1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/iterator.hpp"
  51 #include "memory/metaspaceShared.hpp"
  52 #include "memory/oopFactory.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "memory/universe.hpp"
  55 #include "oops/access.inline.hpp"
  56 #include "oops/instanceKlass.hpp"
  57 #include "oops/objArrayOop.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "oops/symbol.hpp"
  60 #include "oops/typeArrayOop.inline.hpp"
  61 #include "oops/verifyOopClosure.hpp"
  62 #include "prims/jvm_misc.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "prims/jvmtiThreadState.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/biasedLocking.hpp"
  68 #include "runtime/fieldDescriptor.inline.hpp"
  69 #include "runtime/flags/jvmFlagConstraintList.hpp"
  70 #include "runtime/flags/jvmFlagRangeList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/serviceThread.hpp"
  91 #include "runtime/sharedRuntime.hpp"
  92 #include "runtime/statSampler.hpp"
  93 #include "runtime/stubRoutines.hpp"
  94 #include "runtime/sweeper.hpp"
  95 #include "runtime/task.hpp"
  96 #include "runtime/thread.inline.hpp"
  97 #include "runtime/threadCritical.hpp"
  98 #include "runtime/threadSMR.inline.hpp"
  99 #include "runtime/threadStatisticalInfo.hpp"
 100 #include "runtime/timer.hpp"
 101 #include "runtime/timerTrace.hpp"
 102 #include "runtime/vframe.inline.hpp"
 103 #include "runtime/vframeArray.hpp"
 104 #include "runtime/vframe_hp.hpp"
 105 #include "runtime/vmThread.hpp"
 106 #include "runtime/vmOperations.hpp"
 107 #include "runtime/vm_version.hpp"
 108 #include "services/attachListener.hpp"
 109 #include "services/management.hpp"
 110 #include "services/memTracker.hpp"
 111 #include "services/threadService.hpp"
 112 #include "utilities/align.hpp"
 113 #include "utilities/copy.hpp"
 114 #include "utilities/defaultStream.hpp"
 115 #include "utilities/dtrace.hpp"
 116 #include "utilities/events.hpp"
 117 #include "utilities/macros.hpp"
 118 #include "utilities/preserveException.hpp"
 119 #include "utilities/singleWriterSynchronizer.hpp"
 120 #include "utilities/vmError.hpp"
 121 #if INCLUDE_JVMCI
 122 #include "jvmci/jvmci.hpp"
 123 #include "jvmci/jvmciEnv.hpp"
 124 #endif
 125 #ifdef COMPILER1
 126 #include "c1/c1_Compiler.hpp"
 127 #endif
 128 #ifdef COMPILER2
 129 #include "opto/c2compiler.hpp"
 130 #include "opto/idealGraphPrinter.hpp"
 131 #endif
 132 #if INCLUDE_RTM_OPT
 133 #include "runtime/rtmLocking.hpp"
 134 #endif
 135 #if INCLUDE_JFR
 136 #include "jfr/jfr.hpp"
 137 #endif
 138 
 139 // Initialization after module runtime initialization
 140 void universe_post_module_init();  // must happen after call_initPhase2
 141 
 142 #ifdef DTRACE_ENABLED
 143 
 144 // Only bother with this argument setup if dtrace is available
 145 
 146   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 147   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 148 
 149   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 150     {                                                                      \
 151       ResourceMark rm(this);                                               \
 152       int len = 0;                                                         \
 153       const char* name = (javathread)->get_thread_name();                  \
 154       len = strlen(name);                                                  \
 155       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 156         (char *) name, len,                                                \
 157         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 158         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 159         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 160     }
 161 
 162 #else //  ndef DTRACE_ENABLED
 163 
 164   #define DTRACE_THREAD_PROBE(probe, javathread)
 165 
 166 #endif // ndef DTRACE_ENABLED
 167 
 168 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 169 // Current thread is maintained as a thread-local variable
 170 THREAD_LOCAL Thread* Thread::_thr_current = NULL;
 171 #endif
 172 
 173 // ======= Thread ========
 174 // Support for forcing alignment of thread objects for biased locking
 175 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 176   if (UseBiasedLocking) {
 177     const size_t alignment = markWord::biased_lock_alignment;
 178     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 179     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 180                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 181                                                          AllocFailStrategy::RETURN_NULL);
 182     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 183     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 184            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 185            "JavaThread alignment code overflowed allocated storage");
 186     if (aligned_addr != real_malloc_addr) {
 187       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 188                               p2i(real_malloc_addr),
 189                               p2i(aligned_addr));
 190     }
 191     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 192     return aligned_addr;
 193   } else {
 194     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 195                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 196   }
 197 }
 198 
 199 void Thread::operator delete(void* p) {
 200   if (UseBiasedLocking) {
 201     FreeHeap(((Thread*) p)->_real_malloc_address);
 202   } else {
 203     FreeHeap(p);
 204   }
 205 }
 206 
 207 void JavaThread::smr_delete() {
 208   if (_on_thread_list) {
 209     ThreadsSMRSupport::smr_delete(this);
 210   } else {
 211     delete this;
 212   }
 213 }
 214 
 215 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 216 // JavaThread
 217 
 218 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 219 
 220 Thread::Thread() {
 221 
 222   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 223 
 224   // stack and get_thread
 225   set_stack_base(NULL);
 226   set_stack_size(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // Initial value of zero ==> never claimed.
 242   _threads_do_token = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   NOT_PRODUCT(_no_safepoint_count = 0;)
 254   NOT_PRODUCT(_skip_gcalot = false;)
 255   _jvmti_env_iteration_count = 0;
 256   set_allocated_bytes(0);
 257   _vm_operation_started_count = 0;
 258   _vm_operation_completed_count = 0;
 259   _current_pending_monitor = NULL;
 260   _current_pending_monitor_is_from_java = true;
 261   _current_waiting_monitor = NULL;
 262   _current_pending_raw_monitor = NULL;
 263   _num_nested_signal = 0;
 264   om_free_list = NULL;
 265   om_free_count = 0;
 266   om_free_provision = 32;
 267   om_in_use_list = NULL;
 268   om_in_use_count = 0;
 269 
 270 #ifdef ASSERT
 271   _visited_for_critical_count = false;
 272 #endif
 273 
 274   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 275                          Monitor::_safepoint_check_sometimes);
 276   _suspend_flags = 0;
 277 
 278   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 279   _hashStateX = os::random();
 280   _hashStateY = 842502087;
 281   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 282   _hashStateW = 273326509;
 283 
 284   _OnTrap   = 0;
 285   _Stalled  = 0;
 286   _TypeTag  = 0x2BAD;
 287 
 288   // Many of the following fields are effectively final - immutable
 289   // Note that nascent threads can't use the Native Monitor-Mutex
 290   // construct until the _MutexEvent is initialized ...
 291   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 292   // we might instead use a stack of ParkEvents that we could provision on-demand.
 293   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 294   // and ::Release()
 295   _ParkEvent   = ParkEvent::Allocate(this);
 296   _MuxEvent    = ParkEvent::Allocate(this);
 297 
 298 #ifdef CHECK_UNHANDLED_OOPS
 299   if (CheckUnhandledOops) {
 300     _unhandled_oops = new UnhandledOops(this);
 301   }
 302 #endif // CHECK_UNHANDLED_OOPS
 303 #ifdef ASSERT
 304   if (UseBiasedLocking) {
 305     assert(is_aligned(this, markWord::biased_lock_alignment), "forced alignment of thread object failed");
 306     assert(this == _real_malloc_address ||
 307            this == align_up(_real_malloc_address, markWord::biased_lock_alignment),
 308            "bug in forced alignment of thread objects");
 309   }
 310 #endif // ASSERT
 311 
 312   // Notify the barrier set that a thread is being created. The initial
 313   // thread is created before the barrier set is available.  The call to
 314   // BarrierSet::on_thread_create() for this thread is therefore deferred
 315   // to BarrierSet::set_barrier_set().
 316   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 317   if (barrier_set != NULL) {
 318     barrier_set->on_thread_create(this);
 319   } else {
 320     // Only the main thread should be created before the barrier set
 321     // and that happens just before Thread::current is set. No other thread
 322     // can attach as the VM is not created yet, so they can't execute this code.
 323     // If the main thread creates other threads before the barrier set that is an error.
 324     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 325   }
 326 }
 327 
 328 void Thread::initialize_thread_current() {
 329 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 330   assert(_thr_current == NULL, "Thread::current already initialized");
 331   _thr_current = this;
 332 #endif
 333   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 334   ThreadLocalStorage::set_thread(this);
 335   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 336 }
 337 
 338 void Thread::clear_thread_current() {
 339   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 340 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 341   _thr_current = NULL;
 342 #endif
 343   ThreadLocalStorage::set_thread(NULL);
 344 }
 345 
 346 void Thread::record_stack_base_and_size() {
 347   // Note: at this point, Thread object is not yet initialized. Do not rely on
 348   // any members being initialized. Do not rely on Thread::current() being set.
 349   // If possible, refrain from doing anything which may crash or assert since
 350   // quite probably those crash dumps will be useless.
 351   set_stack_base(os::current_stack_base());
 352   set_stack_size(os::current_stack_size());
 353 
 354 #ifdef SOLARIS
 355   if (os::is_primordial_thread()) {
 356     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 357   }
 358 #endif
 359 
 360   // Set stack limits after thread is initialized.
 361   if (is_Java_thread()) {
 362     ((JavaThread*) this)->set_stack_overflow_limit();
 363     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 364   }
 365 }
 366 
 367 #if INCLUDE_NMT
 368 void Thread::register_thread_stack_with_NMT() {
 369   MemTracker::record_thread_stack(stack_end(), stack_size());
 370 }
 371 #endif // INCLUDE_NMT
 372 
 373 void Thread::call_run() {
 374   DEBUG_ONLY(_run_state = CALL_RUN;)
 375 
 376   // At this point, Thread object should be fully initialized and
 377   // Thread::current() should be set.
 378 
 379   assert(Thread::current_or_null() != NULL, "current thread is unset");
 380   assert(Thread::current_or_null() == this, "current thread is wrong");
 381 
 382   // Perform common initialization actions
 383 
 384   register_thread_stack_with_NMT();
 385 
 386   JFR_ONLY(Jfr::on_thread_start(this);)
 387 
 388   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 389     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 390     os::current_thread_id(), p2i(stack_end()),
 391     p2i(stack_base()), stack_size()/1024);
 392 
 393   // Perform <ChildClass> initialization actions
 394   DEBUG_ONLY(_run_state = PRE_RUN;)
 395   this->pre_run();
 396 
 397   // Invoke <ChildClass>::run()
 398   DEBUG_ONLY(_run_state = RUN;)
 399   this->run();
 400   // Returned from <ChildClass>::run(). Thread finished.
 401 
 402   // Perform common tear-down actions
 403 
 404   assert(Thread::current_or_null() != NULL, "current thread is unset");
 405   assert(Thread::current_or_null() == this, "current thread is wrong");
 406 
 407   // Perform <ChildClass> tear-down actions
 408   DEBUG_ONLY(_run_state = POST_RUN;)
 409   this->post_run();
 410 
 411   // Note: at this point the thread object may already have deleted itself,
 412   // so from here on do not dereference *this*. Not all thread types currently
 413   // delete themselves when they terminate. But no thread should ever be deleted
 414   // asynchronously with respect to its termination - that is what _run_state can
 415   // be used to check.
 416 
 417   assert(Thread::current_or_null() == NULL, "current thread still present");
 418 }
 419 
 420 Thread::~Thread() {
 421 
 422   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 423   // get started due to errors etc. Any active thread should at least reach post_run
 424   // before it is deleted (usually in post_run()).
 425   assert(_run_state == PRE_CALL_RUN ||
 426          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 427          "_run_state=%d", (int)_run_state);
 428 
 429   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 430   // set might not be available if we encountered errors during bootstrapping.
 431   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 432   if (barrier_set != NULL) {
 433     barrier_set->on_thread_destroy(this);
 434   }
 435 
 436   // stack_base can be NULL if the thread is never started or exited before
 437   // record_stack_base_and_size called. Although, we would like to ensure
 438   // that all started threads do call record_stack_base_and_size(), there is
 439   // not proper way to enforce that.
 440 #if INCLUDE_NMT
 441   if (_stack_base != NULL) {
 442     MemTracker::release_thread_stack(stack_end(), stack_size());
 443 #ifdef ASSERT
 444     set_stack_base(NULL);
 445 #endif
 446   }
 447 #endif // INCLUDE_NMT
 448 
 449   // deallocate data structures
 450   delete resource_area();
 451   // since the handle marks are using the handle area, we have to deallocated the root
 452   // handle mark before deallocating the thread's handle area,
 453   assert(last_handle_mark() != NULL, "check we have an element");
 454   delete last_handle_mark();
 455   assert(last_handle_mark() == NULL, "check we have reached the end");
 456 
 457   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 458   // We NULL out the fields for good hygiene.
 459   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 460   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 461 
 462   delete handle_area();
 463   delete metadata_handles();
 464 
 465   // SR_handler uses this as a termination indicator -
 466   // needs to happen before os::free_thread()
 467   delete _SR_lock;
 468   _SR_lock = NULL;
 469 
 470   // osthread() can be NULL, if creation of thread failed.
 471   if (osthread() != NULL) os::free_thread(osthread());
 472 
 473   // Clear Thread::current if thread is deleting itself and it has not
 474   // already been done. This must be done before the memory is deallocated.
 475   // Needed to ensure JNI correctly detects non-attached threads.
 476   if (this == Thread::current_or_null()) {
 477     Thread::clear_thread_current();
 478   }
 479 
 480   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 481 }
 482 
 483 #ifdef ASSERT
 484 // A JavaThread is considered "dangling" if it is not the current
 485 // thread, has been added the Threads list, the system is not at a
 486 // safepoint and the Thread is not "protected".
 487 //
 488 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 489   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 490          !((JavaThread *) thread)->on_thread_list() ||
 491          SafepointSynchronize::is_at_safepoint() ||
 492          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 493          "possibility of dangling Thread pointer");
 494 }
 495 #endif
 496 
 497 ThreadPriority Thread::get_priority(const Thread* const thread) {
 498   ThreadPriority priority;
 499   // Can return an error!
 500   (void)os::get_priority(thread, priority);
 501   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 502   return priority;
 503 }
 504 
 505 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 506   debug_only(check_for_dangling_thread_pointer(thread);)
 507   // Can return an error!
 508   (void)os::set_priority(thread, priority);
 509 }
 510 
 511 
 512 void Thread::start(Thread* thread) {
 513   // Start is different from resume in that its safety is guaranteed by context or
 514   // being called from a Java method synchronized on the Thread object.
 515   if (!DisableStartThread) {
 516     if (thread->is_Java_thread()) {
 517       // Initialize the thread state to RUNNABLE before starting this thread.
 518       // Can not set it after the thread started because we do not know the
 519       // exact thread state at that time. It could be in MONITOR_WAIT or
 520       // in SLEEPING or some other state.
 521       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 522                                           java_lang_Thread::RUNNABLE);
 523     }
 524     os::start_thread(thread);
 525   }
 526 }
 527 
 528 class InstallAsyncExceptionClosure : public HandshakeClosure {
 529   Handle _throwable; // The Throwable thrown at the target Thread
 530 public:
 531   InstallAsyncExceptionClosure(Handle throwable) : HandshakeClosure("InstallAsyncException"), _throwable(throwable) {}
 532 
 533   void do_thread(Thread* thr) {
 534     JavaThread* target = (JavaThread*)thr;
 535     // Note that this now allows multiple ThreadDeath exceptions to be
 536     // thrown at a thread.
 537     // The target thread has run and has not exited yet.
 538     target->send_thread_stop(_throwable());
 539   }
 540 };
 541 
 542 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 543   Handle throwable(Thread::current(), java_throwable);
 544   JavaThread* target = java_lang_Thread::thread(java_thread);
 545   InstallAsyncExceptionClosure vm_stop(throwable);
 546   Handshake::execute(&vm_stop, target);
 547 }
 548 
 549 
 550 // Check if an external suspend request has completed (or has been
 551 // cancelled). Returns true if the thread is externally suspended and
 552 // false otherwise.
 553 //
 554 // The bits parameter returns information about the code path through
 555 // the routine. Useful for debugging:
 556 //
 557 // set in is_ext_suspend_completed():
 558 // 0x00000001 - routine was entered
 559 // 0x00000010 - routine return false at end
 560 // 0x00000100 - thread exited (return false)
 561 // 0x00000200 - suspend request cancelled (return false)
 562 // 0x00000400 - thread suspended (return true)
 563 // 0x00001000 - thread is in a suspend equivalent state (return true)
 564 // 0x00002000 - thread is native and walkable (return true)
 565 // 0x00004000 - thread is native_trans and walkable (needed retry)
 566 //
 567 // set in wait_for_ext_suspend_completion():
 568 // 0x00010000 - routine was entered
 569 // 0x00020000 - suspend request cancelled before loop (return false)
 570 // 0x00040000 - thread suspended before loop (return true)
 571 // 0x00080000 - suspend request cancelled in loop (return false)
 572 // 0x00100000 - thread suspended in loop (return true)
 573 // 0x00200000 - suspend not completed during retry loop (return false)
 574 
 575 // Helper class for tracing suspend wait debug bits.
 576 //
 577 // 0x00000100 indicates that the target thread exited before it could
 578 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 579 // 0x00080000 each indicate a cancelled suspend request so they don't
 580 // count as wait failures either.
 581 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 582 
 583 class TraceSuspendDebugBits : public StackObj {
 584  private:
 585   JavaThread * jt;
 586   bool         is_wait;
 587   bool         called_by_wait;  // meaningful when !is_wait
 588   uint32_t *   bits;
 589 
 590  public:
 591   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 592                         uint32_t *_bits) {
 593     jt             = _jt;
 594     is_wait        = _is_wait;
 595     called_by_wait = _called_by_wait;
 596     bits           = _bits;
 597   }
 598 
 599   ~TraceSuspendDebugBits() {
 600     if (!is_wait) {
 601 #if 1
 602       // By default, don't trace bits for is_ext_suspend_completed() calls.
 603       // That trace is very chatty.
 604       return;
 605 #else
 606       if (!called_by_wait) {
 607         // If tracing for is_ext_suspend_completed() is enabled, then only
 608         // trace calls to it from wait_for_ext_suspend_completion()
 609         return;
 610       }
 611 #endif
 612     }
 613 
 614     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 615       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 616         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 617         ResourceMark rm;
 618 
 619         tty->print_cr(
 620                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 621                       jt->get_thread_name(), *bits);
 622 
 623         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 624       }
 625     }
 626   }
 627 };
 628 #undef DEBUG_FALSE_BITS
 629 
 630 
 631 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 632                                           uint32_t *bits) {
 633   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 634 
 635   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 636   bool do_trans_retry;           // flag to force the retry
 637 
 638   *bits |= 0x00000001;
 639 
 640   do {
 641     do_trans_retry = false;
 642 
 643     if (is_exiting()) {
 644       // Thread is in the process of exiting. This is always checked
 645       // first to reduce the risk of dereferencing a freed JavaThread.
 646       *bits |= 0x00000100;
 647       return false;
 648     }
 649 
 650     if (!is_external_suspend()) {
 651       // Suspend request is cancelled. This is always checked before
 652       // is_ext_suspended() to reduce the risk of a rogue resume
 653       // confusing the thread that made the suspend request.
 654       *bits |= 0x00000200;
 655       return false;
 656     }
 657 
 658     if (is_ext_suspended()) {
 659       // thread is suspended
 660       *bits |= 0x00000400;
 661       return true;
 662     }
 663 
 664     // Now that we no longer do hard suspends of threads running
 665     // native code, the target thread can be changing thread state
 666     // while we are in this routine:
 667     //
 668     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 669     //
 670     // We save a copy of the thread state as observed at this moment
 671     // and make our decision about suspend completeness based on the
 672     // copy. This closes the race where the thread state is seen as
 673     // _thread_in_native_trans in the if-thread_blocked check, but is
 674     // seen as _thread_blocked in if-thread_in_native_trans check.
 675     JavaThreadState save_state = thread_state();
 676 
 677     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 678       // If the thread's state is _thread_blocked and this blocking
 679       // condition is known to be equivalent to a suspend, then we can
 680       // consider the thread to be externally suspended. This means that
 681       // the code that sets _thread_blocked has been modified to do
 682       // self-suspension if the blocking condition releases. We also
 683       // used to check for CONDVAR_WAIT here, but that is now covered by
 684       // the _thread_blocked with self-suspension check.
 685       //
 686       // Return true since we wouldn't be here unless there was still an
 687       // external suspend request.
 688       *bits |= 0x00001000;
 689       return true;
 690     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 691       // Threads running native code will self-suspend on native==>VM/Java
 692       // transitions. If its stack is walkable (should always be the case
 693       // unless this function is called before the actual java_suspend()
 694       // call), then the wait is done.
 695       *bits |= 0x00002000;
 696       return true;
 697     } else if (!called_by_wait && !did_trans_retry &&
 698                save_state == _thread_in_native_trans &&
 699                frame_anchor()->walkable()) {
 700       // The thread is transitioning from thread_in_native to another
 701       // thread state. check_safepoint_and_suspend_for_native_trans()
 702       // will force the thread to self-suspend. If it hasn't gotten
 703       // there yet we may have caught the thread in-between the native
 704       // code check above and the self-suspend. Lucky us. If we were
 705       // called by wait_for_ext_suspend_completion(), then it
 706       // will be doing the retries so we don't have to.
 707       //
 708       // Since we use the saved thread state in the if-statement above,
 709       // there is a chance that the thread has already transitioned to
 710       // _thread_blocked by the time we get here. In that case, we will
 711       // make a single unnecessary pass through the logic below. This
 712       // doesn't hurt anything since we still do the trans retry.
 713 
 714       *bits |= 0x00004000;
 715 
 716       // Once the thread leaves thread_in_native_trans for another
 717       // thread state, we break out of this retry loop. We shouldn't
 718       // need this flag to prevent us from getting back here, but
 719       // sometimes paranoia is good.
 720       did_trans_retry = true;
 721 
 722       // We wait for the thread to transition to a more usable state.
 723       for (int i = 1; i <= SuspendRetryCount; i++) {
 724         // We used to do an "os::yield_all(i)" call here with the intention
 725         // that yielding would increase on each retry. However, the parameter
 726         // is ignored on Linux which means the yield didn't scale up. Waiting
 727         // on the SR_lock below provides a much more predictable scale up for
 728         // the delay. It also provides a simple/direct point to check for any
 729         // safepoint requests from the VMThread
 730 
 731         // temporarily drops SR_lock while doing wait with safepoint check
 732         // (if we're a JavaThread - the WatcherThread can also call this)
 733         // and increase delay with each retry
 734         if (Thread::current()->is_Java_thread()) {
 735           SR_lock()->wait(i * delay);
 736         } else {
 737           SR_lock()->wait_without_safepoint_check(i * delay);
 738         }
 739 
 740         // check the actual thread state instead of what we saved above
 741         if (thread_state() != _thread_in_native_trans) {
 742           // the thread has transitioned to another thread state so
 743           // try all the checks (except this one) one more time.
 744           do_trans_retry = true;
 745           break;
 746         }
 747       } // end retry loop
 748 
 749 
 750     }
 751   } while (do_trans_retry);
 752 
 753   *bits |= 0x00000010;
 754   return false;
 755 }
 756 
 757 // Wait for an external suspend request to complete (or be cancelled).
 758 // Returns true if the thread is externally suspended and false otherwise.
 759 //
 760 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 761                                                  uint32_t *bits) {
 762   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 763                              false /* !called_by_wait */, bits);
 764 
 765   // local flag copies to minimize SR_lock hold time
 766   bool is_suspended;
 767   bool pending;
 768   uint32_t reset_bits;
 769 
 770   // set a marker so is_ext_suspend_completed() knows we are the caller
 771   *bits |= 0x00010000;
 772 
 773   // We use reset_bits to reinitialize the bits value at the top of
 774   // each retry loop. This allows the caller to make use of any
 775   // unused bits for their own marking purposes.
 776   reset_bits = *bits;
 777 
 778   {
 779     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 780     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 781                                             delay, bits);
 782     pending = is_external_suspend();
 783   }
 784   // must release SR_lock to allow suspension to complete
 785 
 786   if (!pending) {
 787     // A cancelled suspend request is the only false return from
 788     // is_ext_suspend_completed() that keeps us from entering the
 789     // retry loop.
 790     *bits |= 0x00020000;
 791     return false;
 792   }
 793 
 794   if (is_suspended) {
 795     *bits |= 0x00040000;
 796     return true;
 797   }
 798 
 799   for (int i = 1; i <= retries; i++) {
 800     *bits = reset_bits;  // reinit to only track last retry
 801 
 802     // We used to do an "os::yield_all(i)" call here with the intention
 803     // that yielding would increase on each retry. However, the parameter
 804     // is ignored on Linux which means the yield didn't scale up. Waiting
 805     // on the SR_lock below provides a much more predictable scale up for
 806     // the delay. It also provides a simple/direct point to check for any
 807     // safepoint requests from the VMThread
 808 
 809     {
 810       Thread* t = Thread::current();
 811       MonitorLocker ml(SR_lock(),
 812                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 813       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 814       // can also call this)  and increase delay with each retry
 815       ml.wait(i * delay);
 816 
 817       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 818                                               delay, bits);
 819 
 820       // It is possible for the external suspend request to be cancelled
 821       // (by a resume) before the actual suspend operation is completed.
 822       // Refresh our local copy to see if we still need to wait.
 823       pending = is_external_suspend();
 824     }
 825 
 826     if (!pending) {
 827       // A cancelled suspend request is the only false return from
 828       // is_ext_suspend_completed() that keeps us from staying in the
 829       // retry loop.
 830       *bits |= 0x00080000;
 831       return false;
 832     }
 833 
 834     if (is_suspended) {
 835       *bits |= 0x00100000;
 836       return true;
 837     }
 838   } // end retry loop
 839 
 840   // thread did not suspend after all our retries
 841   *bits |= 0x00200000;
 842   return false;
 843 }
 844 
 845 // Called from API entry points which perform stack walking. If the
 846 // associated JavaThread is the current thread, then wait_for_suspend
 847 // is not used. Otherwise, it determines if we should wait for the
 848 // "other" thread to complete external suspension. (NOTE: in future
 849 // releases the suspension mechanism should be reimplemented so this
 850 // is not necessary.)
 851 //
 852 bool
 853 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 854   if (this != JavaThread::current()) {
 855     // "other" threads require special handling.
 856     if (wait_for_suspend) {
 857       // We are allowed to wait for the external suspend to complete
 858       // so give the other thread a chance to get suspended.
 859       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 860                                            SuspendRetryDelay, bits)) {
 861         // Didn't make it so let the caller know.
 862         return false;
 863       }
 864     }
 865     // We aren't allowed to wait for the external suspend to complete
 866     // so if the other thread isn't externally suspended we need to
 867     // let the caller know.
 868     else if (!is_ext_suspend_completed_with_lock(bits)) {
 869       return false;
 870     }
 871   }
 872 
 873   return true;
 874 }
 875 
 876 // GC Support
 877 bool Thread::claim_par_threads_do(uintx claim_token) {
 878   uintx token = _threads_do_token;
 879   if (token != claim_token) {
 880     uintx res = Atomic::cmpxchg(&_threads_do_token, token, claim_token);
 881     if (res == token) {
 882       return true;
 883     }
 884     guarantee(res == claim_token, "invariant");
 885   }
 886   return false;
 887 }
 888 
 889 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 890   active_handles()->oops_do(f);
 891   // Do oop for ThreadShadow
 892   f->do_oop((oop*)&_pending_exception);
 893   handle_area()->oops_do(f);
 894 
 895   // We scan thread local monitor lists here, and the remaining global
 896   // monitors in ObjectSynchronizer::oops_do().
 897   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 898 }
 899 
 900 void Thread::metadata_handles_do(void f(Metadata*)) {
 901   // Only walk the Handles in Thread.
 902   if (metadata_handles() != NULL) {
 903     for (int i = 0; i< metadata_handles()->length(); i++) {
 904       f(metadata_handles()->at(i));
 905     }
 906   }
 907 }
 908 
 909 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 910   // get_priority assumes osthread initialized
 911   if (osthread() != NULL) {
 912     int os_prio;
 913     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 914       st->print("os_prio=%d ", os_prio);
 915     }
 916 
 917     st->print("cpu=%.2fms ",
 918               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 919               );
 920     st->print("elapsed=%.2fs ",
 921               _statistical_info.getElapsedTime() / 1000.0
 922               );
 923     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 924       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 925       st->print("allocated=" SIZE_FORMAT "%s ",
 926                 byte_size_in_proper_unit(allocated_bytes),
 927                 proper_unit_for_byte_size(allocated_bytes)
 928                 );
 929       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 930     }
 931 
 932     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 933     osthread()->print_on(st);
 934   }
 935   ThreadsSMRSupport::print_info_on(this, st);
 936   st->print(" ");
 937   debug_only(if (WizardMode) print_owned_locks_on(st);)
 938 }
 939 
 940 void Thread::print() const { print_on(tty); }
 941 
 942 // Thread::print_on_error() is called by fatal error handler. Don't use
 943 // any lock or allocate memory.
 944 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 945   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 946 
 947   if (is_VM_thread())                 { st->print("VMThread"); }
 948   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 949   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 950   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 951   else                                { st->print("Thread"); }
 952 
 953   if (is_Named_thread()) {
 954     st->print(" \"%s\"", name());
 955   }
 956 
 957   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 958             p2i(stack_end()), p2i(stack_base()));
 959 
 960   if (osthread()) {
 961     st->print(" [id=%d]", osthread()->thread_id());
 962   }
 963 
 964   ThreadsSMRSupport::print_info_on(this, st);
 965 }
 966 
 967 void Thread::print_value_on(outputStream* st) const {
 968   if (is_Named_thread()) {
 969     st->print(" \"%s\" ", name());
 970   }
 971   st->print(INTPTR_FORMAT, p2i(this));   // print address
 972 }
 973 
 974 #ifdef ASSERT
 975 void Thread::print_owned_locks_on(outputStream* st) const {
 976   Mutex* cur = _owned_locks;
 977   if (cur == NULL) {
 978     st->print(" (no locks) ");
 979   } else {
 980     st->print_cr(" Locks owned:");
 981     while (cur) {
 982       cur->print_on(st);
 983       cur = cur->next();
 984     }
 985   }
 986 }
 987 
 988 // Checks safepoint allowed and clears unhandled oops at potential safepoints.
 989 void Thread::check_possible_safepoint() {
 990   if (!is_Java_thread()) return;
 991 
 992   if (_no_safepoint_count > 0) {
 993     print_owned_locks();
 994     fatal("Possible safepoint reached by thread that does not allow it");
 995   }
 996 #ifdef CHECK_UNHANDLED_OOPS
 997   // Clear unhandled oops in JavaThreads so we get a crash right away.
 998   clear_unhandled_oops();
 999 #endif // CHECK_UNHANDLED_OOPS
1000 }
1001 
1002 void Thread::check_for_valid_safepoint_state() {
1003   if (!is_Java_thread()) return;
1004 
1005   // Check NoSafepointVerifier, which is implied by locks taken that can be
1006   // shared with the VM thread.  This makes sure that no locks with allow_vm_block
1007   // are held.
1008   check_possible_safepoint();
1009 
1010   if (((JavaThread*)this)->thread_state() != _thread_in_vm) {
1011     fatal("LEAF method calling lock?");
1012   }
1013 
1014   if (GCALotAtAllSafepoints) {
1015     // We could enter a safepoint here and thus have a gc
1016     InterfaceSupport::check_gc_alot();
1017   }
1018 }
1019 #endif // ASSERT
1020 
1021 // Check for adr in the live portion of our stack.
1022 bool Thread::is_in_stack(address adr) const {
1023   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1024   address end = os::current_stack_pointer();
1025   return (stack_base() > adr && adr >= end);
1026 }
1027 
1028 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1029 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1030 // used for compilation in the future. If that change is made, the need for these methods
1031 // should be revisited, and they should be removed if possible.
1032 
1033 bool Thread::is_lock_owned(address adr) const {
1034   return on_local_stack(adr);
1035 }
1036 
1037 bool Thread::set_as_starting_thread() {
1038   assert(_starting_thread == NULL, "already initialized: "
1039          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1040   // NOTE: this must be called inside the main thread.
1041   DEBUG_ONLY(_starting_thread = this;)
1042   return os::create_main_thread((JavaThread*)this);
1043 }
1044 
1045 static void initialize_class(Symbol* class_name, TRAPS) {
1046   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1047   InstanceKlass::cast(klass)->initialize(CHECK);
1048 }
1049 
1050 
1051 // Creates the initial ThreadGroup
1052 static Handle create_initial_thread_group(TRAPS) {
1053   Handle system_instance = JavaCalls::construct_new_instance(
1054                             SystemDictionary::ThreadGroup_klass(),
1055                             vmSymbols::void_method_signature(),
1056                             CHECK_NH);
1057   Universe::set_system_thread_group(system_instance());
1058 
1059   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1060   Handle main_instance = JavaCalls::construct_new_instance(
1061                             SystemDictionary::ThreadGroup_klass(),
1062                             vmSymbols::threadgroup_string_void_signature(),
1063                             system_instance,
1064                             string,
1065                             CHECK_NH);
1066   return main_instance;
1067 }
1068 
1069 // Creates the initial Thread
1070 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1071                                  TRAPS) {
1072   InstanceKlass* ik = SystemDictionary::Thread_klass();
1073   assert(ik->is_initialized(), "must be");
1074   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1075 
1076   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1077   // constructor calls Thread.current(), which must be set here for the
1078   // initial thread.
1079   java_lang_Thread::set_thread(thread_oop(), thread);
1080   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1081   thread->set_threadObj(thread_oop());
1082 
1083   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1084 
1085   JavaValue result(T_VOID);
1086   JavaCalls::call_special(&result, thread_oop,
1087                           ik,
1088                           vmSymbols::object_initializer_name(),
1089                           vmSymbols::threadgroup_string_void_signature(),
1090                           thread_group,
1091                           string,
1092                           CHECK_NULL);
1093   return thread_oop();
1094 }
1095 
1096 char java_runtime_name[128] = "";
1097 char java_runtime_version[128] = "";
1098 char java_runtime_vendor_version[128] = "";
1099 char java_runtime_vendor_vm_bug_url[128] = "";
1100 
1101 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1102 static const char* get_java_runtime_name(TRAPS) {
1103   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1104                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1105   fieldDescriptor fd;
1106   bool found = k != NULL &&
1107                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1108                                                         vmSymbols::string_signature(), &fd);
1109   if (found) {
1110     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1111     if (name_oop == NULL) {
1112       return NULL;
1113     }
1114     const char* name = java_lang_String::as_utf8_string(name_oop,
1115                                                         java_runtime_name,
1116                                                         sizeof(java_runtime_name));
1117     return name;
1118   } else {
1119     return NULL;
1120   }
1121 }
1122 
1123 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1124 static const char* get_java_runtime_version(TRAPS) {
1125   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1126                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1127   fieldDescriptor fd;
1128   bool found = k != NULL &&
1129                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1130                                                         vmSymbols::string_signature(), &fd);
1131   if (found) {
1132     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1133     if (name_oop == NULL) {
1134       return NULL;
1135     }
1136     const char* name = java_lang_String::as_utf8_string(name_oop,
1137                                                         java_runtime_version,
1138                                                         sizeof(java_runtime_version));
1139     return name;
1140   } else {
1141     return NULL;
1142   }
1143 }
1144 
1145 // extract the JRE vendor version from java.lang.VersionProps.VENDOR_VERSION
1146 static const char* get_java_runtime_vendor_version(TRAPS) {
1147   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1148                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1149   fieldDescriptor fd;
1150   bool found = k != NULL &&
1151                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_version_name(),
1152                                                         vmSymbols::string_signature(), &fd);
1153   if (found) {
1154     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1155     if (name_oop == NULL) {
1156       return NULL;
1157     }
1158     const char* name = java_lang_String::as_utf8_string(name_oop,
1159                                                         java_runtime_vendor_version,
1160                                                         sizeof(java_runtime_vendor_version));
1161     return name;
1162   } else {
1163     return NULL;
1164   }
1165 }
1166 
1167 // extract the JRE vendor VM bug URL from java.lang.VersionProps.VENDOR_URL_VM_BUG
1168 static const char* get_java_runtime_vendor_vm_bug_url(TRAPS) {
1169   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1170                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1171   fieldDescriptor fd;
1172   bool found = k != NULL &&
1173                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_vendor_vm_bug_url_name(),
1174                                                         vmSymbols::string_signature(), &fd);
1175   if (found) {
1176     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1177     if (name_oop == NULL) {
1178       return NULL;
1179     }
1180     const char* name = java_lang_String::as_utf8_string(name_oop,
1181                                                         java_runtime_vendor_vm_bug_url,
1182                                                         sizeof(java_runtime_vendor_vm_bug_url));
1183     return name;
1184   } else {
1185     return NULL;
1186   }
1187 }
1188 
1189 // General purpose hook into Java code, run once when the VM is initialized.
1190 // The Java library method itself may be changed independently from the VM.
1191 static void call_postVMInitHook(TRAPS) {
1192   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1193   if (klass != NULL) {
1194     JavaValue result(T_VOID);
1195     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1196                            vmSymbols::void_method_signature(),
1197                            CHECK);
1198   }
1199 }
1200 
1201 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1202                                     bool daemon, TRAPS) {
1203   assert(thread_group.not_null(), "thread group should be specified");
1204   assert(threadObj() == NULL, "should only create Java thread object once");
1205 
1206   InstanceKlass* ik = SystemDictionary::Thread_klass();
1207   assert(ik->is_initialized(), "must be");
1208   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1209 
1210   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1211   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1212   // constructor calls Thread.current(), which must be set here.
1213   java_lang_Thread::set_thread(thread_oop(), this);
1214   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1215   set_threadObj(thread_oop());
1216 
1217   JavaValue result(T_VOID);
1218   if (thread_name != NULL) {
1219     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1220     // Thread gets assigned specified name and null target
1221     JavaCalls::call_special(&result,
1222                             thread_oop,
1223                             ik,
1224                             vmSymbols::object_initializer_name(),
1225                             vmSymbols::threadgroup_string_void_signature(),
1226                             thread_group,
1227                             name,
1228                             THREAD);
1229   } else {
1230     // Thread gets assigned name "Thread-nnn" and null target
1231     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1232     JavaCalls::call_special(&result,
1233                             thread_oop,
1234                             ik,
1235                             vmSymbols::object_initializer_name(),
1236                             vmSymbols::threadgroup_runnable_void_signature(),
1237                             thread_group,
1238                             Handle(),
1239                             THREAD);
1240   }
1241 
1242 
1243   if (daemon) {
1244     java_lang_Thread::set_daemon(thread_oop());
1245   }
1246 
1247   if (HAS_PENDING_EXCEPTION) {
1248     return;
1249   }
1250 
1251   Klass* group =  SystemDictionary::ThreadGroup_klass();
1252   Handle threadObj(THREAD, this->threadObj());
1253 
1254   JavaCalls::call_special(&result,
1255                           thread_group,
1256                           group,
1257                           vmSymbols::add_method_name(),
1258                           vmSymbols::thread_void_signature(),
1259                           threadObj,          // Arg 1
1260                           THREAD);
1261 }
1262 
1263 // List of all NonJavaThreads and safe iteration over that list.
1264 
1265 class NonJavaThread::List {
1266 public:
1267   NonJavaThread* volatile _head;
1268   SingleWriterSynchronizer _protect;
1269 
1270   List() : _head(NULL), _protect() {}
1271 };
1272 
1273 NonJavaThread::List NonJavaThread::_the_list;
1274 
1275 NonJavaThread::Iterator::Iterator() :
1276   _protect_enter(_the_list._protect.enter()),
1277   _current(Atomic::load_acquire(&_the_list._head))
1278 {}
1279 
1280 NonJavaThread::Iterator::~Iterator() {
1281   _the_list._protect.exit(_protect_enter);
1282 }
1283 
1284 void NonJavaThread::Iterator::step() {
1285   assert(!end(), "precondition");
1286   _current = Atomic::load_acquire(&_current->_next);
1287 }
1288 
1289 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1290   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1291 }
1292 
1293 NonJavaThread::~NonJavaThread() { }
1294 
1295 void NonJavaThread::add_to_the_list() {
1296   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1297   // Initialize BarrierSet-related data before adding to list.
1298   BarrierSet::barrier_set()->on_thread_attach(this);
1299   Atomic::release_store(&_next, _the_list._head);
1300   Atomic::release_store(&_the_list._head, this);
1301 }
1302 
1303 void NonJavaThread::remove_from_the_list() {
1304   {
1305     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1306     // Cleanup BarrierSet-related data before removing from list.
1307     BarrierSet::barrier_set()->on_thread_detach(this);
1308     NonJavaThread* volatile* p = &_the_list._head;
1309     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1310       if (t == this) {
1311         *p = _next;
1312         break;
1313       }
1314     }
1315   }
1316   // Wait for any in-progress iterators.  Concurrent synchronize is not
1317   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1318   // from NJTList_lock in case an iteration attempts to lock it.
1319   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1320   _the_list._protect.synchronize();
1321   _next = NULL;                 // Safe to drop the link now.
1322 }
1323 
1324 void NonJavaThread::pre_run() {
1325   add_to_the_list();
1326 
1327   // This is slightly odd in that NamedThread is a subclass, but
1328   // in fact name() is defined in Thread
1329   assert(this->name() != NULL, "thread name was not set before it was started");
1330   this->set_native_thread_name(this->name());
1331 }
1332 
1333 void NonJavaThread::post_run() {
1334   JFR_ONLY(Jfr::on_thread_exit(this);)
1335   remove_from_the_list();
1336   // Ensure thread-local-storage is cleared before termination.
1337   Thread::clear_thread_current();
1338 }
1339 
1340 // NamedThread --  non-JavaThread subclasses with multiple
1341 // uniquely named instances should derive from this.
1342 NamedThread::NamedThread() :
1343   NonJavaThread(),
1344   _name(NULL),
1345   _processed_thread(NULL),
1346   _gc_id(GCId::undefined())
1347 {}
1348 
1349 NamedThread::~NamedThread() {
1350   FREE_C_HEAP_ARRAY(char, _name);
1351 }
1352 
1353 void NamedThread::set_name(const char* format, ...) {
1354   guarantee(_name == NULL, "Only get to set name once.");
1355   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1356   va_list ap;
1357   va_start(ap, format);
1358   jio_vsnprintf(_name, max_name_len, format, ap);
1359   va_end(ap);
1360 }
1361 
1362 void NamedThread::print_on(outputStream* st) const {
1363   st->print("\"%s\" ", name());
1364   Thread::print_on(st);
1365   st->cr();
1366 }
1367 
1368 
1369 // ======= WatcherThread ========
1370 
1371 // The watcher thread exists to simulate timer interrupts.  It should
1372 // be replaced by an abstraction over whatever native support for
1373 // timer interrupts exists on the platform.
1374 
1375 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1376 bool WatcherThread::_startable = false;
1377 volatile bool  WatcherThread::_should_terminate = false;
1378 
1379 WatcherThread::WatcherThread() : NonJavaThread() {
1380   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1381   if (os::create_thread(this, os::watcher_thread)) {
1382     _watcher_thread = this;
1383 
1384     // Set the watcher thread to the highest OS priority which should not be
1385     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1386     // is created. The only normal thread using this priority is the reference
1387     // handler thread, which runs for very short intervals only.
1388     // If the VMThread's priority is not lower than the WatcherThread profiling
1389     // will be inaccurate.
1390     os::set_priority(this, MaxPriority);
1391     if (!DisableStartThread) {
1392       os::start_thread(this);
1393     }
1394   }
1395 }
1396 
1397 int WatcherThread::sleep() const {
1398   // The WatcherThread does not participate in the safepoint protocol
1399   // for the PeriodicTask_lock because it is not a JavaThread.
1400   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1401 
1402   if (_should_terminate) {
1403     // check for termination before we do any housekeeping or wait
1404     return 0;  // we did not sleep.
1405   }
1406 
1407   // remaining will be zero if there are no tasks,
1408   // causing the WatcherThread to sleep until a task is
1409   // enrolled
1410   int remaining = PeriodicTask::time_to_wait();
1411   int time_slept = 0;
1412 
1413   // we expect this to timeout - we only ever get unparked when
1414   // we should terminate or when a new task has been enrolled
1415   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1416 
1417   jlong time_before_loop = os::javaTimeNanos();
1418 
1419   while (true) {
1420     bool timedout = ml.wait(remaining);
1421     jlong now = os::javaTimeNanos();
1422 
1423     if (remaining == 0) {
1424       // if we didn't have any tasks we could have waited for a long time
1425       // consider the time_slept zero and reset time_before_loop
1426       time_slept = 0;
1427       time_before_loop = now;
1428     } else {
1429       // need to recalculate since we might have new tasks in _tasks
1430       time_slept = (int) ((now - time_before_loop) / 1000000);
1431     }
1432 
1433     // Change to task list or spurious wakeup of some kind
1434     if (timedout || _should_terminate) {
1435       break;
1436     }
1437 
1438     remaining = PeriodicTask::time_to_wait();
1439     if (remaining == 0) {
1440       // Last task was just disenrolled so loop around and wait until
1441       // another task gets enrolled
1442       continue;
1443     }
1444 
1445     remaining -= time_slept;
1446     if (remaining <= 0) {
1447       break;
1448     }
1449   }
1450 
1451   return time_slept;
1452 }
1453 
1454 void WatcherThread::run() {
1455   assert(this == watcher_thread(), "just checking");
1456 
1457   this->set_active_handles(JNIHandleBlock::allocate_block());
1458   while (true) {
1459     assert(watcher_thread() == Thread::current(), "thread consistency check");
1460     assert(watcher_thread() == this, "thread consistency check");
1461 
1462     // Calculate how long it'll be until the next PeriodicTask work
1463     // should be done, and sleep that amount of time.
1464     int time_waited = sleep();
1465 
1466     if (VMError::is_error_reported()) {
1467       // A fatal error has happened, the error handler(VMError::report_and_die)
1468       // should abort JVM after creating an error log file. However in some
1469       // rare cases, the error handler itself might deadlock. Here periodically
1470       // check for error reporting timeouts, and if it happens, just proceed to
1471       // abort the VM.
1472 
1473       // This code is in WatcherThread because WatcherThread wakes up
1474       // periodically so the fatal error handler doesn't need to do anything;
1475       // also because the WatcherThread is less likely to crash than other
1476       // threads.
1477 
1478       for (;;) {
1479         // Note: we use naked sleep in this loop because we want to avoid using
1480         // any kind of VM infrastructure which may be broken at this point.
1481         if (VMError::check_timeout()) {
1482           // We hit error reporting timeout. Error reporting was interrupted and
1483           // will be wrapping things up now (closing files etc). Give it some more
1484           // time, then quit the VM.
1485           os::naked_short_sleep(200);
1486           // Print a message to stderr.
1487           fdStream err(defaultStream::output_fd());
1488           err.print_raw_cr("# [ timer expired, abort... ]");
1489           // skip atexit/vm_exit/vm_abort hooks
1490           os::die();
1491         }
1492 
1493         // Wait a second, then recheck for timeout.
1494         os::naked_short_sleep(999);
1495       }
1496     }
1497 
1498     if (_should_terminate) {
1499       // check for termination before posting the next tick
1500       break;
1501     }
1502 
1503     PeriodicTask::real_time_tick(time_waited);
1504   }
1505 
1506   // Signal that it is terminated
1507   {
1508     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1509     _watcher_thread = NULL;
1510     Terminator_lock->notify_all();
1511   }
1512 }
1513 
1514 void WatcherThread::start() {
1515   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1516 
1517   if (watcher_thread() == NULL && _startable) {
1518     _should_terminate = false;
1519     // Create the single instance of WatcherThread
1520     new WatcherThread();
1521   }
1522 }
1523 
1524 void WatcherThread::make_startable() {
1525   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1526   _startable = true;
1527 }
1528 
1529 void WatcherThread::stop() {
1530   {
1531     // Follow normal safepoint aware lock enter protocol since the
1532     // WatcherThread is stopped by another JavaThread.
1533     MutexLocker ml(PeriodicTask_lock);
1534     _should_terminate = true;
1535 
1536     WatcherThread* watcher = watcher_thread();
1537     if (watcher != NULL) {
1538       // unpark the WatcherThread so it can see that it should terminate
1539       watcher->unpark();
1540     }
1541   }
1542 
1543   MonitorLocker mu(Terminator_lock);
1544 
1545   while (watcher_thread() != NULL) {
1546     // This wait should make safepoint checks, wait without a timeout,
1547     // and wait as a suspend-equivalent condition.
1548     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1549   }
1550 }
1551 
1552 void WatcherThread::unpark() {
1553   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1554   PeriodicTask_lock->notify();
1555 }
1556 
1557 void WatcherThread::print_on(outputStream* st) const {
1558   st->print("\"%s\" ", name());
1559   Thread::print_on(st);
1560   st->cr();
1561 }
1562 
1563 // ======= JavaThread ========
1564 
1565 #if INCLUDE_JVMCI
1566 
1567 jlong* JavaThread::_jvmci_old_thread_counters;
1568 
1569 bool jvmci_counters_include(JavaThread* thread) {
1570   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1571 }
1572 
1573 void JavaThread::collect_counters(jlong* array, int length) {
1574   assert(length == JVMCICounterSize, "wrong value");
1575   for (int i = 0; i < length; i++) {
1576     array[i] = _jvmci_old_thread_counters[i];
1577   }
1578   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1579     if (jvmci_counters_include(tp)) {
1580       for (int i = 0; i < length; i++) {
1581         array[i] += tp->_jvmci_counters[i];
1582       }
1583     }
1584   }
1585 }
1586 
1587 // Attempt to enlarge the array for per thread counters.
1588 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1589   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1590   if (old_counters == NULL) {
1591     old_counters = new_counters;
1592     memset(old_counters, 0, sizeof(jlong) * new_size);
1593   } else {
1594     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1595       new_counters[i] = old_counters[i];
1596     }
1597     if (new_size > current_size) {
1598       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1599     }
1600     FREE_C_HEAP_ARRAY(jlong, old_counters);
1601   }
1602   return new_counters;
1603 }
1604 
1605 // Attempt to enlarge the array for per thread counters.
1606 void JavaThread::resize_counters(int current_size, int new_size) {
1607   _jvmci_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1608 }
1609 
1610 class VM_JVMCIResizeCounters : public VM_Operation {
1611  private:
1612   int _new_size;
1613 
1614  public:
1615   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size) { }
1616   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1617   bool allow_nested_vm_operations() const        { return true; }
1618   void doit() {
1619     // Resize the old thread counters array
1620     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1621     JavaThread::_jvmci_old_thread_counters = new_counters;
1622 
1623     // Now resize each threads array
1624     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1625       tp->resize_counters(JVMCICounterSize, _new_size);
1626     }
1627     JVMCICounterSize = _new_size;
1628   }
1629 };
1630 
1631 void JavaThread::resize_all_jvmci_counters(int new_size) {
1632   VM_JVMCIResizeCounters op(new_size);
1633   VMThread::execute(&op);
1634 }
1635 
1636 #endif // INCLUDE_JVMCI
1637 
1638 // A JavaThread is a normal Java thread
1639 
1640 void JavaThread::initialize() {
1641   // Initialize fields
1642 
1643   set_saved_exception_pc(NULL);
1644   set_threadObj(NULL);
1645   _anchor.clear();
1646   set_entry_point(NULL);
1647   set_jni_functions(jni_functions());
1648   set_callee_target(NULL);
1649   set_vm_result(NULL);
1650   set_vm_result_2(NULL);
1651   set_vframe_array_head(NULL);
1652   set_vframe_array_last(NULL);
1653   set_deferred_locals(NULL);
1654   set_deopt_mark(NULL);
1655   set_deopt_compiled_method(NULL);
1656   set_monitor_chunks(NULL);
1657   _on_thread_list = false;
1658   _thread_state = _thread_new;
1659   _terminated = _not_terminated;
1660   _array_for_gc = NULL;
1661   _suspend_equivalent = false;
1662   _in_deopt_handler = 0;
1663   _doing_unsafe_access = false;
1664   _stack_guard_state = stack_guard_unused;
1665 #if INCLUDE_JVMCI
1666   _pending_monitorenter = false;
1667   _pending_deoptimization = -1;
1668   _pending_failed_speculation = 0;
1669   _pending_transfer_to_interpreter = false;
1670   _in_retryable_allocation = false;
1671   _jvmci._alternate_call_target = NULL;
1672   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1673   _jvmci_counters = NULL;
1674   if (JVMCICounterSize > 0) {
1675     resize_counters(0, (int) JVMCICounterSize);
1676   }
1677 #endif // INCLUDE_JVMCI
1678   _reserved_stack_activation = NULL;  // stack base not known yet
1679   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1680   _exception_pc  = 0;
1681   _exception_handler_pc = 0;
1682   _is_method_handle_return = 0;
1683   _jvmti_thread_state= NULL;
1684   _should_post_on_exceptions_flag = JNI_FALSE;
1685   _interp_only_mode    = 0;
1686   _special_runtime_exit_condition = _no_async_condition;
1687   _pending_async_exception = NULL;
1688   _thread_stat = NULL;
1689   _thread_stat = new ThreadStatistics();
1690   _jni_active_critical = 0;
1691   _pending_jni_exception_check_fn = NULL;
1692   _do_not_unlock_if_synchronized = false;
1693   _cached_monitor_info = NULL;
1694   _parker = Parker::Allocate(this);
1695   _SleepEvent = ParkEvent::Allocate(this);
1696   // Setup safepoint state info for this thread
1697   ThreadSafepointState::create(this);
1698 
1699   debug_only(_java_call_counter = 0);
1700 
1701   // JVMTI PopFrame support
1702   _popframe_condition = popframe_inactive;
1703   _popframe_preserved_args = NULL;
1704   _popframe_preserved_args_size = 0;
1705   _frames_to_pop_failed_realloc = 0;
1706 
1707   if (SafepointMechanism::uses_thread_local_poll()) {
1708     SafepointMechanism::initialize_header(this);
1709   }
1710 
1711   _class_to_be_initialized = NULL;
1712 
1713   pd_initialize();
1714 }
1715 
1716 JavaThread::JavaThread(bool is_attaching_via_jni) :
1717                        Thread() {
1718   initialize();
1719   if (is_attaching_via_jni) {
1720     _jni_attach_state = _attaching_via_jni;
1721   } else {
1722     _jni_attach_state = _not_attaching_via_jni;
1723   }
1724   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1725 }
1726 
1727 
1728 // interrupt support
1729 
1730 void JavaThread::interrupt() {
1731   debug_only(check_for_dangling_thread_pointer(this);)
1732 
1733   // For Windows _interrupt_event
1734   osthread()->set_interrupted(true);
1735 
1736   // For Thread.sleep
1737   _SleepEvent->unpark();
1738 
1739   // For JSR166 LockSupport.park
1740   parker()->unpark();
1741 
1742   // For ObjectMonitor and JvmtiRawMonitor
1743   _ParkEvent->unpark();
1744 }
1745 
1746 
1747 bool JavaThread::is_interrupted(bool clear_interrupted) {
1748   debug_only(check_for_dangling_thread_pointer(this);)
1749 
1750   if (threadObj() == NULL) {
1751     // If there is no j.l.Thread then it is impossible to have
1752     // been interrupted. We can find NULL during VM initialization
1753     // or when a JNI thread is still in the process of attaching.
1754     // In such cases this must be the current thread.
1755     assert(this == Thread::current(), "invariant");
1756     return false;
1757   }
1758 
1759   bool interrupted = java_lang_Thread::interrupted(threadObj());
1760 
1761   // NOTE that since there is no "lock" around the interrupt and
1762   // is_interrupted operations, there is the possibility that the
1763   // interrupted flag will be "false" but that the
1764   // low-level events will be in the signaled state. This is
1765   // intentional. The effect of this is that Object.wait() and
1766   // LockSupport.park() will appear to have a spurious wakeup, which
1767   // is allowed and not harmful, and the possibility is so rare that
1768   // it is not worth the added complexity to add yet another lock.
1769   // For the sleep event an explicit reset is performed on entry
1770   // to JavaThread::sleep, so there is no early return. It has also been
1771   // recommended not to put the interrupted flag into the "event"
1772   // structure because it hides the issue.
1773   // Also, because there is no lock, we must only clear the interrupt
1774   // state if we are going to report that we were interrupted; otherwise
1775   // an interrupt that happens just after we read the field would be lost.
1776   if (interrupted && clear_interrupted) {
1777     assert(this == Thread::current(), "only the current thread can clear");
1778     java_lang_Thread::set_interrupted(threadObj(), false);
1779     osthread()->set_interrupted(false);
1780   }
1781 
1782   return interrupted;
1783 }
1784 
1785 bool JavaThread::reguard_stack(address cur_sp) {
1786   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1787       && _stack_guard_state != stack_guard_reserved_disabled) {
1788     return true; // Stack already guarded or guard pages not needed.
1789   }
1790 
1791   if (register_stack_overflow()) {
1792     // For those architectures which have separate register and
1793     // memory stacks, we must check the register stack to see if
1794     // it has overflowed.
1795     return false;
1796   }
1797 
1798   // Java code never executes within the yellow zone: the latter is only
1799   // there to provoke an exception during stack banging.  If java code
1800   // is executing there, either StackShadowPages should be larger, or
1801   // some exception code in c1, c2 or the interpreter isn't unwinding
1802   // when it should.
1803   guarantee(cur_sp > stack_reserved_zone_base(),
1804             "not enough space to reguard - increase StackShadowPages");
1805   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1806     enable_stack_yellow_reserved_zone();
1807     if (reserved_stack_activation() != stack_base()) {
1808       set_reserved_stack_activation(stack_base());
1809     }
1810   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1811     set_reserved_stack_activation(stack_base());
1812     enable_stack_reserved_zone();
1813   }
1814   return true;
1815 }
1816 
1817 bool JavaThread::reguard_stack(void) {
1818   return reguard_stack(os::current_stack_pointer());
1819 }
1820 
1821 
1822 // Check for adr in the usable portion of this thread's stack.
1823 bool JavaThread::is_in_usable_stack(address adr) const {
1824   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1825   size_t usable_stack_size = _stack_size - stack_guard_size;
1826 
1827   return ((stack_base() > adr) && (adr >= (stack_base() - usable_stack_size)));
1828 }
1829 
1830 void JavaThread::block_if_vm_exited() {
1831   if (_terminated == _vm_exited) {
1832     // _vm_exited is set at safepoint, and Threads_lock is never released
1833     // we will block here forever.
1834     // Here we can be doing a jump from a safe state to an unsafe state without
1835     // proper transition, but it happens after the final safepoint has begun.
1836     set_thread_state(_thread_in_vm);
1837     Threads_lock->lock();
1838     ShouldNotReachHere();
1839   }
1840 }
1841 
1842 
1843 // Remove this ifdef when C1 is ported to the compiler interface.
1844 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1845 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1846 
1847 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1848                        Thread() {
1849   initialize();
1850   _jni_attach_state = _not_attaching_via_jni;
1851   set_entry_point(entry_point);
1852   // Create the native thread itself.
1853   // %note runtime_23
1854   os::ThreadType thr_type = os::java_thread;
1855   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1856                                                      os::java_thread;
1857   os::create_thread(this, thr_type, stack_sz);
1858   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1859   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1860   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1861   // the exception consists of creating the exception object & initializing it, initialization
1862   // will leave the VM via a JavaCall and then all locks must be unlocked).
1863   //
1864   // The thread is still suspended when we reach here. Thread must be explicit started
1865   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1866   // by calling Threads:add. The reason why this is not done here, is because the thread
1867   // object must be fully initialized (take a look at JVM_Start)
1868 }
1869 
1870 JavaThread::~JavaThread() {
1871 
1872   // JSR166 -- return the parker to the free list
1873   Parker::Release(_parker);
1874   _parker = NULL;
1875 
1876   // Return the sleep event to the free list
1877   ParkEvent::Release(_SleepEvent);
1878   _SleepEvent = NULL;
1879 
1880   // Free any remaining  previous UnrollBlock
1881   vframeArray* old_array = vframe_array_last();
1882 
1883   if (old_array != NULL) {
1884     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1885     old_array->set_unroll_block(NULL);
1886     delete old_info;
1887     delete old_array;
1888   }
1889 
1890   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1891   if (deferred != NULL) {
1892     // This can only happen if thread is destroyed before deoptimization occurs.
1893     assert(deferred->length() != 0, "empty array!");
1894     do {
1895       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1896       deferred->remove_at(0);
1897       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1898       delete dlv;
1899     } while (deferred->length() != 0);
1900     delete deferred;
1901   }
1902 
1903   // All Java related clean up happens in exit
1904   ThreadSafepointState::destroy(this);
1905   if (_thread_stat != NULL) delete _thread_stat;
1906 
1907 #if INCLUDE_JVMCI
1908   if (JVMCICounterSize > 0) {
1909     if (jvmci_counters_include(this)) {
1910       for (int i = 0; i < JVMCICounterSize; i++) {
1911         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1912       }
1913     }
1914     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1915   }
1916 #endif // INCLUDE_JVMCI
1917 }
1918 
1919 
1920 // First JavaThread specific code executed by a new Java thread.
1921 void JavaThread::pre_run() {
1922   // empty - see comments in run()
1923 }
1924 
1925 // The main routine called by a new Java thread. This isn't overridden
1926 // by subclasses, instead different subclasses define a different "entry_point"
1927 // which defines the actual logic for that kind of thread.
1928 void JavaThread::run() {
1929   // initialize thread-local alloc buffer related fields
1930   this->initialize_tlab();
1931 
1932   // Used to test validity of stack trace backs.
1933   // This can't be moved into pre_run() else we invalidate
1934   // the requirement that thread_main_inner is lower on
1935   // the stack. Consequently all the initialization logic
1936   // stays here in run() rather than pre_run().
1937   this->record_base_of_stack_pointer();
1938 
1939   this->create_stack_guard_pages();
1940 
1941   this->cache_global_variables();
1942 
1943   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1944   // in the VM. Change thread state from _thread_new to _thread_in_vm
1945   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1946   // Before a thread is on the threads list it is always safe, so after leaving the
1947   // _thread_new we should emit a instruction barrier. The distance to modified code
1948   // from here is probably far enough, but this is consistent and safe.
1949   OrderAccess::cross_modify_fence();
1950 
1951   assert(JavaThread::current() == this, "sanity check");
1952   assert(!Thread::current()->owns_locks(), "sanity check");
1953 
1954   DTRACE_THREAD_PROBE(start, this);
1955 
1956   // This operation might block. We call that after all safepoint checks for a new thread has
1957   // been completed.
1958   this->set_active_handles(JNIHandleBlock::allocate_block());
1959 
1960   if (JvmtiExport::should_post_thread_life()) {
1961     JvmtiExport::post_thread_start(this);
1962 
1963   }
1964 
1965   // We call another function to do the rest so we are sure that the stack addresses used
1966   // from there will be lower than the stack base just computed.
1967   thread_main_inner();
1968 }
1969 
1970 void JavaThread::thread_main_inner() {
1971   assert(JavaThread::current() == this, "sanity check");
1972   assert(this->threadObj() != NULL, "just checking");
1973 
1974   // Execute thread entry point unless this thread has a pending exception
1975   // or has been stopped before starting.
1976   // Note: Due to JVM_StopThread we can have pending exceptions already!
1977   if (!this->has_pending_exception() &&
1978       !java_lang_Thread::is_stillborn(this->threadObj())) {
1979     {
1980       ResourceMark rm(this);
1981       this->set_native_thread_name(this->get_thread_name());
1982     }
1983     HandleMark hm(this);
1984     this->entry_point()(this, this);
1985   }
1986 
1987   DTRACE_THREAD_PROBE(stop, this);
1988 
1989   // Cleanup is handled in post_run()
1990 }
1991 
1992 // Shared teardown for all JavaThreads
1993 void JavaThread::post_run() {
1994   this->exit(false);
1995   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1996   // for any shared tear-down.
1997   this->smr_delete();
1998 }
1999 
2000 static void ensure_join(JavaThread* thread) {
2001   // We do not need to grab the Threads_lock, since we are operating on ourself.
2002   Handle threadObj(thread, thread->threadObj());
2003   assert(threadObj.not_null(), "java thread object must exist");
2004   ObjectLocker lock(threadObj, thread);
2005   // Ignore pending exception (ThreadDeath), since we are exiting anyway
2006   thread->clear_pending_exception();
2007   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
2008   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
2009   // Clear the native thread instance - this makes isAlive return false and allows the join()
2010   // to complete once we've done the notify_all below
2011   java_lang_Thread::set_thread(threadObj(), NULL);
2012   lock.notify_all(thread);
2013   // Ignore pending exception (ThreadDeath), since we are exiting anyway
2014   thread->clear_pending_exception();
2015 }
2016 
2017 static bool is_daemon(oop threadObj) {
2018   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
2019 }
2020 
2021 // For any new cleanup additions, please check to see if they need to be applied to
2022 // cleanup_failed_attach_current_thread as well.
2023 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
2024   assert(this == JavaThread::current(), "thread consistency check");
2025 
2026   elapsedTimer _timer_exit_phase1;
2027   elapsedTimer _timer_exit_phase2;
2028   elapsedTimer _timer_exit_phase3;
2029   elapsedTimer _timer_exit_phase4;
2030 
2031   if (log_is_enabled(Debug, os, thread, timer)) {
2032     _timer_exit_phase1.start();
2033   }
2034 
2035   HandleMark hm(this);
2036   Handle uncaught_exception(this, this->pending_exception());
2037   this->clear_pending_exception();
2038   Handle threadObj(this, this->threadObj());
2039   assert(threadObj.not_null(), "Java thread object should be created");
2040 
2041   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
2042   {
2043     EXCEPTION_MARK;
2044 
2045     CLEAR_PENDING_EXCEPTION;
2046   }
2047   if (!destroy_vm) {
2048     if (uncaught_exception.not_null()) {
2049       EXCEPTION_MARK;
2050       // Call method Thread.dispatchUncaughtException().
2051       Klass* thread_klass = SystemDictionary::Thread_klass();
2052       JavaValue result(T_VOID);
2053       JavaCalls::call_virtual(&result,
2054                               threadObj, thread_klass,
2055                               vmSymbols::dispatchUncaughtException_name(),
2056                               vmSymbols::throwable_void_signature(),
2057                               uncaught_exception,
2058                               THREAD);
2059       if (HAS_PENDING_EXCEPTION) {
2060         ResourceMark rm(this);
2061         jio_fprintf(defaultStream::error_stream(),
2062                     "\nException: %s thrown from the UncaughtExceptionHandler"
2063                     " in thread \"%s\"\n",
2064                     pending_exception()->klass()->external_name(),
2065                     get_thread_name());
2066         CLEAR_PENDING_EXCEPTION;
2067       }
2068     }
2069     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
2070 
2071     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2072     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2073     // is deprecated anyhow.
2074     if (!is_Compiler_thread()) {
2075       int count = 3;
2076       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2077         EXCEPTION_MARK;
2078         JavaValue result(T_VOID);
2079         Klass* thread_klass = SystemDictionary::Thread_klass();
2080         JavaCalls::call_virtual(&result,
2081                                 threadObj, thread_klass,
2082                                 vmSymbols::exit_method_name(),
2083                                 vmSymbols::void_method_signature(),
2084                                 THREAD);
2085         CLEAR_PENDING_EXCEPTION;
2086       }
2087     }
2088     // notify JVMTI
2089     if (JvmtiExport::should_post_thread_life()) {
2090       JvmtiExport::post_thread_end(this);
2091     }
2092 
2093     // We have notified the agents that we are exiting, before we go on,
2094     // we must check for a pending external suspend request and honor it
2095     // in order to not surprise the thread that made the suspend request.
2096     while (true) {
2097       {
2098         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2099         if (!is_external_suspend()) {
2100           set_terminated(_thread_exiting);
2101           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2102           break;
2103         }
2104         // Implied else:
2105         // Things get a little tricky here. We have a pending external
2106         // suspend request, but we are holding the SR_lock so we
2107         // can't just self-suspend. So we temporarily drop the lock
2108         // and then self-suspend.
2109       }
2110 
2111       ThreadBlockInVM tbivm(this);
2112       java_suspend_self();
2113 
2114       // We're done with this suspend request, but we have to loop around
2115       // and check again. Eventually we will get SR_lock without a pending
2116       // external suspend request and will be able to mark ourselves as
2117       // exiting.
2118     }
2119     // no more external suspends are allowed at this point
2120   } else {
2121     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2122     // before_exit() has already posted JVMTI THREAD_END events
2123   }
2124 
2125   if (log_is_enabled(Debug, os, thread, timer)) {
2126     _timer_exit_phase1.stop();
2127     _timer_exit_phase2.start();
2128   }
2129 
2130   // Capture daemon status before the thread is marked as terminated.
2131   bool daemon = is_daemon(threadObj());
2132 
2133   // Notify waiters on thread object. This has to be done after exit() is called
2134   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2135   // group should have the destroyed bit set before waiters are notified).
2136   ensure_join(this);
2137   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2138 
2139   if (log_is_enabled(Debug, os, thread, timer)) {
2140     _timer_exit_phase2.stop();
2141     _timer_exit_phase3.start();
2142   }
2143   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2144   // held by this thread must be released. The spec does not distinguish
2145   // between JNI-acquired and regular Java monitors. We can only see
2146   // regular Java monitors here if monitor enter-exit matching is broken.
2147   //
2148   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2149   // ObjectSynchronizer::release_monitors_owned_by_thread().
2150   if (exit_type == jni_detach) {
2151     // Sanity check even though JNI DetachCurrentThread() would have
2152     // returned JNI_ERR if there was a Java frame. JavaThread exit
2153     // should be done executing Java code by the time we get here.
2154     assert(!this->has_last_Java_frame(),
2155            "should not have a Java frame when detaching or exiting");
2156     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2157     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2158   }
2159 
2160   // These things needs to be done while we are still a Java Thread. Make sure that thread
2161   // is in a consistent state, in case GC happens
2162   JFR_ONLY(Jfr::on_thread_exit(this);)
2163 
2164   if (active_handles() != NULL) {
2165     JNIHandleBlock* block = active_handles();
2166     set_active_handles(NULL);
2167     JNIHandleBlock::release_block(block);
2168   }
2169 
2170   if (free_handle_block() != NULL) {
2171     JNIHandleBlock* block = free_handle_block();
2172     set_free_handle_block(NULL);
2173     JNIHandleBlock::release_block(block);
2174   }
2175 
2176   // These have to be removed while this is still a valid thread.
2177   remove_stack_guard_pages();
2178 
2179   if (UseTLAB) {
2180     tlab().retire();
2181   }
2182 
2183   if (JvmtiEnv::environments_might_exist()) {
2184     JvmtiExport::cleanup_thread(this);
2185   }
2186 
2187   // We must flush any deferred card marks and other various GC barrier
2188   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2189   // before removing a thread from the list of active threads.
2190   BarrierSet::barrier_set()->on_thread_detach(this);
2191 
2192   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2193     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2194     os::current_thread_id());
2195 
2196   if (log_is_enabled(Debug, os, thread, timer)) {
2197     _timer_exit_phase3.stop();
2198     _timer_exit_phase4.start();
2199   }
2200   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2201   Threads::remove(this, daemon);
2202 
2203   if (log_is_enabled(Debug, os, thread, timer)) {
2204     _timer_exit_phase4.stop();
2205     ResourceMark rm(this);
2206     log_debug(os, thread, timer)("name='%s'"
2207                                  ", exit-phase1=" JLONG_FORMAT
2208                                  ", exit-phase2=" JLONG_FORMAT
2209                                  ", exit-phase3=" JLONG_FORMAT
2210                                  ", exit-phase4=" JLONG_FORMAT,
2211                                  get_thread_name(),
2212                                  _timer_exit_phase1.milliseconds(),
2213                                  _timer_exit_phase2.milliseconds(),
2214                                  _timer_exit_phase3.milliseconds(),
2215                                  _timer_exit_phase4.milliseconds());
2216   }
2217 }
2218 
2219 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2220   if (active_handles() != NULL) {
2221     JNIHandleBlock* block = active_handles();
2222     set_active_handles(NULL);
2223     JNIHandleBlock::release_block(block);
2224   }
2225 
2226   if (free_handle_block() != NULL) {
2227     JNIHandleBlock* block = free_handle_block();
2228     set_free_handle_block(NULL);
2229     JNIHandleBlock::release_block(block);
2230   }
2231 
2232   // These have to be removed while this is still a valid thread.
2233   remove_stack_guard_pages();
2234 
2235   if (UseTLAB) {
2236     tlab().retire();
2237   }
2238 
2239   BarrierSet::barrier_set()->on_thread_detach(this);
2240 
2241   Threads::remove(this, is_daemon);
2242   this->smr_delete();
2243 }
2244 
2245 JavaThread* JavaThread::active() {
2246   Thread* thread = Thread::current();
2247   if (thread->is_Java_thread()) {
2248     return (JavaThread*) thread;
2249   } else {
2250     assert(thread->is_VM_thread(), "this must be a vm thread");
2251     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2252     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2253     assert(ret->is_Java_thread(), "must be a Java thread");
2254     return ret;
2255   }
2256 }
2257 
2258 bool JavaThread::is_lock_owned(address adr) const {
2259   if (Thread::is_lock_owned(adr)) return true;
2260 
2261   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2262     if (chunk->contains(adr)) return true;
2263   }
2264 
2265   return false;
2266 }
2267 
2268 
2269 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2270   chunk->set_next(monitor_chunks());
2271   set_monitor_chunks(chunk);
2272 }
2273 
2274 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2275   guarantee(monitor_chunks() != NULL, "must be non empty");
2276   if (monitor_chunks() == chunk) {
2277     set_monitor_chunks(chunk->next());
2278   } else {
2279     MonitorChunk* prev = monitor_chunks();
2280     while (prev->next() != chunk) prev = prev->next();
2281     prev->set_next(chunk->next());
2282   }
2283 }
2284 
2285 // JVM support.
2286 
2287 // Note: this function shouldn't block if it's called in
2288 // _thread_in_native_trans state (such as from
2289 // check_special_condition_for_native_trans()).
2290 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2291 
2292   if (has_last_Java_frame() && has_async_condition()) {
2293     // If we are at a polling page safepoint (not a poll return)
2294     // then we must defer async exception because live registers
2295     // will be clobbered by the exception path. Poll return is
2296     // ok because the call we a returning from already collides
2297     // with exception handling registers and so there is no issue.
2298     // (The exception handling path kills call result registers but
2299     //  this is ok since the exception kills the result anyway).
2300 
2301     if (is_at_poll_safepoint()) {
2302       // if the code we are returning to has deoptimized we must defer
2303       // the exception otherwise live registers get clobbered on the
2304       // exception path before deoptimization is able to retrieve them.
2305       //
2306       RegisterMap map(this, false);
2307       frame caller_fr = last_frame().sender(&map);
2308       assert(caller_fr.is_compiled_frame(), "what?");
2309       if (caller_fr.is_deoptimized_frame()) {
2310         log_info(exceptions)("deferred async exception at compiled safepoint");
2311         return;
2312       }
2313     }
2314   }
2315 
2316   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2317   if (condition == _no_async_condition) {
2318     // Conditions have changed since has_special_runtime_exit_condition()
2319     // was called:
2320     // - if we were here only because of an external suspend request,
2321     //   then that was taken care of above (or cancelled) so we are done
2322     // - if we were here because of another async request, then it has
2323     //   been cleared between the has_special_runtime_exit_condition()
2324     //   and now so again we are done
2325     return;
2326   }
2327 
2328   // Check for pending async. exception
2329   if (_pending_async_exception != NULL) {
2330     // Only overwrite an already pending exception, if it is not a threadDeath.
2331     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2332 
2333       // We cannot call Exceptions::_throw(...) here because we cannot block
2334       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2335 
2336       LogTarget(Info, exceptions) lt;
2337       if (lt.is_enabled()) {
2338         ResourceMark rm;
2339         LogStream ls(lt);
2340         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2341           if (has_last_Java_frame()) {
2342             frame f = last_frame();
2343            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2344           }
2345         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2346       }
2347       _pending_async_exception = NULL;
2348       clear_has_async_exception();
2349     }
2350   }
2351 
2352   if (check_unsafe_error &&
2353       condition == _async_unsafe_access_error && !has_pending_exception()) {
2354     condition = _no_async_condition;  // done
2355     switch (thread_state()) {
2356     case _thread_in_vm: {
2357       JavaThread* THREAD = this;
2358       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2359     }
2360     case _thread_in_native: {
2361       ThreadInVMfromNative tiv(this);
2362       JavaThread* THREAD = this;
2363       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2364     }
2365     case _thread_in_Java: {
2366       ThreadInVMfromJava tiv(this);
2367       JavaThread* THREAD = this;
2368       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2369     }
2370     default:
2371       ShouldNotReachHere();
2372     }
2373   }
2374 
2375   assert(condition == _no_async_condition || has_pending_exception() ||
2376          (!check_unsafe_error && condition == _async_unsafe_access_error),
2377          "must have handled the async condition, if no exception");
2378 }
2379 
2380 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2381 
2382   // Check for pending external suspend.
2383   if (is_external_suspend_with_lock()) {
2384     frame_anchor()->make_walkable(this);
2385     java_suspend_self_with_safepoint_check();
2386   }
2387 
2388   // We might be here for reasons in addition to the self-suspend request
2389   // so check for other async requests.
2390   if (check_asyncs) {
2391     check_and_handle_async_exceptions();
2392   }
2393 
2394   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2395 }
2396 
2397 void JavaThread::send_thread_stop(oop java_throwable)  {
2398   ResourceMark rm;
2399   assert(Thread::current()->is_VM_thread() || Thread::current() == this, "should be in the vm thread");
2400 
2401   // Do not throw asynchronous exceptions against the compiler thread
2402   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2403   if (!can_call_java()) return;
2404 
2405   {
2406     // Actually throw the Throwable against the target Thread - however
2407     // only if there is no thread death exception installed already.
2408     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2409       // If the topmost frame is a runtime stub, then we are calling into
2410       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2411       // must deoptimize the caller before continuing, as the compiled  exception handler table
2412       // may not be valid
2413       if (has_last_Java_frame()) {
2414         frame f = last_frame();
2415         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2416           RegisterMap reg_map(this, false);
2417           frame compiled_frame = f.sender(&reg_map);
2418           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2419             Deoptimization::deoptimize(this, compiled_frame);
2420           }
2421         }
2422       }
2423 
2424       // Set async. pending exception in thread.
2425       set_pending_async_exception(java_throwable);
2426 
2427       if (log_is_enabled(Info, exceptions)) {
2428          ResourceMark rm;
2429         log_info(exceptions)("Pending Async. exception installed of type: %s",
2430                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2431       }
2432       // for AbortVMOnException flag
2433       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2434     }
2435   }
2436 
2437 
2438   // Interrupt thread so it will wake up from a potential wait()/sleep()/park()
2439   java_lang_Thread::set_interrupted(threadObj(), true);
2440   this->interrupt();
2441 }
2442 
2443 // External suspension mechanism.
2444 //
2445 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2446 // to any VM_locks and it is at a transition
2447 // Self-suspension will happen on the transition out of the vm.
2448 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2449 //
2450 // Guarantees on return:
2451 //   + Target thread will not execute any new bytecode (that's why we need to
2452 //     force a safepoint)
2453 //   + Target thread will not enter any new monitors
2454 //
2455 void JavaThread::java_suspend() {
2456   ThreadsListHandle tlh;
2457   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2458     return;
2459   }
2460 
2461   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2462     if (!is_external_suspend()) {
2463       // a racing resume has cancelled us; bail out now
2464       return;
2465     }
2466 
2467     // suspend is done
2468     uint32_t debug_bits = 0;
2469     // Warning: is_ext_suspend_completed() may temporarily drop the
2470     // SR_lock to allow the thread to reach a stable thread state if
2471     // it is currently in a transient thread state.
2472     if (is_ext_suspend_completed(false /* !called_by_wait */,
2473                                  SuspendRetryDelay, &debug_bits)) {
2474       return;
2475     }
2476   }
2477 
2478   if (Thread::current() == this) {
2479     // Safely self-suspend.
2480     // If we don't do this explicitly it will implicitly happen
2481     // before we transition back to Java, and on some other thread-state
2482     // transition paths, but not as we exit a JVM TI SuspendThread call.
2483     // As SuspendThread(current) must not return (until resumed) we must
2484     // self-suspend here.
2485     ThreadBlockInVM tbivm(this);
2486     java_suspend_self();
2487   } else {
2488     VM_ThreadSuspend vm_suspend;
2489     VMThread::execute(&vm_suspend);
2490   }
2491 }
2492 
2493 // Part II of external suspension.
2494 // A JavaThread self suspends when it detects a pending external suspend
2495 // request. This is usually on transitions. It is also done in places
2496 // where continuing to the next transition would surprise the caller,
2497 // e.g., monitor entry.
2498 //
2499 // Returns the number of times that the thread self-suspended.
2500 //
2501 // Note: DO NOT call java_suspend_self() when you just want to block current
2502 //       thread. java_suspend_self() is the second stage of cooperative
2503 //       suspension for external suspend requests and should only be used
2504 //       to complete an external suspend request.
2505 //
2506 int JavaThread::java_suspend_self() {
2507   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2508   int ret = 0;
2509 
2510   // we are in the process of exiting so don't suspend
2511   if (is_exiting()) {
2512     clear_external_suspend();
2513     return ret;
2514   }
2515 
2516   assert(_anchor.walkable() ||
2517          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2518          "must have walkable stack");
2519 
2520   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2521 
2522   assert(!this->is_ext_suspended(),
2523          "a thread trying to self-suspend should not already be suspended");
2524 
2525   if (this->is_suspend_equivalent()) {
2526     // If we are self-suspending as a result of the lifting of a
2527     // suspend equivalent condition, then the suspend_equivalent
2528     // flag is not cleared until we set the ext_suspended flag so
2529     // that wait_for_ext_suspend_completion() returns consistent
2530     // results.
2531     this->clear_suspend_equivalent();
2532   }
2533 
2534   // A racing resume may have cancelled us before we grabbed SR_lock
2535   // above. Or another external suspend request could be waiting for us
2536   // by the time we return from SR_lock()->wait(). The thread
2537   // that requested the suspension may already be trying to walk our
2538   // stack and if we return now, we can change the stack out from under
2539   // it. This would be a "bad thing (TM)" and cause the stack walker
2540   // to crash. We stay self-suspended until there are no more pending
2541   // external suspend requests.
2542   while (is_external_suspend()) {
2543     ret++;
2544     this->set_ext_suspended();
2545 
2546     // _ext_suspended flag is cleared by java_resume()
2547     while (is_ext_suspended()) {
2548       ml.wait();
2549     }
2550   }
2551   return ret;
2552 }
2553 
2554 // Helper routine to set up the correct thread state before calling java_suspend_self.
2555 // This is called when regular thread-state transition helpers can't be used because
2556 // we can be in various states, in particular _thread_in_native_trans.
2557 // Because this thread is external suspended the safepoint code will count it as at
2558 // a safepoint, regardless of what its actual current thread-state is. But
2559 // is_ext_suspend_completed() may be waiting to see a thread transition from
2560 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2561 // to _thread_blocked. The problem with setting thread state directly is that a
2562 // safepoint could happen just after java_suspend_self() returns after being resumed,
2563 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2564 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2565 // However, not all initial-states are allowed when performing a safepoint check, as we
2566 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2567 // only _thread_in_native is possible when executing this code (based on our two callers).
2568 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2569 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2570 // and so we don't need the explicit safepoint check.
2571 
2572 void JavaThread::java_suspend_self_with_safepoint_check() {
2573   assert(this == Thread::current(), "invariant");
2574   JavaThreadState state = thread_state();
2575   set_thread_state(_thread_blocked);
2576   java_suspend_self();
2577   set_thread_state_fence(state);
2578   // Since we are not using a regular thread-state transition helper here,
2579   // we must manually emit the instruction barrier after leaving a safe state.
2580   OrderAccess::cross_modify_fence();
2581   if (state != _thread_in_native) {
2582     SafepointMechanism::block_if_requested(this);
2583   }
2584 }
2585 
2586 #ifdef ASSERT
2587 // Verify the JavaThread has not yet been published in the Threads::list, and
2588 // hence doesn't need protection from concurrent access at this stage.
2589 void JavaThread::verify_not_published() {
2590   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2591   // since an unpublished JavaThread doesn't participate in the
2592   // Thread-SMR protocol for keeping a ThreadsList alive.
2593   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2594 }
2595 #endif
2596 
2597 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2598 // progress or when _suspend_flags is non-zero.
2599 // Current thread needs to self-suspend if there is a suspend request and/or
2600 // block if a safepoint is in progress.
2601 // Async exception ISN'T checked.
2602 // Note only the ThreadInVMfromNative transition can call this function
2603 // directly and when thread state is _thread_in_native_trans
2604 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2605   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2606 
2607   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2608 
2609   if (thread->is_external_suspend()) {
2610     thread->java_suspend_self_with_safepoint_check();
2611   } else {
2612     SafepointMechanism::block_if_requested(thread);
2613   }
2614 
2615   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2616 }
2617 
2618 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2619 // progress or when _suspend_flags is non-zero.
2620 // Current thread needs to self-suspend if there is a suspend request and/or
2621 // block if a safepoint is in progress.
2622 // Also check for pending async exception (not including unsafe access error).
2623 // Note only the native==>VM/Java barriers can call this function and when
2624 // thread state is _thread_in_native_trans.
2625 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2626   check_safepoint_and_suspend_for_native_trans(thread);
2627 
2628   if (thread->has_async_exception()) {
2629     // We are in _thread_in_native_trans state, don't handle unsafe
2630     // access error since that may block.
2631     thread->check_and_handle_async_exceptions(false);
2632   }
2633 }
2634 
2635 // This is a variant of the normal
2636 // check_special_condition_for_native_trans with slightly different
2637 // semantics for use by critical native wrappers.  It does all the
2638 // normal checks but also performs the transition back into
2639 // thread_in_Java state.  This is required so that critical natives
2640 // can potentially block and perform a GC if they are the last thread
2641 // exiting the GCLocker.
2642 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2643   check_special_condition_for_native_trans(thread);
2644 
2645   // Finish the transition
2646   thread->set_thread_state(_thread_in_Java);
2647 
2648   if (thread->do_critical_native_unlock()) {
2649     ThreadInVMfromJavaNoAsyncException tiv(thread);
2650     GCLocker::unlock_critical(thread);
2651     thread->clear_critical_native_unlock();
2652   }
2653 }
2654 
2655 // We need to guarantee the Threads_lock here, since resumes are not
2656 // allowed during safepoint synchronization
2657 // Can only resume from an external suspension
2658 void JavaThread::java_resume() {
2659   assert_locked_or_safepoint(Threads_lock);
2660 
2661   // Sanity check: thread is gone, has started exiting or the thread
2662   // was not externally suspended.
2663   ThreadsListHandle tlh;
2664   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2665     return;
2666   }
2667 
2668   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2669 
2670   clear_external_suspend();
2671 
2672   if (is_ext_suspended()) {
2673     clear_ext_suspended();
2674     SR_lock()->notify_all();
2675   }
2676 }
2677 
2678 size_t JavaThread::_stack_red_zone_size = 0;
2679 size_t JavaThread::_stack_yellow_zone_size = 0;
2680 size_t JavaThread::_stack_reserved_zone_size = 0;
2681 size_t JavaThread::_stack_shadow_zone_size = 0;
2682 
2683 void JavaThread::create_stack_guard_pages() {
2684   if (!os::uses_stack_guard_pages() ||
2685       _stack_guard_state != stack_guard_unused ||
2686       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2687       log_info(os, thread)("Stack guard page creation for thread "
2688                            UINTX_FORMAT " disabled", os::current_thread_id());
2689     return;
2690   }
2691   address low_addr = stack_end();
2692   size_t len = stack_guard_zone_size();
2693 
2694   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2695   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2696 
2697   int must_commit = os::must_commit_stack_guard_pages();
2698   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2699 
2700   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2701     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2702     return;
2703   }
2704 
2705   if (os::guard_memory((char *) low_addr, len)) {
2706     _stack_guard_state = stack_guard_enabled;
2707   } else {
2708     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2709       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2710     if (os::uncommit_memory((char *) low_addr, len)) {
2711       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2712     }
2713     return;
2714   }
2715 
2716   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2717     PTR_FORMAT "-" PTR_FORMAT ".",
2718     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2719 }
2720 
2721 void JavaThread::remove_stack_guard_pages() {
2722   assert(Thread::current() == this, "from different thread");
2723   if (_stack_guard_state == stack_guard_unused) return;
2724   address low_addr = stack_end();
2725   size_t len = stack_guard_zone_size();
2726 
2727   if (os::must_commit_stack_guard_pages()) {
2728     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2729       _stack_guard_state = stack_guard_unused;
2730     } else {
2731       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2732         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2733       return;
2734     }
2735   } else {
2736     if (_stack_guard_state == stack_guard_unused) return;
2737     if (os::unguard_memory((char *) low_addr, len)) {
2738       _stack_guard_state = stack_guard_unused;
2739     } else {
2740       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2741         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2742       return;
2743     }
2744   }
2745 
2746   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2747     PTR_FORMAT "-" PTR_FORMAT ".",
2748     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2749 }
2750 
2751 void JavaThread::enable_stack_reserved_zone() {
2752   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2753 
2754   // The base notation is from the stack's point of view, growing downward.
2755   // We need to adjust it to work correctly with guard_memory()
2756   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2757 
2758   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2759   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2760 
2761   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2762     _stack_guard_state = stack_guard_enabled;
2763   } else {
2764     warning("Attempt to guard stack reserved zone failed.");
2765   }
2766   enable_register_stack_guard();
2767 }
2768 
2769 void JavaThread::disable_stack_reserved_zone() {
2770   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2771 
2772   // Simply return if called for a thread that does not use guard pages.
2773   if (_stack_guard_state != stack_guard_enabled) return;
2774 
2775   // The base notation is from the stack's point of view, growing downward.
2776   // We need to adjust it to work correctly with guard_memory()
2777   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2778 
2779   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2780     _stack_guard_state = stack_guard_reserved_disabled;
2781   } else {
2782     warning("Attempt to unguard stack reserved zone failed.");
2783   }
2784   disable_register_stack_guard();
2785 }
2786 
2787 void JavaThread::enable_stack_yellow_reserved_zone() {
2788   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2789   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2790 
2791   // The base notation is from the stacks point of view, growing downward.
2792   // We need to adjust it to work correctly with guard_memory()
2793   address base = stack_red_zone_base();
2794 
2795   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2796   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2797 
2798   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2799     _stack_guard_state = stack_guard_enabled;
2800   } else {
2801     warning("Attempt to guard stack yellow zone failed.");
2802   }
2803   enable_register_stack_guard();
2804 }
2805 
2806 void JavaThread::disable_stack_yellow_reserved_zone() {
2807   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2808   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2809 
2810   // Simply return if called for a thread that does not use guard pages.
2811   if (_stack_guard_state == stack_guard_unused) return;
2812 
2813   // The base notation is from the stacks point of view, growing downward.
2814   // We need to adjust it to work correctly with guard_memory()
2815   address base = stack_red_zone_base();
2816 
2817   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2818     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2819   } else {
2820     warning("Attempt to unguard stack yellow zone failed.");
2821   }
2822   disable_register_stack_guard();
2823 }
2824 
2825 void JavaThread::enable_stack_red_zone() {
2826   // The base notation is from the stacks point of view, growing downward.
2827   // We need to adjust it to work correctly with guard_memory()
2828   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2829   address base = stack_red_zone_base() - stack_red_zone_size();
2830 
2831   guarantee(base < stack_base(), "Error calculating stack red zone");
2832   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2833 
2834   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2835     warning("Attempt to guard stack red zone failed.");
2836   }
2837 }
2838 
2839 void JavaThread::disable_stack_red_zone() {
2840   // The base notation is from the stacks point of view, growing downward.
2841   // We need to adjust it to work correctly with guard_memory()
2842   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2843   address base = stack_red_zone_base() - stack_red_zone_size();
2844   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2845     warning("Attempt to unguard stack red zone failed.");
2846   }
2847 }
2848 
2849 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2850   // ignore is there is no stack
2851   if (!has_last_Java_frame()) return;
2852   // traverse the stack frames. Starts from top frame.
2853   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2854     frame* fr = fst.current();
2855     f(fr, fst.register_map());
2856   }
2857 }
2858 
2859 
2860 #ifndef PRODUCT
2861 // Deoptimization
2862 // Function for testing deoptimization
2863 void JavaThread::deoptimize() {
2864   StackFrameStream fst(this, false);
2865   bool deopt = false;           // Dump stack only if a deopt actually happens.
2866   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2867   // Iterate over all frames in the thread and deoptimize
2868   for (; !fst.is_done(); fst.next()) {
2869     if (fst.current()->can_be_deoptimized()) {
2870 
2871       if (only_at) {
2872         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2873         // consists of comma or carriage return separated numbers so
2874         // search for the current bci in that string.
2875         address pc = fst.current()->pc();
2876         nmethod* nm =  (nmethod*) fst.current()->cb();
2877         ScopeDesc* sd = nm->scope_desc_at(pc);
2878         char buffer[8];
2879         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2880         size_t len = strlen(buffer);
2881         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2882         while (found != NULL) {
2883           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2884               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2885             // Check that the bci found is bracketed by terminators.
2886             break;
2887           }
2888           found = strstr(found + 1, buffer);
2889         }
2890         if (!found) {
2891           continue;
2892         }
2893       }
2894 
2895       if (DebugDeoptimization && !deopt) {
2896         deopt = true; // One-time only print before deopt
2897         tty->print_cr("[BEFORE Deoptimization]");
2898         trace_frames();
2899         trace_stack();
2900       }
2901       Deoptimization::deoptimize(this, *fst.current());
2902     }
2903   }
2904 
2905   if (DebugDeoptimization && deopt) {
2906     tty->print_cr("[AFTER Deoptimization]");
2907     trace_frames();
2908   }
2909 }
2910 
2911 
2912 // Make zombies
2913 void JavaThread::make_zombies() {
2914   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2915     if (fst.current()->can_be_deoptimized()) {
2916       // it is a Java nmethod
2917       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2918       nm->make_not_entrant();
2919     }
2920   }
2921 }
2922 #endif // PRODUCT
2923 
2924 
2925 void JavaThread::deoptimize_marked_methods() {
2926   if (!has_last_Java_frame()) return;
2927   StackFrameStream fst(this, false);
2928   for (; !fst.is_done(); fst.next()) {
2929     if (fst.current()->should_be_deoptimized()) {
2930       Deoptimization::deoptimize(this, *fst.current());
2931     }
2932   }
2933 }
2934 
2935 // If the caller is a NamedThread, then remember, in the current scope,
2936 // the given JavaThread in its _processed_thread field.
2937 class RememberProcessedThread: public StackObj {
2938   NamedThread* _cur_thr;
2939  public:
2940   RememberProcessedThread(JavaThread* jthr) {
2941     Thread* thread = Thread::current();
2942     if (thread->is_Named_thread()) {
2943       _cur_thr = (NamedThread *)thread;
2944       _cur_thr->set_processed_thread(jthr);
2945     } else {
2946       _cur_thr = NULL;
2947     }
2948   }
2949 
2950   ~RememberProcessedThread() {
2951     if (_cur_thr) {
2952       _cur_thr->set_processed_thread(NULL);
2953     }
2954   }
2955 };
2956 
2957 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2958   // Verify that the deferred card marks have been flushed.
2959   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2960 
2961   // Traverse the GCHandles
2962   Thread::oops_do(f, cf);
2963 
2964   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2965          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2966 
2967   if (has_last_Java_frame()) {
2968     // Record JavaThread to GC thread
2969     RememberProcessedThread rpt(this);
2970 
2971     // traverse the registered growable array
2972     if (_array_for_gc != NULL) {
2973       for (int index = 0; index < _array_for_gc->length(); index++) {
2974         f->do_oop(_array_for_gc->adr_at(index));
2975       }
2976     }
2977 
2978     // Traverse the monitor chunks
2979     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2980       chunk->oops_do(f);
2981     }
2982 
2983     // Traverse the execution stack
2984     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2985       fst.current()->oops_do(f, cf, fst.register_map());
2986     }
2987   }
2988 
2989   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2990   // If we have deferred set_locals there might be oops waiting to be
2991   // written
2992   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2993   if (list != NULL) {
2994     for (int i = 0; i < list->length(); i++) {
2995       list->at(i)->oops_do(f);
2996     }
2997   }
2998 
2999   // Traverse instance variables at the end since the GC may be moving things
3000   // around using this function
3001   f->do_oop((oop*) &_threadObj);
3002   f->do_oop((oop*) &_vm_result);
3003   f->do_oop((oop*) &_exception_oop);
3004   f->do_oop((oop*) &_pending_async_exception);
3005 
3006   if (jvmti_thread_state() != NULL) {
3007     jvmti_thread_state()->oops_do(f, cf);
3008   }
3009 }
3010 
3011 #ifdef ASSERT
3012 void JavaThread::verify_states_for_handshake() {
3013   // This checks that the thread has a correct frame state during a handshake.
3014   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3015          (has_last_Java_frame() && java_call_counter() > 0),
3016          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3017          has_last_Java_frame(), java_call_counter());
3018 }
3019 #endif
3020 
3021 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
3022   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
3023          (has_last_Java_frame() && java_call_counter() > 0),
3024          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
3025          has_last_Java_frame(), java_call_counter());
3026 
3027   if (has_last_Java_frame()) {
3028     // Traverse the execution stack
3029     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3030       fst.current()->nmethods_do(cf);
3031     }
3032   }
3033 
3034   if (jvmti_thread_state() != NULL) {
3035     jvmti_thread_state()->nmethods_do(cf);
3036   }
3037 }
3038 
3039 void JavaThread::metadata_do(MetadataClosure* f) {
3040   if (has_last_Java_frame()) {
3041     // Traverse the execution stack to call f() on the methods in the stack
3042     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3043       fst.current()->metadata_do(f);
3044     }
3045   } else if (is_Compiler_thread()) {
3046     // need to walk ciMetadata in current compile tasks to keep alive.
3047     CompilerThread* ct = (CompilerThread*)this;
3048     if (ct->env() != NULL) {
3049       ct->env()->metadata_do(f);
3050     }
3051     CompileTask* task = ct->task();
3052     if (task != NULL) {
3053       task->metadata_do(f);
3054     }
3055   }
3056 }
3057 
3058 // Printing
3059 const char* _get_thread_state_name(JavaThreadState _thread_state) {
3060   switch (_thread_state) {
3061   case _thread_uninitialized:     return "_thread_uninitialized";
3062   case _thread_new:               return "_thread_new";
3063   case _thread_new_trans:         return "_thread_new_trans";
3064   case _thread_in_native:         return "_thread_in_native";
3065   case _thread_in_native_trans:   return "_thread_in_native_trans";
3066   case _thread_in_vm:             return "_thread_in_vm";
3067   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3068   case _thread_in_Java:           return "_thread_in_Java";
3069   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3070   case _thread_blocked:           return "_thread_blocked";
3071   case _thread_blocked_trans:     return "_thread_blocked_trans";
3072   default:                        return "unknown thread state";
3073   }
3074 }
3075 
3076 #ifndef PRODUCT
3077 void JavaThread::print_thread_state_on(outputStream *st) const {
3078   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3079 };
3080 #endif // PRODUCT
3081 
3082 // Called by Threads::print() for VM_PrintThreads operation
3083 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3084   st->print_raw("\"");
3085   st->print_raw(get_thread_name());
3086   st->print_raw("\" ");
3087   oop thread_oop = threadObj();
3088   if (thread_oop != NULL) {
3089     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3090     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3091     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3092   }
3093   Thread::print_on(st, print_extended_info);
3094   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3095   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3096   if (thread_oop != NULL) {
3097     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3098   }
3099 #ifndef PRODUCT
3100   _safepoint_state->print_on(st);
3101 #endif // PRODUCT
3102   if (is_Compiler_thread()) {
3103     CompileTask *task = ((CompilerThread*)this)->task();
3104     if (task != NULL) {
3105       st->print("   Compiling: ");
3106       task->print(st, NULL, true, false);
3107     } else {
3108       st->print("   No compile task");
3109     }
3110     st->cr();
3111   }
3112 }
3113 
3114 void JavaThread::print() const { print_on(tty); }
3115 
3116 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3117   st->print("%s", get_thread_name_string(buf, buflen));
3118 }
3119 
3120 // Called by fatal error handler. The difference between this and
3121 // JavaThread::print() is that we can't grab lock or allocate memory.
3122 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3123   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3124   oop thread_obj = threadObj();
3125   if (thread_obj != NULL) {
3126     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3127   }
3128   st->print(" [");
3129   st->print("%s", _get_thread_state_name(_thread_state));
3130   if (osthread()) {
3131     st->print(", id=%d", osthread()->thread_id());
3132   }
3133   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3134             p2i(stack_end()), p2i(stack_base()));
3135   st->print("]");
3136 
3137   ThreadsSMRSupport::print_info_on(this, st);
3138   return;
3139 }
3140 
3141 // Verification
3142 
3143 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3144 
3145 void JavaThread::verify() {
3146   // Verify oops in the thread.
3147   oops_do(&VerifyOopClosure::verify_oop, NULL);
3148 
3149   // Verify the stack frames.
3150   frames_do(frame_verify);
3151 }
3152 
3153 // CR 6300358 (sub-CR 2137150)
3154 // Most callers of this method assume that it can't return NULL but a
3155 // thread may not have a name whilst it is in the process of attaching to
3156 // the VM - see CR 6412693, and there are places where a JavaThread can be
3157 // seen prior to having it's threadObj set (eg JNI attaching threads and
3158 // if vm exit occurs during initialization). These cases can all be accounted
3159 // for such that this method never returns NULL.
3160 const char* JavaThread::get_thread_name() const {
3161 #ifdef ASSERT
3162   // early safepoints can hit while current thread does not yet have TLS
3163   if (!SafepointSynchronize::is_at_safepoint()) {
3164     Thread *cur = Thread::current();
3165     if (!(cur->is_Java_thread() && cur == this)) {
3166       // Current JavaThreads are allowed to get their own name without
3167       // the Threads_lock.
3168       assert_locked_or_safepoint_or_handshake(Threads_lock, this);
3169     }
3170   }
3171 #endif // ASSERT
3172   return get_thread_name_string();
3173 }
3174 
3175 // Returns a non-NULL representation of this thread's name, or a suitable
3176 // descriptive string if there is no set name
3177 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3178   const char* name_str;
3179   oop thread_obj = threadObj();
3180   if (thread_obj != NULL) {
3181     oop name = java_lang_Thread::name(thread_obj);
3182     if (name != NULL) {
3183       if (buf == NULL) {
3184         name_str = java_lang_String::as_utf8_string(name);
3185       } else {
3186         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3187       }
3188     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3189       name_str = "<no-name - thread is attaching>";
3190     } else {
3191       name_str = Thread::name();
3192     }
3193   } else {
3194     name_str = Thread::name();
3195   }
3196   assert(name_str != NULL, "unexpected NULL thread name");
3197   return name_str;
3198 }
3199 
3200 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3201 
3202   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3203   assert(NoPriority <= prio && prio <= MaxPriority, "sanity check");
3204   // Link Java Thread object <-> C++ Thread
3205 
3206   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3207   // and put it into a new Handle.  The Handle "thread_oop" can then
3208   // be used to pass the C++ thread object to other methods.
3209 
3210   // Set the Java level thread object (jthread) field of the
3211   // new thread (a JavaThread *) to C++ thread object using the
3212   // "thread_oop" handle.
3213 
3214   // Set the thread field (a JavaThread *) of the
3215   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3216 
3217   Handle thread_oop(Thread::current(),
3218                     JNIHandles::resolve_non_null(jni_thread));
3219   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3220          "must be initialized");
3221   set_threadObj(thread_oop());
3222   java_lang_Thread::set_thread(thread_oop(), this);
3223 
3224   if (prio == NoPriority) {
3225     prio = java_lang_Thread::priority(thread_oop());
3226     assert(prio != NoPriority, "A valid priority should be present");
3227   }
3228 
3229   // Push the Java priority down to the native thread; needs Threads_lock
3230   Thread::set_priority(this, prio);
3231 
3232   // Add the new thread to the Threads list and set it in motion.
3233   // We must have threads lock in order to call Threads::add.
3234   // It is crucial that we do not block before the thread is
3235   // added to the Threads list for if a GC happens, then the java_thread oop
3236   // will not be visited by GC.
3237   Threads::add(this);
3238 }
3239 
3240 oop JavaThread::current_park_blocker() {
3241   // Support for JSR-166 locks
3242   oop thread_oop = threadObj();
3243   if (thread_oop != NULL) {
3244     return java_lang_Thread::park_blocker(thread_oop);
3245   }
3246   return NULL;
3247 }
3248 
3249 
3250 void JavaThread::print_stack_on(outputStream* st) {
3251   if (!has_last_Java_frame()) return;
3252   ResourceMark rm;
3253   HandleMark   hm;
3254 
3255   RegisterMap reg_map(this);
3256   vframe* start_vf = last_java_vframe(&reg_map);
3257   int count = 0;
3258   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3259     if (f->is_java_frame()) {
3260       javaVFrame* jvf = javaVFrame::cast(f);
3261       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3262 
3263       // Print out lock information
3264       if (JavaMonitorsInStackTrace) {
3265         jvf->print_lock_info_on(st, count);
3266       }
3267     } else {
3268       // Ignore non-Java frames
3269     }
3270 
3271     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3272     count++;
3273     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3274   }
3275 }
3276 
3277 
3278 // JVMTI PopFrame support
3279 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3280   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3281   if (in_bytes(size_in_bytes) != 0) {
3282     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3283     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3284     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3285   }
3286 }
3287 
3288 void* JavaThread::popframe_preserved_args() {
3289   return _popframe_preserved_args;
3290 }
3291 
3292 ByteSize JavaThread::popframe_preserved_args_size() {
3293   return in_ByteSize(_popframe_preserved_args_size);
3294 }
3295 
3296 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3297   int sz = in_bytes(popframe_preserved_args_size());
3298   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3299   return in_WordSize(sz / wordSize);
3300 }
3301 
3302 void JavaThread::popframe_free_preserved_args() {
3303   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3304   FREE_C_HEAP_ARRAY(char, (char*)_popframe_preserved_args);
3305   _popframe_preserved_args = NULL;
3306   _popframe_preserved_args_size = 0;
3307 }
3308 
3309 #ifndef PRODUCT
3310 
3311 void JavaThread::trace_frames() {
3312   tty->print_cr("[Describe stack]");
3313   int frame_no = 1;
3314   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3315     tty->print("  %d. ", frame_no++);
3316     fst.current()->print_value_on(tty, this);
3317     tty->cr();
3318   }
3319 }
3320 
3321 class PrintAndVerifyOopClosure: public OopClosure {
3322  protected:
3323   template <class T> inline void do_oop_work(T* p) {
3324     oop obj = RawAccess<>::oop_load(p);
3325     if (obj == NULL) return;
3326     tty->print(INTPTR_FORMAT ": ", p2i(p));
3327     if (oopDesc::is_oop_or_null(obj)) {
3328       if (obj->is_objArray()) {
3329         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3330       } else {
3331         obj->print();
3332       }
3333     } else {
3334       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3335     }
3336     tty->cr();
3337   }
3338  public:
3339   virtual void do_oop(oop* p) { do_oop_work(p); }
3340   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3341 };
3342 
3343 #ifdef ASSERT
3344 // Print or validate the layout of stack frames
3345 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3346   ResourceMark rm;
3347   PRESERVE_EXCEPTION_MARK;
3348   FrameValues values;
3349   int frame_no = 0;
3350   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3351     fst.current()->describe(values, ++frame_no);
3352     if (depth == frame_no) break;
3353   }
3354   if (validate_only) {
3355     values.validate();
3356   } else {
3357     tty->print_cr("[Describe stack layout]");
3358     values.print(this);
3359   }
3360 }
3361 #endif
3362 
3363 void JavaThread::trace_stack_from(vframe* start_vf) {
3364   ResourceMark rm;
3365   int vframe_no = 1;
3366   for (vframe* f = start_vf; f; f = f->sender()) {
3367     if (f->is_java_frame()) {
3368       javaVFrame::cast(f)->print_activation(vframe_no++);
3369     } else {
3370       f->print();
3371     }
3372     if (vframe_no > StackPrintLimit) {
3373       tty->print_cr("...<more frames>...");
3374       return;
3375     }
3376   }
3377 }
3378 
3379 
3380 void JavaThread::trace_stack() {
3381   if (!has_last_Java_frame()) return;
3382   ResourceMark rm;
3383   HandleMark   hm;
3384   RegisterMap reg_map(this);
3385   trace_stack_from(last_java_vframe(&reg_map));
3386 }
3387 
3388 
3389 #endif // PRODUCT
3390 
3391 
3392 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3393   assert(reg_map != NULL, "a map must be given");
3394   frame f = last_frame();
3395   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3396     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3397   }
3398   return NULL;
3399 }
3400 
3401 
3402 Klass* JavaThread::security_get_caller_class(int depth) {
3403   vframeStream vfst(this);
3404   vfst.security_get_caller_frame(depth);
3405   if (!vfst.at_end()) {
3406     return vfst.method()->method_holder();
3407   }
3408   return NULL;
3409 }
3410 
3411 // java.lang.Thread.sleep support
3412 // Returns true if sleep time elapsed as expected, and false
3413 // if the thread was interrupted.
3414 bool JavaThread::sleep(jlong millis) {
3415   assert(this == Thread::current(),  "thread consistency check");
3416 
3417   ParkEvent * const slp = this->_SleepEvent;
3418   // Because there can be races with thread interruption sending an unpark()
3419   // to the event, we explicitly reset it here to avoid an immediate return.
3420   // The actual interrupt state will be checked before we park().
3421   slp->reset();
3422   // Thread interruption establishes a happens-before ordering in the
3423   // Java Memory Model, so we need to ensure we synchronize with the
3424   // interrupt state.
3425   OrderAccess::fence();
3426 
3427   jlong prevtime = os::javaTimeNanos();
3428 
3429   for (;;) {
3430     // interruption has precedence over timing out
3431     if (this->is_interrupted(true)) {
3432       return false;
3433     }
3434 
3435     if (millis <= 0) {
3436       return true;
3437     }
3438 
3439     {
3440       ThreadBlockInVM tbivm(this);
3441       OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
3442 
3443       this->set_suspend_equivalent();
3444       // cleared by handle_special_suspend_equivalent_condition() or
3445       // java_suspend_self() via check_and_wait_while_suspended()
3446 
3447       slp->park(millis);
3448 
3449       // were we externally suspended while we were waiting?
3450       this->check_and_wait_while_suspended();
3451     }
3452 
3453     // Update elapsed time tracking
3454     jlong newtime = os::javaTimeNanos();
3455     if (newtime - prevtime < 0) {
3456       // time moving backwards, should only happen if no monotonic clock
3457       // not a guarantee() because JVM should not abort on kernel/glibc bugs
3458       assert(!os::supports_monotonic_clock(),
3459              "unexpected time moving backwards detected in JavaThread::sleep()");
3460     } else {
3461       millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3462     }
3463     prevtime = newtime;
3464   }
3465 }
3466 
3467 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3468   assert(thread->is_Compiler_thread(), "must be compiler thread");
3469   CompileBroker::compiler_thread_loop();
3470 }
3471 
3472 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3473   NMethodSweeper::sweeper_loop();
3474 }
3475 
3476 // Create a CompilerThread
3477 CompilerThread::CompilerThread(CompileQueue* queue,
3478                                CompilerCounters* counters)
3479                                : JavaThread(&compiler_thread_entry) {
3480   _env   = NULL;
3481   _log   = NULL;
3482   _task  = NULL;
3483   _queue = queue;
3484   _counters = counters;
3485   _buffer_blob = NULL;
3486   _compiler = NULL;
3487 
3488   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3489   resource_area()->bias_to(mtCompiler);
3490 
3491 #ifndef PRODUCT
3492   _ideal_graph_printer = NULL;
3493 #endif
3494 }
3495 
3496 CompilerThread::~CompilerThread() {
3497   // Delete objects which were allocated on heap.
3498   delete _counters;
3499 }
3500 
3501 bool CompilerThread::can_call_java() const {
3502   return _compiler != NULL && _compiler->is_jvmci();
3503 }
3504 
3505 // Create sweeper thread
3506 CodeCacheSweeperThread::CodeCacheSweeperThread()
3507 : JavaThread(&sweeper_thread_entry) {
3508   _scanned_compiled_method = NULL;
3509 }
3510 
3511 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3512   JavaThread::oops_do(f, cf);
3513   if (_scanned_compiled_method != NULL && cf != NULL) {
3514     // Safepoints can occur when the sweeper is scanning an nmethod so
3515     // process it here to make sure it isn't unloaded in the middle of
3516     // a scan.
3517     cf->do_code_blob(_scanned_compiled_method);
3518   }
3519 }
3520 
3521 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3522   JavaThread::nmethods_do(cf);
3523   if (_scanned_compiled_method != NULL && cf != NULL) {
3524     // Safepoints can occur when the sweeper is scanning an nmethod so
3525     // process it here to make sure it isn't unloaded in the middle of
3526     // a scan.
3527     cf->do_code_blob(_scanned_compiled_method);
3528   }
3529 }
3530 
3531 
3532 // ======= Threads ========
3533 
3534 // The Threads class links together all active threads, and provides
3535 // operations over all threads. It is protected by the Threads_lock,
3536 // which is also used in other global contexts like safepointing.
3537 // ThreadsListHandles are used to safely perform operations on one
3538 // or more threads without the risk of the thread exiting during the
3539 // operation.
3540 //
3541 // Note: The Threads_lock is currently more widely used than we
3542 // would like. We are actively migrating Threads_lock uses to other
3543 // mechanisms in order to reduce Threads_lock contention.
3544 
3545 int         Threads::_number_of_threads = 0;
3546 int         Threads::_number_of_non_daemon_threads = 0;
3547 int         Threads::_return_code = 0;
3548 uintx       Threads::_thread_claim_token = 1; // Never zero.
3549 size_t      JavaThread::_stack_size_at_create = 0;
3550 
3551 #ifdef ASSERT
3552 bool        Threads::_vm_complete = false;
3553 #endif
3554 
3555 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3556   Prefetch::read((void*)addr, prefetch_interval);
3557   return *addr;
3558 }
3559 
3560 // Possibly the ugliest for loop the world has seen. C++ does not allow
3561 // multiple types in the declaration section of the for loop. In this case
3562 // we are only dealing with pointers and hence can cast them. It looks ugly
3563 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3564 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3565     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3566              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3567              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3568              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3569              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3570          MACRO_current_p != MACRO_end;                                                                                    \
3571          MACRO_current_p++,                                                                                               \
3572              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3573 
3574 // All JavaThreads
3575 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3576 
3577 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3578 void Threads::non_java_threads_do(ThreadClosure* tc) {
3579   NoSafepointVerifier nsv;
3580   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3581     tc->do_thread(njti.current());
3582   }
3583 }
3584 
3585 // All JavaThreads
3586 void Threads::java_threads_do(ThreadClosure* tc) {
3587   assert_locked_or_safepoint(Threads_lock);
3588   // ALL_JAVA_THREADS iterates through all JavaThreads.
3589   ALL_JAVA_THREADS(p) {
3590     tc->do_thread(p);
3591   }
3592 }
3593 
3594 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3595   assert_locked_or_safepoint(Threads_lock);
3596   java_threads_do(tc);
3597   tc->do_thread(VMThread::vm_thread());
3598 }
3599 
3600 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3601 void Threads::threads_do(ThreadClosure* tc) {
3602   assert_locked_or_safepoint(Threads_lock);
3603   java_threads_do(tc);
3604   non_java_threads_do(tc);
3605 }
3606 
3607 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3608   uintx claim_token = Threads::thread_claim_token();
3609   ALL_JAVA_THREADS(p) {
3610     if (p->claim_threads_do(is_par, claim_token)) {
3611       tc->do_thread(p);
3612     }
3613   }
3614   VMThread* vmt = VMThread::vm_thread();
3615   if (vmt->claim_threads_do(is_par, claim_token)) {
3616     tc->do_thread(vmt);
3617   }
3618 }
3619 
3620 // The system initialization in the library has three phases.
3621 //
3622 // Phase 1: java.lang.System class initialization
3623 //     java.lang.System is a primordial class loaded and initialized
3624 //     by the VM early during startup.  java.lang.System.<clinit>
3625 //     only does registerNatives and keeps the rest of the class
3626 //     initialization work later until thread initialization completes.
3627 //
3628 //     System.initPhase1 initializes the system properties, the static
3629 //     fields in, out, and err. Set up java signal handlers, OS-specific
3630 //     system settings, and thread group of the main thread.
3631 static void call_initPhase1(TRAPS) {
3632   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3633   JavaValue result(T_VOID);
3634   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3635                                          vmSymbols::void_method_signature(), CHECK);
3636 }
3637 
3638 // Phase 2. Module system initialization
3639 //     This will initialize the module system.  Only java.base classes
3640 //     can be loaded until phase 2 completes.
3641 //
3642 //     Call System.initPhase2 after the compiler initialization and jsr292
3643 //     classes get initialized because module initialization runs a lot of java
3644 //     code, that for performance reasons, should be compiled.  Also, this will
3645 //     enable the startup code to use lambda and other language features in this
3646 //     phase and onward.
3647 //
3648 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3649 static void call_initPhase2(TRAPS) {
3650   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3651 
3652   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3653 
3654   JavaValue result(T_INT);
3655   JavaCallArguments args;
3656   args.push_int(DisplayVMOutputToStderr);
3657   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3658   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3659                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3660   if (result.get_jint() != JNI_OK) {
3661     vm_exit_during_initialization(); // no message or exception
3662   }
3663 
3664   universe_post_module_init();
3665 }
3666 
3667 // Phase 3. final setup - set security manager, system class loader and TCCL
3668 //
3669 //     This will instantiate and set the security manager, set the system class
3670 //     loader as well as the thread context class loader.  The security manager
3671 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3672 //     other modules or the application's classpath.
3673 static void call_initPhase3(TRAPS) {
3674   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3675   JavaValue result(T_VOID);
3676   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3677                                          vmSymbols::void_method_signature(), CHECK);
3678 }
3679 
3680 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3681   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3682 
3683   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3684     create_vm_init_libraries();
3685   }
3686 
3687   initialize_class(vmSymbols::java_lang_String(), CHECK);
3688 
3689   // Inject CompactStrings value after the static initializers for String ran.
3690   java_lang_String::set_compact_strings(CompactStrings);
3691 
3692   // Initialize java_lang.System (needed before creating the thread)
3693   initialize_class(vmSymbols::java_lang_System(), CHECK);
3694   // The VM creates & returns objects of this class. Make sure it's initialized.
3695   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3696   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3697   Handle thread_group = create_initial_thread_group(CHECK);
3698   Universe::set_main_thread_group(thread_group());
3699   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3700   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3701   main_thread->set_threadObj(thread_object);
3702 
3703   // Set thread status to running since main thread has
3704   // been started and running.
3705   java_lang_Thread::set_thread_status(thread_object,
3706                                       java_lang_Thread::RUNNABLE);
3707 
3708   // The VM creates objects of this class.
3709   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3710 
3711 #ifdef ASSERT
3712   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3713   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3714 #endif
3715 
3716   // initialize the hardware-specific constants needed by Unsafe
3717   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3718   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3719 
3720   // The VM preresolves methods to these classes. Make sure that they get initialized
3721   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3722   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3723 
3724   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3725   call_initPhase1(CHECK);
3726 
3727   // get the Java runtime name, version, and vendor info after java.lang.System is initialized
3728   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3729   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3730   JDK_Version::set_runtime_vendor_version(get_java_runtime_vendor_version(THREAD));
3731   JDK_Version::set_runtime_vendor_vm_bug_url(get_java_runtime_vendor_vm_bug_url(THREAD));
3732 
3733   // an instance of OutOfMemory exception has been allocated earlier
3734   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3735   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3736   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3737   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3738   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3739   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3740   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3741   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3742 
3743   // Eager box cache initialization only if AOT is on and any library is loaded.
3744   AOTLoader::initialize_box_caches(CHECK);
3745 }
3746 
3747 void Threads::initialize_jsr292_core_classes(TRAPS) {
3748   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3749 
3750   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3751   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3752   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3753   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3754 }
3755 
3756 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3757   extern void JDK_Version_init();
3758 
3759   // Preinitialize version info.
3760   VM_Version::early_initialize();
3761 
3762   // Check version
3763   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3764 
3765   // Initialize library-based TLS
3766   ThreadLocalStorage::init();
3767 
3768   // Initialize the output stream module
3769   ostream_init();
3770 
3771   // Process java launcher properties.
3772   Arguments::process_sun_java_launcher_properties(args);
3773 
3774   // Initialize the os module
3775   os::init();
3776 
3777   // Record VM creation timing statistics
3778   TraceVmCreationTime create_vm_timer;
3779   create_vm_timer.start();
3780 
3781   // Initialize system properties.
3782   Arguments::init_system_properties();
3783 
3784   // So that JDK version can be used as a discriminator when parsing arguments
3785   JDK_Version_init();
3786 
3787   // Update/Initialize System properties after JDK version number is known
3788   Arguments::init_version_specific_system_properties();
3789 
3790   // Make sure to initialize log configuration *before* parsing arguments
3791   LogConfiguration::initialize(create_vm_timer.begin_time());
3792 
3793   // Parse arguments
3794   // Note: this internally calls os::init_container_support()
3795   jint parse_result = Arguments::parse(args);
3796   if (parse_result != JNI_OK) return parse_result;
3797 
3798   os::init_before_ergo();
3799 
3800   jint ergo_result = Arguments::apply_ergo();
3801   if (ergo_result != JNI_OK) return ergo_result;
3802 
3803   // Final check of all ranges after ergonomics which may change values.
3804   if (!JVMFlagRangeList::check_ranges()) {
3805     return JNI_EINVAL;
3806   }
3807 
3808   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3809   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3810   if (!constraint_result) {
3811     return JNI_EINVAL;
3812   }
3813 
3814   if (PauseAtStartup) {
3815     os::pause();
3816   }
3817 
3818   HOTSPOT_VM_INIT_BEGIN();
3819 
3820   // Timing (must come after argument parsing)
3821   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3822 
3823   // Initialize the os module after parsing the args
3824   jint os_init_2_result = os::init_2();
3825   if (os_init_2_result != JNI_OK) return os_init_2_result;
3826 
3827 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3828   // Initialize assert poison page mechanism.
3829   if (ShowRegistersOnAssert) {
3830     initialize_assert_poison();
3831   }
3832 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3833 
3834   SafepointMechanism::initialize();
3835 
3836   jint adjust_after_os_result = Arguments::adjust_after_os();
3837   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3838 
3839   // Initialize output stream logging
3840   ostream_init_log();
3841 
3842   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3843   // Must be before create_vm_init_agents()
3844   if (Arguments::init_libraries_at_startup()) {
3845     convert_vm_init_libraries_to_agents();
3846   }
3847 
3848   // Launch -agentlib/-agentpath and converted -Xrun agents
3849   if (Arguments::init_agents_at_startup()) {
3850     create_vm_init_agents();
3851   }
3852 
3853   // Initialize Threads state
3854   _number_of_threads = 0;
3855   _number_of_non_daemon_threads = 0;
3856 
3857   // Initialize global data structures and create system classes in heap
3858   vm_init_globals();
3859 
3860 #if INCLUDE_JVMCI
3861   if (JVMCICounterSize > 0) {
3862     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3863     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3864   } else {
3865     JavaThread::_jvmci_old_thread_counters = NULL;
3866   }
3867 #endif // INCLUDE_JVMCI
3868 
3869   // Attach the main thread to this os thread
3870   JavaThread* main_thread = new JavaThread();
3871   main_thread->set_thread_state(_thread_in_vm);
3872   main_thread->initialize_thread_current();
3873   // must do this before set_active_handles
3874   main_thread->record_stack_base_and_size();
3875   main_thread->register_thread_stack_with_NMT();
3876   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3877 
3878   if (!main_thread->set_as_starting_thread()) {
3879     vm_shutdown_during_initialization(
3880                                       "Failed necessary internal allocation. Out of swap space");
3881     main_thread->smr_delete();
3882     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3883     return JNI_ENOMEM;
3884   }
3885 
3886   // Enable guard page *after* os::create_main_thread(), otherwise it would
3887   // crash Linux VM, see notes in os_linux.cpp.
3888   main_thread->create_stack_guard_pages();
3889 
3890   // Initialize Java-Level synchronization subsystem
3891   ObjectMonitor::Initialize();
3892 
3893   // Initialize global modules
3894   jint status = init_globals();
3895   if (status != JNI_OK) {
3896     main_thread->smr_delete();
3897     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3898     return status;
3899   }
3900 
3901   JFR_ONLY(Jfr::on_create_vm_1();)
3902 
3903   // Should be done after the heap is fully created
3904   main_thread->cache_global_variables();
3905 
3906   HandleMark hm;
3907 
3908   { MutexLocker mu(Threads_lock);
3909     Threads::add(main_thread);
3910   }
3911 
3912   // Any JVMTI raw monitors entered in onload will transition into
3913   // real raw monitor. VM is setup enough here for raw monitor enter.
3914   JvmtiExport::transition_pending_onload_raw_monitors();
3915 
3916   // Create the VMThread
3917   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3918 
3919     VMThread::create();
3920     Thread* vmthread = VMThread::vm_thread();
3921 
3922     if (!os::create_thread(vmthread, os::vm_thread)) {
3923       vm_exit_during_initialization("Cannot create VM thread. "
3924                                     "Out of system resources.");
3925     }
3926 
3927     // Wait for the VM thread to become ready, and VMThread::run to initialize
3928     // Monitors can have spurious returns, must always check another state flag
3929     {
3930       MonitorLocker ml(Notify_lock);
3931       os::start_thread(vmthread);
3932       while (vmthread->active_handles() == NULL) {
3933         ml.wait();
3934       }
3935     }
3936   }
3937 
3938   assert(Universe::is_fully_initialized(), "not initialized");
3939   if (VerifyDuringStartup) {
3940     // Make sure we're starting with a clean slate.
3941     VM_Verify verify_op;
3942     VMThread::execute(&verify_op);
3943   }
3944 
3945   // We need this to update the java.vm.info property in case any flags used
3946   // to initially define it have been changed. This is needed for both CDS and
3947   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3948   // is initially computed. See Abstract_VM_Version::vm_info_string().
3949   // This update must happen before we initialize the java classes, but
3950   // after any initialization logic that might modify the flags.
3951   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3952 
3953   Thread* THREAD = Thread::current();
3954 
3955   // Always call even when there are not JVMTI environments yet, since environments
3956   // may be attached late and JVMTI must track phases of VM execution
3957   JvmtiExport::enter_early_start_phase();
3958 
3959   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3960   JvmtiExport::post_early_vm_start();
3961 
3962   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3963 
3964   quicken_jni_functions();
3965 
3966   // No more stub generation allowed after that point.
3967   StubCodeDesc::freeze();
3968 
3969   // Set flag that basic initialization has completed. Used by exceptions and various
3970   // debug stuff, that does not work until all basic classes have been initialized.
3971   set_init_completed();
3972 
3973   LogConfiguration::post_initialize();
3974   Metaspace::post_initialize();
3975 
3976   HOTSPOT_VM_INIT_END();
3977 
3978   // record VM initialization completion time
3979 #if INCLUDE_MANAGEMENT
3980   Management::record_vm_init_completed();
3981 #endif // INCLUDE_MANAGEMENT
3982 
3983   // Signal Dispatcher needs to be started before VMInit event is posted
3984   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3985 
3986   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3987   if (!DisableAttachMechanism) {
3988     AttachListener::vm_start();
3989     if (StartAttachListener || AttachListener::init_at_startup()) {
3990       AttachListener::init();
3991     }
3992   }
3993 
3994   // Launch -Xrun agents
3995   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3996   // back-end can launch with -Xdebug -Xrunjdwp.
3997   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3998     create_vm_init_libraries();
3999   }
4000 
4001   if (CleanChunkPoolAsync) {
4002     Chunk::start_chunk_pool_cleaner_task();
4003   }
4004 
4005   // Start the service thread
4006   // The service thread enqueues JVMTI deferred events and does various hashtable
4007   // and other cleanups.  Needs to start before the compilers start posting events.
4008   ServiceThread::initialize();
4009 
4010   // initialize compiler(s)
4011 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
4012 #if INCLUDE_JVMCI
4013   bool force_JVMCI_intialization = false;
4014   if (EnableJVMCI) {
4015     // Initialize JVMCI eagerly when it is explicitly requested.
4016     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
4017     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
4018 
4019     if (!force_JVMCI_intialization) {
4020       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
4021       // compilations via JVMCI will not actually block until JVMCI is initialized.
4022       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
4023     }
4024   }
4025 #endif
4026   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
4027   // Postpone completion of compiler initialization to after JVMCI
4028   // is initialized to avoid timeouts of blocking compilations.
4029   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
4030     CompileBroker::compilation_init_phase2();
4031   }
4032 #endif
4033 
4034   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
4035   // It is done after compilers are initialized, because otherwise compilations of
4036   // signature polymorphic MH intrinsics can be missed
4037   // (see SystemDictionary::find_method_handle_intrinsic).
4038   initialize_jsr292_core_classes(CHECK_JNI_ERR);
4039 
4040   // This will initialize the module system.  Only java.base classes can be
4041   // loaded until phase 2 completes
4042   call_initPhase2(CHECK_JNI_ERR);
4043 
4044   JFR_ONLY(Jfr::on_create_vm_2();)
4045 
4046   // Always call even when there are not JVMTI environments yet, since environments
4047   // may be attached late and JVMTI must track phases of VM execution
4048   JvmtiExport::enter_start_phase();
4049 
4050   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4051   JvmtiExport::post_vm_start();
4052 
4053   // Final system initialization including security manager and system class loader
4054   call_initPhase3(CHECK_JNI_ERR);
4055 
4056   // cache the system and platform class loaders
4057   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
4058 
4059 #if INCLUDE_CDS
4060   // capture the module path info from the ModuleEntryTable
4061   ClassLoader::initialize_module_path(THREAD);
4062 #endif
4063 
4064 #if INCLUDE_JVMCI
4065   if (force_JVMCI_intialization) {
4066     JVMCI::initialize_compiler(CHECK_JNI_ERR);
4067     CompileBroker::compilation_init_phase2();
4068   }
4069 #endif
4070 
4071   // Always call even when there are not JVMTI environments yet, since environments
4072   // may be attached late and JVMTI must track phases of VM execution
4073   JvmtiExport::enter_live_phase();
4074 
4075   // Make perfmemory accessible
4076   PerfMemory::set_accessible(true);
4077 
4078   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4079   JvmtiExport::post_vm_initialized();
4080 
4081   JFR_ONLY(Jfr::on_create_vm_3();)
4082 
4083 #if INCLUDE_MANAGEMENT
4084   Management::initialize(THREAD);
4085 
4086   if (HAS_PENDING_EXCEPTION) {
4087     // management agent fails to start possibly due to
4088     // configuration problem and is responsible for printing
4089     // stack trace if appropriate. Simply exit VM.
4090     vm_exit(1);
4091   }
4092 #endif // INCLUDE_MANAGEMENT
4093 
4094   if (MemProfiling)                   MemProfiler::engage();
4095   StatSampler::engage();
4096   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4097 
4098   BiasedLocking::init();
4099 
4100 #if INCLUDE_RTM_OPT
4101   RTMLockingCounters::init();
4102 #endif
4103 
4104   call_postVMInitHook(THREAD);
4105   // The Java side of PostVMInitHook.run must deal with all
4106   // exceptions and provide means of diagnosis.
4107   if (HAS_PENDING_EXCEPTION) {
4108     CLEAR_PENDING_EXCEPTION;
4109   }
4110 
4111   {
4112     MutexLocker ml(PeriodicTask_lock);
4113     // Make sure the WatcherThread can be started by WatcherThread::start()
4114     // or by dynamic enrollment.
4115     WatcherThread::make_startable();
4116     // Start up the WatcherThread if there are any periodic tasks
4117     // NOTE:  All PeriodicTasks should be registered by now. If they
4118     //   aren't, late joiners might appear to start slowly (we might
4119     //   take a while to process their first tick).
4120     if (PeriodicTask::num_tasks() > 0) {
4121       WatcherThread::start();
4122     }
4123   }
4124 
4125   create_vm_timer.end();
4126 #ifdef ASSERT
4127   _vm_complete = true;
4128 #endif
4129 
4130   if (DumpSharedSpaces) {
4131     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4132     ShouldNotReachHere();
4133   }
4134 
4135   return JNI_OK;
4136 }
4137 
4138 // type for the Agent_OnLoad and JVM_OnLoad entry points
4139 extern "C" {
4140   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4141 }
4142 // Find a command line agent library and return its entry point for
4143 //         -agentlib:  -agentpath:   -Xrun
4144 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4145 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4146                                     const char *on_load_symbols[],
4147                                     size_t num_symbol_entries) {
4148   OnLoadEntry_t on_load_entry = NULL;
4149   void *library = NULL;
4150 
4151   if (!agent->valid()) {
4152     char buffer[JVM_MAXPATHLEN];
4153     char ebuf[1024] = "";
4154     const char *name = agent->name();
4155     const char *msg = "Could not find agent library ";
4156 
4157     // First check to see if agent is statically linked into executable
4158     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4159       library = agent->os_lib();
4160     } else if (agent->is_absolute_path()) {
4161       library = os::dll_load(name, ebuf, sizeof ebuf);
4162       if (library == NULL) {
4163         const char *sub_msg = " in absolute path, with error: ";
4164         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4165         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4166         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4167         // If we can't find the agent, exit.
4168         vm_exit_during_initialization(buf, NULL);
4169         FREE_C_HEAP_ARRAY(char, buf);
4170       }
4171     } else {
4172       // Try to load the agent from the standard dll directory
4173       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4174                              name)) {
4175         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4176       }
4177       if (library == NULL) { // Try the library path directory.
4178         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4179           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4180         }
4181         if (library == NULL) {
4182           const char *sub_msg = " on the library path, with error: ";
4183           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4184 
4185           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4186                        strlen(ebuf) + strlen(sub_msg2) + 1;
4187           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4188           if (!agent->is_instrument_lib()) {
4189             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4190           } else {
4191             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4192           }
4193           // If we can't find the agent, exit.
4194           vm_exit_during_initialization(buf, NULL);
4195           FREE_C_HEAP_ARRAY(char, buf);
4196         }
4197       }
4198     }
4199     agent->set_os_lib(library);
4200     agent->set_valid();
4201   }
4202 
4203   // Find the OnLoad function.
4204   on_load_entry =
4205     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4206                                                           false,
4207                                                           on_load_symbols,
4208                                                           num_symbol_entries));
4209   return on_load_entry;
4210 }
4211 
4212 // Find the JVM_OnLoad entry point
4213 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4214   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4215   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4216 }
4217 
4218 // Find the Agent_OnLoad entry point
4219 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4220   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4221   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4222 }
4223 
4224 // For backwards compatibility with -Xrun
4225 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4226 // treated like -agentpath:
4227 // Must be called before agent libraries are created
4228 void Threads::convert_vm_init_libraries_to_agents() {
4229   AgentLibrary* agent;
4230   AgentLibrary* next;
4231 
4232   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4233     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4234     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4235 
4236     // If there is an JVM_OnLoad function it will get called later,
4237     // otherwise see if there is an Agent_OnLoad
4238     if (on_load_entry == NULL) {
4239       on_load_entry = lookup_agent_on_load(agent);
4240       if (on_load_entry != NULL) {
4241         // switch it to the agent list -- so that Agent_OnLoad will be called,
4242         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4243         Arguments::convert_library_to_agent(agent);
4244       } else {
4245         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4246       }
4247     }
4248   }
4249 }
4250 
4251 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4252 // Invokes Agent_OnLoad
4253 // Called very early -- before JavaThreads exist
4254 void Threads::create_vm_init_agents() {
4255   extern struct JavaVM_ main_vm;
4256   AgentLibrary* agent;
4257 
4258   JvmtiExport::enter_onload_phase();
4259 
4260   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4261     // CDS dumping does not support native JVMTI agent.
4262     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4263     if (Arguments::is_dumping_archive()) {
4264       if(!agent->is_instrument_lib()) {
4265         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4266       } else if (!AllowArchivingWithJavaAgent) {
4267         vm_exit_during_cds_dumping(
4268           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4269       }
4270     }
4271 
4272     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4273 
4274     if (on_load_entry != NULL) {
4275       // Invoke the Agent_OnLoad function
4276       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4277       if (err != JNI_OK) {
4278         vm_exit_during_initialization("agent library failed to init", agent->name());
4279       }
4280     } else {
4281       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4282     }
4283   }
4284 
4285   JvmtiExport::enter_primordial_phase();
4286 }
4287 
4288 extern "C" {
4289   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4290 }
4291 
4292 void Threads::shutdown_vm_agents() {
4293   // Send any Agent_OnUnload notifications
4294   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4295   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4296   extern struct JavaVM_ main_vm;
4297   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4298 
4299     // Find the Agent_OnUnload function.
4300     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4301                                                    os::find_agent_function(agent,
4302                                                    false,
4303                                                    on_unload_symbols,
4304                                                    num_symbol_entries));
4305 
4306     // Invoke the Agent_OnUnload function
4307     if (unload_entry != NULL) {
4308       JavaThread* thread = JavaThread::current();
4309       ThreadToNativeFromVM ttn(thread);
4310       HandleMark hm(thread);
4311       (*unload_entry)(&main_vm);
4312     }
4313   }
4314 }
4315 
4316 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4317 // Invokes JVM_OnLoad
4318 void Threads::create_vm_init_libraries() {
4319   extern struct JavaVM_ main_vm;
4320   AgentLibrary* agent;
4321 
4322   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4323     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4324 
4325     if (on_load_entry != NULL) {
4326       // Invoke the JVM_OnLoad function
4327       JavaThread* thread = JavaThread::current();
4328       ThreadToNativeFromVM ttn(thread);
4329       HandleMark hm(thread);
4330       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4331       if (err != JNI_OK) {
4332         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4333       }
4334     } else {
4335       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4336     }
4337   }
4338 }
4339 
4340 
4341 // Last thread running calls java.lang.Shutdown.shutdown()
4342 void JavaThread::invoke_shutdown_hooks() {
4343   HandleMark hm(this);
4344 
4345   // We could get here with a pending exception, if so clear it now.
4346   if (this->has_pending_exception()) {
4347     this->clear_pending_exception();
4348   }
4349 
4350   EXCEPTION_MARK;
4351   Klass* shutdown_klass =
4352     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4353                                       THREAD);
4354   if (shutdown_klass != NULL) {
4355     // SystemDictionary::resolve_or_null will return null if there was
4356     // an exception.  If we cannot load the Shutdown class, just don't
4357     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4358     // won't be run.  Note that if a shutdown hook was registered,
4359     // the Shutdown class would have already been loaded
4360     // (Runtime.addShutdownHook will load it).
4361     JavaValue result(T_VOID);
4362     JavaCalls::call_static(&result,
4363                            shutdown_klass,
4364                            vmSymbols::shutdown_name(),
4365                            vmSymbols::void_method_signature(),
4366                            THREAD);
4367   }
4368   CLEAR_PENDING_EXCEPTION;
4369 }
4370 
4371 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4372 // the program falls off the end of main(). Another VM exit path is through
4373 // vm_exit() when the program calls System.exit() to return a value or when
4374 // there is a serious error in VM. The two shutdown paths are not exactly
4375 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4376 // and VM_Exit op at VM level.
4377 //
4378 // Shutdown sequence:
4379 //   + Shutdown native memory tracking if it is on
4380 //   + Wait until we are the last non-daemon thread to execute
4381 //     <-- every thing is still working at this moment -->
4382 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4383 //        shutdown hooks
4384 //   + Call before_exit(), prepare for VM exit
4385 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4386 //        currently the only user of this mechanism is File.deleteOnExit())
4387 //      > stop StatSampler, watcher thread,
4388 //        post thread end and vm death events to JVMTI,
4389 //        stop signal thread
4390 //   + Call JavaThread::exit(), it will:
4391 //      > release JNI handle blocks, remove stack guard pages
4392 //      > remove this thread from Threads list
4393 //     <-- no more Java code from this thread after this point -->
4394 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4395 //     the compiler threads at safepoint
4396 //     <-- do not use anything that could get blocked by Safepoint -->
4397 //   + Disable tracing at JNI/JVM barriers
4398 //   + Set _vm_exited flag for threads that are still running native code
4399 //   + Call exit_globals()
4400 //      > deletes tty
4401 //      > deletes PerfMemory resources
4402 //   + Delete this thread
4403 //   + Return to caller
4404 
4405 bool Threads::destroy_vm() {
4406   JavaThread* thread = JavaThread::current();
4407 
4408 #ifdef ASSERT
4409   _vm_complete = false;
4410 #endif
4411   // Wait until we are the last non-daemon thread to execute
4412   { MonitorLocker nu(Threads_lock);
4413     while (Threads::number_of_non_daemon_threads() > 1)
4414       // This wait should make safepoint checks, wait without a timeout,
4415       // and wait as a suspend-equivalent condition.
4416       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4417   }
4418 
4419   EventShutdown e;
4420   if (e.should_commit()) {
4421     e.set_reason("No remaining non-daemon Java threads");
4422     e.commit();
4423   }
4424 
4425   // Hang forever on exit if we are reporting an error.
4426   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4427     os::infinite_sleep();
4428   }
4429   os::wait_for_keypress_at_exit();
4430 
4431   // run Java level shutdown hooks
4432   thread->invoke_shutdown_hooks();
4433 
4434   before_exit(thread);
4435 
4436   thread->exit(true);
4437 
4438   // Stop VM thread.
4439   {
4440     // 4945125 The vm thread comes to a safepoint during exit.
4441     // GC vm_operations can get caught at the safepoint, and the
4442     // heap is unparseable if they are caught. Grab the Heap_lock
4443     // to prevent this. The GC vm_operations will not be able to
4444     // queue until after the vm thread is dead. After this point,
4445     // we'll never emerge out of the safepoint before the VM exits.
4446 
4447     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4448 
4449     VMThread::wait_for_vm_thread_exit();
4450     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4451     VMThread::destroy();
4452   }
4453 
4454   // Now, all Java threads are gone except daemon threads. Daemon threads
4455   // running Java code or in VM are stopped by the Safepoint. However,
4456   // daemon threads executing native code are still running.  But they
4457   // will be stopped at native=>Java/VM barriers. Note that we can't
4458   // simply kill or suspend them, as it is inherently deadlock-prone.
4459 
4460   VM_Exit::set_vm_exited();
4461 
4462   // Clean up ideal graph printers after the VMThread has started
4463   // the final safepoint which will block all the Compiler threads.
4464   // Note that this Thread has already logically exited so the
4465   // clean_up() function's use of a JavaThreadIteratorWithHandle
4466   // would be a problem except set_vm_exited() has remembered the
4467   // shutdown thread which is granted a policy exception.
4468 #if defined(COMPILER2) && !defined(PRODUCT)
4469   IdealGraphPrinter::clean_up();
4470 #endif
4471 
4472   notify_vm_shutdown();
4473 
4474   // exit_globals() will delete tty
4475   exit_globals();
4476 
4477   // We are after VM_Exit::set_vm_exited() so we can't call
4478   // thread->smr_delete() or we will block on the Threads_lock.
4479   // Deleting the shutdown thread here is safe because another
4480   // JavaThread cannot have an active ThreadsListHandle for
4481   // this JavaThread.
4482   delete thread;
4483 
4484 #if INCLUDE_JVMCI
4485   if (JVMCICounterSize > 0) {
4486     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4487   }
4488 #endif
4489 
4490   LogConfiguration::finalize();
4491 
4492   return true;
4493 }
4494 
4495 
4496 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4497   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4498   return is_supported_jni_version(version);
4499 }
4500 
4501 
4502 jboolean Threads::is_supported_jni_version(jint version) {
4503   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4504   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4505   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4506   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4507   if (version == JNI_VERSION_9) return JNI_TRUE;
4508   if (version == JNI_VERSION_10) return JNI_TRUE;
4509   return JNI_FALSE;
4510 }
4511 
4512 
4513 void Threads::add(JavaThread* p, bool force_daemon) {
4514   // The threads lock must be owned at this point
4515   assert(Threads_lock->owned_by_self(), "must have threads lock");
4516 
4517   BarrierSet::barrier_set()->on_thread_attach(p);
4518 
4519   // Once a JavaThread is added to the Threads list, smr_delete() has
4520   // to be used to delete it. Otherwise we can just delete it directly.
4521   p->set_on_thread_list();
4522 
4523   _number_of_threads++;
4524   oop threadObj = p->threadObj();
4525   bool daemon = true;
4526   // Bootstrapping problem: threadObj can be null for initial
4527   // JavaThread (or for threads attached via JNI)
4528   if ((!force_daemon) && !is_daemon((threadObj))) {
4529     _number_of_non_daemon_threads++;
4530     daemon = false;
4531   }
4532 
4533   ThreadService::add_thread(p, daemon);
4534 
4535   // Maintain fast thread list
4536   ThreadsSMRSupport::add_thread(p);
4537 
4538   // Possible GC point.
4539   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4540 }
4541 
4542 void Threads::remove(JavaThread* p, bool is_daemon) {
4543 
4544   // Reclaim the ObjectMonitors from the om_in_use_list and om_free_list of the moribund thread.
4545   ObjectSynchronizer::om_flush(p);
4546 
4547   // Extra scope needed for Thread_lock, so we can check
4548   // that we do not remove thread without safepoint code notice
4549   { MonitorLocker ml(Threads_lock);
4550 
4551     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4552 
4553     // Maintain fast thread list
4554     ThreadsSMRSupport::remove_thread(p);
4555 
4556     _number_of_threads--;
4557     if (!is_daemon) {
4558       _number_of_non_daemon_threads--;
4559 
4560       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4561       // on destroy_vm will wake up.
4562       if (number_of_non_daemon_threads() == 1) {
4563         ml.notify_all();
4564       }
4565     }
4566     ThreadService::remove_thread(p, is_daemon);
4567 
4568     // Make sure that safepoint code disregard this thread. This is needed since
4569     // the thread might mess around with locks after this point. This can cause it
4570     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4571     // of this thread since it is removed from the queue.
4572     p->set_terminated_value();
4573   } // unlock Threads_lock
4574 
4575   // Since Events::log uses a lock, we grab it outside the Threads_lock
4576   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4577 }
4578 
4579 // Operations on the Threads list for GC.  These are not explicitly locked,
4580 // but the garbage collector must provide a safe context for them to run.
4581 // In particular, these things should never be called when the Threads_lock
4582 // is held by some other thread. (Note: the Safepoint abstraction also
4583 // uses the Threads_lock to guarantee this property. It also makes sure that
4584 // all threads gets blocked when exiting or starting).
4585 
4586 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4587   ALL_JAVA_THREADS(p) {
4588     p->oops_do(f, cf);
4589   }
4590   VMThread::vm_thread()->oops_do(f, cf);
4591 }
4592 
4593 void Threads::change_thread_claim_token() {
4594   if (++_thread_claim_token == 0) {
4595     // On overflow of the token counter, there is a risk of future
4596     // collisions between a new global token value and a stale token
4597     // for a thread, because not all iterations visit all threads.
4598     // (Though it's pretty much a theoretical concern for non-trivial
4599     // token counter sizes.)  To deal with the possibility, reset all
4600     // the thread tokens to zero on global token overflow.
4601     struct ResetClaims : public ThreadClosure {
4602       virtual void do_thread(Thread* t) {
4603         t->claim_threads_do(false, 0);
4604       }
4605     } reset_claims;
4606     Threads::threads_do(&reset_claims);
4607     // On overflow, update the global token to non-zero, to
4608     // avoid the special "never claimed" initial thread value.
4609     _thread_claim_token = 1;
4610   }
4611 }
4612 
4613 #ifdef ASSERT
4614 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4615   const uintx token = t->threads_do_token();
4616   assert(token == expected,
4617          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4618          UINTX_FORMAT, kind, p2i(t), token, expected);
4619 }
4620 
4621 void Threads::assert_all_threads_claimed() {
4622   ALL_JAVA_THREADS(p) {
4623     assert_thread_claimed("Thread", p, _thread_claim_token);
4624   }
4625   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4626 }
4627 #endif // ASSERT
4628 
4629 class ParallelOopsDoThreadClosure : public ThreadClosure {
4630 private:
4631   OopClosure* _f;
4632   CodeBlobClosure* _cf;
4633 public:
4634   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4635   void do_thread(Thread* t) {
4636     t->oops_do(_f, _cf);
4637   }
4638 };
4639 
4640 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4641   ParallelOopsDoThreadClosure tc(f, cf);
4642   possibly_parallel_threads_do(is_par, &tc);
4643 }
4644 
4645 void Threads::nmethods_do(CodeBlobClosure* cf) {
4646   ALL_JAVA_THREADS(p) {
4647     // This is used by the code cache sweeper to mark nmethods that are active
4648     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4649     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4650     if(!p->is_Code_cache_sweeper_thread()) {
4651       p->nmethods_do(cf);
4652     }
4653   }
4654 }
4655 
4656 void Threads::metadata_do(MetadataClosure* f) {
4657   ALL_JAVA_THREADS(p) {
4658     p->metadata_do(f);
4659   }
4660 }
4661 
4662 class ThreadHandlesClosure : public ThreadClosure {
4663   void (*_f)(Metadata*);
4664  public:
4665   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4666   virtual void do_thread(Thread* thread) {
4667     thread->metadata_handles_do(_f);
4668   }
4669 };
4670 
4671 void Threads::metadata_handles_do(void f(Metadata*)) {
4672   // Only walk the Handles in Thread.
4673   ThreadHandlesClosure handles_closure(f);
4674   threads_do(&handles_closure);
4675 }
4676 
4677 // Get count Java threads that are waiting to enter the specified monitor.
4678 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4679                                                          int count,
4680                                                          address monitor) {
4681   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4682 
4683   int i = 0;
4684   DO_JAVA_THREADS(t_list, p) {
4685     if (!p->can_call_java()) continue;
4686 
4687     address pending = (address)p->current_pending_monitor();
4688     if (pending == monitor) {             // found a match
4689       if (i < count) result->append(p);   // save the first count matches
4690       i++;
4691     }
4692   }
4693 
4694   return result;
4695 }
4696 
4697 
4698 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4699                                                       address owner) {
4700   // NULL owner means not locked so we can skip the search
4701   if (owner == NULL) return NULL;
4702 
4703   DO_JAVA_THREADS(t_list, p) {
4704     // first, see if owner is the address of a Java thread
4705     if (owner == (address)p) return p;
4706   }
4707 
4708   // Cannot assert on lack of success here since this function may be
4709   // used by code that is trying to report useful problem information
4710   // like deadlock detection.
4711   if (UseHeavyMonitors) return NULL;
4712 
4713   // If we didn't find a matching Java thread and we didn't force use of
4714   // heavyweight monitors, then the owner is the stack address of the
4715   // Lock Word in the owning Java thread's stack.
4716   //
4717   JavaThread* the_owner = NULL;
4718   DO_JAVA_THREADS(t_list, q) {
4719     if (q->is_lock_owned(owner)) {
4720       the_owner = q;
4721       break;
4722     }
4723   }
4724 
4725   // cannot assert on lack of success here; see above comment
4726   return the_owner;
4727 }
4728 
4729 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4730 void Threads::print_on(outputStream* st, bool print_stacks,
4731                        bool internal_format, bool print_concurrent_locks,
4732                        bool print_extended_info) {
4733   char buf[32];
4734   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4735 
4736   st->print_cr("Full thread dump %s (%s %s):",
4737                VM_Version::vm_name(),
4738                VM_Version::vm_release(),
4739                VM_Version::vm_info_string());
4740   st->cr();
4741 
4742 #if INCLUDE_SERVICES
4743   // Dump concurrent locks
4744   ConcurrentLocksDump concurrent_locks;
4745   if (print_concurrent_locks) {
4746     concurrent_locks.dump_at_safepoint();
4747   }
4748 #endif // INCLUDE_SERVICES
4749 
4750   ThreadsSMRSupport::print_info_on(st);
4751   st->cr();
4752 
4753   ALL_JAVA_THREADS(p) {
4754     ResourceMark rm;
4755     p->print_on(st, print_extended_info);
4756     if (print_stacks) {
4757       if (internal_format) {
4758         p->trace_stack();
4759       } else {
4760         p->print_stack_on(st);
4761       }
4762     }
4763     st->cr();
4764 #if INCLUDE_SERVICES
4765     if (print_concurrent_locks) {
4766       concurrent_locks.print_locks_on(p, st);
4767     }
4768 #endif // INCLUDE_SERVICES
4769   }
4770 
4771   VMThread::vm_thread()->print_on(st);
4772   st->cr();
4773   Universe::heap()->print_gc_threads_on(st);
4774   WatcherThread* wt = WatcherThread::watcher_thread();
4775   if (wt != NULL) {
4776     wt->print_on(st);
4777     st->cr();
4778   }
4779 
4780   st->flush();
4781 }
4782 
4783 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4784                              int buflen, bool* found_current) {
4785   if (this_thread != NULL) {
4786     bool is_current = (current == this_thread);
4787     *found_current = *found_current || is_current;
4788     st->print("%s", is_current ? "=>" : "  ");
4789 
4790     st->print(PTR_FORMAT, p2i(this_thread));
4791     st->print(" ");
4792     this_thread->print_on_error(st, buf, buflen);
4793     st->cr();
4794   }
4795 }
4796 
4797 class PrintOnErrorClosure : public ThreadClosure {
4798   outputStream* _st;
4799   Thread* _current;
4800   char* _buf;
4801   int _buflen;
4802   bool* _found_current;
4803  public:
4804   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4805                       int buflen, bool* found_current) :
4806    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4807 
4808   virtual void do_thread(Thread* thread) {
4809     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4810   }
4811 };
4812 
4813 // Threads::print_on_error() is called by fatal error handler. It's possible
4814 // that VM is not at safepoint and/or current thread is inside signal handler.
4815 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4816 // memory (even in resource area), it might deadlock the error handler.
4817 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4818                              int buflen) {
4819   ThreadsSMRSupport::print_info_on(st);
4820   st->cr();
4821 
4822   bool found_current = false;
4823   st->print_cr("Java Threads: ( => current thread )");
4824   ALL_JAVA_THREADS(thread) {
4825     print_on_error(thread, st, current, buf, buflen, &found_current);
4826   }
4827   st->cr();
4828 
4829   st->print_cr("Other Threads:");
4830   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4831   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4832 
4833   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4834   Universe::heap()->gc_threads_do(&print_closure);
4835 
4836   if (!found_current) {
4837     st->cr();
4838     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4839     current->print_on_error(st, buf, buflen);
4840     st->cr();
4841   }
4842   st->cr();
4843 
4844   st->print_cr("Threads with active compile tasks:");
4845   print_threads_compiling(st, buf, buflen);
4846 }
4847 
4848 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4849   ALL_JAVA_THREADS(thread) {
4850     if (thread->is_Compiler_thread()) {
4851       CompilerThread* ct = (CompilerThread*) thread;
4852 
4853       // Keep task in local variable for NULL check.
4854       // ct->_task might be set to NULL by concurring compiler thread
4855       // because it completed the compilation. The task is never freed,
4856       // though, just returned to a free list.
4857       CompileTask* task = ct->task();
4858       if (task != NULL) {
4859         thread->print_name_on_error(st, buf, buflen);
4860         st->print("  ");
4861         task->print(st, NULL, short_form, true);
4862       }
4863     }
4864   }
4865 }
4866 
4867 
4868 // Internal SpinLock and Mutex
4869 // Based on ParkEvent
4870 
4871 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4872 //
4873 // We employ SpinLocks _only for low-contention, fixed-length
4874 // short-duration critical sections where we're concerned
4875 // about native mutex_t or HotSpot Mutex:: latency.
4876 // The mux construct provides a spin-then-block mutual exclusion
4877 // mechanism.
4878 //
4879 // Testing has shown that contention on the ListLock guarding gFreeList
4880 // is common.  If we implement ListLock as a simple SpinLock it's common
4881 // for the JVM to devolve to yielding with little progress.  This is true
4882 // despite the fact that the critical sections protected by ListLock are
4883 // extremely short.
4884 //
4885 // TODO-FIXME: ListLock should be of type SpinLock.
4886 // We should make this a 1st-class type, integrated into the lock
4887 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4888 // should have sufficient padding to avoid false-sharing and excessive
4889 // cache-coherency traffic.
4890 
4891 
4892 typedef volatile int SpinLockT;
4893 
4894 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4895   if (Atomic::cmpxchg(adr, 0, 1) == 0) {
4896     return;   // normal fast-path return
4897   }
4898 
4899   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4900   int ctr = 0;
4901   int Yields = 0;
4902   for (;;) {
4903     while (*adr != 0) {
4904       ++ctr;
4905       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4906         if (Yields > 5) {
4907           os::naked_short_sleep(1);
4908         } else {
4909           os::naked_yield();
4910           ++Yields;
4911         }
4912       } else {
4913         SpinPause();
4914       }
4915     }
4916     if (Atomic::cmpxchg(adr, 0, 1) == 0) return;
4917   }
4918 }
4919 
4920 void Thread::SpinRelease(volatile int * adr) {
4921   assert(*adr != 0, "invariant");
4922   OrderAccess::fence();      // guarantee at least release consistency.
4923   // Roach-motel semantics.
4924   // It's safe if subsequent LDs and STs float "up" into the critical section,
4925   // but prior LDs and STs within the critical section can't be allowed
4926   // to reorder or float past the ST that releases the lock.
4927   // Loads and stores in the critical section - which appear in program
4928   // order before the store that releases the lock - must also appear
4929   // before the store that releases the lock in memory visibility order.
4930   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4931   // the ST of 0 into the lock-word which releases the lock, so fence
4932   // more than covers this on all platforms.
4933   *adr = 0;
4934 }
4935 
4936 // muxAcquire and muxRelease:
4937 //
4938 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4939 //    The LSB of the word is set IFF the lock is held.
4940 //    The remainder of the word points to the head of a singly-linked list
4941 //    of threads blocked on the lock.
4942 //
4943 // *  The current implementation of muxAcquire-muxRelease uses its own
4944 //    dedicated Thread._MuxEvent instance.  If we're interested in
4945 //    minimizing the peak number of extant ParkEvent instances then
4946 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4947 //    as certain invariants were satisfied.  Specifically, care would need
4948 //    to be taken with regards to consuming unpark() "permits".
4949 //    A safe rule of thumb is that a thread would never call muxAcquire()
4950 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4951 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4952 //    consume an unpark() permit intended for monitorenter, for instance.
4953 //    One way around this would be to widen the restricted-range semaphore
4954 //    implemented in park().  Another alternative would be to provide
4955 //    multiple instances of the PlatformEvent() for each thread.  One
4956 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4957 //
4958 // *  Usage:
4959 //    -- Only as leaf locks
4960 //    -- for short-term locking only as muxAcquire does not perform
4961 //       thread state transitions.
4962 //
4963 // Alternatives:
4964 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4965 //    but with parking or spin-then-park instead of pure spinning.
4966 // *  Use Taura-Oyama-Yonenzawa locks.
4967 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4968 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4969 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4970 //    acquiring threads use timers (ParkTimed) to detect and recover from
4971 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4972 //    boundaries by using placement-new.
4973 // *  Augment MCS with advisory back-link fields maintained with CAS().
4974 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4975 //    The validity of the backlinks must be ratified before we trust the value.
4976 //    If the backlinks are invalid the exiting thread must back-track through the
4977 //    the forward links, which are always trustworthy.
4978 // *  Add a successor indication.  The LockWord is currently encoded as
4979 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4980 //    to provide the usual futile-wakeup optimization.
4981 //    See RTStt for details.
4982 //
4983 
4984 
4985 const intptr_t LOCKBIT = 1;
4986 
4987 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4988   intptr_t w = Atomic::cmpxchg(Lock, (intptr_t)0, LOCKBIT);
4989   if (w == 0) return;
4990   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
4991     return;
4992   }
4993 
4994   ParkEvent * const Self = Thread::current()->_MuxEvent;
4995   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4996   for (;;) {
4997     int its = (os::is_MP() ? 100 : 0) + 1;
4998 
4999     // Optional spin phase: spin-then-park strategy
5000     while (--its >= 0) {
5001       w = *Lock;
5002       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5003         return;
5004       }
5005     }
5006 
5007     Self->reset();
5008     Self->OnList = intptr_t(Lock);
5009     // The following fence() isn't _strictly necessary as the subsequent
5010     // CAS() both serializes execution and ratifies the fetched *Lock value.
5011     OrderAccess::fence();
5012     for (;;) {
5013       w = *Lock;
5014       if ((w & LOCKBIT) == 0) {
5015         if (Atomic::cmpxchg(Lock, w, w|LOCKBIT) == w) {
5016           Self->OnList = 0;   // hygiene - allows stronger asserts
5017           return;
5018         }
5019         continue;      // Interference -- *Lock changed -- Just retry
5020       }
5021       assert(w & LOCKBIT, "invariant");
5022       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5023       if (Atomic::cmpxchg(Lock, w, intptr_t(Self)|LOCKBIT) == w) break;
5024     }
5025 
5026     while (Self->OnList != 0) {
5027       Self->park();
5028     }
5029   }
5030 }
5031 
5032 // Release() must extract a successor from the list and then wake that thread.
5033 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5034 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5035 // Release() would :
5036 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5037 // (B) Extract a successor from the private list "in-hand"
5038 // (C) attempt to CAS() the residual back into *Lock over null.
5039 //     If there were any newly arrived threads and the CAS() would fail.
5040 //     In that case Release() would detach the RATs, re-merge the list in-hand
5041 //     with the RATs and repeat as needed.  Alternately, Release() might
5042 //     detach and extract a successor, but then pass the residual list to the wakee.
5043 //     The wakee would be responsible for reattaching and remerging before it
5044 //     competed for the lock.
5045 //
5046 // Both "pop" and DMR are immune from ABA corruption -- there can be
5047 // multiple concurrent pushers, but only one popper or detacher.
5048 // This implementation pops from the head of the list.  This is unfair,
5049 // but tends to provide excellent throughput as hot threads remain hot.
5050 // (We wake recently run threads first).
5051 //
5052 // All paths through muxRelease() will execute a CAS.
5053 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5054 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5055 // executed within the critical section are complete and globally visible before the
5056 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5057 void Thread::muxRelease(volatile intptr_t * Lock)  {
5058   for (;;) {
5059     const intptr_t w = Atomic::cmpxchg(Lock, LOCKBIT, (intptr_t)0);
5060     assert(w & LOCKBIT, "invariant");
5061     if (w == LOCKBIT) return;
5062     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5063     assert(List != NULL, "invariant");
5064     assert(List->OnList == intptr_t(Lock), "invariant");
5065     ParkEvent * const nxt = List->ListNext;
5066     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5067 
5068     // The following CAS() releases the lock and pops the head element.
5069     // The CAS() also ratifies the previously fetched lock-word value.
5070     if (Atomic::cmpxchg(Lock, w, intptr_t(nxt)) != w) {
5071       continue;
5072     }
5073     List->OnList = 0;
5074     OrderAccess::fence();
5075     List->unpark();
5076     return;
5077   }
5078 }
5079 
5080 
5081 void Threads::verify() {
5082   ALL_JAVA_THREADS(p) {
5083     p->verify();
5084   }
5085   VMThread* thread = VMThread::vm_thread();
5086   if (thread != NULL) thread->verify();
5087 }