1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_solaris.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_solaris.inline.hpp"
  36 #include "os_share_solaris.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/extendedPC.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/javaCalls.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "utilities/events.hpp"
  53 #include "utilities/vmError.hpp"
  54 
  55 // put OS-includes here
  56 # include <sys/types.h>
  57 # include <sys/mman.h>
  58 # include <pthread.h>
  59 # include <signal.h>
  60 # include <setjmp.h>
  61 # include <errno.h>
  62 # include <dlfcn.h>
  63 # include <stdio.h>
  64 # include <unistd.h>
  65 # include <sys/resource.h>
  66 # include <thread.h>
  67 # include <sys/stat.h>
  68 # include <sys/time.h>
  69 # include <sys/filio.h>
  70 # include <sys/utsname.h>
  71 # include <sys/systeminfo.h>
  72 # include <sys/socket.h>
  73 # include <sys/trap.h>
  74 # include <sys/lwp.h>
  75 # include <pwd.h>
  76 # include <poll.h>
  77 # include <sys/lwp.h>
  78 # include <procfs.h>     //  see comment in <sys/procfs.h>
  79 
  80 #ifndef AMD64
  81 // QQQ seems useless at this point
  82 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
  83 #endif // AMD64
  84 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
  85 
  86 
  87 #define MAX_PATH (2 * K)
  88 
  89 // Minimum stack size for the VM.  It's easier to document a constant value
  90 // but it's different for x86 and sparc because the page sizes are different.
  91 #ifdef AMD64
  92 size_t os::Solaris::min_stack_allowed = 224*K;
  93 #define REG_SP REG_RSP
  94 #define REG_PC REG_RIP
  95 #define REG_FP REG_RBP
  96 #else
  97 size_t os::Solaris::min_stack_allowed = 64*K;
  98 #define REG_SP UESP
  99 #define REG_PC EIP
 100 #define REG_FP EBP
 101 // 4900493 counter to prevent runaway LDTR refresh attempt
 102 
 103 static volatile int ldtr_refresh = 0;
 104 // the libthread instruction that faults because of the stale LDTR
 105 
 106 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
 107                        };
 108 #endif // AMD64
 109 
 110 char* os::non_memory_address_word() {
 111   // Must never look like an address returned by reserve_memory,
 112   // even in its subfields (as defined by the CPU immediate fields,
 113   // if the CPU splits constants across multiple instructions).
 114   return (char*) -1;
 115 }
 116 
 117 //
 118 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
 119 // There are issues with libthread giving out uc_links for different threads
 120 // on the same uc_link chain and bad or circular links.
 121 //
 122 bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
 123   if (valid >= suspect ||
 124       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
 125       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
 126       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
 127     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
 128     return false;
 129   }
 130 
 131   if (thread->is_Java_thread()) {
 132     if (!valid_stack_address(thread, (address)suspect)) {
 133       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
 134       return false;
 135     }
 136     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
 137       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
 138       return false;
 139     }
 140   }
 141   return true;
 142 }
 143 
 144 // We will only follow one level of uc_link since there are libthread
 145 // issues with ucontext linking and it is better to be safe and just
 146 // let caller retry later.
 147 ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
 148   ucontext_t *uc) {
 149 
 150   ucontext_t *retuc = NULL;
 151 
 152   if (uc != NULL) {
 153     if (uc->uc_link == NULL) {
 154       // cannot validate without uc_link so accept current ucontext
 155       retuc = uc;
 156     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 157       // first ucontext is valid so try the next one
 158       uc = uc->uc_link;
 159       if (uc->uc_link == NULL) {
 160         // cannot validate without uc_link so accept current ucontext
 161         retuc = uc;
 162       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 163         // the ucontext one level down is also valid so return it
 164         retuc = uc;
 165       }
 166     }
 167   }
 168   return retuc;
 169 }
 170 
 171 // Assumes ucontext is valid
 172 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
 173   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
 174 }
 175 
 176 // Assumes ucontext is valid
 177 intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
 178   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 179 }
 180 
 181 // Assumes ucontext is valid
 182 intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
 183   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 184 }
 185 
 186 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 187 // is currently interrupted by SIGPROF.
 188 //
 189 // The difference between this and os::fetch_frame_from_context() is that
 190 // here we try to skip nested signal frames.
 191 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
 192   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 193 
 194   assert(thread != NULL, "just checking");
 195   assert(ret_sp != NULL, "just checking");
 196   assert(ret_fp != NULL, "just checking");
 197 
 198   ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
 199   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
 200 }
 201 
 202 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 203                     intptr_t** ret_sp, intptr_t** ret_fp) {
 204 
 205   ExtendedPC  epc;
 206   ucontext_t *uc = (ucontext_t*)ucVoid;
 207 
 208   if (uc != NULL) {
 209     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 210     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
 211     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
 212   } else {
 213     // construct empty ExtendedPC for return value checking
 214     epc = ExtendedPC(NULL);
 215     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 216     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 217   }
 218 
 219   return epc;
 220 }
 221 
 222 frame os::fetch_frame_from_context(void* ucVoid) {
 223   intptr_t* sp;
 224   intptr_t* fp;
 225   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 226   return frame(sp, fp, epc.pc());
 227 }
 228 
 229 frame os::get_sender_for_C_frame(frame* fr) {
 230   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 231 }
 232 
 233 extern "C" intptr_t *_get_current_sp();  // in .il file
 234 
 235 address os::current_stack_pointer() {
 236   return (address)_get_current_sp();
 237 }
 238 
 239 extern "C" intptr_t *_get_current_fp();  // in .il file
 240 
 241 frame os::current_frame() {
 242   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
 243   frame myframe((intptr_t*)os::current_stack_pointer(),
 244                 (intptr_t*)fp,
 245                 CAST_FROM_FN_PTR(address, os::current_frame));
 246   if (os::is_first_C_frame(&myframe)) {
 247     // stack is not walkable
 248     frame ret; // This will be a null useless frame
 249     return ret;
 250   } else {
 251     return os::get_sender_for_C_frame(&myframe);
 252   }
 253 }
 254 
 255 // This is a simple callback that just fetches a PC for an interrupted thread.
 256 // The thread need not be suspended and the fetched PC is just a hint.
 257 // This one is currently used for profiling the VMThread ONLY!
 258 
 259 // Must be synchronous
 260 void GetThreadPC_Callback::execute(OSThread::InterruptArguments *args) {
 261   Thread*     thread = args->thread();
 262   ucontext_t* uc     = args->ucontext();
 263   intptr_t* sp;
 264 
 265   assert(ProfileVM && thread->is_VM_thread(), "just checking");
 266 
 267   ExtendedPC new_addr((address)uc->uc_mcontext.gregs[REG_PC]);
 268   _addr = new_addr;
 269 }
 270 
 271 static int threadgetstate(thread_t tid, int *flags, lwpid_t *lwp, stack_t *ss, gregset_t rs, lwpstatus_t *lwpstatus) {
 272   char lwpstatusfile[PROCFILE_LENGTH];
 273   int lwpfd, err;
 274 
 275   if (err = os::Solaris::thr_getstate(tid, flags, lwp, ss, rs))
 276     return (err);
 277   if (*flags == TRS_LWPID) {
 278     sprintf(lwpstatusfile, "/proc/%d/lwp/%d/lwpstatus", getpid(),
 279             *lwp);
 280     if ((lwpfd = open(lwpstatusfile, O_RDONLY)) < 0) {
 281       perror("thr_mutator_status: open lwpstatus");
 282       return (EINVAL);
 283     }
 284     if (pread(lwpfd, lwpstatus, sizeof (lwpstatus_t), (off_t)0) !=
 285         sizeof (lwpstatus_t)) {
 286       perror("thr_mutator_status: read lwpstatus");
 287       (void) close(lwpfd);
 288       return (EINVAL);
 289     }
 290     (void) close(lwpfd);
 291   }
 292   return (0);
 293 }
 294 
 295 #ifndef AMD64
 296 
 297 // Detecting SSE support by OS
 298 // From solaris_i486.s
 299 extern "C" bool sse_check();
 300 extern "C" bool sse_unavailable();
 301 
 302 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
 303 static int sse_status = SSE_UNKNOWN;
 304 
 305 
 306 static void  check_for_sse_support() {
 307   if (!VM_Version::supports_sse()) {
 308     sse_status = SSE_NOT_SUPPORTED;
 309     return;
 310   }
 311   // looking for _sse_hw in libc.so, if it does not exist or
 312   // the value (int) is 0, OS has no support for SSE
 313   int *sse_hwp;
 314   void *h;
 315 
 316   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
 317     //open failed, presume no support for SSE
 318     sse_status = SSE_NOT_SUPPORTED;
 319     return;
 320   }
 321   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
 322     sse_status = SSE_NOT_SUPPORTED;
 323   } else if (*sse_hwp == 0) {
 324     sse_status = SSE_NOT_SUPPORTED;
 325   }
 326   dlclose(h);
 327 
 328   if (sse_status == SSE_UNKNOWN) {
 329     bool (*try_sse)() = (bool (*)())sse_check;
 330     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
 331   }
 332 
 333 }
 334 
 335 #endif // AMD64
 336 
 337 bool os::supports_sse() {
 338 #ifdef AMD64
 339   return true;
 340 #else
 341   if (sse_status == SSE_UNKNOWN)
 342     check_for_sse_support();
 343   return sse_status == SSE_SUPPORTED;
 344 #endif // AMD64
 345 }
 346 
 347 bool os::is_allocatable(size_t bytes) {
 348 #ifdef AMD64
 349   return true;
 350 #else
 351 
 352   if (bytes < 2 * G) {
 353     return true;
 354   }
 355 
 356   char* addr = reserve_memory(bytes, NULL);
 357 
 358   if (addr != NULL) {
 359     release_memory(addr, bytes);
 360   }
 361 
 362   return addr != NULL;
 363 #endif // AMD64
 364 
 365 }
 366 
 367 extern "C" void Fetch32PFI () ;
 368 extern "C" void Fetch32Resume () ;
 369 #ifdef AMD64
 370 extern "C" void FetchNPFI () ;
 371 extern "C" void FetchNResume () ;
 372 #endif // AMD64
 373 
 374 extern "C" JNIEXPORT int
 375 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
 376                           int abort_if_unrecognized) {
 377   ucontext_t* uc = (ucontext_t*) ucVoid;
 378 
 379 #ifndef AMD64
 380   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
 381     // the SSE instruction faulted. supports_sse() need return false.
 382     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
 383     return true;
 384   }
 385 #endif // !AMD64
 386 
 387   Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
 388 
 389   SignalHandlerMark shm(t);
 390 
 391   if(sig == SIGPIPE || sig == SIGXFSZ) {
 392     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 393       return true;
 394     } else {
 395       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 396         char buf[64];
 397         warning("Ignoring %s - see 4229104 or 6499219",
 398                 os::exception_name(sig, buf, sizeof(buf)));
 399 
 400       }
 401       return true;
 402     }
 403   }
 404 
 405   JavaThread* thread = NULL;
 406   VMThread* vmthread = NULL;
 407 
 408   if (os::Solaris::signal_handlers_are_installed) {
 409     if (t != NULL ){
 410       if(t->is_Java_thread()) {
 411         thread = (JavaThread*)t;
 412       }
 413       else if(t->is_VM_thread()){
 414         vmthread = (VMThread *)t;
 415       }
 416     }
 417   }
 418 
 419   guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
 420 
 421   if (sig == os::Solaris::SIGasync()) {
 422     if(thread){
 423       OSThread::InterruptArguments args(thread, uc);
 424       thread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
 425       return true;
 426     }
 427     else if(vmthread){
 428       OSThread::InterruptArguments args(vmthread, uc);
 429       vmthread->osthread()->do_interrupt_callbacks_at_interrupt(&args);
 430       return true;
 431     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 432       return true;
 433     } else {
 434       // If os::Solaris::SIGasync not chained, and this is a non-vm and
 435       // non-java thread
 436       return true;
 437     }
 438   }
 439 
 440   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 441     // can't decode this kind of signal
 442     info = NULL;
 443   } else {
 444     assert(sig == info->si_signo, "bad siginfo");
 445   }
 446 
 447   // decide if this trap can be handled by a stub
 448   address stub = NULL;
 449 
 450   address pc          = NULL;
 451 
 452   //%note os_trap_1
 453   if (info != NULL && uc != NULL && thread != NULL) {
 454     // factor me: getPCfromContext
 455     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 456 
 457     // SafeFetch32() support
 458     if (pc == (address) Fetch32PFI) {
 459       uc->uc_mcontext.gregs[REG_PC] = intptr_t(Fetch32Resume) ;
 460       return true ;
 461     }
 462 #ifdef AMD64
 463     if (pc == (address) FetchNPFI) {
 464        uc->uc_mcontext.gregs [REG_PC] = intptr_t(FetchNResume) ;
 465        return true ;
 466     }
 467 #endif // AMD64
 468 
 469     // Handle ALL stack overflow variations here
 470     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
 471       address addr = (address) info->si_addr;
 472       if (thread->in_stack_yellow_zone(addr)) {
 473         thread->disable_stack_yellow_zone();
 474         if (thread->thread_state() == _thread_in_Java) {
 475           // Throw a stack overflow exception.  Guard pages will be reenabled
 476           // while unwinding the stack.
 477           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 478         } else {
 479           // Thread was in the vm or native code.  Return and try to finish.
 480           return true;
 481         }
 482       } else if (thread->in_stack_red_zone(addr)) {
 483         // Fatal red zone violation.  Disable the guard pages and fall through
 484         // to handle_unexpected_exception way down below.
 485         thread->disable_stack_red_zone();
 486         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 487       }
 488     }
 489 
 490     if (thread->thread_state() == _thread_in_vm) {
 491       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
 492         stub = StubRoutines::handler_for_unsafe_access();
 493       }
 494     }
 495 
 496     if (thread->thread_state() == _thread_in_Java) {
 497       // Support Safepoint Polling
 498       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 499         stub = SharedRuntime::get_poll_stub(pc);
 500       }
 501       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
 502         // BugId 4454115: A read from a MappedByteBuffer can fault
 503         // here if the underlying file has been truncated.
 504         // Do not crash the VM in such a case.
 505         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 506         nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
 507         if (nm != NULL && nm->has_unsafe_access()) {
 508           stub = StubRoutines::handler_for_unsafe_access();
 509         }
 510       }
 511       else
 512       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
 513         // integer divide by zero
 514         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 515       }
 516 #ifndef AMD64
 517       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
 518         // floating-point divide by zero
 519         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 520       }
 521       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
 522         // The encoding of D2I in i486.ad can cause an exception prior
 523         // to the fist instruction if there was an invalid operation
 524         // pending. We want to dismiss that exception. From the win_32
 525         // side it also seems that if it really was the fist causing
 526         // the exception that we do the d2i by hand with different
 527         // rounding. Seems kind of weird. QQQ TODO
 528         // Note that we take the exception at the NEXT floating point instruction.
 529         if (pc[0] == 0xDB) {
 530             assert(pc[0] == 0xDB, "not a FIST opcode");
 531             assert(pc[1] == 0x14, "not a FIST opcode");
 532             assert(pc[2] == 0x24, "not a FIST opcode");
 533             return true;
 534         } else {
 535             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
 536             assert(pc[-2] == 0x14, "not an flt invalid opcode");
 537             assert(pc[-1] == 0x24, "not an flt invalid opcode");
 538         }
 539       }
 540       else if (sig == SIGFPE ) {
 541         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
 542       }
 543 #endif // !AMD64
 544 
 545         // QQQ It doesn't seem that we need to do this on x86 because we should be able
 546         // to return properly from the handler without this extra stuff on the back side.
 547 
 548       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 549         // Determination of interpreter/vtable stub/compiled code null exception
 550         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 551       }
 552     }
 553 
 554     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 555     // and the heap gets shrunk before the field access.
 556     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 557       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 558       if (addr != (address)-1) {
 559         stub = addr;
 560       }
 561     }
 562 
 563     // Check to see if we caught the safepoint code in the
 564     // process of write protecting the memory serialization page.
 565     // It write enables the page immediately after protecting it
 566     // so we can just return to retry the write.
 567     if ((sig == SIGSEGV) &&
 568         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
 569       // Block current thread until the memory serialize page permission restored.
 570       os::block_on_serialize_page_trap();
 571       return true;
 572     }
 573   }
 574 
 575   // Execution protection violation
 576   //
 577   // Preventative code for future versions of Solaris which may
 578   // enable execution protection when running the 32-bit VM on AMD64.
 579   //
 580   // This should be kept as the last step in the triage.  We don't
 581   // have a dedicated trap number for a no-execute fault, so be
 582   // conservative and allow other handlers the first shot.
 583   //
 584   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 585   // this si_code is so generic that it is almost meaningless; and
 586   // the si_code for this condition may change in the future.
 587   // Furthermore, a false-positive should be harmless.
 588   if (UnguardOnExecutionViolation > 0 &&
 589       (sig == SIGSEGV || sig == SIGBUS) &&
 590       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
 591     int page_size = os::vm_page_size();
 592     address addr = (address) info->si_addr;
 593     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
 594     // Make sure the pc and the faulting address are sane.
 595     //
 596     // If an instruction spans a page boundary, and the page containing
 597     // the beginning of the instruction is executable but the following
 598     // page is not, the pc and the faulting address might be slightly
 599     // different - we still want to unguard the 2nd page in this case.
 600     //
 601     // 15 bytes seems to be a (very) safe value for max instruction size.
 602     bool pc_is_near_addr =
 603       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 604     bool instr_spans_page_boundary =
 605       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 606                        (intptr_t) page_size) > 0);
 607 
 608     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 609       static volatile address last_addr =
 610         (address) os::non_memory_address_word();
 611 
 612       // In conservative mode, don't unguard unless the address is in the VM
 613       if (addr != last_addr &&
 614           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 615 
 616         // Make memory rwx and retry
 617         address page_start =
 618           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 619         bool res = os::protect_memory((char*) page_start, page_size,
 620                                       os::MEM_PROT_RWX);
 621 
 622         if (PrintMiscellaneous && Verbose) {
 623           char buf[256];
 624           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 625                        "at " INTPTR_FORMAT
 626                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 627                        page_start, (res ? "success" : "failed"), errno);
 628           tty->print_raw_cr(buf);
 629         }
 630         stub = pc;
 631 
 632         // Set last_addr so if we fault again at the same address, we don't end
 633         // up in an endless loop.
 634         //
 635         // There are two potential complications here.  Two threads trapping at
 636         // the same address at the same time could cause one of the threads to
 637         // think it already unguarded, and abort the VM.  Likely very rare.
 638         //
 639         // The other race involves two threads alternately trapping at
 640         // different addresses and failing to unguard the page, resulting in
 641         // an endless loop.  This condition is probably even more unlikely than
 642         // the first.
 643         //
 644         // Although both cases could be avoided by using locks or thread local
 645         // last_addr, these solutions are unnecessary complication: this
 646         // handler is a best-effort safety net, not a complete solution.  It is
 647         // disabled by default and should only be used as a workaround in case
 648         // we missed any no-execute-unsafe VM code.
 649 
 650         last_addr = addr;
 651       }
 652     }
 653   }
 654 
 655   if (stub != NULL) {
 656     // save all thread context in case we need to restore it
 657 
 658     if (thread != NULL) thread->set_saved_exception_pc(pc);
 659     // 12/02/99: On Sparc it appears that the full context is also saved
 660     // but as yet, no one looks at or restores that saved context
 661     // factor me: setPC
 662     uc->uc_mcontext.gregs[REG_PC] = (greg_t)stub;
 663     return true;
 664   }
 665 
 666   // signal-chaining
 667   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 668     return true;
 669   }
 670 
 671 #ifndef AMD64
 672   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
 673   // Handle an undefined selector caused by an attempt to assign
 674   // fs in libthread getipriptr(). With the current libthread design every 512
 675   // thread creations the LDT for a private thread data structure is extended
 676   // and thre is a hazard that and another thread attempting a thread creation
 677   // will use a stale LDTR that doesn't reflect the structure's growth,
 678   // causing a GP fault.
 679   // Enforce the probable limit of passes through here to guard against an
 680   // infinite loop if some other move to fs caused the GP fault. Note that
 681   // this loop counter is ultimately a heuristic as it is possible for
 682   // more than one thread to generate this fault at a time in an MP system.
 683   // In the case of the loop count being exceeded or if the poll fails
 684   // just fall through to a fatal error.
 685   // If there is some other source of T_GPFLT traps and the text at EIP is
 686   // unreadable this code will loop infinitely until the stack is exausted.
 687   // The key to diagnosis in this case is to look for the bottom signal handler
 688   // frame.
 689 
 690   if(! IgnoreLibthreadGPFault) {
 691     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
 692       const unsigned char *p =
 693                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
 694 
 695       // Expected instruction?
 696 
 697       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
 698 
 699         Atomic::inc(&ldtr_refresh);
 700 
 701         // Infinite loop?
 702 
 703         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
 704 
 705           // No, force scheduling to get a fresh view of the LDTR
 706 
 707           if(poll(NULL, 0, 10) == 0) {
 708 
 709             // Retry the move
 710 
 711             return false;
 712           }
 713         }
 714       }
 715     }
 716   }
 717 #endif // !AMD64
 718 
 719   if (!abort_if_unrecognized) {
 720     // caller wants another chance, so give it to him
 721     return false;
 722   }
 723 
 724   if (!os::Solaris::libjsig_is_loaded) {
 725     struct sigaction oldAct;
 726     sigaction(sig, (struct sigaction *)0, &oldAct);
 727     if (oldAct.sa_sigaction != signalHandler) {
 728       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
 729                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
 730       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
 731     }
 732   }
 733 
 734   if (pc == NULL && uc != NULL) {
 735     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 736   }
 737 
 738   // unmask current signal
 739   sigset_t newset;
 740   sigemptyset(&newset);
 741   sigaddset(&newset, sig);
 742   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 743 
 744   // Determine which sort of error to throw.  Out of swap may signal
 745   // on the thread stack, which could get a mapping error when touched.
 746   address addr = (address) info->si_addr;
 747   if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
 748     vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
 749   }
 750 
 751   VMError err(t, sig, pc, info, ucVoid);
 752   err.report_and_die();
 753 
 754   ShouldNotReachHere();
 755 }
 756 
 757 void os::print_context(outputStream *st, void *context) {
 758   if (context == NULL) return;
 759 
 760   ucontext_t *uc = (ucontext_t*)context;
 761   st->print_cr("Registers:");
 762 #ifdef AMD64
 763   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 764   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 765   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 766   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 767   st->cr();
 768   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 769   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 770   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 771   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 772   st->cr();
 773   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 774   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 775   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 776   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 777   st->cr();
 778   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 779   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 780   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 781   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 782   st->cr();
 783   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 784   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
 785 #else
 786   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
 787   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
 788   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
 789   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
 790   st->cr();
 791   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
 792   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
 793   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
 794   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
 795   st->cr();
 796   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
 797   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
 798 #endif // AMD64
 799   st->cr();
 800   st->cr();
 801 
 802   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
 803   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 804   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 805   st->cr();
 806 
 807   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 808   // point to garbage if entry point in an nmethod is corrupted. Leave
 809   // this at the end, and hope for the best.
 810   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 811   address pc = epc.pc();
 812   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 813   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 814 }
 815 
 816 void os::print_register_info(outputStream *st, void *context) {
 817   if (context == NULL) return;
 818 
 819   ucontext_t *uc = (ucontext_t*)context;
 820 
 821   st->print_cr("Register to memory mapping:");
 822   st->cr();
 823 
 824   // this is horrendously verbose but the layout of the registers in the
 825   // context does not match how we defined our abstract Register set, so
 826   // we can't just iterate through the gregs area
 827 
 828   // this is only for the "general purpose" registers
 829 
 830 #ifdef AMD64
 831   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 832   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 833   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 834   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 835   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 836   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 837   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 838   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 839   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 840   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 841   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 842   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 843   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 844   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 845   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 846   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 847 #else
 848   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
 849   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
 850   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
 851   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
 852   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
 853   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
 854   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
 855   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
 856 #endif
 857 
 858   st->cr();
 859 }
 860 
 861 
 862 #ifdef AMD64
 863 void os::Solaris::init_thread_fpu_state(void) {
 864   // Nothing to do
 865 }
 866 #else
 867 // From solaris_i486.s
 868 extern "C" void fixcw();
 869 
 870 void os::Solaris::init_thread_fpu_state(void) {
 871   // Set fpu to 53 bit precision. This happens too early to use a stub.
 872   fixcw();
 873 }
 874 
 875 // These routines are the initial value of atomic_xchg_entry(),
 876 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
 877 // until initialization is complete.
 878 // TODO - replace with .il implementation when compiler supports it.
 879 
 880 typedef jint  xchg_func_t        (jint,  volatile jint*);
 881 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
 882 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
 883 typedef jint  add_func_t         (jint,  volatile jint*);
 884 
 885 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
 886   // try to use the stub:
 887   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
 888 
 889   if (func != NULL) {
 890     os::atomic_xchg_func = func;
 891     return (*func)(exchange_value, dest);
 892   }
 893   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 894 
 895   jint old_value = *dest;
 896   *dest = exchange_value;
 897   return old_value;
 898 }
 899 
 900 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
 901   // try to use the stub:
 902   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
 903 
 904   if (func != NULL) {
 905     os::atomic_cmpxchg_func = func;
 906     return (*func)(exchange_value, dest, compare_value);
 907   }
 908   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 909 
 910   jint old_value = *dest;
 911   if (old_value == compare_value)
 912     *dest = exchange_value;
 913   return old_value;
 914 }
 915 
 916 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
 917   // try to use the stub:
 918   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
 919 
 920   if (func != NULL) {
 921     os::atomic_cmpxchg_long_func = func;
 922     return (*func)(exchange_value, dest, compare_value);
 923   }
 924   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 925 
 926   jlong old_value = *dest;
 927   if (old_value == compare_value)
 928     *dest = exchange_value;
 929   return old_value;
 930 }
 931 
 932 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
 933   // try to use the stub:
 934   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
 935 
 936   if (func != NULL) {
 937     os::atomic_add_func = func;
 938     return (*func)(add_value, dest);
 939   }
 940   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 941 
 942   return (*dest) += add_value;
 943 }
 944 
 945 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
 946 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
 947 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
 948 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
 949 
 950 extern "C" void _solaris_raw_setup_fpu(address ptr);
 951 void os::setup_fpu() {
 952   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 953   _solaris_raw_setup_fpu(fpu_cntrl);
 954 }
 955 #endif // AMD64
 956 
 957 #ifndef PRODUCT
 958 void os::verify_stack_alignment() {
 959 #ifdef AMD64
 960   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 961 #endif
 962 }
 963 #endif