1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/icBuffer.hpp"
  27 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  28 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  29 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  30 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  31 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  32 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  34 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  35 #include "gc_implementation/g1/g1EvacFailure.hpp"
  36 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  37 #include "gc_implementation/g1/g1Log.hpp"
  38 #include "gc_implementation/g1/g1MarkSweep.hpp"
  39 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  40 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  41 #include "gc_implementation/g1/heapRegion.inline.hpp"
  42 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  43 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  44 #include "gc_implementation/g1/vm_operations_g1.hpp"
  45 #include "gc_implementation/shared/isGCActiveMark.hpp"
  46 #include "memory/gcLocker.inline.hpp"
  47 #include "memory/genOopClosures.inline.hpp"
  48 #include "memory/generationSpec.hpp"
  49 #include "memory/referenceProcessor.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/oop.pcgc.inline.hpp"
  52 #include "runtime/aprofiler.hpp"
  53 #include "runtime/vmThread.hpp"
  54 
  55 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  56 
  57 // turn it on so that the contents of the young list (scan-only /
  58 // to-be-collected) are printed at "strategic" points before / during
  59 // / after the collection --- this is useful for debugging
  60 #define YOUNG_LIST_VERBOSE 0
  61 // CURRENT STATUS
  62 // This file is under construction.  Search for "FIXME".
  63 
  64 // INVARIANTS/NOTES
  65 //
  66 // All allocation activity covered by the G1CollectedHeap interface is
  67 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  68 // and allocate_new_tlab, which are the "entry" points to the
  69 // allocation code from the rest of the JVM.  (Note that this does not
  70 // apply to TLAB allocation, which is not part of this interface: it
  71 // is done by clients of this interface.)
  72 
  73 // Notes on implementation of parallelism in different tasks.
  74 //
  75 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  76 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  77 // It does use run_task() which sets _n_workers in the task.
  78 // G1ParTask executes g1_process_strong_roots() ->
  79 // SharedHeap::process_strong_roots() which calls eventuall to
  80 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  81 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  82 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  83 //
  84 
  85 // Local to this file.
  86 
  87 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  88   SuspendibleThreadSet* _sts;
  89   G1RemSet* _g1rs;
  90   ConcurrentG1Refine* _cg1r;
  91   bool _concurrent;
  92 public:
  93   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  94                               G1RemSet* g1rs,
  95                               ConcurrentG1Refine* cg1r) :
  96     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
  97   {}
  98   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
  99     bool oops_into_cset = _g1rs->concurrentRefineOneCard(card_ptr, worker_i, false);
 100     // This path is executed by the concurrent refine or mutator threads,
 101     // concurrently, and so we do not care if card_ptr contains references
 102     // that point into the collection set.
 103     assert(!oops_into_cset, "should be");
 104 
 105     if (_concurrent && _sts->should_yield()) {
 106       // Caller will actually yield.
 107       return false;
 108     }
 109     // Otherwise, we finished successfully; return true.
 110     return true;
 111   }
 112   void set_concurrent(bool b) { _concurrent = b; }
 113 };
 114 
 115 
 116 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 117   int _calls;
 118   G1CollectedHeap* _g1h;
 119   CardTableModRefBS* _ctbs;
 120   int _histo[256];
 121 public:
 122   ClearLoggedCardTableEntryClosure() :
 123     _calls(0)
 124   {
 125     _g1h = G1CollectedHeap::heap();
 126     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 127     for (int i = 0; i < 256; i++) _histo[i] = 0;
 128   }
 129   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 130     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 131       _calls++;
 132       unsigned char* ujb = (unsigned char*)card_ptr;
 133       int ind = (int)(*ujb);
 134       _histo[ind]++;
 135       *card_ptr = -1;
 136     }
 137     return true;
 138   }
 139   int calls() { return _calls; }
 140   void print_histo() {
 141     gclog_or_tty->print_cr("Card table value histogram:");
 142     for (int i = 0; i < 256; i++) {
 143       if (_histo[i] != 0) {
 144         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 145       }
 146     }
 147   }
 148 };
 149 
 150 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 151   int _calls;
 152   G1CollectedHeap* _g1h;
 153   CardTableModRefBS* _ctbs;
 154 public:
 155   RedirtyLoggedCardTableEntryClosure() :
 156     _calls(0)
 157   {
 158     _g1h = G1CollectedHeap::heap();
 159     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 160   }
 161   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 162     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 163       _calls++;
 164       *card_ptr = 0;
 165     }
 166     return true;
 167   }
 168   int calls() { return _calls; }
 169 };
 170 
 171 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 172 public:
 173   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 174     *card_ptr = CardTableModRefBS::dirty_card_val();
 175     return true;
 176   }
 177 };
 178 
 179 YoungList::YoungList(G1CollectedHeap* g1h) :
 180     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 181     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 182   guarantee(check_list_empty(false), "just making sure...");
 183 }
 184 
 185 void YoungList::push_region(HeapRegion *hr) {
 186   assert(!hr->is_young(), "should not already be young");
 187   assert(hr->get_next_young_region() == NULL, "cause it should!");
 188 
 189   hr->set_next_young_region(_head);
 190   _head = hr;
 191 
 192   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 193   ++_length;
 194 }
 195 
 196 void YoungList::add_survivor_region(HeapRegion* hr) {
 197   assert(hr->is_survivor(), "should be flagged as survivor region");
 198   assert(hr->get_next_young_region() == NULL, "cause it should!");
 199 
 200   hr->set_next_young_region(_survivor_head);
 201   if (_survivor_head == NULL) {
 202     _survivor_tail = hr;
 203   }
 204   _survivor_head = hr;
 205   ++_survivor_length;
 206 }
 207 
 208 void YoungList::empty_list(HeapRegion* list) {
 209   while (list != NULL) {
 210     HeapRegion* next = list->get_next_young_region();
 211     list->set_next_young_region(NULL);
 212     list->uninstall_surv_rate_group();
 213     list->set_not_young();
 214     list = next;
 215   }
 216 }
 217 
 218 void YoungList::empty_list() {
 219   assert(check_list_well_formed(), "young list should be well formed");
 220 
 221   empty_list(_head);
 222   _head = NULL;
 223   _length = 0;
 224 
 225   empty_list(_survivor_head);
 226   _survivor_head = NULL;
 227   _survivor_tail = NULL;
 228   _survivor_length = 0;
 229 
 230   _last_sampled_rs_lengths = 0;
 231 
 232   assert(check_list_empty(false), "just making sure...");
 233 }
 234 
 235 bool YoungList::check_list_well_formed() {
 236   bool ret = true;
 237 
 238   uint length = 0;
 239   HeapRegion* curr = _head;
 240   HeapRegion* last = NULL;
 241   while (curr != NULL) {
 242     if (!curr->is_young()) {
 243       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 244                              "incorrectly tagged (y: %d, surv: %d)",
 245                              curr->bottom(), curr->end(),
 246                              curr->is_young(), curr->is_survivor());
 247       ret = false;
 248     }
 249     ++length;
 250     last = curr;
 251     curr = curr->get_next_young_region();
 252   }
 253   ret = ret && (length == _length);
 254 
 255   if (!ret) {
 256     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 257     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 258                            length, _length);
 259   }
 260 
 261   return ret;
 262 }
 263 
 264 bool YoungList::check_list_empty(bool check_sample) {
 265   bool ret = true;
 266 
 267   if (_length != 0) {
 268     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 269                   _length);
 270     ret = false;
 271   }
 272   if (check_sample && _last_sampled_rs_lengths != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 274     ret = false;
 275   }
 276   if (_head != NULL) {
 277     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 278     ret = false;
 279   }
 280   if (!ret) {
 281     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 282   }
 283 
 284   return ret;
 285 }
 286 
 287 void
 288 YoungList::rs_length_sampling_init() {
 289   _sampled_rs_lengths = 0;
 290   _curr               = _head;
 291 }
 292 
 293 bool
 294 YoungList::rs_length_sampling_more() {
 295   return _curr != NULL;
 296 }
 297 
 298 void
 299 YoungList::rs_length_sampling_next() {
 300   assert( _curr != NULL, "invariant" );
 301   size_t rs_length = _curr->rem_set()->occupied();
 302 
 303   _sampled_rs_lengths += rs_length;
 304 
 305   // The current region may not yet have been added to the
 306   // incremental collection set (it gets added when it is
 307   // retired as the current allocation region).
 308   if (_curr->in_collection_set()) {
 309     // Update the collection set policy information for this region
 310     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 311   }
 312 
 313   _curr = _curr->get_next_young_region();
 314   if (_curr == NULL) {
 315     _last_sampled_rs_lengths = _sampled_rs_lengths;
 316     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 317   }
 318 }
 319 
 320 void
 321 YoungList::reset_auxilary_lists() {
 322   guarantee( is_empty(), "young list should be empty" );
 323   assert(check_list_well_formed(), "young list should be well formed");
 324 
 325   // Add survivor regions to SurvRateGroup.
 326   _g1h->g1_policy()->note_start_adding_survivor_regions();
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 328 
 329   int young_index_in_cset = 0;
 330   for (HeapRegion* curr = _survivor_head;
 331        curr != NULL;
 332        curr = curr->get_next_young_region()) {
 333     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 334 
 335     // The region is a non-empty survivor so let's add it to
 336     // the incremental collection set for the next evacuation
 337     // pause.
 338     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 339     young_index_in_cset += 1;
 340   }
 341   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 342   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 343 
 344   _head   = _survivor_head;
 345   _length = _survivor_length;
 346   if (_survivor_head != NULL) {
 347     assert(_survivor_tail != NULL, "cause it shouldn't be");
 348     assert(_survivor_length > 0, "invariant");
 349     _survivor_tail->set_next_young_region(NULL);
 350   }
 351 
 352   // Don't clear the survivor list handles until the start of
 353   // the next evacuation pause - we need it in order to re-tag
 354   // the survivor regions from this evacuation pause as 'young'
 355   // at the start of the next.
 356 
 357   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 358 
 359   assert(check_list_well_formed(), "young list should be well formed");
 360 }
 361 
 362 void YoungList::print() {
 363   HeapRegion* lists[] = {_head,   _survivor_head};
 364   const char* names[] = {"YOUNG", "SURVIVOR"};
 365 
 366   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 367     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 368     HeapRegion *curr = lists[list];
 369     if (curr == NULL)
 370       gclog_or_tty->print_cr("  empty");
 371     while (curr != NULL) {
 372       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 373                              HR_FORMAT_PARAMS(curr),
 374                              curr->prev_top_at_mark_start(),
 375                              curr->next_top_at_mark_start(),
 376                              curr->age_in_surv_rate_group_cond());
 377       curr = curr->get_next_young_region();
 378     }
 379   }
 380 
 381   gclog_or_tty->print_cr("");
 382 }
 383 
 384 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 385 {
 386   // Claim the right to put the region on the dirty cards region list
 387   // by installing a self pointer.
 388   HeapRegion* next = hr->get_next_dirty_cards_region();
 389   if (next == NULL) {
 390     HeapRegion* res = (HeapRegion*)
 391       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 392                           NULL);
 393     if (res == NULL) {
 394       HeapRegion* head;
 395       do {
 396         // Put the region to the dirty cards region list.
 397         head = _dirty_cards_region_list;
 398         next = (HeapRegion*)
 399           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 400         if (next == head) {
 401           assert(hr->get_next_dirty_cards_region() == hr,
 402                  "hr->get_next_dirty_cards_region() != hr");
 403           if (next == NULL) {
 404             // The last region in the list points to itself.
 405             hr->set_next_dirty_cards_region(hr);
 406           } else {
 407             hr->set_next_dirty_cards_region(next);
 408           }
 409         }
 410       } while (next != head);
 411     }
 412   }
 413 }
 414 
 415 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 416 {
 417   HeapRegion* head;
 418   HeapRegion* hr;
 419   do {
 420     head = _dirty_cards_region_list;
 421     if (head == NULL) {
 422       return NULL;
 423     }
 424     HeapRegion* new_head = head->get_next_dirty_cards_region();
 425     if (head == new_head) {
 426       // The last region.
 427       new_head = NULL;
 428     }
 429     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 430                                           head);
 431   } while (hr != head);
 432   assert(hr != NULL, "invariant");
 433   hr->set_next_dirty_cards_region(NULL);
 434   return hr;
 435 }
 436 
 437 void G1CollectedHeap::stop_conc_gc_threads() {
 438   _cg1r->stop();
 439   _cmThread->stop();
 440 }
 441 
 442 #ifdef ASSERT
 443 // A region is added to the collection set as it is retired
 444 // so an address p can point to a region which will be in the
 445 // collection set but has not yet been retired.  This method
 446 // therefore is only accurate during a GC pause after all
 447 // regions have been retired.  It is used for debugging
 448 // to check if an nmethod has references to objects that can
 449 // be move during a partial collection.  Though it can be
 450 // inaccurate, it is sufficient for G1 because the conservative
 451 // implementation of is_scavengable() for G1 will indicate that
 452 // all nmethods must be scanned during a partial collection.
 453 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 454   HeapRegion* hr = heap_region_containing(p);
 455   return hr != NULL && hr->in_collection_set();
 456 }
 457 #endif
 458 
 459 // Returns true if the reference points to an object that
 460 // can move in an incremental collecction.
 461 bool G1CollectedHeap::is_scavengable(const void* p) {
 462   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 463   G1CollectorPolicy* g1p = g1h->g1_policy();
 464   HeapRegion* hr = heap_region_containing(p);
 465   if (hr == NULL) {
 466      // null
 467      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 468      return false;
 469   } else {
 470     return !hr->isHumongous();
 471   }
 472 }
 473 
 474 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 475   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 476   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 477 
 478   // Count the dirty cards at the start.
 479   CountNonCleanMemRegionClosure count1(this);
 480   ct_bs->mod_card_iterate(&count1);
 481   int orig_count = count1.n();
 482 
 483   // First clear the logged cards.
 484   ClearLoggedCardTableEntryClosure clear;
 485   dcqs.set_closure(&clear);
 486   dcqs.apply_closure_to_all_completed_buffers();
 487   dcqs.iterate_closure_all_threads(false);
 488   clear.print_histo();
 489 
 490   // Now ensure that there's no dirty cards.
 491   CountNonCleanMemRegionClosure count2(this);
 492   ct_bs->mod_card_iterate(&count2);
 493   if (count2.n() != 0) {
 494     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 495                            count2.n(), orig_count);
 496   }
 497   guarantee(count2.n() == 0, "Card table should be clean.");
 498 
 499   RedirtyLoggedCardTableEntryClosure redirty;
 500   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 501   dcqs.apply_closure_to_all_completed_buffers();
 502   dcqs.iterate_closure_all_threads(false);
 503   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 504                          clear.calls(), orig_count);
 505   guarantee(redirty.calls() == clear.calls(),
 506             "Or else mechanism is broken.");
 507 
 508   CountNonCleanMemRegionClosure count3(this);
 509   ct_bs->mod_card_iterate(&count3);
 510   if (count3.n() != orig_count) {
 511     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 512                            orig_count, count3.n());
 513     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 514   }
 515 
 516   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 517 }
 518 
 519 // Private class members.
 520 
 521 G1CollectedHeap* G1CollectedHeap::_g1h;
 522 
 523 // Private methods.
 524 
 525 HeapRegion*
 526 G1CollectedHeap::new_region_try_secondary_free_list() {
 527   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 528   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 529     if (!_secondary_free_list.is_empty()) {
 530       if (G1ConcRegionFreeingVerbose) {
 531         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 532                                "secondary_free_list has %u entries",
 533                                _secondary_free_list.length());
 534       }
 535       // It looks as if there are free regions available on the
 536       // secondary_free_list. Let's move them to the free_list and try
 537       // again to allocate from it.
 538       append_secondary_free_list();
 539 
 540       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 541              "empty we should have moved at least one entry to the free_list");
 542       HeapRegion* res = _free_list.remove_head();
 543       if (G1ConcRegionFreeingVerbose) {
 544         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 545                                "allocated "HR_FORMAT" from secondary_free_list",
 546                                HR_FORMAT_PARAMS(res));
 547       }
 548       return res;
 549     }
 550 
 551     // Wait here until we get notifed either when (a) there are no
 552     // more free regions coming or (b) some regions have been moved on
 553     // the secondary_free_list.
 554     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 555   }
 556 
 557   if (G1ConcRegionFreeingVerbose) {
 558     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 559                            "could not allocate from secondary_free_list");
 560   }
 561   return NULL;
 562 }
 563 
 564 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 565   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 566          "the only time we use this to allocate a humongous region is "
 567          "when we are allocating a single humongous region");
 568 
 569   HeapRegion* res;
 570   if (G1StressConcRegionFreeing) {
 571     if (!_secondary_free_list.is_empty()) {
 572       if (G1ConcRegionFreeingVerbose) {
 573         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 574                                "forced to look at the secondary_free_list");
 575       }
 576       res = new_region_try_secondary_free_list();
 577       if (res != NULL) {
 578         return res;
 579       }
 580     }
 581   }
 582   res = _free_list.remove_head_or_null();
 583   if (res == NULL) {
 584     if (G1ConcRegionFreeingVerbose) {
 585       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 586                              "res == NULL, trying the secondary_free_list");
 587     }
 588     res = new_region_try_secondary_free_list();
 589   }
 590   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 591     // Currently, only attempts to allocate GC alloc regions set
 592     // do_expand to true. So, we should only reach here during a
 593     // safepoint. If this assumption changes we might have to
 594     // reconsider the use of _expand_heap_after_alloc_failure.
 595     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 596 
 597     ergo_verbose1(ErgoHeapSizing,
 598                   "attempt heap expansion",
 599                   ergo_format_reason("region allocation request failed")
 600                   ergo_format_byte("allocation request"),
 601                   word_size * HeapWordSize);
 602     if (expand(word_size * HeapWordSize)) {
 603       // Given that expand() succeeded in expanding the heap, and we
 604       // always expand the heap by an amount aligned to the heap
 605       // region size, the free list should in theory not be empty. So
 606       // it would probably be OK to use remove_head(). But the extra
 607       // check for NULL is unlikely to be a performance issue here (we
 608       // just expanded the heap!) so let's just be conservative and
 609       // use remove_head_or_null().
 610       res = _free_list.remove_head_or_null();
 611     } else {
 612       _expand_heap_after_alloc_failure = false;
 613     }
 614   }
 615   return res;
 616 }
 617 
 618 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 619                                                         size_t word_size) {
 620   assert(isHumongous(word_size), "word_size should be humongous");
 621   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 622 
 623   uint first = G1_NULL_HRS_INDEX;
 624   if (num_regions == 1) {
 625     // Only one region to allocate, no need to go through the slower
 626     // path. The caller will attempt the expasion if this fails, so
 627     // let's not try to expand here too.
 628     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 629     if (hr != NULL) {
 630       first = hr->hrs_index();
 631     } else {
 632       first = G1_NULL_HRS_INDEX;
 633     }
 634   } else {
 635     // We can't allocate humongous regions while cleanupComplete() is
 636     // running, since some of the regions we find to be empty might not
 637     // yet be added to the free list and it is not straightforward to
 638     // know which list they are on so that we can remove them. Note
 639     // that we only need to do this if we need to allocate more than
 640     // one region to satisfy the current humongous allocation
 641     // request. If we are only allocating one region we use the common
 642     // region allocation code (see above).
 643     wait_while_free_regions_coming();
 644     append_secondary_free_list_if_not_empty_with_lock();
 645 
 646     if (free_regions() >= num_regions) {
 647       first = _hrs.find_contiguous(num_regions);
 648       if (first != G1_NULL_HRS_INDEX) {
 649         for (uint i = first; i < first + num_regions; ++i) {
 650           HeapRegion* hr = region_at(i);
 651           assert(hr->is_empty(), "sanity");
 652           assert(is_on_master_free_list(hr), "sanity");
 653           hr->set_pending_removal(true);
 654         }
 655         _free_list.remove_all_pending(num_regions);
 656       }
 657     }
 658   }
 659   return first;
 660 }
 661 
 662 HeapWord*
 663 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 664                                                            uint num_regions,
 665                                                            size_t word_size) {
 666   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 667   assert(isHumongous(word_size), "word_size should be humongous");
 668   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 669 
 670   // Index of last region in the series + 1.
 671   uint last = first + num_regions;
 672 
 673   // We need to initialize the region(s) we just discovered. This is
 674   // a bit tricky given that it can happen concurrently with
 675   // refinement threads refining cards on these regions and
 676   // potentially wanting to refine the BOT as they are scanning
 677   // those cards (this can happen shortly after a cleanup; see CR
 678   // 6991377). So we have to set up the region(s) carefully and in
 679   // a specific order.
 680 
 681   // The word size sum of all the regions we will allocate.
 682   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 683   assert(word_size <= word_size_sum, "sanity");
 684 
 685   // This will be the "starts humongous" region.
 686   HeapRegion* first_hr = region_at(first);
 687   // The header of the new object will be placed at the bottom of
 688   // the first region.
 689   HeapWord* new_obj = first_hr->bottom();
 690   // This will be the new end of the first region in the series that
 691   // should also match the end of the last region in the seriers.
 692   HeapWord* new_end = new_obj + word_size_sum;
 693   // This will be the new top of the first region that will reflect
 694   // this allocation.
 695   HeapWord* new_top = new_obj + word_size;
 696 
 697   // First, we need to zero the header of the space that we will be
 698   // allocating. When we update top further down, some refinement
 699   // threads might try to scan the region. By zeroing the header we
 700   // ensure that any thread that will try to scan the region will
 701   // come across the zero klass word and bail out.
 702   //
 703   // NOTE: It would not have been correct to have used
 704   // CollectedHeap::fill_with_object() and make the space look like
 705   // an int array. The thread that is doing the allocation will
 706   // later update the object header to a potentially different array
 707   // type and, for a very short period of time, the klass and length
 708   // fields will be inconsistent. This could cause a refinement
 709   // thread to calculate the object size incorrectly.
 710   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 711 
 712   // We will set up the first region as "starts humongous". This
 713   // will also update the BOT covering all the regions to reflect
 714   // that there is a single object that starts at the bottom of the
 715   // first region.
 716   first_hr->set_startsHumongous(new_top, new_end);
 717 
 718   // Then, if there are any, we will set up the "continues
 719   // humongous" regions.
 720   HeapRegion* hr = NULL;
 721   for (uint i = first + 1; i < last; ++i) {
 722     hr = region_at(i);
 723     hr->set_continuesHumongous(first_hr);
 724   }
 725   // If we have "continues humongous" regions (hr != NULL), then the
 726   // end of the last one should match new_end.
 727   assert(hr == NULL || hr->end() == new_end, "sanity");
 728 
 729   // Up to this point no concurrent thread would have been able to
 730   // do any scanning on any region in this series. All the top
 731   // fields still point to bottom, so the intersection between
 732   // [bottom,top] and [card_start,card_end] will be empty. Before we
 733   // update the top fields, we'll do a storestore to make sure that
 734   // no thread sees the update to top before the zeroing of the
 735   // object header and the BOT initialization.
 736   OrderAccess::storestore();
 737 
 738   // Now that the BOT and the object header have been initialized,
 739   // we can update top of the "starts humongous" region.
 740   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 741          "new_top should be in this region");
 742   first_hr->set_top(new_top);
 743   if (_hr_printer.is_active()) {
 744     HeapWord* bottom = first_hr->bottom();
 745     HeapWord* end = first_hr->orig_end();
 746     if ((first + 1) == last) {
 747       // the series has a single humongous region
 748       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 749     } else {
 750       // the series has more than one humongous regions
 751       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 752     }
 753   }
 754 
 755   // Now, we will update the top fields of the "continues humongous"
 756   // regions. The reason we need to do this is that, otherwise,
 757   // these regions would look empty and this will confuse parts of
 758   // G1. For example, the code that looks for a consecutive number
 759   // of empty regions will consider them empty and try to
 760   // re-allocate them. We can extend is_empty() to also include
 761   // !continuesHumongous(), but it is easier to just update the top
 762   // fields here. The way we set top for all regions (i.e., top ==
 763   // end for all regions but the last one, top == new_top for the
 764   // last one) is actually used when we will free up the humongous
 765   // region in free_humongous_region().
 766   hr = NULL;
 767   for (uint i = first + 1; i < last; ++i) {
 768     hr = region_at(i);
 769     if ((i + 1) == last) {
 770       // last continues humongous region
 771       assert(hr->bottom() < new_top && new_top <= hr->end(),
 772              "new_top should fall on this region");
 773       hr->set_top(new_top);
 774       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 775     } else {
 776       // not last one
 777       assert(new_top > hr->end(), "new_top should be above this region");
 778       hr->set_top(hr->end());
 779       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 780     }
 781   }
 782   // If we have continues humongous regions (hr != NULL), then the
 783   // end of the last one should match new_end and its top should
 784   // match new_top.
 785   assert(hr == NULL ||
 786          (hr->end() == new_end && hr->top() == new_top), "sanity");
 787 
 788   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 789   _summary_bytes_used += first_hr->used();
 790   _humongous_set.add(first_hr);
 791 
 792   return new_obj;
 793 }
 794 
 795 // If could fit into free regions w/o expansion, try.
 796 // Otherwise, if can expand, do so.
 797 // Otherwise, if using ex regions might help, try with ex given back.
 798 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 799   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 800 
 801   verify_region_sets_optional();
 802 
 803   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 804   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 805   uint x_num = expansion_regions();
 806   uint fs = _hrs.free_suffix();
 807   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 808   if (first == G1_NULL_HRS_INDEX) {
 809     // The only thing we can do now is attempt expansion.
 810     if (fs + x_num >= num_regions) {
 811       // If the number of regions we're trying to allocate for this
 812       // object is at most the number of regions in the free suffix,
 813       // then the call to humongous_obj_allocate_find_first() above
 814       // should have succeeded and we wouldn't be here.
 815       //
 816       // We should only be trying to expand when the free suffix is
 817       // not sufficient for the object _and_ we have some expansion
 818       // room available.
 819       assert(num_regions > fs, "earlier allocation should have succeeded");
 820 
 821       ergo_verbose1(ErgoHeapSizing,
 822                     "attempt heap expansion",
 823                     ergo_format_reason("humongous allocation request failed")
 824                     ergo_format_byte("allocation request"),
 825                     word_size * HeapWordSize);
 826       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 827         // Even though the heap was expanded, it might not have
 828         // reached the desired size. So, we cannot assume that the
 829         // allocation will succeed.
 830         first = humongous_obj_allocate_find_first(num_regions, word_size);
 831       }
 832     }
 833   }
 834 
 835   HeapWord* result = NULL;
 836   if (first != G1_NULL_HRS_INDEX) {
 837     result =
 838       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 839     assert(result != NULL, "it should always return a valid result");
 840 
 841     // A successful humongous object allocation changes the used space
 842     // information of the old generation so we need to recalculate the
 843     // sizes and update the jstat counters here.
 844     g1mm()->update_sizes();
 845   }
 846 
 847   verify_region_sets_optional();
 848 
 849   return result;
 850 }
 851 
 852 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 853   assert_heap_not_locked_and_not_at_safepoint();
 854   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 855 
 856   unsigned int dummy_gc_count_before;
 857   int dummy_gclocker_retry_count = 0;
 858   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 859 }
 860 
 861 HeapWord*
 862 G1CollectedHeap::mem_allocate(size_t word_size,
 863                               bool*  gc_overhead_limit_was_exceeded) {
 864   assert_heap_not_locked_and_not_at_safepoint();
 865 
 866   // Loop until the allocation is satisified, or unsatisfied after GC.
 867   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 868     unsigned int gc_count_before;
 869 
 870     HeapWord* result = NULL;
 871     if (!isHumongous(word_size)) {
 872       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 873     } else {
 874       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 875     }
 876     if (result != NULL) {
 877       return result;
 878     }
 879 
 880     // Create the garbage collection operation...
 881     VM_G1CollectForAllocation op(gc_count_before, word_size);
 882     // ...and get the VM thread to execute it.
 883     VMThread::execute(&op);
 884 
 885     if (op.prologue_succeeded() && op.pause_succeeded()) {
 886       // If the operation was successful we'll return the result even
 887       // if it is NULL. If the allocation attempt failed immediately
 888       // after a Full GC, it's unlikely we'll be able to allocate now.
 889       HeapWord* result = op.result();
 890       if (result != NULL && !isHumongous(word_size)) {
 891         // Allocations that take place on VM operations do not do any
 892         // card dirtying and we have to do it here. We only have to do
 893         // this for non-humongous allocations, though.
 894         dirty_young_block(result, word_size);
 895       }
 896       return result;
 897     } else {
 898       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 899         return NULL;
 900       }
 901       assert(op.result() == NULL,
 902              "the result should be NULL if the VM op did not succeed");
 903     }
 904 
 905     // Give a warning if we seem to be looping forever.
 906     if ((QueuedAllocationWarningCount > 0) &&
 907         (try_count % QueuedAllocationWarningCount == 0)) {
 908       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 909     }
 910   }
 911 
 912   ShouldNotReachHere();
 913   return NULL;
 914 }
 915 
 916 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 917                                            unsigned int *gc_count_before_ret,
 918                                            int* gclocker_retry_count_ret) {
 919   // Make sure you read the note in attempt_allocation_humongous().
 920 
 921   assert_heap_not_locked_and_not_at_safepoint();
 922   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 923          "be called for humongous allocation requests");
 924 
 925   // We should only get here after the first-level allocation attempt
 926   // (attempt_allocation()) failed to allocate.
 927 
 928   // We will loop until a) we manage to successfully perform the
 929   // allocation or b) we successfully schedule a collection which
 930   // fails to perform the allocation. b) is the only case when we'll
 931   // return NULL.
 932   HeapWord* result = NULL;
 933   for (int try_count = 1; /* we'll return */; try_count += 1) {
 934     bool should_try_gc;
 935     unsigned int gc_count_before;
 936 
 937     {
 938       MutexLockerEx x(Heap_lock);
 939 
 940       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 941                                                       false /* bot_updates */);
 942       if (result != NULL) {
 943         return result;
 944       }
 945 
 946       // If we reach here, attempt_allocation_locked() above failed to
 947       // allocate a new region. So the mutator alloc region should be NULL.
 948       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 949 
 950       if (GC_locker::is_active_and_needs_gc()) {
 951         if (g1_policy()->can_expand_young_list()) {
 952           // No need for an ergo verbose message here,
 953           // can_expand_young_list() does this when it returns true.
 954           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 955                                                       false /* bot_updates */);
 956           if (result != NULL) {
 957             return result;
 958           }
 959         }
 960         should_try_gc = false;
 961       } else {
 962         // The GCLocker may not be active but the GCLocker initiated
 963         // GC may not yet have been performed (GCLocker::needs_gc()
 964         // returns true). In this case we do not try this GC and
 965         // wait until the GCLocker initiated GC is performed, and
 966         // then retry the allocation.
 967         if (GC_locker::needs_gc()) {
 968           should_try_gc = false;
 969         } else {
 970           // Read the GC count while still holding the Heap_lock.
 971           gc_count_before = total_collections();
 972           should_try_gc = true;
 973         }
 974       }
 975     }
 976 
 977     if (should_try_gc) {
 978       bool succeeded;
 979       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 980       if (result != NULL) {
 981         assert(succeeded, "only way to get back a non-NULL result");
 982         return result;
 983       }
 984 
 985       if (succeeded) {
 986         // If we get here we successfully scheduled a collection which
 987         // failed to allocate. No point in trying to allocate
 988         // further. We'll just return NULL.
 989         MutexLockerEx x(Heap_lock);
 990         *gc_count_before_ret = total_collections();
 991         return NULL;
 992       }
 993     } else {
 994       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 995         MutexLockerEx x(Heap_lock);
 996         *gc_count_before_ret = total_collections();
 997         return NULL;
 998       }
 999       // The GCLocker is either active or the GCLocker initiated
1000       // GC has not yet been performed. Stall until it is and
1001       // then retry the allocation.
1002       GC_locker::stall_until_clear();
1003       (*gclocker_retry_count_ret) += 1;
1004     }
1005 
1006     // We can reach here if we were unsuccessul in scheduling a
1007     // collection (because another thread beat us to it) or if we were
1008     // stalled due to the GC locker. In either can we should retry the
1009     // allocation attempt in case another thread successfully
1010     // performed a collection and reclaimed enough space. We do the
1011     // first attempt (without holding the Heap_lock) here and the
1012     // follow-on attempt will be at the start of the next loop
1013     // iteration (after taking the Heap_lock).
1014     result = _mutator_alloc_region.attempt_allocation(word_size,
1015                                                       false /* bot_updates */);
1016     if (result != NULL) {
1017       return result;
1018     }
1019 
1020     // Give a warning if we seem to be looping forever.
1021     if ((QueuedAllocationWarningCount > 0) &&
1022         (try_count % QueuedAllocationWarningCount == 0)) {
1023       warning("G1CollectedHeap::attempt_allocation_slow() "
1024               "retries %d times", try_count);
1025     }
1026   }
1027 
1028   ShouldNotReachHere();
1029   return NULL;
1030 }
1031 
1032 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1033                                           unsigned int * gc_count_before_ret,
1034                                           int* gclocker_retry_count_ret) {
1035   // The structure of this method has a lot of similarities to
1036   // attempt_allocation_slow(). The reason these two were not merged
1037   // into a single one is that such a method would require several "if
1038   // allocation is not humongous do this, otherwise do that"
1039   // conditional paths which would obscure its flow. In fact, an early
1040   // version of this code did use a unified method which was harder to
1041   // follow and, as a result, it had subtle bugs that were hard to
1042   // track down. So keeping these two methods separate allows each to
1043   // be more readable. It will be good to keep these two in sync as
1044   // much as possible.
1045 
1046   assert_heap_not_locked_and_not_at_safepoint();
1047   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1048          "should only be called for humongous allocations");
1049 
1050   // Humongous objects can exhaust the heap quickly, so we should check if we
1051   // need to start a marking cycle at each humongous object allocation. We do
1052   // the check before we do the actual allocation. The reason for doing it
1053   // before the allocation is that we avoid having to keep track of the newly
1054   // allocated memory while we do a GC.
1055   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1056                                            word_size)) {
1057     collect(GCCause::_g1_humongous_allocation);
1058   }
1059 
1060   // We will loop until a) we manage to successfully perform the
1061   // allocation or b) we successfully schedule a collection which
1062   // fails to perform the allocation. b) is the only case when we'll
1063   // return NULL.
1064   HeapWord* result = NULL;
1065   for (int try_count = 1; /* we'll return */; try_count += 1) {
1066     bool should_try_gc;
1067     unsigned int gc_count_before;
1068 
1069     {
1070       MutexLockerEx x(Heap_lock);
1071 
1072       // Given that humongous objects are not allocated in young
1073       // regions, we'll first try to do the allocation without doing a
1074       // collection hoping that there's enough space in the heap.
1075       result = humongous_obj_allocate(word_size);
1076       if (result != NULL) {
1077         return result;
1078       }
1079 
1080       if (GC_locker::is_active_and_needs_gc()) {
1081         should_try_gc = false;
1082       } else {
1083          // The GCLocker may not be active but the GCLocker initiated
1084         // GC may not yet have been performed (GCLocker::needs_gc()
1085         // returns true). In this case we do not try this GC and
1086         // wait until the GCLocker initiated GC is performed, and
1087         // then retry the allocation.
1088         if (GC_locker::needs_gc()) {
1089           should_try_gc = false;
1090         } else {
1091           // Read the GC count while still holding the Heap_lock.
1092           gc_count_before = total_collections();
1093           should_try_gc = true;
1094         }
1095       }
1096     }
1097 
1098     if (should_try_gc) {
1099       // If we failed to allocate the humongous object, we should try to
1100       // do a collection pause (if we're allowed) in case it reclaims
1101       // enough space for the allocation to succeed after the pause.
1102 
1103       bool succeeded;
1104       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1105       if (result != NULL) {
1106         assert(succeeded, "only way to get back a non-NULL result");
1107         return result;
1108       }
1109 
1110       if (succeeded) {
1111         // If we get here we successfully scheduled a collection which
1112         // failed to allocate. No point in trying to allocate
1113         // further. We'll just return NULL.
1114         MutexLockerEx x(Heap_lock);
1115         *gc_count_before_ret = total_collections();
1116         return NULL;
1117       }
1118     } else {
1119       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1120         MutexLockerEx x(Heap_lock);
1121         *gc_count_before_ret = total_collections();
1122         return NULL;
1123       }
1124       // The GCLocker is either active or the GCLocker initiated
1125       // GC has not yet been performed. Stall until it is and
1126       // then retry the allocation.
1127       GC_locker::stall_until_clear();
1128       (*gclocker_retry_count_ret) += 1;
1129     }
1130 
1131     // We can reach here if we were unsuccessul in scheduling a
1132     // collection (because another thread beat us to it) or if we were
1133     // stalled due to the GC locker. In either can we should retry the
1134     // allocation attempt in case another thread successfully
1135     // performed a collection and reclaimed enough space.  Give a
1136     // warning if we seem to be looping forever.
1137 
1138     if ((QueuedAllocationWarningCount > 0) &&
1139         (try_count % QueuedAllocationWarningCount == 0)) {
1140       warning("G1CollectedHeap::attempt_allocation_humongous() "
1141               "retries %d times", try_count);
1142     }
1143   }
1144 
1145   ShouldNotReachHere();
1146   return NULL;
1147 }
1148 
1149 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1150                                        bool expect_null_mutator_alloc_region) {
1151   assert_at_safepoint(true /* should_be_vm_thread */);
1152   assert(_mutator_alloc_region.get() == NULL ||
1153                                              !expect_null_mutator_alloc_region,
1154          "the current alloc region was unexpectedly found to be non-NULL");
1155 
1156   if (!isHumongous(word_size)) {
1157     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1158                                                       false /* bot_updates */);
1159   } else {
1160     HeapWord* result = humongous_obj_allocate(word_size);
1161     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1162       g1_policy()->set_initiate_conc_mark_if_possible();
1163     }
1164     return result;
1165   }
1166 
1167   ShouldNotReachHere();
1168 }
1169 
1170 class PostMCRemSetClearClosure: public HeapRegionClosure {
1171   G1CollectedHeap* _g1h;
1172   ModRefBarrierSet* _mr_bs;
1173 public:
1174   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1175     _g1h(g1h), _mr_bs(mr_bs) { }
1176   bool doHeapRegion(HeapRegion* r) {
1177     if (r->continuesHumongous()) {
1178       return false;
1179     }
1180     _g1h->reset_gc_time_stamps(r);
1181     HeapRegionRemSet* hrrs = r->rem_set();
1182     if (hrrs != NULL) hrrs->clear();
1183     // You might think here that we could clear just the cards
1184     // corresponding to the used region.  But no: if we leave a dirty card
1185     // in a region we might allocate into, then it would prevent that card
1186     // from being enqueued, and cause it to be missed.
1187     // Re: the performance cost: we shouldn't be doing full GC anyway!
1188     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1189     return false;
1190   }
1191 };
1192 
1193 void G1CollectedHeap::clear_rsets_post_compaction() {
1194   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1195   heap_region_iterate(&rs_clear);
1196 }
1197 
1198 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1199   G1CollectedHeap*   _g1h;
1200   UpdateRSOopClosure _cl;
1201   int                _worker_i;
1202 public:
1203   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1204     _cl(g1->g1_rem_set(), worker_i),
1205     _worker_i(worker_i),
1206     _g1h(g1)
1207   { }
1208 
1209   bool doHeapRegion(HeapRegion* r) {
1210     if (!r->continuesHumongous()) {
1211       _cl.set_from(r);
1212       r->oop_iterate(&_cl);
1213     }
1214     return false;
1215   }
1216 };
1217 
1218 class ParRebuildRSTask: public AbstractGangTask {
1219   G1CollectedHeap* _g1;
1220 public:
1221   ParRebuildRSTask(G1CollectedHeap* g1)
1222     : AbstractGangTask("ParRebuildRSTask"),
1223       _g1(g1)
1224   { }
1225 
1226   void work(uint worker_id) {
1227     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1228     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1229                                           _g1->workers()->active_workers(),
1230                                          HeapRegion::RebuildRSClaimValue);
1231   }
1232 };
1233 
1234 class PostCompactionPrinterClosure: public HeapRegionClosure {
1235 private:
1236   G1HRPrinter* _hr_printer;
1237 public:
1238   bool doHeapRegion(HeapRegion* hr) {
1239     assert(!hr->is_young(), "not expecting to find young regions");
1240     // We only generate output for non-empty regions.
1241     if (!hr->is_empty()) {
1242       if (!hr->isHumongous()) {
1243         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1244       } else if (hr->startsHumongous()) {
1245         if (hr->region_num() == 1) {
1246           // single humongous region
1247           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1248         } else {
1249           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1250         }
1251       } else {
1252         assert(hr->continuesHumongous(), "only way to get here");
1253         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1254       }
1255     }
1256     return false;
1257   }
1258 
1259   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1260     : _hr_printer(hr_printer) { }
1261 };
1262 
1263 void G1CollectedHeap::print_hrs_post_compaction() {
1264   PostCompactionPrinterClosure cl(hr_printer());
1265   heap_region_iterate(&cl);
1266 }
1267 
1268 double G1CollectedHeap::verify(bool guard, const char* msg) {
1269   double verify_time_ms = 0.0;
1270 
1271   if (guard && total_collections() >= VerifyGCStartAt) {
1272     double verify_start = os::elapsedTime();
1273     HandleMark hm;  // Discard invalid handles created during verification
1274     gclog_or_tty->print(msg);
1275     prepare_for_verify();
1276     Universe::verify(false /* silent */, VerifyOption_G1UsePrevMarking);
1277     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
1278   }
1279 
1280   return verify_time_ms;
1281 }
1282 
1283 void G1CollectedHeap::verify_before_gc() {
1284   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
1285   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
1286 }
1287 
1288 void G1CollectedHeap::verify_after_gc() {
1289   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
1290   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
1291 }
1292 
1293 bool G1CollectedHeap::do_collection(bool explicit_gc,
1294                                     bool clear_all_soft_refs,
1295                                     size_t word_size) {
1296   assert_at_safepoint(true /* should_be_vm_thread */);
1297 
1298   if (GC_locker::check_active_before_gc()) {
1299     return false;
1300   }
1301 
1302   SvcGCMarker sgcm(SvcGCMarker::FULL);
1303   ResourceMark rm;
1304 
1305   print_heap_before_gc();
1306 
1307   size_t metadata_prev_used = MetaspaceAux::used_in_bytes();
1308 
1309   HRSPhaseSetter x(HRSPhaseFullGC);
1310   verify_region_sets_optional();
1311 
1312   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1313                            collector_policy()->should_clear_all_soft_refs();
1314 
1315   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1316 
1317   {
1318     IsGCActiveMark x;
1319 
1320     // Timing
1321     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1322     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1323     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1324 
1325     {
1326       TraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, gclog_or_tty);
1327       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1328       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1329 
1330       double start = os::elapsedTime();
1331       g1_policy()->record_full_collection_start();
1332 
1333       // Note: When we have a more flexible GC logging framework that
1334       // allows us to add optional attributes to a GC log record we
1335       // could consider timing and reporting how long we wait in the
1336       // following two methods.
1337       wait_while_free_regions_coming();
1338       // If we start the compaction before the CM threads finish
1339       // scanning the root regions we might trip them over as we'll
1340       // be moving objects / updating references. So let's wait until
1341       // they are done. By telling them to abort, they should complete
1342       // early.
1343       _cm->root_regions()->abort();
1344       _cm->root_regions()->wait_until_scan_finished();
1345       append_secondary_free_list_if_not_empty_with_lock();
1346 
1347       gc_prologue(true);
1348       increment_total_collections(true /* full gc */);
1349       increment_old_marking_cycles_started();
1350 
1351       assert(used() == recalculate_used(), "Should be equal");
1352 
1353       verify_before_gc();
1354 
1355       pre_full_gc_dump();
1356 
1357       COMPILER2_PRESENT(DerivedPointerTable::clear());
1358 
1359       // Disable discovery and empty the discovered lists
1360       // for the CM ref processor.
1361       ref_processor_cm()->disable_discovery();
1362       ref_processor_cm()->abandon_partial_discovery();
1363       ref_processor_cm()->verify_no_references_recorded();
1364 
1365       // Abandon current iterations of concurrent marking and concurrent
1366       // refinement, if any are in progress. We have to do this before
1367       // wait_until_scan_finished() below.
1368       concurrent_mark()->abort();
1369 
1370       // Make sure we'll choose a new allocation region afterwards.
1371       release_mutator_alloc_region();
1372       abandon_gc_alloc_regions();
1373       g1_rem_set()->cleanupHRRS();
1374 
1375       // We should call this after we retire any currently active alloc
1376       // regions so that all the ALLOC / RETIRE events are generated
1377       // before the start GC event.
1378       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1379 
1380       // We may have added regions to the current incremental collection
1381       // set between the last GC or pause and now. We need to clear the
1382       // incremental collection set and then start rebuilding it afresh
1383       // after this full GC.
1384       abandon_collection_set(g1_policy()->inc_cset_head());
1385       g1_policy()->clear_incremental_cset();
1386       g1_policy()->stop_incremental_cset_building();
1387 
1388       tear_down_region_sets(false /* free_list_only */);
1389       g1_policy()->set_gcs_are_young(true);
1390 
1391       // See the comments in g1CollectedHeap.hpp and
1392       // G1CollectedHeap::ref_processing_init() about
1393       // how reference processing currently works in G1.
1394 
1395       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1396       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1397 
1398       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1399       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1400 
1401       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1402       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1403 
1404       // Do collection work
1405       {
1406         HandleMark hm;  // Discard invalid handles created during gc
1407         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1408       }
1409 
1410       assert(free_regions() == 0, "we should not have added any free regions");
1411       rebuild_region_sets(false /* free_list_only */);
1412 
1413       // Enqueue any discovered reference objects that have
1414       // not been removed from the discovered lists.
1415       ref_processor_stw()->enqueue_discovered_references();
1416 
1417       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1418 
1419       MemoryService::track_memory_usage();
1420 
1421       verify_after_gc();
1422 
1423       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1424       ref_processor_stw()->verify_no_references_recorded();
1425 
1426       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1427       ClassLoaderDataGraph::purge();
1428 
1429       // Note: since we've just done a full GC, concurrent
1430       // marking is no longer active. Therefore we need not
1431       // re-enable reference discovery for the CM ref processor.
1432       // That will be done at the start of the next marking cycle.
1433       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1434       ref_processor_cm()->verify_no_references_recorded();
1435 
1436       reset_gc_time_stamp();
1437       // Since everything potentially moved, we will clear all remembered
1438       // sets, and clear all cards.  Later we will rebuild remebered
1439       // sets. We will also reset the GC time stamps of the regions.
1440       clear_rsets_post_compaction();
1441       check_gc_time_stamps();
1442 
1443       // Resize the heap if necessary.
1444       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1445 
1446       if (_hr_printer.is_active()) {
1447         // We should do this after we potentially resize the heap so
1448         // that all the COMMIT / UNCOMMIT events are generated before
1449         // the end GC event.
1450 
1451         print_hrs_post_compaction();
1452         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1453       }
1454 
1455       if (_cg1r->use_cache()) {
1456         _cg1r->clear_and_record_card_counts();
1457         _cg1r->clear_hot_cache();
1458       }
1459 
1460       // Rebuild remembered sets of all regions.
1461       if (G1CollectedHeap::use_parallel_gc_threads()) {
1462         uint n_workers =
1463           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1464                                                   workers()->active_workers(),
1465                                                   Threads::number_of_non_daemon_threads());
1466         assert(UseDynamicNumberOfGCThreads ||
1467                n_workers == workers()->total_workers(),
1468                "If not dynamic should be using all the  workers");
1469         workers()->set_active_workers(n_workers);
1470         // Set parallel threads in the heap (_n_par_threads) only
1471         // before a parallel phase and always reset it to 0 after
1472         // the phase so that the number of parallel threads does
1473         // no get carried forward to a serial phase where there
1474         // may be code that is "possibly_parallel".
1475         set_par_threads(n_workers);
1476 
1477         ParRebuildRSTask rebuild_rs_task(this);
1478         assert(check_heap_region_claim_values(
1479                HeapRegion::InitialClaimValue), "sanity check");
1480         assert(UseDynamicNumberOfGCThreads ||
1481                workers()->active_workers() == workers()->total_workers(),
1482                "Unless dynamic should use total workers");
1483         // Use the most recent number of  active workers
1484         assert(workers()->active_workers() > 0,
1485                "Active workers not properly set");
1486         set_par_threads(workers()->active_workers());
1487         workers()->run_task(&rebuild_rs_task);
1488         set_par_threads(0);
1489         assert(check_heap_region_claim_values(
1490                HeapRegion::RebuildRSClaimValue), "sanity check");
1491         reset_heap_region_claim_values();
1492       } else {
1493         RebuildRSOutOfRegionClosure rebuild_rs(this);
1494         heap_region_iterate(&rebuild_rs);
1495       }
1496 
1497       if (true) { // FIXME
1498         MetaspaceGC::compute_new_size();
1499       }
1500 
1501 #ifdef TRACESPINNING
1502       ParallelTaskTerminator::print_termination_counts();
1503 #endif
1504 
1505       // Discard all rset updates
1506       JavaThread::dirty_card_queue_set().abandon_logs();
1507       assert(!G1DeferredRSUpdate
1508              || (G1DeferredRSUpdate &&
1509                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1510 
1511       _young_list->reset_sampled_info();
1512       // At this point there should be no regions in the
1513       // entire heap tagged as young.
1514       assert(check_young_list_empty(true /* check_heap */),
1515              "young list should be empty at this point");
1516 
1517       // Update the number of full collections that have been completed.
1518       increment_old_marking_cycles_completed(false /* concurrent */);
1519 
1520       _hrs.verify_optional();
1521       verify_region_sets_optional();
1522 
1523       // Start a new incremental collection set for the next pause
1524       assert(g1_policy()->collection_set() == NULL, "must be");
1525       g1_policy()->start_incremental_cset_building();
1526 
1527       // Clear the _cset_fast_test bitmap in anticipation of adding
1528       // regions to the incremental collection set for the next
1529       // evacuation pause.
1530       clear_cset_fast_test();
1531 
1532       init_mutator_alloc_region();
1533 
1534       double end = os::elapsedTime();
1535       g1_policy()->record_full_collection_end();
1536 
1537       if (G1Log::fine()) {
1538         g1_policy()->print_heap_transition();
1539       }
1540 
1541       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1542       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1543       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1544       // before any GC notifications are raised.
1545       g1mm()->update_sizes();
1546 
1547       gc_epilogue(true);
1548     }
1549 
1550     if (G1Log::finer()) {
1551       g1_policy()->print_detailed_heap_transition();
1552     }
1553 
1554     print_heap_after_gc();
1555 
1556     post_full_gc_dump();
1557   }
1558 
1559   return true;
1560 }
1561 
1562 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1563   // do_collection() will return whether it succeeded in performing
1564   // the GC. Currently, there is no facility on the
1565   // do_full_collection() API to notify the caller than the collection
1566   // did not succeed (e.g., because it was locked out by the GC
1567   // locker). So, right now, we'll ignore the return value.
1568   bool dummy = do_collection(true,                /* explicit_gc */
1569                              clear_all_soft_refs,
1570                              0                    /* word_size */);
1571 }
1572 
1573 // This code is mostly copied from TenuredGeneration.
1574 void
1575 G1CollectedHeap::
1576 resize_if_necessary_after_full_collection(size_t word_size) {
1577   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1578 
1579   // Include the current allocation, if any, and bytes that will be
1580   // pre-allocated to support collections, as "used".
1581   const size_t used_after_gc = used();
1582   const size_t capacity_after_gc = capacity();
1583   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1584 
1585   // This is enforced in arguments.cpp.
1586   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1587          "otherwise the code below doesn't make sense");
1588 
1589   // We don't have floating point command-line arguments
1590   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1591   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1592   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1593   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1594 
1595   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1596   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1597 
1598   // We have to be careful here as these two calculations can overflow
1599   // 32-bit size_t's.
1600   double used_after_gc_d = (double) used_after_gc;
1601   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1602   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1603 
1604   // Let's make sure that they are both under the max heap size, which
1605   // by default will make them fit into a size_t.
1606   double desired_capacity_upper_bound = (double) max_heap_size;
1607   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1608                                     desired_capacity_upper_bound);
1609   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1610                                     desired_capacity_upper_bound);
1611 
1612   // We can now safely turn them into size_t's.
1613   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1614   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1615 
1616   // This assert only makes sense here, before we adjust them
1617   // with respect to the min and max heap size.
1618   assert(minimum_desired_capacity <= maximum_desired_capacity,
1619          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1620                  "maximum_desired_capacity = "SIZE_FORMAT,
1621                  minimum_desired_capacity, maximum_desired_capacity));
1622 
1623   // Should not be greater than the heap max size. No need to adjust
1624   // it with respect to the heap min size as it's a lower bound (i.e.,
1625   // we'll try to make the capacity larger than it, not smaller).
1626   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1627   // Should not be less than the heap min size. No need to adjust it
1628   // with respect to the heap max size as it's an upper bound (i.e.,
1629   // we'll try to make the capacity smaller than it, not greater).
1630   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1631 
1632   if (capacity_after_gc < minimum_desired_capacity) {
1633     // Don't expand unless it's significant
1634     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1635     ergo_verbose4(ErgoHeapSizing,
1636                   "attempt heap expansion",
1637                   ergo_format_reason("capacity lower than "
1638                                      "min desired capacity after Full GC")
1639                   ergo_format_byte("capacity")
1640                   ergo_format_byte("occupancy")
1641                   ergo_format_byte_perc("min desired capacity"),
1642                   capacity_after_gc, used_after_gc,
1643                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1644     expand(expand_bytes);
1645 
1646     // No expansion, now see if we want to shrink
1647   } else if (capacity_after_gc > maximum_desired_capacity) {
1648     // Capacity too large, compute shrinking size
1649     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1650     ergo_verbose4(ErgoHeapSizing,
1651                   "attempt heap shrinking",
1652                   ergo_format_reason("capacity higher than "
1653                                      "max desired capacity after Full GC")
1654                   ergo_format_byte("capacity")
1655                   ergo_format_byte("occupancy")
1656                   ergo_format_byte_perc("max desired capacity"),
1657                   capacity_after_gc, used_after_gc,
1658                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1659     shrink(shrink_bytes);
1660   }
1661 }
1662 
1663 
1664 HeapWord*
1665 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1666                                            bool* succeeded) {
1667   assert_at_safepoint(true /* should_be_vm_thread */);
1668 
1669   *succeeded = true;
1670   // Let's attempt the allocation first.
1671   HeapWord* result =
1672     attempt_allocation_at_safepoint(word_size,
1673                                  false /* expect_null_mutator_alloc_region */);
1674   if (result != NULL) {
1675     assert(*succeeded, "sanity");
1676     return result;
1677   }
1678 
1679   // In a G1 heap, we're supposed to keep allocation from failing by
1680   // incremental pauses.  Therefore, at least for now, we'll favor
1681   // expansion over collection.  (This might change in the future if we can
1682   // do something smarter than full collection to satisfy a failed alloc.)
1683   result = expand_and_allocate(word_size);
1684   if (result != NULL) {
1685     assert(*succeeded, "sanity");
1686     return result;
1687   }
1688 
1689   // Expansion didn't work, we'll try to do a Full GC.
1690   bool gc_succeeded = do_collection(false, /* explicit_gc */
1691                                     false, /* clear_all_soft_refs */
1692                                     word_size);
1693   if (!gc_succeeded) {
1694     *succeeded = false;
1695     return NULL;
1696   }
1697 
1698   // Retry the allocation
1699   result = attempt_allocation_at_safepoint(word_size,
1700                                   true /* expect_null_mutator_alloc_region */);
1701   if (result != NULL) {
1702     assert(*succeeded, "sanity");
1703     return result;
1704   }
1705 
1706   // Then, try a Full GC that will collect all soft references.
1707   gc_succeeded = do_collection(false, /* explicit_gc */
1708                                true,  /* clear_all_soft_refs */
1709                                word_size);
1710   if (!gc_succeeded) {
1711     *succeeded = false;
1712     return NULL;
1713   }
1714 
1715   // Retry the allocation once more
1716   result = attempt_allocation_at_safepoint(word_size,
1717                                   true /* expect_null_mutator_alloc_region */);
1718   if (result != NULL) {
1719     assert(*succeeded, "sanity");
1720     return result;
1721   }
1722 
1723   assert(!collector_policy()->should_clear_all_soft_refs(),
1724          "Flag should have been handled and cleared prior to this point");
1725 
1726   // What else?  We might try synchronous finalization later.  If the total
1727   // space available is large enough for the allocation, then a more
1728   // complete compaction phase than we've tried so far might be
1729   // appropriate.
1730   assert(*succeeded, "sanity");
1731   return NULL;
1732 }
1733 
1734 // Attempting to expand the heap sufficiently
1735 // to support an allocation of the given "word_size".  If
1736 // successful, perform the allocation and return the address of the
1737 // allocated block, or else "NULL".
1738 
1739 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1740   assert_at_safepoint(true /* should_be_vm_thread */);
1741 
1742   verify_region_sets_optional();
1743 
1744   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1745   ergo_verbose1(ErgoHeapSizing,
1746                 "attempt heap expansion",
1747                 ergo_format_reason("allocation request failed")
1748                 ergo_format_byte("allocation request"),
1749                 word_size * HeapWordSize);
1750   if (expand(expand_bytes)) {
1751     _hrs.verify_optional();
1752     verify_region_sets_optional();
1753     return attempt_allocation_at_safepoint(word_size,
1754                                  false /* expect_null_mutator_alloc_region */);
1755   }
1756   return NULL;
1757 }
1758 
1759 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1760                                              HeapWord* new_end) {
1761   assert(old_end != new_end, "don't call this otherwise");
1762   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1763 
1764   // Update the committed mem region.
1765   _g1_committed.set_end(new_end);
1766   // Tell the card table about the update.
1767   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1768   // Tell the BOT about the update.
1769   _bot_shared->resize(_g1_committed.word_size());
1770 }
1771 
1772 bool G1CollectedHeap::expand(size_t expand_bytes) {
1773   size_t old_mem_size = _g1_storage.committed_size();
1774   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1775   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1776                                        HeapRegion::GrainBytes);
1777   ergo_verbose2(ErgoHeapSizing,
1778                 "expand the heap",
1779                 ergo_format_byte("requested expansion amount")
1780                 ergo_format_byte("attempted expansion amount"),
1781                 expand_bytes, aligned_expand_bytes);
1782 
1783   // First commit the memory.
1784   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1785   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1786   if (successful) {
1787     // Then propagate this update to the necessary data structures.
1788     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1789     update_committed_space(old_end, new_end);
1790 
1791     FreeRegionList expansion_list("Local Expansion List");
1792     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1793     assert(mr.start() == old_end, "post-condition");
1794     // mr might be a smaller region than what was requested if
1795     // expand_by() was unable to allocate the HeapRegion instances
1796     assert(mr.end() <= new_end, "post-condition");
1797 
1798     size_t actual_expand_bytes = mr.byte_size();
1799     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1800     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1801            "post-condition");
1802     if (actual_expand_bytes < aligned_expand_bytes) {
1803       // We could not expand _hrs to the desired size. In this case we
1804       // need to shrink the committed space accordingly.
1805       assert(mr.end() < new_end, "invariant");
1806 
1807       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1808       // First uncommit the memory.
1809       _g1_storage.shrink_by(diff_bytes);
1810       // Then propagate this update to the necessary data structures.
1811       update_committed_space(new_end, mr.end());
1812     }
1813     _free_list.add_as_tail(&expansion_list);
1814 
1815     if (_hr_printer.is_active()) {
1816       HeapWord* curr = mr.start();
1817       while (curr < mr.end()) {
1818         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1819         _hr_printer.commit(curr, curr_end);
1820         curr = curr_end;
1821       }
1822       assert(curr == mr.end(), "post-condition");
1823     }
1824     g1_policy()->record_new_heap_size(n_regions());
1825   } else {
1826     ergo_verbose0(ErgoHeapSizing,
1827                   "did not expand the heap",
1828                   ergo_format_reason("heap expansion operation failed"));
1829     // The expansion of the virtual storage space was unsuccessful.
1830     // Let's see if it was because we ran out of swap.
1831     if (G1ExitOnExpansionFailure &&
1832         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1833       // We had head room...
1834       vm_exit_out_of_memory(aligned_expand_bytes, "G1 heap expansion");
1835     }
1836   }
1837   return successful;
1838 }
1839 
1840 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1841   size_t old_mem_size = _g1_storage.committed_size();
1842   size_t aligned_shrink_bytes =
1843     ReservedSpace::page_align_size_down(shrink_bytes);
1844   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1845                                          HeapRegion::GrainBytes);
1846   uint num_regions_deleted = 0;
1847   MemRegion mr = _hrs.shrink_by(aligned_shrink_bytes, &num_regions_deleted);
1848   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1849   assert(mr.end() == old_end, "post-condition");
1850 
1851   ergo_verbose3(ErgoHeapSizing,
1852                 "shrink the heap",
1853                 ergo_format_byte("requested shrinking amount")
1854                 ergo_format_byte("aligned shrinking amount")
1855                 ergo_format_byte("attempted shrinking amount"),
1856                 shrink_bytes, aligned_shrink_bytes, mr.byte_size());
1857   if (mr.byte_size() > 0) {
1858     if (_hr_printer.is_active()) {
1859       HeapWord* curr = mr.end();
1860       while (curr > mr.start()) {
1861         HeapWord* curr_end = curr;
1862         curr -= HeapRegion::GrainWords;
1863         _hr_printer.uncommit(curr, curr_end);
1864       }
1865       assert(curr == mr.start(), "post-condition");
1866     }
1867 
1868     _g1_storage.shrink_by(mr.byte_size());
1869     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1870     assert(mr.start() == new_end, "post-condition");
1871 
1872     _expansion_regions += num_regions_deleted;
1873     update_committed_space(old_end, new_end);
1874     HeapRegionRemSet::shrink_heap(n_regions());
1875     g1_policy()->record_new_heap_size(n_regions());
1876   } else {
1877     ergo_verbose0(ErgoHeapSizing,
1878                   "did not shrink the heap",
1879                   ergo_format_reason("heap shrinking operation failed"));
1880   }
1881 }
1882 
1883 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1884   verify_region_sets_optional();
1885 
1886   // We should only reach here at the end of a Full GC which means we
1887   // should not not be holding to any GC alloc regions. The method
1888   // below will make sure of that and do any remaining clean up.
1889   abandon_gc_alloc_regions();
1890 
1891   // Instead of tearing down / rebuilding the free lists here, we
1892   // could instead use the remove_all_pending() method on free_list to
1893   // remove only the ones that we need to remove.
1894   tear_down_region_sets(true /* free_list_only */);
1895   shrink_helper(shrink_bytes);
1896   rebuild_region_sets(true /* free_list_only */);
1897 
1898   _hrs.verify_optional();
1899   verify_region_sets_optional();
1900 }
1901 
1902 // Public methods.
1903 
1904 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1905 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1906 #endif // _MSC_VER
1907 
1908 
1909 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1910   SharedHeap(policy_),
1911   _g1_policy(policy_),
1912   _dirty_card_queue_set(false),
1913   _into_cset_dirty_card_queue_set(false),
1914   _is_alive_closure_cm(this),
1915   _is_alive_closure_stw(this),
1916   _ref_processor_cm(NULL),
1917   _ref_processor_stw(NULL),
1918   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1919   _bot_shared(NULL),
1920   _evac_failure_scan_stack(NULL) ,
1921   _mark_in_progress(false),
1922   _cg1r(NULL), _summary_bytes_used(0),
1923   _g1mm(NULL),
1924   _refine_cte_cl(NULL),
1925   _full_collection(false),
1926   _free_list("Master Free List"),
1927   _secondary_free_list("Secondary Free List"),
1928   _old_set("Old Set"),
1929   _humongous_set("Master Humongous Set"),
1930   _free_regions_coming(false),
1931   _young_list(new YoungList(this)),
1932   _gc_time_stamp(0),
1933   _retained_old_gc_alloc_region(NULL),
1934   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1935   _old_plab_stats(OldPLABSize, PLABWeight),
1936   _expand_heap_after_alloc_failure(true),
1937   _surviving_young_words(NULL),
1938   _old_marking_cycles_started(0),
1939   _old_marking_cycles_completed(0),
1940   _in_cset_fast_test(NULL),
1941   _in_cset_fast_test_base(NULL),
1942   _dirty_cards_region_list(NULL),
1943   _worker_cset_start_region(NULL),
1944   _worker_cset_start_region_time_stamp(NULL) {
1945   _g1h = this; // To catch bugs.
1946   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1947     vm_exit_during_initialization("Failed necessary allocation.");
1948   }
1949 
1950   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1951 
1952   int n_queues = MAX2((int)ParallelGCThreads, 1);
1953   _task_queues = new RefToScanQueueSet(n_queues);
1954 
1955   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1956   assert(n_rem_sets > 0, "Invariant.");
1957 
1958   HeapRegionRemSetIterator** iter_arr =
1959     NEW_C_HEAP_ARRAY(HeapRegionRemSetIterator*, n_queues, mtGC);
1960   for (int i = 0; i < n_queues; i++) {
1961     iter_arr[i] = new HeapRegionRemSetIterator();
1962   }
1963   _rem_set_iterator = iter_arr;
1964 
1965   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1966   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1967 
1968   for (int i = 0; i < n_queues; i++) {
1969     RefToScanQueue* q = new RefToScanQueue();
1970     q->initialize();
1971     _task_queues->register_queue(i, q);
1972   }
1973 
1974   clear_cset_start_regions();
1975 
1976   // Initialize the G1EvacuationFailureALot counters and flags.
1977   NOT_PRODUCT(reset_evacuation_should_fail();)
1978 
1979   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1980 }
1981 
1982 jint G1CollectedHeap::initialize() {
1983   CollectedHeap::pre_initialize();
1984   os::enable_vtime();
1985 
1986   G1Log::init();
1987 
1988   // Necessary to satisfy locking discipline assertions.
1989 
1990   MutexLocker x(Heap_lock);
1991 
1992   // We have to initialize the printer before committing the heap, as
1993   // it will be used then.
1994   _hr_printer.set_active(G1PrintHeapRegions);
1995 
1996   // While there are no constraints in the GC code that HeapWordSize
1997   // be any particular value, there are multiple other areas in the
1998   // system which believe this to be true (e.g. oop->object_size in some
1999   // cases incorrectly returns the size in wordSize units rather than
2000   // HeapWordSize).
2001   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2002 
2003   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2004   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2005 
2006   // Ensure that the sizes are properly aligned.
2007   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2008   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2009 
2010   _cg1r = new ConcurrentG1Refine();
2011 
2012   // Reserve the maximum.
2013 
2014   // When compressed oops are enabled, the preferred heap base
2015   // is calculated by subtracting the requested size from the
2016   // 32Gb boundary and using the result as the base address for
2017   // heap reservation. If the requested size is not aligned to
2018   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2019   // into the ReservedHeapSpace constructor) then the actual
2020   // base of the reserved heap may end up differing from the
2021   // address that was requested (i.e. the preferred heap base).
2022   // If this happens then we could end up using a non-optimal
2023   // compressed oops mode.
2024 
2025   // Since max_byte_size is aligned to the size of a heap region (checked
2026   // above).
2027   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2028 
2029   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2030                                                  HeapRegion::GrainBytes);
2031 
2032   // It is important to do this in a way such that concurrent readers can't
2033   // temporarily think somethings in the heap.  (I've actually seen this
2034   // happen in asserts: DLD.)
2035   _reserved.set_word_size(0);
2036   _reserved.set_start((HeapWord*)heap_rs.base());
2037   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2038 
2039   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2040 
2041   // Create the gen rem set (and barrier set) for the entire reserved region.
2042   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2043   set_barrier_set(rem_set()->bs());
2044   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2045     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2046   } else {
2047     vm_exit_during_initialization("G1 requires a mod ref bs.");
2048     return JNI_ENOMEM;
2049   }
2050 
2051   // Also create a G1 rem set.
2052   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2053     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2054   } else {
2055     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2056     return JNI_ENOMEM;
2057   }
2058 
2059   // Carve out the G1 part of the heap.
2060 
2061   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2062   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2063                            g1_rs.size()/HeapWordSize);
2064 
2065   _g1_storage.initialize(g1_rs, 0);
2066   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2067   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2068                   (HeapWord*) _g1_reserved.end(),
2069                   _expansion_regions);
2070 
2071   // 6843694 - ensure that the maximum region index can fit
2072   // in the remembered set structures.
2073   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2074   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2075 
2076   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2077   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2078   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2079             "too many cards per region");
2080 
2081   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2082 
2083   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2084                                              heap_word_size(init_byte_size));
2085 
2086   _g1h = this;
2087 
2088    _in_cset_fast_test_length = max_regions();
2089    _in_cset_fast_test_base =
2090                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2091 
2092    // We're biasing _in_cset_fast_test to avoid subtracting the
2093    // beginning of the heap every time we want to index; basically
2094    // it's the same with what we do with the card table.
2095    _in_cset_fast_test = _in_cset_fast_test_base -
2096                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2097 
2098    // Clear the _cset_fast_test bitmap in anticipation of adding
2099    // regions to the incremental collection set for the first
2100    // evacuation pause.
2101    clear_cset_fast_test();
2102 
2103   // Create the ConcurrentMark data structure and thread.
2104   // (Must do this late, so that "max_regions" is defined.)
2105   _cm = new ConcurrentMark(this, heap_rs);
2106   if (_cm == NULL || !_cm->completed_initialization()) {
2107     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2108     return JNI_ENOMEM;
2109   }
2110   _cmThread = _cm->cmThread();
2111 
2112   // Initialize the from_card cache structure of HeapRegionRemSet.
2113   HeapRegionRemSet::init_heap(max_regions());
2114 
2115   // Now expand into the initial heap size.
2116   if (!expand(init_byte_size)) {
2117     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2118     return JNI_ENOMEM;
2119   }
2120 
2121   // Perform any initialization actions delegated to the policy.
2122   g1_policy()->init();
2123 
2124   _refine_cte_cl =
2125     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2126                                     g1_rem_set(),
2127                                     concurrent_g1_refine());
2128   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2129 
2130   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2131                                                SATB_Q_FL_lock,
2132                                                G1SATBProcessCompletedThreshold,
2133                                                Shared_SATB_Q_lock);
2134 
2135   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2136                                                 DirtyCardQ_FL_lock,
2137                                                 concurrent_g1_refine()->yellow_zone(),
2138                                                 concurrent_g1_refine()->red_zone(),
2139                                                 Shared_DirtyCardQ_lock);
2140 
2141   if (G1DeferredRSUpdate) {
2142     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2143                                       DirtyCardQ_FL_lock,
2144                                       -1, // never trigger processing
2145                                       -1, // no limit on length
2146                                       Shared_DirtyCardQ_lock,
2147                                       &JavaThread::dirty_card_queue_set());
2148   }
2149 
2150   // Initialize the card queue set used to hold cards containing
2151   // references into the collection set.
2152   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2153                                              DirtyCardQ_FL_lock,
2154                                              -1, // never trigger processing
2155                                              -1, // no limit on length
2156                                              Shared_DirtyCardQ_lock,
2157                                              &JavaThread::dirty_card_queue_set());
2158 
2159   // In case we're keeping closure specialization stats, initialize those
2160   // counts and that mechanism.
2161   SpecializationStats::clear();
2162 
2163   // Do later initialization work for concurrent refinement.
2164   _cg1r->init();
2165 
2166   // Here we allocate the dummy full region that is required by the
2167   // G1AllocRegion class. If we don't pass an address in the reserved
2168   // space here, lots of asserts fire.
2169 
2170   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2171                                              _g1_reserved.start());
2172   // We'll re-use the same region whether the alloc region will
2173   // require BOT updates or not and, if it doesn't, then a non-young
2174   // region will complain that it cannot support allocations without
2175   // BOT updates. So we'll tag the dummy region as young to avoid that.
2176   dummy_region->set_young();
2177   // Make sure it's full.
2178   dummy_region->set_top(dummy_region->end());
2179   G1AllocRegion::setup(this, dummy_region);
2180 
2181   init_mutator_alloc_region();
2182 
2183   // Do create of the monitoring and management support so that
2184   // values in the heap have been properly initialized.
2185   _g1mm = new G1MonitoringSupport(this);
2186 
2187   return JNI_OK;
2188 }
2189 
2190 void G1CollectedHeap::ref_processing_init() {
2191   // Reference processing in G1 currently works as follows:
2192   //
2193   // * There are two reference processor instances. One is
2194   //   used to record and process discovered references
2195   //   during concurrent marking; the other is used to
2196   //   record and process references during STW pauses
2197   //   (both full and incremental).
2198   // * Both ref processors need to 'span' the entire heap as
2199   //   the regions in the collection set may be dotted around.
2200   //
2201   // * For the concurrent marking ref processor:
2202   //   * Reference discovery is enabled at initial marking.
2203   //   * Reference discovery is disabled and the discovered
2204   //     references processed etc during remarking.
2205   //   * Reference discovery is MT (see below).
2206   //   * Reference discovery requires a barrier (see below).
2207   //   * Reference processing may or may not be MT
2208   //     (depending on the value of ParallelRefProcEnabled
2209   //     and ParallelGCThreads).
2210   //   * A full GC disables reference discovery by the CM
2211   //     ref processor and abandons any entries on it's
2212   //     discovered lists.
2213   //
2214   // * For the STW processor:
2215   //   * Non MT discovery is enabled at the start of a full GC.
2216   //   * Processing and enqueueing during a full GC is non-MT.
2217   //   * During a full GC, references are processed after marking.
2218   //
2219   //   * Discovery (may or may not be MT) is enabled at the start
2220   //     of an incremental evacuation pause.
2221   //   * References are processed near the end of a STW evacuation pause.
2222   //   * For both types of GC:
2223   //     * Discovery is atomic - i.e. not concurrent.
2224   //     * Reference discovery will not need a barrier.
2225 
2226   SharedHeap::ref_processing_init();
2227   MemRegion mr = reserved_region();
2228 
2229   // Concurrent Mark ref processor
2230   _ref_processor_cm =
2231     new ReferenceProcessor(mr,    // span
2232                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2233                                 // mt processing
2234                            (int) ParallelGCThreads,
2235                                 // degree of mt processing
2236                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2237                                 // mt discovery
2238                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2239                                 // degree of mt discovery
2240                            false,
2241                                 // Reference discovery is not atomic
2242                            &_is_alive_closure_cm,
2243                                 // is alive closure
2244                                 // (for efficiency/performance)
2245                            true);
2246                                 // Setting next fields of discovered
2247                                 // lists requires a barrier.
2248 
2249   // STW ref processor
2250   _ref_processor_stw =
2251     new ReferenceProcessor(mr,    // span
2252                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2253                                 // mt processing
2254                            MAX2((int)ParallelGCThreads, 1),
2255                                 // degree of mt processing
2256                            (ParallelGCThreads > 1),
2257                                 // mt discovery
2258                            MAX2((int)ParallelGCThreads, 1),
2259                                 // degree of mt discovery
2260                            true,
2261                                 // Reference discovery is atomic
2262                            &_is_alive_closure_stw,
2263                                 // is alive closure
2264                                 // (for efficiency/performance)
2265                            false);
2266                                 // Setting next fields of discovered
2267                                 // lists requires a barrier.
2268 }
2269 
2270 size_t G1CollectedHeap::capacity() const {
2271   return _g1_committed.byte_size();
2272 }
2273 
2274 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2275   assert(!hr->continuesHumongous(), "pre-condition");
2276   hr->reset_gc_time_stamp();
2277   if (hr->startsHumongous()) {
2278     uint first_index = hr->hrs_index() + 1;
2279     uint last_index = hr->last_hc_index();
2280     for (uint i = first_index; i < last_index; i += 1) {
2281       HeapRegion* chr = region_at(i);
2282       assert(chr->continuesHumongous(), "sanity");
2283       chr->reset_gc_time_stamp();
2284     }
2285   }
2286 }
2287 
2288 #ifndef PRODUCT
2289 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2290 private:
2291   unsigned _gc_time_stamp;
2292   bool _failures;
2293 
2294 public:
2295   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2296     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2297 
2298   virtual bool doHeapRegion(HeapRegion* hr) {
2299     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2300     if (_gc_time_stamp != region_gc_time_stamp) {
2301       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2302                              "expected %d", HR_FORMAT_PARAMS(hr),
2303                              region_gc_time_stamp, _gc_time_stamp);
2304       _failures = true;
2305     }
2306     return false;
2307   }
2308 
2309   bool failures() { return _failures; }
2310 };
2311 
2312 void G1CollectedHeap::check_gc_time_stamps() {
2313   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2314   heap_region_iterate(&cl);
2315   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2316 }
2317 #endif // PRODUCT
2318 
2319 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2320                                                  DirtyCardQueue* into_cset_dcq,
2321                                                  bool concurrent,
2322                                                  int worker_i) {
2323   // Clean cards in the hot card cache
2324   concurrent_g1_refine()->clean_up_cache(worker_i, g1_rem_set(), into_cset_dcq);
2325 
2326   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2327   int n_completed_buffers = 0;
2328   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2329     n_completed_buffers++;
2330   }
2331   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2332   dcqs.clear_n_completed_buffers();
2333   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2334 }
2335 
2336 
2337 // Computes the sum of the storage used by the various regions.
2338 
2339 size_t G1CollectedHeap::used() const {
2340   assert(Heap_lock->owner() != NULL,
2341          "Should be owned on this thread's behalf.");
2342   size_t result = _summary_bytes_used;
2343   // Read only once in case it is set to NULL concurrently
2344   HeapRegion* hr = _mutator_alloc_region.get();
2345   if (hr != NULL)
2346     result += hr->used();
2347   return result;
2348 }
2349 
2350 size_t G1CollectedHeap::used_unlocked() const {
2351   size_t result = _summary_bytes_used;
2352   return result;
2353 }
2354 
2355 class SumUsedClosure: public HeapRegionClosure {
2356   size_t _used;
2357 public:
2358   SumUsedClosure() : _used(0) {}
2359   bool doHeapRegion(HeapRegion* r) {
2360     if (!r->continuesHumongous()) {
2361       _used += r->used();
2362     }
2363     return false;
2364   }
2365   size_t result() { return _used; }
2366 };
2367 
2368 size_t G1CollectedHeap::recalculate_used() const {
2369   SumUsedClosure blk;
2370   heap_region_iterate(&blk);
2371   return blk.result();
2372 }
2373 
2374 size_t G1CollectedHeap::unsafe_max_alloc() {
2375   if (free_regions() > 0) return HeapRegion::GrainBytes;
2376   // otherwise, is there space in the current allocation region?
2377 
2378   // We need to store the current allocation region in a local variable
2379   // here. The problem is that this method doesn't take any locks and
2380   // there may be other threads which overwrite the current allocation
2381   // region field. attempt_allocation(), for example, sets it to NULL
2382   // and this can happen *after* the NULL check here but before the call
2383   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2384   // to be a problem in the optimized build, since the two loads of the
2385   // current allocation region field are optimized away.
2386   HeapRegion* hr = _mutator_alloc_region.get();
2387   if (hr == NULL) {
2388     return 0;
2389   }
2390   return hr->free();
2391 }
2392 
2393 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2394   switch (cause) {
2395     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2396     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2397     case GCCause::_g1_humongous_allocation: return true;
2398     default:                                return false;
2399   }
2400 }
2401 
2402 #ifndef PRODUCT
2403 void G1CollectedHeap::allocate_dummy_regions() {
2404   // Let's fill up most of the region
2405   size_t word_size = HeapRegion::GrainWords - 1024;
2406   // And as a result the region we'll allocate will be humongous.
2407   guarantee(isHumongous(word_size), "sanity");
2408 
2409   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2410     // Let's use the existing mechanism for the allocation
2411     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2412     if (dummy_obj != NULL) {
2413       MemRegion mr(dummy_obj, word_size);
2414       CollectedHeap::fill_with_object(mr);
2415     } else {
2416       // If we can't allocate once, we probably cannot allocate
2417       // again. Let's get out of the loop.
2418       break;
2419     }
2420   }
2421 }
2422 #endif // !PRODUCT
2423 
2424 void G1CollectedHeap::increment_old_marking_cycles_started() {
2425   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2426     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2427     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2428     _old_marking_cycles_started, _old_marking_cycles_completed));
2429 
2430   _old_marking_cycles_started++;
2431 }
2432 
2433 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2434   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2435 
2436   // We assume that if concurrent == true, then the caller is a
2437   // concurrent thread that was joined the Suspendible Thread
2438   // Set. If there's ever a cheap way to check this, we should add an
2439   // assert here.
2440 
2441   // Given that this method is called at the end of a Full GC or of a
2442   // concurrent cycle, and those can be nested (i.e., a Full GC can
2443   // interrupt a concurrent cycle), the number of full collections
2444   // completed should be either one (in the case where there was no
2445   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2446   // behind the number of full collections started.
2447 
2448   // This is the case for the inner caller, i.e. a Full GC.
2449   assert(concurrent ||
2450          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2451          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2452          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2453                  "is inconsistent with _old_marking_cycles_completed = %u",
2454                  _old_marking_cycles_started, _old_marking_cycles_completed));
2455 
2456   // This is the case for the outer caller, i.e. the concurrent cycle.
2457   assert(!concurrent ||
2458          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2459          err_msg("for outer caller (concurrent cycle): "
2460                  "_old_marking_cycles_started = %u "
2461                  "is inconsistent with _old_marking_cycles_completed = %u",
2462                  _old_marking_cycles_started, _old_marking_cycles_completed));
2463 
2464   _old_marking_cycles_completed += 1;
2465 
2466   // We need to clear the "in_progress" flag in the CM thread before
2467   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2468   // is set) so that if a waiter requests another System.gc() it doesn't
2469   // incorrectly see that a marking cyle is still in progress.
2470   if (concurrent) {
2471     _cmThread->clear_in_progress();
2472   }
2473 
2474   // This notify_all() will ensure that a thread that called
2475   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2476   // and it's waiting for a full GC to finish will be woken up. It is
2477   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2478   FullGCCount_lock->notify_all();
2479 }
2480 
2481 void G1CollectedHeap::collect(GCCause::Cause cause) {
2482   assert_heap_not_locked();
2483 
2484   unsigned int gc_count_before;
2485   unsigned int old_marking_count_before;
2486   bool retry_gc;
2487 
2488   do {
2489     retry_gc = false;
2490 
2491     {
2492       MutexLocker ml(Heap_lock);
2493 
2494       // Read the GC count while holding the Heap_lock
2495       gc_count_before = total_collections();
2496       old_marking_count_before = _old_marking_cycles_started;
2497     }
2498 
2499     if (should_do_concurrent_full_gc(cause)) {
2500       // Schedule an initial-mark evacuation pause that will start a
2501       // concurrent cycle. We're setting word_size to 0 which means that
2502       // we are not requesting a post-GC allocation.
2503       VM_G1IncCollectionPause op(gc_count_before,
2504                                  0,     /* word_size */
2505                                  true,  /* should_initiate_conc_mark */
2506                                  g1_policy()->max_pause_time_ms(),
2507                                  cause);
2508 
2509       VMThread::execute(&op);
2510       if (!op.pause_succeeded()) {
2511         if (old_marking_count_before == _old_marking_cycles_started) {
2512           retry_gc = op.should_retry_gc();
2513         } else {
2514           // A Full GC happened while we were trying to schedule the
2515           // initial-mark GC. No point in starting a new cycle given
2516           // that the whole heap was collected anyway.
2517         }
2518 
2519         if (retry_gc) {
2520           if (GC_locker::is_active_and_needs_gc()) {
2521             GC_locker::stall_until_clear();
2522           }
2523         }
2524       }
2525     } else {
2526       if (cause == GCCause::_gc_locker
2527           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2528 
2529         // Schedule a standard evacuation pause. We're setting word_size
2530         // to 0 which means that we are not requesting a post-GC allocation.
2531         VM_G1IncCollectionPause op(gc_count_before,
2532                                    0,     /* word_size */
2533                                    false, /* should_initiate_conc_mark */
2534                                    g1_policy()->max_pause_time_ms(),
2535                                    cause);
2536         VMThread::execute(&op);
2537       } else {
2538         // Schedule a Full GC.
2539         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2540         VMThread::execute(&op);
2541       }
2542     }
2543   } while (retry_gc);
2544 }
2545 
2546 bool G1CollectedHeap::is_in(const void* p) const {
2547   if (_g1_committed.contains(p)) {
2548     // Given that we know that p is in the committed space,
2549     // heap_region_containing_raw() should successfully
2550     // return the containing region.
2551     HeapRegion* hr = heap_region_containing_raw(p);
2552     return hr->is_in(p);
2553   } else {
2554     return false;
2555   }
2556 }
2557 
2558 // Iteration functions.
2559 
2560 // Iterates an OopClosure over all ref-containing fields of objects
2561 // within a HeapRegion.
2562 
2563 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2564   MemRegion _mr;
2565   ExtendedOopClosure* _cl;
2566 public:
2567   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2568     : _mr(mr), _cl(cl) {}
2569   bool doHeapRegion(HeapRegion* r) {
2570     if (!r->continuesHumongous()) {
2571       r->oop_iterate(_cl);
2572     }
2573     return false;
2574   }
2575 };
2576 
2577 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2578   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2579   heap_region_iterate(&blk);
2580 }
2581 
2582 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2583   IterateOopClosureRegionClosure blk(mr, cl);
2584   heap_region_iterate(&blk);
2585 }
2586 
2587 // Iterates an ObjectClosure over all objects within a HeapRegion.
2588 
2589 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2590   ObjectClosure* _cl;
2591 public:
2592   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2593   bool doHeapRegion(HeapRegion* r) {
2594     if (! r->continuesHumongous()) {
2595       r->object_iterate(_cl);
2596     }
2597     return false;
2598   }
2599 };
2600 
2601 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2602   IterateObjectClosureRegionClosure blk(cl);
2603   heap_region_iterate(&blk);
2604 }
2605 
2606 void G1CollectedHeap::object_iterate_since_last_GC(ObjectClosure* cl) {
2607   // FIXME: is this right?
2608   guarantee(false, "object_iterate_since_last_GC not supported by G1 heap");
2609 }
2610 
2611 // Calls a SpaceClosure on a HeapRegion.
2612 
2613 class SpaceClosureRegionClosure: public HeapRegionClosure {
2614   SpaceClosure* _cl;
2615 public:
2616   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2617   bool doHeapRegion(HeapRegion* r) {
2618     _cl->do_space(r);
2619     return false;
2620   }
2621 };
2622 
2623 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2624   SpaceClosureRegionClosure blk(cl);
2625   heap_region_iterate(&blk);
2626 }
2627 
2628 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2629   _hrs.iterate(cl);
2630 }
2631 
2632 void
2633 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2634                                                  uint worker_id,
2635                                                  uint no_of_par_workers,
2636                                                  jint claim_value) {
2637   const uint regions = n_regions();
2638   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2639                              no_of_par_workers :
2640                              1);
2641   assert(UseDynamicNumberOfGCThreads ||
2642          no_of_par_workers == workers()->total_workers(),
2643          "Non dynamic should use fixed number of workers");
2644   // try to spread out the starting points of the workers
2645   const HeapRegion* start_hr =
2646                         start_region_for_worker(worker_id, no_of_par_workers);
2647   const uint start_index = start_hr->hrs_index();
2648 
2649   // each worker will actually look at all regions
2650   for (uint count = 0; count < regions; ++count) {
2651     const uint index = (start_index + count) % regions;
2652     assert(0 <= index && index < regions, "sanity");
2653     HeapRegion* r = region_at(index);
2654     // we'll ignore "continues humongous" regions (we'll process them
2655     // when we come across their corresponding "start humongous"
2656     // region) and regions already claimed
2657     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2658       continue;
2659     }
2660     // OK, try to claim it
2661     if (r->claimHeapRegion(claim_value)) {
2662       // success!
2663       assert(!r->continuesHumongous(), "sanity");
2664       if (r->startsHumongous()) {
2665         // If the region is "starts humongous" we'll iterate over its
2666         // "continues humongous" first; in fact we'll do them
2667         // first. The order is important. In on case, calling the
2668         // closure on the "starts humongous" region might de-allocate
2669         // and clear all its "continues humongous" regions and, as a
2670         // result, we might end up processing them twice. So, we'll do
2671         // them first (notice: most closures will ignore them anyway) and
2672         // then we'll do the "starts humongous" region.
2673         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2674           HeapRegion* chr = region_at(ch_index);
2675 
2676           // if the region has already been claimed or it's not
2677           // "continues humongous" we're done
2678           if (chr->claim_value() == claim_value ||
2679               !chr->continuesHumongous()) {
2680             break;
2681           }
2682 
2683           // Noone should have claimed it directly. We can given
2684           // that we claimed its "starts humongous" region.
2685           assert(chr->claim_value() != claim_value, "sanity");
2686           assert(chr->humongous_start_region() == r, "sanity");
2687 
2688           if (chr->claimHeapRegion(claim_value)) {
2689             // we should always be able to claim it; noone else should
2690             // be trying to claim this region
2691 
2692             bool res2 = cl->doHeapRegion(chr);
2693             assert(!res2, "Should not abort");
2694 
2695             // Right now, this holds (i.e., no closure that actually
2696             // does something with "continues humongous" regions
2697             // clears them). We might have to weaken it in the future,
2698             // but let's leave these two asserts here for extra safety.
2699             assert(chr->continuesHumongous(), "should still be the case");
2700             assert(chr->humongous_start_region() == r, "sanity");
2701           } else {
2702             guarantee(false, "we should not reach here");
2703           }
2704         }
2705       }
2706 
2707       assert(!r->continuesHumongous(), "sanity");
2708       bool res = cl->doHeapRegion(r);
2709       assert(!res, "Should not abort");
2710     }
2711   }
2712 }
2713 
2714 class ResetClaimValuesClosure: public HeapRegionClosure {
2715 public:
2716   bool doHeapRegion(HeapRegion* r) {
2717     r->set_claim_value(HeapRegion::InitialClaimValue);
2718     return false;
2719   }
2720 };
2721 
2722 void G1CollectedHeap::reset_heap_region_claim_values() {
2723   ResetClaimValuesClosure blk;
2724   heap_region_iterate(&blk);
2725 }
2726 
2727 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2728   ResetClaimValuesClosure blk;
2729   collection_set_iterate(&blk);
2730 }
2731 
2732 #ifdef ASSERT
2733 // This checks whether all regions in the heap have the correct claim
2734 // value. I also piggy-backed on this a check to ensure that the
2735 // humongous_start_region() information on "continues humongous"
2736 // regions is correct.
2737 
2738 class CheckClaimValuesClosure : public HeapRegionClosure {
2739 private:
2740   jint _claim_value;
2741   uint _failures;
2742   HeapRegion* _sh_region;
2743 
2744 public:
2745   CheckClaimValuesClosure(jint claim_value) :
2746     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2747   bool doHeapRegion(HeapRegion* r) {
2748     if (r->claim_value() != _claim_value) {
2749       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2750                              "claim value = %d, should be %d",
2751                              HR_FORMAT_PARAMS(r),
2752                              r->claim_value(), _claim_value);
2753       ++_failures;
2754     }
2755     if (!r->isHumongous()) {
2756       _sh_region = NULL;
2757     } else if (r->startsHumongous()) {
2758       _sh_region = r;
2759     } else if (r->continuesHumongous()) {
2760       if (r->humongous_start_region() != _sh_region) {
2761         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2762                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2763                                HR_FORMAT_PARAMS(r),
2764                                r->humongous_start_region(),
2765                                _sh_region);
2766         ++_failures;
2767       }
2768     }
2769     return false;
2770   }
2771   uint failures() { return _failures; }
2772 };
2773 
2774 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2775   CheckClaimValuesClosure cl(claim_value);
2776   heap_region_iterate(&cl);
2777   return cl.failures() == 0;
2778 }
2779 
2780 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2781 private:
2782   jint _claim_value;
2783   uint _failures;
2784 
2785 public:
2786   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2787     _claim_value(claim_value), _failures(0) { }
2788 
2789   uint failures() { return _failures; }
2790 
2791   bool doHeapRegion(HeapRegion* hr) {
2792     assert(hr->in_collection_set(), "how?");
2793     assert(!hr->isHumongous(), "H-region in CSet");
2794     if (hr->claim_value() != _claim_value) {
2795       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2796                              "claim value = %d, should be %d",
2797                              HR_FORMAT_PARAMS(hr),
2798                              hr->claim_value(), _claim_value);
2799       _failures += 1;
2800     }
2801     return false;
2802   }
2803 };
2804 
2805 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2806   CheckClaimValuesInCSetHRClosure cl(claim_value);
2807   collection_set_iterate(&cl);
2808   return cl.failures() == 0;
2809 }
2810 #endif // ASSERT
2811 
2812 // Clear the cached CSet starting regions and (more importantly)
2813 // the time stamps. Called when we reset the GC time stamp.
2814 void G1CollectedHeap::clear_cset_start_regions() {
2815   assert(_worker_cset_start_region != NULL, "sanity");
2816   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2817 
2818   int n_queues = MAX2((int)ParallelGCThreads, 1);
2819   for (int i = 0; i < n_queues; i++) {
2820     _worker_cset_start_region[i] = NULL;
2821     _worker_cset_start_region_time_stamp[i] = 0;
2822   }
2823 }
2824 
2825 // Given the id of a worker, obtain or calculate a suitable
2826 // starting region for iterating over the current collection set.
2827 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2828   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2829 
2830   HeapRegion* result = NULL;
2831   unsigned gc_time_stamp = get_gc_time_stamp();
2832 
2833   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2834     // Cached starting region for current worker was set
2835     // during the current pause - so it's valid.
2836     // Note: the cached starting heap region may be NULL
2837     // (when the collection set is empty).
2838     result = _worker_cset_start_region[worker_i];
2839     assert(result == NULL || result->in_collection_set(), "sanity");
2840     return result;
2841   }
2842 
2843   // The cached entry was not valid so let's calculate
2844   // a suitable starting heap region for this worker.
2845 
2846   // We want the parallel threads to start their collection
2847   // set iteration at different collection set regions to
2848   // avoid contention.
2849   // If we have:
2850   //          n collection set regions
2851   //          p threads
2852   // Then thread t will start at region floor ((t * n) / p)
2853 
2854   result = g1_policy()->collection_set();
2855   if (G1CollectedHeap::use_parallel_gc_threads()) {
2856     uint cs_size = g1_policy()->cset_region_length();
2857     uint active_workers = workers()->active_workers();
2858     assert(UseDynamicNumberOfGCThreads ||
2859              active_workers == workers()->total_workers(),
2860              "Unless dynamic should use total workers");
2861 
2862     uint end_ind   = (cs_size * worker_i) / active_workers;
2863     uint start_ind = 0;
2864 
2865     if (worker_i > 0 &&
2866         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2867       // Previous workers starting region is valid
2868       // so let's iterate from there
2869       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2870       result = _worker_cset_start_region[worker_i - 1];
2871     }
2872 
2873     for (uint i = start_ind; i < end_ind; i++) {
2874       result = result->next_in_collection_set();
2875     }
2876   }
2877 
2878   // Note: the calculated starting heap region may be NULL
2879   // (when the collection set is empty).
2880   assert(result == NULL || result->in_collection_set(), "sanity");
2881   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2882          "should be updated only once per pause");
2883   _worker_cset_start_region[worker_i] = result;
2884   OrderAccess::storestore();
2885   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2886   return result;
2887 }
2888 
2889 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2890                                                      uint no_of_par_workers) {
2891   uint worker_num =
2892            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2893   assert(UseDynamicNumberOfGCThreads ||
2894          no_of_par_workers == workers()->total_workers(),
2895          "Non dynamic should use fixed number of workers");
2896   const uint start_index = n_regions() * worker_i / worker_num;
2897   return region_at(start_index);
2898 }
2899 
2900 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2901   HeapRegion* r = g1_policy()->collection_set();
2902   while (r != NULL) {
2903     HeapRegion* next = r->next_in_collection_set();
2904     if (cl->doHeapRegion(r)) {
2905       cl->incomplete();
2906       return;
2907     }
2908     r = next;
2909   }
2910 }
2911 
2912 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2913                                                   HeapRegionClosure *cl) {
2914   if (r == NULL) {
2915     // The CSet is empty so there's nothing to do.
2916     return;
2917   }
2918 
2919   assert(r->in_collection_set(),
2920          "Start region must be a member of the collection set.");
2921   HeapRegion* cur = r;
2922   while (cur != NULL) {
2923     HeapRegion* next = cur->next_in_collection_set();
2924     if (cl->doHeapRegion(cur) && false) {
2925       cl->incomplete();
2926       return;
2927     }
2928     cur = next;
2929   }
2930   cur = g1_policy()->collection_set();
2931   while (cur != r) {
2932     HeapRegion* next = cur->next_in_collection_set();
2933     if (cl->doHeapRegion(cur) && false) {
2934       cl->incomplete();
2935       return;
2936     }
2937     cur = next;
2938   }
2939 }
2940 
2941 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2942   return n_regions() > 0 ? region_at(0) : NULL;
2943 }
2944 
2945 
2946 Space* G1CollectedHeap::space_containing(const void* addr) const {
2947   Space* res = heap_region_containing(addr);
2948   return res;
2949 }
2950 
2951 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2952   Space* sp = space_containing(addr);
2953   if (sp != NULL) {
2954     return sp->block_start(addr);
2955   }
2956   return NULL;
2957 }
2958 
2959 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2960   Space* sp = space_containing(addr);
2961   assert(sp != NULL, "block_size of address outside of heap");
2962   return sp->block_size(addr);
2963 }
2964 
2965 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2966   Space* sp = space_containing(addr);
2967   return sp->block_is_obj(addr);
2968 }
2969 
2970 bool G1CollectedHeap::supports_tlab_allocation() const {
2971   return true;
2972 }
2973 
2974 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2975   return HeapRegion::GrainBytes;
2976 }
2977 
2978 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2979   // Return the remaining space in the cur alloc region, but not less than
2980   // the min TLAB size.
2981 
2982   // Also, this value can be at most the humongous object threshold,
2983   // since we can't allow tlabs to grow big enough to accomodate
2984   // humongous objects.
2985 
2986   HeapRegion* hr = _mutator_alloc_region.get();
2987   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
2988   if (hr == NULL) {
2989     return max_tlab_size;
2990   } else {
2991     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
2992   }
2993 }
2994 
2995 size_t G1CollectedHeap::max_capacity() const {
2996   return _g1_reserved.byte_size();
2997 }
2998 
2999 jlong G1CollectedHeap::millis_since_last_gc() {
3000   // assert(false, "NYI");
3001   return 0;
3002 }
3003 
3004 void G1CollectedHeap::prepare_for_verify() {
3005   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3006     ensure_parsability(false);
3007   }
3008   g1_rem_set()->prepare_for_verify();
3009 }
3010 
3011 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3012                                               VerifyOption vo) {
3013   switch (vo) {
3014   case VerifyOption_G1UsePrevMarking:
3015     return hr->obj_allocated_since_prev_marking(obj);
3016   case VerifyOption_G1UseNextMarking:
3017     return hr->obj_allocated_since_next_marking(obj);
3018   case VerifyOption_G1UseMarkWord:
3019     return false;
3020   default:
3021     ShouldNotReachHere();
3022   }
3023   return false; // keep some compilers happy
3024 }
3025 
3026 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3027   switch (vo) {
3028   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3029   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3030   case VerifyOption_G1UseMarkWord:    return NULL;
3031   default:                            ShouldNotReachHere();
3032   }
3033   return NULL; // keep some compilers happy
3034 }
3035 
3036 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3037   switch (vo) {
3038   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3039   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3040   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3041   default:                            ShouldNotReachHere();
3042   }
3043   return false; // keep some compilers happy
3044 }
3045 
3046 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3047   switch (vo) {
3048   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3049   case VerifyOption_G1UseNextMarking: return "NTAMS";
3050   case VerifyOption_G1UseMarkWord:    return "NONE";
3051   default:                            ShouldNotReachHere();
3052   }
3053   return NULL; // keep some compilers happy
3054 }
3055 
3056 class VerifyLivenessOopClosure: public OopClosure {
3057   G1CollectedHeap* _g1h;
3058   VerifyOption _vo;
3059 public:
3060   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3061     _g1h(g1h), _vo(vo)
3062   { }
3063   void do_oop(narrowOop *p) { do_oop_work(p); }
3064   void do_oop(      oop *p) { do_oop_work(p); }
3065 
3066   template <class T> void do_oop_work(T *p) {
3067     oop obj = oopDesc::load_decode_heap_oop(p);
3068     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3069               "Dead object referenced by a not dead object");
3070   }
3071 };
3072 
3073 class VerifyObjsInRegionClosure: public ObjectClosure {
3074 private:
3075   G1CollectedHeap* _g1h;
3076   size_t _live_bytes;
3077   HeapRegion *_hr;
3078   VerifyOption _vo;
3079 public:
3080   // _vo == UsePrevMarking -> use "prev" marking information,
3081   // _vo == UseNextMarking -> use "next" marking information,
3082   // _vo == UseMarkWord    -> use mark word from object header.
3083   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3084     : _live_bytes(0), _hr(hr), _vo(vo) {
3085     _g1h = G1CollectedHeap::heap();
3086   }
3087   void do_object(oop o) {
3088     VerifyLivenessOopClosure isLive(_g1h, _vo);
3089     assert(o != NULL, "Huh?");
3090     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3091       // If the object is alive according to the mark word,
3092       // then verify that the marking information agrees.
3093       // Note we can't verify the contra-positive of the
3094       // above: if the object is dead (according to the mark
3095       // word), it may not be marked, or may have been marked
3096       // but has since became dead, or may have been allocated
3097       // since the last marking.
3098       if (_vo == VerifyOption_G1UseMarkWord) {
3099         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3100       }
3101 
3102       o->oop_iterate_no_header(&isLive);
3103       if (!_hr->obj_allocated_since_prev_marking(o)) {
3104         size_t obj_size = o->size();    // Make sure we don't overflow
3105         _live_bytes += (obj_size * HeapWordSize);
3106       }
3107     }
3108   }
3109   size_t live_bytes() { return _live_bytes; }
3110 };
3111 
3112 class PrintObjsInRegionClosure : public ObjectClosure {
3113   HeapRegion *_hr;
3114   G1CollectedHeap *_g1;
3115 public:
3116   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3117     _g1 = G1CollectedHeap::heap();
3118   };
3119 
3120   void do_object(oop o) {
3121     if (o != NULL) {
3122       HeapWord *start = (HeapWord *) o;
3123       size_t word_sz = o->size();
3124       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3125                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3126                           (void*) o, word_sz,
3127                           _g1->isMarkedPrev(o),
3128                           _g1->isMarkedNext(o),
3129                           _hr->obj_allocated_since_prev_marking(o));
3130       HeapWord *end = start + word_sz;
3131       HeapWord *cur;
3132       int *val;
3133       for (cur = start; cur < end; cur++) {
3134         val = (int *) cur;
3135         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3136       }
3137     }
3138   }
3139 };
3140 
3141 class VerifyRegionClosure: public HeapRegionClosure {
3142 private:
3143   bool             _par;
3144   VerifyOption     _vo;
3145   bool             _failures;
3146 public:
3147   // _vo == UsePrevMarking -> use "prev" marking information,
3148   // _vo == UseNextMarking -> use "next" marking information,
3149   // _vo == UseMarkWord    -> use mark word from object header.
3150   VerifyRegionClosure(bool par, VerifyOption vo)
3151     : _par(par),
3152       _vo(vo),
3153       _failures(false) {}
3154 
3155   bool failures() {
3156     return _failures;
3157   }
3158 
3159   bool doHeapRegion(HeapRegion* r) {
3160     if (!r->continuesHumongous()) {
3161       bool failures = false;
3162       r->verify(_vo, &failures);
3163       if (failures) {
3164         _failures = true;
3165       } else {
3166         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3167         r->object_iterate(&not_dead_yet_cl);
3168         if (_vo != VerifyOption_G1UseNextMarking) {
3169           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3170             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3171                                    "max_live_bytes "SIZE_FORMAT" "
3172                                    "< calculated "SIZE_FORMAT,
3173                                    r->bottom(), r->end(),
3174                                    r->max_live_bytes(),
3175                                  not_dead_yet_cl.live_bytes());
3176             _failures = true;
3177           }
3178         } else {
3179           // When vo == UseNextMarking we cannot currently do a sanity
3180           // check on the live bytes as the calculation has not been
3181           // finalized yet.
3182         }
3183       }
3184     }
3185     return false; // stop the region iteration if we hit a failure
3186   }
3187 };
3188 
3189 class YoungRefCounterClosure : public OopClosure {
3190   G1CollectedHeap* _g1h;
3191   int              _count;
3192  public:
3193   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3194   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3195   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3196 
3197   int count() { return _count; }
3198   void reset_count() { _count = 0; };
3199 };
3200 
3201 class VerifyKlassClosure: public KlassClosure {
3202   YoungRefCounterClosure _young_ref_counter_closure;
3203   OopClosure *_oop_closure;
3204  public:
3205   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3206   void do_klass(Klass* k) {
3207     k->oops_do(_oop_closure);
3208 
3209     _young_ref_counter_closure.reset_count();
3210     k->oops_do(&_young_ref_counter_closure);
3211     if (_young_ref_counter_closure.count() > 0) {
3212       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3213     }
3214   }
3215 };
3216 
3217 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
3218 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
3219 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
3220 //       we can change this closure to extend the simpler OopClosure.
3221 class VerifyRootsClosure: public OopsInGenClosure {
3222 private:
3223   G1CollectedHeap* _g1h;
3224   VerifyOption     _vo;
3225   bool             _failures;
3226 public:
3227   // _vo == UsePrevMarking -> use "prev" marking information,
3228   // _vo == UseNextMarking -> use "next" marking information,
3229   // _vo == UseMarkWord    -> use mark word from object header.
3230   VerifyRootsClosure(VerifyOption vo) :
3231     _g1h(G1CollectedHeap::heap()),
3232     _vo(vo),
3233     _failures(false) { }
3234 
3235   bool failures() { return _failures; }
3236 
3237   template <class T> void do_oop_nv(T* p) {
3238     T heap_oop = oopDesc::load_heap_oop(p);
3239     if (!oopDesc::is_null(heap_oop)) {
3240       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3241       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3242         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3243                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3244         if (_vo == VerifyOption_G1UseMarkWord) {
3245           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3246         }
3247         obj->print_on(gclog_or_tty);
3248         _failures = true;
3249       }
3250     }
3251   }
3252 
3253   void do_oop(oop* p)       { do_oop_nv(p); }
3254   void do_oop(narrowOop* p) { do_oop_nv(p); }
3255 };
3256 
3257 // This is the task used for parallel heap verification.
3258 
3259 class G1ParVerifyTask: public AbstractGangTask {
3260 private:
3261   G1CollectedHeap* _g1h;
3262   VerifyOption     _vo;
3263   bool             _failures;
3264 
3265 public:
3266   // _vo == UsePrevMarking -> use "prev" marking information,
3267   // _vo == UseNextMarking -> use "next" marking information,
3268   // _vo == UseMarkWord    -> use mark word from object header.
3269   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3270     AbstractGangTask("Parallel verify task"),
3271     _g1h(g1h),
3272     _vo(vo),
3273     _failures(false) { }
3274 
3275   bool failures() {
3276     return _failures;
3277   }
3278 
3279   void work(uint worker_id) {
3280     HandleMark hm;
3281     VerifyRegionClosure blk(true, _vo);
3282     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3283                                           _g1h->workers()->active_workers(),
3284                                           HeapRegion::ParVerifyClaimValue);
3285     if (blk.failures()) {
3286       _failures = true;
3287     }
3288   }
3289 };
3290 
3291 void G1CollectedHeap::verify(bool silent) {
3292   verify(silent, VerifyOption_G1UsePrevMarking);
3293 }
3294 
3295 void G1CollectedHeap::verify(bool silent,
3296                              VerifyOption vo) {
3297   if (SafepointSynchronize::is_at_safepoint()) {
3298     if (!silent) { gclog_or_tty->print("Roots "); }
3299     VerifyRootsClosure rootsCl(vo);
3300 
3301     assert(Thread::current()->is_VM_thread(),
3302            "Expected to be executed serially by the VM thread at this point");
3303 
3304     CodeBlobToOopClosure blobsCl(&rootsCl, /*do_marking=*/ false);
3305     VerifyKlassClosure klassCl(this, &rootsCl);
3306 
3307     // We apply the relevant closures to all the oops in the
3308     // system dictionary, the string table and the code cache.
3309     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3310 
3311     // Need cleared claim bits for the strong roots processing
3312     ClassLoaderDataGraph::clear_claimed_marks();
3313 
3314     process_strong_roots(true,      // activate StrongRootsScope
3315                          false,     // we set "is scavenging" to false,
3316                                     // so we don't reset the dirty cards.
3317                          ScanningOption(so),  // roots scanning options
3318                          &rootsCl,
3319                          &blobsCl,
3320                          &klassCl
3321                          );
3322 
3323     bool failures = rootsCl.failures();
3324 
3325     if (vo != VerifyOption_G1UseMarkWord) {
3326       // If we're verifying during a full GC then the region sets
3327       // will have been torn down at the start of the GC. Therefore
3328       // verifying the region sets will fail. So we only verify
3329       // the region sets when not in a full GC.
3330       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3331       verify_region_sets();
3332     }
3333 
3334     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3335     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3336       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3337              "sanity check");
3338 
3339       G1ParVerifyTask task(this, vo);
3340       assert(UseDynamicNumberOfGCThreads ||
3341         workers()->active_workers() == workers()->total_workers(),
3342         "If not dynamic should be using all the workers");
3343       int n_workers = workers()->active_workers();
3344       set_par_threads(n_workers);
3345       workers()->run_task(&task);
3346       set_par_threads(0);
3347       if (task.failures()) {
3348         failures = true;
3349       }
3350 
3351       // Checks that the expected amount of parallel work was done.
3352       // The implication is that n_workers is > 0.
3353       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3354              "sanity check");
3355 
3356       reset_heap_region_claim_values();
3357 
3358       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3359              "sanity check");
3360     } else {
3361       VerifyRegionClosure blk(false, vo);
3362       heap_region_iterate(&blk);
3363       if (blk.failures()) {
3364         failures = true;
3365       }
3366     }
3367     if (!silent) gclog_or_tty->print("RemSet ");
3368     rem_set()->verify();
3369 
3370     if (failures) {
3371       gclog_or_tty->print_cr("Heap:");
3372       // It helps to have the per-region information in the output to
3373       // help us track down what went wrong. This is why we call
3374       // print_extended_on() instead of print_on().
3375       print_extended_on(gclog_or_tty);
3376       gclog_or_tty->print_cr("");
3377 #ifndef PRODUCT
3378       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3379         concurrent_mark()->print_reachable("at-verification-failure",
3380                                            vo, false /* all */);
3381       }
3382 #endif
3383       gclog_or_tty->flush();
3384     }
3385     guarantee(!failures, "there should not have been any failures");
3386   } else {
3387     if (!silent)
3388       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3389   }
3390 }
3391 
3392 class PrintRegionClosure: public HeapRegionClosure {
3393   outputStream* _st;
3394 public:
3395   PrintRegionClosure(outputStream* st) : _st(st) {}
3396   bool doHeapRegion(HeapRegion* r) {
3397     r->print_on(_st);
3398     return false;
3399   }
3400 };
3401 
3402 void G1CollectedHeap::print_on(outputStream* st) const {
3403   st->print(" %-20s", "garbage-first heap");
3404   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3405             capacity()/K, used_unlocked()/K);
3406   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3407             _g1_storage.low_boundary(),
3408             _g1_storage.high(),
3409             _g1_storage.high_boundary());
3410   st->cr();
3411   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3412   uint young_regions = _young_list->length();
3413   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3414             (size_t) young_regions * HeapRegion::GrainBytes / K);
3415   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3416   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3417             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3418   st->cr();
3419   MetaspaceAux::print_on(st);
3420 }
3421 
3422 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3423   print_on(st);
3424 
3425   // Print the per-region information.
3426   st->cr();
3427   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3428                "HS=humongous(starts), HC=humongous(continues), "
3429                "CS=collection set, F=free, TS=gc time stamp, "
3430                "PTAMS=previous top-at-mark-start, "
3431                "NTAMS=next top-at-mark-start)");
3432   PrintRegionClosure blk(st);
3433   heap_region_iterate(&blk);
3434 }
3435 
3436 void G1CollectedHeap::print_on_error(outputStream* st) const {
3437   this->CollectedHeap::print_on_error(st);
3438 
3439   if (_cm != NULL) {
3440     st->cr();
3441     _cm->print_on_error(st);
3442   }
3443 }
3444 
3445 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3446   if (G1CollectedHeap::use_parallel_gc_threads()) {
3447     workers()->print_worker_threads_on(st);
3448   }
3449   _cmThread->print_on(st);
3450   st->cr();
3451   _cm->print_worker_threads_on(st);
3452   _cg1r->print_worker_threads_on(st);
3453 }
3454 
3455 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3456   if (G1CollectedHeap::use_parallel_gc_threads()) {
3457     workers()->threads_do(tc);
3458   }
3459   tc->do_thread(_cmThread);
3460   _cg1r->threads_do(tc);
3461 }
3462 
3463 void G1CollectedHeap::print_tracing_info() const {
3464   // We'll overload this to mean "trace GC pause statistics."
3465   if (TraceGen0Time || TraceGen1Time) {
3466     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3467     // to that.
3468     g1_policy()->print_tracing_info();
3469   }
3470   if (G1SummarizeRSetStats) {
3471     g1_rem_set()->print_summary_info();
3472   }
3473   if (G1SummarizeConcMark) {
3474     concurrent_mark()->print_summary_info();
3475   }
3476   g1_policy()->print_yg_surv_rate_info();
3477   SpecializationStats::print();
3478 }
3479 
3480 #ifndef PRODUCT
3481 // Helpful for debugging RSet issues.
3482 
3483 class PrintRSetsClosure : public HeapRegionClosure {
3484 private:
3485   const char* _msg;
3486   size_t _occupied_sum;
3487 
3488 public:
3489   bool doHeapRegion(HeapRegion* r) {
3490     HeapRegionRemSet* hrrs = r->rem_set();
3491     size_t occupied = hrrs->occupied();
3492     _occupied_sum += occupied;
3493 
3494     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3495                            HR_FORMAT_PARAMS(r));
3496     if (occupied == 0) {
3497       gclog_or_tty->print_cr("  RSet is empty");
3498     } else {
3499       hrrs->print();
3500     }
3501     gclog_or_tty->print_cr("----------");
3502     return false;
3503   }
3504 
3505   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3506     gclog_or_tty->cr();
3507     gclog_or_tty->print_cr("========================================");
3508     gclog_or_tty->print_cr(msg);
3509     gclog_or_tty->cr();
3510   }
3511 
3512   ~PrintRSetsClosure() {
3513     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3514     gclog_or_tty->print_cr("========================================");
3515     gclog_or_tty->cr();
3516   }
3517 };
3518 
3519 void G1CollectedHeap::print_cset_rsets() {
3520   PrintRSetsClosure cl("Printing CSet RSets");
3521   collection_set_iterate(&cl);
3522 }
3523 
3524 void G1CollectedHeap::print_all_rsets() {
3525   PrintRSetsClosure cl("Printing All RSets");;
3526   heap_region_iterate(&cl);
3527 }
3528 #endif // PRODUCT
3529 
3530 G1CollectedHeap* G1CollectedHeap::heap() {
3531   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3532          "not a garbage-first heap");
3533   return _g1h;
3534 }
3535 
3536 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3537   // always_do_update_barrier = false;
3538   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3539   // Call allocation profiler
3540   AllocationProfiler::iterate_since_last_gc();
3541   // Fill TLAB's and such
3542   ensure_parsability(true);
3543 }
3544 
3545 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3546   // FIXME: what is this about?
3547   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3548   // is set.
3549   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3550                         "derived pointer present"));
3551   // always_do_update_barrier = true;
3552 
3553   // We have just completed a GC. Update the soft reference
3554   // policy with the new heap occupancy
3555   Universe::update_heap_info_at_gc();
3556 }
3557 
3558 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3559                                                unsigned int gc_count_before,
3560                                                bool* succeeded) {
3561   assert_heap_not_locked_and_not_at_safepoint();
3562   g1_policy()->record_stop_world_start();
3563   VM_G1IncCollectionPause op(gc_count_before,
3564                              word_size,
3565                              false, /* should_initiate_conc_mark */
3566                              g1_policy()->max_pause_time_ms(),
3567                              GCCause::_g1_inc_collection_pause);
3568   VMThread::execute(&op);
3569 
3570   HeapWord* result = op.result();
3571   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3572   assert(result == NULL || ret_succeeded,
3573          "the result should be NULL if the VM did not succeed");
3574   *succeeded = ret_succeeded;
3575 
3576   assert_heap_not_locked();
3577   return result;
3578 }
3579 
3580 void
3581 G1CollectedHeap::doConcurrentMark() {
3582   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3583   if (!_cmThread->in_progress()) {
3584     _cmThread->set_started();
3585     CGC_lock->notify();
3586   }
3587 }
3588 
3589 size_t G1CollectedHeap::pending_card_num() {
3590   size_t extra_cards = 0;
3591   JavaThread *curr = Threads::first();
3592   while (curr != NULL) {
3593     DirtyCardQueue& dcq = curr->dirty_card_queue();
3594     extra_cards += dcq.size();
3595     curr = curr->next();
3596   }
3597   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3598   size_t buffer_size = dcqs.buffer_size();
3599   size_t buffer_num = dcqs.completed_buffers_num();
3600 
3601   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3602   // in bytes - not the number of 'entries'. We need to convert
3603   // into a number of cards.
3604   return (buffer_size * buffer_num + extra_cards) / oopSize;
3605 }
3606 
3607 size_t G1CollectedHeap::cards_scanned() {
3608   return g1_rem_set()->cardsScanned();
3609 }
3610 
3611 void
3612 G1CollectedHeap::setup_surviving_young_words() {
3613   assert(_surviving_young_words == NULL, "pre-condition");
3614   uint array_length = g1_policy()->young_cset_region_length();
3615   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3616   if (_surviving_young_words == NULL) {
3617     vm_exit_out_of_memory(sizeof(size_t) * array_length,
3618                           "Not enough space for young surv words summary.");
3619   }
3620   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3621 #ifdef ASSERT
3622   for (uint i = 0;  i < array_length; ++i) {
3623     assert( _surviving_young_words[i] == 0, "memset above" );
3624   }
3625 #endif // !ASSERT
3626 }
3627 
3628 void
3629 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3630   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3631   uint array_length = g1_policy()->young_cset_region_length();
3632   for (uint i = 0; i < array_length; ++i) {
3633     _surviving_young_words[i] += surv_young_words[i];
3634   }
3635 }
3636 
3637 void
3638 G1CollectedHeap::cleanup_surviving_young_words() {
3639   guarantee( _surviving_young_words != NULL, "pre-condition" );
3640   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3641   _surviving_young_words = NULL;
3642 }
3643 
3644 #ifdef ASSERT
3645 class VerifyCSetClosure: public HeapRegionClosure {
3646 public:
3647   bool doHeapRegion(HeapRegion* hr) {
3648     // Here we check that the CSet region's RSet is ready for parallel
3649     // iteration. The fields that we'll verify are only manipulated
3650     // when the region is part of a CSet and is collected. Afterwards,
3651     // we reset these fields when we clear the region's RSet (when the
3652     // region is freed) so they are ready when the region is
3653     // re-allocated. The only exception to this is if there's an
3654     // evacuation failure and instead of freeing the region we leave
3655     // it in the heap. In that case, we reset these fields during
3656     // evacuation failure handling.
3657     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3658 
3659     // Here's a good place to add any other checks we'd like to
3660     // perform on CSet regions.
3661     return false;
3662   }
3663 };
3664 #endif // ASSERT
3665 
3666 #if TASKQUEUE_STATS
3667 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3668   st->print_raw_cr("GC Task Stats");
3669   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3670   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3671 }
3672 
3673 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3674   print_taskqueue_stats_hdr(st);
3675 
3676   TaskQueueStats totals;
3677   const int n = workers() != NULL ? workers()->total_workers() : 1;
3678   for (int i = 0; i < n; ++i) {
3679     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3680     totals += task_queue(i)->stats;
3681   }
3682   st->print_raw("tot "); totals.print(st); st->cr();
3683 
3684   DEBUG_ONLY(totals.verify());
3685 }
3686 
3687 void G1CollectedHeap::reset_taskqueue_stats() {
3688   const int n = workers() != NULL ? workers()->total_workers() : 1;
3689   for (int i = 0; i < n; ++i) {
3690     task_queue(i)->stats.reset();
3691   }
3692 }
3693 #endif // TASKQUEUE_STATS
3694 
3695 void G1CollectedHeap::log_gc_header() {
3696   if (!G1Log::fine()) {
3697     return;
3698   }
3699 
3700   gclog_or_tty->date_stamp(PrintGCDateStamps);
3701   gclog_or_tty->stamp(PrintGCTimeStamps);
3702 
3703   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3704     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3705     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3706 
3707   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3708 }
3709 
3710 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3711   if (!G1Log::fine()) {
3712     return;
3713   }
3714 
3715   if (G1Log::finer()) {
3716     if (evacuation_failed()) {
3717       gclog_or_tty->print(" (to-space exhausted)");
3718     }
3719     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3720     g1_policy()->phase_times()->note_gc_end();
3721     g1_policy()->phase_times()->print(pause_time_sec);
3722     g1_policy()->print_detailed_heap_transition();
3723   } else {
3724     if (evacuation_failed()) {
3725       gclog_or_tty->print("--");
3726     }
3727     g1_policy()->print_heap_transition();
3728     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3729   }
3730   gclog_or_tty->flush();
3731 }
3732 
3733 bool
3734 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3735   assert_at_safepoint(true /* should_be_vm_thread */);
3736   guarantee(!is_gc_active(), "collection is not reentrant");
3737 
3738   if (GC_locker::check_active_before_gc()) {
3739     return false;
3740   }
3741 
3742   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3743   ResourceMark rm;
3744 
3745   print_heap_before_gc();
3746 
3747   HRSPhaseSetter x(HRSPhaseEvacuation);
3748   verify_region_sets_optional();
3749   verify_dirty_young_regions();
3750 
3751   // This call will decide whether this pause is an initial-mark
3752   // pause. If it is, during_initial_mark_pause() will return true
3753   // for the duration of this pause.
3754   g1_policy()->decide_on_conc_mark_initiation();
3755 
3756   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3757   assert(!g1_policy()->during_initial_mark_pause() ||
3758           g1_policy()->gcs_are_young(), "sanity");
3759 
3760   // We also do not allow mixed GCs during marking.
3761   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3762 
3763   // Record whether this pause is an initial mark. When the current
3764   // thread has completed its logging output and it's safe to signal
3765   // the CM thread, the flag's value in the policy has been reset.
3766   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3767 
3768   // Inner scope for scope based logging, timers, and stats collection
3769   {
3770     if (g1_policy()->during_initial_mark_pause()) {
3771       // We are about to start a marking cycle, so we increment the
3772       // full collection counter.
3773       increment_old_marking_cycles_started();
3774     }
3775     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3776 
3777     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3778                                 workers()->active_workers() : 1);
3779     double pause_start_sec = os::elapsedTime();
3780     g1_policy()->phase_times()->note_gc_start(active_workers);
3781     log_gc_header();
3782 
3783     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3784     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3785 
3786     // If the secondary_free_list is not empty, append it to the
3787     // free_list. No need to wait for the cleanup operation to finish;
3788     // the region allocation code will check the secondary_free_list
3789     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3790     // set, skip this step so that the region allocation code has to
3791     // get entries from the secondary_free_list.
3792     if (!G1StressConcRegionFreeing) {
3793       append_secondary_free_list_if_not_empty_with_lock();
3794     }
3795 
3796     assert(check_young_list_well_formed(),
3797       "young list should be well formed");
3798 
3799     // Don't dynamically change the number of GC threads this early.  A value of
3800     // 0 is used to indicate serial work.  When parallel work is done,
3801     // it will be set.
3802 
3803     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3804       IsGCActiveMark x;
3805 
3806       gc_prologue(false);
3807       increment_total_collections(false /* full gc */);
3808       increment_gc_time_stamp();
3809 
3810       verify_before_gc();
3811 
3812       COMPILER2_PRESENT(DerivedPointerTable::clear());
3813 
3814       // Please see comment in g1CollectedHeap.hpp and
3815       // G1CollectedHeap::ref_processing_init() to see how
3816       // reference processing currently works in G1.
3817 
3818       // Enable discovery in the STW reference processor
3819       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3820                                             true /*verify_no_refs*/);
3821 
3822       {
3823         // We want to temporarily turn off discovery by the
3824         // CM ref processor, if necessary, and turn it back on
3825         // on again later if we do. Using a scoped
3826         // NoRefDiscovery object will do this.
3827         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3828 
3829         // Forget the current alloc region (we might even choose it to be part
3830         // of the collection set!).
3831         release_mutator_alloc_region();
3832 
3833         // We should call this after we retire the mutator alloc
3834         // region(s) so that all the ALLOC / RETIRE events are generated
3835         // before the start GC event.
3836         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3837 
3838         // This timing is only used by the ergonomics to handle our pause target.
3839         // It is unclear why this should not include the full pause. We will
3840         // investigate this in CR 7178365.
3841         //
3842         // Preserving the old comment here if that helps the investigation:
3843         //
3844         // The elapsed time induced by the start time below deliberately elides
3845         // the possible verification above.
3846         double sample_start_time_sec = os::elapsedTime();
3847 
3848 #if YOUNG_LIST_VERBOSE
3849         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3850         _young_list->print();
3851         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3852 #endif // YOUNG_LIST_VERBOSE
3853 
3854         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3855 
3856         double scan_wait_start = os::elapsedTime();
3857         // We have to wait until the CM threads finish scanning the
3858         // root regions as it's the only way to ensure that all the
3859         // objects on them have been correctly scanned before we start
3860         // moving them during the GC.
3861         bool waited = _cm->root_regions()->wait_until_scan_finished();
3862         double wait_time_ms = 0.0;
3863         if (waited) {
3864           double scan_wait_end = os::elapsedTime();
3865           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3866         }
3867         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3868 
3869 #if YOUNG_LIST_VERBOSE
3870         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3871         _young_list->print();
3872 #endif // YOUNG_LIST_VERBOSE
3873 
3874         if (g1_policy()->during_initial_mark_pause()) {
3875           concurrent_mark()->checkpointRootsInitialPre();
3876         }
3877 
3878 #if YOUNG_LIST_VERBOSE
3879         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3880         _young_list->print();
3881         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3882 #endif // YOUNG_LIST_VERBOSE
3883 
3884         g1_policy()->finalize_cset(target_pause_time_ms);
3885 
3886         _cm->note_start_of_gc();
3887         // We should not verify the per-thread SATB buffers given that
3888         // we have not filtered them yet (we'll do so during the
3889         // GC). We also call this after finalize_cset() to
3890         // ensure that the CSet has been finalized.
3891         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3892                                  true  /* verify_enqueued_buffers */,
3893                                  false /* verify_thread_buffers */,
3894                                  true  /* verify_fingers */);
3895 
3896         if (_hr_printer.is_active()) {
3897           HeapRegion* hr = g1_policy()->collection_set();
3898           while (hr != NULL) {
3899             G1HRPrinter::RegionType type;
3900             if (!hr->is_young()) {
3901               type = G1HRPrinter::Old;
3902             } else if (hr->is_survivor()) {
3903               type = G1HRPrinter::Survivor;
3904             } else {
3905               type = G1HRPrinter::Eden;
3906             }
3907             _hr_printer.cset(hr);
3908             hr = hr->next_in_collection_set();
3909           }
3910         }
3911 
3912 #ifdef ASSERT
3913         VerifyCSetClosure cl;
3914         collection_set_iterate(&cl);
3915 #endif // ASSERT
3916 
3917         setup_surviving_young_words();
3918 
3919         // Initialize the GC alloc regions.
3920         init_gc_alloc_regions();
3921 
3922         // Actually do the work...
3923         evacuate_collection_set();
3924 
3925         // We do this to mainly verify the per-thread SATB buffers
3926         // (which have been filtered by now) since we didn't verify
3927         // them earlier. No point in re-checking the stacks / enqueued
3928         // buffers given that the CSet has not changed since last time
3929         // we checked.
3930         _cm->verify_no_cset_oops(false /* verify_stacks */,
3931                                  false /* verify_enqueued_buffers */,
3932                                  true  /* verify_thread_buffers */,
3933                                  true  /* verify_fingers */);
3934 
3935         free_collection_set(g1_policy()->collection_set());
3936         g1_policy()->clear_collection_set();
3937 
3938         cleanup_surviving_young_words();
3939 
3940         // Start a new incremental collection set for the next pause.
3941         g1_policy()->start_incremental_cset_building();
3942 
3943         // Clear the _cset_fast_test bitmap in anticipation of adding
3944         // regions to the incremental collection set for the next
3945         // evacuation pause.
3946         clear_cset_fast_test();
3947 
3948         _young_list->reset_sampled_info();
3949 
3950         // Don't check the whole heap at this point as the
3951         // GC alloc regions from this pause have been tagged
3952         // as survivors and moved on to the survivor list.
3953         // Survivor regions will fail the !is_young() check.
3954         assert(check_young_list_empty(false /* check_heap */),
3955           "young list should be empty");
3956 
3957 #if YOUNG_LIST_VERBOSE
3958         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3959         _young_list->print();
3960 #endif // YOUNG_LIST_VERBOSE
3961 
3962         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3963                                             _young_list->first_survivor_region(),
3964                                             _young_list->last_survivor_region());
3965 
3966         _young_list->reset_auxilary_lists();
3967 
3968         if (evacuation_failed()) {
3969           _summary_bytes_used = recalculate_used();
3970         } else {
3971           // The "used" of the the collection set have already been subtracted
3972           // when they were freed.  Add in the bytes evacuated.
3973           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
3974         }
3975 
3976         if (g1_policy()->during_initial_mark_pause()) {
3977           // We have to do this before we notify the CM threads that
3978           // they can start working to make sure that all the
3979           // appropriate initialization is done on the CM object.
3980           concurrent_mark()->checkpointRootsInitialPost();
3981           set_marking_started();
3982           // Note that we don't actually trigger the CM thread at
3983           // this point. We do that later when we're sure that
3984           // the current thread has completed its logging output.
3985         }
3986 
3987         allocate_dummy_regions();
3988 
3989 #if YOUNG_LIST_VERBOSE
3990         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3991         _young_list->print();
3992         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3993 #endif // YOUNG_LIST_VERBOSE
3994 
3995         init_mutator_alloc_region();
3996 
3997         {
3998           size_t expand_bytes = g1_policy()->expansion_amount();
3999           if (expand_bytes > 0) {
4000             size_t bytes_before = capacity();
4001             // No need for an ergo verbose message here,
4002             // expansion_amount() does this when it returns a value > 0.
4003             if (!expand(expand_bytes)) {
4004               // We failed to expand the heap so let's verify that
4005               // committed/uncommitted amount match the backing store
4006               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4007               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4008             }
4009           }
4010         }
4011 
4012         // We redo the verificaiton but now wrt to the new CSet which
4013         // has just got initialized after the previous CSet was freed.
4014         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4015                                  true  /* verify_enqueued_buffers */,
4016                                  true  /* verify_thread_buffers */,
4017                                  true  /* verify_fingers */);
4018         _cm->note_end_of_gc();
4019 
4020         // This timing is only used by the ergonomics to handle our pause target.
4021         // It is unclear why this should not include the full pause. We will
4022         // investigate this in CR 7178365.
4023         double sample_end_time_sec = os::elapsedTime();
4024         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4025         g1_policy()->record_collection_pause_end(pause_time_ms);
4026 
4027         MemoryService::track_memory_usage();
4028 
4029         // In prepare_for_verify() below we'll need to scan the deferred
4030         // update buffers to bring the RSets up-to-date if
4031         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4032         // the update buffers we'll probably need to scan cards on the
4033         // regions we just allocated to (i.e., the GC alloc
4034         // regions). However, during the last GC we called
4035         // set_saved_mark() on all the GC alloc regions, so card
4036         // scanning might skip the [saved_mark_word()...top()] area of
4037         // those regions (i.e., the area we allocated objects into
4038         // during the last GC). But it shouldn't. Given that
4039         // saved_mark_word() is conditional on whether the GC time stamp
4040         // on the region is current or not, by incrementing the GC time
4041         // stamp here we invalidate all the GC time stamps on all the
4042         // regions and saved_mark_word() will simply return top() for
4043         // all the regions. This is a nicer way of ensuring this rather
4044         // than iterating over the regions and fixing them. In fact, the
4045         // GC time stamp increment here also ensures that
4046         // saved_mark_word() will return top() between pauses, i.e.,
4047         // during concurrent refinement. So we don't need the
4048         // is_gc_active() check to decided which top to use when
4049         // scanning cards (see CR 7039627).
4050         increment_gc_time_stamp();
4051 
4052         verify_after_gc();
4053 
4054         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4055         ref_processor_stw()->verify_no_references_recorded();
4056 
4057         // CM reference discovery will be re-enabled if necessary.
4058       }
4059 
4060       // We should do this after we potentially expand the heap so
4061       // that all the COMMIT events are generated before the end GC
4062       // event, and after we retire the GC alloc regions so that all
4063       // RETIRE events are generated before the end GC event.
4064       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4065 
4066       if (mark_in_progress()) {
4067         concurrent_mark()->update_g1_committed();
4068       }
4069 
4070 #ifdef TRACESPINNING
4071       ParallelTaskTerminator::print_termination_counts();
4072 #endif
4073 
4074       gc_epilogue(false);
4075     }
4076 
4077     // Print the remainder of the GC log output.
4078     log_gc_footer(os::elapsedTime() - pause_start_sec);
4079 
4080     // It is not yet to safe to tell the concurrent mark to
4081     // start as we have some optional output below. We don't want the
4082     // output from the concurrent mark thread interfering with this
4083     // logging output either.
4084 
4085     _hrs.verify_optional();
4086     verify_region_sets_optional();
4087 
4088     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4089     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4090 
4091     print_heap_after_gc();
4092 
4093     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4094     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4095     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4096     // before any GC notifications are raised.
4097     g1mm()->update_sizes();
4098   }
4099 
4100   if (G1SummarizeRSetStats &&
4101       (G1SummarizeRSetStatsPeriod > 0) &&
4102       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
4103     g1_rem_set()->print_summary_info();
4104   }
4105 
4106   // It should now be safe to tell the concurrent mark thread to start
4107   // without its logging output interfering with the logging output
4108   // that came from the pause.
4109 
4110   if (should_start_conc_mark) {
4111     // CAUTION: after the doConcurrentMark() call below,
4112     // the concurrent marking thread(s) could be running
4113     // concurrently with us. Make sure that anything after
4114     // this point does not assume that we are the only GC thread
4115     // running. Note: of course, the actual marking work will
4116     // not start until the safepoint itself is released in
4117     // ConcurrentGCThread::safepoint_desynchronize().
4118     doConcurrentMark();
4119   }
4120 
4121   return true;
4122 }
4123 
4124 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4125 {
4126   size_t gclab_word_size;
4127   switch (purpose) {
4128     case GCAllocForSurvived:
4129       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4130       break;
4131     case GCAllocForTenured:
4132       gclab_word_size = _old_plab_stats.desired_plab_sz();
4133       break;
4134     default:
4135       assert(false, "unknown GCAllocPurpose");
4136       gclab_word_size = _old_plab_stats.desired_plab_sz();
4137       break;
4138   }
4139 
4140   // Prevent humongous PLAB sizes for two reasons:
4141   // * PLABs are allocated using a similar paths as oops, but should
4142   //   never be in a humongous region
4143   // * Allowing humongous PLABs needlessly churns the region free lists
4144   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4145 }
4146 
4147 void G1CollectedHeap::init_mutator_alloc_region() {
4148   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4149   _mutator_alloc_region.init();
4150 }
4151 
4152 void G1CollectedHeap::release_mutator_alloc_region() {
4153   _mutator_alloc_region.release();
4154   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4155 }
4156 
4157 void G1CollectedHeap::init_gc_alloc_regions() {
4158   assert_at_safepoint(true /* should_be_vm_thread */);
4159 
4160   _survivor_gc_alloc_region.init();
4161   _old_gc_alloc_region.init();
4162   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4163   _retained_old_gc_alloc_region = NULL;
4164 
4165   // We will discard the current GC alloc region if:
4166   // a) it's in the collection set (it can happen!),
4167   // b) it's already full (no point in using it),
4168   // c) it's empty (this means that it was emptied during
4169   // a cleanup and it should be on the free list now), or
4170   // d) it's humongous (this means that it was emptied
4171   // during a cleanup and was added to the free list, but
4172   // has been subseqently used to allocate a humongous
4173   // object that may be less than the region size).
4174   if (retained_region != NULL &&
4175       !retained_region->in_collection_set() &&
4176       !(retained_region->top() == retained_region->end()) &&
4177       !retained_region->is_empty() &&
4178       !retained_region->isHumongous()) {
4179     retained_region->set_saved_mark();
4180     // The retained region was added to the old region set when it was
4181     // retired. We have to remove it now, since we don't allow regions
4182     // we allocate to in the region sets. We'll re-add it later, when
4183     // it's retired again.
4184     _old_set.remove(retained_region);
4185     bool during_im = g1_policy()->during_initial_mark_pause();
4186     retained_region->note_start_of_copying(during_im);
4187     _old_gc_alloc_region.set(retained_region);
4188     _hr_printer.reuse(retained_region);
4189   }
4190 }
4191 
4192 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers) {
4193   _survivor_gc_alloc_region.release();
4194   // If we have an old GC alloc region to release, we'll save it in
4195   // _retained_old_gc_alloc_region. If we don't
4196   // _retained_old_gc_alloc_region will become NULL. This is what we
4197   // want either way so no reason to check explicitly for either
4198   // condition.
4199   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4200 
4201   if (ResizePLAB) {
4202     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4203     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4204   }
4205 }
4206 
4207 void G1CollectedHeap::abandon_gc_alloc_regions() {
4208   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4209   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4210   _retained_old_gc_alloc_region = NULL;
4211 }
4212 
4213 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4214   _drain_in_progress = false;
4215   set_evac_failure_closure(cl);
4216   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4217 }
4218 
4219 void G1CollectedHeap::finalize_for_evac_failure() {
4220   assert(_evac_failure_scan_stack != NULL &&
4221          _evac_failure_scan_stack->length() == 0,
4222          "Postcondition");
4223   assert(!_drain_in_progress, "Postcondition");
4224   delete _evac_failure_scan_stack;
4225   _evac_failure_scan_stack = NULL;
4226 }
4227 
4228 void G1CollectedHeap::remove_self_forwarding_pointers() {
4229   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4230 
4231   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4232 
4233   if (G1CollectedHeap::use_parallel_gc_threads()) {
4234     set_par_threads();
4235     workers()->run_task(&rsfp_task);
4236     set_par_threads(0);
4237   } else {
4238     rsfp_task.work(0);
4239   }
4240 
4241   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4242 
4243   // Reset the claim values in the regions in the collection set.
4244   reset_cset_heap_region_claim_values();
4245 
4246   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4247 
4248   // Now restore saved marks, if any.
4249   assert(_objs_with_preserved_marks.size() ==
4250             _preserved_marks_of_objs.size(), "Both or none.");
4251   while (!_objs_with_preserved_marks.is_empty()) {
4252     oop obj = _objs_with_preserved_marks.pop();
4253     markOop m = _preserved_marks_of_objs.pop();
4254     obj->set_mark(m);
4255   }
4256   _objs_with_preserved_marks.clear(true);
4257   _preserved_marks_of_objs.clear(true);
4258 }
4259 
4260 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4261   _evac_failure_scan_stack->push(obj);
4262 }
4263 
4264 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4265   assert(_evac_failure_scan_stack != NULL, "precondition");
4266 
4267   while (_evac_failure_scan_stack->length() > 0) {
4268      oop obj = _evac_failure_scan_stack->pop();
4269      _evac_failure_closure->set_region(heap_region_containing(obj));
4270      obj->oop_iterate_backwards(_evac_failure_closure);
4271   }
4272 }
4273 
4274 oop
4275 G1CollectedHeap::handle_evacuation_failure_par(OopsInHeapRegionClosure* cl,
4276                                                oop old) {
4277   assert(obj_in_cs(old),
4278          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4279                  (HeapWord*) old));
4280   markOop m = old->mark();
4281   oop forward_ptr = old->forward_to_atomic(old);
4282   if (forward_ptr == NULL) {
4283     // Forward-to-self succeeded.
4284 
4285     if (_evac_failure_closure != cl) {
4286       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4287       assert(!_drain_in_progress,
4288              "Should only be true while someone holds the lock.");
4289       // Set the global evac-failure closure to the current thread's.
4290       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4291       set_evac_failure_closure(cl);
4292       // Now do the common part.
4293       handle_evacuation_failure_common(old, m);
4294       // Reset to NULL.
4295       set_evac_failure_closure(NULL);
4296     } else {
4297       // The lock is already held, and this is recursive.
4298       assert(_drain_in_progress, "This should only be the recursive case.");
4299       handle_evacuation_failure_common(old, m);
4300     }
4301     return old;
4302   } else {
4303     // Forward-to-self failed. Either someone else managed to allocate
4304     // space for this object (old != forward_ptr) or they beat us in
4305     // self-forwarding it (old == forward_ptr).
4306     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4307            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4308                    "should not be in the CSet",
4309                    (HeapWord*) old, (HeapWord*) forward_ptr));
4310     return forward_ptr;
4311   }
4312 }
4313 
4314 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4315   set_evacuation_failed(true);
4316 
4317   preserve_mark_if_necessary(old, m);
4318 
4319   HeapRegion* r = heap_region_containing(old);
4320   if (!r->evacuation_failed()) {
4321     r->set_evacuation_failed(true);
4322     _hr_printer.evac_failure(r);
4323   }
4324 
4325   push_on_evac_failure_scan_stack(old);
4326 
4327   if (!_drain_in_progress) {
4328     // prevent recursion in copy_to_survivor_space()
4329     _drain_in_progress = true;
4330     drain_evac_failure_scan_stack();
4331     _drain_in_progress = false;
4332   }
4333 }
4334 
4335 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4336   assert(evacuation_failed(), "Oversaving!");
4337   // We want to call the "for_promotion_failure" version only in the
4338   // case of a promotion failure.
4339   if (m->must_be_preserved_for_promotion_failure(obj)) {
4340     _objs_with_preserved_marks.push(obj);
4341     _preserved_marks_of_objs.push(m);
4342   }
4343 }
4344 
4345 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4346                                                   size_t word_size) {
4347   if (purpose == GCAllocForSurvived) {
4348     HeapWord* result = survivor_attempt_allocation(word_size);
4349     if (result != NULL) {
4350       return result;
4351     } else {
4352       // Let's try to allocate in the old gen in case we can fit the
4353       // object there.
4354       return old_attempt_allocation(word_size);
4355     }
4356   } else {
4357     assert(purpose ==  GCAllocForTenured, "sanity");
4358     HeapWord* result = old_attempt_allocation(word_size);
4359     if (result != NULL) {
4360       return result;
4361     } else {
4362       // Let's try to allocate in the survivors in case we can fit the
4363       // object there.
4364       return survivor_attempt_allocation(word_size);
4365     }
4366   }
4367 
4368   ShouldNotReachHere();
4369   // Trying to keep some compilers happy.
4370   return NULL;
4371 }
4372 
4373 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4374   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4375 
4376 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4377   : _g1h(g1h),
4378     _refs(g1h->task_queue(queue_num)),
4379     _dcq(&g1h->dirty_card_queue_set()),
4380     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4381     _g1_rem(g1h->g1_rem_set()),
4382     _hash_seed(17), _queue_num(queue_num),
4383     _term_attempts(0),
4384     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4385     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4386     _age_table(false),
4387     _strong_roots_time(0), _term_time(0),
4388     _alloc_buffer_waste(0), _undo_waste(0) {
4389   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4390   // we "sacrifice" entry 0 to keep track of surviving bytes for
4391   // non-young regions (where the age is -1)
4392   // We also add a few elements at the beginning and at the end in
4393   // an attempt to eliminate cache contention
4394   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4395   uint array_length = PADDING_ELEM_NUM +
4396                       real_length +
4397                       PADDING_ELEM_NUM;
4398   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4399   if (_surviving_young_words_base == NULL)
4400     vm_exit_out_of_memory(array_length * sizeof(size_t),
4401                           "Not enough space for young surv histo.");
4402   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4403   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4404 
4405   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4406   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4407 
4408   _start = os::elapsedTime();
4409 }
4410 
4411 void
4412 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4413 {
4414   st->print_raw_cr("GC Termination Stats");
4415   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4416                    " ------waste (KiB)------");
4417   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4418                    "  total   alloc    undo");
4419   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4420                    " ------- ------- -------");
4421 }
4422 
4423 void
4424 G1ParScanThreadState::print_termination_stats(int i,
4425                                               outputStream* const st) const
4426 {
4427   const double elapsed_ms = elapsed_time() * 1000.0;
4428   const double s_roots_ms = strong_roots_time() * 1000.0;
4429   const double term_ms    = term_time() * 1000.0;
4430   st->print_cr("%3d %9.2f %9.2f %6.2f "
4431                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4432                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4433                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4434                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4435                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4436                alloc_buffer_waste() * HeapWordSize / K,
4437                undo_waste() * HeapWordSize / K);
4438 }
4439 
4440 #ifdef ASSERT
4441 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4442   assert(ref != NULL, "invariant");
4443   assert(UseCompressedOops, "sanity");
4444   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4445   oop p = oopDesc::load_decode_heap_oop(ref);
4446   assert(_g1h->is_in_g1_reserved(p),
4447          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4448   return true;
4449 }
4450 
4451 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4452   assert(ref != NULL, "invariant");
4453   if (has_partial_array_mask(ref)) {
4454     // Must be in the collection set--it's already been copied.
4455     oop p = clear_partial_array_mask(ref);
4456     assert(_g1h->obj_in_cs(p),
4457            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4458   } else {
4459     oop p = oopDesc::load_decode_heap_oop(ref);
4460     assert(_g1h->is_in_g1_reserved(p),
4461            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4462   }
4463   return true;
4464 }
4465 
4466 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4467   if (ref.is_narrow()) {
4468     return verify_ref((narrowOop*) ref);
4469   } else {
4470     return verify_ref((oop*) ref);
4471   }
4472 }
4473 #endif // ASSERT
4474 
4475 void G1ParScanThreadState::trim_queue() {
4476   assert(_evac_cl != NULL, "not set");
4477   assert(_evac_failure_cl != NULL, "not set");
4478   assert(_partial_scan_cl != NULL, "not set");
4479 
4480   StarTask ref;
4481   do {
4482     // Drain the overflow stack first, so other threads can steal.
4483     while (refs()->pop_overflow(ref)) {
4484       deal_with_reference(ref);
4485     }
4486 
4487     while (refs()->pop_local(ref)) {
4488       deal_with_reference(ref);
4489     }
4490   } while (!refs()->is_empty());
4491 }
4492 
4493 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4494                                      G1ParScanThreadState* par_scan_state) :
4495   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4496   _par_scan_state(par_scan_state),
4497   _worker_id(par_scan_state->queue_num()),
4498   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4499   _mark_in_progress(_g1->mark_in_progress()) { }
4500 
4501 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4502 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4503 #ifdef ASSERT
4504   HeapRegion* hr = _g1->heap_region_containing(obj);
4505   assert(hr != NULL, "sanity");
4506   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4507 #endif // ASSERT
4508 
4509   // We know that the object is not moving so it's safe to read its size.
4510   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4511 }
4512 
4513 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4514 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4515   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4516 #ifdef ASSERT
4517   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4518   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4519   assert(from_obj != to_obj, "should not be self-forwarded");
4520 
4521   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4522   assert(from_hr != NULL, "sanity");
4523   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4524 
4525   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4526   assert(to_hr != NULL, "sanity");
4527   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4528 #endif // ASSERT
4529 
4530   // The object might be in the process of being copied by another
4531   // worker so we cannot trust that its to-space image is
4532   // well-formed. So we have to read its size from its from-space
4533   // image which we know should not be changing.
4534   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4535 }
4536 
4537 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4538 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4539   ::copy_to_survivor_space(oop old) {
4540   size_t word_sz = old->size();
4541   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4542   // +1 to make the -1 indexes valid...
4543   int       young_index = from_region->young_index_in_cset()+1;
4544   assert( (from_region->is_young() && young_index >  0) ||
4545          (!from_region->is_young() && young_index == 0), "invariant" );
4546   G1CollectorPolicy* g1p = _g1->g1_policy();
4547   markOop m = old->mark();
4548   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4549                                            : m->age();
4550   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4551                                                              word_sz);
4552   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4553 #ifndef PRODUCT
4554   // Should this evacuation fail?
4555   if (_g1->evacuation_should_fail()) {
4556     if (obj_ptr != NULL) {
4557       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4558       obj_ptr = NULL;
4559     }
4560   }
4561 #endif // !PRODUCT
4562 
4563   if (obj_ptr == NULL) {
4564     // This will either forward-to-self, or detect that someone else has
4565     // installed a forwarding pointer.
4566     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4567     return _g1->handle_evacuation_failure_par(cl, old);
4568   }
4569 
4570   oop obj = oop(obj_ptr);
4571 
4572   // We're going to allocate linearly, so might as well prefetch ahead.
4573   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4574 
4575   oop forward_ptr = old->forward_to_atomic(obj);
4576   if (forward_ptr == NULL) {
4577     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4578     if (g1p->track_object_age(alloc_purpose)) {
4579       // We could simply do obj->incr_age(). However, this causes a
4580       // performance issue. obj->incr_age() will first check whether
4581       // the object has a displaced mark by checking its mark word;
4582       // getting the mark word from the new location of the object
4583       // stalls. So, given that we already have the mark word and we
4584       // are about to install it anyway, it's better to increase the
4585       // age on the mark word, when the object does not have a
4586       // displaced mark word. We're not expecting many objects to have
4587       // a displaced marked word, so that case is not optimized
4588       // further (it could be...) and we simply call obj->incr_age().
4589 
4590       if (m->has_displaced_mark_helper()) {
4591         // in this case, we have to install the mark word first,
4592         // otherwise obj looks to be forwarded (the old mark word,
4593         // which contains the forward pointer, was copied)
4594         obj->set_mark(m);
4595         obj->incr_age();
4596       } else {
4597         m = m->incr_age();
4598         obj->set_mark(m);
4599       }
4600       _par_scan_state->age_table()->add(obj, word_sz);
4601     } else {
4602       obj->set_mark(m);
4603     }
4604 
4605     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4606     surv_young_words[young_index] += word_sz;
4607 
4608     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4609       // We keep track of the next start index in the length field of
4610       // the to-space object. The actual length can be found in the
4611       // length field of the from-space object.
4612       arrayOop(obj)->set_length(0);
4613       oop* old_p = set_partial_array_mask(old);
4614       _par_scan_state->push_on_queue(old_p);
4615     } else {
4616       // No point in using the slower heap_region_containing() method,
4617       // given that we know obj is in the heap.
4618       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4619       obj->oop_iterate_backwards(&_scanner);
4620     }
4621   } else {
4622     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4623     obj = forward_ptr;
4624   }
4625   return obj;
4626 }
4627 
4628 template <class T>
4629 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4630   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4631     _scanned_klass->record_modified_oops();
4632   }
4633 }
4634 
4635 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4636 template <class T>
4637 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4638 ::do_oop_work(T* p) {
4639   oop obj = oopDesc::load_decode_heap_oop(p);
4640   assert(barrier != G1BarrierRS || obj != NULL,
4641          "Precondition: G1BarrierRS implies obj is non-NULL");
4642 
4643   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4644 
4645   // here the null check is implicit in the cset_fast_test() test
4646   if (_g1->in_cset_fast_test(obj)) {
4647     oop forwardee;
4648     if (obj->is_forwarded()) {
4649       forwardee = obj->forwardee();
4650     } else {
4651       forwardee = copy_to_survivor_space(obj);
4652     }
4653     assert(forwardee != NULL, "forwardee should not be NULL");
4654     oopDesc::encode_store_heap_oop(p, forwardee);
4655     if (do_mark_object && forwardee != obj) {
4656       // If the object is self-forwarded we don't need to explicitly
4657       // mark it, the evacuation failure protocol will do so.
4658       mark_forwarded_object(obj, forwardee);
4659     }
4660 
4661     // When scanning the RS, we only care about objs in CS.
4662     if (barrier == G1BarrierRS) {
4663       _par_scan_state->update_rs(_from, p, _worker_id);
4664     } else if (barrier == G1BarrierKlass) {
4665       do_klass_barrier(p, forwardee);
4666     }
4667   } else {
4668     // The object is not in collection set. If we're a root scanning
4669     // closure during an initial mark pause (i.e. do_mark_object will
4670     // be true) then attempt to mark the object.
4671     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4672       mark_object(obj);
4673     }
4674   }
4675 
4676   if (barrier == G1BarrierEvac && obj != NULL) {
4677     _par_scan_state->update_rs(_from, p, _worker_id);
4678   }
4679 
4680   if (do_gen_barrier && obj != NULL) {
4681     par_do_barrier(p);
4682   }
4683 }
4684 
4685 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4686 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4687 
4688 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4689   assert(has_partial_array_mask(p), "invariant");
4690   oop from_obj = clear_partial_array_mask(p);
4691 
4692   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4693   assert(from_obj->is_objArray(), "must be obj array");
4694   objArrayOop from_obj_array = objArrayOop(from_obj);
4695   // The from-space object contains the real length.
4696   int length                 = from_obj_array->length();
4697 
4698   assert(from_obj->is_forwarded(), "must be forwarded");
4699   oop to_obj                 = from_obj->forwardee();
4700   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4701   objArrayOop to_obj_array   = objArrayOop(to_obj);
4702   // We keep track of the next start index in the length field of the
4703   // to-space object.
4704   int next_index             = to_obj_array->length();
4705   assert(0 <= next_index && next_index < length,
4706          err_msg("invariant, next index: %d, length: %d", next_index, length));
4707 
4708   int start                  = next_index;
4709   int end                    = length;
4710   int remainder              = end - start;
4711   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4712   if (remainder > 2 * ParGCArrayScanChunk) {
4713     end = start + ParGCArrayScanChunk;
4714     to_obj_array->set_length(end);
4715     // Push the remainder before we process the range in case another
4716     // worker has run out of things to do and can steal it.
4717     oop* from_obj_p = set_partial_array_mask(from_obj);
4718     _par_scan_state->push_on_queue(from_obj_p);
4719   } else {
4720     assert(length == end, "sanity");
4721     // We'll process the final range for this object. Restore the length
4722     // so that the heap remains parsable in case of evacuation failure.
4723     to_obj_array->set_length(end);
4724   }
4725   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4726   // Process indexes [start,end). It will also process the header
4727   // along with the first chunk (i.e., the chunk with start == 0).
4728   // Note that at this point the length field of to_obj_array is not
4729   // correct given that we are using it to keep track of the next
4730   // start index. oop_iterate_range() (thankfully!) ignores the length
4731   // field and only relies on the start / end parameters.  It does
4732   // however return the size of the object which will be incorrect. So
4733   // we have to ignore it even if we wanted to use it.
4734   to_obj_array->oop_iterate_range(&_scanner, start, end);
4735 }
4736 
4737 class G1ParEvacuateFollowersClosure : public VoidClosure {
4738 protected:
4739   G1CollectedHeap*              _g1h;
4740   G1ParScanThreadState*         _par_scan_state;
4741   RefToScanQueueSet*            _queues;
4742   ParallelTaskTerminator*       _terminator;
4743 
4744   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4745   RefToScanQueueSet*      queues()         { return _queues; }
4746   ParallelTaskTerminator* terminator()     { return _terminator; }
4747 
4748 public:
4749   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4750                                 G1ParScanThreadState* par_scan_state,
4751                                 RefToScanQueueSet* queues,
4752                                 ParallelTaskTerminator* terminator)
4753     : _g1h(g1h), _par_scan_state(par_scan_state),
4754       _queues(queues), _terminator(terminator) {}
4755 
4756   void do_void();
4757 
4758 private:
4759   inline bool offer_termination();
4760 };
4761 
4762 bool G1ParEvacuateFollowersClosure::offer_termination() {
4763   G1ParScanThreadState* const pss = par_scan_state();
4764   pss->start_term_time();
4765   const bool res = terminator()->offer_termination();
4766   pss->end_term_time();
4767   return res;
4768 }
4769 
4770 void G1ParEvacuateFollowersClosure::do_void() {
4771   StarTask stolen_task;
4772   G1ParScanThreadState* const pss = par_scan_state();
4773   pss->trim_queue();
4774 
4775   do {
4776     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4777       assert(pss->verify_task(stolen_task), "sanity");
4778       if (stolen_task.is_narrow()) {
4779         pss->deal_with_reference((narrowOop*) stolen_task);
4780       } else {
4781         pss->deal_with_reference((oop*) stolen_task);
4782       }
4783 
4784       // We've just processed a reference and we might have made
4785       // available new entries on the queues. So we have to make sure
4786       // we drain the queues as necessary.
4787       pss->trim_queue();
4788     }
4789   } while (!offer_termination());
4790 
4791   pss->retire_alloc_buffers();
4792 }
4793 
4794 class G1KlassScanClosure : public KlassClosure {
4795  G1ParCopyHelper* _closure;
4796  bool             _process_only_dirty;
4797  int              _count;
4798  public:
4799   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4800       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4801   void do_klass(Klass* klass) {
4802     // If the klass has not been dirtied we know that there's
4803     // no references into  the young gen and we can skip it.
4804    if (!_process_only_dirty || klass->has_modified_oops()) {
4805       // Clean the klass since we're going to scavenge all the metadata.
4806       klass->clear_modified_oops();
4807 
4808       // Tell the closure that this klass is the Klass to scavenge
4809       // and is the one to dirty if oops are left pointing into the young gen.
4810       _closure->set_scanned_klass(klass);
4811 
4812       klass->oops_do(_closure);
4813 
4814       _closure->set_scanned_klass(NULL);
4815     }
4816     _count++;
4817   }
4818 };
4819 
4820 class G1ParTask : public AbstractGangTask {
4821 protected:
4822   G1CollectedHeap*       _g1h;
4823   RefToScanQueueSet      *_queues;
4824   ParallelTaskTerminator _terminator;
4825   uint _n_workers;
4826 
4827   Mutex _stats_lock;
4828   Mutex* stats_lock() { return &_stats_lock; }
4829 
4830   size_t getNCards() {
4831     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4832       / G1BlockOffsetSharedArray::N_bytes;
4833   }
4834 
4835 public:
4836   G1ParTask(G1CollectedHeap* g1h,
4837             RefToScanQueueSet *task_queues)
4838     : AbstractGangTask("G1 collection"),
4839       _g1h(g1h),
4840       _queues(task_queues),
4841       _terminator(0, _queues),
4842       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4843   {}
4844 
4845   RefToScanQueueSet* queues() { return _queues; }
4846 
4847   RefToScanQueue *work_queue(int i) {
4848     return queues()->queue(i);
4849   }
4850 
4851   ParallelTaskTerminator* terminator() { return &_terminator; }
4852 
4853   virtual void set_for_termination(int active_workers) {
4854     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4855     // in the young space (_par_seq_tasks) in the G1 heap
4856     // for SequentialSubTasksDone.
4857     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4858     // both of which need setting by set_n_termination().
4859     _g1h->SharedHeap::set_n_termination(active_workers);
4860     _g1h->set_n_termination(active_workers);
4861     terminator()->reset_for_reuse(active_workers);
4862     _n_workers = active_workers;
4863   }
4864 
4865   void work(uint worker_id) {
4866     if (worker_id >= _n_workers) return;  // no work needed this round
4867 
4868     double start_time_ms = os::elapsedTime() * 1000.0;
4869     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4870 
4871     {
4872       ResourceMark rm;
4873       HandleMark   hm;
4874 
4875       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4876 
4877       G1ParScanThreadState            pss(_g1h, worker_id);
4878       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
4879       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4880       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
4881 
4882       pss.set_evac_closure(&scan_evac_cl);
4883       pss.set_evac_failure_closure(&evac_failure_cl);
4884       pss.set_partial_scan_closure(&partial_scan_cl);
4885 
4886       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
4887       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
4888 
4889       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
4890       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
4891 
4892       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
4893       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
4894       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
4895 
4896       OopClosure*                    scan_root_cl = &only_scan_root_cl;
4897       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
4898 
4899       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4900         // We also need to mark copied objects.
4901         scan_root_cl = &scan_mark_root_cl;
4902         scan_klasses_cl = &scan_mark_klasses_cl_s;
4903       }
4904 
4905       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
4906 
4907       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
4908 
4909       pss.start_strong_roots();
4910       _g1h->g1_process_strong_roots(/* is scavenging */ true,
4911                                     SharedHeap::ScanningOption(so),
4912                                     scan_root_cl,
4913                                     &push_heap_rs_cl,
4914                                     scan_klasses_cl,
4915                                     worker_id);
4916       pss.end_strong_roots();
4917 
4918       {
4919         double start = os::elapsedTime();
4920         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4921         evac.do_void();
4922         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4923         double term_ms = pss.term_time()*1000.0;
4924         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4925         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4926       }
4927       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4928       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4929 
4930       if (ParallelGCVerbose) {
4931         MutexLocker x(stats_lock());
4932         pss.print_termination_stats(worker_id);
4933       }
4934 
4935       assert(pss.refs()->is_empty(), "should be empty");
4936 
4937       // Close the inner scope so that the ResourceMark and HandleMark
4938       // destructors are executed here and are included as part of the
4939       // "GC Worker Time".
4940     }
4941 
4942     double end_time_ms = os::elapsedTime() * 1000.0;
4943     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4944   }
4945 };
4946 
4947 // *** Common G1 Evacuation Stuff
4948 
4949 // Closures that support the filtering of CodeBlobs scanned during
4950 // external root scanning.
4951 
4952 // Closure applied to reference fields in code blobs (specifically nmethods)
4953 // to determine whether an nmethod contains references that point into
4954 // the collection set. Used as a predicate when walking code roots so
4955 // that only nmethods that point into the collection set are added to the
4956 // 'marked' list.
4957 
4958 class G1FilteredCodeBlobToOopClosure : public CodeBlobToOopClosure {
4959 
4960   class G1PointsIntoCSOopClosure : public OopClosure {
4961     G1CollectedHeap* _g1;
4962     bool _points_into_cs;
4963   public:
4964     G1PointsIntoCSOopClosure(G1CollectedHeap* g1) :
4965       _g1(g1), _points_into_cs(false) { }
4966 
4967     bool points_into_cs() const { return _points_into_cs; }
4968 
4969     template <class T>
4970     void do_oop_nv(T* p) {
4971       if (!_points_into_cs) {
4972         T heap_oop = oopDesc::load_heap_oop(p);
4973         if (!oopDesc::is_null(heap_oop) &&
4974             _g1->in_cset_fast_test(oopDesc::decode_heap_oop_not_null(heap_oop))) {
4975           _points_into_cs = true;
4976         }
4977       }
4978     }
4979 
4980     virtual void do_oop(oop* p)        { do_oop_nv(p); }
4981     virtual void do_oop(narrowOop* p)  { do_oop_nv(p); }
4982   };
4983 
4984   G1CollectedHeap* _g1;
4985 
4986 public:
4987   G1FilteredCodeBlobToOopClosure(G1CollectedHeap* g1, OopClosure* cl) :
4988     CodeBlobToOopClosure(cl, true), _g1(g1) { }
4989 
4990   virtual void do_code_blob(CodeBlob* cb) {
4991     nmethod* nm = cb->as_nmethod_or_null();
4992     if (nm != NULL && !(nm->test_oops_do_mark())) {
4993       G1PointsIntoCSOopClosure predicate_cl(_g1);
4994       nm->oops_do(&predicate_cl);
4995 
4996       if (predicate_cl.points_into_cs()) {
4997         // At least one of the reference fields or the oop relocations
4998         // in the nmethod points into the collection set. We have to
4999         // 'mark' this nmethod.
5000         // Note: Revisit the following if CodeBlobToOopClosure::do_code_blob()
5001         // or MarkingCodeBlobClosure::do_code_blob() change.
5002         if (!nm->test_set_oops_do_mark()) {
5003           do_newly_marked_nmethod(nm);
5004         }
5005       }
5006     }
5007   }
5008 };
5009 
5010 // This method is run in a GC worker.
5011 
5012 void
5013 G1CollectedHeap::
5014 g1_process_strong_roots(bool is_scavenging,
5015                         ScanningOption so,
5016                         OopClosure* scan_non_heap_roots,
5017                         OopsInHeapRegionClosure* scan_rs,
5018                         G1KlassScanClosure* scan_klasses,
5019                         int worker_i) {
5020 
5021   // First scan the strong roots
5022   double ext_roots_start = os::elapsedTime();
5023   double closure_app_time_sec = 0.0;
5024 
5025   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5026 
5027   // Walk the code cache w/o buffering, because StarTask cannot handle
5028   // unaligned oop locations.
5029   G1FilteredCodeBlobToOopClosure eager_scan_code_roots(this, scan_non_heap_roots);
5030 
5031   process_strong_roots(false, // no scoping; this is parallel code
5032                        is_scavenging, so,
5033                        &buf_scan_non_heap_roots,
5034                        &eager_scan_code_roots,
5035                        scan_klasses
5036                        );
5037 
5038   // Now the CM ref_processor roots.
5039   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5040     // We need to treat the discovered reference lists of the
5041     // concurrent mark ref processor as roots and keep entries
5042     // (which are added by the marking threads) on them live
5043     // until they can be processed at the end of marking.
5044     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5045   }
5046 
5047   // Finish up any enqueued closure apps (attributed as object copy time).
5048   buf_scan_non_heap_roots.done();
5049 
5050   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5051 
5052   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5053 
5054   double ext_root_time_ms =
5055     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5056 
5057   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5058 
5059   // During conc marking we have to filter the per-thread SATB buffers
5060   // to make sure we remove any oops into the CSet (which will show up
5061   // as implicitly live).
5062   double satb_filtering_ms = 0.0;
5063   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5064     if (mark_in_progress()) {
5065       double satb_filter_start = os::elapsedTime();
5066 
5067       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5068 
5069       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5070     }
5071   }
5072   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5073 
5074   // Now scan the complement of the collection set.
5075   if (scan_rs != NULL) {
5076     g1_rem_set()->oops_into_collection_set_do(scan_rs, worker_i);
5077   }
5078   _process_strong_tasks->all_tasks_completed();
5079 }
5080 
5081 void
5082 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure,
5083                                        OopClosure* non_root_closure) {
5084   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5085   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs, non_root_closure);
5086 }
5087 
5088 // Weak Reference Processing support
5089 
5090 // An always "is_alive" closure that is used to preserve referents.
5091 // If the object is non-null then it's alive.  Used in the preservation
5092 // of referent objects that are pointed to by reference objects
5093 // discovered by the CM ref processor.
5094 class G1AlwaysAliveClosure: public BoolObjectClosure {
5095   G1CollectedHeap* _g1;
5096 public:
5097   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5098   void do_object(oop p) { assert(false, "Do not call."); }
5099   bool do_object_b(oop p) {
5100     if (p != NULL) {
5101       return true;
5102     }
5103     return false;
5104   }
5105 };
5106 
5107 bool G1STWIsAliveClosure::do_object_b(oop p) {
5108   // An object is reachable if it is outside the collection set,
5109   // or is inside and copied.
5110   return !_g1->obj_in_cs(p) || p->is_forwarded();
5111 }
5112 
5113 // Non Copying Keep Alive closure
5114 class G1KeepAliveClosure: public OopClosure {
5115   G1CollectedHeap* _g1;
5116 public:
5117   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5118   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5119   void do_oop(      oop* p) {
5120     oop obj = *p;
5121 
5122     if (_g1->obj_in_cs(obj)) {
5123       assert( obj->is_forwarded(), "invariant" );
5124       *p = obj->forwardee();
5125     }
5126   }
5127 };
5128 
5129 // Copying Keep Alive closure - can be called from both
5130 // serial and parallel code as long as different worker
5131 // threads utilize different G1ParScanThreadState instances
5132 // and different queues.
5133 
5134 class G1CopyingKeepAliveClosure: public OopClosure {
5135   G1CollectedHeap*         _g1h;
5136   OopClosure*              _copy_non_heap_obj_cl;
5137   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5138   G1ParScanThreadState*    _par_scan_state;
5139 
5140 public:
5141   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5142                             OopClosure* non_heap_obj_cl,
5143                             OopsInHeapRegionClosure* metadata_obj_cl,
5144                             G1ParScanThreadState* pss):
5145     _g1h(g1h),
5146     _copy_non_heap_obj_cl(non_heap_obj_cl),
5147     _copy_metadata_obj_cl(metadata_obj_cl),
5148     _par_scan_state(pss)
5149   {}
5150 
5151   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5152   virtual void do_oop(      oop* p) { do_oop_work(p); }
5153 
5154   template <class T> void do_oop_work(T* p) {
5155     oop obj = oopDesc::load_decode_heap_oop(p);
5156 
5157     if (_g1h->obj_in_cs(obj)) {
5158       // If the referent object has been forwarded (either copied
5159       // to a new location or to itself in the event of an
5160       // evacuation failure) then we need to update the reference
5161       // field and, if both reference and referent are in the G1
5162       // heap, update the RSet for the referent.
5163       //
5164       // If the referent has not been forwarded then we have to keep
5165       // it alive by policy. Therefore we have copy the referent.
5166       //
5167       // If the reference field is in the G1 heap then we can push
5168       // on the PSS queue. When the queue is drained (after each
5169       // phase of reference processing) the object and it's followers
5170       // will be copied, the reference field set to point to the
5171       // new location, and the RSet updated. Otherwise we need to
5172       // use the the non-heap or metadata closures directly to copy
5173       // the refernt object and update the pointer, while avoiding
5174       // updating the RSet.
5175 
5176       if (_g1h->is_in_g1_reserved(p)) {
5177         _par_scan_state->push_on_queue(p);
5178       } else {
5179         assert(!ClassLoaderDataGraph::contains((address)p),
5180                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5181                               PTR_FORMAT, p));
5182           _copy_non_heap_obj_cl->do_oop(p);
5183         }
5184       }
5185     }
5186 };
5187 
5188 // Serial drain queue closure. Called as the 'complete_gc'
5189 // closure for each discovered list in some of the
5190 // reference processing phases.
5191 
5192 class G1STWDrainQueueClosure: public VoidClosure {
5193 protected:
5194   G1CollectedHeap* _g1h;
5195   G1ParScanThreadState* _par_scan_state;
5196 
5197   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5198 
5199 public:
5200   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5201     _g1h(g1h),
5202     _par_scan_state(pss)
5203   { }
5204 
5205   void do_void() {
5206     G1ParScanThreadState* const pss = par_scan_state();
5207     pss->trim_queue();
5208   }
5209 };
5210 
5211 // Parallel Reference Processing closures
5212 
5213 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5214 // processing during G1 evacuation pauses.
5215 
5216 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5217 private:
5218   G1CollectedHeap*   _g1h;
5219   RefToScanQueueSet* _queues;
5220   FlexibleWorkGang*  _workers;
5221   int                _active_workers;
5222 
5223 public:
5224   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5225                         FlexibleWorkGang* workers,
5226                         RefToScanQueueSet *task_queues,
5227                         int n_workers) :
5228     _g1h(g1h),
5229     _queues(task_queues),
5230     _workers(workers),
5231     _active_workers(n_workers)
5232   {
5233     assert(n_workers > 0, "shouldn't call this otherwise");
5234   }
5235 
5236   // Executes the given task using concurrent marking worker threads.
5237   virtual void execute(ProcessTask& task);
5238   virtual void execute(EnqueueTask& task);
5239 };
5240 
5241 // Gang task for possibly parallel reference processing
5242 
5243 class G1STWRefProcTaskProxy: public AbstractGangTask {
5244   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5245   ProcessTask&     _proc_task;
5246   G1CollectedHeap* _g1h;
5247   RefToScanQueueSet *_task_queues;
5248   ParallelTaskTerminator* _terminator;
5249 
5250 public:
5251   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5252                      G1CollectedHeap* g1h,
5253                      RefToScanQueueSet *task_queues,
5254                      ParallelTaskTerminator* terminator) :
5255     AbstractGangTask("Process reference objects in parallel"),
5256     _proc_task(proc_task),
5257     _g1h(g1h),
5258     _task_queues(task_queues),
5259     _terminator(terminator)
5260   {}
5261 
5262   virtual void work(uint worker_id) {
5263     // The reference processing task executed by a single worker.
5264     ResourceMark rm;
5265     HandleMark   hm;
5266 
5267     G1STWIsAliveClosure is_alive(_g1h);
5268 
5269     G1ParScanThreadState pss(_g1h, worker_id);
5270 
5271     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5272     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5273     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5274 
5275     pss.set_evac_closure(&scan_evac_cl);
5276     pss.set_evac_failure_closure(&evac_failure_cl);
5277     pss.set_partial_scan_closure(&partial_scan_cl);
5278 
5279     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5280     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5281 
5282     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5283     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5284 
5285     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5286     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5287 
5288     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5289       // We also need to mark copied objects.
5290       copy_non_heap_cl = &copy_mark_non_heap_cl;
5291       copy_metadata_cl = &copy_mark_metadata_cl;
5292     }
5293 
5294     // Keep alive closure.
5295     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5296 
5297     // Complete GC closure
5298     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5299 
5300     // Call the reference processing task's work routine.
5301     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5302 
5303     // Note we cannot assert that the refs array is empty here as not all
5304     // of the processing tasks (specifically phase2 - pp2_work) execute
5305     // the complete_gc closure (which ordinarily would drain the queue) so
5306     // the queue may not be empty.
5307   }
5308 };
5309 
5310 // Driver routine for parallel reference processing.
5311 // Creates an instance of the ref processing gang
5312 // task and has the worker threads execute it.
5313 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5314   assert(_workers != NULL, "Need parallel worker threads.");
5315 
5316   ParallelTaskTerminator terminator(_active_workers, _queues);
5317   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5318 
5319   _g1h->set_par_threads(_active_workers);
5320   _workers->run_task(&proc_task_proxy);
5321   _g1h->set_par_threads(0);
5322 }
5323 
5324 // Gang task for parallel reference enqueueing.
5325 
5326 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5327   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5328   EnqueueTask& _enq_task;
5329 
5330 public:
5331   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5332     AbstractGangTask("Enqueue reference objects in parallel"),
5333     _enq_task(enq_task)
5334   { }
5335 
5336   virtual void work(uint worker_id) {
5337     _enq_task.work(worker_id);
5338   }
5339 };
5340 
5341 // Driver routine for parallel reference enqueing.
5342 // Creates an instance of the ref enqueueing gang
5343 // task and has the worker threads execute it.
5344 
5345 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5346   assert(_workers != NULL, "Need parallel worker threads.");
5347 
5348   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5349 
5350   _g1h->set_par_threads(_active_workers);
5351   _workers->run_task(&enq_task_proxy);
5352   _g1h->set_par_threads(0);
5353 }
5354 
5355 // End of weak reference support closures
5356 
5357 // Abstract task used to preserve (i.e. copy) any referent objects
5358 // that are in the collection set and are pointed to by reference
5359 // objects discovered by the CM ref processor.
5360 
5361 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5362 protected:
5363   G1CollectedHeap* _g1h;
5364   RefToScanQueueSet      *_queues;
5365   ParallelTaskTerminator _terminator;
5366   uint _n_workers;
5367 
5368 public:
5369   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5370     AbstractGangTask("ParPreserveCMReferents"),
5371     _g1h(g1h),
5372     _queues(task_queues),
5373     _terminator(workers, _queues),
5374     _n_workers(workers)
5375   { }
5376 
5377   void work(uint worker_id) {
5378     ResourceMark rm;
5379     HandleMark   hm;
5380 
5381     G1ParScanThreadState            pss(_g1h, worker_id);
5382     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5383     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5384     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5385 
5386     pss.set_evac_closure(&scan_evac_cl);
5387     pss.set_evac_failure_closure(&evac_failure_cl);
5388     pss.set_partial_scan_closure(&partial_scan_cl);
5389 
5390     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5391 
5392 
5393     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5394     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5395 
5396     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5397     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5398 
5399     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5400     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5401 
5402     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5403       // We also need to mark copied objects.
5404       copy_non_heap_cl = &copy_mark_non_heap_cl;
5405       copy_metadata_cl = &copy_mark_metadata_cl;
5406     }
5407 
5408     // Is alive closure
5409     G1AlwaysAliveClosure always_alive(_g1h);
5410 
5411     // Copying keep alive closure. Applied to referent objects that need
5412     // to be copied.
5413     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5414 
5415     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5416 
5417     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5418     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5419 
5420     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5421     // So this must be true - but assert just in case someone decides to
5422     // change the worker ids.
5423     assert(0 <= worker_id && worker_id < limit, "sanity");
5424     assert(!rp->discovery_is_atomic(), "check this code");
5425 
5426     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5427     for (uint idx = worker_id; idx < limit; idx += stride) {
5428       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5429 
5430       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5431       while (iter.has_next()) {
5432         // Since discovery is not atomic for the CM ref processor, we
5433         // can see some null referent objects.
5434         iter.load_ptrs(DEBUG_ONLY(true));
5435         oop ref = iter.obj();
5436 
5437         // This will filter nulls.
5438         if (iter.is_referent_alive()) {
5439           iter.make_referent_alive();
5440         }
5441         iter.move_to_next();
5442       }
5443     }
5444 
5445     // Drain the queue - which may cause stealing
5446     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5447     drain_queue.do_void();
5448     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5449     assert(pss.refs()->is_empty(), "should be");
5450   }
5451 };
5452 
5453 // Weak Reference processing during an evacuation pause (part 1).
5454 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5455   double ref_proc_start = os::elapsedTime();
5456 
5457   ReferenceProcessor* rp = _ref_processor_stw;
5458   assert(rp->discovery_enabled(), "should have been enabled");
5459 
5460   // Any reference objects, in the collection set, that were 'discovered'
5461   // by the CM ref processor should have already been copied (either by
5462   // applying the external root copy closure to the discovered lists, or
5463   // by following an RSet entry).
5464   //
5465   // But some of the referents, that are in the collection set, that these
5466   // reference objects point to may not have been copied: the STW ref
5467   // processor would have seen that the reference object had already
5468   // been 'discovered' and would have skipped discovering the reference,
5469   // but would not have treated the reference object as a regular oop.
5470   // As a reult the copy closure would not have been applied to the
5471   // referent object.
5472   //
5473   // We need to explicitly copy these referent objects - the references
5474   // will be processed at the end of remarking.
5475   //
5476   // We also need to do this copying before we process the reference
5477   // objects discovered by the STW ref processor in case one of these
5478   // referents points to another object which is also referenced by an
5479   // object discovered by the STW ref processor.
5480 
5481   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5482            no_of_gc_workers == workers()->active_workers(),
5483            "Need to reset active GC workers");
5484 
5485   set_par_threads(no_of_gc_workers);
5486   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5487                                                  no_of_gc_workers,
5488                                                  _task_queues);
5489 
5490   if (G1CollectedHeap::use_parallel_gc_threads()) {
5491     workers()->run_task(&keep_cm_referents);
5492   } else {
5493     keep_cm_referents.work(0);
5494   }
5495 
5496   set_par_threads(0);
5497 
5498   // Closure to test whether a referent is alive.
5499   G1STWIsAliveClosure is_alive(this);
5500 
5501   // Even when parallel reference processing is enabled, the processing
5502   // of JNI refs is serial and performed serially by the current thread
5503   // rather than by a worker. The following PSS will be used for processing
5504   // JNI refs.
5505 
5506   // Use only a single queue for this PSS.
5507   G1ParScanThreadState pss(this, 0);
5508 
5509   // We do not embed a reference processor in the copying/scanning
5510   // closures while we're actually processing the discovered
5511   // reference objects.
5512   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5513   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5514   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5515 
5516   pss.set_evac_closure(&scan_evac_cl);
5517   pss.set_evac_failure_closure(&evac_failure_cl);
5518   pss.set_partial_scan_closure(&partial_scan_cl);
5519 
5520   assert(pss.refs()->is_empty(), "pre-condition");
5521 
5522   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5523   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5524 
5525   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5526   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5527 
5528   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5529   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5530 
5531   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5532     // We also need to mark copied objects.
5533     copy_non_heap_cl = &copy_mark_non_heap_cl;
5534     copy_metadata_cl = &copy_mark_metadata_cl;
5535   }
5536 
5537   // Keep alive closure.
5538   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5539 
5540   // Serial Complete GC closure
5541   G1STWDrainQueueClosure drain_queue(this, &pss);
5542 
5543   // Setup the soft refs policy...
5544   rp->setup_policy(false);
5545 
5546   if (!rp->processing_is_mt()) {
5547     // Serial reference processing...
5548     rp->process_discovered_references(&is_alive,
5549                                       &keep_alive,
5550                                       &drain_queue,
5551                                       NULL);
5552   } else {
5553     // Parallel reference processing
5554     assert(rp->num_q() == no_of_gc_workers, "sanity");
5555     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5556 
5557     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5558     rp->process_discovered_references(&is_alive, &keep_alive, &drain_queue, &par_task_executor);
5559   }
5560 
5561   // We have completed copying any necessary live referent objects
5562   // (that were not copied during the actual pause) so we can
5563   // retire any active alloc buffers
5564   pss.retire_alloc_buffers();
5565   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5566 
5567   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5568   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5569 }
5570 
5571 // Weak Reference processing during an evacuation pause (part 2).
5572 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5573   double ref_enq_start = os::elapsedTime();
5574 
5575   ReferenceProcessor* rp = _ref_processor_stw;
5576   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5577 
5578   // Now enqueue any remaining on the discovered lists on to
5579   // the pending list.
5580   if (!rp->processing_is_mt()) {
5581     // Serial reference processing...
5582     rp->enqueue_discovered_references();
5583   } else {
5584     // Parallel reference enqueuing
5585 
5586     assert(no_of_gc_workers == workers()->active_workers(),
5587            "Need to reset active workers");
5588     assert(rp->num_q() == no_of_gc_workers, "sanity");
5589     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5590 
5591     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5592     rp->enqueue_discovered_references(&par_task_executor);
5593   }
5594 
5595   rp->verify_no_references_recorded();
5596   assert(!rp->discovery_enabled(), "should have been disabled");
5597 
5598   // FIXME
5599   // CM's reference processing also cleans up the string and symbol tables.
5600   // Should we do that here also? We could, but it is a serial operation
5601   // and could signicantly increase the pause time.
5602 
5603   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5604   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5605 }
5606 
5607 void G1CollectedHeap::evacuate_collection_set() {
5608   _expand_heap_after_alloc_failure = true;
5609   set_evacuation_failed(false);
5610 
5611   // Should G1EvacuationFailureALot be in effect for this GC?
5612   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5613 
5614   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5615   concurrent_g1_refine()->set_use_cache(false);
5616   concurrent_g1_refine()->clear_hot_cache_claimed_index();
5617 
5618   uint n_workers;
5619   if (G1CollectedHeap::use_parallel_gc_threads()) {
5620     n_workers =
5621       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5622                                      workers()->active_workers(),
5623                                      Threads::number_of_non_daemon_threads());
5624     assert(UseDynamicNumberOfGCThreads ||
5625            n_workers == workers()->total_workers(),
5626            "If not dynamic should be using all the  workers");
5627     workers()->set_active_workers(n_workers);
5628     set_par_threads(n_workers);
5629   } else {
5630     assert(n_par_threads() == 0,
5631            "Should be the original non-parallel value");
5632     n_workers = 1;
5633   }
5634 
5635   G1ParTask g1_par_task(this, _task_queues);
5636 
5637   init_for_evac_failure(NULL);
5638 
5639   rem_set()->prepare_for_younger_refs_iterate(true);
5640 
5641   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5642   double start_par_time_sec = os::elapsedTime();
5643   double end_par_time_sec;
5644 
5645   {
5646     StrongRootsScope srs(this);
5647 
5648     if (G1CollectedHeap::use_parallel_gc_threads()) {
5649       // The individual threads will set their evac-failure closures.
5650       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5651       // These tasks use ShareHeap::_process_strong_tasks
5652       assert(UseDynamicNumberOfGCThreads ||
5653              workers()->active_workers() == workers()->total_workers(),
5654              "If not dynamic should be using all the  workers");
5655       workers()->run_task(&g1_par_task);
5656     } else {
5657       g1_par_task.set_for_termination(n_workers);
5658       g1_par_task.work(0);
5659     }
5660     end_par_time_sec = os::elapsedTime();
5661 
5662     // Closing the inner scope will execute the destructor
5663     // for the StrongRootsScope object. We record the current
5664     // elapsed time before closing the scope so that time
5665     // taken for the SRS destructor is NOT included in the
5666     // reported parallel time.
5667   }
5668 
5669   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5670   g1_policy()->phase_times()->record_par_time(par_time_ms);
5671 
5672   double code_root_fixup_time_ms =
5673         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5674   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5675 
5676   set_par_threads(0);
5677 
5678   // Process any discovered reference objects - we have
5679   // to do this _before_ we retire the GC alloc regions
5680   // as we may have to copy some 'reachable' referent
5681   // objects (and their reachable sub-graphs) that were
5682   // not copied during the pause.
5683   process_discovered_references(n_workers);
5684 
5685   // Weak root processing.
5686   // Note: when JSR 292 is enabled and code blobs can contain
5687   // non-perm oops then we will need to process the code blobs
5688   // here too.
5689   {
5690     G1STWIsAliveClosure is_alive(this);
5691     G1KeepAliveClosure keep_alive(this);
5692     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5693   }
5694 
5695   release_gc_alloc_regions(n_workers);
5696   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5697 
5698   concurrent_g1_refine()->clear_hot_cache();
5699   concurrent_g1_refine()->set_use_cache(true);
5700 
5701   finalize_for_evac_failure();
5702 
5703   if (evacuation_failed()) {
5704     remove_self_forwarding_pointers();
5705 
5706     // Reset the G1EvacuationFailureALot counters and flags
5707     // Note: the values are reset only when an actual
5708     // evacuation failure occurs.
5709     NOT_PRODUCT(reset_evacuation_should_fail();)
5710   }
5711 
5712   // Enqueue any remaining references remaining on the STW
5713   // reference processor's discovered lists. We need to do
5714   // this after the card table is cleaned (and verified) as
5715   // the act of enqueuing entries on to the pending list
5716   // will log these updates (and dirty their associated
5717   // cards). We need these updates logged to update any
5718   // RSets.
5719   enqueue_discovered_references(n_workers);
5720 
5721   if (G1DeferredRSUpdate) {
5722     RedirtyLoggedCardTableEntryFastClosure redirty;
5723     dirty_card_queue_set().set_closure(&redirty);
5724     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5725 
5726     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5727     dcq.merge_bufferlists(&dirty_card_queue_set());
5728     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5729   }
5730   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5731 }
5732 
5733 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5734                                      size_t* pre_used,
5735                                      FreeRegionList* free_list,
5736                                      OldRegionSet* old_proxy_set,
5737                                      HumongousRegionSet* humongous_proxy_set,
5738                                      HRRSCleanupTask* hrrs_cleanup_task,
5739                                      bool par) {
5740   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5741     if (hr->isHumongous()) {
5742       assert(hr->startsHumongous(), "we should only see starts humongous");
5743       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5744     } else {
5745       _old_set.remove_with_proxy(hr, old_proxy_set);
5746       free_region(hr, pre_used, free_list, par);
5747     }
5748   } else {
5749     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5750   }
5751 }
5752 
5753 void G1CollectedHeap::free_region(HeapRegion* hr,
5754                                   size_t* pre_used,
5755                                   FreeRegionList* free_list,
5756                                   bool par) {
5757   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5758   assert(!hr->is_empty(), "the region should not be empty");
5759   assert(free_list != NULL, "pre-condition");
5760 
5761   *pre_used += hr->used();
5762   hr->hr_clear(par, true /* clear_space */);
5763   free_list->add_as_head(hr);
5764 }
5765 
5766 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5767                                      size_t* pre_used,
5768                                      FreeRegionList* free_list,
5769                                      HumongousRegionSet* humongous_proxy_set,
5770                                      bool par) {
5771   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5772   assert(free_list != NULL, "pre-condition");
5773   assert(humongous_proxy_set != NULL, "pre-condition");
5774 
5775   size_t hr_used = hr->used();
5776   size_t hr_capacity = hr->capacity();
5777   size_t hr_pre_used = 0;
5778   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5779   // We need to read this before we make the region non-humongous,
5780   // otherwise the information will be gone.
5781   uint last_index = hr->last_hc_index();
5782   hr->set_notHumongous();
5783   free_region(hr, &hr_pre_used, free_list, par);
5784 
5785   uint i = hr->hrs_index() + 1;
5786   while (i < last_index) {
5787     HeapRegion* curr_hr = region_at(i);
5788     assert(curr_hr->continuesHumongous(), "invariant");
5789     curr_hr->set_notHumongous();
5790     free_region(curr_hr, &hr_pre_used, free_list, par);
5791     i += 1;
5792   }
5793   assert(hr_pre_used == hr_used,
5794          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5795                  "should be the same", hr_pre_used, hr_used));
5796   *pre_used += hr_pre_used;
5797 }
5798 
5799 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5800                                        FreeRegionList* free_list,
5801                                        OldRegionSet* old_proxy_set,
5802                                        HumongousRegionSet* humongous_proxy_set,
5803                                        bool par) {
5804   if (pre_used > 0) {
5805     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5806     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5807     assert(_summary_bytes_used >= pre_used,
5808            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5809                    "should be >= pre_used: "SIZE_FORMAT,
5810                    _summary_bytes_used, pre_used));
5811     _summary_bytes_used -= pre_used;
5812   }
5813   if (free_list != NULL && !free_list->is_empty()) {
5814     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5815     _free_list.add_as_head(free_list);
5816   }
5817   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5818     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5819     _old_set.update_from_proxy(old_proxy_set);
5820   }
5821   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5822     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5823     _humongous_set.update_from_proxy(humongous_proxy_set);
5824   }
5825 }
5826 
5827 class G1ParCleanupCTTask : public AbstractGangTask {
5828   CardTableModRefBS* _ct_bs;
5829   G1CollectedHeap* _g1h;
5830   HeapRegion* volatile _su_head;
5831 public:
5832   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5833                      G1CollectedHeap* g1h) :
5834     AbstractGangTask("G1 Par Cleanup CT Task"),
5835     _ct_bs(ct_bs), _g1h(g1h) { }
5836 
5837   void work(uint worker_id) {
5838     HeapRegion* r;
5839     while (r = _g1h->pop_dirty_cards_region()) {
5840       clear_cards(r);
5841     }
5842   }
5843 
5844   void clear_cards(HeapRegion* r) {
5845     // Cards of the survivors should have already been dirtied.
5846     if (!r->is_survivor()) {
5847       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5848     }
5849   }
5850 };
5851 
5852 #ifndef PRODUCT
5853 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5854   G1CollectedHeap* _g1h;
5855   CardTableModRefBS* _ct_bs;
5856 public:
5857   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
5858     : _g1h(g1h), _ct_bs(ct_bs) { }
5859   virtual bool doHeapRegion(HeapRegion* r) {
5860     if (r->is_survivor()) {
5861       _g1h->verify_dirty_region(r);
5862     } else {
5863       _g1h->verify_not_dirty_region(r);
5864     }
5865     return false;
5866   }
5867 };
5868 
5869 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5870   // All of the region should be clean.
5871   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
5872   MemRegion mr(hr->bottom(), hr->end());
5873   ct_bs->verify_not_dirty_region(mr);
5874 }
5875 
5876 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5877   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5878   // dirty allocated blocks as they allocate them. The thread that
5879   // retires each region and replaces it with a new one will do a
5880   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5881   // not dirty that area (one less thing to have to do while holding
5882   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5883   // is dirty.
5884   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5885   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5886   ct_bs->verify_dirty_region(mr);
5887 }
5888 
5889 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5890   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
5891   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5892     verify_dirty_region(hr);
5893   }
5894 }
5895 
5896 void G1CollectedHeap::verify_dirty_young_regions() {
5897   verify_dirty_young_list(_young_list->first_region());
5898 }
5899 #endif
5900 
5901 void G1CollectedHeap::cleanUpCardTable() {
5902   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
5903   double start = os::elapsedTime();
5904 
5905   {
5906     // Iterate over the dirty cards region list.
5907     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5908 
5909     if (G1CollectedHeap::use_parallel_gc_threads()) {
5910       set_par_threads();
5911       workers()->run_task(&cleanup_task);
5912       set_par_threads(0);
5913     } else {
5914       while (_dirty_cards_region_list) {
5915         HeapRegion* r = _dirty_cards_region_list;
5916         cleanup_task.clear_cards(r);
5917         _dirty_cards_region_list = r->get_next_dirty_cards_region();
5918         if (_dirty_cards_region_list == r) {
5919           // The last region.
5920           _dirty_cards_region_list = NULL;
5921         }
5922         r->set_next_dirty_cards_region(NULL);
5923       }
5924     }
5925 #ifndef PRODUCT
5926     if (G1VerifyCTCleanup || VerifyAfterGC) {
5927       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5928       heap_region_iterate(&cleanup_verifier);
5929     }
5930 #endif
5931   }
5932 
5933   double elapsed = os::elapsedTime() - start;
5934   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5935 }
5936 
5937 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head) {
5938   size_t pre_used = 0;
5939   FreeRegionList local_free_list("Local List for CSet Freeing");
5940 
5941   double young_time_ms     = 0.0;
5942   double non_young_time_ms = 0.0;
5943 
5944   // Since the collection set is a superset of the the young list,
5945   // all we need to do to clear the young list is clear its
5946   // head and length, and unlink any young regions in the code below
5947   _young_list->clear();
5948 
5949   G1CollectorPolicy* policy = g1_policy();
5950 
5951   double start_sec = os::elapsedTime();
5952   bool non_young = true;
5953 
5954   HeapRegion* cur = cs_head;
5955   int age_bound = -1;
5956   size_t rs_lengths = 0;
5957 
5958   while (cur != NULL) {
5959     assert(!is_on_master_free_list(cur), "sanity");
5960     if (non_young) {
5961       if (cur->is_young()) {
5962         double end_sec = os::elapsedTime();
5963         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5964         non_young_time_ms += elapsed_ms;
5965 
5966         start_sec = os::elapsedTime();
5967         non_young = false;
5968       }
5969     } else {
5970       if (!cur->is_young()) {
5971         double end_sec = os::elapsedTime();
5972         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5973         young_time_ms += elapsed_ms;
5974 
5975         start_sec = os::elapsedTime();
5976         non_young = true;
5977       }
5978     }
5979 
5980     rs_lengths += cur->rem_set()->occupied();
5981 
5982     HeapRegion* next = cur->next_in_collection_set();
5983     assert(cur->in_collection_set(), "bad CS");
5984     cur->set_next_in_collection_set(NULL);
5985     cur->set_in_collection_set(false);
5986 
5987     if (cur->is_young()) {
5988       int index = cur->young_index_in_cset();
5989       assert(index != -1, "invariant");
5990       assert((uint) index < policy->young_cset_region_length(), "invariant");
5991       size_t words_survived = _surviving_young_words[index];
5992       cur->record_surv_words_in_group(words_survived);
5993 
5994       // At this point the we have 'popped' cur from the collection set
5995       // (linked via next_in_collection_set()) but it is still in the
5996       // young list (linked via next_young_region()). Clear the
5997       // _next_young_region field.
5998       cur->set_next_young_region(NULL);
5999     } else {
6000       int index = cur->young_index_in_cset();
6001       assert(index == -1, "invariant");
6002     }
6003 
6004     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6005             (!cur->is_young() && cur->young_index_in_cset() == -1),
6006             "invariant" );
6007 
6008     if (!cur->evacuation_failed()) {
6009       MemRegion used_mr = cur->used_region();
6010 
6011       // And the region is empty.
6012       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6013       free_region(cur, &pre_used, &local_free_list, false /* par */);
6014     } else {
6015       cur->uninstall_surv_rate_group();
6016       if (cur->is_young()) {
6017         cur->set_young_index_in_cset(-1);
6018       }
6019       cur->set_not_young();
6020       cur->set_evacuation_failed(false);
6021       // The region is now considered to be old.
6022       _old_set.add(cur);
6023     }
6024     cur = next;
6025   }
6026 
6027   policy->record_max_rs_lengths(rs_lengths);
6028   policy->cset_regions_freed();
6029 
6030   double end_sec = os::elapsedTime();
6031   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6032 
6033   if (non_young) {
6034     non_young_time_ms += elapsed_ms;
6035   } else {
6036     young_time_ms += elapsed_ms;
6037   }
6038 
6039   update_sets_after_freeing_regions(pre_used, &local_free_list,
6040                                     NULL /* old_proxy_set */,
6041                                     NULL /* humongous_proxy_set */,
6042                                     false /* par */);
6043   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6044   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6045 }
6046 
6047 // This routine is similar to the above but does not record
6048 // any policy statistics or update free lists; we are abandoning
6049 // the current incremental collection set in preparation of a
6050 // full collection. After the full GC we will start to build up
6051 // the incremental collection set again.
6052 // This is only called when we're doing a full collection
6053 // and is immediately followed by the tearing down of the young list.
6054 
6055 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6056   HeapRegion* cur = cs_head;
6057 
6058   while (cur != NULL) {
6059     HeapRegion* next = cur->next_in_collection_set();
6060     assert(cur->in_collection_set(), "bad CS");
6061     cur->set_next_in_collection_set(NULL);
6062     cur->set_in_collection_set(false);
6063     cur->set_young_index_in_cset(-1);
6064     cur = next;
6065   }
6066 }
6067 
6068 void G1CollectedHeap::set_free_regions_coming() {
6069   if (G1ConcRegionFreeingVerbose) {
6070     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6071                            "setting free regions coming");
6072   }
6073 
6074   assert(!free_regions_coming(), "pre-condition");
6075   _free_regions_coming = true;
6076 }
6077 
6078 void G1CollectedHeap::reset_free_regions_coming() {
6079   assert(free_regions_coming(), "pre-condition");
6080 
6081   {
6082     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6083     _free_regions_coming = false;
6084     SecondaryFreeList_lock->notify_all();
6085   }
6086 
6087   if (G1ConcRegionFreeingVerbose) {
6088     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6089                            "reset free regions coming");
6090   }
6091 }
6092 
6093 void G1CollectedHeap::wait_while_free_regions_coming() {
6094   // Most of the time we won't have to wait, so let's do a quick test
6095   // first before we take the lock.
6096   if (!free_regions_coming()) {
6097     return;
6098   }
6099 
6100   if (G1ConcRegionFreeingVerbose) {
6101     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6102                            "waiting for free regions");
6103   }
6104 
6105   {
6106     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6107     while (free_regions_coming()) {
6108       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6109     }
6110   }
6111 
6112   if (G1ConcRegionFreeingVerbose) {
6113     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6114                            "done waiting for free regions");
6115   }
6116 }
6117 
6118 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6119   assert(heap_lock_held_for_gc(),
6120               "the heap lock should already be held by or for this thread");
6121   _young_list->push_region(hr);
6122 }
6123 
6124 class NoYoungRegionsClosure: public HeapRegionClosure {
6125 private:
6126   bool _success;
6127 public:
6128   NoYoungRegionsClosure() : _success(true) { }
6129   bool doHeapRegion(HeapRegion* r) {
6130     if (r->is_young()) {
6131       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6132                              r->bottom(), r->end());
6133       _success = false;
6134     }
6135     return false;
6136   }
6137   bool success() { return _success; }
6138 };
6139 
6140 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6141   bool ret = _young_list->check_list_empty(check_sample);
6142 
6143   if (check_heap) {
6144     NoYoungRegionsClosure closure;
6145     heap_region_iterate(&closure);
6146     ret = ret && closure.success();
6147   }
6148 
6149   return ret;
6150 }
6151 
6152 class TearDownRegionSetsClosure : public HeapRegionClosure {
6153 private:
6154   OldRegionSet *_old_set;
6155 
6156 public:
6157   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6158 
6159   bool doHeapRegion(HeapRegion* r) {
6160     if (r->is_empty()) {
6161       // We ignore empty regions, we'll empty the free list afterwards
6162     } else if (r->is_young()) {
6163       // We ignore young regions, we'll empty the young list afterwards
6164     } else if (r->isHumongous()) {
6165       // We ignore humongous regions, we're not tearing down the
6166       // humongous region set
6167     } else {
6168       // The rest should be old
6169       _old_set->remove(r);
6170     }
6171     return false;
6172   }
6173 
6174   ~TearDownRegionSetsClosure() {
6175     assert(_old_set->is_empty(), "post-condition");
6176   }
6177 };
6178 
6179 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6180   assert_at_safepoint(true /* should_be_vm_thread */);
6181 
6182   if (!free_list_only) {
6183     TearDownRegionSetsClosure cl(&_old_set);
6184     heap_region_iterate(&cl);
6185 
6186     // Need to do this after the heap iteration to be able to
6187     // recognize the young regions and ignore them during the iteration.
6188     _young_list->empty_list();
6189   }
6190   _free_list.remove_all();
6191 }
6192 
6193 class RebuildRegionSetsClosure : public HeapRegionClosure {
6194 private:
6195   bool            _free_list_only;
6196   OldRegionSet*   _old_set;
6197   FreeRegionList* _free_list;
6198   size_t          _total_used;
6199 
6200 public:
6201   RebuildRegionSetsClosure(bool free_list_only,
6202                            OldRegionSet* old_set, FreeRegionList* free_list) :
6203     _free_list_only(free_list_only),
6204     _old_set(old_set), _free_list(free_list), _total_used(0) {
6205     assert(_free_list->is_empty(), "pre-condition");
6206     if (!free_list_only) {
6207       assert(_old_set->is_empty(), "pre-condition");
6208     }
6209   }
6210 
6211   bool doHeapRegion(HeapRegion* r) {
6212     if (r->continuesHumongous()) {
6213       return false;
6214     }
6215 
6216     if (r->is_empty()) {
6217       // Add free regions to the free list
6218       _free_list->add_as_tail(r);
6219     } else if (!_free_list_only) {
6220       assert(!r->is_young(), "we should not come across young regions");
6221 
6222       if (r->isHumongous()) {
6223         // We ignore humongous regions, we left the humongous set unchanged
6224       } else {
6225         // The rest should be old, add them to the old set
6226         _old_set->add(r);
6227       }
6228       _total_used += r->used();
6229     }
6230 
6231     return false;
6232   }
6233 
6234   size_t total_used() {
6235     return _total_used;
6236   }
6237 };
6238 
6239 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6240   assert_at_safepoint(true /* should_be_vm_thread */);
6241 
6242   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6243   heap_region_iterate(&cl);
6244 
6245   if (!free_list_only) {
6246     _summary_bytes_used = cl.total_used();
6247   }
6248   assert(_summary_bytes_used == recalculate_used(),
6249          err_msg("inconsistent _summary_bytes_used, "
6250                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6251                  _summary_bytes_used, recalculate_used()));
6252 }
6253 
6254 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6255   _refine_cte_cl->set_concurrent(concurrent);
6256 }
6257 
6258 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6259   HeapRegion* hr = heap_region_containing(p);
6260   if (hr == NULL) {
6261     return false;
6262   } else {
6263     return hr->is_in(p);
6264   }
6265 }
6266 
6267 // Methods for the mutator alloc region
6268 
6269 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6270                                                       bool force) {
6271   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6272   assert(!force || g1_policy()->can_expand_young_list(),
6273          "if force is true we should be able to expand the young list");
6274   bool young_list_full = g1_policy()->is_young_list_full();
6275   if (force || !young_list_full) {
6276     HeapRegion* new_alloc_region = new_region(word_size,
6277                                               false /* do_expand */);
6278     if (new_alloc_region != NULL) {
6279       set_region_short_lived_locked(new_alloc_region);
6280       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6281       return new_alloc_region;
6282     }
6283   }
6284   return NULL;
6285 }
6286 
6287 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6288                                                   size_t allocated_bytes) {
6289   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6290   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6291 
6292   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6293   _summary_bytes_used += allocated_bytes;
6294   _hr_printer.retire(alloc_region);
6295   // We update the eden sizes here, when the region is retired,
6296   // instead of when it's allocated, since this is the point that its
6297   // used space has been recored in _summary_bytes_used.
6298   g1mm()->update_eden_size();
6299 }
6300 
6301 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6302                                                     bool force) {
6303   return _g1h->new_mutator_alloc_region(word_size, force);
6304 }
6305 
6306 void G1CollectedHeap::set_par_threads() {
6307   // Don't change the number of workers.  Use the value previously set
6308   // in the workgroup.
6309   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6310   uint n_workers = workers()->active_workers();
6311   assert(UseDynamicNumberOfGCThreads ||
6312            n_workers == workers()->total_workers(),
6313       "Otherwise should be using the total number of workers");
6314   if (n_workers == 0) {
6315     assert(false, "Should have been set in prior evacuation pause.");
6316     n_workers = ParallelGCThreads;
6317     workers()->set_active_workers(n_workers);
6318   }
6319   set_par_threads(n_workers);
6320 }
6321 
6322 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6323                                        size_t allocated_bytes) {
6324   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6325 }
6326 
6327 // Methods for the GC alloc regions
6328 
6329 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6330                                                  uint count,
6331                                                  GCAllocPurpose ap) {
6332   assert(FreeList_lock->owned_by_self(), "pre-condition");
6333 
6334   if (count < g1_policy()->max_regions(ap)) {
6335     HeapRegion* new_alloc_region = new_region(word_size,
6336                                               true /* do_expand */);
6337     if (new_alloc_region != NULL) {
6338       // We really only need to do this for old regions given that we
6339       // should never scan survivors. But it doesn't hurt to do it
6340       // for survivors too.
6341       new_alloc_region->set_saved_mark();
6342       if (ap == GCAllocForSurvived) {
6343         new_alloc_region->set_survivor();
6344         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6345       } else {
6346         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6347       }
6348       bool during_im = g1_policy()->during_initial_mark_pause();
6349       new_alloc_region->note_start_of_copying(during_im);
6350       return new_alloc_region;
6351     } else {
6352       g1_policy()->note_alloc_region_limit_reached(ap);
6353     }
6354   }
6355   return NULL;
6356 }
6357 
6358 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6359                                              size_t allocated_bytes,
6360                                              GCAllocPurpose ap) {
6361   bool during_im = g1_policy()->during_initial_mark_pause();
6362   alloc_region->note_end_of_copying(during_im);
6363   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6364   if (ap == GCAllocForSurvived) {
6365     young_list()->add_survivor_region(alloc_region);
6366   } else {
6367     _old_set.add(alloc_region);
6368   }
6369   _hr_printer.retire(alloc_region);
6370 }
6371 
6372 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6373                                                        bool force) {
6374   assert(!force, "not supported for GC alloc regions");
6375   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6376 }
6377 
6378 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6379                                           size_t allocated_bytes) {
6380   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6381                                GCAllocForSurvived);
6382 }
6383 
6384 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6385                                                   bool force) {
6386   assert(!force, "not supported for GC alloc regions");
6387   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6388 }
6389 
6390 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6391                                      size_t allocated_bytes) {
6392   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6393                                GCAllocForTenured);
6394 }
6395 // Heap region set verification
6396 
6397 class VerifyRegionListsClosure : public HeapRegionClosure {
6398 private:
6399   FreeRegionList*     _free_list;
6400   OldRegionSet*       _old_set;
6401   HumongousRegionSet* _humongous_set;
6402   uint                _region_count;
6403 
6404 public:
6405   VerifyRegionListsClosure(OldRegionSet* old_set,
6406                            HumongousRegionSet* humongous_set,
6407                            FreeRegionList* free_list) :
6408     _old_set(old_set), _humongous_set(humongous_set),
6409     _free_list(free_list), _region_count(0) { }
6410 
6411   uint region_count() { return _region_count; }
6412 
6413   bool doHeapRegion(HeapRegion* hr) {
6414     _region_count += 1;
6415 
6416     if (hr->continuesHumongous()) {
6417       return false;
6418     }
6419 
6420     if (hr->is_young()) {
6421       // TODO
6422     } else if (hr->startsHumongous()) {
6423       _humongous_set->verify_next_region(hr);
6424     } else if (hr->is_empty()) {
6425       _free_list->verify_next_region(hr);
6426     } else {
6427       _old_set->verify_next_region(hr);
6428     }
6429     return false;
6430   }
6431 };
6432 
6433 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6434                                              HeapWord* bottom) {
6435   HeapWord* end = bottom + HeapRegion::GrainWords;
6436   MemRegion mr(bottom, end);
6437   assert(_g1_reserved.contains(mr), "invariant");
6438   // This might return NULL if the allocation fails
6439   return new HeapRegion(hrs_index, _bot_shared, mr);
6440 }
6441 
6442 void G1CollectedHeap::verify_region_sets() {
6443   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6444 
6445   // First, check the explicit lists.
6446   _free_list.verify();
6447   {
6448     // Given that a concurrent operation might be adding regions to
6449     // the secondary free list we have to take the lock before
6450     // verifying it.
6451     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6452     _secondary_free_list.verify();
6453   }
6454   _old_set.verify();
6455   _humongous_set.verify();
6456 
6457   // If a concurrent region freeing operation is in progress it will
6458   // be difficult to correctly attributed any free regions we come
6459   // across to the correct free list given that they might belong to
6460   // one of several (free_list, secondary_free_list, any local lists,
6461   // etc.). So, if that's the case we will skip the rest of the
6462   // verification operation. Alternatively, waiting for the concurrent
6463   // operation to complete will have a non-trivial effect on the GC's
6464   // operation (no concurrent operation will last longer than the
6465   // interval between two calls to verification) and it might hide
6466   // any issues that we would like to catch during testing.
6467   if (free_regions_coming()) {
6468     return;
6469   }
6470 
6471   // Make sure we append the secondary_free_list on the free_list so
6472   // that all free regions we will come across can be safely
6473   // attributed to the free_list.
6474   append_secondary_free_list_if_not_empty_with_lock();
6475 
6476   // Finally, make sure that the region accounting in the lists is
6477   // consistent with what we see in the heap.
6478   _old_set.verify_start();
6479   _humongous_set.verify_start();
6480   _free_list.verify_start();
6481 
6482   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6483   heap_region_iterate(&cl);
6484 
6485   _old_set.verify_end();
6486   _humongous_set.verify_end();
6487   _free_list.verify_end();
6488 }