1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_linux.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_linux.inline.hpp"
  36 #include "os_share_linux.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/extendedPC.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/javaCalls.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "utilities/events.hpp"
  53 #include "utilities/vmError.hpp"
  54 
  55 // put OS-includes here
  56 # include <sys/types.h>
  57 # include <sys/mman.h>
  58 # include <pthread.h>
  59 # include <signal.h>
  60 # include <errno.h>
  61 # include <dlfcn.h>
  62 # include <stdlib.h>
  63 # include <stdio.h>
  64 # include <unistd.h>
  65 # include <sys/resource.h>
  66 # include <pthread.h>
  67 # include <sys/stat.h>
  68 # include <sys/time.h>
  69 # include <sys/utsname.h>
  70 # include <sys/socket.h>
  71 # include <sys/wait.h>
  72 # include <pwd.h>
  73 # include <poll.h>
  74 # include <ucontext.h>
  75 # include <fpu_control.h>
  76 
  77 #ifdef AMD64
  78 #define REG_SP REG_RSP
  79 #define REG_PC REG_RIP
  80 #define REG_FP REG_RBP
  81 #define SPELL_REG_SP "rsp"
  82 #define SPELL_REG_FP "rbp"
  83 #else
  84 #define REG_SP REG_UESP
  85 #define REG_PC REG_EIP
  86 #define REG_FP REG_EBP
  87 #define SPELL_REG_SP "esp"
  88 #define SPELL_REG_FP "ebp"
  89 #endif // AMD64
  90 
  91 address os::current_stack_pointer() {
  92 #ifdef SPARC_WORKS
  93   register void *esp;
  94   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
  95   return (address) ((char*)esp + sizeof(long)*2);
  96 #else
  97   register void *esp __asm__ (SPELL_REG_SP);
  98   return (address) esp;
  99 #endif
 100 }
 101 
 102 char* os::non_memory_address_word() {
 103   // Must never look like an address returned by reserve_memory,
 104   // even in its subfields (as defined by the CPU immediate fields,
 105   // if the CPU splits constants across multiple instructions).
 106 
 107   return (char*) -1;
 108 }
 109 
 110 void os::initialize_thread(Thread* thr) {
 111 // Nothing to do.
 112 }
 113 
 114 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
 115   return (address)uc->uc_mcontext.gregs[REG_PC];
 116 }
 117 
 118 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
 119   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 120 }
 121 
 122 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
 123   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 124 }
 125 
 126 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 127 // is currently interrupted by SIGPROF.
 128 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 129 // frames. Currently we don't do that on Linux, so it's the same as
 130 // os::fetch_frame_from_context().
 131 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 132   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 133 
 134   assert(thread != NULL, "just checking");
 135   assert(ret_sp != NULL, "just checking");
 136   assert(ret_fp != NULL, "just checking");
 137 
 138   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 139 }
 140 
 141 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 142                     intptr_t** ret_sp, intptr_t** ret_fp) {
 143 
 144   ExtendedPC  epc;
 145   ucontext_t* uc = (ucontext_t*)ucVoid;
 146 
 147   if (uc != NULL) {
 148     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 149     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 150     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 151   } else {
 152     // construct empty ExtendedPC for return value checking
 153     epc = ExtendedPC(NULL);
 154     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 155     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 156   }
 157 
 158   return epc;
 159 }
 160 
 161 frame os::fetch_frame_from_context(void* ucVoid) {
 162   intptr_t* sp;
 163   intptr_t* fp;
 164   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 165   return frame(sp, fp, epc.pc());
 166 }
 167 
 168 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 169 // turned off by -fomit-frame-pointer,
 170 frame os::get_sender_for_C_frame(frame* fr) {
 171   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 172 }
 173 
 174 intptr_t* _get_previous_fp() {
 175 #ifdef SPARC_WORKS
 176   register intptr_t **ebp;
 177   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 178 #else
 179   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 180 #endif
 181   return (intptr_t*) *ebp;   // we want what it points to.
 182 }
 183 
 184 
 185 frame os::current_frame() {
 186   intptr_t* fp = _get_previous_fp();
 187   frame myframe((intptr_t*)os::current_stack_pointer(),
 188                 (intptr_t*)fp,
 189                 CAST_FROM_FN_PTR(address, os::current_frame));
 190   if (os::is_first_C_frame(&myframe)) {
 191     // stack is not walkable
 192     return frame();
 193   } else {
 194     return os::get_sender_for_C_frame(&myframe);
 195   }
 196 }
 197 
 198 // Utility functions
 199 
 200 // From IA32 System Programming Guide
 201 enum {
 202   trap_page_fault = 0xE
 203 };
 204 
 205 extern "C" void Fetch32PFI () ;
 206 extern "C" void Fetch32Resume () ;
 207 #ifdef AMD64
 208 extern "C" void FetchNPFI () ;
 209 extern "C" void FetchNResume () ;
 210 #endif // AMD64
 211 
 212 extern "C" JNIEXPORT int
 213 JVM_handle_linux_signal(int sig,
 214                         siginfo_t* info,
 215                         void* ucVoid,
 216                         int abort_if_unrecognized) {
 217   ucontext_t* uc = (ucontext_t*) ucVoid;
 218 
 219   Thread* t = ThreadLocalStorage::get_thread_slow();
 220 
 221   SignalHandlerMark shm(t);
 222 
 223   // Note: it's not uncommon that JNI code uses signal/sigset to install
 224   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 225   // or have a SIGILL handler when detecting CPU type). When that happens,
 226   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 227   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 228   // that do not require siginfo/ucontext first.
 229 
 230   if (sig == SIGPIPE || sig == SIGXFSZ) {
 231     // allow chained handler to go first
 232     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 233       return true;
 234     } else {
 235       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 236         char buf[64];
 237         warning("Ignoring %s - see bugs 4229104 or 646499219",
 238                 os::exception_name(sig, buf, sizeof(buf)));
 239       }
 240       return true;
 241     }
 242   }
 243 
 244   JavaThread* thread = NULL;
 245   VMThread* vmthread = NULL;
 246   if (os::Linux::signal_handlers_are_installed) {
 247     if (t != NULL ){
 248       if(t->is_Java_thread()) {
 249         thread = (JavaThread*)t;
 250       }
 251       else if(t->is_VM_thread()){
 252         vmthread = (VMThread *)t;
 253       }
 254     }
 255   }
 256 /*
 257   NOTE: does not seem to work on linux.
 258   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 259     // can't decode this kind of signal
 260     info = NULL;
 261   } else {
 262     assert(sig == info->si_signo, "bad siginfo");
 263   }
 264 */
 265   // decide if this trap can be handled by a stub
 266   address stub = NULL;
 267 
 268   address pc          = NULL;
 269 
 270   //%note os_trap_1
 271   if (info != NULL && uc != NULL && thread != NULL) {
 272     pc = (address) os::Linux::ucontext_get_pc(uc);
 273 
 274     if (pc == (address) Fetch32PFI) {
 275        uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
 276        return 1 ;
 277     }
 278 #ifdef AMD64
 279     if (pc == (address) FetchNPFI) {
 280        uc->uc_mcontext.gregs[REG_PC] = intptr_t (FetchNResume) ;
 281        return 1 ;
 282     }
 283 #endif // AMD64
 284 
 285     // Handle ALL stack overflow variations here
 286     if (sig == SIGSEGV) {
 287       address addr = (address) info->si_addr;
 288 
 289       // check if fault address is within thread stack
 290       if (addr < thread->stack_base() &&
 291           addr >= thread->stack_base() - thread->stack_size()) {
 292         // stack overflow
 293         if (thread->in_stack_yellow_zone(addr)) {
 294           thread->disable_stack_yellow_zone();
 295           if (thread->thread_state() == _thread_in_Java) {
 296             // Throw a stack overflow exception.  Guard pages will be reenabled
 297             // while unwinding the stack.
 298             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 299           } else {
 300             // Thread was in the vm or native code.  Return and try to finish.
 301             return 1;
 302           }
 303         } else if (thread->in_stack_red_zone(addr)) {
 304           // Fatal red zone violation.  Disable the guard pages and fall through
 305           // to handle_unexpected_exception way down below.
 306           thread->disable_stack_red_zone();
 307           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 308 
 309           // This is a likely cause, but hard to verify. Let's just print
 310           // it as a hint.
 311           tty->print_raw_cr("Please check if any of your loaded .so files has "
 312                             "enabled executable stack (see man page execstack(8))");
 313         } else {
 314           // Accessing stack address below sp may cause SEGV if current
 315           // thread has MAP_GROWSDOWN stack. This should only happen when
 316           // current thread was created by user code with MAP_GROWSDOWN flag
 317           // and then attached to VM. See notes in os_linux.cpp.
 318           if (thread->osthread()->expanding_stack() == 0) {
 319              thread->osthread()->set_expanding_stack();
 320              if (os::Linux::manually_expand_stack(thread, addr)) {
 321                thread->osthread()->clear_expanding_stack();
 322                return 1;
 323              }
 324              thread->osthread()->clear_expanding_stack();
 325           } else {
 326              fatal("recursive segv. expanding stack.");
 327           }
 328         }
 329       }
 330     }
 331 
 332     if (thread->thread_state() == _thread_in_Java) {
 333       // Java thread running in Java code => find exception handler if any
 334       // a fault inside compiled code, the interpreter, or a stub
 335 
 336       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 337         stub = SharedRuntime::get_poll_stub(pc);
 338       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 339         // BugId 4454115: A read from a MappedByteBuffer can fault
 340         // here if the underlying file has been truncated.
 341         // Do not crash the VM in such a case.
 342         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 343         nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
 344         if (nm != NULL && nm->has_unsafe_access()) {
 345           stub = StubRoutines::handler_for_unsafe_access();
 346         }
 347       }
 348       else
 349 
 350 #ifdef AMD64
 351       if (sig == SIGFPE  &&
 352           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 353         stub =
 354           SharedRuntime::
 355           continuation_for_implicit_exception(thread,
 356                                               pc,
 357                                               SharedRuntime::
 358                                               IMPLICIT_DIVIDE_BY_ZERO);
 359 #else
 360       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 361         // HACK: si_code does not work on linux 2.2.12-20!!!
 362         int op = pc[0];
 363         if (op == 0xDB) {
 364           // FIST
 365           // TODO: The encoding of D2I in i486.ad can cause an exception
 366           // prior to the fist instruction if there was an invalid operation
 367           // pending. We want to dismiss that exception. From the win_32
 368           // side it also seems that if it really was the fist causing
 369           // the exception that we do the d2i by hand with different
 370           // rounding. Seems kind of weird.
 371           // NOTE: that we take the exception at the NEXT floating point instruction.
 372           assert(pc[0] == 0xDB, "not a FIST opcode");
 373           assert(pc[1] == 0x14, "not a FIST opcode");
 374           assert(pc[2] == 0x24, "not a FIST opcode");
 375           return true;
 376         } else if (op == 0xF7) {
 377           // IDIV
 378           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 379         } else {
 380           // TODO: handle more cases if we are using other x86 instructions
 381           //   that can generate SIGFPE signal on linux.
 382           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 383           fatal("please update this code.");
 384         }
 385 #endif // AMD64
 386       } else if (sig == SIGSEGV &&
 387                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 388           // Determination of interpreter/vtable stub/compiled code null exception
 389           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 390       }
 391     } else if (thread->thread_state() == _thread_in_vm &&
 392                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 393                thread->doing_unsafe_access()) {
 394         stub = StubRoutines::handler_for_unsafe_access();
 395     }
 396 
 397     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 398     // and the heap gets shrunk before the field access.
 399     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 400       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 401       if (addr != (address)-1) {
 402         stub = addr;
 403       }
 404     }
 405 
 406     // Check to see if we caught the safepoint code in the
 407     // process of write protecting the memory serialization page.
 408     // It write enables the page immediately after protecting it
 409     // so we can just return to retry the write.
 410     if ((sig == SIGSEGV) &&
 411         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 412       // Block current thread until the memory serialize page permission restored.
 413       os::block_on_serialize_page_trap();
 414       return true;
 415     }
 416   }
 417 
 418 #ifndef AMD64
 419   // Execution protection violation
 420   //
 421   // This should be kept as the last step in the triage.  We don't
 422   // have a dedicated trap number for a no-execute fault, so be
 423   // conservative and allow other handlers the first shot.
 424   //
 425   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 426   // this si_code is so generic that it is almost meaningless; and
 427   // the si_code for this condition may change in the future.
 428   // Furthermore, a false-positive should be harmless.
 429   if (UnguardOnExecutionViolation > 0 &&
 430       (sig == SIGSEGV || sig == SIGBUS) &&
 431       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 432     int page_size = os::vm_page_size();
 433     address addr = (address) info->si_addr;
 434     address pc = os::Linux::ucontext_get_pc(uc);
 435     // Make sure the pc and the faulting address are sane.
 436     //
 437     // If an instruction spans a page boundary, and the page containing
 438     // the beginning of the instruction is executable but the following
 439     // page is not, the pc and the faulting address might be slightly
 440     // different - we still want to unguard the 2nd page in this case.
 441     //
 442     // 15 bytes seems to be a (very) safe value for max instruction size.
 443     bool pc_is_near_addr =
 444       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 445     bool instr_spans_page_boundary =
 446       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 447                        (intptr_t) page_size) > 0);
 448 
 449     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 450       static volatile address last_addr =
 451         (address) os::non_memory_address_word();
 452 
 453       // In conservative mode, don't unguard unless the address is in the VM
 454       if (addr != last_addr &&
 455           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 456 
 457         // Set memory to RWX and retry
 458         address page_start =
 459           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 460         bool res = os::protect_memory((char*) page_start, page_size,
 461                                       os::MEM_PROT_RWX);
 462 
 463         if (PrintMiscellaneous && Verbose) {
 464           char buf[256];
 465           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 466                        "at " INTPTR_FORMAT
 467                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 468                        page_start, (res ? "success" : "failed"), errno);
 469           tty->print_raw_cr(buf);
 470         }
 471         stub = pc;
 472 
 473         // Set last_addr so if we fault again at the same address, we don't end
 474         // up in an endless loop.
 475         //
 476         // There are two potential complications here.  Two threads trapping at
 477         // the same address at the same time could cause one of the threads to
 478         // think it already unguarded, and abort the VM.  Likely very rare.
 479         //
 480         // The other race involves two threads alternately trapping at
 481         // different addresses and failing to unguard the page, resulting in
 482         // an endless loop.  This condition is probably even more unlikely than
 483         // the first.
 484         //
 485         // Although both cases could be avoided by using locks or thread local
 486         // last_addr, these solutions are unnecessary complication: this
 487         // handler is a best-effort safety net, not a complete solution.  It is
 488         // disabled by default and should only be used as a workaround in case
 489         // we missed any no-execute-unsafe VM code.
 490 
 491         last_addr = addr;
 492       }
 493     }
 494   }
 495 #endif // !AMD64
 496 
 497   if (stub != NULL) {
 498     // save all thread context in case we need to restore it
 499     if (thread != NULL) thread->set_saved_exception_pc(pc);
 500 
 501     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
 502     return true;
 503   }
 504 
 505   // signal-chaining
 506   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 507      return true;
 508   }
 509 
 510   if (!abort_if_unrecognized) {
 511     // caller wants another chance, so give it to him
 512     return false;
 513   }
 514 
 515   if (pc == NULL && uc != NULL) {
 516     pc = os::Linux::ucontext_get_pc(uc);
 517   }
 518 
 519   // unmask current signal
 520   sigset_t newset;
 521   sigemptyset(&newset);
 522   sigaddset(&newset, sig);
 523   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 524 
 525   VMError err(t, sig, pc, info, ucVoid);
 526   err.report_and_die();
 527 
 528   ShouldNotReachHere();
 529 }
 530 
 531 void os::Linux::init_thread_fpu_state(void) {
 532 #ifndef AMD64
 533   // set fpu to 53 bit precision
 534   set_fpu_control_word(0x27f);
 535 #endif // !AMD64
 536 }
 537 
 538 int os::Linux::get_fpu_control_word(void) {
 539 #ifdef AMD64
 540   return 0;
 541 #else
 542   int fpu_control;
 543   _FPU_GETCW(fpu_control);
 544   return fpu_control & 0xffff;
 545 #endif // AMD64
 546 }
 547 
 548 void os::Linux::set_fpu_control_word(int fpu_control) {
 549 #ifndef AMD64
 550   _FPU_SETCW(fpu_control);
 551 #endif // !AMD64
 552 }
 553 
 554 // Check that the linux kernel version is 2.4 or higher since earlier
 555 // versions do not support SSE without patches.
 556 bool os::supports_sse() {
 557 #ifdef AMD64
 558   return true;
 559 #else
 560   struct utsname uts;
 561   if( uname(&uts) != 0 ) return false; // uname fails?
 562   char *minor_string;
 563   int major = strtol(uts.release,&minor_string,10);
 564   int minor = strtol(minor_string+1,NULL,10);
 565   bool result = (major > 2 || (major==2 && minor >= 4));
 566 #ifndef PRODUCT
 567   if (PrintMiscellaneous && Verbose) {
 568     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
 569                major,minor, result ? "DOES" : "does NOT");
 570   }
 571 #endif
 572   return result;
 573 #endif // AMD64
 574 }
 575 
 576 bool os::is_allocatable(size_t bytes) {
 577 #ifdef AMD64
 578   // unused on amd64?
 579   return true;
 580 #else
 581 
 582   if (bytes < 2 * G) {
 583     return true;
 584   }
 585 
 586   char* addr = reserve_memory(bytes, NULL);
 587 
 588   if (addr != NULL) {
 589     release_memory(addr, bytes);
 590   }
 591 
 592   return addr != NULL;
 593 #endif // AMD64
 594 }
 595 
 596 ////////////////////////////////////////////////////////////////////////////////
 597 // thread stack
 598 
 599 #ifdef AMD64
 600 size_t os::Linux::min_stack_allowed  = 64 * K;
 601 
 602 // amd64: pthread on amd64 is always in floating stack mode
 603 bool os::Linux::supports_variable_stack_size() {  return true; }
 604 #else
 605 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
 606 
 607 #ifdef __GNUC__
 608 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
 609 #endif
 610 
 611 // Test if pthread library can support variable thread stack size. LinuxThreads
 612 // in fixed stack mode allocates 2M fixed slot for each thread. LinuxThreads
 613 // in floating stack mode and NPTL support variable stack size.
 614 bool os::Linux::supports_variable_stack_size() {
 615   if (os::Linux::is_NPTL()) {
 616      // NPTL, yes
 617      return true;
 618 
 619   } else {
 620     // Note: We can't control default stack size when creating a thread.
 621     // If we use non-default stack size (pthread_attr_setstacksize), both
 622     // floating stack and non-floating stack LinuxThreads will return the
 623     // same value. This makes it impossible to implement this function by
 624     // detecting thread stack size directly.
 625     //
 626     // An alternative approach is to check %gs. Fixed-stack LinuxThreads
 627     // do not use %gs, so its value is 0. Floating-stack LinuxThreads use
 628     // %gs (either as LDT selector or GDT selector, depending on kernel)
 629     // to access thread specific data.
 630     //
 631     // Note that %gs is a reserved glibc register since early 2001, so
 632     // applications are not allowed to change its value (Ulrich Drepper from
 633     // Redhat confirmed that all known offenders have been modified to use
 634     // either %fs or TSD). In the worst case scenario, when VM is embedded in
 635     // a native application that plays with %gs, we might see non-zero %gs
 636     // even LinuxThreads is running in fixed stack mode. As the result, we'll
 637     // return true and skip _thread_safety_check(), so we may not be able to
 638     // detect stack-heap collisions. But otherwise it's harmless.
 639     //
 640 #ifdef __GNUC__
 641     return (GET_GS() != 0);
 642 #else
 643     return false;
 644 #endif
 645   }
 646 }
 647 #endif // AMD64
 648 
 649 // return default stack size for thr_type
 650 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
 651   // default stack size (compiler thread needs larger stack)
 652 #ifdef AMD64
 653   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 654 #else
 655   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 656 #endif // AMD64
 657   return s;
 658 }
 659 
 660 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
 661   // Creating guard page is very expensive. Java thread has HotSpot
 662   // guard page, only enable glibc guard page for non-Java threads.
 663   return (thr_type == java_thread ? 0 : page_size());
 664 }
 665 
 666 // Java thread:
 667 //
 668 //   Low memory addresses
 669 //    +------------------------+
 670 //    |                        |\  JavaThread created by VM does not have glibc
 671 //    |    glibc guard page    | - guard, attached Java thread usually has
 672 //    |                        |/  1 page glibc guard.
 673 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 674 //    |                        |\
 675 //    |  HotSpot Guard Pages   | - red and yellow pages
 676 //    |                        |/
 677 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 678 //    |                        |\
 679 //    |      Normal Stack      | -
 680 //    |                        |/
 681 // P2 +------------------------+ Thread::stack_base()
 682 //
 683 // Non-Java thread:
 684 //
 685 //   Low memory addresses
 686 //    +------------------------+
 687 //    |                        |\
 688 //    |  glibc guard page      | - usually 1 page
 689 //    |                        |/
 690 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 691 //    |                        |\
 692 //    |      Normal Stack      | -
 693 //    |                        |/
 694 // P2 +------------------------+ Thread::stack_base()
 695 //
 696 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 697 //    pthread_attr_getstack()
 698 
 699 static void current_stack_region(address * bottom, size_t * size) {
 700   if (os::Linux::is_initial_thread()) {
 701      // initial thread needs special handling because pthread_getattr_np()
 702      // may return bogus value.
 703      *bottom = os::Linux::initial_thread_stack_bottom();
 704      *size   = os::Linux::initial_thread_stack_size();
 705   } else {
 706      pthread_attr_t attr;
 707 
 708      int rslt = pthread_getattr_np(pthread_self(), &attr);
 709 
 710      // JVM needs to know exact stack location, abort if it fails
 711      if (rslt != 0) {
 712        if (rslt == ENOMEM) {
 713          vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
 714        } else {
 715          fatal(err_msg("pthread_getattr_np failed with errno = %d", rslt));
 716        }
 717      }
 718 
 719      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
 720          fatal("Can not locate current stack attributes!");
 721      }
 722 
 723      pthread_attr_destroy(&attr);
 724 
 725   }
 726   assert(os::current_stack_pointer() >= *bottom &&
 727          os::current_stack_pointer() < *bottom + *size, "just checking");
 728 }
 729 
 730 address os::current_stack_base() {
 731   address bottom;
 732   size_t size;
 733   current_stack_region(&bottom, &size);
 734   return (bottom + size);
 735 }
 736 
 737 size_t os::current_stack_size() {
 738   // stack size includes normal stack and HotSpot guard pages
 739   address bottom;
 740   size_t size;
 741   current_stack_region(&bottom, &size);
 742   return size;
 743 }
 744 
 745 /////////////////////////////////////////////////////////////////////////////
 746 // helper functions for fatal error handler
 747 
 748 void os::print_context(outputStream *st, void *context) {
 749   if (context == NULL) return;
 750 
 751   ucontext_t *uc = (ucontext_t*)context;
 752   st->print_cr("Registers:");
 753 #ifdef AMD64
 754   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 755   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 756   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 757   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 758   st->cr();
 759   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 760   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 761   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 762   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 763   st->cr();
 764   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 765   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 766   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 767   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 768   st->cr();
 769   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 770   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 771   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 772   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 773   st->cr();
 774   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 775   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 776   st->print(", CSGSFS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_CSGSFS]);
 777   st->print(", ERR=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ERR]);
 778   st->cr();
 779   st->print("  TRAPNO=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_TRAPNO]);
 780 #else
 781   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 782   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 783   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 784   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 785   st->cr();
 786   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 787   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 788   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 789   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 790   st->cr();
 791   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 792   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 793   st->print(", CR2=" INTPTR_FORMAT, uc->uc_mcontext.cr2);
 794 #endif // AMD64
 795   st->cr();
 796   st->cr();
 797 
 798   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 799   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 800   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 801   st->cr();
 802 
 803   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 804   // point to garbage if entry point in an nmethod is corrupted. Leave
 805   // this at the end, and hope for the best.
 806   address pc = os::Linux::ucontext_get_pc(uc);
 807   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 808   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 809 }
 810 
 811 void os::print_register_info(outputStream *st, void *context) {
 812   if (context == NULL) return;
 813 
 814   ucontext_t *uc = (ucontext_t*)context;
 815 
 816   st->print_cr("Register to memory mapping:");
 817   st->cr();
 818 
 819   // this is horrendously verbose but the layout of the registers in the
 820   // context does not match how we defined our abstract Register set, so
 821   // we can't just iterate through the gregs area
 822 
 823   // this is only for the "general purpose" registers
 824 
 825 #ifdef AMD64
 826   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 827   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 828   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 829   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 830   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 831   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 832   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 833   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 834   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 835   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 836   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 837   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 838   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 839   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 840   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 841   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 842 #else
 843   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
 844   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
 845   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
 846   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
 847   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
 848   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
 849   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
 850   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
 851 #endif // AMD64
 852 
 853   st->cr();
 854 }
 855 
 856 void os::setup_fpu() {
 857 #ifndef AMD64
 858   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 859   __asm__ volatile (  "fldcw (%0)" :
 860                       : "r" (fpu_cntrl) : "memory");
 861 #endif // !AMD64
 862 }
 863 
 864 #ifndef PRODUCT
 865 void os::verify_stack_alignment() {
 866 #ifdef AMD64
 867   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 868 #endif
 869 }
 870 #endif