1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_templateInterpreter.cpp.incl"
  27 
  28 #ifndef CC_INTERP
  29 
  30 # define __ _masm->
  31 
  32 void TemplateInterpreter::initialize() {
  33   if (_code != NULL) return;
  34   // assertions
  35   assert((int)Bytecodes::number_of_codes <= (int)DispatchTable::length,
  36          "dispatch table too small");
  37 
  38   AbstractInterpreter::initialize();
  39 
  40   TemplateTable::initialize();
  41 
  42   // generate interpreter
  43   { ResourceMark rm;
  44     TraceTime timer("Interpreter generation", TraceStartupTime);
  45     int code_size = InterpreterCodeSize;
  46     NOT_PRODUCT(code_size *= 4;)  // debug uses extra interpreter code space
  47     _code = new StubQueue(new InterpreterCodeletInterface, code_size, NULL,
  48                           "Interpreter");
  49     InterpreterGenerator g(_code);
  50     if (PrintInterpreter) print();
  51   }
  52 
  53   // initialize dispatch table
  54   _active_table = _normal_table;
  55 }
  56 
  57 //------------------------------------------------------------------------------------------------------------------------
  58 // Implementation of EntryPoint
  59 
  60 EntryPoint::EntryPoint() {
  61   assert(number_of_states == 9, "check the code below");
  62   _entry[btos] = NULL;
  63   _entry[ctos] = NULL;
  64   _entry[stos] = NULL;
  65   _entry[atos] = NULL;
  66   _entry[itos] = NULL;
  67   _entry[ltos] = NULL;
  68   _entry[ftos] = NULL;
  69   _entry[dtos] = NULL;
  70   _entry[vtos] = NULL;
  71 }
  72 
  73 
  74 EntryPoint::EntryPoint(address bentry, address centry, address sentry, address aentry, address ientry, address lentry, address fentry, address dentry, address ventry) {
  75   assert(number_of_states == 9, "check the code below");
  76   _entry[btos] = bentry;
  77   _entry[ctos] = centry;
  78   _entry[stos] = sentry;
  79   _entry[atos] = aentry;
  80   _entry[itos] = ientry;
  81   _entry[ltos] = lentry;
  82   _entry[ftos] = fentry;
  83   _entry[dtos] = dentry;
  84   _entry[vtos] = ventry;
  85 }
  86 
  87 
  88 void EntryPoint::set_entry(TosState state, address entry) {
  89   assert(0 <= state && state < number_of_states, "state out of bounds");
  90   _entry[state] = entry;
  91 }
  92 
  93 
  94 address EntryPoint::entry(TosState state) const {
  95   assert(0 <= state && state < number_of_states, "state out of bounds");
  96   return _entry[state];
  97 }
  98 
  99 
 100 void EntryPoint::print() {
 101   tty->print("[");
 102   for (int i = 0; i < number_of_states; i++) {
 103     if (i > 0) tty->print(", ");
 104     tty->print(INTPTR_FORMAT, _entry[i]);
 105   }
 106   tty->print("]");
 107 }
 108 
 109 
 110 bool EntryPoint::operator == (const EntryPoint& y) {
 111   int i = number_of_states;
 112   while (i-- > 0) {
 113     if (_entry[i] != y._entry[i]) return false;
 114   }
 115   return true;
 116 }
 117 
 118 
 119 //------------------------------------------------------------------------------------------------------------------------
 120 // Implementation of DispatchTable
 121 
 122 EntryPoint DispatchTable::entry(int i) const {
 123   assert(0 <= i && i < length, "index out of bounds");
 124   return
 125     EntryPoint(
 126       _table[btos][i],
 127       _table[ctos][i],
 128       _table[stos][i],
 129       _table[atos][i],
 130       _table[itos][i],
 131       _table[ltos][i],
 132       _table[ftos][i],
 133       _table[dtos][i],
 134       _table[vtos][i]
 135     );
 136 }
 137 
 138 
 139 void DispatchTable::set_entry(int i, EntryPoint& entry) {
 140   assert(0 <= i && i < length, "index out of bounds");
 141   assert(number_of_states == 9, "check the code below");
 142   _table[btos][i] = entry.entry(btos);
 143   _table[ctos][i] = entry.entry(ctos);
 144   _table[stos][i] = entry.entry(stos);
 145   _table[atos][i] = entry.entry(atos);
 146   _table[itos][i] = entry.entry(itos);
 147   _table[ltos][i] = entry.entry(ltos);
 148   _table[ftos][i] = entry.entry(ftos);
 149   _table[dtos][i] = entry.entry(dtos);
 150   _table[vtos][i] = entry.entry(vtos);
 151 }
 152 
 153 
 154 bool DispatchTable::operator == (DispatchTable& y) {
 155   int i = length;
 156   while (i-- > 0) {
 157     EntryPoint t = y.entry(i); // for compiler compatibility (BugId 4150096)
 158     if (!(entry(i) == t)) return false;
 159   }
 160   return true;
 161 }
 162 
 163 address    TemplateInterpreter::_remove_activation_entry                    = NULL;
 164 address    TemplateInterpreter::_remove_activation_preserving_args_entry    = NULL;
 165 
 166 
 167 address    TemplateInterpreter::_throw_ArrayIndexOutOfBoundsException_entry = NULL;
 168 address    TemplateInterpreter::_throw_ArrayStoreException_entry            = NULL;
 169 address    TemplateInterpreter::_throw_ArithmeticException_entry            = NULL;
 170 address    TemplateInterpreter::_throw_ClassCastException_entry             = NULL;
 171 address    TemplateInterpreter::_throw_WrongMethodType_entry                = NULL;
 172 address    TemplateInterpreter::_throw_NullPointerException_entry           = NULL;
 173 address    TemplateInterpreter::_throw_StackOverflowError_entry             = NULL;
 174 address    TemplateInterpreter::_throw_exception_entry                      = NULL;
 175 
 176 #ifndef PRODUCT
 177 EntryPoint TemplateInterpreter::_trace_code;
 178 #endif // !PRODUCT
 179 EntryPoint TemplateInterpreter::_return_entry[TemplateInterpreter::number_of_return_entries];
 180 EntryPoint TemplateInterpreter::_earlyret_entry;
 181 EntryPoint TemplateInterpreter::_return_unbox_entry;
 182 EntryPoint TemplateInterpreter::_deopt_entry [TemplateInterpreter::number_of_deopt_entries ];
 183 EntryPoint TemplateInterpreter::_continuation_entry;
 184 EntryPoint TemplateInterpreter::_safept_entry;
 185 
 186 address    TemplateInterpreter::_return_3_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
 187 address    TemplateInterpreter::_return_5_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
 188 address    TemplateInterpreter::_return_5_unbox_addrs_by_index[TemplateInterpreter::number_of_return_addrs];
 189 
 190 DispatchTable TemplateInterpreter::_active_table;
 191 DispatchTable TemplateInterpreter::_normal_table;
 192 DispatchTable TemplateInterpreter::_safept_table;
 193 address    TemplateInterpreter::_wentry_point[DispatchTable::length];
 194 
 195 TemplateInterpreterGenerator::TemplateInterpreterGenerator(StubQueue* _code): AbstractInterpreterGenerator(_code) {
 196   _unimplemented_bytecode    = NULL;
 197   _illegal_bytecode_sequence = NULL;
 198 }
 199 
 200 static const BasicType types[Interpreter::number_of_result_handlers] = {
 201   T_BOOLEAN,
 202   T_CHAR   ,
 203   T_BYTE   ,
 204   T_SHORT  ,
 205   T_INT    ,
 206   T_LONG   ,
 207   T_VOID   ,
 208   T_FLOAT  ,
 209   T_DOUBLE ,
 210   T_OBJECT
 211 };
 212 
 213 void TemplateInterpreterGenerator::generate_all() {
 214   AbstractInterpreterGenerator::generate_all();
 215 
 216   { CodeletMark cm(_masm, "error exits");
 217     _unimplemented_bytecode    = generate_error_exit("unimplemented bytecode");
 218     _illegal_bytecode_sequence = generate_error_exit("illegal bytecode sequence - method not verified");
 219   }
 220 
 221 #ifndef PRODUCT
 222   if (TraceBytecodes) {
 223     CodeletMark cm(_masm, "bytecode tracing support");
 224     Interpreter::_trace_code =
 225       EntryPoint(
 226         generate_trace_code(btos),
 227         generate_trace_code(ctos),
 228         generate_trace_code(stos),
 229         generate_trace_code(atos),
 230         generate_trace_code(itos),
 231         generate_trace_code(ltos),
 232         generate_trace_code(ftos),
 233         generate_trace_code(dtos),
 234         generate_trace_code(vtos)
 235       );
 236   }
 237 #endif // !PRODUCT
 238 
 239   { CodeletMark cm(_masm, "return entry points");
 240     for (int i = 0; i < Interpreter::number_of_return_entries; i++) {
 241       Interpreter::_return_entry[i] =
 242         EntryPoint(
 243           generate_return_entry_for(itos, i),
 244           generate_return_entry_for(itos, i),
 245           generate_return_entry_for(itos, i),
 246           generate_return_entry_for(atos, i),
 247           generate_return_entry_for(itos, i),
 248           generate_return_entry_for(ltos, i),
 249           generate_return_entry_for(ftos, i),
 250           generate_return_entry_for(dtos, i),
 251           generate_return_entry_for(vtos, i)
 252         );
 253     }
 254   }
 255 
 256   if (EnableInvokeDynamic) {
 257     CodeletMark cm(_masm, "unboxing return entry points");
 258     Interpreter::_return_unbox_entry =
 259       EntryPoint(
 260         generate_return_unbox_entry_for(btos, 5),
 261         generate_return_unbox_entry_for(ctos, 5),
 262         generate_return_unbox_entry_for(stos, 5),
 263         generate_return_unbox_entry_for(atos, 5), // cast conversion
 264         generate_return_unbox_entry_for(itos, 5),
 265         generate_return_unbox_entry_for(ltos, 5),
 266         generate_return_unbox_entry_for(ftos, 5),
 267         generate_return_unbox_entry_for(dtos, 5),
 268         Interpreter::_return_entry[5].entry(vtos) // no unboxing for void
 269       );
 270   }
 271 
 272   { CodeletMark cm(_masm, "earlyret entry points");
 273     Interpreter::_earlyret_entry =
 274       EntryPoint(
 275         generate_earlyret_entry_for(btos),
 276         generate_earlyret_entry_for(ctos),
 277         generate_earlyret_entry_for(stos),
 278         generate_earlyret_entry_for(atos),
 279         generate_earlyret_entry_for(itos),
 280         generate_earlyret_entry_for(ltos),
 281         generate_earlyret_entry_for(ftos),
 282         generate_earlyret_entry_for(dtos),
 283         generate_earlyret_entry_for(vtos)
 284       );
 285   }
 286 
 287   { CodeletMark cm(_masm, "deoptimization entry points");
 288     for (int i = 0; i < Interpreter::number_of_deopt_entries; i++) {
 289       Interpreter::_deopt_entry[i] =
 290         EntryPoint(
 291           generate_deopt_entry_for(itos, i),
 292           generate_deopt_entry_for(itos, i),
 293           generate_deopt_entry_for(itos, i),
 294           generate_deopt_entry_for(atos, i),
 295           generate_deopt_entry_for(itos, i),
 296           generate_deopt_entry_for(ltos, i),
 297           generate_deopt_entry_for(ftos, i),
 298           generate_deopt_entry_for(dtos, i),
 299           generate_deopt_entry_for(vtos, i)
 300         );
 301     }
 302   }
 303 
 304   { CodeletMark cm(_masm, "result handlers for native calls");
 305     // The various result converter stublets.
 306     int is_generated[Interpreter::number_of_result_handlers];
 307     memset(is_generated, 0, sizeof(is_generated));
 308 
 309     for (int i = 0; i < Interpreter::number_of_result_handlers; i++) {
 310       BasicType type = types[i];
 311       if (!is_generated[Interpreter::BasicType_as_index(type)]++) {
 312         Interpreter::_native_abi_to_tosca[Interpreter::BasicType_as_index(type)] = generate_result_handler_for(type);
 313       }
 314     }
 315   }
 316 
 317   for (int j = 0; j < number_of_states; j++) {
 318     const TosState states[] = {btos, ctos, stos, itos, ltos, ftos, dtos, atos, vtos};
 319     int index = Interpreter::TosState_as_index(states[j]);
 320     Interpreter::_return_3_addrs_by_index[index] = Interpreter::return_entry(states[j], 3);
 321     Interpreter::_return_5_addrs_by_index[index] = Interpreter::return_entry(states[j], 5);
 322     if (EnableInvokeDynamic)
 323       Interpreter::_return_5_unbox_addrs_by_index[index] = Interpreter::return_unbox_entry(states[j], 5);
 324   }
 325 
 326   { CodeletMark cm(_masm, "continuation entry points");
 327     Interpreter::_continuation_entry =
 328       EntryPoint(
 329         generate_continuation_for(btos),
 330         generate_continuation_for(ctos),
 331         generate_continuation_for(stos),
 332         generate_continuation_for(atos),
 333         generate_continuation_for(itos),
 334         generate_continuation_for(ltos),
 335         generate_continuation_for(ftos),
 336         generate_continuation_for(dtos),
 337         generate_continuation_for(vtos)
 338       );
 339   }
 340 
 341   { CodeletMark cm(_masm, "safepoint entry points");
 342     Interpreter::_safept_entry =
 343       EntryPoint(
 344         generate_safept_entry_for(btos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 345         generate_safept_entry_for(ctos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 346         generate_safept_entry_for(stos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 347         generate_safept_entry_for(atos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 348         generate_safept_entry_for(itos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 349         generate_safept_entry_for(ltos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 350         generate_safept_entry_for(ftos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 351         generate_safept_entry_for(dtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint)),
 352         generate_safept_entry_for(vtos, CAST_FROM_FN_PTR(address, InterpreterRuntime::at_safepoint))
 353       );
 354   }
 355 
 356   { CodeletMark cm(_masm, "exception handling");
 357     // (Note: this is not safepoint safe because thread may return to compiled code)
 358     generate_throw_exception();
 359   }
 360 
 361   { CodeletMark cm(_masm, "throw exception entrypoints");
 362     Interpreter::_throw_ArrayIndexOutOfBoundsException_entry = generate_ArrayIndexOutOfBounds_handler("java/lang/ArrayIndexOutOfBoundsException");
 363     Interpreter::_throw_ArrayStoreException_entry            = generate_klass_exception_handler("java/lang/ArrayStoreException"                 );
 364     Interpreter::_throw_ArithmeticException_entry            = generate_exception_handler("java/lang/ArithmeticException"           , "/ by zero");
 365     Interpreter::_throw_ClassCastException_entry             = generate_ClassCastException_handler();
 366     Interpreter::_throw_WrongMethodType_entry                = generate_WrongMethodType_handler();
 367     Interpreter::_throw_NullPointerException_entry           = generate_exception_handler("java/lang/NullPointerException"          , NULL       );
 368     Interpreter::_throw_StackOverflowError_entry             = generate_StackOverflowError_handler();
 369   }
 370 
 371 
 372 
 373 #define method_entry(kind)                                                                    \
 374   { CodeletMark cm(_masm, "method entry point (kind = " #kind ")");                    \
 375     Interpreter::_entry_table[Interpreter::kind] = generate_method_entry(Interpreter::kind);  \
 376   }
 377 
 378   // all non-native method kinds
 379   method_entry(zerolocals)
 380   method_entry(zerolocals_synchronized)
 381   method_entry(empty)
 382   method_entry(accessor)
 383   method_entry(abstract)
 384   method_entry(method_handle)
 385   method_entry(java_lang_math_sin  )
 386   method_entry(java_lang_math_cos  )
 387   method_entry(java_lang_math_tan  )
 388   method_entry(java_lang_math_abs  )
 389   method_entry(java_lang_math_sqrt )
 390   method_entry(java_lang_math_log  )
 391   method_entry(java_lang_math_log10)
 392 
 393   // all native method kinds (must be one contiguous block)
 394   Interpreter::_native_entry_begin = Interpreter::code()->code_end();
 395   method_entry(native)
 396   method_entry(native_synchronized)
 397   Interpreter::_native_entry_end = Interpreter::code()->code_end();
 398 
 399 #undef method_entry
 400 
 401   // Bytecodes
 402   set_entry_points_for_all_bytes();
 403   set_safepoints_for_all_bytes();
 404 }
 405 
 406 //------------------------------------------------------------------------------------------------------------------------
 407 
 408 address TemplateInterpreterGenerator::generate_error_exit(const char* msg) {
 409   address entry = __ pc();
 410   __ stop(msg);
 411   return entry;
 412 }
 413 
 414 
 415 //------------------------------------------------------------------------------------------------------------------------
 416 
 417 void TemplateInterpreterGenerator::set_entry_points_for_all_bytes() {
 418   for (int i = 0; i < DispatchTable::length; i++) {
 419     Bytecodes::Code code = (Bytecodes::Code)i;
 420     if (Bytecodes::is_defined(code)) {
 421       set_entry_points(code);
 422     } else {
 423       set_unimplemented(i);
 424     }
 425   }
 426 }
 427 
 428 
 429 void TemplateInterpreterGenerator::set_safepoints_for_all_bytes() {
 430   for (int i = 0; i < DispatchTable::length; i++) {
 431     Bytecodes::Code code = (Bytecodes::Code)i;
 432     if (Bytecodes::is_defined(code)) Interpreter::_safept_table.set_entry(code, Interpreter::_safept_entry);
 433   }
 434 }
 435 
 436 
 437 void TemplateInterpreterGenerator::set_unimplemented(int i) {
 438   address e = _unimplemented_bytecode;
 439   EntryPoint entry(e, e, e, e, e, e, e, e, e);
 440   Interpreter::_normal_table.set_entry(i, entry);
 441   Interpreter::_wentry_point[i] = _unimplemented_bytecode;
 442 }
 443 
 444 
 445 void TemplateInterpreterGenerator::set_entry_points(Bytecodes::Code code) {
 446   CodeletMark cm(_masm, Bytecodes::name(code), code);
 447   // initialize entry points
 448   assert(_unimplemented_bytecode    != NULL, "should have been generated before");
 449   assert(_illegal_bytecode_sequence != NULL, "should have been generated before");
 450   address bep = _illegal_bytecode_sequence;
 451   address cep = _illegal_bytecode_sequence;
 452   address sep = _illegal_bytecode_sequence;
 453   address aep = _illegal_bytecode_sequence;
 454   address iep = _illegal_bytecode_sequence;
 455   address lep = _illegal_bytecode_sequence;
 456   address fep = _illegal_bytecode_sequence;
 457   address dep = _illegal_bytecode_sequence;
 458   address vep = _unimplemented_bytecode;
 459   address wep = _unimplemented_bytecode;
 460   // code for short & wide version of bytecode
 461   if (Bytecodes::is_defined(code)) {
 462     Template* t = TemplateTable::template_for(code);
 463     assert(t->is_valid(), "just checking");
 464     set_short_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);
 465   }
 466   if (Bytecodes::wide_is_defined(code)) {
 467     Template* t = TemplateTable::template_for_wide(code);
 468     assert(t->is_valid(), "just checking");
 469     set_wide_entry_point(t, wep);
 470   }
 471   // set entry points
 472   EntryPoint entry(bep, cep, sep, aep, iep, lep, fep, dep, vep);
 473   Interpreter::_normal_table.set_entry(code, entry);
 474   Interpreter::_wentry_point[code] = wep;
 475 }
 476 
 477 
 478 void TemplateInterpreterGenerator::set_wide_entry_point(Template* t, address& wep) {
 479   assert(t->is_valid(), "template must exist");
 480   assert(t->tos_in() == vtos, "only vtos tos_in supported for wide instructions")
 481   wep = __ pc(); generate_and_dispatch(t);
 482 }
 483 
 484 
 485 void TemplateInterpreterGenerator::set_short_entry_points(Template* t, address& bep, address& cep, address& sep, address& aep, address& iep, address& lep, address& fep, address& dep, address& vep) {
 486   assert(t->is_valid(), "template must exist");
 487   switch (t->tos_in()) {
 488     case btos: vep = __ pc(); __ pop(btos); bep = __ pc(); generate_and_dispatch(t); break;
 489     case ctos: vep = __ pc(); __ pop(ctos); sep = __ pc(); generate_and_dispatch(t); break;
 490     case stos: vep = __ pc(); __ pop(stos); sep = __ pc(); generate_and_dispatch(t); break;
 491     case atos: vep = __ pc(); __ pop(atos); aep = __ pc(); generate_and_dispatch(t); break;
 492     case itos: vep = __ pc(); __ pop(itos); iep = __ pc(); generate_and_dispatch(t); break;
 493     case ltos: vep = __ pc(); __ pop(ltos); lep = __ pc(); generate_and_dispatch(t); break;
 494     case ftos: vep = __ pc(); __ pop(ftos); fep = __ pc(); generate_and_dispatch(t); break;
 495     case dtos: vep = __ pc(); __ pop(dtos); dep = __ pc(); generate_and_dispatch(t); break;
 496     case vtos: set_vtos_entry_points(t, bep, cep, sep, aep, iep, lep, fep, dep, vep);     break;
 497     default  : ShouldNotReachHere();                                                 break;
 498   }
 499 }
 500 
 501 
 502 //------------------------------------------------------------------------------------------------------------------------
 503 
 504 void TemplateInterpreterGenerator::generate_and_dispatch(Template* t, TosState tos_out) {
 505   if (PrintBytecodeHistogram)                                    histogram_bytecode(t);
 506 #ifndef PRODUCT
 507   // debugging code
 508   if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) count_bytecode();
 509   if (PrintBytecodePairHistogram)                                histogram_bytecode_pair(t);
 510   if (TraceBytecodes)                                            trace_bytecode(t);
 511   if (StopInterpreterAt > 0)                                     stop_interpreter_at();
 512   __ verify_FPU(1, t->tos_in());
 513 #endif // !PRODUCT
 514   int step;
 515   if (!t->does_dispatch()) {
 516     step = t->is_wide() ? Bytecodes::wide_length_for(t->bytecode()) : Bytecodes::length_for(t->bytecode());
 517     if (tos_out == ilgl) tos_out = t->tos_out();
 518     // compute bytecode size
 519     assert(step > 0, "just checkin'");
 520     // setup stuff for dispatching next bytecode
 521     if (ProfileInterpreter && VerifyDataPointer
 522         && methodDataOopDesc::bytecode_has_profile(t->bytecode())) {
 523       __ verify_method_data_pointer();
 524     }
 525     __ dispatch_prolog(tos_out, step);
 526   }
 527   // generate template
 528   t->generate(_masm);
 529   // advance
 530   if (t->does_dispatch()) {
 531 #ifdef ASSERT
 532     // make sure execution doesn't go beyond this point if code is broken
 533     __ should_not_reach_here();
 534 #endif // ASSERT
 535   } else {
 536     // dispatch to next bytecode
 537     __ dispatch_epilog(tos_out, step);
 538   }
 539 }
 540 
 541 //------------------------------------------------------------------------------------------------------------------------
 542 // Entry points
 543 
 544 address TemplateInterpreter::return_entry(TosState state, int length) {
 545   guarantee(0 <= length && length < Interpreter::number_of_return_entries, "illegal length");
 546   return _return_entry[length].entry(state);
 547 }
 548 
 549 
 550 address TemplateInterpreter::return_unbox_entry(TosState state, int length) {
 551   assert(EnableInvokeDynamic, "");
 552   if (state == vtos) {
 553     // no unboxing to do, actually
 554     return return_entry(state, length);
 555   } else {
 556     assert(length == 5, "unboxing entries generated for invokedynamic only");
 557     return _return_unbox_entry.entry(state);
 558   }
 559 }
 560 
 561 
 562 address TemplateInterpreter::deopt_entry(TosState state, int length) {
 563   guarantee(0 <= length && length < Interpreter::number_of_deopt_entries, "illegal length");
 564   return _deopt_entry[length].entry(state);
 565 }
 566 
 567 //------------------------------------------------------------------------------------------------------------------------
 568 // Suport for invokes
 569 
 570 int TemplateInterpreter::TosState_as_index(TosState state) {
 571   assert( state < number_of_states , "Invalid state in TosState_as_index");
 572   assert(0 <= (int)state && (int)state < TemplateInterpreter::number_of_return_addrs, "index out of bounds");
 573   return (int)state;
 574 }
 575 
 576 
 577 //------------------------------------------------------------------------------------------------------------------------
 578 // Safepoint suppport
 579 
 580 static inline void copy_table(address* from, address* to, int size) {
 581   // Copy non-overlapping tables. The copy has to occur word wise for MT safety.
 582   while (size-- > 0) *to++ = *from++;
 583 }
 584 
 585 void TemplateInterpreter::notice_safepoints() {
 586   if (!_notice_safepoints) {
 587     // switch to safepoint dispatch table
 588     _notice_safepoints = true;
 589     copy_table((address*)&_safept_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
 590   }
 591 }
 592 
 593 // switch from the dispatch table which notices safepoints back to the
 594 // normal dispatch table.  So that we can notice single stepping points,
 595 // keep the safepoint dispatch table if we are single stepping in JVMTI.
 596 // Note that the should_post_single_step test is exactly as fast as the
 597 // JvmtiExport::_enabled test and covers both cases.
 598 void TemplateInterpreter::ignore_safepoints() {
 599   if (_notice_safepoints) {
 600     if (!JvmtiExport::should_post_single_step()) {
 601       // switch to normal dispatch table
 602       _notice_safepoints = false;
 603       copy_table((address*)&_normal_table, (address*)&_active_table, sizeof(_active_table) / sizeof(address));
 604     }
 605   }
 606 }
 607 
 608 //------------------------------------------------------------------------------------------------------------------------
 609 // Deoptimization support
 610 
 611 // If deoptimization happens, this function returns the point of next bytecode to continue execution
 612 address TemplateInterpreter::continuation_for(methodOop method, address bcp, int callee_parameters, bool is_top_frame) {
 613   return AbstractInterpreter::continuation_for(method, bcp, callee_parameters, is_top_frame);
 614 }
 615 
 616 // If deoptimization happens, the interpreter should reexecute these bytecodes.
 617 // This function mainly helps the compilers to set up the reexecute bit.
 618 bool TemplateInterpreter::bytecodes_to_reexecute(Bytecodes::Code code) {
 619   if (code == Bytecodes::_return) {
 620     //Yes, we consider Bytecodes::_return as a special case of reexecution
 621     return true;
 622   } else {
 623     return AbstractInterpreter::bytecodes_to_reexecute(code);
 624   }
 625 }
 626 
 627 // If deoptimization happens, this function returns the point where the interpreter reexecutes
 628 // the bytecode.
 629 // Note: Bytecodes::_athrow (C1 only) and Bytecodes::_return are the special cases
 630 //       that do not return "Interpreter::deopt_entry(vtos, 0)"
 631 address TemplateInterpreter::deopt_reexecute_entry(methodOop method, address bcp) {
 632   assert(method->contains(bcp), "just checkin'");
 633   Bytecodes::Code code   = Bytecodes::java_code_at(bcp);
 634   if (code == Bytecodes::_return) {
 635     // This is used for deopt during registration of finalizers
 636     // during Object.<init>.  We simply need to resume execution at
 637     // the standard return vtos bytecode to pop the frame normally.
 638     // reexecuting the real bytecode would cause double registration
 639     // of the finalizable object.
 640     return _normal_table.entry(Bytecodes::_return).entry(vtos);
 641   } else {
 642     return AbstractInterpreter::deopt_reexecute_entry(method, bcp);
 643   }
 644 }
 645 
 646 #endif // !CC_INTERP