1 /*
   2  * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_output.cpp.incl"
  27 
  28 extern uint size_java_to_interp();
  29 extern uint reloc_java_to_interp();
  30 extern uint size_exception_handler();
  31 extern uint size_deopt_handler();
  32 
  33 #ifndef PRODUCT
  34 #define DEBUG_ARG(x) , x
  35 #else
  36 #define DEBUG_ARG(x)
  37 #endif
  38 
  39 extern int emit_exception_handler(CodeBuffer &cbuf);
  40 extern int emit_deopt_handler(CodeBuffer &cbuf);
  41 
  42 //------------------------------Output-----------------------------------------
  43 // Convert Nodes to instruction bits and pass off to the VM
  44 void Compile::Output() {
  45   // RootNode goes
  46   assert( _cfg->_broot->_nodes.size() == 0, "" );
  47 
  48   // Initialize the space for the BufferBlob used to find and verify
  49   // instruction size in MachNode::emit_size()
  50   init_scratch_buffer_blob();
  51   if (failing())  return; // Out of memory
  52 
  53   // Make sure I can find the Start Node
  54   Block_Array& bbs = _cfg->_bbs;
  55   Block *entry = _cfg->_blocks[1];
  56   Block *broot = _cfg->_broot;
  57 
  58   const StartNode *start = entry->_nodes[0]->as_Start();
  59 
  60   // Replace StartNode with prolog
  61   MachPrologNode *prolog = new (this) MachPrologNode();
  62   entry->_nodes.map( 0, prolog );
  63   bbs.map( prolog->_idx, entry );
  64   bbs.map( start->_idx, NULL ); // start is no longer in any block
  65 
  66   // Virtual methods need an unverified entry point
  67 
  68   if( is_osr_compilation() ) {
  69     if( PoisonOSREntry ) {
  70       // TODO: Should use a ShouldNotReachHereNode...
  71       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  72     }
  73   } else {
  74     if( _method && !_method->flags().is_static() ) {
  75       // Insert unvalidated entry point
  76       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  77     }
  78 
  79   }
  80 
  81 
  82   // Break before main entry point
  83   if( (_method && _method->break_at_execute())
  84 #ifndef PRODUCT
  85     ||(OptoBreakpoint && is_method_compilation())
  86     ||(OptoBreakpointOSR && is_osr_compilation())
  87     ||(OptoBreakpointC2R && !_method)
  88 #endif
  89     ) {
  90     // checking for _method means that OptoBreakpoint does not apply to
  91     // runtime stubs or frame converters
  92     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
  93   }
  94 
  95   // Insert epilogs before every return
  96   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
  97     Block *b = _cfg->_blocks[i];
  98     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
  99       Node *m = b->end();
 100       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
 101         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 102         b->add_inst( epilog );
 103         bbs.map(epilog->_idx, b);
 104         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
 105       }
 106     }
 107   }
 108 
 109 # ifdef ENABLE_ZAP_DEAD_LOCALS
 110   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
 111 # endif
 112 
 113   ScheduleAndBundle();
 114 
 115 #ifndef PRODUCT
 116   if (trace_opto_output()) {
 117     tty->print("\n---- After ScheduleAndBundle ----\n");
 118     for (uint i = 0; i < _cfg->_num_blocks; i++) {
 119       tty->print("\nBB#%03d:\n", i);
 120       Block *bb = _cfg->_blocks[i];
 121       for (uint j = 0; j < bb->_nodes.size(); j++) {
 122         Node *n = bb->_nodes[j];
 123         OptoReg::Name reg = _regalloc->get_reg_first(n);
 124         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 125         n->dump();
 126       }
 127     }
 128   }
 129 #endif
 130 
 131   if (failing())  return;
 132 
 133   BuildOopMaps();
 134 
 135   if (failing())  return;
 136 
 137   Fill_buffer();
 138 }
 139 
 140 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 141   // Determine if we need to generate a stack overflow check.
 142   // Do it if the method is not a stub function and
 143   // has java calls or has frame size > vm_page_size/8.
 144   return (stub_function() == NULL &&
 145           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
 146 }
 147 
 148 bool Compile::need_register_stack_bang() const {
 149   // Determine if we need to generate a register stack overflow check.
 150   // This is only used on architectures which have split register
 151   // and memory stacks (ie. IA64).
 152   // Bang if the method is not a stub function and has java calls
 153   return (stub_function() == NULL && has_java_calls());
 154 }
 155 
 156 # ifdef ENABLE_ZAP_DEAD_LOCALS
 157 
 158 
 159 // In order to catch compiler oop-map bugs, we have implemented
 160 // a debugging mode called ZapDeadCompilerLocals.
 161 // This mode causes the compiler to insert a call to a runtime routine,
 162 // "zap_dead_locals", right before each place in compiled code
 163 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 164 // The runtime routine checks that locations mapped as oops are really
 165 // oops, that locations mapped as values do not look like oops,
 166 // and that locations mapped as dead are not used later
 167 // (by zapping them to an invalid address).
 168 
 169 int Compile::_CompiledZap_count = 0;
 170 
 171 void Compile::Insert_zap_nodes() {
 172   bool skip = false;
 173 
 174 
 175   // Dink with static counts because code code without the extra
 176   // runtime calls is MUCH faster for debugging purposes
 177 
 178        if ( CompileZapFirst  ==  0  ) ; // nothing special
 179   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 180   else if ( CompileZapFirst  == CompiledZap_count() )
 181     warning("starting zap compilation after skipping");
 182 
 183        if ( CompileZapLast  ==  -1  ) ; // nothing special
 184   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 185   else if ( CompileZapLast  ==  CompiledZap_count() )
 186     warning("about to compile last zap");
 187 
 188   ++_CompiledZap_count; // counts skipped zaps, too
 189 
 190   if ( skip )  return;
 191 
 192 
 193   if ( _method == NULL )
 194     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 195 
 196   // Insert call to zap runtime stub before every node with an oop map
 197   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 198     Block *b = _cfg->_blocks[i];
 199     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
 200       Node *n = b->_nodes[j];
 201 
 202       // Determining if we should insert a zap-a-lot node in output.
 203       // We do that for all nodes that has oopmap info, except for calls
 204       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 205       // and expect the C code to reset it.  Hence, there can be no safepoints between
 206       // the inlined-allocation and the call to new_Java, etc.
 207       // We also cannot zap monitor calls, as they must hold the microlock
 208       // during the call to Zap, which also wants to grab the microlock.
 209       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 210       if ( insert ) { // it is MachSafePoint
 211         if ( !n->is_MachCall() ) {
 212           insert = false;
 213         } else if ( n->is_MachCall() ) {
 214           MachCallNode* call = n->as_MachCall();
 215           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 216               call->entry_point() == OptoRuntime::new_array_Java() ||
 217               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 218               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 219               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 220               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 221               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 222               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 223               ) {
 224             insert = false;
 225           }
 226         }
 227         if (insert) {
 228           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 229           b->_nodes.insert( j, zap );
 230           _cfg->_bbs.map( zap->_idx, b );
 231           ++j;
 232         }
 233       }
 234     }
 235   }
 236 }
 237 
 238 
 239 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 240   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 241   CallStaticJavaNode* ideal_node =
 242     new (this, tf->domain()->cnt()) CallStaticJavaNode( tf,
 243          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 244                             "call zap dead locals stub", 0, TypePtr::BOTTOM);
 245   // We need to copy the OopMap from the site we're zapping at.
 246   // We have to make a copy, because the zap site might not be
 247   // a call site, and zap_dead is a call site.
 248   OopMap* clone = node_to_check->oop_map()->deep_copy();
 249 
 250   // Add the cloned OopMap to the zap node
 251   ideal_node->set_oop_map(clone);
 252   return _matcher->match_sfpt(ideal_node);
 253 }
 254 
 255 //------------------------------is_node_getting_a_safepoint--------------------
 256 bool Compile::is_node_getting_a_safepoint( Node* n) {
 257   // This code duplicates the logic prior to the call of add_safepoint
 258   // below in this file.
 259   if( n->is_MachSafePoint() ) return true;
 260   return false;
 261 }
 262 
 263 # endif // ENABLE_ZAP_DEAD_LOCALS
 264 
 265 //------------------------------compute_loop_first_inst_sizes------------------
 266 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 267 // of a loop. When aligning a loop we need to provide enough instructions
 268 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 269 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 270 // By default, the size is set to 999999 by Block's constructor so that
 271 // a loop will be aligned if the size is not reset here.
 272 //
 273 // Note: Mach instructions could contain several HW instructions
 274 // so the size is estimated only.
 275 //
 276 void Compile::compute_loop_first_inst_sizes() {
 277   // The next condition is used to gate the loop alignment optimization.
 278   // Don't aligned a loop if there are enough instructions at the head of a loop
 279   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 280   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 281   // equal to 11 bytes which is the largest address NOP instruction.
 282   if( MaxLoopPad < OptoLoopAlignment-1 ) {
 283     uint last_block = _cfg->_num_blocks-1;
 284     for( uint i=1; i <= last_block; i++ ) {
 285       Block *b = _cfg->_blocks[i];
 286       // Check the first loop's block which requires an alignment.
 287       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
 288         uint sum_size = 0;
 289         uint inst_cnt = NumberOfLoopInstrToAlign;
 290         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 291 
 292         // Check subsequent fallthrough blocks if the loop's first
 293         // block(s) does not have enough instructions.
 294         Block *nb = b;
 295         while( inst_cnt > 0 &&
 296                i < last_block &&
 297                !_cfg->_blocks[i+1]->has_loop_alignment() &&
 298                !nb->has_successor(b) ) {
 299           i++;
 300           nb = _cfg->_blocks[i];
 301           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 302         } // while( inst_cnt > 0 && i < last_block  )
 303 
 304         b->set_first_inst_size(sum_size);
 305       } // f( b->head()->is_Loop() )
 306     } // for( i <= last_block )
 307   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 308 }
 309 
 310 //----------------------Shorten_branches---------------------------------------
 311 // The architecture description provides short branch variants for some long
 312 // branch instructions. Replace eligible long branches with short branches.
 313 void Compile::Shorten_branches(Label *labels, int& code_size, int& reloc_size, int& stub_size, int& const_size) {
 314 
 315   // fill in the nop array for bundling computations
 316   MachNode *_nop_list[Bundle::_nop_count];
 317   Bundle::initialize_nops(_nop_list, this);
 318 
 319   // ------------------
 320   // Compute size of each block, method size, and relocation information size
 321   uint *jmp_end    = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks);
 322   uint *blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
 323   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
 324   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks); )
 325   blk_starts[0]    = 0;
 326 
 327   // Initialize the sizes to 0
 328   code_size  = 0;          // Size in bytes of generated code
 329   stub_size  = 0;          // Size in bytes of all stub entries
 330   // Size in bytes of all relocation entries, including those in local stubs.
 331   // Start with 2-bytes of reloc info for the unvalidated entry point
 332   reloc_size = 1;          // Number of relocation entries
 333   const_size = 0;          // size of fp constants in words
 334 
 335   // Make three passes.  The first computes pessimistic blk_starts,
 336   // relative jmp_end, reloc_size and const_size information.
 337   // The second performs short branch substitution using the pessimistic
 338   // sizing. The third inserts nops where needed.
 339 
 340   Node *nj; // tmp
 341 
 342   // Step one, perform a pessimistic sizing pass.
 343   uint i;
 344   uint min_offset_from_last_call = 1;  // init to a positive value
 345   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 346   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 347     Block *b = _cfg->_blocks[i];
 348 
 349     // Sum all instruction sizes to compute block size
 350     uint last_inst = b->_nodes.size();
 351     uint blk_size = 0;
 352     for( uint j = 0; j<last_inst; j++ ) {
 353       nj = b->_nodes[j];
 354       uint inst_size = nj->size(_regalloc);
 355       blk_size += inst_size;
 356       // Handle machine instruction nodes
 357       if( nj->is_Mach() ) {
 358         MachNode *mach = nj->as_Mach();
 359         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 360         reloc_size += mach->reloc();
 361         const_size += mach->const_size();
 362         if( mach->is_MachCall() ) {
 363           MachCallNode *mcall = mach->as_MachCall();
 364           // This destination address is NOT PC-relative
 365 
 366           mcall->method_set((intptr_t)mcall->entry_point());
 367 
 368           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
 369             stub_size  += size_java_to_interp();
 370             reloc_size += reloc_java_to_interp();
 371           }
 372         } else if (mach->is_MachSafePoint()) {
 373           // If call/safepoint are adjacent, account for possible
 374           // nop to disambiguate the two safepoints.
 375           if (min_offset_from_last_call == 0) {
 376             blk_size += nop_size;
 377           }
 378         }
 379       }
 380       min_offset_from_last_call += inst_size;
 381       // Remember end of call offset
 382       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
 383         min_offset_from_last_call = 0;
 384       }
 385     }
 386 
 387     // During short branch replacement, we store the relative (to blk_starts)
 388     // end of jump in jmp_end, rather than the absolute end of jump.  This
 389     // is so that we do not need to recompute sizes of all nodes when we compute
 390     // correct blk_starts in our next sizing pass.
 391     jmp_end[i] = blk_size;
 392     DEBUG_ONLY( jmp_target[i] = 0; )
 393 
 394     // When the next block starts a loop, we may insert pad NOP
 395     // instructions.  Since we cannot know our future alignment,
 396     // assume the worst.
 397     if( i<_cfg->_num_blocks-1 ) {
 398       Block *nb = _cfg->_blocks[i+1];
 399       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 400       if( max_loop_pad > 0 ) {
 401         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 402         blk_size += max_loop_pad;
 403       }
 404     }
 405 
 406     // Save block size; update total method size
 407     blk_starts[i+1] = blk_starts[i]+blk_size;
 408   }
 409 
 410   // Step two, replace eligible long jumps.
 411 
 412   // Note: this will only get the long branches within short branch
 413   //   range. Another pass might detect more branches that became
 414   //   candidates because the shortening in the first pass exposed
 415   //   more opportunities. Unfortunately, this would require
 416   //   recomputing the starting and ending positions for the blocks
 417   for( i=0; i<_cfg->_num_blocks; i++ ) {
 418     Block *b = _cfg->_blocks[i];
 419 
 420     int j;
 421     // Find the branch; ignore trailing NOPs.
 422     for( j = b->_nodes.size()-1; j>=0; j-- ) {
 423       nj = b->_nodes[j];
 424       if( !nj->is_Mach() || nj->as_Mach()->ideal_Opcode() != Op_Con )
 425         break;
 426     }
 427 
 428     if (j >= 0) {
 429       if( nj->is_Mach() && nj->as_Mach()->may_be_short_branch() ) {
 430         MachNode *mach = nj->as_Mach();
 431         // This requires the TRUE branch target be in succs[0]
 432         uint bnum = b->non_connector_successor(0)->_pre_order;
 433         uintptr_t target = blk_starts[bnum];
 434         if( mach->is_pc_relative() ) {
 435           int offset = target-(blk_starts[i] + jmp_end[i]);
 436           if (_matcher->is_short_branch_offset(mach->rule(), offset)) {
 437             // We've got a winner.  Replace this branch.
 438             MachNode* replacement = mach->short_branch_version(this);
 439             b->_nodes.map(j, replacement);
 440             mach->subsume_by(replacement);
 441 
 442             // Update the jmp_end size to save time in our
 443             // next pass.
 444             jmp_end[i] -= (mach->size(_regalloc) - replacement->size(_regalloc));
 445             DEBUG_ONLY( jmp_target[i] = bnum; );
 446             DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 447           }
 448         } else {
 449 #ifndef PRODUCT
 450           mach->dump(3);
 451 #endif
 452           Unimplemented();
 453         }
 454       }
 455     }
 456   }
 457 
 458   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
 459   // of a loop. It is used to determine the padding for loop alignment.
 460   compute_loop_first_inst_sizes();
 461 
 462   // Step 3, compute the offsets of all the labels
 463   uint last_call_adr = max_uint;
 464   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 465     // copy the offset of the beginning to the corresponding label
 466     assert(labels[i].is_unused(), "cannot patch at this point");
 467     labels[i].bind_loc(blk_starts[i], CodeBuffer::SECT_INSTS);
 468 
 469     // insert padding for any instructions that need it
 470     Block *b = _cfg->_blocks[i];
 471     uint last_inst = b->_nodes.size();
 472     uint adr = blk_starts[i];
 473     for( uint j = 0; j<last_inst; j++ ) {
 474       nj = b->_nodes[j];
 475       if( nj->is_Mach() ) {
 476         int padding = nj->as_Mach()->compute_padding(adr);
 477         // If call/safepoint are adjacent insert a nop (5010568)
 478         if (padding == 0 && nj->is_MachSafePoint() && !nj->is_MachCall() &&
 479             adr == last_call_adr ) {
 480           padding = nop_size;
 481         }
 482         if(padding > 0) {
 483           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
 484           int nops_cnt = padding / nop_size;
 485           MachNode *nop = new (this) MachNopNode(nops_cnt);
 486           b->_nodes.insert(j++, nop);
 487           _cfg->_bbs.map( nop->_idx, b );
 488           adr += padding;
 489           last_inst++;
 490         }
 491       }
 492       adr += nj->size(_regalloc);
 493 
 494       // Remember end of call offset
 495       if (nj->is_MachCall() && nj->as_MachCall()->is_safepoint_node()) {
 496         last_call_adr = adr;
 497       }
 498     }
 499 
 500     if ( i != _cfg->_num_blocks-1) {
 501       // Get the size of the block
 502       uint blk_size = adr - blk_starts[i];
 503 
 504       // When the next block is the top of a loop, we may insert pad NOP
 505       // instructions.
 506       Block *nb = _cfg->_blocks[i+1];
 507       int current_offset = blk_starts[i] + blk_size;
 508       current_offset += nb->alignment_padding(current_offset);
 509       // Save block size; update total method size
 510       blk_starts[i+1] = current_offset;
 511     }
 512   }
 513 
 514 #ifdef ASSERT
 515   for( i=0; i<_cfg->_num_blocks; i++ ) { // For all blocks
 516     if( jmp_target[i] != 0 ) {
 517       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_end[i]);
 518       if (!_matcher->is_short_branch_offset(jmp_rule[i], offset)) {
 519         tty->print_cr("target (%d) - jmp_end(%d) = offset (%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_end[i], offset, i, jmp_target[i]);
 520       }
 521       assert(_matcher->is_short_branch_offset(jmp_rule[i], offset), "Displacement too large for short jmp");
 522     }
 523   }
 524 #endif
 525 
 526   // ------------------
 527   // Compute size for code buffer
 528   code_size   = blk_starts[i-1] + jmp_end[i-1];
 529 
 530   // Relocation records
 531   reloc_size += 1;              // Relo entry for exception handler
 532 
 533   // Adjust reloc_size to number of record of relocation info
 534   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 535   // a relocation index.
 536   // The CodeBuffer will expand the locs array if this estimate is too low.
 537   reloc_size   *= 10 / sizeof(relocInfo);
 538 
 539   // Adjust const_size to number of bytes
 540   const_size   *= 2*jintSize; // both float and double take two words per entry
 541 
 542 }
 543 
 544 //------------------------------FillLocArray-----------------------------------
 545 // Create a bit of debug info and append it to the array.  The mapping is from
 546 // Java local or expression stack to constant, register or stack-slot.  For
 547 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 548 // entry has been taken care of and caller should skip it).
 549 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 550   // This should never have accepted Bad before
 551   assert(OptoReg::is_valid(regnum), "location must be valid");
 552   return (OptoReg::is_reg(regnum))
 553     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 554     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 555 }
 556 
 557 
 558 ObjectValue*
 559 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 560   for (int i = 0; i < objs->length(); i++) {
 561     assert(objs->at(i)->is_object(), "corrupt object cache");
 562     ObjectValue* sv = (ObjectValue*) objs->at(i);
 563     if (sv->id() == id) {
 564       return sv;
 565     }
 566   }
 567   // Otherwise..
 568   return NULL;
 569 }
 570 
 571 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 572                                      ObjectValue* sv ) {
 573   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 574   objs->append(sv);
 575 }
 576 
 577 
 578 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 579                             GrowableArray<ScopeValue*> *array,
 580                             GrowableArray<ScopeValue*> *objs ) {
 581   assert( local, "use _top instead of null" );
 582   if (array->length() != idx) {
 583     assert(array->length() == idx + 1, "Unexpected array count");
 584     // Old functionality:
 585     //   return
 586     // New functionality:
 587     //   Assert if the local is not top. In product mode let the new node
 588     //   override the old entry.
 589     assert(local == top(), "LocArray collision");
 590     if (local == top()) {
 591       return;
 592     }
 593     array->pop();
 594   }
 595   const Type *t = local->bottom_type();
 596 
 597   // Is it a safepoint scalar object node?
 598   if (local->is_SafePointScalarObject()) {
 599     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 600 
 601     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 602     if (sv == NULL) {
 603       ciKlass* cik = t->is_oopptr()->klass();
 604       assert(cik->is_instance_klass() ||
 605              cik->is_array_klass(), "Not supported allocation.");
 606       sv = new ObjectValue(spobj->_idx,
 607                            new ConstantOopWriteValue(cik->encoding()));
 608       Compile::set_sv_for_object_node(objs, sv);
 609 
 610       uint first_ind = spobj->first_index();
 611       for (uint i = 0; i < spobj->n_fields(); i++) {
 612         Node* fld_node = sfpt->in(first_ind+i);
 613         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 614       }
 615     }
 616     array->append(sv);
 617     return;
 618   }
 619 
 620   // Grab the register number for the local
 621   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 622   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 623     // Record the double as two float registers.
 624     // The register mask for such a value always specifies two adjacent
 625     // float registers, with the lower register number even.
 626     // Normally, the allocation of high and low words to these registers
 627     // is irrelevant, because nearly all operations on register pairs
 628     // (e.g., StoreD) treat them as a single unit.
 629     // Here, we assume in addition that the words in these two registers
 630     // stored "naturally" (by operations like StoreD and double stores
 631     // within the interpreter) such that the lower-numbered register
 632     // is written to the lower memory address.  This may seem like
 633     // a machine dependency, but it is not--it is a requirement on
 634     // the author of the <arch>.ad file to ensure that, for every
 635     // even/odd double-register pair to which a double may be allocated,
 636     // the word in the even single-register is stored to the first
 637     // memory word.  (Note that register numbers are completely
 638     // arbitrary, and are not tied to any machine-level encodings.)
 639 #ifdef _LP64
 640     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 641       array->append(new ConstantIntValue(0));
 642       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 643     } else if ( t->base() == Type::Long ) {
 644       array->append(new ConstantIntValue(0));
 645       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 646     } else if ( t->base() == Type::RawPtr ) {
 647       // jsr/ret return address which must be restored into a the full
 648       // width 64-bit stack slot.
 649       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 650     }
 651 #else //_LP64
 652 #ifdef SPARC
 653     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 654       // For SPARC we have to swap high and low words for
 655       // long values stored in a single-register (g0-g7).
 656       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 657       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 658     } else
 659 #endif //SPARC
 660     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 661       // Repack the double/long as two jints.
 662       // The convention the interpreter uses is that the second local
 663       // holds the first raw word of the native double representation.
 664       // This is actually reasonable, since locals and stack arrays
 665       // grow downwards in all implementations.
 666       // (If, on some machine, the interpreter's Java locals or stack
 667       // were to grow upwards, the embedded doubles would be word-swapped.)
 668       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 669       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 670     }
 671 #endif //_LP64
 672     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 673                OptoReg::is_reg(regnum) ) {
 674       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double
 675                                    ? Location::float_in_dbl : Location::normal ));
 676     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 677       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 678                                    ? Location::int_in_long : Location::normal ));
 679     } else if( t->base() == Type::NarrowOop ) {
 680       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 681     } else {
 682       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 683     }
 684     return;
 685   }
 686 
 687   // No register.  It must be constant data.
 688   switch (t->base()) {
 689   case Type::Half:              // Second half of a double
 690     ShouldNotReachHere();       // Caller should skip 2nd halves
 691     break;
 692   case Type::AnyPtr:
 693     array->append(new ConstantOopWriteValue(NULL));
 694     break;
 695   case Type::AryPtr:
 696   case Type::InstPtr:
 697   case Type::KlassPtr:          // fall through
 698     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->encoding()));
 699     break;
 700   case Type::NarrowOop:
 701     if (t == TypeNarrowOop::NULL_PTR) {
 702       array->append(new ConstantOopWriteValue(NULL));
 703     } else {
 704       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->encoding()));
 705     }
 706     break;
 707   case Type::Int:
 708     array->append(new ConstantIntValue(t->is_int()->get_con()));
 709     break;
 710   case Type::RawPtr:
 711     // A return address (T_ADDRESS).
 712     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 713 #ifdef _LP64
 714     // Must be restored to the full-width 64-bit stack slot.
 715     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 716 #else
 717     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 718 #endif
 719     break;
 720   case Type::FloatCon: {
 721     float f = t->is_float_constant()->getf();
 722     array->append(new ConstantIntValue(jint_cast(f)));
 723     break;
 724   }
 725   case Type::DoubleCon: {
 726     jdouble d = t->is_double_constant()->getd();
 727 #ifdef _LP64
 728     array->append(new ConstantIntValue(0));
 729     array->append(new ConstantDoubleValue(d));
 730 #else
 731     // Repack the double as two jints.
 732     // The convention the interpreter uses is that the second local
 733     // holds the first raw word of the native double representation.
 734     // This is actually reasonable, since locals and stack arrays
 735     // grow downwards in all implementations.
 736     // (If, on some machine, the interpreter's Java locals or stack
 737     // were to grow upwards, the embedded doubles would be word-swapped.)
 738     jint   *dp = (jint*)&d;
 739     array->append(new ConstantIntValue(dp[1]));
 740     array->append(new ConstantIntValue(dp[0]));
 741 #endif
 742     break;
 743   }
 744   case Type::Long: {
 745     jlong d = t->is_long()->get_con();
 746 #ifdef _LP64
 747     array->append(new ConstantIntValue(0));
 748     array->append(new ConstantLongValue(d));
 749 #else
 750     // Repack the long as two jints.
 751     // The convention the interpreter uses is that the second local
 752     // holds the first raw word of the native double representation.
 753     // This is actually reasonable, since locals and stack arrays
 754     // grow downwards in all implementations.
 755     // (If, on some machine, the interpreter's Java locals or stack
 756     // were to grow upwards, the embedded doubles would be word-swapped.)
 757     jint *dp = (jint*)&d;
 758     array->append(new ConstantIntValue(dp[1]));
 759     array->append(new ConstantIntValue(dp[0]));
 760 #endif
 761     break;
 762   }
 763   case Type::Top:               // Add an illegal value here
 764     array->append(new LocationValue(Location()));
 765     break;
 766   default:
 767     ShouldNotReachHere();
 768     break;
 769   }
 770 }
 771 
 772 // Determine if this node starts a bundle
 773 bool Compile::starts_bundle(const Node *n) const {
 774   return (_node_bundling_limit > n->_idx &&
 775           _node_bundling_base[n->_idx].starts_bundle());
 776 }
 777 
 778 //--------------------------Process_OopMap_Node--------------------------------
 779 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 780 
 781   // Handle special safepoint nodes for synchronization
 782   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 783   MachCallNode      *mcall;
 784 
 785 #ifdef ENABLE_ZAP_DEAD_LOCALS
 786   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 787 #endif
 788 
 789   int safepoint_pc_offset = current_offset;
 790 
 791   // Add the safepoint in the DebugInfoRecorder
 792   if( !mach->is_MachCall() ) {
 793     mcall = NULL;
 794     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 795   } else {
 796     mcall = mach->as_MachCall();
 797     safepoint_pc_offset += mcall->ret_addr_offset();
 798     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 799   }
 800 
 801   // Loop over the JVMState list to add scope information
 802   // Do not skip safepoints with a NULL method, they need monitor info
 803   JVMState* youngest_jvms = sfn->jvms();
 804   int max_depth = youngest_jvms->depth();
 805 
 806   // Allocate the object pool for scalar-replaced objects -- the map from
 807   // small-integer keys (which can be recorded in the local and ostack
 808   // arrays) to descriptions of the object state.
 809   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 810 
 811   // Visit scopes from oldest to youngest.
 812   for (int depth = 1; depth <= max_depth; depth++) {
 813     JVMState* jvms = youngest_jvms->of_depth(depth);
 814     int idx;
 815     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 816     // Safepoints that do not have method() set only provide oop-map and monitor info
 817     // to support GC; these do not support deoptimization.
 818     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 819     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 820     int num_mon  = jvms->nof_monitors();
 821     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 822            "JVMS local count must match that of the method");
 823 
 824     // Add Local and Expression Stack Information
 825 
 826     // Insert locals into the locarray
 827     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 828     for( idx = 0; idx < num_locs; idx++ ) {
 829       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 830     }
 831 
 832     // Insert expression stack entries into the exparray
 833     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 834     for( idx = 0; idx < num_exps; idx++ ) {
 835       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 836     }
 837 
 838     // Add in mappings of the monitors
 839     assert( !method ||
 840             !method->is_synchronized() ||
 841             method->is_native() ||
 842             num_mon > 0 ||
 843             !GenerateSynchronizationCode,
 844             "monitors must always exist for synchronized methods");
 845 
 846     // Build the growable array of ScopeValues for exp stack
 847     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 848 
 849     // Loop over monitors and insert into array
 850     for(idx = 0; idx < num_mon; idx++) {
 851       // Grab the node that defines this monitor
 852       Node* box_node = sfn->monitor_box(jvms, idx);
 853       Node* obj_node = sfn->monitor_obj(jvms, idx);
 854 
 855       // Create ScopeValue for object
 856       ScopeValue *scval = NULL;
 857 
 858       if( obj_node->is_SafePointScalarObject() ) {
 859         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 860         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 861         if (scval == NULL) {
 862           const Type *t = obj_node->bottom_type();
 863           ciKlass* cik = t->is_oopptr()->klass();
 864           assert(cik->is_instance_klass() ||
 865                  cik->is_array_klass(), "Not supported allocation.");
 866           ObjectValue* sv = new ObjectValue(spobj->_idx,
 867                                 new ConstantOopWriteValue(cik->encoding()));
 868           Compile::set_sv_for_object_node(objs, sv);
 869 
 870           uint first_ind = spobj->first_index();
 871           for (uint i = 0; i < spobj->n_fields(); i++) {
 872             Node* fld_node = sfn->in(first_ind+i);
 873             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 874           }
 875           scval = sv;
 876         }
 877       } else if( !obj_node->is_Con() ) {
 878         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 879         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 880           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 881         } else {
 882           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 883         }
 884       } else {
 885         const TypePtr *tp = obj_node->bottom_type()->make_ptr();
 886         scval = new ConstantOopWriteValue(tp->is_instptr()->const_oop()->encoding());
 887       }
 888 
 889       OptoReg::Name box_reg = BoxLockNode::stack_slot(box_node);
 890       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 891       while( !box_node->is_BoxLock() )  box_node = box_node->in(1);
 892       monarray->append(new MonitorValue(scval, basic_lock, box_node->as_BoxLock()->is_eliminated()));
 893     }
 894 
 895     // We dump the object pool first, since deoptimization reads it in first.
 896     debug_info()->dump_object_pool(objs);
 897 
 898     // Build first class objects to pass to scope
 899     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 900     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 901     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 902 
 903     // Make method available for all Safepoints
 904     ciMethod* scope_method = method ? method : _method;
 905     // Describe the scope here
 906     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 907     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest!");
 908     // Now we can describe the scope.
 909     debug_info()->describe_scope(safepoint_pc_offset,scope_method,jvms->bci(),jvms->should_reexecute(),locvals,expvals,monvals);
 910   } // End jvms loop
 911 
 912   // Mark the end of the scope set.
 913   debug_info()->end_safepoint(safepoint_pc_offset);
 914 }
 915 
 916 
 917 
 918 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 919 class NonSafepointEmitter {
 920   Compile*  C;
 921   JVMState* _pending_jvms;
 922   int       _pending_offset;
 923 
 924   void emit_non_safepoint();
 925 
 926  public:
 927   NonSafepointEmitter(Compile* compile) {
 928     this->C = compile;
 929     _pending_jvms = NULL;
 930     _pending_offset = 0;
 931   }
 932 
 933   void observe_instruction(Node* n, int pc_offset) {
 934     if (!C->debug_info()->recording_non_safepoints())  return;
 935 
 936     Node_Notes* nn = C->node_notes_at(n->_idx);
 937     if (nn == NULL || nn->jvms() == NULL)  return;
 938     if (_pending_jvms != NULL &&
 939         _pending_jvms->same_calls_as(nn->jvms())) {
 940       // Repeated JVMS?  Stretch it up here.
 941       _pending_offset = pc_offset;
 942     } else {
 943       if (_pending_jvms != NULL &&
 944           _pending_offset < pc_offset) {
 945         emit_non_safepoint();
 946       }
 947       _pending_jvms = NULL;
 948       if (pc_offset > C->debug_info()->last_pc_offset()) {
 949         // This is the only way _pending_jvms can become non-NULL:
 950         _pending_jvms = nn->jvms();
 951         _pending_offset = pc_offset;
 952       }
 953     }
 954   }
 955 
 956   // Stay out of the way of real safepoints:
 957   void observe_safepoint(JVMState* jvms, int pc_offset) {
 958     if (_pending_jvms != NULL &&
 959         !_pending_jvms->same_calls_as(jvms) &&
 960         _pending_offset < pc_offset) {
 961       emit_non_safepoint();
 962     }
 963     _pending_jvms = NULL;
 964   }
 965 
 966   void flush_at_end() {
 967     if (_pending_jvms != NULL) {
 968       emit_non_safepoint();
 969     }
 970     _pending_jvms = NULL;
 971   }
 972 };
 973 
 974 void NonSafepointEmitter::emit_non_safepoint() {
 975   JVMState* youngest_jvms = _pending_jvms;
 976   int       pc_offset     = _pending_offset;
 977 
 978   // Clear it now:
 979   _pending_jvms = NULL;
 980 
 981   DebugInformationRecorder* debug_info = C->debug_info();
 982   assert(debug_info->recording_non_safepoints(), "sanity");
 983 
 984   debug_info->add_non_safepoint(pc_offset);
 985   int max_depth = youngest_jvms->depth();
 986 
 987   // Visit scopes from oldest to youngest.
 988   for (int depth = 1; depth <= max_depth; depth++) {
 989     JVMState* jvms = youngest_jvms->of_depth(depth);
 990     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 991     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
 992     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
 993   }
 994 
 995   // Mark the end of the scope set.
 996   debug_info->end_non_safepoint(pc_offset);
 997 }
 998 
 999 
1000 
1001 // helper for Fill_buffer bailout logic
1002 static void turn_off_compiler(Compile* C) {
1003   if (CodeCache::unallocated_capacity() >= CodeCacheMinimumFreeSpace*10) {
1004     // Do not turn off compilation if a single giant method has
1005     // blown the code cache size.
1006     C->record_failure("excessive request to CodeCache");
1007   } else {
1008     // Let CompilerBroker disable further compilations.
1009     C->record_failure("CodeCache is full");
1010   }
1011 }
1012 
1013 
1014 //------------------------------Fill_buffer------------------------------------
1015 void Compile::Fill_buffer() {
1016 
1017   // Set the initially allocated size
1018   int  code_req   = initial_code_capacity;
1019   int  locs_req   = initial_locs_capacity;
1020   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1021   int  const_req  = initial_const_capacity;
1022   bool labels_not_set = true;
1023 
1024   int  pad_req    = NativeCall::instruction_size;
1025   // The extra spacing after the code is necessary on some platforms.
1026   // Sometimes we need to patch in a jump after the last instruction,
1027   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1028 
1029   uint i;
1030   // Compute the byte offset where we can store the deopt pc.
1031   if (fixed_slots() != 0) {
1032     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1033   }
1034 
1035   // Compute prolog code size
1036   _method_size = 0;
1037   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1038 #ifdef IA64
1039   if (save_argument_registers()) {
1040     // 4815101: this is a stub with implicit and unknown precision fp args.
1041     // The usual spill mechanism can only generate stfd's in this case, which
1042     // doesn't work if the fp reg to spill contains a single-precision denorm.
1043     // Instead, we hack around the normal spill mechanism using stfspill's and
1044     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1045     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1046     //
1047     // If we ever implement 16-byte 'registers' == stack slots, we can
1048     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1049     // instead of stfd/stfs/ldfd/ldfs.
1050     _frame_slots += 8*(16/BytesPerInt);
1051   }
1052 #endif
1053   assert( _frame_slots >= 0 && _frame_slots < 1000000, "sanity check" );
1054 
1055   // Create an array of unused labels, one for each basic block
1056   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, _cfg->_num_blocks+1);
1057 
1058   for( i=0; i <= _cfg->_num_blocks; i++ ) {
1059     blk_labels[i].init();
1060   }
1061 
1062   // If this machine supports different size branch offsets, then pre-compute
1063   // the length of the blocks
1064   if( _matcher->is_short_branch_offset(-1, 0) ) {
1065     Shorten_branches(blk_labels, code_req, locs_req, stub_req, const_req);
1066     labels_not_set = false;
1067   }
1068 
1069   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1070   int exception_handler_req = size_exception_handler();
1071   int deopt_handler_req = size_deopt_handler();
1072   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1073   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1074   stub_req += MAX_stubs_size;   // ensure per-stub margin
1075   code_req += MAX_inst_size;    // ensure per-instruction margin
1076   if (StressCodeBuffers)
1077     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1078   int total_req = code_req + pad_req + stub_req + exception_handler_req + deopt_handler_req + const_req;
1079   CodeBuffer* cb = code_buffer();
1080   cb->initialize(total_req, locs_req);
1081 
1082   // Have we run out of code space?
1083   if (cb->blob() == NULL) {
1084     turn_off_compiler(this);
1085     return;
1086   }
1087   // Configure the code buffer.
1088   cb->initialize_consts_size(const_req);
1089   cb->initialize_stubs_size(stub_req);
1090   cb->initialize_oop_recorder(env()->oop_recorder());
1091 
1092   // fill in the nop array for bundling computations
1093   MachNode *_nop_list[Bundle::_nop_count];
1094   Bundle::initialize_nops(_nop_list, this);
1095 
1096   // Create oopmap set.
1097   _oop_map_set = new OopMapSet();
1098 
1099   // !!!!! This preserves old handling of oopmaps for now
1100   debug_info()->set_oopmaps(_oop_map_set);
1101 
1102   // Count and start of implicit null check instructions
1103   uint inct_cnt = 0;
1104   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1105 
1106   // Count and start of calls
1107   uint *call_returns = NEW_RESOURCE_ARRAY(uint, _cfg->_num_blocks+1);
1108 
1109   uint  return_offset = 0;
1110   MachNode *nop = new (this) MachNopNode();
1111 
1112   int previous_offset = 0;
1113   int current_offset  = 0;
1114   int last_call_offset = -1;
1115 
1116   // Create an array of unused labels, one for each basic block, if printing is enabled
1117 #ifndef PRODUCT
1118   int *node_offsets      = NULL;
1119   uint  node_offset_limit = unique();
1120 
1121 
1122   if ( print_assembly() )
1123     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1124 #endif
1125 
1126   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1127 
1128   // ------------------
1129   // Now fill in the code buffer
1130   Node *delay_slot = NULL;
1131 
1132   for( i=0; i < _cfg->_num_blocks; i++ ) {
1133     Block *b = _cfg->_blocks[i];
1134 
1135     Node *head = b->head();
1136 
1137     // If this block needs to start aligned (i.e, can be reached other
1138     // than by falling-thru from the previous block), then force the
1139     // start of a new bundle.
1140     if( Pipeline::requires_bundling() && starts_bundle(head) )
1141       cb->flush_bundle(true);
1142 
1143     // Define the label at the beginning of the basic block
1144     if( labels_not_set )
1145       MacroAssembler(cb).bind( blk_labels[b->_pre_order] );
1146 
1147     else
1148       assert( blk_labels[b->_pre_order].loc_pos() == cb->code_size(),
1149               "label position does not match code offset" );
1150 
1151     uint last_inst = b->_nodes.size();
1152 
1153     // Emit block normally, except for last instruction.
1154     // Emit means "dump code bits into code buffer".
1155     for( uint j = 0; j<last_inst; j++ ) {
1156 
1157       // Get the node
1158       Node* n = b->_nodes[j];
1159 
1160       // See if delay slots are supported
1161       if (valid_bundle_info(n) &&
1162           node_bundling(n)->used_in_unconditional_delay()) {
1163         assert(delay_slot == NULL, "no use of delay slot node");
1164         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1165 
1166         delay_slot = n;
1167         continue;
1168       }
1169 
1170       // If this starts a new instruction group, then flush the current one
1171       // (but allow split bundles)
1172       if( Pipeline::requires_bundling() && starts_bundle(n) )
1173         cb->flush_bundle(false);
1174 
1175       // The following logic is duplicated in the code ifdeffed for
1176       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1177       // should be factored out.  Or maybe dispersed to the nodes?
1178 
1179       // Special handling for SafePoint/Call Nodes
1180       bool is_mcall = false;
1181       if( n->is_Mach() ) {
1182         MachNode *mach = n->as_Mach();
1183         is_mcall = n->is_MachCall();
1184         bool is_sfn = n->is_MachSafePoint();
1185 
1186         // If this requires all previous instructions be flushed, then do so
1187         if( is_sfn || is_mcall || mach->alignment_required() != 1) {
1188           cb->flush_bundle(true);
1189           current_offset = cb->code_size();
1190         }
1191 
1192         // align the instruction if necessary
1193         int nop_size = nop->size(_regalloc);
1194         int padding = mach->compute_padding(current_offset);
1195         // Make sure safepoint node for polling is distinct from a call's
1196         // return by adding a nop if needed.
1197         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset ) {
1198           padding = nop_size;
1199         }
1200         assert( labels_not_set || padding == 0, "instruction should already be aligned")
1201 
1202         if(padding > 0) {
1203           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1204           int nops_cnt = padding / nop_size;
1205           MachNode *nop = new (this) MachNopNode(nops_cnt);
1206           b->_nodes.insert(j++, nop);
1207           last_inst++;
1208           _cfg->_bbs.map( nop->_idx, b );
1209           nop->emit(*cb, _regalloc);
1210           cb->flush_bundle(true);
1211           current_offset = cb->code_size();
1212         }
1213 
1214         // Remember the start of the last call in a basic block
1215         if (is_mcall) {
1216           MachCallNode *mcall = mach->as_MachCall();
1217 
1218           // This destination address is NOT PC-relative
1219           mcall->method_set((intptr_t)mcall->entry_point());
1220 
1221           // Save the return address
1222           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1223 
1224           if (!mcall->is_safepoint_node()) {
1225             is_mcall = false;
1226             is_sfn = false;
1227           }
1228         }
1229 
1230         // sfn will be valid whenever mcall is valid now because of inheritance
1231         if( is_sfn || is_mcall ) {
1232 
1233           // Handle special safepoint nodes for synchronization
1234           if( !is_mcall ) {
1235             MachSafePointNode *sfn = mach->as_MachSafePoint();
1236             // !!!!! Stubs only need an oopmap right now, so bail out
1237             if( sfn->jvms()->method() == NULL) {
1238               // Write the oopmap directly to the code blob??!!
1239 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1240               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1241 #             endif
1242               continue;
1243             }
1244           } // End synchronization
1245 
1246           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1247                                            current_offset);
1248           Process_OopMap_Node(mach, current_offset);
1249         } // End if safepoint
1250 
1251         // If this is a null check, then add the start of the previous instruction to the list
1252         else if( mach->is_MachNullCheck() ) {
1253           inct_starts[inct_cnt++] = previous_offset;
1254         }
1255 
1256         // If this is a branch, then fill in the label with the target BB's label
1257         else if ( mach->is_Branch() ) {
1258 
1259           if ( mach->ideal_Opcode() == Op_Jump ) {
1260             for (uint h = 0; h < b->_num_succs; h++ ) {
1261               Block* succs_block = b->_succs[h];
1262               for (uint j = 1; j < succs_block->num_preds(); j++) {
1263                 Node* jpn = succs_block->pred(j);
1264                 if ( jpn->is_JumpProj() && jpn->in(0) == mach ) {
1265                   uint block_num = succs_block->non_connector()->_pre_order;
1266                   Label *blkLabel = &blk_labels[block_num];
1267                   mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1268                 }
1269               }
1270             }
1271           } else {
1272             // For Branchs
1273             // This requires the TRUE branch target be in succs[0]
1274             uint block_num = b->non_connector_successor(0)->_pre_order;
1275             mach->label_set( blk_labels[block_num], block_num );
1276           }
1277         }
1278 
1279 #ifdef ASSERT
1280         // Check that oop-store precedes the card-mark
1281         else if( mach->ideal_Opcode() == Op_StoreCM ) {
1282           uint storeCM_idx = j;
1283           Node *oop_store = mach->in(mach->_cnt);  // First precedence edge
1284           assert( oop_store != NULL, "storeCM expects a precedence edge");
1285           uint i4;
1286           for( i4 = 0; i4 < last_inst; ++i4 ) {
1287             if( b->_nodes[i4] == oop_store ) break;
1288           }
1289           // Note: This test can provide a false failure if other precedence
1290           // edges have been added to the storeCMNode.
1291           assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1292         }
1293 #endif
1294 
1295         else if( !n->is_Proj() ) {
1296           // Remember the beginning of the previous instruction, in case
1297           // it's followed by a flag-kill and a null-check.  Happens on
1298           // Intel all the time, with add-to-memory kind of opcodes.
1299           previous_offset = current_offset;
1300         }
1301       }
1302 
1303       // Verify that there is sufficient space remaining
1304       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1305       if (cb->blob() == NULL) {
1306         turn_off_compiler(this);
1307         return;
1308       }
1309 
1310       // Save the offset for the listing
1311 #ifndef PRODUCT
1312       if( node_offsets && n->_idx < node_offset_limit )
1313         node_offsets[n->_idx] = cb->code_size();
1314 #endif
1315 
1316       // "Normal" instruction case
1317       n->emit(*cb, _regalloc);
1318       current_offset  = cb->code_size();
1319       non_safepoints.observe_instruction(n, current_offset);
1320 
1321       // mcall is last "call" that can be a safepoint
1322       // record it so we can see if a poll will directly follow it
1323       // in which case we'll need a pad to make the PcDesc sites unique
1324       // see  5010568. This can be slightly inaccurate but conservative
1325       // in the case that return address is not actually at current_offset.
1326       // This is a small price to pay.
1327 
1328       if (is_mcall) {
1329         last_call_offset = current_offset;
1330       }
1331 
1332       // See if this instruction has a delay slot
1333       if ( valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1334         assert(delay_slot != NULL, "expecting delay slot node");
1335 
1336         // Back up 1 instruction
1337         cb->set_code_end(
1338           cb->code_end()-Pipeline::instr_unit_size());
1339 
1340         // Save the offset for the listing
1341 #ifndef PRODUCT
1342         if( node_offsets && delay_slot->_idx < node_offset_limit )
1343           node_offsets[delay_slot->_idx] = cb->code_size();
1344 #endif
1345 
1346         // Support a SafePoint in the delay slot
1347         if( delay_slot->is_MachSafePoint() ) {
1348           MachNode *mach = delay_slot->as_Mach();
1349           // !!!!! Stubs only need an oopmap right now, so bail out
1350           if( !mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL ) {
1351             // Write the oopmap directly to the code blob??!!
1352 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1353             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1354 #           endif
1355             delay_slot = NULL;
1356             continue;
1357           }
1358 
1359           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1360           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1361                                            adjusted_offset);
1362           // Generate an OopMap entry
1363           Process_OopMap_Node(mach, adjusted_offset);
1364         }
1365 
1366         // Insert the delay slot instruction
1367         delay_slot->emit(*cb, _regalloc);
1368 
1369         // Don't reuse it
1370         delay_slot = NULL;
1371       }
1372 
1373     } // End for all instructions in block
1374 
1375     // If the next block is the top of a loop, pad this block out to align
1376     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1377     int nop_size = (new (this) MachNopNode())->size(_regalloc);
1378     if( i<_cfg->_num_blocks-1 ) {
1379       Block *nb = _cfg->_blocks[i+1];
1380       uint padding = nb->alignment_padding(current_offset);
1381       if( padding > 0 ) {
1382         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1383         b->_nodes.insert( b->_nodes.size(), nop );
1384         _cfg->_bbs.map( nop->_idx, b );
1385         nop->emit(*cb, _regalloc);
1386         current_offset = cb->code_size();
1387       }
1388     }
1389 
1390   } // End of for all blocks
1391 
1392   non_safepoints.flush_at_end();
1393 
1394   // Offset too large?
1395   if (failing())  return;
1396 
1397   // Define a pseudo-label at the end of the code
1398   MacroAssembler(cb).bind( blk_labels[_cfg->_num_blocks] );
1399 
1400   // Compute the size of the first block
1401   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1402 
1403   assert(cb->code_size() < 500000, "method is unreasonably large");
1404 
1405   // ------------------
1406 
1407 #ifndef PRODUCT
1408   // Information on the size of the method, without the extraneous code
1409   Scheduling::increment_method_size(cb->code_size());
1410 #endif
1411 
1412   // ------------------
1413   // Fill in exception table entries.
1414   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1415 
1416   // Only java methods have exception handlers and deopt handlers
1417   if (_method) {
1418     // Emit the exception handler code.
1419     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1420     // Emit the deopt handler code.
1421     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1422   }
1423 
1424   // One last check for failed CodeBuffer::expand:
1425   if (cb->blob() == NULL) {
1426     turn_off_compiler(this);
1427     return;
1428   }
1429 
1430 #ifndef PRODUCT
1431   // Dump the assembly code, including basic-block numbers
1432   if (print_assembly()) {
1433     ttyLocker ttyl;  // keep the following output all in one block
1434     if (!VMThread::should_terminate()) {  // test this under the tty lock
1435       // This output goes directly to the tty, not the compiler log.
1436       // To enable tools to match it up with the compilation activity,
1437       // be sure to tag this tty output with the compile ID.
1438       if (xtty != NULL) {
1439         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1440                    is_osr_compilation()    ? " compile_kind='osr'" :
1441                    "");
1442       }
1443       if (method() != NULL) {
1444         method()->print_oop();
1445         print_codes();
1446       }
1447       dump_asm(node_offsets, node_offset_limit);
1448       if (xtty != NULL) {
1449         xtty->tail("opto_assembly");
1450       }
1451     }
1452   }
1453 #endif
1454 
1455 }
1456 
1457 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1458   _inc_table.set_size(cnt);
1459 
1460   uint inct_cnt = 0;
1461   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1462     Block *b = _cfg->_blocks[i];
1463     Node *n = NULL;
1464     int j;
1465 
1466     // Find the branch; ignore trailing NOPs.
1467     for( j = b->_nodes.size()-1; j>=0; j-- ) {
1468       n = b->_nodes[j];
1469       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1470         break;
1471     }
1472 
1473     // If we didn't find anything, continue
1474     if( j < 0 ) continue;
1475 
1476     // Compute ExceptionHandlerTable subtable entry and add it
1477     // (skip empty blocks)
1478     if( n->is_Catch() ) {
1479 
1480       // Get the offset of the return from the call
1481       uint call_return = call_returns[b->_pre_order];
1482 #ifdef ASSERT
1483       assert( call_return > 0, "no call seen for this basic block" );
1484       while( b->_nodes[--j]->Opcode() == Op_MachProj ) ;
1485       assert( b->_nodes[j]->is_Call(), "CatchProj must follow call" );
1486 #endif
1487       // last instruction is a CatchNode, find it's CatchProjNodes
1488       int nof_succs = b->_num_succs;
1489       // allocate space
1490       GrowableArray<intptr_t> handler_bcis(nof_succs);
1491       GrowableArray<intptr_t> handler_pcos(nof_succs);
1492       // iterate through all successors
1493       for (int j = 0; j < nof_succs; j++) {
1494         Block* s = b->_succs[j];
1495         bool found_p = false;
1496         for( uint k = 1; k < s->num_preds(); k++ ) {
1497           Node *pk = s->pred(k);
1498           if( pk->is_CatchProj() && pk->in(0) == n ) {
1499             const CatchProjNode* p = pk->as_CatchProj();
1500             found_p = true;
1501             // add the corresponding handler bci & pco information
1502             if( p->_con != CatchProjNode::fall_through_index ) {
1503               // p leads to an exception handler (and is not fall through)
1504               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1505               // no duplicates, please
1506               if( !handler_bcis.contains(p->handler_bci()) ) {
1507                 uint block_num = s->non_connector()->_pre_order;
1508                 handler_bcis.append(p->handler_bci());
1509                 handler_pcos.append(blk_labels[block_num].loc_pos());
1510               }
1511             }
1512           }
1513         }
1514         assert(found_p, "no matching predecessor found");
1515         // Note:  Due to empty block removal, one block may have
1516         // several CatchProj inputs, from the same Catch.
1517       }
1518 
1519       // Set the offset of the return from the call
1520       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1521       continue;
1522     }
1523 
1524     // Handle implicit null exception table updates
1525     if( n->is_MachNullCheck() ) {
1526       uint block_num = b->non_connector_successor(0)->_pre_order;
1527       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1528       continue;
1529     }
1530   } // End of for all blocks fill in exception table entries
1531 }
1532 
1533 // Static Variables
1534 #ifndef PRODUCT
1535 uint Scheduling::_total_nop_size = 0;
1536 uint Scheduling::_total_method_size = 0;
1537 uint Scheduling::_total_branches = 0;
1538 uint Scheduling::_total_unconditional_delays = 0;
1539 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1540 #endif
1541 
1542 // Initializer for class Scheduling
1543 
1544 Scheduling::Scheduling(Arena *arena, Compile &compile)
1545   : _arena(arena),
1546     _cfg(compile.cfg()),
1547     _bbs(compile.cfg()->_bbs),
1548     _regalloc(compile.regalloc()),
1549     _reg_node(arena),
1550     _bundle_instr_count(0),
1551     _bundle_cycle_number(0),
1552     _scheduled(arena),
1553     _available(arena),
1554     _next_node(NULL),
1555     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1556     _pinch_free_list(arena)
1557 #ifndef PRODUCT
1558   , _branches(0)
1559   , _unconditional_delays(0)
1560 #endif
1561 {
1562   // Create a MachNopNode
1563   _nop = new (&compile) MachNopNode();
1564 
1565   // Now that the nops are in the array, save the count
1566   // (but allow entries for the nops)
1567   _node_bundling_limit = compile.unique();
1568   uint node_max = _regalloc->node_regs_max_index();
1569 
1570   compile.set_node_bundling_limit(_node_bundling_limit);
1571 
1572   // This one is persistent within the Compile class
1573   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1574 
1575   // Allocate space for fixed-size arrays
1576   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1577   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1578   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1579 
1580   // Clear the arrays
1581   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1582   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1583   memset(_uses,               0, node_max * sizeof(short));
1584   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1585 
1586   // Clear the bundling information
1587   memcpy(_bundle_use_elements,
1588     Pipeline_Use::elaborated_elements,
1589     sizeof(Pipeline_Use::elaborated_elements));
1590 
1591   // Get the last node
1592   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1593 
1594   _next_node = bb->_nodes[bb->_nodes.size()-1];
1595 }
1596 
1597 #ifndef PRODUCT
1598 // Scheduling destructor
1599 Scheduling::~Scheduling() {
1600   _total_branches             += _branches;
1601   _total_unconditional_delays += _unconditional_delays;
1602 }
1603 #endif
1604 
1605 // Step ahead "i" cycles
1606 void Scheduling::step(uint i) {
1607 
1608   Bundle *bundle = node_bundling(_next_node);
1609   bundle->set_starts_bundle();
1610 
1611   // Update the bundle record, but leave the flags information alone
1612   if (_bundle_instr_count > 0) {
1613     bundle->set_instr_count(_bundle_instr_count);
1614     bundle->set_resources_used(_bundle_use.resourcesUsed());
1615   }
1616 
1617   // Update the state information
1618   _bundle_instr_count = 0;
1619   _bundle_cycle_number += i;
1620   _bundle_use.step(i);
1621 }
1622 
1623 void Scheduling::step_and_clear() {
1624   Bundle *bundle = node_bundling(_next_node);
1625   bundle->set_starts_bundle();
1626 
1627   // Update the bundle record
1628   if (_bundle_instr_count > 0) {
1629     bundle->set_instr_count(_bundle_instr_count);
1630     bundle->set_resources_used(_bundle_use.resourcesUsed());
1631 
1632     _bundle_cycle_number += 1;
1633   }
1634 
1635   // Clear the bundling information
1636   _bundle_instr_count = 0;
1637   _bundle_use.reset();
1638 
1639   memcpy(_bundle_use_elements,
1640     Pipeline_Use::elaborated_elements,
1641     sizeof(Pipeline_Use::elaborated_elements));
1642 }
1643 
1644 //------------------------------ScheduleAndBundle------------------------------
1645 // Perform instruction scheduling and bundling over the sequence of
1646 // instructions in backwards order.
1647 void Compile::ScheduleAndBundle() {
1648 
1649   // Don't optimize this if it isn't a method
1650   if (!_method)
1651     return;
1652 
1653   // Don't optimize this if scheduling is disabled
1654   if (!do_scheduling())
1655     return;
1656 
1657   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1658 
1659   // Create a data structure for all the scheduling information
1660   Scheduling scheduling(Thread::current()->resource_area(), *this);
1661 
1662   // Walk backwards over each basic block, computing the needed alignment
1663   // Walk over all the basic blocks
1664   scheduling.DoScheduling();
1665 }
1666 
1667 //------------------------------ComputeLocalLatenciesForward-------------------
1668 // Compute the latency of all the instructions.  This is fairly simple,
1669 // because we already have a legal ordering.  Walk over the instructions
1670 // from first to last, and compute the latency of the instruction based
1671 // on the latency of the preceding instruction(s).
1672 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1673 #ifndef PRODUCT
1674   if (_cfg->C->trace_opto_output())
1675     tty->print("# -> ComputeLocalLatenciesForward\n");
1676 #endif
1677 
1678   // Walk over all the schedulable instructions
1679   for( uint j=_bb_start; j < _bb_end; j++ ) {
1680 
1681     // This is a kludge, forcing all latency calculations to start at 1.
1682     // Used to allow latency 0 to force an instruction to the beginning
1683     // of the bb
1684     uint latency = 1;
1685     Node *use = bb->_nodes[j];
1686     uint nlen = use->len();
1687 
1688     // Walk over all the inputs
1689     for ( uint k=0; k < nlen; k++ ) {
1690       Node *def = use->in(k);
1691       if (!def)
1692         continue;
1693 
1694       uint l = _node_latency[def->_idx] + use->latency(k);
1695       if (latency < l)
1696         latency = l;
1697     }
1698 
1699     _node_latency[use->_idx] = latency;
1700 
1701 #ifndef PRODUCT
1702     if (_cfg->C->trace_opto_output()) {
1703       tty->print("# latency %4d: ", latency);
1704       use->dump();
1705     }
1706 #endif
1707   }
1708 
1709 #ifndef PRODUCT
1710   if (_cfg->C->trace_opto_output())
1711     tty->print("# <- ComputeLocalLatenciesForward\n");
1712 #endif
1713 
1714 } // end ComputeLocalLatenciesForward
1715 
1716 // See if this node fits into the present instruction bundle
1717 bool Scheduling::NodeFitsInBundle(Node *n) {
1718   uint n_idx = n->_idx;
1719 
1720   // If this is the unconditional delay instruction, then it fits
1721   if (n == _unconditional_delay_slot) {
1722 #ifndef PRODUCT
1723     if (_cfg->C->trace_opto_output())
1724       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1725 #endif
1726     return (true);
1727   }
1728 
1729   // If the node cannot be scheduled this cycle, skip it
1730   if (_current_latency[n_idx] > _bundle_cycle_number) {
1731 #ifndef PRODUCT
1732     if (_cfg->C->trace_opto_output())
1733       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1734         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1735 #endif
1736     return (false);
1737   }
1738 
1739   const Pipeline *node_pipeline = n->pipeline();
1740 
1741   uint instruction_count = node_pipeline->instructionCount();
1742   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1743     instruction_count = 0;
1744   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1745     instruction_count++;
1746 
1747   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1748 #ifndef PRODUCT
1749     if (_cfg->C->trace_opto_output())
1750       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1751         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1752 #endif
1753     return (false);
1754   }
1755 
1756   // Don't allow non-machine nodes to be handled this way
1757   if (!n->is_Mach() && instruction_count == 0)
1758     return (false);
1759 
1760   // See if there is any overlap
1761   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1762 
1763   if (delay > 0) {
1764 #ifndef PRODUCT
1765     if (_cfg->C->trace_opto_output())
1766       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1767 #endif
1768     return false;
1769   }
1770 
1771 #ifndef PRODUCT
1772   if (_cfg->C->trace_opto_output())
1773     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
1774 #endif
1775 
1776   return true;
1777 }
1778 
1779 Node * Scheduling::ChooseNodeToBundle() {
1780   uint siz = _available.size();
1781 
1782   if (siz == 0) {
1783 
1784 #ifndef PRODUCT
1785     if (_cfg->C->trace_opto_output())
1786       tty->print("#   ChooseNodeToBundle: NULL\n");
1787 #endif
1788     return (NULL);
1789   }
1790 
1791   // Fast path, if only 1 instruction in the bundle
1792   if (siz == 1) {
1793 #ifndef PRODUCT
1794     if (_cfg->C->trace_opto_output()) {
1795       tty->print("#   ChooseNodeToBundle (only 1): ");
1796       _available[0]->dump();
1797     }
1798 #endif
1799     return (_available[0]);
1800   }
1801 
1802   // Don't bother, if the bundle is already full
1803   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
1804     for ( uint i = 0; i < siz; i++ ) {
1805       Node *n = _available[i];
1806 
1807       // Skip projections, we'll handle them another way
1808       if (n->is_Proj())
1809         continue;
1810 
1811       // This presupposed that instructions are inserted into the
1812       // available list in a legality order; i.e. instructions that
1813       // must be inserted first are at the head of the list
1814       if (NodeFitsInBundle(n)) {
1815 #ifndef PRODUCT
1816         if (_cfg->C->trace_opto_output()) {
1817           tty->print("#   ChooseNodeToBundle: ");
1818           n->dump();
1819         }
1820 #endif
1821         return (n);
1822       }
1823     }
1824   }
1825 
1826   // Nothing fits in this bundle, choose the highest priority
1827 #ifndef PRODUCT
1828   if (_cfg->C->trace_opto_output()) {
1829     tty->print("#   ChooseNodeToBundle: ");
1830     _available[0]->dump();
1831   }
1832 #endif
1833 
1834   return _available[0];
1835 }
1836 
1837 //------------------------------AddNodeToAvailableList-------------------------
1838 void Scheduling::AddNodeToAvailableList(Node *n) {
1839   assert( !n->is_Proj(), "projections never directly made available" );
1840 #ifndef PRODUCT
1841   if (_cfg->C->trace_opto_output()) {
1842     tty->print("#   AddNodeToAvailableList: ");
1843     n->dump();
1844   }
1845 #endif
1846 
1847   int latency = _current_latency[n->_idx];
1848 
1849   // Insert in latency order (insertion sort)
1850   uint i;
1851   for ( i=0; i < _available.size(); i++ )
1852     if (_current_latency[_available[i]->_idx] > latency)
1853       break;
1854 
1855   // Special Check for compares following branches
1856   if( n->is_Mach() && _scheduled.size() > 0 ) {
1857     int op = n->as_Mach()->ideal_Opcode();
1858     Node *last = _scheduled[0];
1859     if( last->is_MachIf() && last->in(1) == n &&
1860         ( op == Op_CmpI ||
1861           op == Op_CmpU ||
1862           op == Op_CmpP ||
1863           op == Op_CmpF ||
1864           op == Op_CmpD ||
1865           op == Op_CmpL ) ) {
1866 
1867       // Recalculate position, moving to front of same latency
1868       for ( i=0 ; i < _available.size(); i++ )
1869         if (_current_latency[_available[i]->_idx] >= latency)
1870           break;
1871     }
1872   }
1873 
1874   // Insert the node in the available list
1875   _available.insert(i, n);
1876 
1877 #ifndef PRODUCT
1878   if (_cfg->C->trace_opto_output())
1879     dump_available();
1880 #endif
1881 }
1882 
1883 //------------------------------DecrementUseCounts-----------------------------
1884 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
1885   for ( uint i=0; i < n->len(); i++ ) {
1886     Node *def = n->in(i);
1887     if (!def) continue;
1888     if( def->is_Proj() )        // If this is a machine projection, then
1889       def = def->in(0);         // propagate usage thru to the base instruction
1890 
1891     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
1892       continue;
1893 
1894     // Compute the latency
1895     uint l = _bundle_cycle_number + n->latency(i);
1896     if (_current_latency[def->_idx] < l)
1897       _current_latency[def->_idx] = l;
1898 
1899     // If this does not have uses then schedule it
1900     if ((--_uses[def->_idx]) == 0)
1901       AddNodeToAvailableList(def);
1902   }
1903 }
1904 
1905 //------------------------------AddNodeToBundle--------------------------------
1906 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
1907 #ifndef PRODUCT
1908   if (_cfg->C->trace_opto_output()) {
1909     tty->print("#   AddNodeToBundle: ");
1910     n->dump();
1911   }
1912 #endif
1913 
1914   // Remove this from the available list
1915   uint i;
1916   for (i = 0; i < _available.size(); i++)
1917     if (_available[i] == n)
1918       break;
1919   assert(i < _available.size(), "entry in _available list not found");
1920   _available.remove(i);
1921 
1922   // See if this fits in the current bundle
1923   const Pipeline *node_pipeline = n->pipeline();
1924   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
1925 
1926   // Check for instructions to be placed in the delay slot. We
1927   // do this before we actually schedule the current instruction,
1928   // because the delay slot follows the current instruction.
1929   if (Pipeline::_branch_has_delay_slot &&
1930       node_pipeline->hasBranchDelay() &&
1931       !_unconditional_delay_slot) {
1932 
1933     uint siz = _available.size();
1934 
1935     // Conditional branches can support an instruction that
1936     // is unconditionally executed and not dependent by the
1937     // branch, OR a conditionally executed instruction if
1938     // the branch is taken.  In practice, this means that
1939     // the first instruction at the branch target is
1940     // copied to the delay slot, and the branch goes to
1941     // the instruction after that at the branch target
1942     if ( n->is_Mach() && n->is_Branch() ) {
1943 
1944       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
1945       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
1946 
1947 #ifndef PRODUCT
1948       _branches++;
1949 #endif
1950 
1951       // At least 1 instruction is on the available list
1952       // that is not dependent on the branch
1953       for (uint i = 0; i < siz; i++) {
1954         Node *d = _available[i];
1955         const Pipeline *avail_pipeline = d->pipeline();
1956 
1957         // Don't allow safepoints in the branch shadow, that will
1958         // cause a number of difficulties
1959         if ( avail_pipeline->instructionCount() == 1 &&
1960             !avail_pipeline->hasMultipleBundles() &&
1961             !avail_pipeline->hasBranchDelay() &&
1962             Pipeline::instr_has_unit_size() &&
1963             d->size(_regalloc) == Pipeline::instr_unit_size() &&
1964             NodeFitsInBundle(d) &&
1965             !node_bundling(d)->used_in_delay()) {
1966 
1967           if (d->is_Mach() && !d->is_MachSafePoint()) {
1968             // A node that fits in the delay slot was found, so we need to
1969             // set the appropriate bits in the bundle pipeline information so
1970             // that it correctly indicates resource usage.  Later, when we
1971             // attempt to add this instruction to the bundle, we will skip
1972             // setting the resource usage.
1973             _unconditional_delay_slot = d;
1974             node_bundling(n)->set_use_unconditional_delay();
1975             node_bundling(d)->set_used_in_unconditional_delay();
1976             _bundle_use.add_usage(avail_pipeline->resourceUse());
1977             _current_latency[d->_idx] = _bundle_cycle_number;
1978             _next_node = d;
1979             ++_bundle_instr_count;
1980 #ifndef PRODUCT
1981             _unconditional_delays++;
1982 #endif
1983             break;
1984           }
1985         }
1986       }
1987     }
1988 
1989     // No delay slot, add a nop to the usage
1990     if (!_unconditional_delay_slot) {
1991       // See if adding an instruction in the delay slot will overflow
1992       // the bundle.
1993       if (!NodeFitsInBundle(_nop)) {
1994 #ifndef PRODUCT
1995         if (_cfg->C->trace_opto_output())
1996           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
1997 #endif
1998         step(1);
1999       }
2000 
2001       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2002       _next_node = _nop;
2003       ++_bundle_instr_count;
2004     }
2005 
2006     // See if the instruction in the delay slot requires a
2007     // step of the bundles
2008     if (!NodeFitsInBundle(n)) {
2009 #ifndef PRODUCT
2010         if (_cfg->C->trace_opto_output())
2011           tty->print("#  *** STEP(branch won't fit) ***\n");
2012 #endif
2013         // Update the state information
2014         _bundle_instr_count = 0;
2015         _bundle_cycle_number += 1;
2016         _bundle_use.step(1);
2017     }
2018   }
2019 
2020   // Get the number of instructions
2021   uint instruction_count = node_pipeline->instructionCount();
2022   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2023     instruction_count = 0;
2024 
2025   // Compute the latency information
2026   uint delay = 0;
2027 
2028   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2029     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2030     if (relative_latency < 0)
2031       relative_latency = 0;
2032 
2033     delay = _bundle_use.full_latency(relative_latency, node_usage);
2034 
2035     // Does not fit in this bundle, start a new one
2036     if (delay > 0) {
2037       step(delay);
2038 
2039 #ifndef PRODUCT
2040       if (_cfg->C->trace_opto_output())
2041         tty->print("#  *** STEP(%d) ***\n", delay);
2042 #endif
2043     }
2044   }
2045 
2046   // If this was placed in the delay slot, ignore it
2047   if (n != _unconditional_delay_slot) {
2048 
2049     if (delay == 0) {
2050       if (node_pipeline->hasMultipleBundles()) {
2051 #ifndef PRODUCT
2052         if (_cfg->C->trace_opto_output())
2053           tty->print("#  *** STEP(multiple instructions) ***\n");
2054 #endif
2055         step(1);
2056       }
2057 
2058       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2059 #ifndef PRODUCT
2060         if (_cfg->C->trace_opto_output())
2061           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2062             instruction_count + _bundle_instr_count,
2063             Pipeline::_max_instrs_per_cycle);
2064 #endif
2065         step(1);
2066       }
2067     }
2068 
2069     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2070       _bundle_instr_count++;
2071 
2072     // Set the node's latency
2073     _current_latency[n->_idx] = _bundle_cycle_number;
2074 
2075     // Now merge the functional unit information
2076     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2077       _bundle_use.add_usage(node_usage);
2078 
2079     // Increment the number of instructions in this bundle
2080     _bundle_instr_count += instruction_count;
2081 
2082     // Remember this node for later
2083     if (n->is_Mach())
2084       _next_node = n;
2085   }
2086 
2087   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2088   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2089   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2090   // into the block.  All other scheduled nodes get put in the schedule here.
2091   int op = n->Opcode();
2092   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2093       (op != Op_Node &&         // Not an unused antidepedence node and
2094        // not an unallocated boxlock
2095        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2096 
2097     // Push any trailing projections
2098     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2099       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2100         Node *foi = n->fast_out(i);
2101         if( foi->is_Proj() )
2102           _scheduled.push(foi);
2103       }
2104     }
2105 
2106     // Put the instruction in the schedule list
2107     _scheduled.push(n);
2108   }
2109 
2110 #ifndef PRODUCT
2111   if (_cfg->C->trace_opto_output())
2112     dump_available();
2113 #endif
2114 
2115   // Walk all the definitions, decrementing use counts, and
2116   // if a definition has a 0 use count, place it in the available list.
2117   DecrementUseCounts(n,bb);
2118 }
2119 
2120 //------------------------------ComputeUseCount--------------------------------
2121 // This method sets the use count within a basic block.  We will ignore all
2122 // uses outside the current basic block.  As we are doing a backwards walk,
2123 // any node we reach that has a use count of 0 may be scheduled.  This also
2124 // avoids the problem of cyclic references from phi nodes, as long as phi
2125 // nodes are at the front of the basic block.  This method also initializes
2126 // the available list to the set of instructions that have no uses within this
2127 // basic block.
2128 void Scheduling::ComputeUseCount(const Block *bb) {
2129 #ifndef PRODUCT
2130   if (_cfg->C->trace_opto_output())
2131     tty->print("# -> ComputeUseCount\n");
2132 #endif
2133 
2134   // Clear the list of available and scheduled instructions, just in case
2135   _available.clear();
2136   _scheduled.clear();
2137 
2138   // No delay slot specified
2139   _unconditional_delay_slot = NULL;
2140 
2141 #ifdef ASSERT
2142   for( uint i=0; i < bb->_nodes.size(); i++ )
2143     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2144 #endif
2145 
2146   // Force the _uses count to never go to zero for unscheduable pieces
2147   // of the block
2148   for( uint k = 0; k < _bb_start; k++ )
2149     _uses[bb->_nodes[k]->_idx] = 1;
2150   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2151     _uses[bb->_nodes[l]->_idx] = 1;
2152 
2153   // Iterate backwards over the instructions in the block.  Don't count the
2154   // branch projections at end or the block header instructions.
2155   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2156     Node *n = bb->_nodes[j];
2157     if( n->is_Proj() ) continue; // Projections handled another way
2158 
2159     // Account for all uses
2160     for ( uint k = 0; k < n->len(); k++ ) {
2161       Node *inp = n->in(k);
2162       if (!inp) continue;
2163       assert(inp != n, "no cycles allowed" );
2164       if( _bbs[inp->_idx] == bb ) { // Block-local use?
2165         if( inp->is_Proj() )    // Skip through Proj's
2166           inp = inp->in(0);
2167         ++_uses[inp->_idx];     // Count 1 block-local use
2168       }
2169     }
2170 
2171     // If this instruction has a 0 use count, then it is available
2172     if (!_uses[n->_idx]) {
2173       _current_latency[n->_idx] = _bundle_cycle_number;
2174       AddNodeToAvailableList(n);
2175     }
2176 
2177 #ifndef PRODUCT
2178     if (_cfg->C->trace_opto_output()) {
2179       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2180       n->dump();
2181     }
2182 #endif
2183   }
2184 
2185 #ifndef PRODUCT
2186   if (_cfg->C->trace_opto_output())
2187     tty->print("# <- ComputeUseCount\n");
2188 #endif
2189 }
2190 
2191 // This routine performs scheduling on each basic block in reverse order,
2192 // using instruction latencies and taking into account function unit
2193 // availability.
2194 void Scheduling::DoScheduling() {
2195 #ifndef PRODUCT
2196   if (_cfg->C->trace_opto_output())
2197     tty->print("# -> DoScheduling\n");
2198 #endif
2199 
2200   Block *succ_bb = NULL;
2201   Block *bb;
2202 
2203   // Walk over all the basic blocks in reverse order
2204   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2205     bb = _cfg->_blocks[i];
2206 
2207 #ifndef PRODUCT
2208     if (_cfg->C->trace_opto_output()) {
2209       tty->print("#  Schedule BB#%03d (initial)\n", i);
2210       for (uint j = 0; j < bb->_nodes.size(); j++)
2211         bb->_nodes[j]->dump();
2212     }
2213 #endif
2214 
2215     // On the head node, skip processing
2216     if( bb == _cfg->_broot )
2217       continue;
2218 
2219     // Skip empty, connector blocks
2220     if (bb->is_connector())
2221       continue;
2222 
2223     // If the following block is not the sole successor of
2224     // this one, then reset the pipeline information
2225     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2226 #ifndef PRODUCT
2227       if (_cfg->C->trace_opto_output()) {
2228         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2229                    _next_node->_idx, _bundle_instr_count);
2230       }
2231 #endif
2232       step_and_clear();
2233     }
2234 
2235     // Leave untouched the starting instruction, any Phis, a CreateEx node
2236     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2237     _bb_end = bb->_nodes.size()-1;
2238     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2239       Node *n = bb->_nodes[_bb_start];
2240       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2241       // Also, MachIdealNodes do not get scheduled
2242       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2243       MachNode *mach = n->as_Mach();
2244       int iop = mach->ideal_Opcode();
2245       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2246       if( iop == Op_Con ) continue;      // Do not schedule Top
2247       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2248           mach->pipeline() == MachNode::pipeline_class() &&
2249           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2250         continue;
2251       break;                    // Funny loop structure to be sure...
2252     }
2253     // Compute last "interesting" instruction in block - last instruction we
2254     // might schedule.  _bb_end points just after last schedulable inst.  We
2255     // normally schedule conditional branches (despite them being forced last
2256     // in the block), because they have delay slots we can fill.  Calls all
2257     // have their delay slots filled in the template expansions, so we don't
2258     // bother scheduling them.
2259     Node *last = bb->_nodes[_bb_end];
2260     if( last->is_Catch() ||
2261        // Exclude unreachable path case when Halt node is in a separate block.
2262        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2263       // There must be a prior call.  Skip it.
2264       while( !bb->_nodes[--_bb_end]->is_Call() ) {
2265         assert( bb->_nodes[_bb_end]->is_Proj(), "skipping projections after expected call" );
2266       }
2267     } else if( last->is_MachNullCheck() ) {
2268       // Backup so the last null-checked memory instruction is
2269       // outside the schedulable range. Skip over the nullcheck,
2270       // projection, and the memory nodes.
2271       Node *mem = last->in(1);
2272       do {
2273         _bb_end--;
2274       } while (mem != bb->_nodes[_bb_end]);
2275     } else {
2276       // Set _bb_end to point after last schedulable inst.
2277       _bb_end++;
2278     }
2279 
2280     assert( _bb_start <= _bb_end, "inverted block ends" );
2281 
2282     // Compute the register antidependencies for the basic block
2283     ComputeRegisterAntidependencies(bb);
2284     if (_cfg->C->failing())  return;  // too many D-U pinch points
2285 
2286     // Compute intra-bb latencies for the nodes
2287     ComputeLocalLatenciesForward(bb);
2288 
2289     // Compute the usage within the block, and set the list of all nodes
2290     // in the block that have no uses within the block.
2291     ComputeUseCount(bb);
2292 
2293     // Schedule the remaining instructions in the block
2294     while ( _available.size() > 0 ) {
2295       Node *n = ChooseNodeToBundle();
2296       AddNodeToBundle(n,bb);
2297     }
2298 
2299     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2300 #ifdef ASSERT
2301     for( uint l = _bb_start; l < _bb_end; l++ ) {
2302       Node *n = bb->_nodes[l];
2303       uint m;
2304       for( m = 0; m < _bb_end-_bb_start; m++ )
2305         if( _scheduled[m] == n )
2306           break;
2307       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2308     }
2309 #endif
2310 
2311     // Now copy the instructions (in reverse order) back to the block
2312     for ( uint k = _bb_start; k < _bb_end; k++ )
2313       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2314 
2315 #ifndef PRODUCT
2316     if (_cfg->C->trace_opto_output()) {
2317       tty->print("#  Schedule BB#%03d (final)\n", i);
2318       uint current = 0;
2319       for (uint j = 0; j < bb->_nodes.size(); j++) {
2320         Node *n = bb->_nodes[j];
2321         if( valid_bundle_info(n) ) {
2322           Bundle *bundle = node_bundling(n);
2323           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2324             tty->print("*** Bundle: ");
2325             bundle->dump();
2326           }
2327           n->dump();
2328         }
2329       }
2330     }
2331 #endif
2332 #ifdef ASSERT
2333   verify_good_schedule(bb,"after block local scheduling");
2334 #endif
2335   }
2336 
2337 #ifndef PRODUCT
2338   if (_cfg->C->trace_opto_output())
2339     tty->print("# <- DoScheduling\n");
2340 #endif
2341 
2342   // Record final node-bundling array location
2343   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2344 
2345 } // end DoScheduling
2346 
2347 //------------------------------verify_good_schedule---------------------------
2348 // Verify that no live-range used in the block is killed in the block by a
2349 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2350 
2351 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2352 static bool edge_from_to( Node *from, Node *to ) {
2353   for( uint i=0; i<from->len(); i++ )
2354     if( from->in(i) == to )
2355       return true;
2356   return false;
2357 }
2358 
2359 #ifdef ASSERT
2360 //------------------------------verify_do_def----------------------------------
2361 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2362   // Check for bad kills
2363   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2364     Node *prior_use = _reg_node[def];
2365     if( prior_use && !edge_from_to(prior_use,n) ) {
2366       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2367       n->dump();
2368       tty->print_cr("...");
2369       prior_use->dump();
2370       assert_msg(edge_from_to(prior_use,n),msg);
2371     }
2372     _reg_node.map(def,NULL); // Kill live USEs
2373   }
2374 }
2375 
2376 //------------------------------verify_good_schedule---------------------------
2377 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2378 
2379   // Zap to something reasonable for the verify code
2380   _reg_node.clear();
2381 
2382   // Walk over the block backwards.  Check to make sure each DEF doesn't
2383   // kill a live value (other than the one it's supposed to).  Add each
2384   // USE to the live set.
2385   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2386     Node *n = b->_nodes[i];
2387     int n_op = n->Opcode();
2388     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2389       // Fat-proj kills a slew of registers
2390       RegMask rm = n->out_RegMask();// Make local copy
2391       while( rm.is_NotEmpty() ) {
2392         OptoReg::Name kill = rm.find_first_elem();
2393         rm.Remove(kill);
2394         verify_do_def( n, kill, msg );
2395       }
2396     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2397       // Get DEF'd registers the normal way
2398       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2399       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2400     }
2401 
2402     // Now make all USEs live
2403     for( uint i=1; i<n->req(); i++ ) {
2404       Node *def = n->in(i);
2405       assert(def != 0, "input edge required");
2406       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2407       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2408       if( OptoReg::is_valid(reg_lo) ) {
2409         assert_msg(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg );
2410         _reg_node.map(reg_lo,n);
2411       }
2412       if( OptoReg::is_valid(reg_hi) ) {
2413         assert_msg(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg );
2414         _reg_node.map(reg_hi,n);
2415       }
2416     }
2417 
2418   }
2419 
2420   // Zap to something reasonable for the Antidependence code
2421   _reg_node.clear();
2422 }
2423 #endif
2424 
2425 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2426 static void add_prec_edge_from_to( Node *from, Node *to ) {
2427   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2428     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2429     from = from->in(0);
2430   }
2431   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2432       !edge_from_to( from, to ) ) // Avoid duplicate edge
2433     from->add_prec(to);
2434 }
2435 
2436 //------------------------------anti_do_def------------------------------------
2437 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2438   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2439     return;
2440 
2441   Node *pinch = _reg_node[def_reg]; // Get pinch point
2442   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2443       is_def ) {    // Check for a true def (not a kill)
2444     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2445     return;
2446   }
2447 
2448   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2449   debug_only( def = (Node*)0xdeadbeef; )
2450 
2451   // After some number of kills there _may_ be a later def
2452   Node *later_def = NULL;
2453 
2454   // Finding a kill requires a real pinch-point.
2455   // Check for not already having a pinch-point.
2456   // Pinch points are Op_Node's.
2457   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2458     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2459     if ( _pinch_free_list.size() > 0) {
2460       pinch = _pinch_free_list.pop();
2461     } else {
2462       pinch = new (_cfg->C, 1) Node(1); // Pinch point to-be
2463     }
2464     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2465       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2466       return;
2467     }
2468     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2469     _reg_node.map(def_reg,pinch); // Record pinch-point
2470     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2471     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2472       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2473       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2474       later_def = NULL;           // and no later def
2475     }
2476     pinch->set_req(0,later_def);  // Hook later def so we can find it
2477   } else {                        // Else have valid pinch point
2478     if( pinch->in(0) )            // If there is a later-def
2479       later_def = pinch->in(0);   // Get it
2480   }
2481 
2482   // Add output-dependence edge from later def to kill
2483   if( later_def )               // If there is some original def
2484     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2485 
2486   // See if current kill is also a use, and so is forced to be the pinch-point.
2487   if( pinch->Opcode() == Op_Node ) {
2488     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2489     for( uint i=1; i<uses->req(); i++ ) {
2490       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2491           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2492         // Yes, found a use/kill pinch-point
2493         pinch->set_req(0,NULL);  //
2494         pinch->replace_by(kill); // Move anti-dep edges up
2495         pinch = kill;
2496         _reg_node.map(def_reg,pinch);
2497         return;
2498       }
2499     }
2500   }
2501 
2502   // Add edge from kill to pinch-point
2503   add_prec_edge_from_to(kill,pinch);
2504 }
2505 
2506 //------------------------------anti_do_use------------------------------------
2507 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2508   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2509     return;
2510   Node *pinch = _reg_node[use_reg]; // Get pinch point
2511   // Check for no later def_reg/kill in block
2512   if( pinch && _bbs[pinch->_idx] == b &&
2513       // Use has to be block-local as well
2514       _bbs[use->_idx] == b ) {
2515     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2516         pinch->req() == 1 ) {   // pinch not yet in block?
2517       pinch->del_req(0);        // yank pointer to later-def, also set flag
2518       // Insert the pinch-point in the block just after the last use
2519       b->_nodes.insert(b->find_node(use)+1,pinch);
2520       _bb_end++;                // Increase size scheduled region in block
2521     }
2522 
2523     add_prec_edge_from_to(pinch,use);
2524   }
2525 }
2526 
2527 //------------------------------ComputeRegisterAntidependences-----------------
2528 // We insert antidependences between the reads and following write of
2529 // allocated registers to prevent illegal code motion. Hopefully, the
2530 // number of added references should be fairly small, especially as we
2531 // are only adding references within the current basic block.
2532 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2533 
2534 #ifdef ASSERT
2535   verify_good_schedule(b,"before block local scheduling");
2536 #endif
2537 
2538   // A valid schedule, for each register independently, is an endless cycle
2539   // of: a def, then some uses (connected to the def by true dependencies),
2540   // then some kills (defs with no uses), finally the cycle repeats with a new
2541   // def.  The uses are allowed to float relative to each other, as are the
2542   // kills.  No use is allowed to slide past a kill (or def).  This requires
2543   // antidependencies between all uses of a single def and all kills that
2544   // follow, up to the next def.  More edges are redundant, because later defs
2545   // & kills are already serialized with true or antidependencies.  To keep
2546   // the edge count down, we add a 'pinch point' node if there's more than
2547   // one use or more than one kill/def.
2548 
2549   // We add dependencies in one bottom-up pass.
2550 
2551   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2552 
2553   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2554   // register.  If not, we record the DEF/KILL in _reg_node, the
2555   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2556   // "pinch point", a new Node that's in the graph but not in the block.
2557   // We put edges from the prior and current DEF/KILLs to the pinch point.
2558   // We put the pinch point in _reg_node.  If there's already a pinch point
2559   // we merely add an edge from the current DEF/KILL to the pinch point.
2560 
2561   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2562   // put an edge from the pinch point to the USE.
2563 
2564   // To be expedient, the _reg_node array is pre-allocated for the whole
2565   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2566   // or a valid def/kill/pinch-point, or a leftover node from some prior
2567   // block.  Leftover node from some prior block is treated like a NULL (no
2568   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2569   // it being in the current block.
2570   bool fat_proj_seen = false;
2571   uint last_safept = _bb_end-1;
2572   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2573   Node* last_safept_node = end_node;
2574   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2575     Node *n = b->_nodes[i];
2576     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2577     if( n->Opcode() == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2578       // Fat-proj kills a slew of registers
2579       // This can add edges to 'n' and obscure whether or not it was a def,
2580       // hence the is_def flag.
2581       fat_proj_seen = true;
2582       RegMask rm = n->out_RegMask();// Make local copy
2583       while( rm.is_NotEmpty() ) {
2584         OptoReg::Name kill = rm.find_first_elem();
2585         rm.Remove(kill);
2586         anti_do_def( b, n, kill, is_def );
2587       }
2588     } else {
2589       // Get DEF'd registers the normal way
2590       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2591       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2592     }
2593 
2594     // Check each register used by this instruction for a following DEF/KILL
2595     // that must occur afterward and requires an anti-dependence edge.
2596     for( uint j=0; j<n->req(); j++ ) {
2597       Node *def = n->in(j);
2598       if( def ) {
2599         assert( def->Opcode() != Op_MachProj || def->ideal_reg() != MachProjNode::fat_proj, "" );
2600         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2601         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2602       }
2603     }
2604     // Do not allow defs of new derived values to float above GC
2605     // points unless the base is definitely available at the GC point.
2606 
2607     Node *m = b->_nodes[i];
2608 
2609     // Add precedence edge from following safepoint to use of derived pointer
2610     if( last_safept_node != end_node &&
2611         m != last_safept_node) {
2612       for (uint k = 1; k < m->req(); k++) {
2613         const Type *t = m->in(k)->bottom_type();
2614         if( t->isa_oop_ptr() &&
2615             t->is_ptr()->offset() != 0 ) {
2616           last_safept_node->add_prec( m );
2617           break;
2618         }
2619       }
2620     }
2621 
2622     if( n->jvms() ) {           // Precedence edge from derived to safept
2623       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2624       if( b->_nodes[last_safept] != last_safept_node ) {
2625         last_safept = b->find_node(last_safept_node);
2626       }
2627       for( uint j=last_safept; j > i; j-- ) {
2628         Node *mach = b->_nodes[j];
2629         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2630           mach->add_prec( n );
2631       }
2632       last_safept = i;
2633       last_safept_node = m;
2634     }
2635   }
2636 
2637   if (fat_proj_seen) {
2638     // Garbage collect pinch nodes that were not consumed.
2639     // They are usually created by a fat kill MachProj for a call.
2640     garbage_collect_pinch_nodes();
2641   }
2642 }
2643 
2644 //------------------------------garbage_collect_pinch_nodes-------------------------------
2645 
2646 // Garbage collect pinch nodes for reuse by other blocks.
2647 //
2648 // The block scheduler's insertion of anti-dependence
2649 // edges creates many pinch nodes when the block contains
2650 // 2 or more Calls.  A pinch node is used to prevent a
2651 // combinatorial explosion of edges.  If a set of kills for a
2652 // register is anti-dependent on a set of uses (or defs), rather
2653 // than adding an edge in the graph between each pair of kill
2654 // and use (or def), a pinch is inserted between them:
2655 //
2656 //            use1   use2  use3
2657 //                \   |   /
2658 //                 \  |  /
2659 //                  pinch
2660 //                 /  |  \
2661 //                /   |   \
2662 //            kill1 kill2 kill3
2663 //
2664 // One pinch node is created per register killed when
2665 // the second call is encountered during a backwards pass
2666 // over the block.  Most of these pinch nodes are never
2667 // wired into the graph because the register is never
2668 // used or def'ed in the block.
2669 //
2670 void Scheduling::garbage_collect_pinch_nodes() {
2671 #ifndef PRODUCT
2672     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2673 #endif
2674     int trace_cnt = 0;
2675     for (uint k = 0; k < _reg_node.Size(); k++) {
2676       Node* pinch = _reg_node[k];
2677       if (pinch != NULL && pinch->Opcode() == Op_Node &&
2678           // no predecence input edges
2679           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2680         cleanup_pinch(pinch);
2681         _pinch_free_list.push(pinch);
2682         _reg_node.map(k, NULL);
2683 #ifndef PRODUCT
2684         if (_cfg->C->trace_opto_output()) {
2685           trace_cnt++;
2686           if (trace_cnt > 40) {
2687             tty->print("\n");
2688             trace_cnt = 0;
2689           }
2690           tty->print(" %d", pinch->_idx);
2691         }
2692 #endif
2693       }
2694     }
2695 #ifndef PRODUCT
2696     if (_cfg->C->trace_opto_output()) tty->print("\n");
2697 #endif
2698 }
2699 
2700 // Clean up a pinch node for reuse.
2701 void Scheduling::cleanup_pinch( Node *pinch ) {
2702   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2703 
2704   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2705     Node* use = pinch->last_out(i);
2706     uint uses_found = 0;
2707     for (uint j = use->req(); j < use->len(); j++) {
2708       if (use->in(j) == pinch) {
2709         use->rm_prec(j);
2710         uses_found++;
2711       }
2712     }
2713     assert(uses_found > 0, "must be a precedence edge");
2714     i -= uses_found;    // we deleted 1 or more copies of this edge
2715   }
2716   // May have a later_def entry
2717   pinch->set_req(0, NULL);
2718 }
2719 
2720 //------------------------------print_statistics-------------------------------
2721 #ifndef PRODUCT
2722 
2723 void Scheduling::dump_available() const {
2724   tty->print("#Availist  ");
2725   for (uint i = 0; i < _available.size(); i++)
2726     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2727   tty->cr();
2728 }
2729 
2730 // Print Scheduling Statistics
2731 void Scheduling::print_statistics() {
2732   // Print the size added by nops for bundling
2733   tty->print("Nops added %d bytes to total of %d bytes",
2734     _total_nop_size, _total_method_size);
2735   if (_total_method_size > 0)
2736     tty->print(", for %.2f%%",
2737       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2738   tty->print("\n");
2739 
2740   // Print the number of branch shadows filled
2741   if (Pipeline::_branch_has_delay_slot) {
2742     tty->print("Of %d branches, %d had unconditional delay slots filled",
2743       _total_branches, _total_unconditional_delays);
2744     if (_total_branches > 0)
2745       tty->print(", for %.2f%%",
2746         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2747     tty->print("\n");
2748   }
2749 
2750   uint total_instructions = 0, total_bundles = 0;
2751 
2752   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
2753     uint bundle_count   = _total_instructions_per_bundle[i];
2754     total_instructions += bundle_count * i;
2755     total_bundles      += bundle_count;
2756   }
2757 
2758   if (total_bundles > 0)
2759     tty->print("Average ILP (excluding nops) is %.2f\n",
2760       ((double)total_instructions) / ((double)total_bundles));
2761 }
2762 #endif