     _result = r;
  59   } else {
  60     load_item();
  61   }
  62 }
  63 
  64 //--------------------------------------------------------------
  65 //               LIRGenerator
  66 //--------------------------------------------------------------
  67 
  68 
  69 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; }
  70 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::r3_opr; }
  71 LIR_Opr LIRGenerator::divInOpr()        { Unimplemented(); return LIR_OprFact::illegalOpr; }
  72 LIR_Opr LIRGenerator::divOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  73 LIR_Opr LIRGenerator::remOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  74 LIR_Opr LIRGenerator::shiftCountOpr()   { Unimplemented(); return LIR_OprFact::illegalOpr; }
  75 LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
  76 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::r0_opr; }
  77 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  78 
  79 
  80 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  81   LIR_Opr opr;
  82   switch (type->tag()) {
  83     case intTag:     opr = FrameMap::r0_opr;          break;
  84     case objectTag:  opr = FrameMap::r0_oop_opr;      break;
  85     case longTag:    opr = FrameMap::long0_opr;        break;
  86     case floatTag:   opr = FrameMap::fpu0_float_opr;  break;
  87     case doubleTag:  opr = FrameMap::fpu0_double_opr;  break;
  88 
  89     case addressTag:
  90     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  91   }
  92 
  93   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  94   return opr;
  95 }
  96 
  97 
  98 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
  99   LIR_Opr reg = new_register(T_INT);
 100   set_vreg_flag(reg, LIRGenerator::byte_reg);
 101   return reg;
 102 }
 103 
 104 
 105 //--------- loading items into registers --------------------------------
 106 
 107 
 108 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 109   if (v->type()->as_IntConstant() != NULL) {
 110     return v->type()->as_IntConstant()->value() == 0L;
 111   } else if (v->type()->as_LongConstant() != NULL) {
 112     return v->type()->as_LongConstant()->value() == 0L;
 113   } else if (v->type()->as_ObjectConstant() != NULL) {
 114     return v->type()->as_ObjectConstant()->value()->is_null_object();
 115   } else {
 116     return false;
 117   }
 118 }
 119 
 120 bool LIRGenerator::can_inline_as_constant(Value v) const {
 121   // FIXME: Just a guess
 122   if (v->type()->as_IntConstant() != NULL) {
 123     return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value());
 124   } else if (v->type()->as_LongConstant() != NULL) {
 125     return v->type()->as_LongConstant()->value() == 0L;
 126   } else if (v->type()->as_ObjectConstant() != NULL) {
 127     return v->type()->as_ObjectConstant()->value()->is_null_object();
 128   } else {
 129     return false;
 130   }
 131 }
 132 
 133 
 134 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; }
 135 
 136 
 137 LIR_Opr LIRGenerator::safepoint_poll_register() {
 138   return LIR_OprFact::illegalOpr;
 139 }
 140 
 141 
 142 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 143                                             int shift, int disp, BasicType type) {
 144   assert(base->is_register(), "must be");
 145   intx large_disp = disp;
 146 
 147   // accumulate fixed displacements
 148   if (index->is_constant()) {
 149     LIR_Const *constant = index->as_constant_ptr();
 150     if (constant->type() == T_INT) {
 151       large_disp += index->as_jint() << shift;
 152     } else {
 153       assert(constant->type() == T_LONG, "should be");
 154       jlong c = index->as_jlong() << shift;
 155       if ((jlong)((jint)c) == c) {
 156         large_disp += c;
 157         index = LIR_OprFact::illegalOpr;
 158       } else {
 159         LIR_Opr tmp = new_register(T_LONG);
 160         __ move(index, tmp);
 161         index = tmp;
 162         // apply shift and displacement below
 163       }
 164     }
 165   }
 166 
 167   if (index->is_register()) {
 168     // apply the shift and accumulate the displacement
 169     if (shift > 0) {
 170       LIR_Opr tmp = new_pointer_register();
 171       __ shift_left(index, shift, tmp);
 172       index = tmp;
 173     }
 174     if (large_disp != 0) {
 175       LIR_Opr tmp = new_pointer_register();
 176       if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) {
 177         __ add(tmp, tmp, LIR_OprFact::intptrConst(large_disp));
 178         index = tmp;
 179       } else {
 180         __ move(tmp, LIR_OprFact::intptrConst(large_disp));
 181         __ add(tmp, index, tmp);
 182         index = tmp;
 183       }
 184       large_disp = 0;
 185     }
 186   } else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) {
 187     // index is illegal so replace it with the displacement loaded into a register
 188     index = new_pointer_register();
 189     __ move(LIR_OprFact::intptrConst(large_disp), index);
 190     large_disp = 0;
 191   }
 192 
 193   // at this point we either have base + index or base + displacement
 194   if (large_disp == 0) {
 195     return new LIR_Address(base, index, type);
 196   } else {
 197     assert(Address::offset_ok_for_immed(large_disp, 0), "must be");
 198     return new LIR_Address(base, large_disp, type);
 199   }
 200 }
 201 
 202 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 203                                               BasicType type) {
 204   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 205   int elem_size = type2aelembytes(type);
 206   int shift = exact_log2(elem_size);
 207 
 208   LIR_Address* addr;
 209   if (index_opr->is_constant()) {
 210     addr = new LIR_Address(array_opr,
 211                            offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
 212   } else {
 213     if (offset_in_bytes) {
 214       LIR_Opr tmp = new_pointer_register();
 215       __ add(array_opr, LIR_OprFact::intConst(offset_in_bytes), tmp);
 216       array_opr = tmp;
 217       offset_in_bytes = 0;
 218     }
 219     addr =  new LIR_Address(array_opr,
 220                             index_opr,
 221                             LIR_Address::scale(type),
 222                             offset_in_bytes, type);
 223   }
 224   return addr;
 225 }
 226 
 227 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 228   LIR_Opr r;
 229   if (type == T_LONG) {
 230     r = LIR_OprFact::longConst(x);
 231     if (!Assembler::operand_valid_for_logical_immediate(false, x)) {
 232       LIR_Opr tmp = new_register(type);
 233       __ move(r, tmp);
 234       return tmp;
 235     }
 236   } else if (type == T_INT) {
 237     r = LIR_OprFact::intConst(x);
 238     if (!Assembler::operand_valid_for_logical_immediate(true, x)) {
 239       // This is all rather nasty.  We don't know whether our constant
 240       // is required for a logical or an arithmetic operation, wo we
 241       // don't know what the range of valid values is!!
 242       LIR_Opr tmp = new_register(type);
 243       __ move(r, tmp);
 244       return tmp;
 245     }
 246   } else {
 247     ShouldNotReachHere();
 248     r = NULL;  // unreachable
 249   }
 250   return r;
 251 }
 252 
 253 
 254 
 255 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 256   LIR_Opr pointer = new_pointer_register();
 257   __ move(LIR_OprFact::intptrConst(counter), pointer);
 258   LIR_Address* addr = new LIR_Address(pointer, type);
 259   increment_counter(addr, step);
 260 }
 261 
 262 
 263 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 264   LIR_Opr imm = NULL;
 265   switch(addr->type()) {
 266   case T_INT:
 267     imm = LIR_OprFact::intConst(step);
 268     break;
 269   case T_LONG:
 270     imm = LIR_OprFact::longConst(step);
 271     break;
 272   default:
 273     ShouldNotReachHere();
 274   }
 275   LIR_Opr reg = new_register(addr->type());
 276   __ load(addr, reg);
 277   __ add(reg, imm, reg);
 278   __ store(reg, addr);
 279 }
 280 
 281 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 282   LIR_Opr reg = new_register(T_INT);
 283   __ load(generate_address(base, disp, T_INT), reg, info);
 284   __ cmp(condition, reg, LIR_OprFact::intConst(c));
 285 }
 286 
 287 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 288   LIR_Opr reg1 = new_register(T_INT);
 289   __ load(generate_address(base, disp, type), reg1, info);
 290   __ cmp(condition, reg, reg1);
 291 }
 292 
 293 
 294 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 295 
 296   if (is_power_of_2(c - 1)) {
 297     __ shift_left(left, exact_log2(c - 1), tmp);
 298     __ add(tmp, left, result);
 299     return true;
 300   } else if (is_power_of_2(c + 1)) {
 301     __ shift_left(left, exact_log2(c + 1), tmp);
 302     __ sub(tmp, left, result);
 303     return true;
 304   } else {
 305     return false;
 306   }
 307 }
 308 
 309 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 310   BasicType type = item->type();
 311   __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
 312 }
 313 
 314 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
 315     LIR_Opr tmp1 = new_register(objectType);
 316     LIR_Opr tmp2 = new_register(objectType);
 317     LIR_Opr tmp3 = new_register(objectType);
 318     __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
 319 }
 320 
 321 //----------------------------------------------------------------------
 322 //             visitor functions
 323 //----------------------------------------------------------------------
 324 
 325 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 326   assert(x->is_pinned(),"");
 327   LIRItem obj(x->obj(), this);
 328   obj.load_item();
 329 
 330   set_no_result(x);
 331 
 332   // "lock" stores the address of the monitor stack slot, so this is not an oop
 333   LIR_Opr lock = new_register(T_INT);
 334   // Need a scratch register for biased locking
 335   LIR_Opr scratch = LIR_OprFact::illegalOpr;
 336   if (UseBiasedLocking) {
 337     scratch = new_register(T_INT);
 338   }
 339 
 340   CodeEmitInfo* info_for_exception = NULL;
 341   if (x->needs_null_check()) {
 342     info_for_exception = state_for(x);
 343   }
 344   // this CodeEmitInfo must not have the xhandlers because here the
 345   // object is already locked (xhandlers expect object to be unlocked)
 346   CodeEmitInfo* info = state_for(x, x->state(), true);
 347   monitor_enter(obj.result(), lock, syncTempOpr(), scratch,
 348                         x->monitor_no(), info_for_exception, info);
 349 }
 350 
 351 
 352 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 353   assert(x->is_pinned(),"");
 354 
 355   LIRItem obj(x->obj(), this);
 356   obj.dont_load_item();
 357 
 358   LIR_Opr lock = new_register(T_INT);
 359   LIR_Opr obj_temp = new_register(T_INT);
 360   set_no_result(x);
 361   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 362 }
 363 
 364 
 365 void LIRGenerator::do_NegateOp(NegateOp* x) {
 366 
 367   LIRItem from(x->x(), this);
 368   from.load_item();
 369   LIR_Opr result = rlock_result(x);
 370   __ negate (from.result(), result);
 371 
 372 }
 373 
 374 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 375 //      _dadd, _dmul, _dsub, _ddiv, _drem
 376 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 377 
 378   if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
 379     // float remainder is implemented as a direct call into the runtime
 380     LIRItem right(x->x(), this);
 381     LIRItem left(x->y(), this);
 382 
 383     BasicTypeList signature(2);
 384     if (x->op() == Bytecodes::_frem) {
 385       signature.append(T_FLOAT);
 386       signature.append(T_FLOAT);
 387     } else {
 388       signature.append(T_DOUBLE);
 389       signature.append(T_DOUBLE);
 390     }
 391     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 392 
 393     const LIR_Opr result_reg = result_register_for(x->type());
 394     left.load_item_force(cc->at(1));
 395     right.load_item();
 396 
 397     __ move(right.result(), cc->at(0));
 398 
 399     address entry;
 400     if (x->op() == Bytecodes::_frem) {
 401       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 402     } else {
 403       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 404     }
 405 
 406     LIR_Opr result = rlock_result(x);
 407     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 408     __ move(result_reg, result);
 409 
 410     return;
 411   }
 412 
 413   LIRItem left(x->x(),  this);
 414   LIRItem right(x->y(), this);
 415   LIRItem* left_arg  = &left;
 416   LIRItem* right_arg = &right;
 417 
 418   // Always load right hand side.
 419   right.load_item();
 420 
 421   if (!left.is_register())
 422     left.load_item();
 423 
 424   LIR_Opr reg = rlock(x);
 425   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 426   if (x->is_strictfp() && (x->op() == Bytecodes::_dmul || x->op() == Bytecodes::_ddiv)) {
 427     tmp = new_register(T_DOUBLE);
 428   }
 429 
 430   arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp());
 431 
 432   set_result(x, round_item(reg));
 433 }
 434 
 435 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 436 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 437 
 438   // missing test if instr is commutative and if we should swap
 439   LIRItem left(x->x(), this);
 440   LIRItem right(x->y(), this);
 441 
 442   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 443 
 444     left.load_item();
 445     bool need_zero_check = true;
 446     if (right.is_constant()) {
 447       jlong c = right.get_jlong_constant();
 448       // no need to do div-by-zero check if the divisor is a non-zero constant
 449       if (c != 0) need_zero_check = false;
 450       // do not load right if the divisor is a power-of-2 constant
 451       if (c > 0 && is_power_of_2(c)) {
 452         right.dont_load_item();
 453       } else {
 454         right.load_item();
 455       }
 456     } else {
 457       right.load_item();
 458     }
 459     if (need_zero_check) {
 460       CodeEmitInfo* info = state_for(x);
 461       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 462       __ branch(lir_cond_equal, new DivByZeroStub(info));
 463     }
 464 
 465     rlock_result(x);
 466     switch (x->op()) {
 467     case Bytecodes::_lrem:
 468       __ rem (left.result(), right.result(), x->operand());
 469       break;
 470     case Bytecodes::_ldiv:
 471       __ div (left.result(), right.result(), x->operand());
 472       break;
 473     default:
 474       ShouldNotReachHere();
 475       break;
 476     }
 477 
 478 
 479   } else {
 480     assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
 481             "expect lmul, ladd or lsub");
 482     // add, sub, mul
 483     left.load_item();
 484     if (! right.is_register()) {
 485       if (x->op() == Bytecodes::_lmul
 486           || ! right.is_constant()
 487           || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) {
 488         right.load_item();
 489       } else { // add, sub
 490         assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub");
 491         // don't load constants to save register
 492         right.load_nonconstant();
 493       }
 494     }
 495     rlock_result(x);
 496     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 497   }
 498 }
 499 
 500 // for: _iadd, _imul, _isub, _idiv, _irem
 501 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 502 
 503   // Test if instr is commutative and if we should swap
 504   LIRItem left(x->x(),  this);
 505   LIRItem right(x->y(), this);
 506   LIRItem* left_arg = &left;
 507   LIRItem* right_arg = &right;
 508   if (x->is_commutative() && left.is_stack() && right.is_register()) {
 509     // swap them if left is real stack (or cached) and right is real register(not cached)
 510     left_arg = &right;
 511     right_arg = &left;
 512   }
 513 
 514   left_arg->load_item();
 515 
 516   // do not need to load right, as we can handle stack and constants
 517   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 518 
 519     rlock_result(x);
 520     bool need_zero_check = true;
 521     if (right.is_constant()) {
 522       jint c = right.get_jint_constant();
 523       // no need to do div-by-zero check if the divisor is a non-zero constant
 524       if (c != 0) need_zero_check = false;
 525       // do not load right if the divisor is a power-of-2 constant
 526       if (c > 0 && is_power_of_2(c)) {
 527         right_arg->dont_load_item();
 528       } else {
 529         right_arg->load_item();
 530       }
 531     } else {
 532       right_arg->load_item();
 533     }
 534     if (need_zero_check) {
 535       CodeEmitInfo* info = state_for(x);
 536       __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
 537       __ branch(lir_cond_equal, new DivByZeroStub(info));
 538     }
 539 
 540     LIR_Opr ill = LIR_OprFact::illegalOpr;
 541     if (x->op() == Bytecodes::_irem) {
 542       __ irem(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
 543     } else if (x->op() == Bytecodes::_idiv) {
 544       __ idiv(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
 545     }
 546 
 547   } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
 548     if (right.is_constant()
 549         && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) {
 550       right.load_nonconstant();
 551     } else {
 552       right.load_item();
 553     }
 554     rlock_result(x);
 555     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
 556   } else {
 557     assert (x->op() == Bytecodes::_imul, "expect imul");
 558     if (right.is_constant()) {
 559       jint c = right.get_jint_constant();
 560       if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
 561         right_arg->dont_load_item();
 562       } else {
 563         // Cannot use constant op.
 564         right_arg->load_item();
 565       }
 566     } else {
 567       right.load_item();
 568     }
 569     rlock_result(x);
 570     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
 571   }
 572 }
 573 
 574 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 575   // when an operand with use count 1 is the left operand, then it is
 576   // likely that no move for 2-operand-LIR-form is necessary
 577   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 578     x->swap_operands();
 579   }
 580 
 581   ValueTag tag = x->type()->tag();
 582   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 583   switch (tag) {
 584     case floatTag:
 585     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 586     case longTag:    do_ArithmeticOp_Long(x); return;
 587     case intTag:     do_ArithmeticOp_Int(x);  return;
 588     default:         ShouldNotReachHere();    return;
 589   }
 590 }
 591 
 592 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 593 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 594 
 595   LIRItem left(x->x(),  this);
 596   LIRItem right(x->y(), this);
 597 
 598   left.load_item();
 599 
 600   rlock_result(x);
 601   if (right.is_constant()) {
 602     right.dont_load_item();
 603 
 604     switch (x->op()) {
 605     case Bytecodes::_ishl: {
 606       int c = right.get_jint_constant() & 0x1f;
 607       __ shift_left(left.result(), c, x->operand());
 608       break;
 609     }
 610     case Bytecodes::_ishr: {
 611       int c = right.get_jint_constant() & 0x1f;
 612       __ shift_right(left.result(), c, x->operand());
 613       break;
 614     }
 615     case Bytecodes::_iushr: {
 616       int c = right.get_jint_constant() & 0x1f;
 617       __ unsigned_shift_right(left.result(), c, x->operand());
 618       break;
 619     }
 620     case Bytecodes::_lshl: {
 621       int c = right.get_jint_constant() & 0x3f;
 622       __ shift_left(left.result(), c, x->operand());
 623       break;
 624     }
 625     case Bytecodes::_lshr: {
 626       int c = right.get_jint_constant() & 0x3f;
 627       __ shift_right(left.result(), c, x->operand());
 628       break;
 629     }
 630     case Bytecodes::_lushr: {
 631       int c = right.get_jint_constant() & 0x3f;
 632       __ unsigned_shift_right(left.result(), c, x->operand());
 633       break;
 634     }
 635     default:
 636       ShouldNotReachHere();
 637     }
 638   } else {
 639     right.load_item();
 640     LIR_Opr tmp = new_register(T_INT);
 641     switch (x->op()) {
 642     case Bytecodes::_ishl: {
 643       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 644       __ shift_left(left.result(), tmp, x->operand(), tmp);
 645       break;
 646     }
 647     case Bytecodes::_ishr: {
 648       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 649       __ shift_right(left.result(), tmp, x->operand(), tmp);
 650       break;
 651     }
 652     case Bytecodes::_iushr: {
 653       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 654       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 655       break;
 656     }
 657     case Bytecodes::_lshl: {
 658       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 659       __ shift_left(left.result(), tmp, x->operand(), tmp);
 660       break;
 661     }
 662     case Bytecodes::_lshr: {
 663       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 664       __ shift_right(left.result(), tmp, x->operand(), tmp);
 665       break;
 666     }
 667     case Bytecodes::_lushr: {
 668       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 669       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 670       break;
 671     }
 672     default:
 673       ShouldNotReachHere();
 674     }
 675   }
 676 }
 677 
 678 // _iand, _land, _ior, _lor, _ixor, _lxor
 679 void LIRGenerator::do_LogicOp(LogicOp* x) {
 680 
 681   LIRItem left(x->x(),  this);
 682   LIRItem right(x->y(), this);
 683 
 684   left.load_item();
 685 
 686   rlock_result(x);
 687   if (right.is_constant()
 688       && ((right.type()->tag() == intTag
 689            && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant()))
 690           || (right.type()->tag() == longTag
 691               && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant()))))  {
 692     right.dont_load_item();
 693   } else {
 694     right.load_item();
 695   }
 696   switch (x->op()) {
 697   case Bytecodes::_iand:
 698   case Bytecodes::_land:
 699     __ logical_and(left.result(), right.result(), x->operand()); break;
 700   case Bytecodes::_ior:
 701   case Bytecodes::_lor:
 702     __ logical_or (left.result(), right.result(), x->operand()); break;
 703   case Bytecodes::_ixor:
 704   case Bytecodes::_lxor:
 705     __ logical_xor(left.result(), right.result(), x->operand()); break;
 706   default: Unimplemented();
 707   }
 708 }
 709 
 710 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 711 void LIRGenerator::do_CompareOp(CompareOp* x) {
 712   LIRItem left(x->x(), this);
 713   LIRItem right(x->y(), this);
 714   ValueTag tag = x->x()->type()->tag();
 715   if (tag == longTag) {
 716     left.set_destroys_register();
 717   }
 718   left.load_item();
 719   right.load_item();
 720   LIR_Opr reg = rlock_result(x);
 721 
 722   if (x->x()->type()->is_float_kind()) {
 723     Bytecodes::Code code = x->op();
 724     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 725   } else if (x->x()->type()->tag() == longTag) {
 726     __ lcmp2int(left.result(), right.result(), reg);
 727   } else {
 728     Unimplemented();
 729   }
 730 }
 731 
 732 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
 733   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 734   new_value.load_item();
 735   cmp_value.load_item();
 736   LIR_Opr result = new_register(T_INT);
 737   if (is_reference_type(type)) {
 738     __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result);
 739   } else if (type == T_INT) {
 740     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 741   } else if (type == T_LONG) {
 742     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 743   } else {
 744     ShouldNotReachHere();
 745     Unimplemented();
 746   }
 747   __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result);
 748   return result;
 749 }
 750 
 751 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
 752   bool is_oop = is_reference_type(type);
 753   LIR_Opr result = new_register(type);
 754   value.load_item();
 755   assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
 756   LIR_Opr tmp = new_register(T_INT);
 757   __ xchg(addr, value.result(), result, tmp);
 758   return result;
 759 }
 760 
 761 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
 762   LIR_Opr result = new_register(type);
 763   value.load_item();
 764   assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
 765   LIR_Opr tmp = new_register(T_INT);
 766   __ xadd(addr, value.result(), result, tmp);
 767   return result;
 768 }
 769 
 770 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 771   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
 772   if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
 773       x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
 774       x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
 775       x->id() == vmIntrinsics::_dlog10) {
 776     do_LibmIntrinsic(x);
 777     return;
 778   }
 779   switch (x->id()) {
 780     case vmIntrinsics::_dabs:
 781     case vmIntrinsics::_dsqrt: {
 782       assert(x->number_of_arguments() == 1, "wrong type");
 783       LIRItem value(x->argument_at(0), this);
 784       value.load_item();
 785       LIR_Opr dst = rlock_result(x);
 786 
 787       switch (x->id()) {
 788         case vmIntrinsics::_dsqrt: {
 789           __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
 790           break;
 791         }
 792         case vmIntrinsics::_dabs: {
 793           __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
 794           break;
 795         }
 796         default:
 797           ShouldNotReachHere();
 798       }
 799       break;
 800     }
 801     default:
 802       ShouldNotReachHere();
 803   }
 804 }
 805 
 806 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
 807   LIRItem value(x->argument_at(0), this);
 808   value.set_destroys_register();
 809 
 810   LIR_Opr calc_result = rlock_result(x);
 811   LIR_Opr result_reg = result_register_for(x->type());
 812 
 813   CallingConvention* cc = NULL;
 814 
 815   if (x->id() == vmIntrinsics::_dpow) {
 816     LIRItem value1(x->argument_at(1), this);
 817 
 818     value1.set_destroys_register();
 819 
 820     BasicTypeList signature(2);
 821     signature.append(T_DOUBLE);
 822     signature.append(T_DOUBLE);
 823     cc = frame_map()->c_calling_convention(&signature);
 824     value.load_item_force(cc->at(0));
 825     value1.load_item_force(cc->at(1));
 826   } else {
 827     BasicTypeList signature(1);
 828     signature.append(T_DOUBLE);
 829     cc = frame_map()->c_calling_convention(&signature);
 830     value.load_item_force(cc->at(0));
 831   }
 832 
 833   switch (x->id()) {
 834     case vmIntrinsics::_dexp:
 835       if (StubRoutines::dexp() != NULL) {
 836         __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
 837       } else {
 838         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
 839       }
 840       break;
 841     case vmIntrinsics::_dlog:
 842       if (StubRoutines::dlog() != NULL) {
 843         __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
 844       } else {
 845         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
 846       }
 847       break;
 848     case vmIntrinsics::_dlog10:
 849       if (StubRoutines::dlog10() != NULL) {
 850         __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
 851       } else {
 852         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
 853       }
 854       break;
 855     case vmIntrinsics::_dpow:
 856       if (StubRoutines::dpow() != NULL) {
 857         __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
 858       } else {
 859         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
 860       }
 861       break;
 862     case vmIntrinsics::_dsin:
 863       if (StubRoutines::dsin() != NULL) {
 864         __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
 865       } else {
 866         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
 867       }
 868       break;
 869     case vmIntrinsics::_dcos:
 870       if (StubRoutines::dcos() != NULL) {
 871         __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
 872       } else {
 873         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
 874       }
 875       break;
 876     case vmIntrinsics::_dtan:
 877       if (StubRoutines::dtan() != NULL) {
 878         __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
 879       } else {
 880         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
 881       }
 882       break;
 883     default:  ShouldNotReachHere();
 884   }
 885   __ move(result_reg, calc_result);
 886 }
 887 
 888 
 889 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 890   assert(x->number_of_arguments() == 5, "wrong type");
 891 
 892   // Make all state_for calls early since they can emit code
 893   CodeEmitInfo* info = state_for(x, x->state());
 894 
 895   LIRItem src(x->argument_at(0), this);
 896   LIRItem src_pos(x->argument_at(1), this);
 897   LIRItem dst(x->argument_at(2), this);
 898   LIRItem dst_pos(x->argument_at(3), this);
 899   LIRItem length(x->argument_at(4), this);
 900 
 901   // operands for arraycopy must use fixed registers, otherwise
 902   // LinearScan will fail allocation (because arraycopy always needs a
 903   // call)
 904 
 905   // The java calling convention will give us enough registers
 906   // so that on the stub side the args will be perfect already.
 907   // On the other slow/special case side we call C and the arg
 908   // positions are not similar enough to pick one as the best.
 909   // Also because the java calling convention is a "shifted" version
 910   // of the C convention we can process the java args trivially into C
 911   // args without worry of overwriting during the xfer
 912 
 913   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 914   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 915   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 916   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 917   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 918 
 919   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 920 
 921   set_no_result(x);
 922 
 923   int flags;
 924   ciArrayKlass* expected_type;
 925   arraycopy_helper(x, &flags, &expected_type);
 926 
 927   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 928 }
 929 
 930 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
 931   assert(UseCRC32Intrinsics, "why are we here?");
 932   // Make all state_for calls early since they can emit code
 933   LIR_Opr result = rlock_result(x);
 934   int flags = 0;
 935   switch (x->id()) {
 936     case vmIntrinsics::_updateCRC32: {
 937       LIRItem crc(x->argument_at(0), this);
 938       LIRItem val(x->argument_at(1), this);
 939       // val is destroyed by update_crc32
 940       val.set_destroys_register();
 941       crc.load_item();
 942       val.load_item();
 943       __ update_crc32(crc.result(), val.result(), result);
 944       break;
 945     }
 946     case vmIntrinsics::_updateBytesCRC32:
 947     case vmIntrinsics::_updateByteBufferCRC32: {
 948       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
 949 
 950       LIRItem crc(x->argument_at(0), this);
 951       LIRItem buf(x->argument_at(1), this);
 952       LIRItem off(x->argument_at(2), this);
 953       LIRItem len(x->argument_at(3), this);
 954       buf.load_item();
 955       off.load_nonconstant();
 956 
 957       LIR_Opr index = off.result();
 958       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 959       if(off.result()->is_constant()) {
 960         index = LIR_OprFact::illegalOpr;
 961        offset += off.result()->as_jint();
 962       }
 963       LIR_Opr base_op = buf.result();
 964 
 965       if (index->is_valid()) {
 966         LIR_Opr tmp = new_register(T_LONG);
 967         __ convert(Bytecodes::_i2l, index, tmp);
 968         index = tmp;
 969       }
 970 
 971       if (is_updateBytes) {
 972         base_op = access_resolve(ACCESS_READ, base_op);
 973       }
 974 
 975       if (offset) {
 976         LIR_Opr tmp = new_pointer_register();
 977         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
 978         base_op = tmp;
 979         offset = 0;
 980       }
 981 
 982       LIR_Address* a = new LIR_Address(base_op,
 983                                        index,
 984                                        offset,
 985                                        T_BYTE);
 986       BasicTypeList signature(3);
 987       signature.append(T_INT);
 988       signature.append(T_ADDRESS);
 989       signature.append(T_INT);
 990       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 991       const LIR_Opr result_reg = result_register_for(x->type());
 992 
 993       LIR_Opr addr = new_pointer_register();
 994       __ leal(LIR_OprFact::address(a), addr);
 995 
 996       crc.load_item_force(cc->at(0));
 997       __ move(addr, cc->at(1));
 998       len.load_item_force(cc->at(2));
 999 
1000       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
1001       __ move(result_reg, result);
1002 
1003       break;
1004     }
1005     default: {
1006       ShouldNotReachHere();
1007     }
1008   }
1009 }
1010 
1011 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
1012   assert(UseCRC32CIntrinsics, "why are we here?");
1013   // Make all state_for calls early since they can emit code
1014   LIR_Opr result = rlock_result(x);
1015   int flags = 0;
1016   switch (x->id()) {
1017     case vmIntrinsics::_updateBytesCRC32C:
1018     case vmIntrinsics::_updateDirectByteBufferCRC32C: {
1019       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
1020       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1021 
1022       LIRItem crc(x->argument_at(0), this);
1023       LIRItem buf(x->argument_at(1), this);
1024       LIRItem off(x->argument_at(2), this);
1025       LIRItem end(x->argument_at(3), this);
1026 
1027       buf.load_item();
1028       off.load_nonconstant();
1029       end.load_nonconstant();
1030 
1031       // len = end - off
1032       LIR_Opr len  = end.result();
1033       LIR_Opr tmpA = new_register(T_INT);
1034       LIR_Opr tmpB = new_register(T_INT);
1035       __ move(end.result(), tmpA);
1036       __ move(off.result(), tmpB);
1037       __ sub(tmpA, tmpB, tmpA);
1038       len = tmpA;
1039 
1040       LIR_Opr index = off.result();
1041       if(off.result()->is_constant()) {
1042         index = LIR_OprFact::illegalOpr;
1043         offset += off.result()->as_jint();
1044       }
1045       LIR_Opr base_op = buf.result();
1046 
1047       if (index->is_valid()) {
1048         LIR_Opr tmp = new_register(T_LONG);
1049         __ convert(Bytecodes::_i2l, index, tmp);
1050         index = tmp;
1051       }
1052 
1053       if (is_updateBytes) {
1054         base_op = access_resolve(ACCESS_READ, base_op);
1055       }
1056 
1057       if (offset) {
1058         LIR_Opr tmp = new_pointer_register();
1059         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
1060         base_op = tmp;
1061         offset = 0;
1062       }
1063 
1064       LIR_Address* a = new LIR_Address(base_op,
1065                                        index,
1066                                        offset,
1067                                        T_BYTE);
1068       BasicTypeList signature(3);
1069       signature.append(T_INT);
1070       signature.append(T_ADDRESS);
1071       signature.append(T_INT);
1072       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1073       const LIR_Opr result_reg = result_register_for(x->type());
1074 
1075       LIR_Opr addr = new_pointer_register();
1076       __ leal(LIR_OprFact::address(a), addr);
1077 
1078       crc.load_item_force(cc->at(0));
1079       __ move(addr, cc->at(1));
1080       __ move(len, cc->at(2));
1081 
1082       __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
1083       __ move(result_reg, result);
1084 
1085       break;
1086     }
1087     default: {
1088       ShouldNotReachHere();
1089     }
1090   }
1091 }
1092 
1093 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
1094   assert(x->number_of_arguments() == 3, "wrong type");
1095   assert(UseFMA, "Needs FMA instructions support.");
1096   LIRItem value(x->argument_at(0), this);
1097   LIRItem value1(x->argument_at(1), this);
1098   LIRItem value2(x->argument_at(2), this);
1099 
1100   value.load_item();
1101   value1.load_item();
1102   value2.load_item();
1103 
1104   LIR_Opr calc_input = value.result();
1105   LIR_Opr calc_input1 = value1.result();
1106   LIR_Opr calc_input2 = value2.result();
1107   LIR_Opr calc_result = rlock_result(x);
1108 
1109   switch (x->id()) {
1110   case vmIntrinsics::_fmaD:   __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
1111   case vmIntrinsics::_fmaF:   __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
1112   default:                    ShouldNotReachHere();
1113   }
1114 }
1115 
1116 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1117   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
1118 }
1119 
1120 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1121 // _i2b, _i2c, _i2s
1122 void LIRGenerator::do_Convert(Convert* x) {
1123   LIRItem value(x->value(), this);
1124   value.load_item();
1125   LIR_Opr input = value.result();
1126   LIR_Opr result = rlock(x);
1127 
1128   // arguments of lir_convert
1129   LIR_Opr conv_input = input;
1130   LIR_Opr conv_result = result;
1131 
1132   __ convert(x->op(), conv_input, conv_result);
1133 
1134   assert(result->is_virtual(), "result must be virtual register");
1135   set_result(x, result);
1136 }
1137 
1138 void LIRGenerator::do_NewInstance(NewInstance* x) {
1139 #ifndef PRODUCT
1140   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1141     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1142   }
1143 #endif
1144   CodeEmitInfo* info = state_for(x, x->state());
1145   LIR_Opr reg = result_register_for(x->type());
1146   new_instance(reg, x->klass(), x->is_unresolved(),
1147                        FrameMap::r2_oop_opr,
1148                        FrameMap::r5_oop_opr,
1149                        FrameMap::r4_oop_opr,
1150                        LIR_OprFact::illegalOpr,
1151                        FrameMap::r3_metadata_opr, info);
1152   LIR_Opr result = rlock_result(x);
1153   __ move(reg, result);
1154 }
1155 
1156 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1157   CodeEmitInfo* info = state_for(x, x->state());
1158 
1159   LIRItem length(x->length(), this);
1160   length.load_item_force(FrameMap::r19_opr);
1161 
1162   LIR_Opr reg = result_register_for(x->type());
1163   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1164   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1165   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1166   LIR_Opr tmp4 = reg;
1167   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1168   LIR_Opr len = length.result();
1169   BasicType elem_type = x->elt_type();
1170 
1171   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1172 
1173   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1174   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1175 
1176   LIR_Opr result = rlock_result(x);
1177   __ move(reg, result);
1178 }
1179 
1180 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1181   LIRItem length(x->length(), this);
1182   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1183   // and therefore provide the state before the parameters have been consumed
1184   CodeEmitInfo* patching_info = NULL;
1185   if (!x->klass()->is_loaded() || PatchALot) {
1186     patching_info =  state_for(x, x->state_before());
1187   }
1188 
1189   CodeEmitInfo* info = state_for(x, x->state());
1190 
1191   LIR_Opr reg = result_register_for(x->type());
1192   LIR_Opr tmp1 = FrameMap::r2_oop_opr;
1193   LIR_Opr tmp2 = FrameMap::r4_oop_opr;
1194   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1195   LIR_Opr tmp4 = reg;
1196   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1197 
1198   length.load_item_force(FrameMap::r19_opr);
1199   LIR_Opr len = length.result();
1200 
1201   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1202   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1203   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1204     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1205   }
1206   klass2reg_with_patching(klass_reg, obj, patching_info);
1207   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1208 
1209   LIR_Opr result = rlock_result(x);
1210   __ move(reg, result);
1211 }
1212 
1213 
1214 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1215   Values* dims = x->dims();
1216   int i = dims->length();
1217   LIRItemList* items = new LIRItemList(i, i, NULL);
1218   while (i-- > 0) {
1219     LIRItem* size = new LIRItem(dims->at(i), this);
1220     items->at_put(i, size);
1221   }
1222 
1223   // Evaluate state_for early since it may emit code.
1224   CodeEmitInfo* patching_info = NULL;
1225   if (!x->klass()->is_loaded() || PatchALot) {
1226     patching_info = state_for(x, x->state_before());
1227 
1228     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1229     // clone all handlers (NOTE: Usually this is handled transparently
1230     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1231     // is done explicitly here because a stub isn't being used).
1232     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1233   }
1234   CodeEmitInfo* info = state_for(x, x->state());
1235 
1236   i = dims->length();
1237   while (i-- > 0) {
1238     LIRItem* size = items->at(i);
1239     size->load_item();
1240 
1241     store_stack_parameter(size->result(), in_ByteSize(i*4));
1242   }
1243 
1244   LIR_Opr klass_reg = FrameMap::r0_metadata_opr;
1245   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1246 
1247   LIR_Opr rank = FrameMap::r19_opr;
1248   __ move(LIR_OprFact::intConst(x->rank()), rank);
1249   LIR_Opr varargs = FrameMap::r2_opr;
1250   __ move(FrameMap::sp_opr, varargs);
1251   LIR_OprList* args = new LIR_OprList(3);
1252   args->append(klass_reg);
1253   args->append(rank);
1254   args->append(varargs);
1255   LIR_Opr reg = result_register_for(x->type());
1256   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1257                   LIR_OprFact::illegalOpr,
1258                   reg, args, info);
1259 
1260   LIR_Opr result = rlock_result(x);
1261   __ move(reg, result);
1262 }
1263 
1264 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1265   // nothing to do for now
1266 }
1267 
1268 void LIRGenerator::do_CheckCast(CheckCast* x) {
1269   LIRItem obj(x->obj(), this);
1270 
1271   CodeEmitInfo* patching_info = NULL;
1272   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1273     // must do this before locking the destination register as an oop register,
1274     // and before the obj is loaded (the latter is for deoptimization)
1275     patching_info = state_for(x, x->state_before());
1276   }
1277   obj.load_item();
1278 
1279   // info for exceptions
1280   CodeEmitInfo* info_for_exception =
1281       (x->needs_exception_state() ? state_for(x) :
1282                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
1283 
1284   CodeStub* stub;
1285   if (x->is_incompatible_class_change_check()) {
1286     assert(patching_info == NULL, "can't patch this");
1287     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1288   } else if (x->is_invokespecial_receiver_check()) {
1289     assert(patching_info == NULL, "can't patch this");
1290     stub = new DeoptimizeStub(info_for_exception,
1291                               Deoptimization::Reason_class_check,
1292                               Deoptimization::Action_none);
1293   } else {
1294     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1295   }
1296   LIR_Opr reg = rlock_result(x);
1297   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1298   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1299     tmp3 = new_register(objectType);
1300   }
1301   __ checkcast(reg, obj.result(), x->klass(),
1302                new_register(objectType), new_register(objectType), tmp3,
1303                x->direct_compare(), info_for_exception, patching_info, stub,
1304                x->profiled_method(), x->profiled_bci());
1305 }
1306 
1307 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1308   LIRItem obj(x->obj(), this);
1309 
1310   // result and test object may not be in same register
1311   LIR_Opr reg = rlock_result(x);
1312   CodeEmitInfo* patching_info = NULL;
1313   if ((!x->klass()->is_loaded() || PatchALot)) {
1314     // must do this before locking the destination register as an oop register
1315     patching_info = state_for(x, x->state_before());
1316   }
1317   obj.load_item();
1318   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1319   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1320     tmp3 = new_register(objectType);
1321   }
1322   __ instanceof(reg, obj.result(), x->klass(),
1323                 new_register(objectType), new_register(objectType), tmp3,
1324                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1325 }
1326 
1327 void LIRGenerator::do_If(If* x) {
1328   assert(x->number_of_sux() == 2, "inconsistency");
1329   ValueTag tag = x->x()->type()->tag();
1330   bool is_safepoint = x->is_safepoint();
1331 
1332   If::Condition cond = x->cond();
1333 
1334   LIRItem xitem(x->x(), this);
1335   LIRItem yitem(x->y(), this);
1336   LIRItem* xin = &xitem;
1337   LIRItem* yin = &yitem;
1338 
1339   if (tag == longTag) {
1340     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1341     // mirror for other conditions
1342     if (cond == If::gtr || cond == If::leq) {
1343       cond = Instruction::mirror(cond);
1344       xin = &yitem;
1345       yin = &xitem;
1346     }
1347     xin->set_destroys_register();
1348   }
1349   xin->load_item();
1350 
1351   if (tag == longTag) {
1352     if (yin->is_constant()
1353         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) {
1354       yin->dont_load_item();
1355     } else {
1356       yin->load_item();
1357     }
1358   } else if (tag == intTag) {
1359     if (yin->is_constant()
1360         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant()))  {
1361       yin->dont_load_item();
1362     } else {
1363       yin->load_item();
1364     }
1365   } else {
1366     yin->load_item();
1367   }
1368 
1369   set_no_result(x);
1370 
1371   LIR_Opr left = xin->result();
1372   LIR_Opr right = yin->result();
1373 
1374   // add safepoint before generating condition code so it can be recomputed
1375   if (x->is_safepoint()) {
1376     // increment backedge counter if needed
1377     increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1378         x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1379     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1380   }
1381 
1382   __ cmp(lir_cond(cond), left, right);
1383   // Generate branch profiling. Profiling code doesn't kill flags.
1384   profile_branch(x, cond);
1385   move_to_phi(x->state());
1386   if (x->x()->type()->is_float_kind()) {
1387     __ branch(lir_cond(cond), x->tsux(), x->usux());
1388   } else {
1389     __ branch(lir_cond(cond), x->tsux());
1390   }
1391   assert(x->default_sux() == x->fsux(), "wrong destination above");
1392   __ jump(x->default_sux());
1393 }
1394 
1395 LIR_Opr LIRGenerator::getThreadPointer() {
1396    return FrameMap::as_pointer_opr(rthread);
1397 }
1398 
1399 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
1400 
1401 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1402                                         CodeEmitInfo* info) {
1403   __ volatile_store_mem_reg(value, address, info);
1404 }
1405 
1406 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1407                                        CodeEmitInfo* info) {
1408   // 8179954: We need to make sure that the code generated for
1409   // volatile accesses forms a sequentially-consistent set of
1410   // operations when combined with STLR and LDAR.  Without a leading
1411   // membar it's possible for a simple Dekker test to fail if loads
1412   // use LD;DMB but stores use STLR.  This can happen if C2 compiles
1413   // the stores in one method and C1 compiles the loads in another.
1414   if (!is_c1_or_interpreter_only()) {
1415     __ membar();
1416   }
1417   __ volatile_load_mem_reg(address, result, info);
1418 }