1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "jvm.h"
  30 #include "classfile/classLoader.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "interpreter/interpreter.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/filemap.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/objectMonitor.hpp"
  55 #include "runtime/orderAccess.inline.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "runtime/vm_version.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/vmError.hpp"
  75 #include "symbolengine.hpp"
  76 #include "windbghelp.hpp"
  77 
  78 
  79 #ifdef _DEBUG
  80 #include <crtdbg.h>
  81 #endif
  82 
  83 
  84 #include <windows.h>
  85 #include <sys/types.h>
  86 #include <sys/stat.h>
  87 #include <sys/timeb.h>
  88 #include <objidl.h>
  89 #include <shlobj.h>
  90 
  91 #include <malloc.h>
  92 #include <signal.h>
  93 #include <direct.h>
  94 #include <errno.h>
  95 #include <fcntl.h>
  96 #include <io.h>
  97 #include <process.h>              // For _beginthreadex(), _endthreadex()
  98 #include <imagehlp.h>             // For os::dll_address_to_function_name
  99 // for enumerating dll libraries
 100 #include <vdmdbg.h>
 101 #include <psapi.h>
 102 #include <mmsystem.h>
 103 #include <winsock2.h>
 104 
 105 // for timer info max values which include all bits
 106 #define ALL_64_BITS CONST64(-1)
 107 
 108 // For DLL loading/load error detection
 109 // Values of PE COFF
 110 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 111 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 112 
 113 static HANDLE main_process;
 114 static HANDLE main_thread;
 115 static int    main_thread_id;
 116 
 117 static FILETIME process_creation_time;
 118 static FILETIME process_exit_time;
 119 static FILETIME process_user_time;
 120 static FILETIME process_kernel_time;
 121 
 122 #ifdef _M_AMD64
 123   #define __CPU__ amd64
 124 #else
 125   #define __CPU__ i486
 126 #endif
 127 
 128 // save DLL module handle, used by GetModuleFileName
 129 
 130 HINSTANCE vm_lib_handle;
 131 
 132 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 133   switch (reason) {
 134   case DLL_PROCESS_ATTACH:
 135     vm_lib_handle = hinst;
 136     if (ForceTimeHighResolution) {
 137       timeBeginPeriod(1L);
 138     }
 139     WindowsDbgHelp::pre_initialize();
 140     SymbolEngine::pre_initialize();
 141     break;
 142   case DLL_PROCESS_DETACH:
 143     if (ForceTimeHighResolution) {
 144       timeEndPeriod(1L);
 145     }
 146     break;
 147   default:
 148     break;
 149   }
 150   return true;
 151 }
 152 
 153 static inline double fileTimeAsDouble(FILETIME* time) {
 154   const double high  = (double) ((unsigned int) ~0);
 155   const double split = 10000000.0;
 156   double result = (time->dwLowDateTime / split) +
 157                    time->dwHighDateTime * (high/split);
 158   return result;
 159 }
 160 
 161 // Implementation of os
 162 
 163 bool os::unsetenv(const char* name) {
 164   assert(name != NULL, "Null pointer");
 165   return (SetEnvironmentVariable(name, NULL) == TRUE);
 166 }
 167 
 168 // No setuid programs under Windows.
 169 bool os::have_special_privileges() {
 170   return false;
 171 }
 172 
 173 
 174 // This method is  a periodic task to check for misbehaving JNI applications
 175 // under CheckJNI, we can add any periodic checks here.
 176 // For Windows at the moment does nothing
 177 void os::run_periodic_checks() {
 178   return;
 179 }
 180 
 181 // previous UnhandledExceptionFilter, if there is one
 182 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 183 
 184 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 185 
 186 void os::init_system_properties_values() {
 187   // sysclasspath, java_home, dll_dir
 188   {
 189     char *home_path;
 190     char *dll_path;
 191     char *pslash;
 192     char *bin = "\\bin";
 193     char home_dir[MAX_PATH + 1];
 194     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 195 
 196     if (alt_home_dir != NULL)  {
 197       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 198       home_dir[MAX_PATH] = '\0';
 199     } else {
 200       os::jvm_path(home_dir, sizeof(home_dir));
 201       // Found the full path to jvm.dll.
 202       // Now cut the path to <java_home>/jre if we can.
 203       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 204       pslash = strrchr(home_dir, '\\');
 205       if (pslash != NULL) {
 206         *pslash = '\0';                   // get rid of \{client|server}
 207         pslash = strrchr(home_dir, '\\');
 208         if (pslash != NULL) {
 209           *pslash = '\0';                 // get rid of \bin
 210         }
 211       }
 212     }
 213 
 214     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 215     if (home_path == NULL) {
 216       return;
 217     }
 218     strcpy(home_path, home_dir);
 219     Arguments::set_java_home(home_path);
 220     FREE_C_HEAP_ARRAY(char, home_path);
 221 
 222     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 223                                 mtInternal);
 224     if (dll_path == NULL) {
 225       return;
 226     }
 227     strcpy(dll_path, home_dir);
 228     strcat(dll_path, bin);
 229     Arguments::set_dll_dir(dll_path);
 230     FREE_C_HEAP_ARRAY(char, dll_path);
 231 
 232     if (!set_boot_path('\\', ';')) {
 233       return;
 234     }
 235   }
 236 
 237 // library_path
 238 #define EXT_DIR "\\lib\\ext"
 239 #define BIN_DIR "\\bin"
 240 #define PACKAGE_DIR "\\Sun\\Java"
 241   {
 242     // Win32 library search order (See the documentation for LoadLibrary):
 243     //
 244     // 1. The directory from which application is loaded.
 245     // 2. The system wide Java Extensions directory (Java only)
 246     // 3. System directory (GetSystemDirectory)
 247     // 4. Windows directory (GetWindowsDirectory)
 248     // 5. The PATH environment variable
 249     // 6. The current directory
 250 
 251     char *library_path;
 252     char tmp[MAX_PATH];
 253     char *path_str = ::getenv("PATH");
 254 
 255     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 256                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 257 
 258     library_path[0] = '\0';
 259 
 260     GetModuleFileName(NULL, tmp, sizeof(tmp));
 261     *(strrchr(tmp, '\\')) = '\0';
 262     strcat(library_path, tmp);
 263 
 264     GetWindowsDirectory(tmp, sizeof(tmp));
 265     strcat(library_path, ";");
 266     strcat(library_path, tmp);
 267     strcat(library_path, PACKAGE_DIR BIN_DIR);
 268 
 269     GetSystemDirectory(tmp, sizeof(tmp));
 270     strcat(library_path, ";");
 271     strcat(library_path, tmp);
 272 
 273     GetWindowsDirectory(tmp, sizeof(tmp));
 274     strcat(library_path, ";");
 275     strcat(library_path, tmp);
 276 
 277     if (path_str) {
 278       strcat(library_path, ";");
 279       strcat(library_path, path_str);
 280     }
 281 
 282     strcat(library_path, ";.");
 283 
 284     Arguments::set_library_path(library_path);
 285     FREE_C_HEAP_ARRAY(char, library_path);
 286   }
 287 
 288   // Default extensions directory
 289   {
 290     char path[MAX_PATH];
 291     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 292     GetWindowsDirectory(path, MAX_PATH);
 293     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 294             path, PACKAGE_DIR, EXT_DIR);
 295     Arguments::set_ext_dirs(buf);
 296   }
 297   #undef EXT_DIR
 298   #undef BIN_DIR
 299   #undef PACKAGE_DIR
 300 
 301 #ifndef _WIN64
 302   // set our UnhandledExceptionFilter and save any previous one
 303   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 304 #endif
 305 
 306   // Done
 307   return;
 308 }
 309 
 310 void os::breakpoint() {
 311   DebugBreak();
 312 }
 313 
 314 // Invoked from the BREAKPOINT Macro
 315 extern "C" void breakpoint() {
 316   os::breakpoint();
 317 }
 318 
 319 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 320 // So far, this method is only used by Native Memory Tracking, which is
 321 // only supported on Windows XP or later.
 322 //
 323 int os::get_native_stack(address* stack, int frames, int toSkip) {
 324   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 325   for (int index = captured; index < frames; index ++) {
 326     stack[index] = NULL;
 327   }
 328   return captured;
 329 }
 330 
 331 
 332 // os::current_stack_base()
 333 //
 334 //   Returns the base of the stack, which is the stack's
 335 //   starting address.  This function must be called
 336 //   while running on the stack of the thread being queried.
 337 
 338 address os::current_stack_base() {
 339   MEMORY_BASIC_INFORMATION minfo;
 340   address stack_bottom;
 341   size_t stack_size;
 342 
 343   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 344   stack_bottom =  (address)minfo.AllocationBase;
 345   stack_size = minfo.RegionSize;
 346 
 347   // Add up the sizes of all the regions with the same
 348   // AllocationBase.
 349   while (1) {
 350     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 351     if (stack_bottom == (address)minfo.AllocationBase) {
 352       stack_size += minfo.RegionSize;
 353     } else {
 354       break;
 355     }
 356   }
 357   return stack_bottom + stack_size;
 358 }
 359 
 360 size_t os::current_stack_size() {
 361   size_t sz;
 362   MEMORY_BASIC_INFORMATION minfo;
 363   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 364   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 365   return sz;
 366 }
 367 
 368 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 369   const struct tm* time_struct_ptr = localtime(clock);
 370   if (time_struct_ptr != NULL) {
 371     *res = *time_struct_ptr;
 372     return res;
 373   }
 374   return NULL;
 375 }
 376 
 377 struct tm* os::gmtime_pd(const time_t* clock, struct tm* res) {
 378   const struct tm* time_struct_ptr = gmtime(clock);
 379   if (time_struct_ptr != NULL) {
 380     *res = *time_struct_ptr;
 381     return res;
 382   }
 383   return NULL;
 384 }
 385 
 386 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 387 
 388 // Thread start routine for all newly created threads
 389 static unsigned __stdcall thread_native_entry(Thread* thread) {
 390   // Try to randomize the cache line index of hot stack frames.
 391   // This helps when threads of the same stack traces evict each other's
 392   // cache lines. The threads can be either from the same JVM instance, or
 393   // from different JVM instances. The benefit is especially true for
 394   // processors with hyperthreading technology.
 395   static int counter = 0;
 396   int pid = os::current_process_id();
 397   _alloca(((pid ^ counter++) & 7) * 128);
 398 
 399   thread->initialize_thread_current();
 400 
 401   OSThread* osthr = thread->osthread();
 402   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 403 
 404   if (UseNUMA) {
 405     int lgrp_id = os::numa_get_group_id();
 406     if (lgrp_id != -1) {
 407       thread->set_lgrp_id(lgrp_id);
 408     }
 409   }
 410 
 411   // Diagnostic code to investigate JDK-6573254
 412   int res = 30115;  // non-java thread
 413   if (thread->is_Java_thread()) {
 414     res = 20115;    // java thread
 415   }
 416 
 417   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 418 
 419   // Install a win32 structured exception handler around every thread created
 420   // by VM, so VM can generate error dump when an exception occurred in non-
 421   // Java thread (e.g. VM thread).
 422   __try {
 423     thread->run();
 424   } __except(topLevelExceptionFilter(
 425                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 426     // Nothing to do.
 427   }
 428 
 429   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 430 
 431   // One less thread is executing
 432   // When the VMThread gets here, the main thread may have already exited
 433   // which frees the CodeHeap containing the Atomic::add code
 434   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 435     Atomic::dec(&os::win32::_os_thread_count);
 436   }
 437 
 438   // If a thread has not deleted itself ("delete this") as part of its
 439   // termination sequence, we have to ensure thread-local-storage is
 440   // cleared before we actually terminate. No threads should ever be
 441   // deleted asynchronously with respect to their termination.
 442   if (Thread::current_or_null_safe() != NULL) {
 443     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 444     thread->clear_thread_current();
 445   }
 446 
 447   // Thread must not return from exit_process_or_thread(), but if it does,
 448   // let it proceed to exit normally
 449   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 450 }
 451 
 452 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 453                                   int thread_id) {
 454   // Allocate the OSThread object
 455   OSThread* osthread = new OSThread(NULL, NULL);
 456   if (osthread == NULL) return NULL;
 457 
 458   // Initialize support for Java interrupts
 459   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 460   if (interrupt_event == NULL) {
 461     delete osthread;
 462     return NULL;
 463   }
 464   osthread->set_interrupt_event(interrupt_event);
 465 
 466   // Store info on the Win32 thread into the OSThread
 467   osthread->set_thread_handle(thread_handle);
 468   osthread->set_thread_id(thread_id);
 469 
 470   if (UseNUMA) {
 471     int lgrp_id = os::numa_get_group_id();
 472     if (lgrp_id != -1) {
 473       thread->set_lgrp_id(lgrp_id);
 474     }
 475   }
 476 
 477   // Initial thread state is INITIALIZED, not SUSPENDED
 478   osthread->set_state(INITIALIZED);
 479 
 480   return osthread;
 481 }
 482 
 483 
 484 bool os::create_attached_thread(JavaThread* thread) {
 485 #ifdef ASSERT
 486   thread->verify_not_published();
 487 #endif
 488   HANDLE thread_h;
 489   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 490                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 491     fatal("DuplicateHandle failed\n");
 492   }
 493   OSThread* osthread = create_os_thread(thread, thread_h,
 494                                         (int)current_thread_id());
 495   if (osthread == NULL) {
 496     return false;
 497   }
 498 
 499   // Initial thread state is RUNNABLE
 500   osthread->set_state(RUNNABLE);
 501 
 502   thread->set_osthread(osthread);
 503 
 504   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 505     os::current_thread_id());
 506 
 507   return true;
 508 }
 509 
 510 bool os::create_main_thread(JavaThread* thread) {
 511 #ifdef ASSERT
 512   thread->verify_not_published();
 513 #endif
 514   if (_starting_thread == NULL) {
 515     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 516     if (_starting_thread == NULL) {
 517       return false;
 518     }
 519   }
 520 
 521   // The primordial thread is runnable from the start)
 522   _starting_thread->set_state(RUNNABLE);
 523 
 524   thread->set_osthread(_starting_thread);
 525   return true;
 526 }
 527 
 528 // Helper function to trace _beginthreadex attributes,
 529 //  similar to os::Posix::describe_pthread_attr()
 530 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 531                                                size_t stacksize, unsigned initflag) {
 532   stringStream ss(buf, buflen);
 533   if (stacksize == 0) {
 534     ss.print("stacksize: default, ");
 535   } else {
 536     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 537   }
 538   ss.print("flags: ");
 539   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 540   #define ALL(X) \
 541     X(CREATE_SUSPENDED) \
 542     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 543   ALL(PRINT_FLAG)
 544   #undef ALL
 545   #undef PRINT_FLAG
 546   return buf;
 547 }
 548 
 549 // Allocate and initialize a new OSThread
 550 bool os::create_thread(Thread* thread, ThreadType thr_type,
 551                        size_t stack_size) {
 552   unsigned thread_id;
 553 
 554   // Allocate the OSThread object
 555   OSThread* osthread = new OSThread(NULL, NULL);
 556   if (osthread == NULL) {
 557     return false;
 558   }
 559 
 560   // Initialize support for Java interrupts
 561   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 562   if (interrupt_event == NULL) {
 563     delete osthread;
 564     return NULL;
 565   }
 566   osthread->set_interrupt_event(interrupt_event);
 567   osthread->set_interrupted(false);
 568 
 569   thread->set_osthread(osthread);
 570 
 571   if (stack_size == 0) {
 572     switch (thr_type) {
 573     case os::java_thread:
 574       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 575       if (JavaThread::stack_size_at_create() > 0) {
 576         stack_size = JavaThread::stack_size_at_create();
 577       }
 578       break;
 579     case os::compiler_thread:
 580       if (CompilerThreadStackSize > 0) {
 581         stack_size = (size_t)(CompilerThreadStackSize * K);
 582         break;
 583       } // else fall through:
 584         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 585     case os::vm_thread:
 586     case os::pgc_thread:
 587     case os::cgc_thread:
 588     case os::watcher_thread:
 589       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 590       break;
 591     }
 592   }
 593 
 594   // Create the Win32 thread
 595   //
 596   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 597   // does not specify stack size. Instead, it specifies the size of
 598   // initially committed space. The stack size is determined by
 599   // PE header in the executable. If the committed "stack_size" is larger
 600   // than default value in the PE header, the stack is rounded up to the
 601   // nearest multiple of 1MB. For example if the launcher has default
 602   // stack size of 320k, specifying any size less than 320k does not
 603   // affect the actual stack size at all, it only affects the initial
 604   // commitment. On the other hand, specifying 'stack_size' larger than
 605   // default value may cause significant increase in memory usage, because
 606   // not only the stack space will be rounded up to MB, but also the
 607   // entire space is committed upfront.
 608   //
 609   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 610   // for CreateThread() that can treat 'stack_size' as stack size. However we
 611   // are not supposed to call CreateThread() directly according to MSDN
 612   // document because JVM uses C runtime library. The good news is that the
 613   // flag appears to work with _beginthredex() as well.
 614 
 615   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 616   HANDLE thread_handle =
 617     (HANDLE)_beginthreadex(NULL,
 618                            (unsigned)stack_size,
 619                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 620                            thread,
 621                            initflag,
 622                            &thread_id);
 623 
 624   char buf[64];
 625   if (thread_handle != NULL) {
 626     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 627       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 628   } else {
 629     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 630       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 631   }
 632 
 633   if (thread_handle == NULL) {
 634     // Need to clean up stuff we've allocated so far
 635     CloseHandle(osthread->interrupt_event());
 636     thread->set_osthread(NULL);
 637     delete osthread;
 638     return NULL;
 639   }
 640 
 641   Atomic::inc(&os::win32::_os_thread_count);
 642 
 643   // Store info on the Win32 thread into the OSThread
 644   osthread->set_thread_handle(thread_handle);
 645   osthread->set_thread_id(thread_id);
 646 
 647   // Initial thread state is INITIALIZED, not SUSPENDED
 648   osthread->set_state(INITIALIZED);
 649 
 650   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 651   return true;
 652 }
 653 
 654 
 655 // Free Win32 resources related to the OSThread
 656 void os::free_thread(OSThread* osthread) {
 657   assert(osthread != NULL, "osthread not set");
 658 
 659   // We are told to free resources of the argument thread,
 660   // but we can only really operate on the current thread.
 661   assert(Thread::current()->osthread() == osthread,
 662          "os::free_thread but not current thread");
 663 
 664   CloseHandle(osthread->thread_handle());
 665   CloseHandle(osthread->interrupt_event());
 666   delete osthread;
 667 }
 668 
 669 static jlong first_filetime;
 670 static jlong initial_performance_count;
 671 static jlong performance_frequency;
 672 
 673 
 674 jlong as_long(LARGE_INTEGER x) {
 675   jlong result = 0; // initialization to avoid warning
 676   set_high(&result, x.HighPart);
 677   set_low(&result, x.LowPart);
 678   return result;
 679 }
 680 
 681 
 682 jlong os::elapsed_counter() {
 683   LARGE_INTEGER count;
 684   QueryPerformanceCounter(&count);
 685   return as_long(count) - initial_performance_count;
 686 }
 687 
 688 
 689 jlong os::elapsed_frequency() {
 690   return performance_frequency;
 691 }
 692 
 693 
 694 julong os::available_memory() {
 695   return win32::available_memory();
 696 }
 697 
 698 julong os::win32::available_memory() {
 699   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 700   // value if total memory is larger than 4GB
 701   MEMORYSTATUSEX ms;
 702   ms.dwLength = sizeof(ms);
 703   GlobalMemoryStatusEx(&ms);
 704 
 705   return (julong)ms.ullAvailPhys;
 706 }
 707 
 708 julong os::physical_memory() {
 709   return win32::physical_memory();
 710 }
 711 
 712 bool os::has_allocatable_memory_limit(julong* limit) {
 713   MEMORYSTATUSEX ms;
 714   ms.dwLength = sizeof(ms);
 715   GlobalMemoryStatusEx(&ms);
 716 #ifdef _LP64
 717   *limit = (julong)ms.ullAvailVirtual;
 718   return true;
 719 #else
 720   // Limit to 1400m because of the 2gb address space wall
 721   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 722   return true;
 723 #endif
 724 }
 725 
 726 int os::active_processor_count() {
 727   // User has overridden the number of active processors
 728   if (ActiveProcessorCount > 0) {
 729     log_trace(os)("active_processor_count: "
 730                   "active processor count set by user : %d",
 731                   ActiveProcessorCount);
 732     return ActiveProcessorCount;
 733   }
 734 
 735   DWORD_PTR lpProcessAffinityMask = 0;
 736   DWORD_PTR lpSystemAffinityMask = 0;
 737   int proc_count = processor_count();
 738   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 739       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 740     // Nof active processors is number of bits in process affinity mask
 741     int bitcount = 0;
 742     while (lpProcessAffinityMask != 0) {
 743       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 744       bitcount++;
 745     }
 746     return bitcount;
 747   } else {
 748     return proc_count;
 749   }
 750 }
 751 
 752 void os::set_native_thread_name(const char *name) {
 753 
 754   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 755   //
 756   // Note that unfortunately this only works if the process
 757   // is already attached to a debugger; debugger must observe
 758   // the exception below to show the correct name.
 759 
 760   // If there is no debugger attached skip raising the exception
 761   if (!IsDebuggerPresent()) {
 762     return;
 763   }
 764 
 765   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 766   struct {
 767     DWORD dwType;     // must be 0x1000
 768     LPCSTR szName;    // pointer to name (in user addr space)
 769     DWORD dwThreadID; // thread ID (-1=caller thread)
 770     DWORD dwFlags;    // reserved for future use, must be zero
 771   } info;
 772 
 773   info.dwType = 0x1000;
 774   info.szName = name;
 775   info.dwThreadID = -1;
 776   info.dwFlags = 0;
 777 
 778   __try {
 779     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 780   } __except(EXCEPTION_EXECUTE_HANDLER) {}
 781 }
 782 
 783 bool os::distribute_processes(uint length, uint* distribution) {
 784   // Not yet implemented.
 785   return false;
 786 }
 787 
 788 bool os::bind_to_processor(uint processor_id) {
 789   // Not yet implemented.
 790   return false;
 791 }
 792 
 793 void os::win32::initialize_performance_counter() {
 794   LARGE_INTEGER count;
 795   QueryPerformanceFrequency(&count);
 796   performance_frequency = as_long(count);
 797   QueryPerformanceCounter(&count);
 798   initial_performance_count = as_long(count);
 799 }
 800 
 801 
 802 double os::elapsedTime() {
 803   return (double) elapsed_counter() / (double) elapsed_frequency();
 804 }
 805 
 806 
 807 // Windows format:
 808 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 809 // Java format:
 810 //   Java standards require the number of milliseconds since 1/1/1970
 811 
 812 // Constant offset - calculated using offset()
 813 static jlong  _offset   = 116444736000000000;
 814 // Fake time counter for reproducible results when debugging
 815 static jlong  fake_time = 0;
 816 
 817 #ifdef ASSERT
 818 // Just to be safe, recalculate the offset in debug mode
 819 static jlong _calculated_offset = 0;
 820 static int   _has_calculated_offset = 0;
 821 
 822 jlong offset() {
 823   if (_has_calculated_offset) return _calculated_offset;
 824   SYSTEMTIME java_origin;
 825   java_origin.wYear          = 1970;
 826   java_origin.wMonth         = 1;
 827   java_origin.wDayOfWeek     = 0; // ignored
 828   java_origin.wDay           = 1;
 829   java_origin.wHour          = 0;
 830   java_origin.wMinute        = 0;
 831   java_origin.wSecond        = 0;
 832   java_origin.wMilliseconds  = 0;
 833   FILETIME jot;
 834   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 835     fatal("Error = %d\nWindows error", GetLastError());
 836   }
 837   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 838   _has_calculated_offset = 1;
 839   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 840   return _calculated_offset;
 841 }
 842 #else
 843 jlong offset() {
 844   return _offset;
 845 }
 846 #endif
 847 
 848 jlong windows_to_java_time(FILETIME wt) {
 849   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 850   return (a - offset()) / 10000;
 851 }
 852 
 853 // Returns time ticks in (10th of micro seconds)
 854 jlong windows_to_time_ticks(FILETIME wt) {
 855   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 856   return (a - offset());
 857 }
 858 
 859 FILETIME java_to_windows_time(jlong l) {
 860   jlong a = (l * 10000) + offset();
 861   FILETIME result;
 862   result.dwHighDateTime = high(a);
 863   result.dwLowDateTime  = low(a);
 864   return result;
 865 }
 866 
 867 bool os::supports_vtime() { return true; }
 868 bool os::enable_vtime() { return false; }
 869 bool os::vtime_enabled() { return false; }
 870 
 871 double os::elapsedVTime() {
 872   FILETIME created;
 873   FILETIME exited;
 874   FILETIME kernel;
 875   FILETIME user;
 876   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 877     // the resolution of windows_to_java_time() should be sufficient (ms)
 878     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 879   } else {
 880     return elapsedTime();
 881   }
 882 }
 883 
 884 jlong os::javaTimeMillis() {
 885   if (UseFakeTimers) {
 886     return fake_time++;
 887   } else {
 888     FILETIME wt;
 889     GetSystemTimeAsFileTime(&wt);
 890     return windows_to_java_time(wt);
 891   }
 892 }
 893 
 894 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 895   FILETIME wt;
 896   GetSystemTimeAsFileTime(&wt);
 897   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 898   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 899   seconds = secs;
 900   nanos = jlong(ticks - (secs*10000000)) * 100;
 901 }
 902 
 903 jlong os::javaTimeNanos() {
 904     LARGE_INTEGER current_count;
 905     QueryPerformanceCounter(&current_count);
 906     double current = as_long(current_count);
 907     double freq = performance_frequency;
 908     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 909     return time;
 910 }
 911 
 912 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 913   jlong freq = performance_frequency;
 914   if (freq < NANOSECS_PER_SEC) {
 915     // the performance counter is 64 bits and we will
 916     // be multiplying it -- so no wrap in 64 bits
 917     info_ptr->max_value = ALL_64_BITS;
 918   } else if (freq > NANOSECS_PER_SEC) {
 919     // use the max value the counter can reach to
 920     // determine the max value which could be returned
 921     julong max_counter = (julong)ALL_64_BITS;
 922     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 923   } else {
 924     // the performance counter is 64 bits and we will
 925     // be using it directly -- so no wrap in 64 bits
 926     info_ptr->max_value = ALL_64_BITS;
 927   }
 928 
 929   // using a counter, so no skipping
 930   info_ptr->may_skip_backward = false;
 931   info_ptr->may_skip_forward = false;
 932 
 933   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 934 }
 935 
 936 char* os::local_time_string(char *buf, size_t buflen) {
 937   SYSTEMTIME st;
 938   GetLocalTime(&st);
 939   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 940                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 941   return buf;
 942 }
 943 
 944 bool os::getTimesSecs(double* process_real_time,
 945                       double* process_user_time,
 946                       double* process_system_time) {
 947   HANDLE h_process = GetCurrentProcess();
 948   FILETIME create_time, exit_time, kernel_time, user_time;
 949   BOOL result = GetProcessTimes(h_process,
 950                                 &create_time,
 951                                 &exit_time,
 952                                 &kernel_time,
 953                                 &user_time);
 954   if (result != 0) {
 955     FILETIME wt;
 956     GetSystemTimeAsFileTime(&wt);
 957     jlong rtc_millis = windows_to_java_time(wt);
 958     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 959     *process_user_time =
 960       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
 961     *process_system_time =
 962       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
 963     return true;
 964   } else {
 965     return false;
 966   }
 967 }
 968 
 969 void os::shutdown() {
 970   // allow PerfMemory to attempt cleanup of any persistent resources
 971   perfMemory_exit();
 972 
 973   // flush buffered output, finish log files
 974   ostream_abort();
 975 
 976   // Check for abort hook
 977   abort_hook_t abort_hook = Arguments::abort_hook();
 978   if (abort_hook != NULL) {
 979     abort_hook();
 980   }
 981 }
 982 
 983 
 984 static HANDLE dumpFile = NULL;
 985 
 986 // Check if dump file can be created.
 987 void os::check_dump_limit(char* buffer, size_t buffsz) {
 988   bool status = true;
 989   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
 990     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
 991     status = false;
 992   }
 993 
 994 #ifndef ASSERT
 995   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
 996     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
 997     status = false;
 998   }
 999 #endif
1000 
1001   if (status) {
1002     const char* cwd = get_current_directory(NULL, 0);
1003     int pid = current_process_id();
1004     if (cwd != NULL) {
1005       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1006     } else {
1007       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1008     }
1009 
1010     if (dumpFile == NULL &&
1011        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1012                  == INVALID_HANDLE_VALUE) {
1013       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1014       status = false;
1015     }
1016   }
1017   VMError::record_coredump_status(buffer, status);
1018 }
1019 
1020 void os::abort(bool dump_core, void* siginfo, const void* context) {
1021   EXCEPTION_POINTERS ep;
1022   MINIDUMP_EXCEPTION_INFORMATION mei;
1023   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1024 
1025   HANDLE hProcess = GetCurrentProcess();
1026   DWORD processId = GetCurrentProcessId();
1027   MINIDUMP_TYPE dumpType;
1028 
1029   shutdown();
1030   if (!dump_core || dumpFile == NULL) {
1031     if (dumpFile != NULL) {
1032       CloseHandle(dumpFile);
1033     }
1034     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1035   }
1036 
1037   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1038     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1039 
1040   if (siginfo != NULL && context != NULL) {
1041     ep.ContextRecord = (PCONTEXT) context;
1042     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1043 
1044     mei.ThreadId = GetCurrentThreadId();
1045     mei.ExceptionPointers = &ep;
1046     pmei = &mei;
1047   } else {
1048     pmei = NULL;
1049   }
1050 
1051   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1052   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1053   if (!WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) &&
1054       !WindowsDbgHelp::miniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL)) {
1055     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1056   }
1057   CloseHandle(dumpFile);
1058   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1059 }
1060 
1061 // Die immediately, no exit hook, no abort hook, no cleanup.
1062 void os::die() {
1063   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1064 }
1065 
1066 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1067 //  * dirent_md.c       1.15 00/02/02
1068 //
1069 // The declarations for DIR and struct dirent are in jvm_win32.h.
1070 
1071 // Caller must have already run dirname through JVM_NativePath, which removes
1072 // duplicate slashes and converts all instances of '/' into '\\'.
1073 
1074 DIR * os::opendir(const char *dirname) {
1075   assert(dirname != NULL, "just checking");   // hotspot change
1076   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1077   DWORD fattr;                                // hotspot change
1078   char alt_dirname[4] = { 0, 0, 0, 0 };
1079 
1080   if (dirp == 0) {
1081     errno = ENOMEM;
1082     return 0;
1083   }
1084 
1085   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1086   // as a directory in FindFirstFile().  We detect this case here and
1087   // prepend the current drive name.
1088   //
1089   if (dirname[1] == '\0' && dirname[0] == '\\') {
1090     alt_dirname[0] = _getdrive() + 'A' - 1;
1091     alt_dirname[1] = ':';
1092     alt_dirname[2] = '\\';
1093     alt_dirname[3] = '\0';
1094     dirname = alt_dirname;
1095   }
1096 
1097   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1098   if (dirp->path == 0) {
1099     free(dirp);
1100     errno = ENOMEM;
1101     return 0;
1102   }
1103   strcpy(dirp->path, dirname);
1104 
1105   fattr = GetFileAttributes(dirp->path);
1106   if (fattr == 0xffffffff) {
1107     free(dirp->path);
1108     free(dirp);
1109     errno = ENOENT;
1110     return 0;
1111   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1112     free(dirp->path);
1113     free(dirp);
1114     errno = ENOTDIR;
1115     return 0;
1116   }
1117 
1118   // Append "*.*", or possibly "\\*.*", to path
1119   if (dirp->path[1] == ':' &&
1120       (dirp->path[2] == '\0' ||
1121       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1122     // No '\\' needed for cases like "Z:" or "Z:\"
1123     strcat(dirp->path, "*.*");
1124   } else {
1125     strcat(dirp->path, "\\*.*");
1126   }
1127 
1128   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1129   if (dirp->handle == INVALID_HANDLE_VALUE) {
1130     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1131       free(dirp->path);
1132       free(dirp);
1133       errno = EACCES;
1134       return 0;
1135     }
1136   }
1137   return dirp;
1138 }
1139 
1140 // parameter dbuf unused on Windows
1141 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1142   assert(dirp != NULL, "just checking");      // hotspot change
1143   if (dirp->handle == INVALID_HANDLE_VALUE) {
1144     return 0;
1145   }
1146 
1147   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1148 
1149   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1150     if (GetLastError() == ERROR_INVALID_HANDLE) {
1151       errno = EBADF;
1152       return 0;
1153     }
1154     FindClose(dirp->handle);
1155     dirp->handle = INVALID_HANDLE_VALUE;
1156   }
1157 
1158   return &dirp->dirent;
1159 }
1160 
1161 int os::closedir(DIR *dirp) {
1162   assert(dirp != NULL, "just checking");      // hotspot change
1163   if (dirp->handle != INVALID_HANDLE_VALUE) {
1164     if (!FindClose(dirp->handle)) {
1165       errno = EBADF;
1166       return -1;
1167     }
1168     dirp->handle = INVALID_HANDLE_VALUE;
1169   }
1170   free(dirp->path);
1171   free(dirp);
1172   return 0;
1173 }
1174 
1175 // This must be hard coded because it's the system's temporary
1176 // directory not the java application's temp directory, ala java.io.tmpdir.
1177 const char* os::get_temp_directory() {
1178   static char path_buf[MAX_PATH];
1179   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1180     return path_buf;
1181   } else {
1182     path_buf[0] = '\0';
1183     return path_buf;
1184   }
1185 }
1186 
1187 // Needs to be in os specific directory because windows requires another
1188 // header file <direct.h>
1189 const char* os::get_current_directory(char *buf, size_t buflen) {
1190   int n = static_cast<int>(buflen);
1191   if (buflen > INT_MAX)  n = INT_MAX;
1192   return _getcwd(buf, n);
1193 }
1194 
1195 //-----------------------------------------------------------
1196 // Helper functions for fatal error handler
1197 #ifdef _WIN64
1198 // Helper routine which returns true if address in
1199 // within the NTDLL address space.
1200 //
1201 static bool _addr_in_ntdll(address addr) {
1202   HMODULE hmod;
1203   MODULEINFO minfo;
1204 
1205   hmod = GetModuleHandle("NTDLL.DLL");
1206   if (hmod == NULL) return false;
1207   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1208                                           &minfo, sizeof(MODULEINFO))) {
1209     return false;
1210   }
1211 
1212   if ((addr >= minfo.lpBaseOfDll) &&
1213       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1214     return true;
1215   } else {
1216     return false;
1217   }
1218 }
1219 #endif
1220 
1221 struct _modinfo {
1222   address addr;
1223   char*   full_path;   // point to a char buffer
1224   int     buflen;      // size of the buffer
1225   address base_addr;
1226 };
1227 
1228 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1229                                   address top_address, void * param) {
1230   struct _modinfo *pmod = (struct _modinfo *)param;
1231   if (!pmod) return -1;
1232 
1233   if (base_addr   <= pmod->addr &&
1234       top_address > pmod->addr) {
1235     // if a buffer is provided, copy path name to the buffer
1236     if (pmod->full_path) {
1237       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1238     }
1239     pmod->base_addr = base_addr;
1240     return 1;
1241   }
1242   return 0;
1243 }
1244 
1245 bool os::dll_address_to_library_name(address addr, char* buf,
1246                                      int buflen, int* offset) {
1247   // buf is not optional, but offset is optional
1248   assert(buf != NULL, "sanity check");
1249 
1250 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1251 //       return the full path to the DLL file, sometimes it returns path
1252 //       to the corresponding PDB file (debug info); sometimes it only
1253 //       returns partial path, which makes life painful.
1254 
1255   struct _modinfo mi;
1256   mi.addr      = addr;
1257   mi.full_path = buf;
1258   mi.buflen    = buflen;
1259   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1260     // buf already contains path name
1261     if (offset) *offset = addr - mi.base_addr;
1262     return true;
1263   }
1264 
1265   buf[0] = '\0';
1266   if (offset) *offset = -1;
1267   return false;
1268 }
1269 
1270 bool os::dll_address_to_function_name(address addr, char *buf,
1271                                       int buflen, int *offset,
1272                                       bool demangle) {
1273   // buf is not optional, but offset is optional
1274   assert(buf != NULL, "sanity check");
1275 
1276   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1277     return true;
1278   }
1279   if (offset != NULL)  *offset  = -1;
1280   buf[0] = '\0';
1281   return false;
1282 }
1283 
1284 // save the start and end address of jvm.dll into param[0] and param[1]
1285 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1286                            address top_address, void * param) {
1287   if (!param) return -1;
1288 
1289   if (base_addr   <= (address)_locate_jvm_dll &&
1290       top_address > (address)_locate_jvm_dll) {
1291     ((address*)param)[0] = base_addr;
1292     ((address*)param)[1] = top_address;
1293     return 1;
1294   }
1295   return 0;
1296 }
1297 
1298 address vm_lib_location[2];    // start and end address of jvm.dll
1299 
1300 // check if addr is inside jvm.dll
1301 bool os::address_is_in_vm(address addr) {
1302   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1303     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1304       assert(false, "Can't find jvm module.");
1305       return false;
1306     }
1307   }
1308 
1309   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1310 }
1311 
1312 // print module info; param is outputStream*
1313 static int _print_module(const char* fname, address base_address,
1314                          address top_address, void* param) {
1315   if (!param) return -1;
1316 
1317   outputStream* st = (outputStream*)param;
1318 
1319   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1320   return 0;
1321 }
1322 
1323 // Loads .dll/.so and
1324 // in case of error it checks if .dll/.so was built for the
1325 // same architecture as Hotspot is running on
1326 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1327   void * result = LoadLibrary(name);
1328   if (result != NULL) {
1329     // Recalculate pdb search path if a DLL was loaded successfully.
1330     SymbolEngine::recalc_search_path();
1331     return result;
1332   }
1333 
1334   DWORD errcode = GetLastError();
1335   if (errcode == ERROR_MOD_NOT_FOUND) {
1336     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1337     ebuf[ebuflen - 1] = '\0';
1338     return NULL;
1339   }
1340 
1341   // Parsing dll below
1342   // If we can read dll-info and find that dll was built
1343   // for an architecture other than Hotspot is running in
1344   // - then print to buffer "DLL was built for a different architecture"
1345   // else call os::lasterror to obtain system error message
1346 
1347   // Read system error message into ebuf
1348   // It may or may not be overwritten below (in the for loop and just above)
1349   lasterror(ebuf, (size_t) ebuflen);
1350   ebuf[ebuflen - 1] = '\0';
1351   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1352   if (fd < 0) {
1353     return NULL;
1354   }
1355 
1356   uint32_t signature_offset;
1357   uint16_t lib_arch = 0;
1358   bool failed_to_get_lib_arch =
1359     ( // Go to position 3c in the dll
1360      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1361      ||
1362      // Read location of signature
1363      (sizeof(signature_offset) !=
1364      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1365      ||
1366      // Go to COFF File Header in dll
1367      // that is located after "signature" (4 bytes long)
1368      (os::seek_to_file_offset(fd,
1369      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1370      ||
1371      // Read field that contains code of architecture
1372      // that dll was built for
1373      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1374     );
1375 
1376   ::close(fd);
1377   if (failed_to_get_lib_arch) {
1378     // file i/o error - report os::lasterror(...) msg
1379     return NULL;
1380   }
1381 
1382   typedef struct {
1383     uint16_t arch_code;
1384     char* arch_name;
1385   } arch_t;
1386 
1387   static const arch_t arch_array[] = {
1388     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1389     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"}
1390   };
1391 #if (defined _M_AMD64)
1392   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1393 #elif (defined _M_IX86)
1394   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1395 #else
1396   #error Method os::dll_load requires that one of following \
1397          is defined :_M_AMD64 or _M_IX86
1398 #endif
1399 
1400 
1401   // Obtain a string for printf operation
1402   // lib_arch_str shall contain string what platform this .dll was built for
1403   // running_arch_str shall string contain what platform Hotspot was built for
1404   char *running_arch_str = NULL, *lib_arch_str = NULL;
1405   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1406     if (lib_arch == arch_array[i].arch_code) {
1407       lib_arch_str = arch_array[i].arch_name;
1408     }
1409     if (running_arch == arch_array[i].arch_code) {
1410       running_arch_str = arch_array[i].arch_name;
1411     }
1412   }
1413 
1414   assert(running_arch_str,
1415          "Didn't find running architecture code in arch_array");
1416 
1417   // If the architecture is right
1418   // but some other error took place - report os::lasterror(...) msg
1419   if (lib_arch == running_arch) {
1420     return NULL;
1421   }
1422 
1423   if (lib_arch_str != NULL) {
1424     ::_snprintf(ebuf, ebuflen - 1,
1425                 "Can't load %s-bit .dll on a %s-bit platform",
1426                 lib_arch_str, running_arch_str);
1427   } else {
1428     // don't know what architecture this dll was build for
1429     ::_snprintf(ebuf, ebuflen - 1,
1430                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1431                 lib_arch, running_arch_str);
1432   }
1433 
1434   return NULL;
1435 }
1436 
1437 void os::print_dll_info(outputStream *st) {
1438   st->print_cr("Dynamic libraries:");
1439   get_loaded_modules_info(_print_module, (void *)st);
1440 }
1441 
1442 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1443   HANDLE   hProcess;
1444 
1445 # define MAX_NUM_MODULES 128
1446   HMODULE     modules[MAX_NUM_MODULES];
1447   static char filename[MAX_PATH];
1448   int         result = 0;
1449 
1450   int pid = os::current_process_id();
1451   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1452                          FALSE, pid);
1453   if (hProcess == NULL) return 0;
1454 
1455   DWORD size_needed;
1456   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1457     CloseHandle(hProcess);
1458     return 0;
1459   }
1460 
1461   // number of modules that are currently loaded
1462   int num_modules = size_needed / sizeof(HMODULE);
1463 
1464   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1465     // Get Full pathname:
1466     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1467       filename[0] = '\0';
1468     }
1469 
1470     MODULEINFO modinfo;
1471     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1472       modinfo.lpBaseOfDll = NULL;
1473       modinfo.SizeOfImage = 0;
1474     }
1475 
1476     // Invoke callback function
1477     result = callback(filename, (address)modinfo.lpBaseOfDll,
1478                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1479     if (result) break;
1480   }
1481 
1482   CloseHandle(hProcess);
1483   return result;
1484 }
1485 
1486 bool os::get_host_name(char* buf, size_t buflen) {
1487   DWORD size = (DWORD)buflen;
1488   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1489 }
1490 
1491 void os::get_summary_os_info(char* buf, size_t buflen) {
1492   stringStream sst(buf, buflen);
1493   os::win32::print_windows_version(&sst);
1494   // chop off newline character
1495   char* nl = strchr(buf, '\n');
1496   if (nl != NULL) *nl = '\0';
1497 }
1498 
1499 int os::vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1500 #if _MSC_VER >= 1900
1501   // Starting with Visual Studio 2015, vsnprint is C99 compliant.
1502   int result = ::vsnprintf(buf, len, fmt, args);
1503   // If an encoding error occurred (result < 0) then it's not clear
1504   // whether the buffer is NUL terminated, so ensure it is.
1505   if ((result < 0) && (len > 0)) {
1506     buf[len - 1] = '\0';
1507   }
1508   return result;
1509 #else
1510   // Before Visual Studio 2015, vsnprintf is not C99 compliant, so use
1511   // _vsnprintf, whose behavior seems to be *mostly* consistent across
1512   // versions.  However, when len == 0, avoid _vsnprintf too, and just
1513   // go straight to _vscprintf.  The output is going to be truncated in
1514   // that case, except in the unusual case of empty output.  More
1515   // importantly, the documentation for various versions of Visual Studio
1516   // are inconsistent about the behavior of _vsnprintf when len == 0,
1517   // including it possibly being an error.
1518   int result = -1;
1519   if (len > 0) {
1520     result = _vsnprintf(buf, len, fmt, args);
1521     // If output (including NUL terminator) is truncated, the buffer
1522     // won't be NUL terminated.  Add the trailing NUL specified by C99.
1523     if ((result < 0) || ((size_t)result >= len)) {
1524       buf[len - 1] = '\0';
1525     }
1526   }
1527   if (result < 0) {
1528     result = _vscprintf(fmt, args);
1529   }
1530   return result;
1531 #endif // _MSC_VER dispatch
1532 }
1533 
1534 static inline time_t get_mtime(const char* filename) {
1535   struct stat st;
1536   int ret = os::stat(filename, &st);
1537   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1538   return st.st_mtime;
1539 }
1540 
1541 int os::compare_file_modified_times(const char* file1, const char* file2) {
1542   time_t t1 = get_mtime(file1);
1543   time_t t2 = get_mtime(file2);
1544   return t1 - t2;
1545 }
1546 
1547 void os::print_os_info_brief(outputStream* st) {
1548   os::print_os_info(st);
1549 }
1550 
1551 void os::print_os_info(outputStream* st) {
1552 #ifdef ASSERT
1553   char buffer[1024];
1554   st->print("HostName: ");
1555   if (get_host_name(buffer, sizeof(buffer))) {
1556     st->print("%s ", buffer);
1557   } else {
1558     st->print("N/A ");
1559   }
1560 #endif
1561   st->print("OS:");
1562   os::win32::print_windows_version(st);
1563 }
1564 
1565 void os::win32::print_windows_version(outputStream* st) {
1566   OSVERSIONINFOEX osvi;
1567   VS_FIXEDFILEINFO *file_info;
1568   TCHAR kernel32_path[MAX_PATH];
1569   UINT len, ret;
1570 
1571   // Use the GetVersionEx information to see if we're on a server or
1572   // workstation edition of Windows. Starting with Windows 8.1 we can't
1573   // trust the OS version information returned by this API.
1574   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1575   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1576   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1577     st->print_cr("Call to GetVersionEx failed");
1578     return;
1579   }
1580   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1581 
1582   // Get the full path to \Windows\System32\kernel32.dll and use that for
1583   // determining what version of Windows we're running on.
1584   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1585   ret = GetSystemDirectory(kernel32_path, len);
1586   if (ret == 0 || ret > len) {
1587     st->print_cr("Call to GetSystemDirectory failed");
1588     return;
1589   }
1590   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1591 
1592   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1593   if (version_size == 0) {
1594     st->print_cr("Call to GetFileVersionInfoSize failed");
1595     return;
1596   }
1597 
1598   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1599   if (version_info == NULL) {
1600     st->print_cr("Failed to allocate version_info");
1601     return;
1602   }
1603 
1604   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1605     os::free(version_info);
1606     st->print_cr("Call to GetFileVersionInfo failed");
1607     return;
1608   }
1609 
1610   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1611     os::free(version_info);
1612     st->print_cr("Call to VerQueryValue failed");
1613     return;
1614   }
1615 
1616   int major_version = HIWORD(file_info->dwProductVersionMS);
1617   int minor_version = LOWORD(file_info->dwProductVersionMS);
1618   int build_number = HIWORD(file_info->dwProductVersionLS);
1619   int build_minor = LOWORD(file_info->dwProductVersionLS);
1620   int os_vers = major_version * 1000 + minor_version;
1621   os::free(version_info);
1622 
1623   st->print(" Windows ");
1624   switch (os_vers) {
1625 
1626   case 6000:
1627     if (is_workstation) {
1628       st->print("Vista");
1629     } else {
1630       st->print("Server 2008");
1631     }
1632     break;
1633 
1634   case 6001:
1635     if (is_workstation) {
1636       st->print("7");
1637     } else {
1638       st->print("Server 2008 R2");
1639     }
1640     break;
1641 
1642   case 6002:
1643     if (is_workstation) {
1644       st->print("8");
1645     } else {
1646       st->print("Server 2012");
1647     }
1648     break;
1649 
1650   case 6003:
1651     if (is_workstation) {
1652       st->print("8.1");
1653     } else {
1654       st->print("Server 2012 R2");
1655     }
1656     break;
1657 
1658   case 10000:
1659     if (is_workstation) {
1660       st->print("10");
1661     } else {
1662       st->print("Server 2016");
1663     }
1664     break;
1665 
1666   default:
1667     // Unrecognized windows, print out its major and minor versions
1668     st->print("%d.%d", major_version, minor_version);
1669     break;
1670   }
1671 
1672   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1673   // find out whether we are running on 64 bit processor or not
1674   SYSTEM_INFO si;
1675   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1676   GetNativeSystemInfo(&si);
1677   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1678     st->print(" , 64 bit");
1679   }
1680 
1681   st->print(" Build %d", build_number);
1682   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1683   st->cr();
1684 }
1685 
1686 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1687   // Nothing to do for now.
1688 }
1689 
1690 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1691   HKEY key;
1692   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1693                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1694   if (status == ERROR_SUCCESS) {
1695     DWORD size = (DWORD)buflen;
1696     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1697     if (status != ERROR_SUCCESS) {
1698         strncpy(buf, "## __CPU__", buflen);
1699     }
1700     RegCloseKey(key);
1701   } else {
1702     // Put generic cpu info to return
1703     strncpy(buf, "## __CPU__", buflen);
1704   }
1705 }
1706 
1707 void os::print_memory_info(outputStream* st) {
1708   st->print("Memory:");
1709   st->print(" %dk page", os::vm_page_size()>>10);
1710 
1711   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1712   // value if total memory is larger than 4GB
1713   MEMORYSTATUSEX ms;
1714   ms.dwLength = sizeof(ms);
1715   GlobalMemoryStatusEx(&ms);
1716 
1717   st->print(", physical %uk", os::physical_memory() >> 10);
1718   st->print("(%uk free)", os::available_memory() >> 10);
1719 
1720   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1721   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1722   st->cr();
1723 }
1724 
1725 void os::print_siginfo(outputStream *st, const void* siginfo) {
1726   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1727   st->print("siginfo:");
1728 
1729   char tmp[64];
1730   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1731     strcpy(tmp, "EXCEPTION_??");
1732   }
1733   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1734 
1735   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1736        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1737        er->NumberParameters >= 2) {
1738     switch (er->ExceptionInformation[0]) {
1739     case 0: st->print(", reading address"); break;
1740     case 1: st->print(", writing address"); break;
1741     case 8: st->print(", data execution prevention violation at address"); break;
1742     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1743                        er->ExceptionInformation[0]);
1744     }
1745     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1746   } else {
1747     int num = er->NumberParameters;
1748     if (num > 0) {
1749       st->print(", ExceptionInformation=");
1750       for (int i = 0; i < num; i++) {
1751         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1752       }
1753     }
1754   }
1755   st->cr();
1756 }
1757 
1758 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1759   // do nothing
1760 }
1761 
1762 static char saved_jvm_path[MAX_PATH] = {0};
1763 
1764 // Find the full path to the current module, jvm.dll
1765 void os::jvm_path(char *buf, jint buflen) {
1766   // Error checking.
1767   if (buflen < MAX_PATH) {
1768     assert(false, "must use a large-enough buffer");
1769     buf[0] = '\0';
1770     return;
1771   }
1772   // Lazy resolve the path to current module.
1773   if (saved_jvm_path[0] != 0) {
1774     strcpy(buf, saved_jvm_path);
1775     return;
1776   }
1777 
1778   buf[0] = '\0';
1779   if (Arguments::sun_java_launcher_is_altjvm()) {
1780     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1781     // for a JAVA_HOME environment variable and fix up the path so it
1782     // looks like jvm.dll is installed there (append a fake suffix
1783     // hotspot/jvm.dll).
1784     char* java_home_var = ::getenv("JAVA_HOME");
1785     if (java_home_var != NULL && java_home_var[0] != 0 &&
1786         strlen(java_home_var) < (size_t)buflen) {
1787       strncpy(buf, java_home_var, buflen);
1788 
1789       // determine if this is a legacy image or modules image
1790       // modules image doesn't have "jre" subdirectory
1791       size_t len = strlen(buf);
1792       char* jrebin_p = buf + len;
1793       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1794       if (0 != _access(buf, 0)) {
1795         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1796       }
1797       len = strlen(buf);
1798       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1799     }
1800   }
1801 
1802   if (buf[0] == '\0') {
1803     GetModuleFileName(vm_lib_handle, buf, buflen);
1804   }
1805   strncpy(saved_jvm_path, buf, MAX_PATH);
1806   saved_jvm_path[MAX_PATH - 1] = '\0';
1807 }
1808 
1809 
1810 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1811 #ifndef _WIN64
1812   st->print("_");
1813 #endif
1814 }
1815 
1816 
1817 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1818 #ifndef _WIN64
1819   st->print("@%d", args_size  * sizeof(int));
1820 #endif
1821 }
1822 
1823 // This method is a copy of JDK's sysGetLastErrorString
1824 // from src/windows/hpi/src/system_md.c
1825 
1826 size_t os::lasterror(char* buf, size_t len) {
1827   DWORD errval;
1828 
1829   if ((errval = GetLastError()) != 0) {
1830     // DOS error
1831     size_t n = (size_t)FormatMessage(
1832                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1833                                      NULL,
1834                                      errval,
1835                                      0,
1836                                      buf,
1837                                      (DWORD)len,
1838                                      NULL);
1839     if (n > 3) {
1840       // Drop final '.', CR, LF
1841       if (buf[n - 1] == '\n') n--;
1842       if (buf[n - 1] == '\r') n--;
1843       if (buf[n - 1] == '.') n--;
1844       buf[n] = '\0';
1845     }
1846     return n;
1847   }
1848 
1849   if (errno != 0) {
1850     // C runtime error that has no corresponding DOS error code
1851     const char* s = os::strerror(errno);
1852     size_t n = strlen(s);
1853     if (n >= len) n = len - 1;
1854     strncpy(buf, s, n);
1855     buf[n] = '\0';
1856     return n;
1857   }
1858 
1859   return 0;
1860 }
1861 
1862 int os::get_last_error() {
1863   DWORD error = GetLastError();
1864   if (error == 0) {
1865     error = errno;
1866   }
1867   return (int)error;
1868 }
1869 
1870 // sun.misc.Signal
1871 // NOTE that this is a workaround for an apparent kernel bug where if
1872 // a signal handler for SIGBREAK is installed then that signal handler
1873 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1874 // See bug 4416763.
1875 static void (*sigbreakHandler)(int) = NULL;
1876 
1877 static void UserHandler(int sig, void *siginfo, void *context) {
1878   os::signal_notify(sig);
1879   // We need to reinstate the signal handler each time...
1880   os::signal(sig, (void*)UserHandler);
1881 }
1882 
1883 void* os::user_handler() {
1884   return (void*) UserHandler;
1885 }
1886 
1887 void* os::signal(int signal_number, void* handler) {
1888   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1889     void (*oldHandler)(int) = sigbreakHandler;
1890     sigbreakHandler = (void (*)(int)) handler;
1891     return (void*) oldHandler;
1892   } else {
1893     return (void*)::signal(signal_number, (void (*)(int))handler);
1894   }
1895 }
1896 
1897 void os::signal_raise(int signal_number) {
1898   raise(signal_number);
1899 }
1900 
1901 // The Win32 C runtime library maps all console control events other than ^C
1902 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1903 // logoff, and shutdown events.  We therefore install our own console handler
1904 // that raises SIGTERM for the latter cases.
1905 //
1906 static BOOL WINAPI consoleHandler(DWORD event) {
1907   switch (event) {
1908   case CTRL_C_EVENT:
1909     if (VMError::is_error_reported()) {
1910       // Ctrl-C is pressed during error reporting, likely because the error
1911       // handler fails to abort. Let VM die immediately.
1912       os::die();
1913     }
1914 
1915     os::signal_raise(SIGINT);
1916     return TRUE;
1917     break;
1918   case CTRL_BREAK_EVENT:
1919     if (sigbreakHandler != NULL) {
1920       (*sigbreakHandler)(SIGBREAK);
1921     }
1922     return TRUE;
1923     break;
1924   case CTRL_LOGOFF_EVENT: {
1925     // Don't terminate JVM if it is running in a non-interactive session,
1926     // such as a service process.
1927     USEROBJECTFLAGS flags;
1928     HANDLE handle = GetProcessWindowStation();
1929     if (handle != NULL &&
1930         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1931         sizeof(USEROBJECTFLAGS), NULL)) {
1932       // If it is a non-interactive session, let next handler to deal
1933       // with it.
1934       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1935         return FALSE;
1936       }
1937     }
1938   }
1939   case CTRL_CLOSE_EVENT:
1940   case CTRL_SHUTDOWN_EVENT:
1941     os::signal_raise(SIGTERM);
1942     return TRUE;
1943     break;
1944   default:
1945     break;
1946   }
1947   return FALSE;
1948 }
1949 
1950 // The following code is moved from os.cpp for making this
1951 // code platform specific, which it is by its very nature.
1952 
1953 // Return maximum OS signal used + 1 for internal use only
1954 // Used as exit signal for signal_thread
1955 int os::sigexitnum_pd() {
1956   return NSIG;
1957 }
1958 
1959 // a counter for each possible signal value, including signal_thread exit signal
1960 static volatile jint pending_signals[NSIG+1] = { 0 };
1961 static Semaphore* sig_sem = NULL;
1962 
1963 void os::signal_init_pd() {
1964   // Initialize signal structures
1965   memset((void*)pending_signals, 0, sizeof(pending_signals));
1966 
1967   // Initialize signal semaphore
1968   sig_sem = new Semaphore();
1969 
1970   // Programs embedding the VM do not want it to attempt to receive
1971   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1972   // shutdown hooks mechanism introduced in 1.3.  For example, when
1973   // the VM is run as part of a Windows NT service (i.e., a servlet
1974   // engine in a web server), the correct behavior is for any console
1975   // control handler to return FALSE, not TRUE, because the OS's
1976   // "final" handler for such events allows the process to continue if
1977   // it is a service (while terminating it if it is not a service).
1978   // To make this behavior uniform and the mechanism simpler, we
1979   // completely disable the VM's usage of these console events if -Xrs
1980   // (=ReduceSignalUsage) is specified.  This means, for example, that
1981   // the CTRL-BREAK thread dump mechanism is also disabled in this
1982   // case.  See bugs 4323062, 4345157, and related bugs.
1983 
1984   if (!ReduceSignalUsage) {
1985     // Add a CTRL-C handler
1986     SetConsoleCtrlHandler(consoleHandler, TRUE);
1987   }
1988 }
1989 
1990 void os::signal_notify(int sig) {
1991   if (sig_sem != NULL) {
1992     Atomic::inc(&pending_signals[sig]);
1993     sig_sem->signal();
1994   } else {
1995     // Signal thread is not created with ReduceSignalUsage and signal_init_pd
1996     // initialization isn't called.
1997     assert(ReduceSignalUsage, "signal semaphore should be created");
1998   }
1999 }
2000 
2001 static int check_pending_signals() {
2002   while (true) {
2003     for (int i = 0; i < NSIG + 1; i++) {
2004       jint n = pending_signals[i];
2005       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2006         return i;
2007       }
2008     }
2009     JavaThread *thread = JavaThread::current();
2010 
2011     ThreadBlockInVM tbivm(thread);
2012 
2013     bool threadIsSuspended;
2014     do {
2015       thread->set_suspend_equivalent();
2016       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2017       sig_sem->wait();
2018 
2019       // were we externally suspended while we were waiting?
2020       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2021       if (threadIsSuspended) {
2022         // The semaphore has been incremented, but while we were waiting
2023         // another thread suspended us. We don't want to continue running
2024         // while suspended because that would surprise the thread that
2025         // suspended us.
2026         sig_sem->signal();
2027 
2028         thread->java_suspend_self();
2029       }
2030     } while (threadIsSuspended);
2031   }
2032 }
2033 
2034 int os::signal_wait() {
2035   return check_pending_signals();
2036 }
2037 
2038 // Implicit OS exception handling
2039 
2040 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2041                       address handler) {
2042   JavaThread* thread = (JavaThread*) Thread::current_or_null();
2043   // Save pc in thread
2044 #ifdef _M_AMD64
2045   // Do not blow up if no thread info available.
2046   if (thread) {
2047     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2048   }
2049   // Set pc to handler
2050   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2051 #else
2052   // Do not blow up if no thread info available.
2053   if (thread) {
2054     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2055   }
2056   // Set pc to handler
2057   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2058 #endif
2059 
2060   // Continue the execution
2061   return EXCEPTION_CONTINUE_EXECUTION;
2062 }
2063 
2064 
2065 // Used for PostMortemDump
2066 extern "C" void safepoints();
2067 extern "C" void find(int x);
2068 extern "C" void events();
2069 
2070 // According to Windows API documentation, an illegal instruction sequence should generate
2071 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2072 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2073 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2074 
2075 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2076 
2077 // From "Execution Protection in the Windows Operating System" draft 0.35
2078 // Once a system header becomes available, the "real" define should be
2079 // included or copied here.
2080 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2081 
2082 // Windows Vista/2008 heap corruption check
2083 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2084 
2085 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2086 // C++ compiler contain this error code. Because this is a compiler-generated
2087 // error, the code is not listed in the Win32 API header files.
2088 // The code is actually a cryptic mnemonic device, with the initial "E"
2089 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2090 // ASCII values of "msc".
2091 
2092 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2093 
2094 #define def_excpt(val) { #val, (val) }
2095 
2096 static const struct { char* name; uint number; } exceptlabels[] = {
2097     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2098     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2099     def_excpt(EXCEPTION_BREAKPOINT),
2100     def_excpt(EXCEPTION_SINGLE_STEP),
2101     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2102     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2103     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2104     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2105     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2106     def_excpt(EXCEPTION_FLT_OVERFLOW),
2107     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2108     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2109     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2110     def_excpt(EXCEPTION_INT_OVERFLOW),
2111     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2112     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2113     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2114     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2115     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2116     def_excpt(EXCEPTION_STACK_OVERFLOW),
2117     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2118     def_excpt(EXCEPTION_GUARD_PAGE),
2119     def_excpt(EXCEPTION_INVALID_HANDLE),
2120     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2121     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2122 };
2123 
2124 #undef def_excpt
2125 
2126 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2127   uint code = static_cast<uint>(exception_code);
2128   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2129     if (exceptlabels[i].number == code) {
2130       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2131       return buf;
2132     }
2133   }
2134 
2135   return NULL;
2136 }
2137 
2138 //-----------------------------------------------------------------------------
2139 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2140   // handle exception caused by idiv; should only happen for -MinInt/-1
2141   // (division by zero is handled explicitly)
2142 #ifdef  _M_AMD64
2143   PCONTEXT ctx = exceptionInfo->ContextRecord;
2144   address pc = (address)ctx->Rip;
2145   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2146   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2147   if (pc[0] == 0xF7) {
2148     // set correct result values and continue after idiv instruction
2149     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2150   } else {
2151     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2152   }
2153   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2154   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2155   // idiv opcode (0xF7).
2156   ctx->Rdx = (DWORD)0;             // remainder
2157   // Continue the execution
2158 #else
2159   PCONTEXT ctx = exceptionInfo->ContextRecord;
2160   address pc = (address)ctx->Eip;
2161   assert(pc[0] == 0xF7, "not an idiv opcode");
2162   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2163   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2164   // set correct result values and continue after idiv instruction
2165   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2166   ctx->Eax = (DWORD)min_jint;      // result
2167   ctx->Edx = (DWORD)0;             // remainder
2168   // Continue the execution
2169 #endif
2170   return EXCEPTION_CONTINUE_EXECUTION;
2171 }
2172 
2173 //-----------------------------------------------------------------------------
2174 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2175   PCONTEXT ctx = exceptionInfo->ContextRecord;
2176 #ifndef  _WIN64
2177   // handle exception caused by native method modifying control word
2178   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2179 
2180   switch (exception_code) {
2181   case EXCEPTION_FLT_DENORMAL_OPERAND:
2182   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2183   case EXCEPTION_FLT_INEXACT_RESULT:
2184   case EXCEPTION_FLT_INVALID_OPERATION:
2185   case EXCEPTION_FLT_OVERFLOW:
2186   case EXCEPTION_FLT_STACK_CHECK:
2187   case EXCEPTION_FLT_UNDERFLOW:
2188     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2189     if (fp_control_word != ctx->FloatSave.ControlWord) {
2190       // Restore FPCW and mask out FLT exceptions
2191       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2192       // Mask out pending FLT exceptions
2193       ctx->FloatSave.StatusWord &=  0xffffff00;
2194       return EXCEPTION_CONTINUE_EXECUTION;
2195     }
2196   }
2197 
2198   if (prev_uef_handler != NULL) {
2199     // We didn't handle this exception so pass it to the previous
2200     // UnhandledExceptionFilter.
2201     return (prev_uef_handler)(exceptionInfo);
2202   }
2203 #else // !_WIN64
2204   // On Windows, the mxcsr control bits are non-volatile across calls
2205   // See also CR 6192333
2206   //
2207   jint MxCsr = INITIAL_MXCSR;
2208   // we can't use StubRoutines::addr_mxcsr_std()
2209   // because in Win64 mxcsr is not saved there
2210   if (MxCsr != ctx->MxCsr) {
2211     ctx->MxCsr = MxCsr;
2212     return EXCEPTION_CONTINUE_EXECUTION;
2213   }
2214 #endif // !_WIN64
2215 
2216   return EXCEPTION_CONTINUE_SEARCH;
2217 }
2218 
2219 static inline void report_error(Thread* t, DWORD exception_code,
2220                                 address addr, void* siginfo, void* context) {
2221   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2222 
2223   // If UseOsErrorReporting, this will return here and save the error file
2224   // somewhere where we can find it in the minidump.
2225 }
2226 
2227 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2228         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2229   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2230   address addr = (address) exceptionRecord->ExceptionInformation[1];
2231   if (Interpreter::contains(pc)) {
2232     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2233     if (!fr->is_first_java_frame()) {
2234       // get_frame_at_stack_banging_point() is only called when we
2235       // have well defined stacks so java_sender() calls do not need
2236       // to assert safe_for_sender() first.
2237       *fr = fr->java_sender();
2238     }
2239   } else {
2240     // more complex code with compiled code
2241     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2242     CodeBlob* cb = CodeCache::find_blob(pc);
2243     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2244       // Not sure where the pc points to, fallback to default
2245       // stack overflow handling
2246       return false;
2247     } else {
2248       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2249       // in compiled code, the stack banging is performed just after the return pc
2250       // has been pushed on the stack
2251       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2252       if (!fr->is_java_frame()) {
2253         // See java_sender() comment above.
2254         *fr = fr->java_sender();
2255       }
2256     }
2257   }
2258   assert(fr->is_java_frame(), "Safety check");
2259   return true;
2260 }
2261 
2262 //-----------------------------------------------------------------------------
2263 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2264   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2265   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2266 #ifdef _M_AMD64
2267   address pc = (address) exceptionInfo->ContextRecord->Rip;
2268 #else
2269   address pc = (address) exceptionInfo->ContextRecord->Eip;
2270 #endif
2271   Thread* t = Thread::current_or_null_safe();
2272 
2273   // Handle SafeFetch32 and SafeFetchN exceptions.
2274   if (StubRoutines::is_safefetch_fault(pc)) {
2275     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2276   }
2277 
2278 #ifndef _WIN64
2279   // Execution protection violation - win32 running on AMD64 only
2280   // Handled first to avoid misdiagnosis as a "normal" access violation;
2281   // This is safe to do because we have a new/unique ExceptionInformation
2282   // code for this condition.
2283   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2284     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2285     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2286     address addr = (address) exceptionRecord->ExceptionInformation[1];
2287 
2288     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2289       int page_size = os::vm_page_size();
2290 
2291       // Make sure the pc and the faulting address are sane.
2292       //
2293       // If an instruction spans a page boundary, and the page containing
2294       // the beginning of the instruction is executable but the following
2295       // page is not, the pc and the faulting address might be slightly
2296       // different - we still want to unguard the 2nd page in this case.
2297       //
2298       // 15 bytes seems to be a (very) safe value for max instruction size.
2299       bool pc_is_near_addr =
2300         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2301       bool instr_spans_page_boundary =
2302         (align_down((intptr_t) pc ^ (intptr_t) addr,
2303                          (intptr_t) page_size) > 0);
2304 
2305       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2306         static volatile address last_addr =
2307           (address) os::non_memory_address_word();
2308 
2309         // In conservative mode, don't unguard unless the address is in the VM
2310         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2311             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2312 
2313           // Set memory to RWX and retry
2314           address page_start = align_down(addr, page_size);
2315           bool res = os::protect_memory((char*) page_start, page_size,
2316                                         os::MEM_PROT_RWX);
2317 
2318           log_debug(os)("Execution protection violation "
2319                         "at " INTPTR_FORMAT
2320                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2321                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2322 
2323           // Set last_addr so if we fault again at the same address, we don't
2324           // end up in an endless loop.
2325           //
2326           // There are two potential complications here.  Two threads trapping
2327           // at the same address at the same time could cause one of the
2328           // threads to think it already unguarded, and abort the VM.  Likely
2329           // very rare.
2330           //
2331           // The other race involves two threads alternately trapping at
2332           // different addresses and failing to unguard the page, resulting in
2333           // an endless loop.  This condition is probably even more unlikely
2334           // than the first.
2335           //
2336           // Although both cases could be avoided by using locks or thread
2337           // local last_addr, these solutions are unnecessary complication:
2338           // this handler is a best-effort safety net, not a complete solution.
2339           // It is disabled by default and should only be used as a workaround
2340           // in case we missed any no-execute-unsafe VM code.
2341 
2342           last_addr = addr;
2343 
2344           return EXCEPTION_CONTINUE_EXECUTION;
2345         }
2346       }
2347 
2348       // Last unguard failed or not unguarding
2349       tty->print_raw_cr("Execution protection violation");
2350       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2351                    exceptionInfo->ContextRecord);
2352       return EXCEPTION_CONTINUE_SEARCH;
2353     }
2354   }
2355 #endif // _WIN64
2356 
2357   // Check to see if we caught the safepoint code in the
2358   // process of write protecting the memory serialization page.
2359   // It write enables the page immediately after protecting it
2360   // so just return.
2361   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2362     if (t != NULL && t->is_Java_thread()) {
2363       JavaThread* thread = (JavaThread*) t;
2364       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2365       address addr = (address) exceptionRecord->ExceptionInformation[1];
2366       if (os::is_memory_serialize_page(thread, addr)) {
2367         // Block current thread until the memory serialize page permission restored.
2368         os::block_on_serialize_page_trap();
2369         return EXCEPTION_CONTINUE_EXECUTION;
2370       }
2371     }
2372   }
2373 
2374   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2375       VM_Version::is_cpuinfo_segv_addr(pc)) {
2376     // Verify that OS save/restore AVX registers.
2377     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2378   }
2379 
2380   if (t != NULL && t->is_Java_thread()) {
2381     JavaThread* thread = (JavaThread*) t;
2382     bool in_java = thread->thread_state() == _thread_in_Java;
2383 
2384     // Handle potential stack overflows up front.
2385     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2386       if (thread->stack_guards_enabled()) {
2387         if (in_java) {
2388           frame fr;
2389           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2390           address addr = (address) exceptionRecord->ExceptionInformation[1];
2391           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2392             assert(fr.is_java_frame(), "Must be a Java frame");
2393             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2394           }
2395         }
2396         // Yellow zone violation.  The o/s has unprotected the first yellow
2397         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2398         // update the enabled status, even if the zone contains only one page.
2399         assert(thread->thread_state() != _thread_in_vm, "Undersized StackShadowPages");
2400         thread->disable_stack_yellow_reserved_zone();
2401         // If not in java code, return and hope for the best.
2402         return in_java
2403             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2404             :  EXCEPTION_CONTINUE_EXECUTION;
2405       } else {
2406         // Fatal red zone violation.
2407         thread->disable_stack_red_zone();
2408         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2409         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2410                       exceptionInfo->ContextRecord);
2411         return EXCEPTION_CONTINUE_SEARCH;
2412       }
2413     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2414       // Either stack overflow or null pointer exception.
2415       if (in_java) {
2416         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2417         address addr = (address) exceptionRecord->ExceptionInformation[1];
2418         address stack_end = thread->stack_end();
2419         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2420           // Stack overflow.
2421           assert(!os::uses_stack_guard_pages(),
2422                  "should be caught by red zone code above.");
2423           return Handle_Exception(exceptionInfo,
2424                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2425         }
2426         // Check for safepoint polling and implicit null
2427         // We only expect null pointers in the stubs (vtable)
2428         // the rest are checked explicitly now.
2429         CodeBlob* cb = CodeCache::find_blob(pc);
2430         if (cb != NULL) {
2431           if (os::is_poll_address(addr)) {
2432             address stub = SharedRuntime::get_poll_stub(pc);
2433             return Handle_Exception(exceptionInfo, stub);
2434           }
2435         }
2436         {
2437 #ifdef _WIN64
2438           // If it's a legal stack address map the entire region in
2439           //
2440           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2441           address addr = (address) exceptionRecord->ExceptionInformation[1];
2442           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2443             addr = (address)((uintptr_t)addr &
2444                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2445             os::commit_memory((char *)addr, thread->stack_base() - addr,
2446                               !ExecMem);
2447             return EXCEPTION_CONTINUE_EXECUTION;
2448           } else
2449 #endif
2450           {
2451             // Null pointer exception.
2452             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr)) {
2453               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2454               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2455             }
2456             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2457                          exceptionInfo->ContextRecord);
2458             return EXCEPTION_CONTINUE_SEARCH;
2459           }
2460         }
2461       }
2462 
2463 #ifdef _WIN64
2464       // Special care for fast JNI field accessors.
2465       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2466       // in and the heap gets shrunk before the field access.
2467       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2468         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2469         if (addr != (address)-1) {
2470           return Handle_Exception(exceptionInfo, addr);
2471         }
2472       }
2473 #endif
2474 
2475       // Stack overflow or null pointer exception in native code.
2476       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2477                    exceptionInfo->ContextRecord);
2478       return EXCEPTION_CONTINUE_SEARCH;
2479     } // /EXCEPTION_ACCESS_VIOLATION
2480     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2481 
2482     if (exception_code == EXCEPTION_IN_PAGE_ERROR) {
2483       CompiledMethod* nm = NULL;
2484       JavaThread* thread = (JavaThread*)t;
2485       if (in_java) {
2486         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
2487         nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
2488       }
2489       if ((thread->thread_state() == _thread_in_vm &&
2490           thread->doing_unsafe_access()) ||
2491           (nm != NULL && nm->has_unsafe_access())) {
2492         return Handle_Exception(exceptionInfo, SharedRuntime::handle_unsafe_access(thread, (address)Assembler::locate_next_instruction(pc)));
2493       }
2494     }
2495 
2496     if (in_java) {
2497       switch (exception_code) {
2498       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2499         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2500 
2501       case EXCEPTION_INT_OVERFLOW:
2502         return Handle_IDiv_Exception(exceptionInfo);
2503 
2504       } // switch
2505     }
2506     if (((thread->thread_state() == _thread_in_Java) ||
2507          (thread->thread_state() == _thread_in_native)) &&
2508          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2509       LONG result=Handle_FLT_Exception(exceptionInfo);
2510       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2511     }
2512   }
2513 
2514   if (exception_code != EXCEPTION_BREAKPOINT) {
2515     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2516                  exceptionInfo->ContextRecord);
2517   }
2518   return EXCEPTION_CONTINUE_SEARCH;
2519 }
2520 
2521 #ifndef _WIN64
2522 // Special care for fast JNI accessors.
2523 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2524 // the heap gets shrunk before the field access.
2525 // Need to install our own structured exception handler since native code may
2526 // install its own.
2527 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2528   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2529   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2530     address pc = (address) exceptionInfo->ContextRecord->Eip;
2531     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2532     if (addr != (address)-1) {
2533       return Handle_Exception(exceptionInfo, addr);
2534     }
2535   }
2536   return EXCEPTION_CONTINUE_SEARCH;
2537 }
2538 
2539 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2540   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2541                                                      jobject obj,           \
2542                                                      jfieldID fieldID) {    \
2543     __try {                                                                 \
2544       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2545                                                                  obj,       \
2546                                                                  fieldID);  \
2547     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2548                                               _exception_info())) {         \
2549     }                                                                       \
2550     return 0;                                                               \
2551   }
2552 
2553 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2554 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2555 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2556 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2557 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2558 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2559 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2560 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2561 
2562 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2563   switch (type) {
2564   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2565   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2566   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2567   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2568   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2569   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2570   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2571   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2572   default:        ShouldNotReachHere();
2573   }
2574   return (address)-1;
2575 }
2576 #endif
2577 
2578 // Virtual Memory
2579 
2580 int os::vm_page_size() { return os::win32::vm_page_size(); }
2581 int os::vm_allocation_granularity() {
2582   return os::win32::vm_allocation_granularity();
2583 }
2584 
2585 // Windows large page support is available on Windows 2003. In order to use
2586 // large page memory, the administrator must first assign additional privilege
2587 // to the user:
2588 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2589 //   + select Local Policies -> User Rights Assignment
2590 //   + double click "Lock pages in memory", add users and/or groups
2591 //   + reboot
2592 // Note the above steps are needed for administrator as well, as administrators
2593 // by default do not have the privilege to lock pages in memory.
2594 //
2595 // Note about Windows 2003: although the API supports committing large page
2596 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2597 // scenario, I found through experiment it only uses large page if the entire
2598 // memory region is reserved and committed in a single VirtualAlloc() call.
2599 // This makes Windows large page support more or less like Solaris ISM, in
2600 // that the entire heap must be committed upfront. This probably will change
2601 // in the future, if so the code below needs to be revisited.
2602 
2603 #ifndef MEM_LARGE_PAGES
2604   #define MEM_LARGE_PAGES 0x20000000
2605 #endif
2606 
2607 static HANDLE    _hProcess;
2608 static HANDLE    _hToken;
2609 
2610 // Container for NUMA node list info
2611 class NUMANodeListHolder {
2612  private:
2613   int *_numa_used_node_list;  // allocated below
2614   int _numa_used_node_count;
2615 
2616   void free_node_list() {
2617     if (_numa_used_node_list != NULL) {
2618       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2619     }
2620   }
2621 
2622  public:
2623   NUMANodeListHolder() {
2624     _numa_used_node_count = 0;
2625     _numa_used_node_list = NULL;
2626     // do rest of initialization in build routine (after function pointers are set up)
2627   }
2628 
2629   ~NUMANodeListHolder() {
2630     free_node_list();
2631   }
2632 
2633   bool build() {
2634     DWORD_PTR proc_aff_mask;
2635     DWORD_PTR sys_aff_mask;
2636     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2637     ULONG highest_node_number;
2638     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2639     free_node_list();
2640     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2641     for (unsigned int i = 0; i <= highest_node_number; i++) {
2642       ULONGLONG proc_mask_numa_node;
2643       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2644       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2645         _numa_used_node_list[_numa_used_node_count++] = i;
2646       }
2647     }
2648     return (_numa_used_node_count > 1);
2649   }
2650 
2651   int get_count() { return _numa_used_node_count; }
2652   int get_node_list_entry(int n) {
2653     // for indexes out of range, returns -1
2654     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2655   }
2656 
2657 } numa_node_list_holder;
2658 
2659 
2660 
2661 static size_t _large_page_size = 0;
2662 
2663 static bool request_lock_memory_privilege() {
2664   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2665                           os::current_process_id());
2666 
2667   LUID luid;
2668   if (_hProcess != NULL &&
2669       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2670       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2671 
2672     TOKEN_PRIVILEGES tp;
2673     tp.PrivilegeCount = 1;
2674     tp.Privileges[0].Luid = luid;
2675     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2676 
2677     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2678     // privilege. Check GetLastError() too. See MSDN document.
2679     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2680         (GetLastError() == ERROR_SUCCESS)) {
2681       return true;
2682     }
2683   }
2684 
2685   return false;
2686 }
2687 
2688 static void cleanup_after_large_page_init() {
2689   if (_hProcess) CloseHandle(_hProcess);
2690   _hProcess = NULL;
2691   if (_hToken) CloseHandle(_hToken);
2692   _hToken = NULL;
2693 }
2694 
2695 static bool numa_interleaving_init() {
2696   bool success = false;
2697   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2698 
2699   // print a warning if UseNUMAInterleaving flag is specified on command line
2700   bool warn_on_failure = use_numa_interleaving_specified;
2701 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2702 
2703   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2704   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2705   NUMAInterleaveGranularity = align_up(NUMAInterleaveGranularity, min_interleave_granularity);
2706 
2707   if (numa_node_list_holder.build()) {
2708     if (log_is_enabled(Debug, os, cpu)) {
2709       Log(os, cpu) log;
2710       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2711       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2712         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2713       }
2714     }
2715     success = true;
2716   } else {
2717     WARN("Process does not cover multiple NUMA nodes.");
2718   }
2719   if (!success) {
2720     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2721   }
2722   return success;
2723 #undef WARN
2724 }
2725 
2726 // this routine is used whenever we need to reserve a contiguous VA range
2727 // but we need to make separate VirtualAlloc calls for each piece of the range
2728 // Reasons for doing this:
2729 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2730 //  * UseNUMAInterleaving requires a separate node for each piece
2731 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2732                                          DWORD prot,
2733                                          bool should_inject_error = false) {
2734   char * p_buf;
2735   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2736   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2737   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2738 
2739   // first reserve enough address space in advance since we want to be
2740   // able to break a single contiguous virtual address range into multiple
2741   // large page commits but WS2003 does not allow reserving large page space
2742   // so we just use 4K pages for reserve, this gives us a legal contiguous
2743   // address space. then we will deallocate that reservation, and re alloc
2744   // using large pages
2745   const size_t size_of_reserve = bytes + chunk_size;
2746   if (bytes > size_of_reserve) {
2747     // Overflowed.
2748     return NULL;
2749   }
2750   p_buf = (char *) VirtualAlloc(addr,
2751                                 size_of_reserve,  // size of Reserve
2752                                 MEM_RESERVE,
2753                                 PAGE_READWRITE);
2754   // If reservation failed, return NULL
2755   if (p_buf == NULL) return NULL;
2756   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2757   os::release_memory(p_buf, bytes + chunk_size);
2758 
2759   // we still need to round up to a page boundary (in case we are using large pages)
2760   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2761   // instead we handle this in the bytes_to_rq computation below
2762   p_buf = align_up(p_buf, page_size);
2763 
2764   // now go through and allocate one chunk at a time until all bytes are
2765   // allocated
2766   size_t  bytes_remaining = bytes;
2767   // An overflow of align_up() would have been caught above
2768   // in the calculation of size_of_reserve.
2769   char * next_alloc_addr = p_buf;
2770   HANDLE hProc = GetCurrentProcess();
2771 
2772 #ifdef ASSERT
2773   // Variable for the failure injection
2774   int ran_num = os::random();
2775   size_t fail_after = ran_num % bytes;
2776 #endif
2777 
2778   int count=0;
2779   while (bytes_remaining) {
2780     // select bytes_to_rq to get to the next chunk_size boundary
2781 
2782     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2783     // Note allocate and commit
2784     char * p_new;
2785 
2786 #ifdef ASSERT
2787     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2788 #else
2789     const bool inject_error_now = false;
2790 #endif
2791 
2792     if (inject_error_now) {
2793       p_new = NULL;
2794     } else {
2795       if (!UseNUMAInterleaving) {
2796         p_new = (char *) VirtualAlloc(next_alloc_addr,
2797                                       bytes_to_rq,
2798                                       flags,
2799                                       prot);
2800       } else {
2801         // get the next node to use from the used_node_list
2802         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2803         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2804         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
2805       }
2806     }
2807 
2808     if (p_new == NULL) {
2809       // Free any allocated pages
2810       if (next_alloc_addr > p_buf) {
2811         // Some memory was committed so release it.
2812         size_t bytes_to_release = bytes - bytes_remaining;
2813         // NMT has yet to record any individual blocks, so it
2814         // need to create a dummy 'reserve' record to match
2815         // the release.
2816         MemTracker::record_virtual_memory_reserve((address)p_buf,
2817                                                   bytes_to_release, CALLER_PC);
2818         os::release_memory(p_buf, bytes_to_release);
2819       }
2820 #ifdef ASSERT
2821       if (should_inject_error) {
2822         log_develop_debug(pagesize)("Reserving pages individually failed.");
2823       }
2824 #endif
2825       return NULL;
2826     }
2827 
2828     bytes_remaining -= bytes_to_rq;
2829     next_alloc_addr += bytes_to_rq;
2830     count++;
2831   }
2832   // Although the memory is allocated individually, it is returned as one.
2833   // NMT records it as one block.
2834   if ((flags & MEM_COMMIT) != 0) {
2835     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
2836   } else {
2837     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
2838   }
2839 
2840   // made it this far, success
2841   return p_buf;
2842 }
2843 
2844 
2845 
2846 void os::large_page_init() {
2847   if (!UseLargePages) return;
2848 
2849   // print a warning if any large page related flag is specified on command line
2850   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2851                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2852   bool success = false;
2853 
2854 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2855   if (request_lock_memory_privilege()) {
2856     size_t s = GetLargePageMinimum();
2857     if (s) {
2858 #if defined(IA32) || defined(AMD64)
2859       if (s > 4*M || LargePageSizeInBytes > 4*M) {
2860         WARN("JVM cannot use large pages bigger than 4mb.");
2861       } else {
2862 #endif
2863         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2864           _large_page_size = LargePageSizeInBytes;
2865         } else {
2866           _large_page_size = s;
2867         }
2868         success = true;
2869 #if defined(IA32) || defined(AMD64)
2870       }
2871 #endif
2872     } else {
2873       WARN("Large page is not supported by the processor.");
2874     }
2875   } else {
2876     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
2877   }
2878 #undef WARN
2879 
2880   const size_t default_page_size = (size_t) vm_page_size();
2881   if (success && _large_page_size > default_page_size) {
2882     _page_sizes[0] = _large_page_size;
2883     _page_sizes[1] = default_page_size;
2884     _page_sizes[2] = 0;
2885   }
2886 
2887   cleanup_after_large_page_init();
2888   UseLargePages = success;
2889 }
2890 
2891 int os::create_file_for_heap(const char* dir) {
2892 
2893   const char name_template[] = "/jvmheap.XXXXXX";
2894   char *fullname = (char*)os::malloc((strlen(dir) + strlen(name_template) + 1), mtInternal);
2895   if (fullname == NULL) {
2896     vm_exit_during_initialization(err_msg("Malloc failed during creation of backing file for heap (%s)", os::strerror(errno)));
2897     return -1;
2898   }
2899 
2900   (void)strncpy(fullname, dir, strlen(dir)+1);
2901   (void)strncat(fullname, name_template, strlen(name_template));
2902 
2903   os::native_path(fullname);
2904 
2905   char *path = _mktemp(fullname);
2906   if (path == NULL) {
2907     warning("_mktemp could not create file name from template %s (%s)", fullname, os::strerror(errno));
2908     os::free(fullname);
2909     return -1;
2910   }
2911 
2912   int fd = _open(path, O_RDWR | O_CREAT | O_TEMPORARY | O_EXCL, S_IWRITE | S_IREAD);
2913 
2914   os::free(fullname);
2915   if (fd < 0) {
2916     warning("Problem opening file for heap (%s)", os::strerror(errno));
2917     return -1;
2918   }
2919   return fd;
2920 }
2921 
2922 // If 'base' is not NULL, function will return NULL if it cannot get 'base'
2923 char* os::map_memory_to_file(char* base, size_t size, int fd) {
2924   assert(fd != -1, "File descriptor is not valid");
2925 
2926   HANDLE fh = (HANDLE)_get_osfhandle(fd);
2927 #ifdef _LP64
2928   HANDLE fileMapping = CreateFileMapping(fh, NULL, PAGE_READWRITE,
2929     (DWORD)(size >> 32), (DWORD)(size & 0xFFFFFFFF), NULL);
2930 #else
2931   HANDLE fileMapping = CreateFileMapping(fh, NULL, PAGE_READWRITE,
2932     0, (DWORD)size, NULL);
2933 #endif
2934   if (fileMapping == NULL) {
2935     if (GetLastError() == ERROR_DISK_FULL) {
2936       vm_exit_during_initialization(err_msg("Could not allocate sufficient disk space for Java heap"));
2937     }
2938     else {
2939       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2940     }
2941 
2942     return NULL;
2943   }
2944 
2945   LPVOID addr = MapViewOfFileEx(fileMapping, FILE_MAP_WRITE, 0, 0, size, base);
2946 
2947   CloseHandle(fileMapping);
2948 
2949   return (char*)addr;
2950 }
2951 
2952 char* os::replace_existing_mapping_with_file_mapping(char* base, size_t size, int fd) {
2953   assert(fd != -1, "File descriptor is not valid");
2954   assert(base != NULL, "Base address cannot be NULL");
2955 
2956   release_memory(base, size);
2957   return map_memory_to_file(base, size, fd);
2958 }
2959 
2960 // On win32, one cannot release just a part of reserved memory, it's an
2961 // all or nothing deal.  When we split a reservation, we must break the
2962 // reservation into two reservations.
2963 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
2964                                   bool realloc) {
2965   if (size > 0) {
2966     release_memory(base, size);
2967     if (realloc) {
2968       reserve_memory(split, base);
2969     }
2970     if (size != split) {
2971       reserve_memory(size - split, base + split);
2972     }
2973   }
2974 }
2975 
2976 // Multiple threads can race in this code but it's not possible to unmap small sections of
2977 // virtual space to get requested alignment, like posix-like os's.
2978 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
2979 char* os::reserve_memory_aligned(size_t size, size_t alignment, int file_desc) {
2980   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
2981          "Alignment must be a multiple of allocation granularity (page size)");
2982   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
2983 
2984   size_t extra_size = size + alignment;
2985   assert(extra_size >= size, "overflow, size is too large to allow alignment");
2986 
2987   char* aligned_base = NULL;
2988 
2989   do {
2990     char* extra_base = os::reserve_memory(extra_size, NULL, alignment, file_desc);
2991     if (extra_base == NULL) {
2992       return NULL;
2993     }
2994     // Do manual alignment
2995     aligned_base = align_up(extra_base, alignment);
2996 
2997     if (file_desc != -1) {
2998       os::unmap_memory(extra_base, extra_size);
2999     } else {
3000       os::release_memory(extra_base, extra_size);
3001     }
3002 
3003     aligned_base = os::reserve_memory(size, aligned_base, 0, file_desc);
3004 
3005   } while (aligned_base == NULL);
3006 
3007   return aligned_base;
3008 }
3009 
3010 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3011   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3012          "reserve alignment");
3013   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3014   char* res;
3015   // note that if UseLargePages is on, all the areas that require interleaving
3016   // will go thru reserve_memory_special rather than thru here.
3017   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3018   if (!use_individual) {
3019     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3020   } else {
3021     elapsedTimer reserveTimer;
3022     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3023     // in numa interleaving, we have to allocate pages individually
3024     // (well really chunks of NUMAInterleaveGranularity size)
3025     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3026     if (res == NULL) {
3027       warning("NUMA page allocation failed");
3028     }
3029     if (Verbose && PrintMiscellaneous) {
3030       reserveTimer.stop();
3031       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3032                     reserveTimer.milliseconds(), reserveTimer.ticks());
3033     }
3034   }
3035   assert(res == NULL || addr == NULL || addr == res,
3036          "Unexpected address from reserve.");
3037 
3038   return res;
3039 }
3040 
3041 // Reserve memory at an arbitrary address, only if that area is
3042 // available (and not reserved for something else).
3043 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3044   // Windows os::reserve_memory() fails of the requested address range is
3045   // not avilable.
3046   return reserve_memory(bytes, requested_addr);
3047 }
3048 
3049 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3050   assert(file_desc >= 0, "file_desc is not valid");
3051   return map_memory_to_file(requested_addr, bytes, file_desc);
3052 }
3053 
3054 size_t os::large_page_size() {
3055   return _large_page_size;
3056 }
3057 
3058 bool os::can_commit_large_page_memory() {
3059   // Windows only uses large page memory when the entire region is reserved
3060   // and committed in a single VirtualAlloc() call. This may change in the
3061   // future, but with Windows 2003 it's not possible to commit on demand.
3062   return false;
3063 }
3064 
3065 bool os::can_execute_large_page_memory() {
3066   return true;
3067 }
3068 
3069 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3070                                  bool exec) {
3071   assert(UseLargePages, "only for large pages");
3072 
3073   if (!is_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3074     return NULL; // Fallback to small pages.
3075   }
3076 
3077   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3078   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3079 
3080   // with large pages, there are two cases where we need to use Individual Allocation
3081   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3082   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3083   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3084     log_debug(pagesize)("Reserving large pages individually.");
3085 
3086     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3087     if (p_buf == NULL) {
3088       // give an appropriate warning message
3089       if (UseNUMAInterleaving) {
3090         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3091       }
3092       if (UseLargePagesIndividualAllocation) {
3093         warning("Individually allocated large pages failed, "
3094                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3095       }
3096       return NULL;
3097     }
3098 
3099     return p_buf;
3100 
3101   } else {
3102     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3103 
3104     // normal policy just allocate it all at once
3105     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3106     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3107     if (res != NULL) {
3108       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3109     }
3110 
3111     return res;
3112   }
3113 }
3114 
3115 bool os::release_memory_special(char* base, size_t bytes) {
3116   assert(base != NULL, "Sanity check");
3117   return release_memory(base, bytes);
3118 }
3119 
3120 void os::print_statistics() {
3121 }
3122 
3123 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3124   int err = os::get_last_error();
3125   char buf[256];
3126   size_t buf_len = os::lasterror(buf, sizeof(buf));
3127   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3128           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3129           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3130 }
3131 
3132 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3133   if (bytes == 0) {
3134     // Don't bother the OS with noops.
3135     return true;
3136   }
3137   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3138   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3139   // Don't attempt to print anything if the OS call fails. We're
3140   // probably low on resources, so the print itself may cause crashes.
3141 
3142   // unless we have NUMAInterleaving enabled, the range of a commit
3143   // is always within a reserve covered by a single VirtualAlloc
3144   // in that case we can just do a single commit for the requested size
3145   if (!UseNUMAInterleaving) {
3146     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3147       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3148       return false;
3149     }
3150     if (exec) {
3151       DWORD oldprot;
3152       // Windows doc says to use VirtualProtect to get execute permissions
3153       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3154         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3155         return false;
3156       }
3157     }
3158     return true;
3159   } else {
3160 
3161     // when NUMAInterleaving is enabled, the commit might cover a range that
3162     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3163     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3164     // returns represents the number of bytes that can be committed in one step.
3165     size_t bytes_remaining = bytes;
3166     char * next_alloc_addr = addr;
3167     while (bytes_remaining > 0) {
3168       MEMORY_BASIC_INFORMATION alloc_info;
3169       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3170       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3171       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3172                        PAGE_READWRITE) == NULL) {
3173         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3174                                             exec);)
3175         return false;
3176       }
3177       if (exec) {
3178         DWORD oldprot;
3179         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3180                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3181           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3182                                               exec);)
3183           return false;
3184         }
3185       }
3186       bytes_remaining -= bytes_to_rq;
3187       next_alloc_addr += bytes_to_rq;
3188     }
3189   }
3190   // if we made it this far, return true
3191   return true;
3192 }
3193 
3194 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3195                           bool exec) {
3196   // alignment_hint is ignored on this OS
3197   return pd_commit_memory(addr, size, exec);
3198 }
3199 
3200 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3201                                   const char* mesg) {
3202   assert(mesg != NULL, "mesg must be specified");
3203   if (!pd_commit_memory(addr, size, exec)) {
3204     warn_fail_commit_memory(addr, size, exec);
3205     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3206   }
3207 }
3208 
3209 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3210                                   size_t alignment_hint, bool exec,
3211                                   const char* mesg) {
3212   // alignment_hint is ignored on this OS
3213   pd_commit_memory_or_exit(addr, size, exec, mesg);
3214 }
3215 
3216 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3217   if (bytes == 0) {
3218     // Don't bother the OS with noops.
3219     return true;
3220   }
3221   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3222   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3223   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3224 }
3225 
3226 bool os::pd_release_memory(char* addr, size_t bytes) {
3227   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3228 }
3229 
3230 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3231   return os::commit_memory(addr, size, !ExecMem);
3232 }
3233 
3234 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3235   return os::uncommit_memory(addr, size);
3236 }
3237 
3238 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3239   uint count = 0;
3240   bool ret = false;
3241   size_t bytes_remaining = bytes;
3242   char * next_protect_addr = addr;
3243 
3244   // Use VirtualQuery() to get the chunk size.
3245   while (bytes_remaining) {
3246     MEMORY_BASIC_INFORMATION alloc_info;
3247     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3248       return false;
3249     }
3250 
3251     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3252     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3253     // but we don't distinguish here as both cases are protected by same API.
3254     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3255     warning("Failed protecting pages individually for chunk #%u", count);
3256     if (!ret) {
3257       return false;
3258     }
3259 
3260     bytes_remaining -= bytes_to_protect;
3261     next_protect_addr += bytes_to_protect;
3262     count++;
3263   }
3264   return ret;
3265 }
3266 
3267 // Set protections specified
3268 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3269                         bool is_committed) {
3270   unsigned int p = 0;
3271   switch (prot) {
3272   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3273   case MEM_PROT_READ: p = PAGE_READONLY; break;
3274   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3275   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3276   default:
3277     ShouldNotReachHere();
3278   }
3279 
3280   DWORD old_status;
3281 
3282   // Strange enough, but on Win32 one can change protection only for committed
3283   // memory, not a big deal anyway, as bytes less or equal than 64K
3284   if (!is_committed) {
3285     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3286                           "cannot commit protection page");
3287   }
3288   // One cannot use os::guard_memory() here, as on Win32 guard page
3289   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3290   //
3291   // Pages in the region become guard pages. Any attempt to access a guard page
3292   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3293   // the guard page status. Guard pages thus act as a one-time access alarm.
3294   bool ret;
3295   if (UseNUMAInterleaving) {
3296     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3297     // so we must protect the chunks individually.
3298     ret = protect_pages_individually(addr, bytes, p, &old_status);
3299   } else {
3300     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3301   }
3302 #ifdef ASSERT
3303   if (!ret) {
3304     int err = os::get_last_error();
3305     char buf[256];
3306     size_t buf_len = os::lasterror(buf, sizeof(buf));
3307     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3308           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3309           buf_len != 0 ? buf : "<no_error_string>", err);
3310   }
3311 #endif
3312   return ret;
3313 }
3314 
3315 bool os::guard_memory(char* addr, size_t bytes) {
3316   DWORD old_status;
3317   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3318 }
3319 
3320 bool os::unguard_memory(char* addr, size_t bytes) {
3321   DWORD old_status;
3322   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3323 }
3324 
3325 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3326 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3327 void os::numa_make_global(char *addr, size_t bytes)    { }
3328 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3329 bool os::numa_topology_changed()                       { return false; }
3330 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3331 int os::numa_get_group_id()                            { return 0; }
3332 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3333   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3334     // Provide an answer for UMA systems
3335     ids[0] = 0;
3336     return 1;
3337   } else {
3338     // check for size bigger than actual groups_num
3339     size = MIN2(size, numa_get_groups_num());
3340     for (int i = 0; i < (int)size; i++) {
3341       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3342     }
3343     return size;
3344   }
3345 }
3346 
3347 bool os::get_page_info(char *start, page_info* info) {
3348   return false;
3349 }
3350 
3351 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3352                      page_info* page_found) {
3353   return end;
3354 }
3355 
3356 char* os::non_memory_address_word() {
3357   // Must never look like an address returned by reserve_memory,
3358   // even in its subfields (as defined by the CPU immediate fields,
3359   // if the CPU splits constants across multiple instructions).
3360   return (char*)-1;
3361 }
3362 
3363 #define MAX_ERROR_COUNT 100
3364 #define SYS_THREAD_ERROR 0xffffffffUL
3365 
3366 void os::pd_start_thread(Thread* thread) {
3367   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3368   // Returns previous suspend state:
3369   // 0:  Thread was not suspended
3370   // 1:  Thread is running now
3371   // >1: Thread is still suspended.
3372   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3373 }
3374 
3375 class HighResolutionInterval : public CHeapObj<mtThread> {
3376   // The default timer resolution seems to be 10 milliseconds.
3377   // (Where is this written down?)
3378   // If someone wants to sleep for only a fraction of the default,
3379   // then we set the timer resolution down to 1 millisecond for
3380   // the duration of their interval.
3381   // We carefully set the resolution back, since otherwise we
3382   // seem to incur an overhead (3%?) that we don't need.
3383   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3384   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3385   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3386   // timeBeginPeriod() if the relative error exceeded some threshold.
3387   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3388   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3389   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3390   // resolution timers running.
3391  private:
3392   jlong resolution;
3393  public:
3394   HighResolutionInterval(jlong ms) {
3395     resolution = ms % 10L;
3396     if (resolution != 0) {
3397       MMRESULT result = timeBeginPeriod(1L);
3398     }
3399   }
3400   ~HighResolutionInterval() {
3401     if (resolution != 0) {
3402       MMRESULT result = timeEndPeriod(1L);
3403     }
3404     resolution = 0L;
3405   }
3406 };
3407 
3408 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3409   jlong limit = (jlong) MAXDWORD;
3410 
3411   while (ms > limit) {
3412     int res;
3413     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3414       return res;
3415     }
3416     ms -= limit;
3417   }
3418 
3419   assert(thread == Thread::current(), "thread consistency check");
3420   OSThread* osthread = thread->osthread();
3421   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3422   int result;
3423   if (interruptable) {
3424     assert(thread->is_Java_thread(), "must be java thread");
3425     JavaThread *jt = (JavaThread *) thread;
3426     ThreadBlockInVM tbivm(jt);
3427 
3428     jt->set_suspend_equivalent();
3429     // cleared by handle_special_suspend_equivalent_condition() or
3430     // java_suspend_self() via check_and_wait_while_suspended()
3431 
3432     HANDLE events[1];
3433     events[0] = osthread->interrupt_event();
3434     HighResolutionInterval *phri=NULL;
3435     if (!ForceTimeHighResolution) {
3436       phri = new HighResolutionInterval(ms);
3437     }
3438     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3439       result = OS_TIMEOUT;
3440     } else {
3441       ResetEvent(osthread->interrupt_event());
3442       osthread->set_interrupted(false);
3443       result = OS_INTRPT;
3444     }
3445     delete phri; //if it is NULL, harmless
3446 
3447     // were we externally suspended while we were waiting?
3448     jt->check_and_wait_while_suspended();
3449   } else {
3450     assert(!thread->is_Java_thread(), "must not be java thread");
3451     Sleep((long) ms);
3452     result = OS_TIMEOUT;
3453   }
3454   return result;
3455 }
3456 
3457 // Short sleep, direct OS call.
3458 //
3459 // ms = 0, means allow others (if any) to run.
3460 //
3461 void os::naked_short_sleep(jlong ms) {
3462   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3463   Sleep(ms);
3464 }
3465 
3466 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3467 void os::infinite_sleep() {
3468   while (true) {    // sleep forever ...
3469     Sleep(100000);  // ... 100 seconds at a time
3470   }
3471 }
3472 
3473 typedef BOOL (WINAPI * STTSignature)(void);
3474 
3475 void os::naked_yield() {
3476   // Consider passing back the return value from SwitchToThread().
3477   SwitchToThread();
3478 }
3479 
3480 // Win32 only gives you access to seven real priorities at a time,
3481 // so we compress Java's ten down to seven.  It would be better
3482 // if we dynamically adjusted relative priorities.
3483 
3484 int os::java_to_os_priority[CriticalPriority + 1] = {
3485   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3486   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3487   THREAD_PRIORITY_LOWEST,                       // 2
3488   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3489   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3490   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3491   THREAD_PRIORITY_NORMAL,                       // 6
3492   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3493   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3494   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3495   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3496   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3497 };
3498 
3499 int prio_policy1[CriticalPriority + 1] = {
3500   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3501   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3502   THREAD_PRIORITY_LOWEST,                       // 2
3503   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3504   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3505   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3506   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3507   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3508   THREAD_PRIORITY_HIGHEST,                      // 8
3509   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3510   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3511   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3512 };
3513 
3514 static int prio_init() {
3515   // If ThreadPriorityPolicy is 1, switch tables
3516   if (ThreadPriorityPolicy == 1) {
3517     int i;
3518     for (i = 0; i < CriticalPriority + 1; i++) {
3519       os::java_to_os_priority[i] = prio_policy1[i];
3520     }
3521   }
3522   if (UseCriticalJavaThreadPriority) {
3523     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3524   }
3525   return 0;
3526 }
3527 
3528 OSReturn os::set_native_priority(Thread* thread, int priority) {
3529   if (!UseThreadPriorities) return OS_OK;
3530   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3531   return ret ? OS_OK : OS_ERR;
3532 }
3533 
3534 OSReturn os::get_native_priority(const Thread* const thread,
3535                                  int* priority_ptr) {
3536   if (!UseThreadPriorities) {
3537     *priority_ptr = java_to_os_priority[NormPriority];
3538     return OS_OK;
3539   }
3540   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3541   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3542     assert(false, "GetThreadPriority failed");
3543     return OS_ERR;
3544   }
3545   *priority_ptr = os_prio;
3546   return OS_OK;
3547 }
3548 
3549 
3550 // Hint to the underlying OS that a task switch would not be good.
3551 // Void return because it's a hint and can fail.
3552 void os::hint_no_preempt() {}
3553 
3554 void os::interrupt(Thread* thread) {
3555   debug_only(Thread::check_for_dangling_thread_pointer(thread);)
3556 
3557   OSThread* osthread = thread->osthread();
3558   osthread->set_interrupted(true);
3559   // More than one thread can get here with the same value of osthread,
3560   // resulting in multiple notifications.  We do, however, want the store
3561   // to interrupted() to be visible to other threads before we post
3562   // the interrupt event.
3563   OrderAccess::release();
3564   SetEvent(osthread->interrupt_event());
3565   // For JSR166:  unpark after setting status
3566   if (thread->is_Java_thread()) {
3567     ((JavaThread*)thread)->parker()->unpark();
3568   }
3569 
3570   ParkEvent * ev = thread->_ParkEvent;
3571   if (ev != NULL) ev->unpark();
3572 }
3573 
3574 
3575 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3576   debug_only(Thread::check_for_dangling_thread_pointer(thread);)
3577 
3578   OSThread* osthread = thread->osthread();
3579   // There is no synchronization between the setting of the interrupt
3580   // and it being cleared here. It is critical - see 6535709 - that
3581   // we only clear the interrupt state, and reset the interrupt event,
3582   // if we are going to report that we were indeed interrupted - else
3583   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3584   // depending on the timing. By checking thread interrupt event to see
3585   // if the thread gets real interrupt thus prevent spurious wakeup.
3586   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3587   if (interrupted && clear_interrupted) {
3588     osthread->set_interrupted(false);
3589     ResetEvent(osthread->interrupt_event());
3590   } // Otherwise leave the interrupted state alone
3591 
3592   return interrupted;
3593 }
3594 
3595 // GetCurrentThreadId() returns DWORD
3596 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3597 
3598 static int _initial_pid = 0;
3599 
3600 int os::current_process_id() {
3601   return (_initial_pid ? _initial_pid : _getpid());
3602 }
3603 
3604 int    os::win32::_vm_page_size              = 0;
3605 int    os::win32::_vm_allocation_granularity = 0;
3606 int    os::win32::_processor_type            = 0;
3607 // Processor level is not available on non-NT systems, use vm_version instead
3608 int    os::win32::_processor_level           = 0;
3609 julong os::win32::_physical_memory           = 0;
3610 size_t os::win32::_default_stack_size        = 0;
3611 
3612 intx          os::win32::_os_thread_limit    = 0;
3613 volatile intx os::win32::_os_thread_count    = 0;
3614 
3615 bool   os::win32::_is_windows_server         = false;
3616 
3617 // 6573254
3618 // Currently, the bug is observed across all the supported Windows releases,
3619 // including the latest one (as of this writing - Windows Server 2012 R2)
3620 bool   os::win32::_has_exit_bug              = true;
3621 
3622 void os::win32::initialize_system_info() {
3623   SYSTEM_INFO si;
3624   GetSystemInfo(&si);
3625   _vm_page_size    = si.dwPageSize;
3626   _vm_allocation_granularity = si.dwAllocationGranularity;
3627   _processor_type  = si.dwProcessorType;
3628   _processor_level = si.wProcessorLevel;
3629   set_processor_count(si.dwNumberOfProcessors);
3630 
3631   MEMORYSTATUSEX ms;
3632   ms.dwLength = sizeof(ms);
3633 
3634   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3635   // dwMemoryLoad (% of memory in use)
3636   GlobalMemoryStatusEx(&ms);
3637   _physical_memory = ms.ullTotalPhys;
3638 
3639   if (FLAG_IS_DEFAULT(MaxRAM)) {
3640     // Adjust MaxRAM according to the maximum virtual address space available.
3641     FLAG_SET_DEFAULT(MaxRAM, MIN2(MaxRAM, (uint64_t) ms.ullTotalVirtual));
3642   }
3643 
3644   OSVERSIONINFOEX oi;
3645   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3646   GetVersionEx((OSVERSIONINFO*)&oi);
3647   switch (oi.dwPlatformId) {
3648   case VER_PLATFORM_WIN32_NT:
3649     {
3650       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3651       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3652           oi.wProductType == VER_NT_SERVER) {
3653         _is_windows_server = true;
3654       }
3655     }
3656     break;
3657   default: fatal("Unknown platform");
3658   }
3659 
3660   _default_stack_size = os::current_stack_size();
3661   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3662   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3663          "stack size not a multiple of page size");
3664 
3665   initialize_performance_counter();
3666 }
3667 
3668 
3669 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3670                                       int ebuflen) {
3671   char path[MAX_PATH];
3672   DWORD size;
3673   DWORD pathLen = (DWORD)sizeof(path);
3674   HINSTANCE result = NULL;
3675 
3676   // only allow library name without path component
3677   assert(strchr(name, '\\') == NULL, "path not allowed");
3678   assert(strchr(name, ':') == NULL, "path not allowed");
3679   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3680     jio_snprintf(ebuf, ebuflen,
3681                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3682     return NULL;
3683   }
3684 
3685   // search system directory
3686   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3687     if (size >= pathLen) {
3688       return NULL; // truncated
3689     }
3690     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3691       return NULL; // truncated
3692     }
3693     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3694       return result;
3695     }
3696   }
3697 
3698   // try Windows directory
3699   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3700     if (size >= pathLen) {
3701       return NULL; // truncated
3702     }
3703     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3704       return NULL; // truncated
3705     }
3706     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3707       return result;
3708     }
3709   }
3710 
3711   jio_snprintf(ebuf, ebuflen,
3712                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3713   return NULL;
3714 }
3715 
3716 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3717 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3718 
3719 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3720   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3721   return TRUE;
3722 }
3723 
3724 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3725   // Basic approach:
3726   //  - Each exiting thread registers its intent to exit and then does so.
3727   //  - A thread trying to terminate the process must wait for all
3728   //    threads currently exiting to complete their exit.
3729 
3730   if (os::win32::has_exit_bug()) {
3731     // The array holds handles of the threads that have started exiting by calling
3732     // _endthreadex().
3733     // Should be large enough to avoid blocking the exiting thread due to lack of
3734     // a free slot.
3735     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3736     static int handle_count = 0;
3737 
3738     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3739     static CRITICAL_SECTION crit_sect;
3740     static volatile DWORD process_exiting = 0;
3741     int i, j;
3742     DWORD res;
3743     HANDLE hproc, hthr;
3744 
3745     // We only attempt to register threads until a process exiting
3746     // thread manages to set the process_exiting flag. Any threads
3747     // that come through here after the process_exiting flag is set
3748     // are unregistered and will be caught in the SuspendThread()
3749     // infinite loop below.
3750     bool registered = false;
3751 
3752     // The first thread that reached this point, initializes the critical section.
3753     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3754       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3755     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3756       if (what != EPT_THREAD) {
3757         // Atomically set process_exiting before the critical section
3758         // to increase the visibility between racing threads.
3759         Atomic::cmpxchg(GetCurrentThreadId(), &process_exiting, (DWORD)0);
3760       }
3761       EnterCriticalSection(&crit_sect);
3762 
3763       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3764         // Remove from the array those handles of the threads that have completed exiting.
3765         for (i = 0, j = 0; i < handle_count; ++i) {
3766           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3767           if (res == WAIT_TIMEOUT) {
3768             handles[j++] = handles[i];
3769           } else {
3770             if (res == WAIT_FAILED) {
3771               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3772                       GetLastError(), __FILE__, __LINE__);
3773             }
3774             // Don't keep the handle, if we failed waiting for it.
3775             CloseHandle(handles[i]);
3776           }
3777         }
3778 
3779         // If there's no free slot in the array of the kept handles, we'll have to
3780         // wait until at least one thread completes exiting.
3781         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3782           // Raise the priority of the oldest exiting thread to increase its chances
3783           // to complete sooner.
3784           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3785           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3786           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3787             i = (res - WAIT_OBJECT_0);
3788             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3789             for (; i < handle_count; ++i) {
3790               handles[i] = handles[i + 1];
3791             }
3792           } else {
3793             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3794                     (res == WAIT_FAILED ? "failed" : "timed out"),
3795                     GetLastError(), __FILE__, __LINE__);
3796             // Don't keep handles, if we failed waiting for them.
3797             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3798               CloseHandle(handles[i]);
3799             }
3800             handle_count = 0;
3801           }
3802         }
3803 
3804         // Store a duplicate of the current thread handle in the array of handles.
3805         hproc = GetCurrentProcess();
3806         hthr = GetCurrentThread();
3807         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3808                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3809           warning("DuplicateHandle failed (%u) in %s: %d\n",
3810                   GetLastError(), __FILE__, __LINE__);
3811 
3812           // We can't register this thread (no more handles) so this thread
3813           // may be racing with a thread that is calling exit(). If the thread
3814           // that is calling exit() has managed to set the process_exiting
3815           // flag, then this thread will be caught in the SuspendThread()
3816           // infinite loop below which closes that race. A small timing
3817           // window remains before the process_exiting flag is set, but it
3818           // is only exposed when we are out of handles.
3819         } else {
3820           ++handle_count;
3821           registered = true;
3822 
3823           // The current exiting thread has stored its handle in the array, and now
3824           // should leave the critical section before calling _endthreadex().
3825         }
3826 
3827       } else if (what != EPT_THREAD && handle_count > 0) {
3828         jlong start_time, finish_time, timeout_left;
3829         // Before ending the process, make sure all the threads that had called
3830         // _endthreadex() completed.
3831 
3832         // Set the priority level of the current thread to the same value as
3833         // the priority level of exiting threads.
3834         // This is to ensure it will be given a fair chance to execute if
3835         // the timeout expires.
3836         hthr = GetCurrentThread();
3837         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3838         start_time = os::javaTimeNanos();
3839         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
3840         for (i = 0; ; ) {
3841           int portion_count = handle_count - i;
3842           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
3843             portion_count = MAXIMUM_WAIT_OBJECTS;
3844           }
3845           for (j = 0; j < portion_count; ++j) {
3846             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
3847           }
3848           timeout_left = (finish_time - start_time) / 1000000L;
3849           if (timeout_left < 0) {
3850             timeout_left = 0;
3851           }
3852           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
3853           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
3854             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3855                     (res == WAIT_FAILED ? "failed" : "timed out"),
3856                     GetLastError(), __FILE__, __LINE__);
3857             // Reset portion_count so we close the remaining
3858             // handles due to this error.
3859             portion_count = handle_count - i;
3860           }
3861           for (j = 0; j < portion_count; ++j) {
3862             CloseHandle(handles[i + j]);
3863           }
3864           if ((i += portion_count) >= handle_count) {
3865             break;
3866           }
3867           start_time = os::javaTimeNanos();
3868         }
3869         handle_count = 0;
3870       }
3871 
3872       LeaveCriticalSection(&crit_sect);
3873     }
3874 
3875     if (!registered &&
3876         OrderAccess::load_acquire(&process_exiting) != 0 &&
3877         process_exiting != GetCurrentThreadId()) {
3878       // Some other thread is about to call exit(), so we don't let
3879       // the current unregistered thread proceed to exit() or _endthreadex()
3880       while (true) {
3881         SuspendThread(GetCurrentThread());
3882         // Avoid busy-wait loop, if SuspendThread() failed.
3883         Sleep(EXIT_TIMEOUT);
3884       }
3885     }
3886   }
3887 
3888   // We are here if either
3889   // - there's no 'race at exit' bug on this OS release;
3890   // - initialization of the critical section failed (unlikely);
3891   // - the current thread has registered itself and left the critical section;
3892   // - the process-exiting thread has raised the flag and left the critical section.
3893   if (what == EPT_THREAD) {
3894     _endthreadex((unsigned)exit_code);
3895   } else if (what == EPT_PROCESS) {
3896     ::exit(exit_code);
3897   } else {
3898     _exit(exit_code);
3899   }
3900 
3901   // Should not reach here
3902   return exit_code;
3903 }
3904 
3905 #undef EXIT_TIMEOUT
3906 
3907 void os::win32::setmode_streams() {
3908   _setmode(_fileno(stdin), _O_BINARY);
3909   _setmode(_fileno(stdout), _O_BINARY);
3910   _setmode(_fileno(stderr), _O_BINARY);
3911 }
3912 
3913 
3914 bool os::is_debugger_attached() {
3915   return IsDebuggerPresent() ? true : false;
3916 }
3917 
3918 
3919 void os::wait_for_keypress_at_exit(void) {
3920   if (PauseAtExit) {
3921     fprintf(stderr, "Press any key to continue...\n");
3922     fgetc(stdin);
3923   }
3924 }
3925 
3926 
3927 bool os::message_box(const char* title, const char* message) {
3928   int result = MessageBox(NULL, message, title,
3929                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3930   return result == IDYES;
3931 }
3932 
3933 #ifndef PRODUCT
3934 #ifndef _WIN64
3935 // Helpers to check whether NX protection is enabled
3936 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3937   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3938       pex->ExceptionRecord->NumberParameters > 0 &&
3939       pex->ExceptionRecord->ExceptionInformation[0] ==
3940       EXCEPTION_INFO_EXEC_VIOLATION) {
3941     return EXCEPTION_EXECUTE_HANDLER;
3942   }
3943   return EXCEPTION_CONTINUE_SEARCH;
3944 }
3945 
3946 void nx_check_protection() {
3947   // If NX is enabled we'll get an exception calling into code on the stack
3948   char code[] = { (char)0xC3 }; // ret
3949   void *code_ptr = (void *)code;
3950   __try {
3951     __asm call code_ptr
3952   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3953     tty->print_raw_cr("NX protection detected.");
3954   }
3955 }
3956 #endif // _WIN64
3957 #endif // PRODUCT
3958 
3959 // This is called _before_ the global arguments have been parsed
3960 void os::init(void) {
3961   _initial_pid = _getpid();
3962 
3963   init_random(1234567);
3964 
3965   win32::initialize_system_info();
3966   win32::setmode_streams();
3967   init_page_sizes((size_t) win32::vm_page_size());
3968 
3969   // This may be overridden later when argument processing is done.
3970   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, false);
3971 
3972   // Initialize main_process and main_thread
3973   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3974   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3975                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3976     fatal("DuplicateHandle failed\n");
3977   }
3978   main_thread_id = (int) GetCurrentThreadId();
3979 
3980   // initialize fast thread access - only used for 32-bit
3981   win32::initialize_thread_ptr_offset();
3982 }
3983 
3984 // To install functions for atexit processing
3985 extern "C" {
3986   static void perfMemory_exit_helper() {
3987     perfMemory_exit();
3988   }
3989 }
3990 
3991 static jint initSock();
3992 
3993 // this is called _after_ the global arguments have been parsed
3994 jint os::init_2(void) {
3995   // Setup Windows Exceptions
3996 
3997   // for debugging float code generation bugs
3998   if (ForceFloatExceptions) {
3999 #ifndef  _WIN64
4000     static long fp_control_word = 0;
4001     __asm { fstcw fp_control_word }
4002     // see Intel PPro Manual, Vol. 2, p 7-16
4003     const long precision = 0x20;
4004     const long underflow = 0x10;
4005     const long overflow  = 0x08;
4006     const long zero_div  = 0x04;
4007     const long denorm    = 0x02;
4008     const long invalid   = 0x01;
4009     fp_control_word |= invalid;
4010     __asm { fldcw fp_control_word }
4011 #endif
4012   }
4013 
4014   // If stack_commit_size is 0, windows will reserve the default size,
4015   // but only commit a small portion of it.
4016   size_t stack_commit_size = align_up(ThreadStackSize*K, os::vm_page_size());
4017   size_t default_reserve_size = os::win32::default_stack_size();
4018   size_t actual_reserve_size = stack_commit_size;
4019   if (stack_commit_size < default_reserve_size) {
4020     // If stack_commit_size == 0, we want this too
4021     actual_reserve_size = default_reserve_size;
4022   }
4023 
4024   // Check minimum allowable stack size for thread creation and to initialize
4025   // the java system classes, including StackOverflowError - depends on page
4026   // size.  Add two 4K pages for compiler2 recursion in main thread.
4027   // Add in 4*BytesPerWord 4K pages to account for VM stack during
4028   // class initialization depending on 32 or 64 bit VM.
4029   size_t min_stack_allowed =
4030             (size_t)(JavaThread::stack_guard_zone_size() +
4031                      JavaThread::stack_shadow_zone_size() +
4032                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
4033 
4034   min_stack_allowed = align_up(min_stack_allowed, os::vm_page_size());
4035 
4036   if (actual_reserve_size < min_stack_allowed) {
4037     tty->print_cr("\nThe Java thread stack size specified is too small. "
4038                   "Specify at least %dk",
4039                   min_stack_allowed / K);
4040     return JNI_ERR;
4041   }
4042 
4043   JavaThread::set_stack_size_at_create(stack_commit_size);
4044 
4045   // Calculate theoretical max. size of Threads to guard gainst artifical
4046   // out-of-memory situations, where all available address-space has been
4047   // reserved by thread stacks.
4048   assert(actual_reserve_size != 0, "Must have a stack");
4049 
4050   // Calculate the thread limit when we should start doing Virtual Memory
4051   // banging. Currently when the threads will have used all but 200Mb of space.
4052   //
4053   // TODO: consider performing a similar calculation for commit size instead
4054   // as reserve size, since on a 64-bit platform we'll run into that more
4055   // often than running out of virtual memory space.  We can use the
4056   // lower value of the two calculations as the os_thread_limit.
4057   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4058   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4059 
4060   // at exit methods are called in the reverse order of their registration.
4061   // there is no limit to the number of functions registered. atexit does
4062   // not set errno.
4063 
4064   if (PerfAllowAtExitRegistration) {
4065     // only register atexit functions if PerfAllowAtExitRegistration is set.
4066     // atexit functions can be delayed until process exit time, which
4067     // can be problematic for embedded VM situations. Embedded VMs should
4068     // call DestroyJavaVM() to assure that VM resources are released.
4069 
4070     // note: perfMemory_exit_helper atexit function may be removed in
4071     // the future if the appropriate cleanup code can be added to the
4072     // VM_Exit VMOperation's doit method.
4073     if (atexit(perfMemory_exit_helper) != 0) {
4074       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4075     }
4076   }
4077 
4078 #ifndef _WIN64
4079   // Print something if NX is enabled (win32 on AMD64)
4080   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4081 #endif
4082 
4083   // initialize thread priority policy
4084   prio_init();
4085 
4086   if (UseNUMA && !ForceNUMA) {
4087     UseNUMA = false; // We don't fully support this yet
4088   }
4089 
4090   if (UseNUMAInterleaving) {
4091     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4092     bool success = numa_interleaving_init();
4093     if (!success) UseNUMAInterleaving = false;
4094   }
4095 
4096   if (initSock() != JNI_OK) {
4097     return JNI_ERR;
4098   }
4099 
4100   SymbolEngine::recalc_search_path();
4101 
4102   return JNI_OK;
4103 }
4104 
4105 // Mark the polling page as unreadable
4106 void os::make_polling_page_unreadable(void) {
4107   DWORD old_status;
4108   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4109                       PAGE_NOACCESS, &old_status)) {
4110     fatal("Could not disable polling page");
4111   }
4112 }
4113 
4114 // Mark the polling page as readable
4115 void os::make_polling_page_readable(void) {
4116   DWORD old_status;
4117   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4118                       PAGE_READONLY, &old_status)) {
4119     fatal("Could not enable polling page");
4120   }
4121 }
4122 
4123 // combine the high and low DWORD into a ULONGLONG
4124 static ULONGLONG make_double_word(DWORD high_word, DWORD low_word) {
4125   ULONGLONG value = high_word;
4126   value <<= sizeof(high_word) * 8;
4127   value |= low_word;
4128   return value;
4129 }
4130 
4131 // Transfers data from WIN32_FILE_ATTRIBUTE_DATA structure to struct stat
4132 static void file_attribute_data_to_stat(struct stat* sbuf, WIN32_FILE_ATTRIBUTE_DATA file_data) {
4133   ::memset((void*)sbuf, 0, sizeof(struct stat));
4134   sbuf->st_size = (_off_t)make_double_word(file_data.nFileSizeHigh, file_data.nFileSizeLow);
4135   sbuf->st_mtime = make_double_word(file_data.ftLastWriteTime.dwHighDateTime,
4136                                   file_data.ftLastWriteTime.dwLowDateTime);
4137   sbuf->st_ctime = make_double_word(file_data.ftCreationTime.dwHighDateTime,
4138                                   file_data.ftCreationTime.dwLowDateTime);
4139   sbuf->st_atime = make_double_word(file_data.ftLastAccessTime.dwHighDateTime,
4140                                   file_data.ftLastAccessTime.dwLowDateTime);
4141   if ((file_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) != 0) {
4142     sbuf->st_mode |= S_IFDIR;
4143   } else {
4144     sbuf->st_mode |= S_IFREG;
4145   }
4146 }
4147 
4148 // The following function is adapted from java.base/windows/native/libjava/canonicalize_md.c
4149 // Creates an UNC path from a single byte path. Return buffer is
4150 // allocated in C heap and needs to be freed by the caller.
4151 // Returns NULL on error.
4152 static wchar_t* create_unc_path(const char* path, errno_t &err) {
4153   wchar_t* wpath = NULL;
4154   size_t converted_chars = 0;
4155   size_t path_len = strlen(path) + 1; // includes the terminating NULL
4156   if (path[0] == '\\' && path[1] == '\\') {
4157     if (path[2] == '?' && path[3] == '\\'){
4158       // if it already has a \\?\ don't do the prefix
4159       wpath = (wchar_t*)os::malloc(path_len * sizeof(wchar_t), mtInternal);
4160       if (wpath != NULL) {
4161         err = ::mbstowcs_s(&converted_chars, wpath, path_len, path, path_len);
4162       } else {
4163         err = ENOMEM;
4164       }
4165     } else {
4166       // only UNC pathname includes double slashes here
4167       wpath = (wchar_t*)os::malloc((path_len + 7) * sizeof(wchar_t), mtInternal);
4168       if (wpath != NULL) {
4169         ::wcscpy(wpath, L"\\\\?\\UNC\0");
4170         err = ::mbstowcs_s(&converted_chars, &wpath[7], path_len, path, path_len);
4171       } else {
4172         err = ENOMEM;
4173       }
4174     }
4175   } else {
4176     wpath = (wchar_t*)os::malloc((path_len + 4) * sizeof(wchar_t), mtInternal);
4177     if (wpath != NULL) {
4178       ::wcscpy(wpath, L"\\\\?\\\0");
4179       err = ::mbstowcs_s(&converted_chars, &wpath[4], path_len, path, path_len);
4180     } else {
4181       err = ENOMEM;
4182     }
4183   }
4184   return wpath;
4185 }
4186 
4187 static void destroy_unc_path(wchar_t* wpath) {
4188   os::free(wpath);
4189 }
4190 
4191 int os::stat(const char *path, struct stat *sbuf) {
4192   char* pathbuf = (char*)os::strdup(path, mtInternal);
4193   if (pathbuf == NULL) {
4194     errno = ENOMEM;
4195     return -1;
4196   }
4197   os::native_path(pathbuf);
4198   int ret;
4199   WIN32_FILE_ATTRIBUTE_DATA file_data;
4200   // Not using stat() to avoid the problem described in JDK-6539723
4201   if (strlen(path) < MAX_PATH) {
4202     BOOL bret = ::GetFileAttributesExA(pathbuf, GetFileExInfoStandard, &file_data);
4203     if (!bret) {
4204       errno = ::GetLastError();
4205       ret = -1;
4206     }
4207     else {
4208       file_attribute_data_to_stat(sbuf, file_data);
4209       ret = 0;
4210     }
4211   } else {
4212     errno_t err = ERROR_SUCCESS;
4213     wchar_t* wpath = create_unc_path(pathbuf, err);
4214     if (err != ERROR_SUCCESS) {
4215       if (wpath != NULL) {
4216         destroy_unc_path(wpath);
4217       }
4218       os::free(pathbuf);
4219       errno = err;
4220       return -1;
4221     }
4222     BOOL bret = ::GetFileAttributesExW(wpath, GetFileExInfoStandard, &file_data);
4223     if (!bret) {
4224       errno = ::GetLastError();
4225       ret = -1;
4226     } else {
4227       file_attribute_data_to_stat(sbuf, file_data);
4228       ret = 0;
4229     }
4230     destroy_unc_path(wpath);
4231   }
4232   os::free(pathbuf);
4233   return ret;
4234 }
4235 
4236 
4237 #define FT2INT64(ft) \
4238   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4239 
4240 
4241 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4242 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4243 // of a thread.
4244 //
4245 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4246 // the fast estimate available on the platform.
4247 
4248 // current_thread_cpu_time() is not optimized for Windows yet
4249 jlong os::current_thread_cpu_time() {
4250   // return user + sys since the cost is the same
4251   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4252 }
4253 
4254 jlong os::thread_cpu_time(Thread* thread) {
4255   // consistent with what current_thread_cpu_time() returns.
4256   return os::thread_cpu_time(thread, true /* user+sys */);
4257 }
4258 
4259 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4260   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4261 }
4262 
4263 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4264   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4265   // If this function changes, os::is_thread_cpu_time_supported() should too
4266   FILETIME CreationTime;
4267   FILETIME ExitTime;
4268   FILETIME KernelTime;
4269   FILETIME UserTime;
4270 
4271   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4272                       &ExitTime, &KernelTime, &UserTime) == 0) {
4273     return -1;
4274   } else if (user_sys_cpu_time) {
4275     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4276   } else {
4277     return FT2INT64(UserTime) * 100;
4278   }
4279 }
4280 
4281 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4282   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4283   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4284   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4285   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4286 }
4287 
4288 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4289   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4290   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4291   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4292   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4293 }
4294 
4295 bool os::is_thread_cpu_time_supported() {
4296   // see os::thread_cpu_time
4297   FILETIME CreationTime;
4298   FILETIME ExitTime;
4299   FILETIME KernelTime;
4300   FILETIME UserTime;
4301 
4302   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4303                       &KernelTime, &UserTime) == 0) {
4304     return false;
4305   } else {
4306     return true;
4307   }
4308 }
4309 
4310 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4311 // It does have primitives (PDH API) to get CPU usage and run queue length.
4312 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4313 // If we wanted to implement loadavg on Windows, we have a few options:
4314 //
4315 // a) Query CPU usage and run queue length and "fake" an answer by
4316 //    returning the CPU usage if it's under 100%, and the run queue
4317 //    length otherwise.  It turns out that querying is pretty slow
4318 //    on Windows, on the order of 200 microseconds on a fast machine.
4319 //    Note that on the Windows the CPU usage value is the % usage
4320 //    since the last time the API was called (and the first call
4321 //    returns 100%), so we'd have to deal with that as well.
4322 //
4323 // b) Sample the "fake" answer using a sampling thread and store
4324 //    the answer in a global variable.  The call to loadavg would
4325 //    just return the value of the global, avoiding the slow query.
4326 //
4327 // c) Sample a better answer using exponential decay to smooth the
4328 //    value.  This is basically the algorithm used by UNIX kernels.
4329 //
4330 // Note that sampling thread starvation could affect both (b) and (c).
4331 int os::loadavg(double loadavg[], int nelem) {
4332   return -1;
4333 }
4334 
4335 
4336 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4337 bool os::dont_yield() {
4338   return DontYieldALot;
4339 }
4340 
4341 // This method is a slightly reworked copy of JDK's sysOpen
4342 // from src/windows/hpi/src/sys_api_md.c
4343 
4344 int os::open(const char *path, int oflag, int mode) {
4345   char* pathbuf = (char*)os::strdup(path, mtInternal);
4346   if (pathbuf == NULL) {
4347     errno = ENOMEM;
4348     return -1;
4349   }
4350   os::native_path(pathbuf);
4351   int ret;
4352   if (strlen(path) < MAX_PATH) {
4353     ret = ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4354   } else {
4355     errno_t err = ERROR_SUCCESS;
4356     wchar_t* wpath = create_unc_path(pathbuf, err);
4357     if (err != ERROR_SUCCESS) {
4358       if (wpath != NULL) {
4359         destroy_unc_path(wpath);
4360       }
4361       os::free(pathbuf);
4362       errno = err;
4363       return -1;
4364     }
4365     ret = ::_wopen(wpath, oflag | O_BINARY | O_NOINHERIT, mode);
4366     if (ret == -1) {
4367       errno = ::GetLastError();
4368     }
4369     destroy_unc_path(wpath);
4370   }
4371   os::free(pathbuf);
4372   return ret;
4373 }
4374 
4375 FILE* os::open(int fd, const char* mode) {
4376   return ::_fdopen(fd, mode);
4377 }
4378 
4379 // Is a (classpath) directory empty?
4380 bool os::dir_is_empty(const char* path) {
4381   char* search_path = (char*)os::malloc(strlen(path) + 3, mtInternal);
4382   if (search_path == NULL) {
4383     errno = ENOMEM;
4384     return false;
4385   }
4386   strcpy(search_path, path);
4387   os::native_path(search_path);
4388   // Append "*", or possibly "\\*", to path
4389   if (search_path[1] == ':' &&
4390        (search_path[2] == '\0' ||
4391          (search_path[2] == '\\' && search_path[3] == '\0'))) {
4392     // No '\\' needed for cases like "Z:" or "Z:\"
4393     strcat(search_path, "*");
4394   }
4395   else {
4396     strcat(search_path, "\\*");
4397   }
4398   errno_t err = ERROR_SUCCESS;
4399   wchar_t* wpath = create_unc_path(search_path, err);
4400   if (err != ERROR_SUCCESS) {
4401     if (wpath != NULL) {
4402       destroy_unc_path(wpath);
4403     }
4404     os::free(search_path);
4405     errno = err;
4406     return false;
4407   }
4408   WIN32_FIND_DATAW fd;
4409   HANDLE f = ::FindFirstFileW(wpath, &fd);
4410   destroy_unc_path(wpath);
4411   bool is_empty = true;
4412   if (f != INVALID_HANDLE_VALUE) {
4413     while (is_empty && ::FindNextFileW(f, &fd)) {
4414       // An empty directory contains only the current directory file
4415       // and the previous directory file.
4416       if ((wcscmp(fd.cFileName, L".") != 0) &&
4417           (wcscmp(fd.cFileName, L"..") != 0)) {
4418         is_empty = false;
4419       }
4420     }
4421     FindClose(f);
4422   }
4423   os::free(search_path);
4424   return is_empty;
4425 }
4426 
4427 // create binary file, rewriting existing file if required
4428 int os::create_binary_file(const char* path, bool rewrite_existing) {
4429   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4430   if (!rewrite_existing) {
4431     oflags |= _O_EXCL;
4432   }
4433   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4434 }
4435 
4436 // return current position of file pointer
4437 jlong os::current_file_offset(int fd) {
4438   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4439 }
4440 
4441 // move file pointer to the specified offset
4442 jlong os::seek_to_file_offset(int fd, jlong offset) {
4443   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4444 }
4445 
4446 
4447 jlong os::lseek(int fd, jlong offset, int whence) {
4448   return (jlong) ::_lseeki64(fd, offset, whence);
4449 }
4450 
4451 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4452   OVERLAPPED ov;
4453   DWORD nread;
4454   BOOL result;
4455 
4456   ZeroMemory(&ov, sizeof(ov));
4457   ov.Offset = (DWORD)offset;
4458   ov.OffsetHigh = (DWORD)(offset >> 32);
4459 
4460   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4461 
4462   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4463 
4464   return result ? nread : 0;
4465 }
4466 
4467 
4468 // This method is a slightly reworked copy of JDK's sysNativePath
4469 // from src/windows/hpi/src/path_md.c
4470 
4471 // Convert a pathname to native format.  On win32, this involves forcing all
4472 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4473 // sometimes rejects '/') and removing redundant separators.  The input path is
4474 // assumed to have been converted into the character encoding used by the local
4475 // system.  Because this might be a double-byte encoding, care is taken to
4476 // treat double-byte lead characters correctly.
4477 //
4478 // This procedure modifies the given path in place, as the result is never
4479 // longer than the original.  There is no error return; this operation always
4480 // succeeds.
4481 char * os::native_path(char *path) {
4482   char *src = path, *dst = path, *end = path;
4483   char *colon = NULL;  // If a drive specifier is found, this will
4484                        // point to the colon following the drive letter
4485 
4486   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4487   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4488           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4489 
4490   // Check for leading separators
4491 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4492   while (isfilesep(*src)) {
4493     src++;
4494   }
4495 
4496   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4497     // Remove leading separators if followed by drive specifier.  This
4498     // hack is necessary to support file URLs containing drive
4499     // specifiers (e.g., "file://c:/path").  As a side effect,
4500     // "/c:/path" can be used as an alternative to "c:/path".
4501     *dst++ = *src++;
4502     colon = dst;
4503     *dst++ = ':';
4504     src++;
4505   } else {
4506     src = path;
4507     if (isfilesep(src[0]) && isfilesep(src[1])) {
4508       // UNC pathname: Retain first separator; leave src pointed at
4509       // second separator so that further separators will be collapsed
4510       // into the second separator.  The result will be a pathname
4511       // beginning with "\\\\" followed (most likely) by a host name.
4512       src = dst = path + 1;
4513       path[0] = '\\';     // Force first separator to '\\'
4514     }
4515   }
4516 
4517   end = dst;
4518 
4519   // Remove redundant separators from remainder of path, forcing all
4520   // separators to be '\\' rather than '/'. Also, single byte space
4521   // characters are removed from the end of the path because those
4522   // are not legal ending characters on this operating system.
4523   //
4524   while (*src != '\0') {
4525     if (isfilesep(*src)) {
4526       *dst++ = '\\'; src++;
4527       while (isfilesep(*src)) src++;
4528       if (*src == '\0') {
4529         // Check for trailing separator
4530         end = dst;
4531         if (colon == dst - 2) break;  // "z:\\"
4532         if (dst == path + 1) break;   // "\\"
4533         if (dst == path + 2 && isfilesep(path[0])) {
4534           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4535           // beginning of a UNC pathname.  Even though it is not, by
4536           // itself, a valid UNC pathname, we leave it as is in order
4537           // to be consistent with the path canonicalizer as well
4538           // as the win32 APIs, which treat this case as an invalid
4539           // UNC pathname rather than as an alias for the root
4540           // directory of the current drive.
4541           break;
4542         }
4543         end = --dst;  // Path does not denote a root directory, so
4544                       // remove trailing separator
4545         break;
4546       }
4547       end = dst;
4548     } else {
4549       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4550         *dst++ = *src++;
4551         if (*src) *dst++ = *src++;
4552         end = dst;
4553       } else {  // Copy a single-byte character
4554         char c = *src++;
4555         *dst++ = c;
4556         // Space is not a legal ending character
4557         if (c != ' ') end = dst;
4558       }
4559     }
4560   }
4561 
4562   *end = '\0';
4563 
4564   // For "z:", add "." to work around a bug in the C runtime library
4565   if (colon == dst - 1) {
4566     path[2] = '.';
4567     path[3] = '\0';
4568   }
4569 
4570   return path;
4571 }
4572 
4573 // This code is a copy of JDK's sysSetLength
4574 // from src/windows/hpi/src/sys_api_md.c
4575 
4576 int os::ftruncate(int fd, jlong length) {
4577   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4578   long high = (long)(length >> 32);
4579   DWORD ret;
4580 
4581   if (h == (HANDLE)(-1)) {
4582     return -1;
4583   }
4584 
4585   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4586   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4587     return -1;
4588   }
4589 
4590   if (::SetEndOfFile(h) == FALSE) {
4591     return -1;
4592   }
4593 
4594   return 0;
4595 }
4596 
4597 int os::get_fileno(FILE* fp) {
4598   return _fileno(fp);
4599 }
4600 
4601 // This code is a copy of JDK's sysSync
4602 // from src/windows/hpi/src/sys_api_md.c
4603 // except for the legacy workaround for a bug in Win 98
4604 
4605 int os::fsync(int fd) {
4606   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4607 
4608   if ((!::FlushFileBuffers(handle)) &&
4609       (GetLastError() != ERROR_ACCESS_DENIED)) {
4610     // from winerror.h
4611     return -1;
4612   }
4613   return 0;
4614 }
4615 
4616 static int nonSeekAvailable(int, long *);
4617 static int stdinAvailable(int, long *);
4618 
4619 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4620 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4621 
4622 // This code is a copy of JDK's sysAvailable
4623 // from src/windows/hpi/src/sys_api_md.c
4624 
4625 int os::available(int fd, jlong *bytes) {
4626   jlong cur, end;
4627   struct _stati64 stbuf64;
4628 
4629   if (::_fstati64(fd, &stbuf64) >= 0) {
4630     int mode = stbuf64.st_mode;
4631     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4632       int ret;
4633       long lpbytes;
4634       if (fd == 0) {
4635         ret = stdinAvailable(fd, &lpbytes);
4636       } else {
4637         ret = nonSeekAvailable(fd, &lpbytes);
4638       }
4639       (*bytes) = (jlong)(lpbytes);
4640       return ret;
4641     }
4642     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4643       return FALSE;
4644     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4645       return FALSE;
4646     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4647       return FALSE;
4648     }
4649     *bytes = end - cur;
4650     return TRUE;
4651   } else {
4652     return FALSE;
4653   }
4654 }
4655 
4656 void os::flockfile(FILE* fp) {
4657   _lock_file(fp);
4658 }
4659 
4660 void os::funlockfile(FILE* fp) {
4661   _unlock_file(fp);
4662 }
4663 
4664 // This code is a copy of JDK's nonSeekAvailable
4665 // from src/windows/hpi/src/sys_api_md.c
4666 
4667 static int nonSeekAvailable(int fd, long *pbytes) {
4668   // This is used for available on non-seekable devices
4669   // (like both named and anonymous pipes, such as pipes
4670   //  connected to an exec'd process).
4671   // Standard Input is a special case.
4672   HANDLE han;
4673 
4674   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4675     return FALSE;
4676   }
4677 
4678   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4679     // PeekNamedPipe fails when at EOF.  In that case we
4680     // simply make *pbytes = 0 which is consistent with the
4681     // behavior we get on Solaris when an fd is at EOF.
4682     // The only alternative is to raise an Exception,
4683     // which isn't really warranted.
4684     //
4685     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4686       return FALSE;
4687     }
4688     *pbytes = 0;
4689   }
4690   return TRUE;
4691 }
4692 
4693 #define MAX_INPUT_EVENTS 2000
4694 
4695 // This code is a copy of JDK's stdinAvailable
4696 // from src/windows/hpi/src/sys_api_md.c
4697 
4698 static int stdinAvailable(int fd, long *pbytes) {
4699   HANDLE han;
4700   DWORD numEventsRead = 0;  // Number of events read from buffer
4701   DWORD numEvents = 0;      // Number of events in buffer
4702   DWORD i = 0;              // Loop index
4703   DWORD curLength = 0;      // Position marker
4704   DWORD actualLength = 0;   // Number of bytes readable
4705   BOOL error = FALSE;       // Error holder
4706   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4707 
4708   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4709     return FALSE;
4710   }
4711 
4712   // Construct an array of input records in the console buffer
4713   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4714   if (error == 0) {
4715     return nonSeekAvailable(fd, pbytes);
4716   }
4717 
4718   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4719   if (numEvents > MAX_INPUT_EVENTS) {
4720     numEvents = MAX_INPUT_EVENTS;
4721   }
4722 
4723   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4724   if (lpBuffer == NULL) {
4725     return FALSE;
4726   }
4727 
4728   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4729   if (error == 0) {
4730     os::free(lpBuffer);
4731     return FALSE;
4732   }
4733 
4734   // Examine input records for the number of bytes available
4735   for (i=0; i<numEvents; i++) {
4736     if (lpBuffer[i].EventType == KEY_EVENT) {
4737 
4738       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4739                                       &(lpBuffer[i].Event);
4740       if (keyRecord->bKeyDown == TRUE) {
4741         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4742         curLength++;
4743         if (*keyPressed == '\r') {
4744           actualLength = curLength;
4745         }
4746       }
4747     }
4748   }
4749 
4750   if (lpBuffer != NULL) {
4751     os::free(lpBuffer);
4752   }
4753 
4754   *pbytes = (long) actualLength;
4755   return TRUE;
4756 }
4757 
4758 // Map a block of memory.
4759 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4760                         char *addr, size_t bytes, bool read_only,
4761                         bool allow_exec) {
4762   HANDLE hFile;
4763   char* base;
4764 
4765   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4766                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4767   if (hFile == NULL) {
4768     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4769     return NULL;
4770   }
4771 
4772   if (allow_exec) {
4773     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4774     // unless it comes from a PE image (which the shared archive is not.)
4775     // Even VirtualProtect refuses to give execute access to mapped memory
4776     // that was not previously executable.
4777     //
4778     // Instead, stick the executable region in anonymous memory.  Yuck.
4779     // Penalty is that ~4 pages will not be shareable - in the future
4780     // we might consider DLLizing the shared archive with a proper PE
4781     // header so that mapping executable + sharing is possible.
4782 
4783     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4784                                 PAGE_READWRITE);
4785     if (base == NULL) {
4786       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4787       CloseHandle(hFile);
4788       return NULL;
4789     }
4790 
4791     DWORD bytes_read;
4792     OVERLAPPED overlapped;
4793     overlapped.Offset = (DWORD)file_offset;
4794     overlapped.OffsetHigh = 0;
4795     overlapped.hEvent = NULL;
4796     // ReadFile guarantees that if the return value is true, the requested
4797     // number of bytes were read before returning.
4798     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4799     if (!res) {
4800       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
4801       release_memory(base, bytes);
4802       CloseHandle(hFile);
4803       return NULL;
4804     }
4805   } else {
4806     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4807                                     NULL /* file_name */);
4808     if (hMap == NULL) {
4809       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
4810       CloseHandle(hFile);
4811       return NULL;
4812     }
4813 
4814     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4815     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4816                                   (DWORD)bytes, addr);
4817     if (base == NULL) {
4818       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
4819       CloseHandle(hMap);
4820       CloseHandle(hFile);
4821       return NULL;
4822     }
4823 
4824     if (CloseHandle(hMap) == 0) {
4825       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
4826       CloseHandle(hFile);
4827       return base;
4828     }
4829   }
4830 
4831   if (allow_exec) {
4832     DWORD old_protect;
4833     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4834     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4835 
4836     if (!res) {
4837       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
4838       // Don't consider this a hard error, on IA32 even if the
4839       // VirtualProtect fails, we should still be able to execute
4840       CloseHandle(hFile);
4841       return base;
4842     }
4843   }
4844 
4845   if (CloseHandle(hFile) == 0) {
4846     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
4847     return base;
4848   }
4849 
4850   return base;
4851 }
4852 
4853 
4854 // Remap a block of memory.
4855 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4856                           char *addr, size_t bytes, bool read_only,
4857                           bool allow_exec) {
4858   // This OS does not allow existing memory maps to be remapped so we
4859   // have to unmap the memory before we remap it.
4860   if (!os::unmap_memory(addr, bytes)) {
4861     return NULL;
4862   }
4863 
4864   // There is a very small theoretical window between the unmap_memory()
4865   // call above and the map_memory() call below where a thread in native
4866   // code may be able to access an address that is no longer mapped.
4867 
4868   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4869                         read_only, allow_exec);
4870 }
4871 
4872 
4873 // Unmap a block of memory.
4874 // Returns true=success, otherwise false.
4875 
4876 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4877   MEMORY_BASIC_INFORMATION mem_info;
4878   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4879     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
4880     return false;
4881   }
4882 
4883   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4884   // Instead, executable region was allocated using VirtualAlloc(). See
4885   // pd_map_memory() above.
4886   //
4887   // The following flags should match the 'exec_access' flages used for
4888   // VirtualProtect() in pd_map_memory().
4889   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4890       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4891     return pd_release_memory(addr, bytes);
4892   }
4893 
4894   BOOL result = UnmapViewOfFile(addr);
4895   if (result == 0) {
4896     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
4897     return false;
4898   }
4899   return true;
4900 }
4901 
4902 void os::pause() {
4903   char filename[MAX_PATH];
4904   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4905     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4906   } else {
4907     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4908   }
4909 
4910   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4911   if (fd != -1) {
4912     struct stat buf;
4913     ::close(fd);
4914     while (::stat(filename, &buf) == 0) {
4915       Sleep(100);
4916     }
4917   } else {
4918     jio_fprintf(stderr,
4919                 "Could not open pause file '%s', continuing immediately.\n", filename);
4920   }
4921 }
4922 
4923 Thread* os::ThreadCrashProtection::_protected_thread = NULL;
4924 os::ThreadCrashProtection* os::ThreadCrashProtection::_crash_protection = NULL;
4925 volatile intptr_t os::ThreadCrashProtection::_crash_mux = 0;
4926 
4927 os::ThreadCrashProtection::ThreadCrashProtection() {
4928 }
4929 
4930 // See the caveats for this class in os_windows.hpp
4931 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4932 // into this method and returns false. If no OS EXCEPTION was raised, returns
4933 // true.
4934 // The callback is supposed to provide the method that should be protected.
4935 //
4936 bool os::ThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4937 
4938   Thread::muxAcquire(&_crash_mux, "CrashProtection");
4939 
4940   _protected_thread = Thread::current_or_null();
4941   assert(_protected_thread != NULL, "Cannot crash protect a NULL thread");
4942 
4943   bool success = true;
4944   __try {
4945     _crash_protection = this;
4946     cb.call();
4947   } __except(EXCEPTION_EXECUTE_HANDLER) {
4948     // only for protection, nothing to do
4949     success = false;
4950   }
4951   _crash_protection = NULL;
4952   _protected_thread = NULL;
4953   Thread::muxRelease(&_crash_mux);
4954   return success;
4955 }
4956 
4957 // An Event wraps a win32 "CreateEvent" kernel handle.
4958 //
4959 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4960 //
4961 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4962 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4963 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4964 //     In addition, an unpark() operation might fetch the handle field, but the
4965 //     event could recycle between the fetch and the SetEvent() operation.
4966 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4967 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4968 //     on an stale but recycled handle would be harmless, but in practice this might
4969 //     confuse other non-Sun code, so it's not a viable approach.
4970 //
4971 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4972 //     with the Event.  The event handle is never closed.  This could be construed
4973 //     as handle leakage, but only up to the maximum # of threads that have been extant
4974 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4975 //     permit a process to have hundreds of thousands of open handles.
4976 //
4977 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4978 //     and release unused handles.
4979 //
4980 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4981 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4982 //
4983 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4984 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4985 //
4986 // We use (2).
4987 //
4988 // TODO-FIXME:
4989 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4990 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4991 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4992 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4993 //     into a single win32 CreateEvent() handle.
4994 //
4995 // Assumption:
4996 //    Only one parker can exist on an event, which is why we allocate
4997 //    them per-thread. Multiple unparkers can coexist.
4998 //
4999 // _Event transitions in park()
5000 //   -1 => -1 : illegal
5001 //    1 =>  0 : pass - return immediately
5002 //    0 => -1 : block; then set _Event to 0 before returning
5003 //
5004 // _Event transitions in unpark()
5005 //    0 => 1 : just return
5006 //    1 => 1 : just return
5007 //   -1 => either 0 or 1; must signal target thread
5008 //         That is, we can safely transition _Event from -1 to either
5009 //         0 or 1.
5010 //
5011 // _Event serves as a restricted-range semaphore.
5012 //   -1 : thread is blocked, i.e. there is a waiter
5013 //    0 : neutral: thread is running or ready,
5014 //        could have been signaled after a wait started
5015 //    1 : signaled - thread is running or ready
5016 //
5017 // Another possible encoding of _Event would be with
5018 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5019 //
5020 
5021 int os::PlatformEvent::park(jlong Millis) {
5022   // Transitions for _Event:
5023   //   -1 => -1 : illegal
5024   //    1 =>  0 : pass - return immediately
5025   //    0 => -1 : block; then set _Event to 0 before returning
5026 
5027   guarantee(_ParkHandle != NULL , "Invariant");
5028   guarantee(Millis > 0          , "Invariant");
5029 
5030   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5031   // the initial park() operation.
5032   // Consider: use atomic decrement instead of CAS-loop
5033 
5034   int v;
5035   for (;;) {
5036     v = _Event;
5037     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5038   }
5039   guarantee((v == 0) || (v == 1), "invariant");
5040   if (v != 0) return OS_OK;
5041 
5042   // Do this the hard way by blocking ...
5043   // TODO: consider a brief spin here, gated on the success of recent
5044   // spin attempts by this thread.
5045   //
5046   // We decompose long timeouts into series of shorter timed waits.
5047   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5048   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5049   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5050   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5051   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5052   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5053   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5054   // for the already waited time.  This policy does not admit any new outcomes.
5055   // In the future, however, we might want to track the accumulated wait time and
5056   // adjust Millis accordingly if we encounter a spurious wakeup.
5057 
5058   const int MAXTIMEOUT = 0x10000000;
5059   DWORD rv = WAIT_TIMEOUT;
5060   while (_Event < 0 && Millis > 0) {
5061     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5062     if (Millis > MAXTIMEOUT) {
5063       prd = MAXTIMEOUT;
5064     }
5065     rv = ::WaitForSingleObject(_ParkHandle, prd);
5066     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5067     if (rv == WAIT_TIMEOUT) {
5068       Millis -= prd;
5069     }
5070   }
5071   v = _Event;
5072   _Event = 0;
5073   // see comment at end of os::PlatformEvent::park() below:
5074   OrderAccess::fence();
5075   // If we encounter a nearly simultanous timeout expiry and unpark()
5076   // we return OS_OK indicating we awoke via unpark().
5077   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5078   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5079 }
5080 
5081 void os::PlatformEvent::park() {
5082   // Transitions for _Event:
5083   //   -1 => -1 : illegal
5084   //    1 =>  0 : pass - return immediately
5085   //    0 => -1 : block; then set _Event to 0 before returning
5086 
5087   guarantee(_ParkHandle != NULL, "Invariant");
5088   // Invariant: Only the thread associated with the Event/PlatformEvent
5089   // may call park().
5090   // Consider: use atomic decrement instead of CAS-loop
5091   int v;
5092   for (;;) {
5093     v = _Event;
5094     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5095   }
5096   guarantee((v == 0) || (v == 1), "invariant");
5097   if (v != 0) return;
5098 
5099   // Do this the hard way by blocking ...
5100   // TODO: consider a brief spin here, gated on the success of recent
5101   // spin attempts by this thread.
5102   while (_Event < 0) {
5103     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5104     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5105   }
5106 
5107   // Usually we'll find _Event == 0 at this point, but as
5108   // an optional optimization we clear it, just in case can
5109   // multiple unpark() operations drove _Event up to 1.
5110   _Event = 0;
5111   OrderAccess::fence();
5112   guarantee(_Event >= 0, "invariant");
5113 }
5114 
5115 void os::PlatformEvent::unpark() {
5116   guarantee(_ParkHandle != NULL, "Invariant");
5117 
5118   // Transitions for _Event:
5119   //    0 => 1 : just return
5120   //    1 => 1 : just return
5121   //   -1 => either 0 or 1; must signal target thread
5122   //         That is, we can safely transition _Event from -1 to either
5123   //         0 or 1.
5124   // See also: "Semaphores in Plan 9" by Mullender & Cox
5125   //
5126   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5127   // that it will take two back-to-back park() calls for the owning
5128   // thread to block. This has the benefit of forcing a spurious return
5129   // from the first park() call after an unpark() call which will help
5130   // shake out uses of park() and unpark() without condition variables.
5131 
5132   if (Atomic::xchg(1, &_Event) >= 0) return;
5133 
5134   ::SetEvent(_ParkHandle);
5135 }
5136 
5137 
5138 // JSR166
5139 // -------------------------------------------------------
5140 
5141 // The Windows implementation of Park is very straightforward: Basic
5142 // operations on Win32 Events turn out to have the right semantics to
5143 // use them directly. We opportunistically resuse the event inherited
5144 // from Monitor.
5145 
5146 void Parker::park(bool isAbsolute, jlong time) {
5147   guarantee(_ParkEvent != NULL, "invariant");
5148   // First, demultiplex/decode time arguments
5149   if (time < 0) { // don't wait
5150     return;
5151   } else if (time == 0 && !isAbsolute) {
5152     time = INFINITE;
5153   } else if (isAbsolute) {
5154     time -= os::javaTimeMillis(); // convert to relative time
5155     if (time <= 0) {  // already elapsed
5156       return;
5157     }
5158   } else { // relative
5159     time /= 1000000;  // Must coarsen from nanos to millis
5160     if (time == 0) {  // Wait for the minimal time unit if zero
5161       time = 1;
5162     }
5163   }
5164 
5165   JavaThread* thread = JavaThread::current();
5166 
5167   // Don't wait if interrupted or already triggered
5168   if (Thread::is_interrupted(thread, false) ||
5169       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5170     ResetEvent(_ParkEvent);
5171     return;
5172   } else {
5173     ThreadBlockInVM tbivm(thread);
5174     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5175     thread->set_suspend_equivalent();
5176 
5177     WaitForSingleObject(_ParkEvent, time);
5178     ResetEvent(_ParkEvent);
5179 
5180     // If externally suspended while waiting, re-suspend
5181     if (thread->handle_special_suspend_equivalent_condition()) {
5182       thread->java_suspend_self();
5183     }
5184   }
5185 }
5186 
5187 void Parker::unpark() {
5188   guarantee(_ParkEvent != NULL, "invariant");
5189   SetEvent(_ParkEvent);
5190 }
5191 
5192 // Run the specified command in a separate process. Return its exit value,
5193 // or -1 on failure (e.g. can't create a new process).
5194 int os::fork_and_exec(char* cmd) {
5195   STARTUPINFO si;
5196   PROCESS_INFORMATION pi;
5197   DWORD exit_code;
5198 
5199   char * cmd_string;
5200   char * cmd_prefix = "cmd /C ";
5201   size_t len = strlen(cmd) + strlen(cmd_prefix) + 1;
5202   cmd_string = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtInternal);
5203   if (cmd_string == NULL) {
5204     return -1;
5205   }
5206   cmd_string[0] = '\0';
5207   strcat(cmd_string, cmd_prefix);
5208   strcat(cmd_string, cmd);
5209 
5210   // now replace all '\n' with '&'
5211   char * substring = cmd_string;
5212   while ((substring = strchr(substring, '\n')) != NULL) {
5213     substring[0] = '&';
5214     substring++;
5215   }
5216   memset(&si, 0, sizeof(si));
5217   si.cb = sizeof(si);
5218   memset(&pi, 0, sizeof(pi));
5219   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5220                             cmd_string,    // command line
5221                             NULL,   // process security attribute
5222                             NULL,   // thread security attribute
5223                             TRUE,   // inherits system handles
5224                             0,      // no creation flags
5225                             NULL,   // use parent's environment block
5226                             NULL,   // use parent's starting directory
5227                             &si,    // (in) startup information
5228                             &pi);   // (out) process information
5229 
5230   if (rslt) {
5231     // Wait until child process exits.
5232     WaitForSingleObject(pi.hProcess, INFINITE);
5233 
5234     GetExitCodeProcess(pi.hProcess, &exit_code);
5235 
5236     // Close process and thread handles.
5237     CloseHandle(pi.hProcess);
5238     CloseHandle(pi.hThread);
5239   } else {
5240     exit_code = -1;
5241   }
5242 
5243   FREE_C_HEAP_ARRAY(char, cmd_string);
5244   return (int)exit_code;
5245 }
5246 
5247 bool os::find(address addr, outputStream* st) {
5248   int offset = -1;
5249   bool result = false;
5250   char buf[256];
5251   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5252     st->print(PTR_FORMAT " ", addr);
5253     if (strlen(buf) < sizeof(buf) - 1) {
5254       char* p = strrchr(buf, '\\');
5255       if (p) {
5256         st->print("%s", p + 1);
5257       } else {
5258         st->print("%s", buf);
5259       }
5260     } else {
5261         // The library name is probably truncated. Let's omit the library name.
5262         // See also JDK-8147512.
5263     }
5264     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5265       st->print("::%s + 0x%x", buf, offset);
5266     }
5267     st->cr();
5268     result = true;
5269   }
5270   return result;
5271 }
5272 
5273 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5274   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5275 
5276   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5277     JavaThread* thread = JavaThread::current();
5278     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5279     address addr = (address) exceptionRecord->ExceptionInformation[1];
5280 
5281     if (os::is_memory_serialize_page(thread, addr)) {
5282       return EXCEPTION_CONTINUE_EXECUTION;
5283     }
5284   }
5285 
5286   return EXCEPTION_CONTINUE_SEARCH;
5287 }
5288 
5289 static jint initSock() {
5290   WSADATA wsadata;
5291 
5292   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5293     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5294                 ::GetLastError());
5295     return JNI_ERR;
5296   }
5297   return JNI_OK;
5298 }
5299 
5300 struct hostent* os::get_host_by_name(char* name) {
5301   return (struct hostent*)gethostbyname(name);
5302 }
5303 
5304 int os::socket_close(int fd) {
5305   return ::closesocket(fd);
5306 }
5307 
5308 int os::socket(int domain, int type, int protocol) {
5309   return ::socket(domain, type, protocol);
5310 }
5311 
5312 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5313   return ::connect(fd, him, len);
5314 }
5315 
5316 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5317   return ::recv(fd, buf, (int)nBytes, flags);
5318 }
5319 
5320 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5321   return ::send(fd, buf, (int)nBytes, flags);
5322 }
5323 
5324 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5325   return ::send(fd, buf, (int)nBytes, flags);
5326 }
5327 
5328 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5329 #if defined(IA32)
5330   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5331 #elif defined (AMD64)
5332   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5333 #endif
5334 
5335 // returns true if thread could be suspended,
5336 // false otherwise
5337 static bool do_suspend(HANDLE* h) {
5338   if (h != NULL) {
5339     if (SuspendThread(*h) != ~0) {
5340       return true;
5341     }
5342   }
5343   return false;
5344 }
5345 
5346 // resume the thread
5347 // calling resume on an active thread is a no-op
5348 static void do_resume(HANDLE* h) {
5349   if (h != NULL) {
5350     ResumeThread(*h);
5351   }
5352 }
5353 
5354 // retrieve a suspend/resume context capable handle
5355 // from the tid. Caller validates handle return value.
5356 void get_thread_handle_for_extended_context(HANDLE* h,
5357                                             OSThread::thread_id_t tid) {
5358   if (h != NULL) {
5359     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5360   }
5361 }
5362 
5363 // Thread sampling implementation
5364 //
5365 void os::SuspendedThreadTask::internal_do_task() {
5366   CONTEXT    ctxt;
5367   HANDLE     h = NULL;
5368 
5369   // get context capable handle for thread
5370   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5371 
5372   // sanity
5373   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5374     return;
5375   }
5376 
5377   // suspend the thread
5378   if (do_suspend(&h)) {
5379     ctxt.ContextFlags = sampling_context_flags;
5380     // get thread context
5381     GetThreadContext(h, &ctxt);
5382     SuspendedThreadTaskContext context(_thread, &ctxt);
5383     // pass context to Thread Sampling impl
5384     do_task(context);
5385     // resume thread
5386     do_resume(&h);
5387   }
5388 
5389   // close handle
5390   CloseHandle(h);
5391 }
5392 
5393 bool os::start_debugging(char *buf, int buflen) {
5394   int len = (int)strlen(buf);
5395   char *p = &buf[len];
5396 
5397   jio_snprintf(p, buflen-len,
5398              "\n\n"
5399              "Do you want to debug the problem?\n\n"
5400              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5401              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5402              "Otherwise, select 'No' to abort...",
5403              os::current_process_id(), os::current_thread_id());
5404 
5405   bool yes = os::message_box("Unexpected Error", buf);
5406 
5407   if (yes) {
5408     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5409     // exception. If VM is running inside a debugger, the debugger will
5410     // catch the exception. Otherwise, the breakpoint exception will reach
5411     // the default windows exception handler, which can spawn a debugger and
5412     // automatically attach to the dying VM.
5413     os::breakpoint();
5414     yes = false;
5415   }
5416   return yes;
5417 }
5418 
5419 void* os::get_default_process_handle() {
5420   return (void*)GetModuleHandle(NULL);
5421 }
5422 
5423 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5424 // which is used to find statically linked in agents.
5425 // Additionally for windows, takes into account __stdcall names.
5426 // Parameters:
5427 //            sym_name: Symbol in library we are looking for
5428 //            lib_name: Name of library to look in, NULL for shared libs.
5429 //            is_absolute_path == true if lib_name is absolute path to agent
5430 //                                     such as "C:/a/b/L.dll"
5431 //            == false if only the base name of the library is passed in
5432 //               such as "L"
5433 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5434                                     bool is_absolute_path) {
5435   char *agent_entry_name;
5436   size_t len;
5437   size_t name_len;
5438   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5439   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5440   const char *start;
5441 
5442   if (lib_name != NULL) {
5443     len = name_len = strlen(lib_name);
5444     if (is_absolute_path) {
5445       // Need to strip path, prefix and suffix
5446       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5447         lib_name = ++start;
5448       } else {
5449         // Need to check for drive prefix
5450         if ((start = strchr(lib_name, ':')) != NULL) {
5451           lib_name = ++start;
5452         }
5453       }
5454       if (len <= (prefix_len + suffix_len)) {
5455         return NULL;
5456       }
5457       lib_name += prefix_len;
5458       name_len = strlen(lib_name) - suffix_len;
5459     }
5460   }
5461   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5462   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5463   if (agent_entry_name == NULL) {
5464     return NULL;
5465   }
5466   if (lib_name != NULL) {
5467     const char *p = strrchr(sym_name, '@');
5468     if (p != NULL && p != sym_name) {
5469       // sym_name == _Agent_OnLoad@XX
5470       strncpy(agent_entry_name, sym_name, (p - sym_name));
5471       agent_entry_name[(p-sym_name)] = '\0';
5472       // agent_entry_name == _Agent_OnLoad
5473       strcat(agent_entry_name, "_");
5474       strncat(agent_entry_name, lib_name, name_len);
5475       strcat(agent_entry_name, p);
5476       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5477     } else {
5478       strcpy(agent_entry_name, sym_name);
5479       strcat(agent_entry_name, "_");
5480       strncat(agent_entry_name, lib_name, name_len);
5481     }
5482   } else {
5483     strcpy(agent_entry_name, sym_name);
5484   }
5485   return agent_entry_name;
5486 }
5487 
5488 #ifndef PRODUCT
5489 
5490 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5491 // contiguous memory block at a particular address.
5492 // The test first tries to find a good approximate address to allocate at by using the same
5493 // method to allocate some memory at any address. The test then tries to allocate memory in
5494 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5495 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5496 // the previously allocated memory is available for allocation. The only actual failure
5497 // that is reported is when the test tries to allocate at a particular location but gets a
5498 // different valid one. A NULL return value at this point is not considered an error but may
5499 // be legitimate.
5500 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5501 void TestReserveMemorySpecial_test() {
5502   if (!UseLargePages) {
5503     if (VerboseInternalVMTests) {
5504       tty->print("Skipping test because large pages are disabled");
5505     }
5506     return;
5507   }
5508   // save current value of globals
5509   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5510   bool old_use_numa_interleaving = UseNUMAInterleaving;
5511 
5512   // set globals to make sure we hit the correct code path
5513   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5514 
5515   // do an allocation at an address selected by the OS to get a good one.
5516   const size_t large_allocation_size = os::large_page_size() * 4;
5517   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5518   if (result == NULL) {
5519     if (VerboseInternalVMTests) {
5520       tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5521                           large_allocation_size);
5522     }
5523   } else {
5524     os::release_memory_special(result, large_allocation_size);
5525 
5526     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5527     // we managed to get it once.
5528     const size_t expected_allocation_size = os::large_page_size();
5529     char* expected_location = result + os::large_page_size();
5530     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5531     if (actual_location == NULL) {
5532       if (VerboseInternalVMTests) {
5533         tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5534                             expected_location, large_allocation_size);
5535       }
5536     } else {
5537       // release memory
5538       os::release_memory_special(actual_location, expected_allocation_size);
5539       // only now check, after releasing any memory to avoid any leaks.
5540       assert(actual_location == expected_location,
5541              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5542              expected_location, expected_allocation_size, actual_location);
5543     }
5544   }
5545 
5546   // restore globals
5547   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5548   UseNUMAInterleaving = old_use_numa_interleaving;
5549 }
5550 #endif // PRODUCT
5551 
5552 /*
5553   All the defined signal names for Windows.
5554 
5555   NOTE that not all of these names are accepted by FindSignal!
5556 
5557   For various reasons some of these may be rejected at runtime.
5558 
5559   Here are the names currently accepted by a user of sun.misc.Signal with
5560   1.4.1 (ignoring potential interaction with use of chaining, etc):
5561 
5562      (LIST TBD)
5563 
5564 */
5565 int os::get_signal_number(const char* name) {
5566   static const struct {
5567     char* name;
5568     int   number;
5569   } siglabels [] =
5570     // derived from version 6.0 VC98/include/signal.h
5571   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5572   "FPE",        SIGFPE,         // floating point exception
5573   "SEGV",       SIGSEGV,        // segment violation
5574   "INT",        SIGINT,         // interrupt
5575   "TERM",       SIGTERM,        // software term signal from kill
5576   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5577   "ILL",        SIGILL};        // illegal instruction
5578   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5579     if (strcmp(name, siglabels[i].name) == 0) {
5580       return siglabels[i].number;
5581     }
5582   }
5583   return -1;
5584 }
5585 
5586 // Fast current thread access
5587 
5588 int os::win32::_thread_ptr_offset = 0;
5589 
5590 static void call_wrapper_dummy() {}
5591 
5592 // We need to call the os_exception_wrapper once so that it sets
5593 // up the offset from FS of the thread pointer.
5594 void os::win32::initialize_thread_ptr_offset() {
5595   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5596                            NULL, NULL, NULL, NULL);
5597 }