1 /*
   2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 class Chaitin;
  30 class NamedCounter;
  31 class MultiNode;
  32 class  SafePointNode;
  33 class   CallNode;
  34 class     CallJavaNode;
  35 class       CallStaticJavaNode;
  36 class       CallDynamicJavaNode;
  37 class     CallRuntimeNode;
  38 class       CallLeafNode;
  39 class         CallLeafNoFPNode;
  40 class     AllocateNode;
  41 class       AllocateArrayNode;
  42 class     LockNode;
  43 class     UnlockNode;
  44 class JVMState;
  45 class OopMap;
  46 class State;
  47 class StartNode;
  48 class MachCallNode;
  49 class FastLockNode;
  50 
  51 //------------------------------StartNode--------------------------------------
  52 // The method start node
  53 class StartNode : public MultiNode {
  54   virtual uint cmp( const Node &n ) const;
  55   virtual uint size_of() const; // Size is bigger
  56 public:
  57   const TypeTuple *_domain;
  58   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  59     init_class_id(Class_Start);
  60     init_flags(Flag_is_block_start);
  61     init_req(0,this);
  62     init_req(1,root);
  63   }
  64   virtual int Opcode() const;
  65   virtual bool pinned() const { return true; };
  66   virtual const Type *bottom_type() const;
  67   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  68   virtual const Type *Value( PhaseTransform *phase ) const;
  69   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  70   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  71   virtual const RegMask &in_RegMask(uint) const;
  72   virtual Node *match( const ProjNode *proj, const Matcher *m );
  73   virtual uint ideal_reg() const { return 0; }
  74 #ifndef PRODUCT
  75   virtual void  dump_spec(outputStream *st) const;
  76 #endif
  77 };
  78 
  79 //------------------------------StartOSRNode-----------------------------------
  80 // The method start node for on stack replacement code
  81 class StartOSRNode : public StartNode {
  82 public:
  83   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  84   virtual int   Opcode() const;
  85   static  const TypeTuple *osr_domain();
  86 };
  87 
  88 
  89 //------------------------------ParmNode---------------------------------------
  90 // Incoming parameters
  91 class ParmNode : public ProjNode {
  92   static const char * const names[TypeFunc::Parms+1];
  93 public:
  94   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
  95     init_class_id(Class_Parm);
  96   }
  97   virtual int Opcode() const;
  98   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
  99   virtual uint ideal_reg() const;
 100 #ifndef PRODUCT
 101   virtual void dump_spec(outputStream *st) const;
 102 #endif
 103 };
 104 
 105 
 106 //------------------------------ReturnNode-------------------------------------
 107 // Return from subroutine node
 108 class ReturnNode : public Node {
 109 public:
 110   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 111   virtual int Opcode() const;
 112   virtual bool  is_CFG() const { return true; }
 113   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 114   virtual bool depends_only_on_test() const { return false; }
 115   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 116   virtual const Type *Value( PhaseTransform *phase ) const;
 117   virtual uint ideal_reg() const { return NotAMachineReg; }
 118   virtual uint match_edge(uint idx) const;
 119 #ifndef PRODUCT
 120   virtual void dump_req() const;
 121 #endif
 122 };
 123 
 124 
 125 //------------------------------RethrowNode------------------------------------
 126 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 127 // ends the current basic block like a ReturnNode.  Restores registers and
 128 // unwinds stack.  Rethrow happens in the caller's method.
 129 class RethrowNode : public Node {
 130  public:
 131   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 132   virtual int Opcode() const;
 133   virtual bool  is_CFG() const { return true; }
 134   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 135   virtual bool depends_only_on_test() const { return false; }
 136   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 137   virtual const Type *Value( PhaseTransform *phase ) const;
 138   virtual uint match_edge(uint idx) const;
 139   virtual uint ideal_reg() const { return NotAMachineReg; }
 140 #ifndef PRODUCT
 141   virtual void dump_req() const;
 142 #endif
 143 };
 144 
 145 
 146 //------------------------------TailCallNode-----------------------------------
 147 // Pop stack frame and jump indirect
 148 class TailCallNode : public ReturnNode {
 149 public:
 150   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 151     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 152     init_req(TypeFunc::Parms, target);
 153     init_req(TypeFunc::Parms+1, moop);
 154   }
 155 
 156   virtual int Opcode() const;
 157   virtual uint match_edge(uint idx) const;
 158 };
 159 
 160 //------------------------------TailJumpNode-----------------------------------
 161 // Pop stack frame and jump indirect
 162 class TailJumpNode : public ReturnNode {
 163 public:
 164   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 165     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 166     init_req(TypeFunc::Parms, target);
 167     init_req(TypeFunc::Parms+1, ex_oop);
 168   }
 169 
 170   virtual int Opcode() const;
 171   virtual uint match_edge(uint idx) const;
 172 };
 173 
 174 //-------------------------------JVMState-------------------------------------
 175 // A linked list of JVMState nodes captures the whole interpreter state,
 176 // plus GC roots, for all active calls at some call site in this compilation
 177 // unit.  (If there is no inlining, then the list has exactly one link.)
 178 // This provides a way to map the optimized program back into the interpreter,
 179 // or to let the GC mark the stack.
 180 class JVMState : public ResourceObj {
 181 public:
 182   typedef enum {
 183     RE_Undefined = -1, // not defined -- will be translated into false later
 184     RE_False     =  0, // false       -- do not reexecute
 185     RE_True      =  1  // true        -- reexecute the bytecode
 186   } REBit; //ReExecution Bit
 187 
 188 private:
 189   JVMState*         _caller;    // List pointer for forming scope chains
 190   uint              _depth;     // One mroe than caller depth, or one.
 191   uint              _locoff;    // Offset to locals in input edge mapping
 192   uint              _stkoff;    // Offset to stack in input edge mapping
 193   uint              _monoff;    // Offset to monitors in input edge mapping
 194   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 195   uint              _endoff;    // Offset to end of input edge mapping
 196   uint              _sp;        // Jave Expression Stack Pointer for this state
 197   int               _bci;       // Byte Code Index of this JVM point
 198   REBit             _reexecute; // Whether this bytecode need to be re-executed
 199   ciMethod*         _method;    // Method Pointer
 200   SafePointNode*    _map;       // Map node associated with this scope
 201 public:
 202   friend class Compile;
 203 
 204   // Because JVMState objects live over the entire lifetime of the
 205   // Compile object, they are allocated into the comp_arena, which
 206   // does not get resource marked or reset during the compile process
 207   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
 208   void operator delete( void * ) { } // fast deallocation
 209 
 210   // Create a new JVMState, ready for abstract interpretation.
 211   JVMState(ciMethod* method, JVMState* caller);
 212   JVMState(int stack_size);  // root state; has a null method
 213 
 214   // Access functions for the JVM
 215   uint              locoff() const { return _locoff; }
 216   uint              stkoff() const { return _stkoff; }
 217   uint              argoff() const { return _stkoff + _sp; }
 218   uint              monoff() const { return _monoff; }
 219   uint              scloff() const { return _scloff; }
 220   uint              endoff() const { return _endoff; }
 221   uint              oopoff() const { return debug_end(); }
 222 
 223   int            loc_size() const { return _stkoff - _locoff; }
 224   int            stk_size() const { return _monoff - _stkoff; }
 225   int            mon_size() const { return _scloff - _monoff; }
 226   int            scl_size() const { return _endoff - _scloff; }
 227 
 228   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
 229   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
 230   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
 231   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
 232 
 233   uint                      sp()     const { return _sp; }
 234   int                      bci()    const { return _bci; }
 235   REBit       should_reexecute() const { return _reexecute; }
 236   bool              has_method() const { return _method != NULL; }
 237   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 238   JVMState*             caller() const { return _caller; }
 239   SafePointNode*           map()    const { return _map; }
 240   uint                   depth()  const { return _depth; }
 241   uint             debug_start()  const; // returns locoff of root caller
 242   uint               debug_end()    const; // returns endoff of self
 243   uint              debug_size()   const {
 244     return loc_size() + sp() + mon_size() + scl_size();
 245   }
 246   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 247 
 248   // Returns the JVM state at the desired depth (1 == root).
 249   JVMState* of_depth(int d) const;
 250 
 251   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 252   bool same_calls_as(const JVMState* that) const;
 253 
 254   // Monitors (monitors are stored as (boxNode, objNode) pairs
 255   enum { logMonitorEdges = 1 };
 256   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 257   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 258   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 259   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 260   bool is_monitor_box(uint off)    const {
 261     assert(is_mon(off), "should be called only for monitor edge");
 262     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 263   }
 264   bool is_monitor_use(uint off)    const { return (is_mon(off)
 265                                                    && is_monitor_box(off))
 266                                              || (caller() && caller()->is_monitor_use(off)); }
 267 
 268   // Initialization functions for the JVM
 269   void              set_locoff(uint off) { _locoff = off; }
 270   void              set_stkoff(uint off) { _stkoff = off; }
 271   void              set_monoff(uint off) { _monoff = off; }
 272   void              set_scloff(uint off) { _scloff = off; }
 273   void              set_endoff(uint off) { _endoff = off; }
 274   void              set_offsets(uint off) {
 275     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 276   }
 277   void              set_map(SafePointNode *map) { _map = map; }
 278   void              set_sp(uint sp) { _sp = sp; }
 279   void              set_bci(int bci) { _bci = bci; }
 280   void              set_reexecute(REBit reexec) {_reexecute = reexec;}
 281 
 282   // Miscellaneous utility functions
 283   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 284   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 285 
 286 #ifndef PRODUCT
 287   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 288   void      dump_spec(outputStream *st) const;
 289   void      dump_on(outputStream* st) const;
 290   void      dump() const {
 291     dump_on(tty);
 292   }
 293 #endif
 294 };
 295 
 296 //------------------------------SafePointNode----------------------------------
 297 // A SafePointNode is a subclass of a MultiNode for convenience (and
 298 // potential code sharing) only - conceptually it is independent of
 299 // the Node semantics.
 300 class SafePointNode : public MultiNode {
 301   virtual uint           cmp( const Node &n ) const;
 302   virtual uint           size_of() const;       // Size is bigger
 303 
 304 public:
 305   SafePointNode(uint edges, JVMState* jvms,
 306                 // A plain safepoint advertises no memory effects (NULL):
 307                 const TypePtr* adr_type = NULL)
 308     : MultiNode( edges ),
 309       _jvms(jvms),
 310       _oop_map(NULL),
 311       _adr_type(adr_type)
 312   {
 313     init_class_id(Class_SafePoint);
 314   }
 315 
 316   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 317   JVMState* const _jvms;      // Pointer to list of JVM State objects
 318   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 319 
 320   // Many calls take *all* of memory as input,
 321   // but some produce a limited subset of that memory as output.
 322   // The adr_type reports the call's behavior as a store, not a load.
 323 
 324   virtual JVMState* jvms() const { return _jvms; }
 325   void set_jvms(JVMState* s) {
 326     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 327   }
 328   OopMap *oop_map() const { return _oop_map; }
 329   void set_oop_map(OopMap *om) { _oop_map = om; }
 330 
 331   // Functionality from old debug nodes which has changed
 332   Node *local(JVMState* jvms, uint idx) const {
 333     assert(verify_jvms(jvms), "jvms must match");
 334     return in(jvms->locoff() + idx);
 335   }
 336   Node *stack(JVMState* jvms, uint idx) const {
 337     assert(verify_jvms(jvms), "jvms must match");
 338     return in(jvms->stkoff() + idx);
 339   }
 340   Node *argument(JVMState* jvms, uint idx) const {
 341     assert(verify_jvms(jvms), "jvms must match");
 342     return in(jvms->argoff() + idx);
 343   }
 344   Node *monitor_box(JVMState* jvms, uint idx) const {
 345     assert(verify_jvms(jvms), "jvms must match");
 346     return in(jvms->monitor_box_offset(idx));
 347   }
 348   Node *monitor_obj(JVMState* jvms, uint idx) const {
 349     assert(verify_jvms(jvms), "jvms must match");
 350     return in(jvms->monitor_obj_offset(idx));
 351   }
 352 
 353   void  set_local(JVMState* jvms, uint idx, Node *c);
 354 
 355   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 356     assert(verify_jvms(jvms), "jvms must match");
 357     set_req(jvms->stkoff() + idx, c);
 358   }
 359   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 360     assert(verify_jvms(jvms), "jvms must match");
 361     set_req(jvms->argoff() + idx, c);
 362   }
 363   void ensure_stack(JVMState* jvms, uint stk_size) {
 364     assert(verify_jvms(jvms), "jvms must match");
 365     int grow_by = (int)stk_size - (int)jvms->stk_size();
 366     if (grow_by > 0)  grow_stack(jvms, grow_by);
 367   }
 368   void grow_stack(JVMState* jvms, uint grow_by);
 369   // Handle monitor stack
 370   void push_monitor( const FastLockNode *lock );
 371   void pop_monitor ();
 372   Node *peek_monitor_box() const;
 373   Node *peek_monitor_obj() const;
 374 
 375   // Access functions for the JVM
 376   Node *control  () const { return in(TypeFunc::Control  ); }
 377   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 378   Node *memory   () const { return in(TypeFunc::Memory   ); }
 379   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 380   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 381 
 382   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 383   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 384   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 385 
 386   MergeMemNode* merged_memory() const {
 387     return in(TypeFunc::Memory)->as_MergeMem();
 388   }
 389 
 390   // The parser marks useless maps as dead when it's done with them:
 391   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 392 
 393   // Exception states bubbling out of subgraphs such as inlined calls
 394   // are recorded here.  (There might be more than one, hence the "next".)
 395   // This feature is used only for safepoints which serve as "maps"
 396   // for JVM states during parsing, intrinsic expansion, etc.
 397   SafePointNode*         next_exception() const;
 398   void               set_next_exception(SafePointNode* n);
 399   bool                   has_exceptions() const { return next_exception() != NULL; }
 400 
 401   // Standard Node stuff
 402   virtual int            Opcode() const;
 403   virtual bool           pinned() const { return true; }
 404   virtual const Type    *Value( PhaseTransform *phase ) const;
 405   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 406   virtual const TypePtr *adr_type() const { return _adr_type; }
 407   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 408   virtual Node          *Identity( PhaseTransform *phase );
 409   virtual uint           ideal_reg() const { return 0; }
 410   virtual const RegMask &in_RegMask(uint) const;
 411   virtual const RegMask &out_RegMask() const;
 412   virtual uint           match_edge(uint idx) const;
 413 
 414   static  bool           needs_polling_address_input();
 415 
 416 #ifndef PRODUCT
 417   virtual void              dump_spec(outputStream *st) const;
 418 #endif
 419 };
 420 
 421 //------------------------------SafePointScalarObjectNode----------------------
 422 // A SafePointScalarObjectNode represents the state of a scalarized object
 423 // at a safepoint.
 424 
 425 class SafePointScalarObjectNode: public TypeNode {
 426   uint _first_index; // First input edge index of a SafePoint node where
 427                      // states of the scalarized object fields are collected.
 428   uint _n_fields;    // Number of non-static fields of the scalarized object.
 429   DEBUG_ONLY(AllocateNode* _alloc;)
 430 public:
 431   SafePointScalarObjectNode(const TypeOopPtr* tp,
 432 #ifdef ASSERT
 433                             AllocateNode* alloc,
 434 #endif
 435                             uint first_index, uint n_fields);
 436   virtual int Opcode() const;
 437   virtual uint           ideal_reg() const;
 438   virtual const RegMask &in_RegMask(uint) const;
 439   virtual const RegMask &out_RegMask() const;
 440   virtual uint           match_edge(uint idx) const;
 441 
 442   uint first_index() const { return _first_index; }
 443   uint n_fields()    const { return _n_fields; }
 444   DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
 445 
 446   // SafePointScalarObject should be always pinned to the control edge
 447   // of the SafePoint node for which it was generated.
 448   virtual bool pinned() const; // { return true; }
 449 
 450   // SafePointScalarObject depends on the SafePoint node
 451   // for which it was generated.
 452   virtual bool depends_only_on_test() const; // { return false; }
 453 
 454   virtual uint size_of() const { return sizeof(*this); }
 455 
 456   // Assumes that "this" is an argument to a safepoint node "s", and that
 457   // "new_call" is being created to correspond to "s".  But the difference
 458   // between the start index of the jvmstates of "new_call" and "s" is
 459   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 460   // corresponds appropriately to "this" in "new_call".  Assumes that
 461   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 462   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 463   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
 464 
 465 #ifndef PRODUCT
 466   virtual void              dump_spec(outputStream *st) const;
 467 #endif
 468 };
 469 
 470 //------------------------------CallNode---------------------------------------
 471 // Call nodes now subsume the function of debug nodes at callsites, so they
 472 // contain the functionality of a full scope chain of debug nodes.
 473 class CallNode : public SafePointNode {
 474 public:
 475   const TypeFunc *_tf;        // Function type
 476   address      _entry_point;  // Address of method being called
 477   float        _cnt;          // Estimate of number of times called
 478 
 479   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 480     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 481       _tf(tf),
 482       _entry_point(addr),
 483       _cnt(COUNT_UNKNOWN)
 484   {
 485     init_class_id(Class_Call);
 486     init_flags(Flag_is_Call);
 487   }
 488 
 489   const TypeFunc* tf()        const { return _tf; }
 490   const address entry_point() const { return _entry_point; }
 491   const float   cnt()         const { return _cnt; }
 492 
 493   void set_tf(const TypeFunc* tf) { _tf = tf; }
 494   void set_entry_point(address p) { _entry_point = p; }
 495   void set_cnt(float c)           { _cnt = c; }
 496 
 497   virtual const Type *bottom_type() const;
 498   virtual const Type *Value( PhaseTransform *phase ) const;
 499   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 500   virtual uint        cmp( const Node &n ) const;
 501   virtual uint        size_of() const = 0;
 502   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 503   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 504   virtual uint        ideal_reg() const { return NotAMachineReg; }
 505   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 506   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 507   virtual bool        guaranteed_safepoint()  { return true; }
 508   // For macro nodes, the JVMState gets modified during expansion, so when cloning
 509   // the node the JVMState must be cloned.
 510   virtual void        clone_jvms() { }   // default is not to clone
 511 
 512   // Returns true if the call may modify n
 513   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
 514   // Does this node have a use of n other than in debug information?
 515   bool                has_non_debug_use(Node *n);
 516   // Returns the unique CheckCastPP of a call
 517   // or result projection is there are several CheckCastPP
 518   // or returns NULL if there is no one.
 519   Node *result_cast();
 520 
 521   virtual uint match_edge(uint idx) const;
 522 
 523 #ifndef PRODUCT
 524   virtual void        dump_req()  const;
 525   virtual void        dump_spec(outputStream *st) const;
 526 #endif
 527 };
 528 
 529 //------------------------------CallJavaNode-----------------------------------
 530 // Make a static or dynamic subroutine call node using Java calling
 531 // convention.  (The "Java" calling convention is the compiler's calling
 532 // convention, as opposed to the interpreter's or that of native C.)
 533 class CallJavaNode : public CallNode {
 534 protected:
 535   virtual uint cmp( const Node &n ) const;
 536   virtual uint size_of() const; // Size is bigger
 537 
 538   bool    _optimized_virtual;
 539   ciMethod* _method;            // Method being direct called
 540 public:
 541   const int       _bci;         // Byte Code Index of call byte code
 542   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 543     : CallNode(tf, addr, TypePtr::BOTTOM),
 544       _method(method), _bci(bci), _optimized_virtual(false)
 545   {
 546     init_class_id(Class_CallJava);
 547   }
 548 
 549   virtual int   Opcode() const;
 550   ciMethod* method() const                { return _method; }
 551   void  set_method(ciMethod *m)           { _method = m; }
 552   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 553   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 554 
 555 #ifndef PRODUCT
 556   virtual void  dump_spec(outputStream *st) const;
 557 #endif
 558 };
 559 
 560 //------------------------------CallStaticJavaNode-----------------------------
 561 // Make a direct subroutine call using Java calling convention (for static
 562 // calls and optimized virtual calls, plus calls to wrappers for run-time
 563 // routines); generates static stub.
 564 class CallStaticJavaNode : public CallJavaNode {
 565   virtual uint cmp( const Node &n ) const;
 566   virtual uint size_of() const; // Size is bigger
 567 public:
 568   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
 569     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 570     init_class_id(Class_CallStaticJava);
 571   }
 572   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 573                      const TypePtr* adr_type)
 574     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 575     init_class_id(Class_CallStaticJava);
 576     // This node calls a runtime stub, which often has narrow memory effects.
 577     _adr_type = adr_type;
 578   }
 579   const char *_name;            // Runtime wrapper name
 580 
 581   // If this is an uncommon trap, return the request code, else zero.
 582   int uncommon_trap_request() const;
 583   static int extract_uncommon_trap_request(const Node* call);
 584 
 585   virtual int         Opcode() const;
 586 #ifndef PRODUCT
 587   virtual void        dump_spec(outputStream *st) const;
 588 #endif
 589 };
 590 
 591 //------------------------------CallDynamicJavaNode----------------------------
 592 // Make a dispatched call using Java calling convention.
 593 class CallDynamicJavaNode : public CallJavaNode {
 594   virtual uint cmp( const Node &n ) const;
 595   virtual uint size_of() const; // Size is bigger
 596 public:
 597   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 598     init_class_id(Class_CallDynamicJava);
 599   }
 600 
 601   int _vtable_index;
 602   virtual int   Opcode() const;
 603 #ifndef PRODUCT
 604   virtual void  dump_spec(outputStream *st) const;
 605 #endif
 606 };
 607 
 608 //------------------------------CallRuntimeNode--------------------------------
 609 // Make a direct subroutine call node into compiled C++ code.
 610 class CallRuntimeNode : public CallNode {
 611   virtual uint cmp( const Node &n ) const;
 612   virtual uint size_of() const; // Size is bigger
 613 public:
 614   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 615                   const TypePtr* adr_type)
 616     : CallNode(tf, addr, adr_type),
 617       _name(name)
 618   {
 619     init_class_id(Class_CallRuntime);
 620   }
 621 
 622   const char *_name;            // Printable name, if _method is NULL
 623   virtual int   Opcode() const;
 624   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 625 
 626 #ifndef PRODUCT
 627   virtual void  dump_spec(outputStream *st) const;
 628 #endif
 629 };
 630 
 631 //------------------------------CallLeafNode-----------------------------------
 632 // Make a direct subroutine call node into compiled C++ code, without
 633 // safepoints
 634 class CallLeafNode : public CallRuntimeNode {
 635 public:
 636   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 637                const TypePtr* adr_type)
 638     : CallRuntimeNode(tf, addr, name, adr_type)
 639   {
 640     init_class_id(Class_CallLeaf);
 641   }
 642   virtual int   Opcode() const;
 643   virtual bool        guaranteed_safepoint()  { return false; }
 644 #ifndef PRODUCT
 645   virtual void  dump_spec(outputStream *st) const;
 646 #endif
 647 };
 648 
 649 //------------------------------CallLeafNoFPNode-------------------------------
 650 // CallLeafNode, not using floating point or using it in the same manner as
 651 // the generated code
 652 class CallLeafNoFPNode : public CallLeafNode {
 653 public:
 654   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 655                    const TypePtr* adr_type)
 656     : CallLeafNode(tf, addr, name, adr_type)
 657   {
 658   }
 659   virtual int   Opcode() const;
 660 };
 661 
 662 
 663 //------------------------------Allocate---------------------------------------
 664 // High-level memory allocation
 665 //
 666 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 667 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 668 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 669 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 670 //  order to differentiate the uses of the projection on the normal control path from
 671 //  those on the exception return path.
 672 //
 673 class AllocateNode : public CallNode {
 674 public:
 675   enum {
 676     // Output:
 677     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 678     // Inputs:
 679     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 680     KlassNode,                        // type (maybe dynamic) of the obj.
 681     InitialTest,                      // slow-path test (may be constant)
 682     ALength,                          // array length (or TOP if none)
 683     ParmLimit
 684   };
 685 
 686   static const TypeFunc* alloc_type() {
 687     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 688     fields[AllocSize]   = TypeInt::POS;
 689     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 690     fields[InitialTest] = TypeInt::BOOL;
 691     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
 692 
 693     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 694 
 695     // create result type (range)
 696     fields = TypeTuple::fields(1);
 697     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 698 
 699     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 700 
 701     return TypeFunc::make(domain, range);
 702   }
 703 
 704   bool _is_scalar_replaceable;  // Result of Escape Analysis
 705 
 706   virtual uint size_of() const; // Size is bigger
 707   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 708                Node *size, Node *klass_node, Node *initial_test);
 709   // Expansion modifies the JVMState, so we need to clone it
 710   virtual void  clone_jvms() {
 711     set_jvms(jvms()->clone_deep(Compile::current()));
 712   }
 713   virtual int Opcode() const;
 714   virtual uint ideal_reg() const { return Op_RegP; }
 715   virtual bool        guaranteed_safepoint()  { return false; }
 716 
 717   // allocations do not modify their arguments
 718   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
 719 
 720   // Pattern-match a possible usage of AllocateNode.
 721   // Return null if no allocation is recognized.
 722   // The operand is the pointer produced by the (possible) allocation.
 723   // It must be a projection of the Allocate or its subsequent CastPP.
 724   // (Note:  This function is defined in file graphKit.cpp, near
 725   // GraphKit::new_instance/new_array, whose output it recognizes.)
 726   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 727   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 728 
 729   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 730   // an offset, which is reported back to the caller.
 731   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 732   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 733                                         intptr_t& offset);
 734 
 735   // Dig the klass operand out of a (possible) allocation site.
 736   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 737     AllocateNode* allo = Ideal_allocation(ptr, phase);
 738     return (allo == NULL) ? NULL : allo->in(KlassNode);
 739   }
 740 
 741   // Conservatively small estimate of offset of first non-header byte.
 742   int minimum_header_size() {
 743     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 744                                 instanceOopDesc::base_offset_in_bytes();
 745   }
 746 
 747   // Return the corresponding initialization barrier (or null if none).
 748   // Walks out edges to find it...
 749   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 750   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 751   InitializeNode* initialization();
 752 
 753   // Convenience for initialization->maybe_set_complete(phase)
 754   bool maybe_set_complete(PhaseGVN* phase);
 755 };
 756 
 757 //------------------------------AllocateArray---------------------------------
 758 //
 759 // High-level array allocation
 760 //
 761 class AllocateArrayNode : public AllocateNode {
 762 public:
 763   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 764                     Node* size, Node* klass_node, Node* initial_test,
 765                     Node* count_val
 766                     )
 767     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 768                    initial_test)
 769   {
 770     init_class_id(Class_AllocateArray);
 771     set_req(AllocateNode::ALength,        count_val);
 772   }
 773   virtual int Opcode() const;
 774   virtual uint size_of() const; // Size is bigger
 775   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 776 
 777   // Dig the length operand out of a array allocation site.
 778   Node* Ideal_length() {
 779     return in(AllocateNode::ALength);
 780   }
 781 
 782   // Dig the length operand out of a array allocation site and narrow the
 783   // type with a CastII, if necesssary
 784   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 785 
 786   // Pattern-match a possible usage of AllocateArrayNode.
 787   // Return null if no allocation is recognized.
 788   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 789     AllocateNode* allo = Ideal_allocation(ptr, phase);
 790     return (allo == NULL || !allo->is_AllocateArray())
 791            ? NULL : allo->as_AllocateArray();
 792   }
 793 };
 794 
 795 //------------------------------AbstractLockNode-----------------------------------
 796 class AbstractLockNode: public CallNode {
 797 private:
 798   bool _eliminate;    // indicates this lock can be safely eliminated
 799   bool _coarsened;    // indicates this lock was coarsened
 800 #ifndef PRODUCT
 801   NamedCounter* _counter;
 802 #endif
 803 
 804 protected:
 805   // helper functions for lock elimination
 806   //
 807 
 808   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 809                             GrowableArray<AbstractLockNode*> &lock_ops);
 810   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 811                                        GrowableArray<AbstractLockNode*> &lock_ops);
 812   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 813                                GrowableArray<AbstractLockNode*> &lock_ops);
 814   LockNode *find_matching_lock(UnlockNode* unlock);
 815 
 816 
 817 public:
 818   AbstractLockNode(const TypeFunc *tf)
 819     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 820       _coarsened(false),
 821       _eliminate(false)
 822   {
 823 #ifndef PRODUCT
 824     _counter = NULL;
 825 #endif
 826   }
 827   virtual int Opcode() const = 0;
 828   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 829   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 830   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
 831   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
 832 
 833   virtual uint size_of() const { return sizeof(*this); }
 834 
 835   bool is_eliminated()         {return _eliminate; }
 836   // mark node as eliminated and update the counter if there is one
 837   void set_eliminated();
 838 
 839   bool is_coarsened()  { return _coarsened; }
 840   void set_coarsened() { _coarsened = true; }
 841 
 842   // locking does not modify its arguments
 843   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
 844 
 845 #ifndef PRODUCT
 846   void create_lock_counter(JVMState* s);
 847   NamedCounter* counter() const { return _counter; }
 848 #endif
 849 };
 850 
 851 //------------------------------Lock---------------------------------------
 852 // High-level lock operation
 853 //
 854 // This is a subclass of CallNode because it is a macro node which gets expanded
 855 // into a code sequence containing a call.  This node takes 3 "parameters":
 856 //    0  -  object to lock
 857 //    1 -   a BoxLockNode
 858 //    2 -   a FastLockNode
 859 //
 860 class LockNode : public AbstractLockNode {
 861 public:
 862 
 863   static const TypeFunc *lock_type() {
 864     // create input type (domain)
 865     const Type **fields = TypeTuple::fields(3);
 866     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 867     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
 868     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
 869     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 870 
 871     // create result type (range)
 872     fields = TypeTuple::fields(0);
 873 
 874     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 875 
 876     return TypeFunc::make(domain,range);
 877   }
 878 
 879   virtual int Opcode() const;
 880   virtual uint size_of() const; // Size is bigger
 881   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 882     init_class_id(Class_Lock);
 883     init_flags(Flag_is_macro);
 884     C->add_macro_node(this);
 885   }
 886   virtual bool        guaranteed_safepoint()  { return false; }
 887 
 888   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 889   // Expansion modifies the JVMState, so we need to clone it
 890   virtual void  clone_jvms() {
 891     set_jvms(jvms()->clone_deep(Compile::current()));
 892   }
 893 };
 894 
 895 //------------------------------Unlock---------------------------------------
 896 // High-level unlock operation
 897 class UnlockNode : public AbstractLockNode {
 898 public:
 899   virtual int Opcode() const;
 900   virtual uint size_of() const; // Size is bigger
 901   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 902     init_class_id(Class_Unlock);
 903     init_flags(Flag_is_macro);
 904     C->add_macro_node(this);
 905   }
 906   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 907   // unlock is never a safepoint
 908   virtual bool        guaranteed_safepoint()  { return false; }
 909 };