1 /*
   2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 class Chaitin;
  30 class NamedCounter;
  31 class MultiNode;
  32 class  SafePointNode;
  33 class   CallNode;
  34 class     CallJavaNode;
  35 class       CallStaticJavaNode;
  36 class       CallDynamicJavaNode;
  37 class     CallRuntimeNode;
  38 class       CallLeafNode;
  39 class         CallLeafNoFPNode;
  40 class     AllocateNode;
  41 class       AllocateArrayNode;
  42 class     LockNode;
  43 class     UnlockNode;
  44 class JVMState;
  45 class OopMap;
  46 class State;
  47 class StartNode;
  48 class MachCallNode;
  49 class FastLockNode;
  50 
  51 //------------------------------StartNode--------------------------------------
  52 // The method start node
  53 class StartNode : public MultiNode {
  54   virtual uint cmp( const Node &n ) const;
  55   virtual uint size_of() const; // Size is bigger
  56 public:
  57   const TypeTuple *_domain;
  58   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  59     init_class_id(Class_Start);
  60     init_flags(Flag_is_block_start);
  61     init_req(0,this);
  62     init_req(1,root);
  63   }
  64   virtual int Opcode() const;
  65   virtual bool pinned() const { return true; };
  66   virtual const Type *bottom_type() const;
  67   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  68   virtual const Type *Value( PhaseTransform *phase ) const;
  69   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  70   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  71   virtual const RegMask &in_RegMask(uint) const;
  72   virtual Node *match( const ProjNode *proj, const Matcher *m );
  73   virtual uint ideal_reg() const { return 0; }
  74 #ifndef PRODUCT
  75   virtual void  dump_spec(outputStream *st) const;
  76 #endif
  77 };
  78 
  79 //------------------------------StartOSRNode-----------------------------------
  80 // The method start node for on stack replacement code
  81 class StartOSRNode : public StartNode {
  82 public:
  83   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  84   virtual int   Opcode() const;
  85   static  const TypeTuple *osr_domain();
  86 };
  87 
  88 
  89 //------------------------------ParmNode---------------------------------------
  90 // Incoming parameters
  91 class ParmNode : public ProjNode {
  92   static const char * const names[TypeFunc::Parms+1];
  93 public:
  94   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
  95     init_class_id(Class_Parm);
  96   }
  97   virtual int Opcode() const;
  98   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
  99   virtual uint ideal_reg() const;
 100 #ifndef PRODUCT
 101   virtual void dump_spec(outputStream *st) const;
 102 #endif
 103 };
 104 
 105 
 106 //------------------------------ReturnNode-------------------------------------
 107 // Return from subroutine node
 108 class ReturnNode : public Node {
 109 public:
 110   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 111   virtual int Opcode() const;
 112   virtual bool  is_CFG() const { return true; }
 113   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 114   virtual bool depends_only_on_test() const { return false; }
 115   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 116   virtual const Type *Value( PhaseTransform *phase ) const;
 117   virtual uint ideal_reg() const { return NotAMachineReg; }
 118   virtual uint match_edge(uint idx) const;
 119 #ifndef PRODUCT
 120   virtual void dump_req() const;
 121 #endif
 122 };
 123 
 124 
 125 //------------------------------RethrowNode------------------------------------
 126 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 127 // ends the current basic block like a ReturnNode.  Restores registers and
 128 // unwinds stack.  Rethrow happens in the caller's method.
 129 class RethrowNode : public Node {
 130  public:
 131   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 132   virtual int Opcode() const;
 133   virtual bool  is_CFG() const { return true; }
 134   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 135   virtual bool depends_only_on_test() const { return false; }
 136   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 137   virtual const Type *Value( PhaseTransform *phase ) const;
 138   virtual uint match_edge(uint idx) const;
 139   virtual uint ideal_reg() const { return NotAMachineReg; }
 140 #ifndef PRODUCT
 141   virtual void dump_req() const;
 142 #endif
 143 };
 144 
 145 
 146 //------------------------------TailCallNode-----------------------------------
 147 // Pop stack frame and jump indirect
 148 class TailCallNode : public ReturnNode {
 149 public:
 150   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 151     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 152     init_req(TypeFunc::Parms, target);
 153     init_req(TypeFunc::Parms+1, moop);
 154   }
 155 
 156   virtual int Opcode() const;
 157   virtual uint match_edge(uint idx) const;
 158 };
 159 
 160 //------------------------------TailJumpNode-----------------------------------
 161 // Pop stack frame and jump indirect
 162 class TailJumpNode : public ReturnNode {
 163 public:
 164   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 165     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 166     init_req(TypeFunc::Parms, target);
 167     init_req(TypeFunc::Parms+1, ex_oop);
 168   }
 169 
 170   virtual int Opcode() const;
 171   virtual uint match_edge(uint idx) const;
 172 };
 173 
 174 //-------------------------------JVMState-------------------------------------
 175 // A linked list of JVMState nodes captures the whole interpreter state,
 176 // plus GC roots, for all active calls at some call site in this compilation
 177 // unit.  (If there is no inlining, then the list has exactly one link.)
 178 // This provides a way to map the optimized program back into the interpreter,
 179 // or to let the GC mark the stack.
 180 class JVMState : public ResourceObj {
 181 private:
 182   JVMState*         _caller;    // List pointer for forming scope chains
 183   uint              _depth;     // One mroe than caller depth, or one.
 184   uint              _locoff;    // Offset to locals in input edge mapping
 185   uint              _stkoff;    // Offset to stack in input edge mapping
 186   uint              _monoff;    // Offset to monitors in input edge mapping
 187   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 188   uint              _endoff;    // Offset to end of input edge mapping
 189   uint              _sp;        // Jave Expression Stack Pointer for this state
 190   int               _bci;       // Byte Code Index of this JVM point
 191   ciMethod*         _method;    // Method Pointer
 192   SafePointNode*    _map;       // Map node associated with this scope
 193 public:
 194   friend class Compile;
 195 
 196   // Because JVMState objects live over the entire lifetime of the
 197   // Compile object, they are allocated into the comp_arena, which
 198   // does not get resource marked or reset during the compile process
 199   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
 200   void operator delete( void * ) { } // fast deallocation
 201 
 202   // Create a new JVMState, ready for abstract interpretation.
 203   JVMState(ciMethod* method, JVMState* caller);
 204   JVMState(int stack_size);  // root state; has a null method
 205 
 206   // Access functions for the JVM
 207   uint              locoff() const { return _locoff; }
 208   uint              stkoff() const { return _stkoff; }
 209   uint              argoff() const { return _stkoff + _sp; }
 210   uint              monoff() const { return _monoff; }
 211   uint              scloff() const { return _scloff; }
 212   uint              endoff() const { return _endoff; }
 213   uint              oopoff() const { return debug_end(); }
 214 
 215   int            loc_size() const { return _stkoff - _locoff; }
 216   int            stk_size() const { return _monoff - _stkoff; }
 217   int            mon_size() const { return _scloff - _monoff; }
 218   int            scl_size() const { return _endoff - _scloff; }
 219 
 220   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
 221   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
 222   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
 223   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
 224 
 225   uint              sp()     const { return _sp; }
 226   int               bci()    const { return _bci; }
 227   bool          has_method() const { return _method != NULL; }
 228   ciMethod*         method() const { assert(has_method(), ""); return _method; }
 229   JVMState*         caller() const { return _caller; }
 230   SafePointNode*    map()    const { return _map; }
 231   uint              depth()  const { return _depth; }
 232   uint        debug_start()  const; // returns locoff of root caller
 233   uint        debug_end()    const; // returns endoff of self
 234   uint        debug_size()   const {
 235     return loc_size() + sp() + mon_size() + scl_size();
 236   }
 237   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 238 
 239   // Returns the JVM state at the desired depth (1 == root).
 240   JVMState* of_depth(int d) const;
 241 
 242   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 243   bool same_calls_as(const JVMState* that) const;
 244 
 245   // Monitors (monitors are stored as (boxNode, objNode) pairs
 246   enum { logMonitorEdges = 1 };
 247   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 248   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 249   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 250   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 251   bool is_monitor_box(uint off)    const {
 252     assert(is_mon(off), "should be called only for monitor edge");
 253     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 254   }
 255   bool is_monitor_use(uint off)    const { return (is_mon(off)
 256                                                    && is_monitor_box(off))
 257                                              || (caller() && caller()->is_monitor_use(off)); }
 258 
 259   // Initialization functions for the JVM
 260   void              set_locoff(uint off) { _locoff = off; }
 261   void              set_stkoff(uint off) { _stkoff = off; }
 262   void              set_monoff(uint off) { _monoff = off; }
 263   void              set_scloff(uint off) { _scloff = off; }
 264   void              set_endoff(uint off) { _endoff = off; }
 265   void              set_offsets(uint off) {
 266     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 267   }
 268   void              set_map(SafePointNode *map) { _map = map; }
 269   void              set_sp(uint sp) { _sp = sp; }
 270   void              set_bci(int bci) { _bci = bci; }
 271 
 272   // Miscellaneous utility functions
 273   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 274   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 275 
 276 #ifndef PRODUCT
 277   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 278   void      dump_spec(outputStream *st) const;
 279   void      dump_on(outputStream* st) const;
 280   void      dump() const {
 281     dump_on(tty);
 282   }
 283 #endif
 284 };
 285 
 286 //------------------------------SafePointNode----------------------------------
 287 // A SafePointNode is a subclass of a MultiNode for convenience (and
 288 // potential code sharing) only - conceptually it is independent of
 289 // the Node semantics.
 290 class SafePointNode : public MultiNode {
 291   virtual uint           cmp( const Node &n ) const;
 292   virtual uint           size_of() const;       // Size is bigger
 293 
 294 public:
 295   SafePointNode(uint edges, JVMState* jvms,
 296                 // A plain safepoint advertises no memory effects (NULL):
 297                 const TypePtr* adr_type = NULL)
 298     : MultiNode( edges ),
 299       _jvms(jvms),
 300       _oop_map(NULL),
 301       _adr_type(adr_type)
 302   {
 303     init_class_id(Class_SafePoint);
 304   }
 305 
 306   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 307   JVMState* const _jvms;      // Pointer to list of JVM State objects
 308   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 309 
 310   // Many calls take *all* of memory as input,
 311   // but some produce a limited subset of that memory as output.
 312   // The adr_type reports the call's behavior as a store, not a load.
 313 
 314   virtual JVMState* jvms() const { return _jvms; }
 315   void set_jvms(JVMState* s) {
 316     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 317   }
 318   OopMap *oop_map() const { return _oop_map; }
 319   void set_oop_map(OopMap *om) { _oop_map = om; }
 320 
 321   // Functionality from old debug nodes which has changed
 322   Node *local(JVMState* jvms, uint idx) const {
 323     assert(verify_jvms(jvms), "jvms must match");
 324     return in(jvms->locoff() + idx);
 325   }
 326   Node *stack(JVMState* jvms, uint idx) const {
 327     assert(verify_jvms(jvms), "jvms must match");
 328     return in(jvms->stkoff() + idx);
 329   }
 330   Node *argument(JVMState* jvms, uint idx) const {
 331     assert(verify_jvms(jvms), "jvms must match");
 332     return in(jvms->argoff() + idx);
 333   }
 334   Node *monitor_box(JVMState* jvms, uint idx) const {
 335     assert(verify_jvms(jvms), "jvms must match");
 336     return in(jvms->monitor_box_offset(idx));
 337   }
 338   Node *monitor_obj(JVMState* jvms, uint idx) const {
 339     assert(verify_jvms(jvms), "jvms must match");
 340     return in(jvms->monitor_obj_offset(idx));
 341   }
 342 
 343   void  set_local(JVMState* jvms, uint idx, Node *c);
 344 
 345   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 346     assert(verify_jvms(jvms), "jvms must match");
 347     set_req(jvms->stkoff() + idx, c);
 348   }
 349   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 350     assert(verify_jvms(jvms), "jvms must match");
 351     set_req(jvms->argoff() + idx, c);
 352   }
 353   void ensure_stack(JVMState* jvms, uint stk_size) {
 354     assert(verify_jvms(jvms), "jvms must match");
 355     int grow_by = (int)stk_size - (int)jvms->stk_size();
 356     if (grow_by > 0)  grow_stack(jvms, grow_by);
 357   }
 358   void grow_stack(JVMState* jvms, uint grow_by);
 359   // Handle monitor stack
 360   void push_monitor( const FastLockNode *lock );
 361   void pop_monitor ();
 362   Node *peek_monitor_box() const;
 363   Node *peek_monitor_obj() const;
 364 
 365   // Access functions for the JVM
 366   Node *control  () const { return in(TypeFunc::Control  ); }
 367   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 368   Node *memory   () const { return in(TypeFunc::Memory   ); }
 369   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 370   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 371 
 372   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 373   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 374   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 375 
 376   MergeMemNode* merged_memory() const {
 377     return in(TypeFunc::Memory)->as_MergeMem();
 378   }
 379 
 380   // The parser marks useless maps as dead when it's done with them:
 381   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 382 
 383   // Exception states bubbling out of subgraphs such as inlined calls
 384   // are recorded here.  (There might be more than one, hence the "next".)
 385   // This feature is used only for safepoints which serve as "maps"
 386   // for JVM states during parsing, intrinsic expansion, etc.
 387   SafePointNode*         next_exception() const;
 388   void               set_next_exception(SafePointNode* n);
 389   bool                   has_exceptions() const { return next_exception() != NULL; }
 390 
 391   // Standard Node stuff
 392   virtual int            Opcode() const;
 393   virtual bool           pinned() const { return true; }
 394   virtual const Type    *Value( PhaseTransform *phase ) const;
 395   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 396   virtual const TypePtr *adr_type() const { return _adr_type; }
 397   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 398   virtual Node          *Identity( PhaseTransform *phase );
 399   virtual uint           ideal_reg() const { return 0; }
 400   virtual const RegMask &in_RegMask(uint) const;
 401   virtual const RegMask &out_RegMask() const;
 402   virtual uint           match_edge(uint idx) const;
 403 
 404   static  bool           needs_polling_address_input();
 405 
 406 #ifndef PRODUCT
 407   virtual void              dump_spec(outputStream *st) const;
 408 #endif
 409 };
 410 
 411 //------------------------------SafePointScalarObjectNode----------------------
 412 // A SafePointScalarObjectNode represents the state of a scalarized object
 413 // at a safepoint.
 414 
 415 class SafePointScalarObjectNode: public TypeNode {
 416   uint _first_index; // First input edge index of a SafePoint node where
 417                      // states of the scalarized object fields are collected.
 418   uint _n_fields;    // Number of non-static fields of the scalarized object.
 419   DEBUG_ONLY(AllocateNode* _alloc;)
 420 public:
 421   SafePointScalarObjectNode(const TypeOopPtr* tp,
 422 #ifdef ASSERT
 423                             AllocateNode* alloc,
 424 #endif
 425                             uint first_index, uint n_fields);
 426   virtual int Opcode() const;
 427   virtual uint           ideal_reg() const;
 428   virtual const RegMask &in_RegMask(uint) const;
 429   virtual const RegMask &out_RegMask() const;
 430   virtual uint           match_edge(uint idx) const;
 431 
 432   uint first_index() const { return _first_index; }
 433   uint n_fields()    const { return _n_fields; }
 434   DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
 435 
 436   // SafePointScalarObject should be always pinned to the control edge
 437   // of the SafePoint node for which it was generated.
 438   virtual bool pinned() const; // { return true; }
 439 
 440   // SafePointScalarObject depends on the SafePoint node
 441   // for which it was generated.
 442   virtual bool depends_only_on_test() const; // { return false; }
 443 
 444   virtual uint size_of() const { return sizeof(*this); }
 445 
 446   // Assumes that "this" is an argument to a safepoint node "s", and that
 447   // "new_call" is being created to correspond to "s".  But the difference
 448   // between the start index of the jvmstates of "new_call" and "s" is
 449   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 450   // corresponds appropriately to "this" in "new_call".  Assumes that
 451   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 452   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 453   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
 454 
 455 #ifndef PRODUCT
 456   virtual void              dump_spec(outputStream *st) const;
 457 #endif
 458 };
 459 
 460 //------------------------------CallNode---------------------------------------
 461 // Call nodes now subsume the function of debug nodes at callsites, so they
 462 // contain the functionality of a full scope chain of debug nodes.
 463 class CallNode : public SafePointNode {
 464 public:
 465   const TypeFunc *_tf;        // Function type
 466   address      _entry_point;  // Address of method being called
 467   float        _cnt;          // Estimate of number of times called
 468 
 469   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 470     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 471       _tf(tf),
 472       _entry_point(addr),
 473       _cnt(COUNT_UNKNOWN)
 474   {
 475     init_class_id(Class_Call);
 476     init_flags(Flag_is_Call);
 477   }
 478 
 479   const TypeFunc* tf()        const { return _tf; }
 480   const address entry_point() const { return _entry_point; }
 481   const float   cnt()         const { return _cnt; }
 482 
 483   void set_tf(const TypeFunc* tf) { _tf = tf; }
 484   void set_entry_point(address p) { _entry_point = p; }
 485   void set_cnt(float c)           { _cnt = c; }
 486 
 487   virtual const Type *bottom_type() const;
 488   virtual const Type *Value( PhaseTransform *phase ) const;
 489   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 490   virtual uint        cmp( const Node &n ) const;
 491   virtual uint        size_of() const = 0;
 492   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 493   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 494   virtual uint        ideal_reg() const { return NotAMachineReg; }
 495   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 496   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 497   virtual bool        guaranteed_safepoint()  { return true; }
 498   // For macro nodes, the JVMState gets modified during expansion, so when cloning
 499   // the node the JVMState must be cloned.
 500   virtual void        clone_jvms() { }   // default is not to clone
 501 
 502   // Returns true if the call may modify n
 503   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
 504   // Does this node have a use of n other than in debug information?
 505   bool                has_non_debug_use(Node *n);
 506   // Returns the unique CheckCastPP of a call
 507   // or result projection is there are several CheckCastPP
 508   // or returns NULL if there is no one.
 509   Node *result_cast();
 510 
 511   virtual uint match_edge(uint idx) const;
 512 
 513 #ifndef PRODUCT
 514   virtual void        dump_req()  const;
 515   virtual void        dump_spec(outputStream *st) const;
 516 #endif
 517 };
 518 
 519 //------------------------------CallJavaNode-----------------------------------
 520 // Make a static or dynamic subroutine call node using Java calling
 521 // convention.  (The "Java" calling convention is the compiler's calling
 522 // convention, as opposed to the interpreter's or that of native C.)
 523 class CallJavaNode : public CallNode {
 524 protected:
 525   virtual uint cmp( const Node &n ) const;
 526   virtual uint size_of() const; // Size is bigger
 527 
 528   bool    _optimized_virtual;
 529   ciMethod* _method;            // Method being direct called
 530 public:
 531   const int       _bci;         // Byte Code Index of call byte code
 532   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 533     : CallNode(tf, addr, TypePtr::BOTTOM),
 534       _method(method), _bci(bci), _optimized_virtual(false)
 535   {
 536     init_class_id(Class_CallJava);
 537   }
 538 
 539   virtual int   Opcode() const;
 540   ciMethod* method() const                { return _method; }
 541   void  set_method(ciMethod *m)           { _method = m; }
 542   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 543   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 544 
 545 #ifndef PRODUCT
 546   virtual void  dump_spec(outputStream *st) const;
 547 #endif
 548 };
 549 
 550 //------------------------------CallStaticJavaNode-----------------------------
 551 // Make a direct subroutine call using Java calling convention (for static
 552 // calls and optimized virtual calls, plus calls to wrappers for run-time
 553 // routines); generates static stub.
 554 class CallStaticJavaNode : public CallJavaNode {
 555   virtual uint cmp( const Node &n ) const;
 556   virtual uint size_of() const; // Size is bigger
 557 public:
 558   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
 559     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 560     init_class_id(Class_CallStaticJava);
 561   }
 562   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 563                      const TypePtr* adr_type)
 564     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 565     init_class_id(Class_CallStaticJava);
 566     // This node calls a runtime stub, which often has narrow memory effects.
 567     _adr_type = adr_type;
 568   }
 569   const char *_name;            // Runtime wrapper name
 570 
 571   // If this is an uncommon trap, return the request code, else zero.
 572   int uncommon_trap_request() const;
 573   static int extract_uncommon_trap_request(const Node* call);
 574 
 575   virtual int         Opcode() const;
 576 #ifndef PRODUCT
 577   virtual void        dump_spec(outputStream *st) const;
 578 #endif
 579 };
 580 
 581 //------------------------------CallDynamicJavaNode----------------------------
 582 // Make a dispatched call using Java calling convention.
 583 class CallDynamicJavaNode : public CallJavaNode {
 584   virtual uint cmp( const Node &n ) const;
 585   virtual uint size_of() const; // Size is bigger
 586 public:
 587   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 588     init_class_id(Class_CallDynamicJava);
 589   }
 590 
 591   int _vtable_index;
 592   virtual int   Opcode() const;
 593 #ifndef PRODUCT
 594   virtual void  dump_spec(outputStream *st) const;
 595 #endif
 596 };
 597 
 598 //------------------------------CallRuntimeNode--------------------------------
 599 // Make a direct subroutine call node into compiled C++ code.
 600 class CallRuntimeNode : public CallNode {
 601   virtual uint cmp( const Node &n ) const;
 602   virtual uint size_of() const; // Size is bigger
 603 public:
 604   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 605                   const TypePtr* adr_type)
 606     : CallNode(tf, addr, adr_type),
 607       _name(name)
 608   {
 609     init_class_id(Class_CallRuntime);
 610   }
 611 
 612   const char *_name;            // Printable name, if _method is NULL
 613   virtual int   Opcode() const;
 614   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 615 
 616 #ifndef PRODUCT
 617   virtual void  dump_spec(outputStream *st) const;
 618 #endif
 619 };
 620 
 621 //------------------------------CallLeafNode-----------------------------------
 622 // Make a direct subroutine call node into compiled C++ code, without
 623 // safepoints
 624 class CallLeafNode : public CallRuntimeNode {
 625 public:
 626   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 627                const TypePtr* adr_type)
 628     : CallRuntimeNode(tf, addr, name, adr_type)
 629   {
 630     init_class_id(Class_CallLeaf);
 631   }
 632   virtual int   Opcode() const;
 633   virtual bool        guaranteed_safepoint()  { return false; }
 634 #ifndef PRODUCT
 635   virtual void  dump_spec(outputStream *st) const;
 636 #endif
 637 };
 638 
 639 //------------------------------CallLeafNoFPNode-------------------------------
 640 // CallLeafNode, not using floating point or using it in the same manner as
 641 // the generated code
 642 class CallLeafNoFPNode : public CallLeafNode {
 643 public:
 644   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 645                    const TypePtr* adr_type)
 646     : CallLeafNode(tf, addr, name, adr_type)
 647   {
 648   }
 649   virtual int   Opcode() const;
 650 };
 651 
 652 
 653 //------------------------------Allocate---------------------------------------
 654 // High-level memory allocation
 655 //
 656 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 657 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 658 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 659 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 660 //  order to differentiate the uses of the projection on the normal control path from
 661 //  those on the exception return path.
 662 //
 663 class AllocateNode : public CallNode {
 664 public:
 665   enum {
 666     // Output:
 667     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 668     // Inputs:
 669     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 670     KlassNode,                        // type (maybe dynamic) of the obj.
 671     InitialTest,                      // slow-path test (may be constant)
 672     ALength,                          // array length (or TOP if none)
 673     ParmLimit
 674   };
 675 
 676   static const TypeFunc* alloc_type() {
 677     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 678     fields[AllocSize]   = TypeInt::POS;
 679     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 680     fields[InitialTest] = TypeInt::BOOL;
 681     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
 682 
 683     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 684 
 685     // create result type (range)
 686     fields = TypeTuple::fields(1);
 687     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 688 
 689     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 690 
 691     return TypeFunc::make(domain, range);
 692   }
 693 
 694   bool _is_scalar_replaceable;  // Result of Escape Analysis
 695 
 696   virtual uint size_of() const; // Size is bigger
 697   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 698                Node *size, Node *klass_node, Node *initial_test);
 699   // Expansion modifies the JVMState, so we need to clone it
 700   virtual void  clone_jvms() {
 701     set_jvms(jvms()->clone_deep(Compile::current()));
 702   }
 703   virtual int Opcode() const;
 704   virtual uint ideal_reg() const { return Op_RegP; }
 705   virtual bool        guaranteed_safepoint()  { return false; }
 706 
 707   // allocations do not modify their arguments
 708   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
 709 
 710   // Pattern-match a possible usage of AllocateNode.
 711   // Return null if no allocation is recognized.
 712   // The operand is the pointer produced by the (possible) allocation.
 713   // It must be a projection of the Allocate or its subsequent CastPP.
 714   // (Note:  This function is defined in file graphKit.cpp, near
 715   // GraphKit::new_instance/new_array, whose output it recognizes.)
 716   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 717   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 718 
 719   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 720   // an offset, which is reported back to the caller.
 721   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 722   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 723                                         intptr_t& offset);
 724 
 725   // Dig the klass operand out of a (possible) allocation site.
 726   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 727     AllocateNode* allo = Ideal_allocation(ptr, phase);
 728     return (allo == NULL) ? NULL : allo->in(KlassNode);
 729   }
 730 
 731   // Conservatively small estimate of offset of first non-header byte.
 732   int minimum_header_size() {
 733     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 734                                 instanceOopDesc::base_offset_in_bytes();
 735   }
 736 
 737   // Return the corresponding initialization barrier (or null if none).
 738   // Walks out edges to find it...
 739   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 740   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 741   InitializeNode* initialization();
 742 
 743   // Convenience for initialization->maybe_set_complete(phase)
 744   bool maybe_set_complete(PhaseGVN* phase);
 745 };
 746 
 747 //------------------------------AllocateArray---------------------------------
 748 //
 749 // High-level array allocation
 750 //
 751 class AllocateArrayNode : public AllocateNode {
 752 public:
 753   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 754                     Node* size, Node* klass_node, Node* initial_test,
 755                     Node* count_val
 756                     )
 757     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 758                    initial_test)
 759   {
 760     init_class_id(Class_AllocateArray);
 761     set_req(AllocateNode::ALength,        count_val);
 762   }
 763   virtual int Opcode() const;
 764   virtual uint size_of() const; // Size is bigger
 765   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 766 
 767   // Dig the length operand out of a array allocation site.
 768   Node* Ideal_length() {
 769     return in(AllocateNode::ALength);
 770   }
 771 
 772   // Dig the length operand out of a array allocation site and narrow the
 773   // type with a CastII, if necesssary
 774   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 775 
 776   // Pattern-match a possible usage of AllocateArrayNode.
 777   // Return null if no allocation is recognized.
 778   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 779     AllocateNode* allo = Ideal_allocation(ptr, phase);
 780     return (allo == NULL || !allo->is_AllocateArray())
 781            ? NULL : allo->as_AllocateArray();
 782   }
 783 };
 784 
 785 //------------------------------AbstractLockNode-----------------------------------
 786 class AbstractLockNode: public CallNode {
 787 private:
 788   bool _eliminate;    // indicates this lock can be safely eliminated
 789   bool _coarsened;    // indicates this lock was coarsened
 790 #ifndef PRODUCT
 791   NamedCounter* _counter;
 792 #endif
 793 
 794 protected:
 795   // helper functions for lock elimination
 796   //
 797 
 798   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 799                             GrowableArray<AbstractLockNode*> &lock_ops);
 800   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 801                                        GrowableArray<AbstractLockNode*> &lock_ops);
 802   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 803                                GrowableArray<AbstractLockNode*> &lock_ops);
 804   LockNode *find_matching_lock(UnlockNode* unlock);
 805 
 806 
 807 public:
 808   AbstractLockNode(const TypeFunc *tf)
 809     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 810       _coarsened(false),
 811       _eliminate(false)
 812   {
 813 #ifndef PRODUCT
 814     _counter = NULL;
 815 #endif
 816   }
 817   virtual int Opcode() const = 0;
 818   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 819   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 820   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
 821   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
 822 
 823   virtual uint size_of() const { return sizeof(*this); }
 824 
 825   bool is_eliminated()         {return _eliminate; }
 826   // mark node as eliminated and update the counter if there is one
 827   void set_eliminated();
 828 
 829   bool is_coarsened()  { return _coarsened; }
 830   void set_coarsened() { _coarsened = true; }
 831 
 832   // locking does not modify its arguments
 833   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
 834 
 835 #ifndef PRODUCT
 836   void create_lock_counter(JVMState* s);
 837   NamedCounter* counter() const { return _counter; }
 838 #endif
 839 };
 840 
 841 //------------------------------Lock---------------------------------------
 842 // High-level lock operation
 843 //
 844 // This is a subclass of CallNode because it is a macro node which gets expanded
 845 // into a code sequence containing a call.  This node takes 3 "parameters":
 846 //    0  -  object to lock
 847 //    1 -   a BoxLockNode
 848 //    2 -   a FastLockNode
 849 //
 850 class LockNode : public AbstractLockNode {
 851 public:
 852 
 853   static const TypeFunc *lock_type() {
 854     // create input type (domain)
 855     const Type **fields = TypeTuple::fields(3);
 856     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 857     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
 858     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
 859     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 860 
 861     // create result type (range)
 862     fields = TypeTuple::fields(0);
 863 
 864     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 865 
 866     return TypeFunc::make(domain,range);
 867   }
 868 
 869   virtual int Opcode() const;
 870   virtual uint size_of() const; // Size is bigger
 871   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 872     init_class_id(Class_Lock);
 873     init_flags(Flag_is_macro);
 874     C->add_macro_node(this);
 875   }
 876   virtual bool        guaranteed_safepoint()  { return false; }
 877 
 878   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 879   // Expansion modifies the JVMState, so we need to clone it
 880   virtual void  clone_jvms() {
 881     set_jvms(jvms()->clone_deep(Compile::current()));
 882   }
 883 };
 884 
 885 //------------------------------Unlock---------------------------------------
 886 // High-level unlock operation
 887 class UnlockNode : public AbstractLockNode {
 888 public:
 889   virtual int Opcode() const;
 890   virtual uint size_of() const; // Size is bigger
 891   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 892     init_class_id(Class_Unlock);
 893     init_flags(Flag_is_macro);
 894     C->add_macro_node(this);
 895   }
 896   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 897   // unlock is never a safepoint
 898   virtual bool        guaranteed_safepoint()  { return false; }
 899 };