1 /*
   2  * Copyright 1999-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 # include "incls/_precompiled.incl"
  26 # include "incls/_c1_IR.cpp.incl"
  27 
  28 
  29 // Implementation of XHandlers
  30 //
  31 // Note: This code could eventually go away if we are
  32 //       just using the ciExceptionHandlerStream.
  33 
  34 XHandlers::XHandlers(ciMethod* method) : _list(method->exception_table_length()) {
  35   ciExceptionHandlerStream s(method);
  36   while (!s.is_done()) {
  37     _list.append(new XHandler(s.handler()));
  38     s.next();
  39   }
  40   assert(s.count() == method->exception_table_length(), "exception table lengths inconsistent");
  41 }
  42 
  43 // deep copy of all XHandler contained in list
  44 XHandlers::XHandlers(XHandlers* other) :
  45   _list(other->length())
  46 {
  47   for (int i = 0; i < other->length(); i++) {
  48     _list.append(new XHandler(other->handler_at(i)));
  49   }
  50 }
  51 
  52 // Returns whether a particular exception type can be caught.  Also
  53 // returns true if klass is unloaded or any exception handler
  54 // classes are unloaded.  type_is_exact indicates whether the throw
  55 // is known to be exactly that class or it might throw a subtype.
  56 bool XHandlers::could_catch(ciInstanceKlass* klass, bool type_is_exact) const {
  57   // the type is unknown so be conservative
  58   if (!klass->is_loaded()) {
  59     return true;
  60   }
  61 
  62   for (int i = 0; i < length(); i++) {
  63     XHandler* handler = handler_at(i);
  64     if (handler->is_catch_all()) {
  65       // catch of ANY
  66       return true;
  67     }
  68     ciInstanceKlass* handler_klass = handler->catch_klass();
  69     // if it's unknown it might be catchable
  70     if (!handler_klass->is_loaded()) {
  71       return true;
  72     }
  73     // if the throw type is definitely a subtype of the catch type
  74     // then it can be caught.
  75     if (klass->is_subtype_of(handler_klass)) {
  76       return true;
  77     }
  78     if (!type_is_exact) {
  79       // If the type isn't exactly known then it can also be caught by
  80       // catch statements where the inexact type is a subtype of the
  81       // catch type.
  82       // given: foo extends bar extends Exception
  83       // throw bar can be caught by catch foo, catch bar, and catch
  84       // Exception, however it can't be caught by any handlers without
  85       // bar in its type hierarchy.
  86       if (handler_klass->is_subtype_of(klass)) {
  87         return true;
  88       }
  89     }
  90   }
  91 
  92   return false;
  93 }
  94 
  95 
  96 bool XHandlers::equals(XHandlers* others) const {
  97   if (others == NULL) return false;
  98   if (length() != others->length()) return false;
  99 
 100   for (int i = 0; i < length(); i++) {
 101     if (!handler_at(i)->equals(others->handler_at(i))) return false;
 102   }
 103   return true;
 104 }
 105 
 106 bool XHandler::equals(XHandler* other) const {
 107   assert(entry_pco() != -1 && other->entry_pco() != -1, "must have entry_pco");
 108 
 109   if (entry_pco() != other->entry_pco()) return false;
 110   if (scope_count() != other->scope_count()) return false;
 111   if (_desc != other->_desc) return false;
 112 
 113   assert(entry_block() == other->entry_block(), "entry_block must be equal when entry_pco is equal");
 114   return true;
 115 }
 116 
 117 
 118 // Implementation of IRScope
 119 
 120 BlockBegin* IRScope::header_block(BlockBegin* entry, BlockBegin::Flag f, ValueStack* state) {
 121   if (entry == NULL) return NULL;
 122   assert(entry->is_set(f), "entry/flag mismatch");
 123   // create header block
 124   BlockBegin* h = new BlockBegin(entry->bci());
 125   BlockEnd* g = new Goto(entry, false);
 126   h->set_next(g, entry->bci());
 127   h->set_end(g);
 128   h->set(f);
 129   // setup header block end state
 130   ValueStack* s = state->copy(); // can use copy since stack is empty (=> no phis)
 131   assert(s->stack_is_empty(), "must have empty stack at entry point");
 132   g->set_state(s);
 133   return h;
 134 }
 135 
 136 
 137 BlockBegin* IRScope::build_graph(Compilation* compilation, int osr_bci) {
 138   GraphBuilder gm(compilation, this);
 139   NOT_PRODUCT(if (PrintValueNumbering && Verbose) gm.print_stats());
 140   if (compilation->bailed_out()) return NULL;
 141   return gm.start();
 142 }
 143 
 144 
 145 IRScope::IRScope(Compilation* compilation, IRScope* caller, int caller_bci, ciMethod* method, int osr_bci, bool create_graph)
 146 : _callees(2)
 147 , _compilation(compilation)
 148 , _lock_stack_size(-1)
 149 , _requires_phi_function(method->max_locals())
 150 {
 151   _caller             = caller;
 152   _caller_bci         = caller == NULL ? -1 : caller_bci;
 153   _caller_state       = NULL; // Must be set later if needed
 154   _level              = caller == NULL ?  0 : caller->level() + 1;
 155   _method             = method;
 156   _xhandlers          = new XHandlers(method);
 157   _number_of_locks    = 0;
 158   _monitor_pairing_ok = method->has_balanced_monitors();
 159   _start              = NULL;
 160 
 161   if (osr_bci == -1) {
 162     _requires_phi_function.clear();
 163   } else {
 164         // selective creation of phi functions is not possibel in osr-methods
 165     _requires_phi_function.set_range(0, method->max_locals());
 166   }
 167 
 168   assert(method->holder()->is_loaded() , "method holder must be loaded");
 169 
 170   // build graph if monitor pairing is ok
 171   if (create_graph && monitor_pairing_ok()) _start = build_graph(compilation, osr_bci);
 172 }
 173 
 174 
 175 int IRScope::max_stack() const {
 176   int my_max = method()->max_stack();
 177   int callee_max = 0;
 178   for (int i = 0; i < number_of_callees(); i++) {
 179     callee_max = MAX2(callee_max, callee_no(i)->max_stack());
 180   }
 181   return my_max + callee_max;
 182 }
 183 
 184 
 185 void IRScope::compute_lock_stack_size() {
 186   if (!InlineMethodsWithExceptionHandlers) {
 187     _lock_stack_size = 0;
 188     return;
 189   }
 190 
 191   // Figure out whether we have to preserve expression stack elements
 192   // for parent scopes, and if so, how many
 193   IRScope* cur_scope = this;
 194   while (cur_scope != NULL && !cur_scope->xhandlers()->has_handlers()) {
 195     cur_scope = cur_scope->caller();
 196   }
 197   _lock_stack_size = (cur_scope == NULL ? 0 :
 198                       (cur_scope->caller_state() == NULL ? 0 :
 199                        cur_scope->caller_state()->stack_size()));
 200 }
 201 
 202 int IRScope::top_scope_bci() const {
 203   assert(!is_top_scope(), "no correct answer for top scope possible");
 204   const IRScope* scope = this;
 205   while (!scope->caller()->is_top_scope()) {
 206     scope = scope->caller();
 207   }
 208   return scope->caller_bci();
 209 }
 210 
 211 
 212 
 213 // Implementation of CodeEmitInfo
 214 
 215 // Stack must be NON-null
 216 CodeEmitInfo::CodeEmitInfo(int bci, ValueStack* stack, XHandlers* exception_handlers)
 217   : _scope(stack->scope())
 218   , _bci(bci)
 219   , _scope_debug_info(NULL)
 220   , _oop_map(NULL)
 221   , _stack(stack)
 222   , _exception_handlers(exception_handlers)
 223   , _next(NULL)
 224   , _id(-1) {
 225   assert(_stack != NULL, "must be non null");
 226   assert(_bci == SynchronizationEntryBCI || Bytecodes::is_defined(scope()->method()->java_code_at_bci(_bci)), "make sure bci points at a real bytecode");
 227 }
 228 
 229 
 230 CodeEmitInfo::CodeEmitInfo(CodeEmitInfo* info, bool lock_stack_only)
 231   : _scope(info->_scope)
 232   , _exception_handlers(NULL)
 233   , _bci(info->_bci)
 234   , _scope_debug_info(NULL)
 235   , _oop_map(NULL) {
 236   if (lock_stack_only) {
 237     if (info->_stack != NULL) {
 238       _stack = info->_stack->copy_locks();
 239     } else {
 240       _stack = NULL;
 241     }
 242   } else {
 243     _stack = info->_stack;
 244   }
 245 
 246   // deep copy of exception handlers
 247   if (info->_exception_handlers != NULL) {
 248     _exception_handlers = new XHandlers(info->_exception_handlers);
 249   }
 250 }
 251 
 252 
 253 void CodeEmitInfo::record_debug_info(DebugInformationRecorder* recorder, int pc_offset) {
 254   // record the safepoint before recording the debug info for enclosing scopes
 255   recorder->add_safepoint(pc_offset, _oop_map->deep_copy());
 256   _scope_debug_info->record_debug_info(recorder, pc_offset);
 257   recorder->end_safepoint(pc_offset);
 258 }
 259 
 260 
 261 void CodeEmitInfo::add_register_oop(LIR_Opr opr) {
 262   assert(_oop_map != NULL, "oop map must already exist");
 263   assert(opr->is_single_cpu(), "should not call otherwise");
 264 
 265   int frame_size = frame_map()->framesize();
 266   int arg_count = frame_map()->oop_map_arg_count();
 267   VMReg name = frame_map()->regname(opr);
 268   _oop_map->set_oop(name);
 269 }
 270 
 271 
 272 
 273 
 274 // Implementation of IR
 275 
 276 IR::IR(Compilation* compilation, ciMethod* method, int osr_bci) :
 277     _locals_size(in_WordSize(-1))
 278   , _num_loops(0) {
 279   // initialize data structures
 280   ValueType::initialize();
 281   Instruction::initialize();
 282   BlockBegin::initialize();
 283   GraphBuilder::initialize();
 284   // setup IR fields
 285   _compilation = compilation;
 286   _top_scope   = new IRScope(compilation, NULL, -1, method, osr_bci, true);
 287   _code        = NULL;
 288 }
 289 
 290 
 291 void IR::optimize() {
 292   Optimizer opt(this);
 293   if (DoCEE) {
 294     opt.eliminate_conditional_expressions();
 295 #ifndef PRODUCT
 296     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after CEE"); print(true); }
 297     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after CEE"); print(false); }
 298 #endif
 299   }
 300   if (EliminateBlocks) {
 301     opt.eliminate_blocks();
 302 #ifndef PRODUCT
 303     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after block elimination"); print(true); }
 304     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after block elimination"); print(false); }
 305 #endif
 306   }
 307   if (EliminateNullChecks) {
 308     opt.eliminate_null_checks();
 309 #ifndef PRODUCT
 310     if (PrintCFG || PrintCFG1) { tty->print_cr("CFG after null check elimination"); print(true); }
 311     if (PrintIR  || PrintIR1 ) { tty->print_cr("IR after null check elimination"); print(false); }
 312 #endif
 313   }
 314 }
 315 
 316 
 317 static int sort_pairs(BlockPair** a, BlockPair** b) {
 318   if ((*a)->from() == (*b)->from()) {
 319     return (*a)->to()->block_id() - (*b)->to()->block_id();
 320   } else {
 321     return (*a)->from()->block_id() - (*b)->from()->block_id();
 322   }
 323 }
 324 
 325 
 326 class CriticalEdgeFinder: public BlockClosure {
 327   BlockPairList blocks;
 328   IR*       _ir;
 329 
 330  public:
 331   CriticalEdgeFinder(IR* ir): _ir(ir) {}
 332   void block_do(BlockBegin* bb) {
 333     BlockEnd* be = bb->end();
 334     int nos = be->number_of_sux();
 335     if (nos >= 2) {
 336       for (int i = 0; i < nos; i++) {
 337         BlockBegin* sux = be->sux_at(i);
 338         if (sux->number_of_preds() >= 2) {
 339           blocks.append(new BlockPair(bb, sux));
 340         }
 341       }
 342     }
 343   }
 344 
 345   void split_edges() {
 346     BlockPair* last_pair = NULL;
 347     blocks.sort(sort_pairs);
 348     for (int i = 0; i < blocks.length(); i++) {
 349       BlockPair* pair = blocks.at(i);
 350       if (last_pair != NULL && pair->is_same(last_pair)) continue;
 351       BlockBegin* from = pair->from();
 352       BlockBegin* to = pair->to();
 353       BlockBegin* split = from->insert_block_between(to);
 354 #ifndef PRODUCT
 355       if ((PrintIR || PrintIR1) && Verbose) {
 356         tty->print_cr("Split critical edge B%d -> B%d (new block B%d)",
 357                       from->block_id(), to->block_id(), split->block_id());
 358       }
 359 #endif
 360       last_pair = pair;
 361     }
 362   }
 363 };
 364 
 365 void IR::split_critical_edges() {
 366   CriticalEdgeFinder cef(this);
 367 
 368   iterate_preorder(&cef);
 369   cef.split_edges();
 370 }
 371 
 372 
 373 class UseCountComputer: public AllStatic {
 374  private:
 375   static void update_use_count(Value* n) {
 376     // Local instructions and Phis for expression stack values at the
 377     // start of basic blocks are not added to the instruction list
 378     if ((*n)->bci() == -99 && (*n)->as_Local() == NULL &&
 379         (*n)->as_Phi() == NULL) {
 380       assert(false, "a node was not appended to the graph");
 381       Compilation::current_compilation()->bailout("a node was not appended to the graph");
 382     }
 383     // use n's input if not visited before
 384     if (!(*n)->is_pinned() && !(*n)->has_uses()) {
 385       // note: a) if the instruction is pinned, it will be handled by compute_use_count
 386       //       b) if the instruction has uses, it was touched before
 387       //       => in both cases we don't need to update n's values
 388       uses_do(n);
 389     }
 390     // use n
 391     (*n)->_use_count++;
 392   }
 393 
 394   static Values* worklist;
 395   static int depth;
 396   enum {
 397     max_recurse_depth = 20
 398   };
 399 
 400   static void uses_do(Value* n) {
 401     depth++;
 402     if (depth > max_recurse_depth) {
 403       // don't allow the traversal to recurse too deeply
 404       worklist->push(*n);
 405     } else {
 406       (*n)->input_values_do(update_use_count);
 407       // special handling for some instructions
 408       if ((*n)->as_BlockEnd() != NULL) {
 409         // note on BlockEnd:
 410         //   must 'use' the stack only if the method doesn't
 411         //   terminate, however, in those cases stack is empty
 412         (*n)->state_values_do(update_use_count);
 413       }
 414     }
 415     depth--;
 416   }
 417 
 418   static void basic_compute_use_count(BlockBegin* b) {
 419     depth = 0;
 420     // process all pinned nodes as the roots of expression trees
 421     for (Instruction* n = b; n != NULL; n = n->next()) {
 422       if (n->is_pinned()) uses_do(&n);
 423     }
 424     assert(depth == 0, "should have counted back down");
 425 
 426     // now process any unpinned nodes which recursed too deeply
 427     while (worklist->length() > 0) {
 428       Value t = worklist->pop();
 429       if (!t->is_pinned()) {
 430         // compute the use count
 431         uses_do(&t);
 432 
 433         // pin the instruction so that LIRGenerator doesn't recurse
 434         // too deeply during it's evaluation.
 435         t->pin();
 436       }
 437     }
 438     assert(depth == 0, "should have counted back down");
 439   }
 440 
 441  public:
 442   static void compute(BlockList* blocks) {
 443     worklist = new Values();
 444     blocks->blocks_do(basic_compute_use_count);
 445     worklist = NULL;
 446   }
 447 };
 448 
 449 
 450 Values* UseCountComputer::worklist = NULL;
 451 int UseCountComputer::depth = 0;
 452 
 453 // helper macro for short definition of trace-output inside code
 454 #ifndef PRODUCT
 455   #define TRACE_LINEAR_SCAN(level, code)       \
 456     if (TraceLinearScanLevel >= level) {       \
 457       code;                                    \
 458     }
 459 #else
 460   #define TRACE_LINEAR_SCAN(level, code)
 461 #endif
 462 
 463 class ComputeLinearScanOrder : public StackObj {
 464  private:
 465   int        _max_block_id;        // the highest block_id of a block
 466   int        _num_blocks;          // total number of blocks (smaller than _max_block_id)
 467   int        _num_loops;           // total number of loops
 468   bool       _iterative_dominators;// method requires iterative computation of dominatiors
 469 
 470   BlockList* _linear_scan_order;   // the resulting list of blocks in correct order
 471 
 472   BitMap     _visited_blocks;      // used for recursive processing of blocks
 473   BitMap     _active_blocks;       // used for recursive processing of blocks
 474   BitMap     _dominator_blocks;    // temproary BitMap used for computation of dominator
 475   intArray   _forward_branches;    // number of incoming forward branches for each block
 476   BlockList  _loop_end_blocks;     // list of all loop end blocks collected during count_edges
 477   BitMap2D   _loop_map;            // two-dimensional bit set: a bit is set if a block is contained in a loop
 478   BlockList  _work_list;           // temporary list (used in mark_loops and compute_order)
 479 
 480   // accessors for _visited_blocks and _active_blocks
 481   void init_visited()                     { _active_blocks.clear(); _visited_blocks.clear(); }
 482   bool is_visited(BlockBegin* b) const    { return _visited_blocks.at(b->block_id()); }
 483   bool is_active(BlockBegin* b) const     { return _active_blocks.at(b->block_id()); }
 484   void set_visited(BlockBegin* b)         { assert(!is_visited(b), "already set"); _visited_blocks.set_bit(b->block_id()); }
 485   void set_active(BlockBegin* b)          { assert(!is_active(b), "already set");  _active_blocks.set_bit(b->block_id()); }
 486   void clear_active(BlockBegin* b)        { assert(is_active(b), "not already");   _active_blocks.clear_bit(b->block_id()); }
 487 
 488   // accessors for _forward_branches
 489   void inc_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) + 1); }
 490   int  dec_forward_branches(BlockBegin* b) { _forward_branches.at_put(b->block_id(), _forward_branches.at(b->block_id()) - 1); return _forward_branches.at(b->block_id()); }
 491 
 492   // accessors for _loop_map
 493   bool is_block_in_loop   (int loop_idx, BlockBegin* b) const { return _loop_map.at(loop_idx, b->block_id()); }
 494   void set_block_in_loop  (int loop_idx, BlockBegin* b)       { _loop_map.set_bit(loop_idx, b->block_id()); }
 495   void clear_block_in_loop(int loop_idx, int block_id)        { _loop_map.clear_bit(loop_idx, block_id); }
 496 
 497   // count edges between blocks
 498   void count_edges(BlockBegin* cur, BlockBegin* parent);
 499 
 500   // loop detection
 501   void mark_loops();
 502   void clear_non_natural_loops(BlockBegin* start_block);
 503   void assign_loop_depth(BlockBegin* start_block);
 504 
 505   // computation of final block order
 506   BlockBegin* common_dominator(BlockBegin* a, BlockBegin* b);
 507   void compute_dominator(BlockBegin* cur, BlockBegin* parent);
 508   int  compute_weight(BlockBegin* cur);
 509   bool ready_for_processing(BlockBegin* cur);
 510   void sort_into_work_list(BlockBegin* b);
 511   void append_block(BlockBegin* cur);
 512   void compute_order(BlockBegin* start_block);
 513 
 514   // fixup of dominators for non-natural loops
 515   bool compute_dominators_iter();
 516   void compute_dominators();
 517 
 518   // debug functions
 519   NOT_PRODUCT(void print_blocks();)
 520   DEBUG_ONLY(void verify();)
 521 
 522  public:
 523   ComputeLinearScanOrder(BlockBegin* start_block);
 524 
 525   // accessors for final result
 526   BlockList* linear_scan_order() const    { return _linear_scan_order; }
 527   int        num_loops() const            { return _num_loops; }
 528 };
 529 
 530 
 531 ComputeLinearScanOrder::ComputeLinearScanOrder(BlockBegin* start_block) :
 532   _max_block_id(BlockBegin::number_of_blocks()),
 533   _num_blocks(0),
 534   _num_loops(0),
 535   _iterative_dominators(false),
 536   _visited_blocks(_max_block_id),
 537   _active_blocks(_max_block_id),
 538   _dominator_blocks(_max_block_id),
 539   _forward_branches(_max_block_id, 0),
 540   _loop_end_blocks(8),
 541   _work_list(8),
 542   _linear_scan_order(NULL), // initialized later with correct size
 543   _loop_map(0, 0)           // initialized later with correct size
 544 {
 545   TRACE_LINEAR_SCAN(2, "***** computing linear-scan block order");
 546 
 547   init_visited();
 548   count_edges(start_block, NULL);
 549 
 550   if (_num_loops > 0) {
 551     mark_loops();
 552     clear_non_natural_loops(start_block);
 553     assign_loop_depth(start_block);
 554   }
 555 
 556   compute_order(start_block);
 557   compute_dominators();
 558 
 559   NOT_PRODUCT(print_blocks());
 560   DEBUG_ONLY(verify());
 561 }
 562 
 563 
 564 // Traverse the CFG:
 565 // * count total number of blocks
 566 // * count all incoming edges and backward incoming edges
 567 // * number loop header blocks
 568 // * create a list with all loop end blocks
 569 void ComputeLinearScanOrder::count_edges(BlockBegin* cur, BlockBegin* parent) {
 570   TRACE_LINEAR_SCAN(3, tty->print_cr("Enter count_edges for block B%d coming from B%d", cur->block_id(), parent != NULL ? parent->block_id() : -1));
 571   assert(cur->dominator() == NULL, "dominator already initialized");
 572 
 573   if (is_active(cur)) {
 574     TRACE_LINEAR_SCAN(3, tty->print_cr("backward branch"));
 575     assert(is_visited(cur), "block must be visisted when block is active");
 576     assert(parent != NULL, "must have parent");
 577 
 578     cur->set(BlockBegin::linear_scan_loop_header_flag);
 579     cur->set(BlockBegin::backward_branch_target_flag);
 580 
 581     parent->set(BlockBegin::linear_scan_loop_end_flag);
 582 
 583     // When a loop header is also the start of an exception handler, then the backward branch is
 584     // an exception edge. Because such edges are usually critical edges which cannot be split, the
 585     // loop must be excluded here from processing.
 586     if (cur->is_set(BlockBegin::exception_entry_flag)) {
 587       // Make sure that dominators are correct in this weird situation
 588       _iterative_dominators = true;
 589       return;
 590     }
 591     assert(parent->number_of_sux() == 1 && parent->sux_at(0) == cur,
 592            "loop end blocks must have one successor (critical edges are split)");
 593 
 594     _loop_end_blocks.append(parent);
 595     return;
 596   }
 597 
 598   // increment number of incoming forward branches
 599   inc_forward_branches(cur);
 600 
 601   if (is_visited(cur)) {
 602     TRACE_LINEAR_SCAN(3, tty->print_cr("block already visited"));
 603     return;
 604   }
 605 
 606   _num_blocks++;
 607   set_visited(cur);
 608   set_active(cur);
 609 
 610   // recursive call for all successors
 611   int i;
 612   for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 613     count_edges(cur->sux_at(i), cur);
 614   }
 615   for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 616     count_edges(cur->exception_handler_at(i), cur);
 617   }
 618 
 619   clear_active(cur);
 620 
 621   // Each loop has a unique number.
 622   // When multiple loops are nested, assign_loop_depth assumes that the
 623   // innermost loop has the lowest number. This is guaranteed by setting
 624   // the loop number after the recursive calls for the successors above
 625   // have returned.
 626   if (cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
 627     assert(cur->loop_index() == -1, "cannot set loop-index twice");
 628     TRACE_LINEAR_SCAN(3, tty->print_cr("Block B%d is loop header of loop %d", cur->block_id(), _num_loops));
 629 
 630     cur->set_loop_index(_num_loops);
 631     _num_loops++;
 632   }
 633 
 634   TRACE_LINEAR_SCAN(3, tty->print_cr("Finished count_edges for block B%d", cur->block_id()));
 635 }
 636 
 637 
 638 void ComputeLinearScanOrder::mark_loops() {
 639   TRACE_LINEAR_SCAN(3, tty->print_cr("----- marking loops"));
 640 
 641   _loop_map = BitMap2D(_num_loops, _max_block_id);
 642   _loop_map.clear();
 643 
 644   for (int i = _loop_end_blocks.length() - 1; i >= 0; i--) {
 645     BlockBegin* loop_end   = _loop_end_blocks.at(i);
 646     BlockBegin* loop_start = loop_end->sux_at(0);
 647     int         loop_idx   = loop_start->loop_index();
 648 
 649     TRACE_LINEAR_SCAN(3, tty->print_cr("Processing loop from B%d to B%d (loop %d):", loop_start->block_id(), loop_end->block_id(), loop_idx));
 650     assert(loop_end->is_set(BlockBegin::linear_scan_loop_end_flag), "loop end flag must be set");
 651     assert(loop_end->number_of_sux() == 1, "incorrect number of successors");
 652     assert(loop_start->is_set(BlockBegin::linear_scan_loop_header_flag), "loop header flag must be set");
 653     assert(loop_idx >= 0 && loop_idx < _num_loops, "loop index not set");
 654     assert(_work_list.is_empty(), "work list must be empty before processing");
 655 
 656     // add the end-block of the loop to the working list
 657     _work_list.push(loop_end);
 658     set_block_in_loop(loop_idx, loop_end);
 659     do {
 660       BlockBegin* cur = _work_list.pop();
 661 
 662       TRACE_LINEAR_SCAN(3, tty->print_cr("    processing B%d", cur->block_id()));
 663       assert(is_block_in_loop(loop_idx, cur), "bit in loop map must be set when block is in work list");
 664 
 665       // recursive processing of all predecessors ends when start block of loop is reached
 666       if (cur != loop_start && !cur->is_set(BlockBegin::osr_entry_flag)) {
 667         for (int j = cur->number_of_preds() - 1; j >= 0; j--) {
 668           BlockBegin* pred = cur->pred_at(j);
 669 
 670           if (!is_block_in_loop(loop_idx, pred) /*&& !pred->is_set(BlockBeginosr_entry_flag)*/) {
 671             // this predecessor has not been processed yet, so add it to work list
 672             TRACE_LINEAR_SCAN(3, tty->print_cr("    pushing B%d", pred->block_id()));
 673             _work_list.push(pred);
 674             set_block_in_loop(loop_idx, pred);
 675           }
 676         }
 677       }
 678     } while (!_work_list.is_empty());
 679   }
 680 }
 681 
 682 
 683 // check for non-natural loops (loops where the loop header does not dominate
 684 // all other loop blocks = loops with mulitple entries).
 685 // such loops are ignored
 686 void ComputeLinearScanOrder::clear_non_natural_loops(BlockBegin* start_block) {
 687   for (int i = _num_loops - 1; i >= 0; i--) {
 688     if (is_block_in_loop(i, start_block)) {
 689       // loop i contains the entry block of the method
 690       // -> this is not a natural loop, so ignore it
 691       TRACE_LINEAR_SCAN(2, tty->print_cr("Loop %d is non-natural, so it is ignored", i));
 692 
 693       for (int block_id = _max_block_id - 1; block_id >= 0; block_id--) {
 694         clear_block_in_loop(i, block_id);
 695       }
 696       _iterative_dominators = true;
 697     }
 698   }
 699 }
 700 
 701 void ComputeLinearScanOrder::assign_loop_depth(BlockBegin* start_block) {
 702   TRACE_LINEAR_SCAN(3, "----- computing loop-depth and weight");
 703   init_visited();
 704 
 705   assert(_work_list.is_empty(), "work list must be empty before processing");
 706   _work_list.append(start_block);
 707 
 708   do {
 709     BlockBegin* cur = _work_list.pop();
 710 
 711     if (!is_visited(cur)) {
 712       set_visited(cur);
 713       TRACE_LINEAR_SCAN(4, tty->print_cr("Computing loop depth for block B%d", cur->block_id()));
 714 
 715       // compute loop-depth and loop-index for the block
 716       assert(cur->loop_depth() == 0, "cannot set loop-depth twice");
 717       int i;
 718       int loop_depth = 0;
 719       int min_loop_idx = -1;
 720       for (i = _num_loops - 1; i >= 0; i--) {
 721         if (is_block_in_loop(i, cur)) {
 722           loop_depth++;
 723           min_loop_idx = i;
 724         }
 725       }
 726       cur->set_loop_depth(loop_depth);
 727       cur->set_loop_index(min_loop_idx);
 728 
 729       // append all unvisited successors to work list
 730       for (i = cur->number_of_sux() - 1; i >= 0; i--) {
 731         _work_list.append(cur->sux_at(i));
 732       }
 733       for (i = cur->number_of_exception_handlers() - 1; i >= 0; i--) {
 734         _work_list.append(cur->exception_handler_at(i));
 735       }
 736     }
 737   } while (!_work_list.is_empty());
 738 }
 739 
 740 
 741 BlockBegin* ComputeLinearScanOrder::common_dominator(BlockBegin* a, BlockBegin* b) {
 742   assert(a != NULL && b != NULL, "must have input blocks");
 743 
 744   _dominator_blocks.clear();
 745   while (a != NULL) {
 746     _dominator_blocks.set_bit(a->block_id());
 747     assert(a->dominator() != NULL || a == _linear_scan_order->at(0), "dominator must be initialized");
 748     a = a->dominator();
 749   }
 750   while (b != NULL && !_dominator_blocks.at(b->block_id())) {
 751     assert(b->dominator() != NULL || b == _linear_scan_order->at(0), "dominator must be initialized");
 752     b = b->dominator();
 753   }
 754 
 755   assert(b != NULL, "could not find dominator");
 756   return b;
 757 }
 758 
 759 void ComputeLinearScanOrder::compute_dominator(BlockBegin* cur, BlockBegin* parent) {
 760   if (cur->dominator() == NULL) {
 761     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: initializing dominator of B%d to B%d", cur->block_id(), parent->block_id()));
 762     cur->set_dominator(parent);
 763 
 764   } else if (!(cur->is_set(BlockBegin::linear_scan_loop_header_flag) && parent->is_set(BlockBegin::linear_scan_loop_end_flag))) {
 765     TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: computing dominator of B%d: common dominator of B%d and B%d is B%d", cur->block_id(), parent->block_id(), cur->dominator()->block_id(), common_dominator(cur->dominator(), parent)->block_id()));
 766     assert(cur->number_of_preds() > 1, "");
 767     cur->set_dominator(common_dominator(cur->dominator(), parent));
 768   }
 769 }
 770 
 771 
 772 int ComputeLinearScanOrder::compute_weight(BlockBegin* cur) {
 773   BlockBegin* single_sux = NULL;
 774   if (cur->number_of_sux() == 1) {
 775     single_sux = cur->sux_at(0);
 776   }
 777 
 778   // limit loop-depth to 15 bit (only for security reason, it will never be so big)
 779   int weight = (cur->loop_depth() & 0x7FFF) << 16;
 780 
 781   // general macro for short definition of weight flags
 782   // the first instance of INC_WEIGHT_IF has the highest priority
 783   int cur_bit = 15;
 784   #define INC_WEIGHT_IF(condition) if ((condition)) { weight |= (1 << cur_bit); } cur_bit--;
 785 
 786   // this is necessery for the (very rare) case that two successing blocks have
 787   // the same loop depth, but a different loop index (can happen for endless loops
 788   // with exception handlers)
 789   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_header_flag));
 790 
 791   // loop end blocks (blocks that end with a backward branch) are added
 792   // after all other blocks of the loop.
 793   INC_WEIGHT_IF(!cur->is_set(BlockBegin::linear_scan_loop_end_flag));
 794 
 795   // critical edge split blocks are prefered because than they have a bigger
 796   // proability to be completely empty
 797   INC_WEIGHT_IF(cur->is_set(BlockBegin::critical_edge_split_flag));
 798 
 799   // exceptions should not be thrown in normal control flow, so these blocks
 800   // are added as late as possible
 801   INC_WEIGHT_IF(cur->end()->as_Throw() == NULL  && (single_sux == NULL || single_sux->end()->as_Throw()  == NULL));
 802   INC_WEIGHT_IF(cur->end()->as_Return() == NULL && (single_sux == NULL || single_sux->end()->as_Return() == NULL));
 803 
 804   // exceptions handlers are added as late as possible
 805   INC_WEIGHT_IF(!cur->is_set(BlockBegin::exception_entry_flag));
 806 
 807   // guarantee that weight is > 0
 808   weight |= 1;
 809 
 810   #undef INC_WEIGHT_IF
 811   assert(cur_bit >= 0, "too many flags");
 812   assert(weight > 0, "weight cannot become negative");
 813 
 814   return weight;
 815 }
 816 
 817 bool ComputeLinearScanOrder::ready_for_processing(BlockBegin* cur) {
 818   // Discount the edge just traveled.
 819   // When the number drops to zero, all forward branches were processed
 820   if (dec_forward_branches(cur) != 0) {
 821     return false;
 822   }
 823 
 824   assert(_linear_scan_order->index_of(cur) == -1, "block already processed (block can be ready only once)");
 825   assert(_work_list.index_of(cur) == -1, "block already in work-list (block can be ready only once)");
 826   return true;
 827 }
 828 
 829 void ComputeLinearScanOrder::sort_into_work_list(BlockBegin* cur) {
 830   assert(_work_list.index_of(cur) == -1, "block already in work list");
 831 
 832   int cur_weight = compute_weight(cur);
 833 
 834   // the linear_scan_number is used to cache the weight of a block
 835   cur->set_linear_scan_number(cur_weight);
 836 
 837 #ifndef PRODUCT
 838   if (StressLinearScan) {
 839     _work_list.insert_before(0, cur);
 840     return;
 841   }
 842 #endif
 843 
 844   _work_list.append(NULL); // provide space for new element
 845 
 846   int insert_idx = _work_list.length() - 1;
 847   while (insert_idx > 0 && _work_list.at(insert_idx - 1)->linear_scan_number() > cur_weight) {
 848     _work_list.at_put(insert_idx, _work_list.at(insert_idx - 1));
 849     insert_idx--;
 850   }
 851   _work_list.at_put(insert_idx, cur);
 852 
 853   TRACE_LINEAR_SCAN(3, tty->print_cr("Sorted B%d into worklist. new worklist:", cur->block_id()));
 854   TRACE_LINEAR_SCAN(3, for (int i = 0; i < _work_list.length(); i++) tty->print_cr("%8d B%2d  weight:%6x", i, _work_list.at(i)->block_id(), _work_list.at(i)->linear_scan_number()));
 855 
 856 #ifdef ASSERT
 857   for (int i = 0; i < _work_list.length(); i++) {
 858     assert(_work_list.at(i)->linear_scan_number() > 0, "weight not set");
 859     assert(i == 0 || _work_list.at(i - 1)->linear_scan_number() <= _work_list.at(i)->linear_scan_number(), "incorrect order in worklist");
 860   }
 861 #endif
 862 }
 863 
 864 void ComputeLinearScanOrder::append_block(BlockBegin* cur) {
 865   TRACE_LINEAR_SCAN(3, tty->print_cr("appending block B%d (weight 0x%6x) to linear-scan order", cur->block_id(), cur->linear_scan_number()));
 866   assert(_linear_scan_order->index_of(cur) == -1, "cannot add the same block twice");
 867 
 868   // currently, the linear scan order and code emit order are equal.
 869   // therefore the linear_scan_number and the weight of a block must also
 870   // be equal.
 871   cur->set_linear_scan_number(_linear_scan_order->length());
 872   _linear_scan_order->append(cur);
 873 }
 874 
 875 void ComputeLinearScanOrder::compute_order(BlockBegin* start_block) {
 876   TRACE_LINEAR_SCAN(3, "----- computing final block order");
 877 
 878   // the start block is always the first block in the linear scan order
 879   _linear_scan_order = new BlockList(_num_blocks);
 880   append_block(start_block);
 881 
 882   assert(start_block->end()->as_Base() != NULL, "start block must end with Base-instruction");
 883   BlockBegin* std_entry = ((Base*)start_block->end())->std_entry();
 884   BlockBegin* osr_entry = ((Base*)start_block->end())->osr_entry();
 885 
 886   BlockBegin* sux_of_osr_entry = NULL;
 887   if (osr_entry != NULL) {
 888     // special handling for osr entry:
 889     // ignore the edge between the osr entry and its successor for processing
 890     // the osr entry block is added manually below
 891     assert(osr_entry->number_of_sux() == 1, "osr entry must have exactly one successor");
 892     assert(osr_entry->sux_at(0)->number_of_preds() >= 2, "sucessor of osr entry must have two predecessors (otherwise it is not present in normal control flow");
 893 
 894     sux_of_osr_entry = osr_entry->sux_at(0);
 895     dec_forward_branches(sux_of_osr_entry);
 896 
 897     compute_dominator(osr_entry, start_block);
 898     _iterative_dominators = true;
 899   }
 900   compute_dominator(std_entry, start_block);
 901 
 902   // start processing with standard entry block
 903   assert(_work_list.is_empty(), "list must be empty before processing");
 904 
 905   if (ready_for_processing(std_entry)) {
 906     sort_into_work_list(std_entry);
 907   } else {
 908     assert(false, "the std_entry must be ready for processing (otherwise, the method has no start block)");
 909   }
 910 
 911   do {
 912     BlockBegin* cur = _work_list.pop();
 913 
 914     if (cur == sux_of_osr_entry) {
 915       // the osr entry block is ignored in normal processing, it is never added to the
 916       // work list. Instead, it is added as late as possible manually here.
 917       append_block(osr_entry);
 918       compute_dominator(cur, osr_entry);
 919     }
 920     append_block(cur);
 921 
 922     int i;
 923     int num_sux = cur->number_of_sux();
 924     // changed loop order to get "intuitive" order of if- and else-blocks
 925     for (i = 0; i < num_sux; i++) {
 926       BlockBegin* sux = cur->sux_at(i);
 927       compute_dominator(sux, cur);
 928       if (ready_for_processing(sux)) {
 929         sort_into_work_list(sux);
 930       }
 931     }
 932     num_sux = cur->number_of_exception_handlers();
 933     for (i = 0; i < num_sux; i++) {
 934       BlockBegin* sux = cur->exception_handler_at(i);
 935       compute_dominator(sux, cur);
 936       if (ready_for_processing(sux)) {
 937         sort_into_work_list(sux);
 938       }
 939     }
 940   } while (_work_list.length() > 0);
 941 }
 942 
 943 
 944 bool ComputeLinearScanOrder::compute_dominators_iter() {
 945   bool changed = false;
 946   int num_blocks = _linear_scan_order->length();
 947 
 948   assert(_linear_scan_order->at(0)->dominator() == NULL, "must not have dominator");
 949   assert(_linear_scan_order->at(0)->number_of_preds() == 0, "must not have predecessors");
 950   for (int i = 1; i < num_blocks; i++) {
 951     BlockBegin* block = _linear_scan_order->at(i);
 952 
 953     BlockBegin* dominator = block->pred_at(0);
 954     int num_preds = block->number_of_preds();
 955     for (int i = 1; i < num_preds; i++) {
 956       dominator = common_dominator(dominator, block->pred_at(i));
 957     }
 958 
 959     if (dominator != block->dominator()) {
 960       TRACE_LINEAR_SCAN(4, tty->print_cr("DOM: updating dominator of B%d from B%d to B%d", block->block_id(), block->dominator()->block_id(), dominator->block_id()));
 961 
 962       block->set_dominator(dominator);
 963       changed = true;
 964     }
 965   }
 966   return changed;
 967 }
 968 
 969 void ComputeLinearScanOrder::compute_dominators() {
 970   TRACE_LINEAR_SCAN(3, tty->print_cr("----- computing dominators (iterative computation reqired: %d)", _iterative_dominators));
 971 
 972   // iterative computation of dominators is only required for methods with non-natural loops
 973   // and OSR-methods. For all other methods, the dominators computed when generating the
 974   // linear scan block order are correct.
 975   if (_iterative_dominators) {
 976     do {
 977       TRACE_LINEAR_SCAN(1, tty->print_cr("DOM: next iteration of fix-point calculation"));
 978     } while (compute_dominators_iter());
 979   }
 980 
 981   // check that dominators are correct
 982   assert(!compute_dominators_iter(), "fix point not reached");
 983 }
 984 
 985 
 986 #ifndef PRODUCT
 987 void ComputeLinearScanOrder::print_blocks() {
 988   if (TraceLinearScanLevel >= 2) {
 989     tty->print_cr("----- loop information:");
 990     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
 991       BlockBegin* cur = _linear_scan_order->at(block_idx);
 992 
 993       tty->print("%4d: B%2d: ", cur->linear_scan_number(), cur->block_id());
 994       for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
 995         tty->print ("%d ", is_block_in_loop(loop_idx, cur));
 996       }
 997       tty->print_cr(" -> loop_index: %2d, loop_depth: %2d", cur->loop_index(), cur->loop_depth());
 998     }
 999   }
1000 
1001   if (TraceLinearScanLevel >= 1) {
1002     tty->print_cr("----- linear-scan block order:");
1003     for (int block_idx = 0; block_idx < _linear_scan_order->length(); block_idx++) {
1004       BlockBegin* cur = _linear_scan_order->at(block_idx);
1005       tty->print("%4d: B%2d    loop: %2d  depth: %2d", cur->linear_scan_number(), cur->block_id(), cur->loop_index(), cur->loop_depth());
1006 
1007       tty->print(cur->is_set(BlockBegin::exception_entry_flag)         ? " ex" : "   ");
1008       tty->print(cur->is_set(BlockBegin::critical_edge_split_flag)     ? " ce" : "   ");
1009       tty->print(cur->is_set(BlockBegin::linear_scan_loop_header_flag) ? " lh" : "   ");
1010       tty->print(cur->is_set(BlockBegin::linear_scan_loop_end_flag)    ? " le" : "   ");
1011 
1012       if (cur->dominator() != NULL) {
1013         tty->print("    dom: B%d ", cur->dominator()->block_id());
1014       } else {
1015         tty->print("    dom: NULL ");
1016       }
1017 
1018       if (cur->number_of_preds() > 0) {
1019         tty->print("    preds: ");
1020         for (int j = 0; j < cur->number_of_preds(); j++) {
1021           BlockBegin* pred = cur->pred_at(j);
1022           tty->print("B%d ", pred->block_id());
1023         }
1024       }
1025       if (cur->number_of_sux() > 0) {
1026         tty->print("    sux: ");
1027         for (int j = 0; j < cur->number_of_sux(); j++) {
1028           BlockBegin* sux = cur->sux_at(j);
1029           tty->print("B%d ", sux->block_id());
1030         }
1031       }
1032       if (cur->number_of_exception_handlers() > 0) {
1033         tty->print("    ex: ");
1034         for (int j = 0; j < cur->number_of_exception_handlers(); j++) {
1035           BlockBegin* ex = cur->exception_handler_at(j);
1036           tty->print("B%d ", ex->block_id());
1037         }
1038       }
1039       tty->cr();
1040     }
1041   }
1042 }
1043 #endif
1044 
1045 #ifdef ASSERT
1046 void ComputeLinearScanOrder::verify() {
1047   assert(_linear_scan_order->length() == _num_blocks, "wrong number of blocks in list");
1048 
1049   if (StressLinearScan) {
1050     // blocks are scrambled when StressLinearScan is used
1051     return;
1052   }
1053 
1054   // check that all successors of a block have a higher linear-scan-number
1055   // and that all predecessors of a block have a lower linear-scan-number
1056   // (only backward branches of loops are ignored)
1057   int i;
1058   for (i = 0; i < _linear_scan_order->length(); i++) {
1059     BlockBegin* cur = _linear_scan_order->at(i);
1060 
1061     assert(cur->linear_scan_number() == i, "incorrect linear_scan_number");
1062     assert(cur->linear_scan_number() >= 0 && cur->linear_scan_number() == _linear_scan_order->index_of(cur), "incorrect linear_scan_number");
1063 
1064     int j;
1065     for (j = cur->number_of_sux() - 1; j >= 0; j--) {
1066       BlockBegin* sux = cur->sux_at(j);
1067 
1068       assert(sux->linear_scan_number() >= 0 && sux->linear_scan_number() == _linear_scan_order->index_of(sux), "incorrect linear_scan_number");
1069       if (!cur->is_set(BlockBegin::linear_scan_loop_end_flag)) {
1070         assert(cur->linear_scan_number() < sux->linear_scan_number(), "invalid order");
1071       }
1072       if (cur->loop_depth() == sux->loop_depth()) {
1073         assert(cur->loop_index() == sux->loop_index() || sux->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1074       }
1075     }
1076 
1077     for (j = cur->number_of_preds() - 1; j >= 0; j--) {
1078       BlockBegin* pred = cur->pred_at(j);
1079 
1080       assert(pred->linear_scan_number() >= 0 && pred->linear_scan_number() == _linear_scan_order->index_of(pred), "incorrect linear_scan_number");
1081       if (!cur->is_set(BlockBegin::linear_scan_loop_header_flag)) {
1082         assert(cur->linear_scan_number() > pred->linear_scan_number(), "invalid order");
1083       }
1084       if (cur->loop_depth() == pred->loop_depth()) {
1085         assert(cur->loop_index() == pred->loop_index() || cur->is_set(BlockBegin::linear_scan_loop_header_flag), "successing blocks with same loop depth must have same loop index");
1086       }
1087 
1088       assert(cur->dominator()->linear_scan_number() <= cur->pred_at(j)->linear_scan_number(), "dominator must be before predecessors");
1089     }
1090 
1091     // check dominator
1092     if (i == 0) {
1093       assert(cur->dominator() == NULL, "first block has no dominator");
1094     } else {
1095       assert(cur->dominator() != NULL, "all but first block must have dominator");
1096     }
1097     assert(cur->number_of_preds() != 1 || cur->dominator() == cur->pred_at(0), "Single predecessor must also be dominator");
1098   }
1099 
1100   // check that all loops are continuous
1101   for (int loop_idx = 0; loop_idx < _num_loops; loop_idx++) {
1102     int block_idx = 0;
1103     assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "the first block must not be present in any loop");
1104 
1105     // skip blocks before the loop
1106     while (block_idx < _num_blocks && !is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1107       block_idx++;
1108     }
1109     // skip blocks of loop
1110     while (block_idx < _num_blocks && is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx))) {
1111       block_idx++;
1112     }
1113     // after the first non-loop block, there must not be another loop-block
1114     while (block_idx < _num_blocks) {
1115       assert(!is_block_in_loop(loop_idx, _linear_scan_order->at(block_idx)), "loop not continuous in linear-scan order");
1116       block_idx++;
1117     }
1118   }
1119 }
1120 #endif
1121 
1122 
1123 void IR::compute_code() {
1124   assert(is_valid(), "IR must be valid");
1125 
1126   ComputeLinearScanOrder compute_order(start());
1127   _num_loops = compute_order.num_loops();
1128   _code = compute_order.linear_scan_order();
1129 }
1130 
1131 
1132 void IR::compute_use_counts() {
1133   // make sure all values coming out of this block get evaluated.
1134   int num_blocks = _code->length();
1135   for (int i = 0; i < num_blocks; i++) {
1136     _code->at(i)->end()->state()->pin_stack_for_linear_scan();
1137   }
1138 
1139   // compute use counts
1140   UseCountComputer::compute(_code);
1141 }
1142 
1143 
1144 void IR::iterate_preorder(BlockClosure* closure) {
1145   assert(is_valid(), "IR must be valid");
1146   start()->iterate_preorder(closure);
1147 }
1148 
1149 
1150 void IR::iterate_postorder(BlockClosure* closure) {
1151   assert(is_valid(), "IR must be valid");
1152   start()->iterate_postorder(closure);
1153 }
1154 
1155 void IR::iterate_linear_scan_order(BlockClosure* closure) {
1156   linear_scan_order()->iterate_forward(closure);
1157 }
1158 
1159 
1160 #ifndef PRODUCT
1161 class BlockPrinter: public BlockClosure {
1162  private:
1163   InstructionPrinter* _ip;
1164   bool                _cfg_only;
1165   bool                _live_only;
1166 
1167  public:
1168   BlockPrinter(InstructionPrinter* ip, bool cfg_only, bool live_only = false) {
1169     _ip       = ip;
1170     _cfg_only = cfg_only;
1171     _live_only = live_only;
1172   }
1173 
1174   virtual void block_do(BlockBegin* block) {
1175     if (_cfg_only) {
1176       _ip->print_instr(block); tty->cr();
1177     } else {
1178       block->print_block(*_ip, _live_only);
1179     }
1180   }
1181 };
1182 
1183 
1184 void IR::print(BlockBegin* start, bool cfg_only, bool live_only) {
1185   ttyLocker ttyl;
1186   InstructionPrinter ip(!cfg_only);
1187   BlockPrinter bp(&ip, cfg_only, live_only);
1188   start->iterate_preorder(&bp);
1189   tty->cr();
1190 }
1191 
1192 void IR::print(bool cfg_only, bool live_only) {
1193   if (is_valid()) {
1194     print(start(), cfg_only, live_only);
1195   } else {
1196     tty->print_cr("invalid IR");
1197   }
1198 }
1199 
1200 
1201 define_array(BlockListArray, BlockList*)
1202 define_stack(BlockListList, BlockListArray)
1203 
1204 class PredecessorValidator : public BlockClosure {
1205  private:
1206   BlockListList* _predecessors;
1207   BlockList*     _blocks;
1208 
1209   static int cmp(BlockBegin** a, BlockBegin** b) {
1210     return (*a)->block_id() - (*b)->block_id();
1211   }
1212 
1213  public:
1214   PredecessorValidator(IR* hir) {
1215     ResourceMark rm;
1216     _predecessors = new BlockListList(BlockBegin::number_of_blocks(), NULL);
1217     _blocks = new BlockList();
1218 
1219     int i;
1220     hir->start()->iterate_preorder(this);
1221     if (hir->code() != NULL) {
1222       assert(hir->code()->length() == _blocks->length(), "must match");
1223       for (i = 0; i < _blocks->length(); i++) {
1224         assert(hir->code()->contains(_blocks->at(i)), "should be in both lists");
1225       }
1226     }
1227 
1228     for (i = 0; i < _blocks->length(); i++) {
1229       BlockBegin* block = _blocks->at(i);
1230       BlockList* preds = _predecessors->at(block->block_id());
1231       if (preds == NULL) {
1232         assert(block->number_of_preds() == 0, "should be the same");
1233         continue;
1234       }
1235 
1236       // clone the pred list so we can mutate it
1237       BlockList* pred_copy = new BlockList();
1238       int j;
1239       for (j = 0; j < block->number_of_preds(); j++) {
1240         pred_copy->append(block->pred_at(j));
1241       }
1242       // sort them in the same order
1243       preds->sort(cmp);
1244       pred_copy->sort(cmp);
1245       int length = MIN2(preds->length(), block->number_of_preds());
1246       for (j = 0; j < block->number_of_preds(); j++) {
1247         assert(preds->at(j) == pred_copy->at(j), "must match");
1248       }
1249 
1250       assert(preds->length() == block->number_of_preds(), "should be the same");
1251     }
1252   }
1253 
1254   virtual void block_do(BlockBegin* block) {
1255     _blocks->append(block);
1256     BlockEnd* be = block->end();
1257     int n = be->number_of_sux();
1258     int i;
1259     for (i = 0; i < n; i++) {
1260       BlockBegin* sux = be->sux_at(i);
1261       assert(!sux->is_set(BlockBegin::exception_entry_flag), "must not be xhandler");
1262 
1263       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1264       if (preds == NULL) {
1265         preds = new BlockList();
1266         _predecessors->at_put(sux->block_id(), preds);
1267       }
1268       preds->append(block);
1269     }
1270 
1271     n = block->number_of_exception_handlers();
1272     for (i = 0; i < n; i++) {
1273       BlockBegin* sux = block->exception_handler_at(i);
1274       assert(sux->is_set(BlockBegin::exception_entry_flag), "must be xhandler");
1275 
1276       BlockList* preds = _predecessors->at_grow(sux->block_id(), NULL);
1277       if (preds == NULL) {
1278         preds = new BlockList();
1279         _predecessors->at_put(sux->block_id(), preds);
1280       }
1281       preds->append(block);
1282     }
1283   }
1284 };
1285 
1286 void IR::verify() {
1287 #ifdef ASSERT
1288   PredecessorValidator pv(this);
1289 #endif
1290 }
1291 
1292 #endif // PRODUCT
1293 
1294 void SubstitutionResolver::substitute(Value* v) {
1295   Value v0 = *v;
1296   if (v0) {
1297     Value vs = v0->subst();
1298     if (vs != v0) {
1299       *v = v0->subst();
1300     }
1301   }
1302 }
1303 
1304 #ifdef ASSERT
1305 void check_substitute(Value* v) {
1306   Value v0 = *v;
1307   if (v0) {
1308     Value vs = v0->subst();
1309     assert(vs == v0, "missed substitution");
1310   }
1311 }
1312 #endif
1313 
1314 
1315 void SubstitutionResolver::block_do(BlockBegin* block) {
1316   Instruction* last = NULL;
1317   for (Instruction* n = block; n != NULL;) {
1318     n->values_do(substitute);
1319     // need to remove this instruction from the instruction stream
1320     if (n->subst() != n) {
1321       assert(last != NULL, "must have last");
1322       last->set_next(n->next(), n->next()->bci());
1323     } else {
1324       last = n;
1325     }
1326     n = last->next();
1327   }
1328 
1329 #ifdef ASSERT
1330   if (block->state()) block->state()->values_do(check_substitute);
1331   block->block_values_do(check_substitute);
1332   if (block->end() && block->end()->state()) block->end()->state()->values_do(check_substitute);
1333 #endif
1334 }