1 /*
   2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 #include "incls/_precompiled.incl"
  30 #include "incls/_callnode.cpp.incl"
  31 
  32 //=============================================================================
  33 uint StartNode::size_of() const { return sizeof(*this); }
  34 uint StartNode::cmp( const Node &n ) const
  35 { return _domain == ((StartNode&)n)._domain; }
  36 const Type *StartNode::bottom_type() const { return _domain; }
  37 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
  38 #ifndef PRODUCT
  39 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  40 #endif
  41 
  42 //------------------------------Ideal------------------------------------------
  43 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  44   return remove_dead_region(phase, can_reshape) ? this : NULL;
  45 }
  46 
  47 //------------------------------calling_convention-----------------------------
  48 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
  49   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
  50 }
  51 
  52 //------------------------------Registers--------------------------------------
  53 const RegMask &StartNode::in_RegMask(uint) const {
  54   return RegMask::Empty;
  55 }
  56 
  57 //------------------------------match------------------------------------------
  58 // Construct projections for incoming parameters, and their RegMask info
  59 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  60   switch (proj->_con) {
  61   case TypeFunc::Control:
  62   case TypeFunc::I_O:
  63   case TypeFunc::Memory:
  64     return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  65   case TypeFunc::FramePtr:
  66     return new (match->C, 1) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  67   case TypeFunc::ReturnAdr:
  68     return new (match->C, 1) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  69   case TypeFunc::Parms:
  70   default: {
  71       uint parm_num = proj->_con - TypeFunc::Parms;
  72       const Type *t = _domain->field_at(proj->_con);
  73       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  74         return new (match->C, 1) ConNode(Type::TOP);
  75       uint ideal_reg = Matcher::base2reg[t->base()];
  76       RegMask &rm = match->_calling_convention_mask[parm_num];
  77       return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
  78     }
  79   }
  80   return NULL;
  81 }
  82 
  83 //------------------------------StartOSRNode----------------------------------
  84 // The method start node for an on stack replacement adapter
  85 
  86 //------------------------------osr_domain-----------------------------
  87 const TypeTuple *StartOSRNode::osr_domain() {
  88   const Type **fields = TypeTuple::fields(2);
  89   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
  90 
  91   return TypeTuple::make(TypeFunc::Parms+1, fields);
  92 }
  93 
  94 //=============================================================================
  95 const char * const ParmNode::names[TypeFunc::Parms+1] = {
  96   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
  97 };
  98 
  99 #ifndef PRODUCT
 100 void ParmNode::dump_spec(outputStream *st) const {
 101   if( _con < TypeFunc::Parms ) {
 102     st->print(names[_con]);
 103   } else {
 104     st->print("Parm%d: ",_con-TypeFunc::Parms);
 105     // Verbose and WizardMode dump bottom_type for all nodes
 106     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 107   }
 108 }
 109 #endif
 110 
 111 uint ParmNode::ideal_reg() const {
 112   switch( _con ) {
 113   case TypeFunc::Control  : // fall through
 114   case TypeFunc::I_O      : // fall through
 115   case TypeFunc::Memory   : return 0;
 116   case TypeFunc::FramePtr : // fall through
 117   case TypeFunc::ReturnAdr: return Op_RegP;
 118   default                 : assert( _con > TypeFunc::Parms, "" );
 119     // fall through
 120   case TypeFunc::Parms    : {
 121     // Type of argument being passed
 122     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 123     return Matcher::base2reg[t->base()];
 124   }
 125   }
 126   ShouldNotReachHere();
 127   return 0;
 128 }
 129 
 130 //=============================================================================
 131 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 132   init_req(TypeFunc::Control,cntrl);
 133   init_req(TypeFunc::I_O,i_o);
 134   init_req(TypeFunc::Memory,memory);
 135   init_req(TypeFunc::FramePtr,frameptr);
 136   init_req(TypeFunc::ReturnAdr,retadr);
 137 }
 138 
 139 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 140   return remove_dead_region(phase, can_reshape) ? this : NULL;
 141 }
 142 
 143 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
 144   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 145     ? Type::TOP
 146     : Type::BOTTOM;
 147 }
 148 
 149 // Do we Match on this edge index or not?  No edges on return nodes
 150 uint ReturnNode::match_edge(uint idx) const {
 151   return 0;
 152 }
 153 
 154 
 155 #ifndef PRODUCT
 156 void ReturnNode::dump_req() const {
 157   // Dump the required inputs, enclosed in '(' and ')'
 158   uint i;                       // Exit value of loop
 159   for( i=0; i<req(); i++ ) {    // For all required inputs
 160     if( i == TypeFunc::Parms ) tty->print("returns");
 161     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 162     else tty->print("_ ");
 163   }
 164 }
 165 #endif
 166 
 167 //=============================================================================
 168 RethrowNode::RethrowNode(
 169   Node* cntrl,
 170   Node* i_o,
 171   Node* memory,
 172   Node* frameptr,
 173   Node* ret_adr,
 174   Node* exception
 175 ) : Node(TypeFunc::Parms + 1) {
 176   init_req(TypeFunc::Control  , cntrl    );
 177   init_req(TypeFunc::I_O      , i_o      );
 178   init_req(TypeFunc::Memory   , memory   );
 179   init_req(TypeFunc::FramePtr , frameptr );
 180   init_req(TypeFunc::ReturnAdr, ret_adr);
 181   init_req(TypeFunc::Parms    , exception);
 182 }
 183 
 184 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 185   return remove_dead_region(phase, can_reshape) ? this : NULL;
 186 }
 187 
 188 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
 189   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 190     ? Type::TOP
 191     : Type::BOTTOM;
 192 }
 193 
 194 uint RethrowNode::match_edge(uint idx) const {
 195   return 0;
 196 }
 197 
 198 #ifndef PRODUCT
 199 void RethrowNode::dump_req() const {
 200   // Dump the required inputs, enclosed in '(' and ')'
 201   uint i;                       // Exit value of loop
 202   for( i=0; i<req(); i++ ) {    // For all required inputs
 203     if( i == TypeFunc::Parms ) tty->print("exception");
 204     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 205     else tty->print("_ ");
 206   }
 207 }
 208 #endif
 209 
 210 //=============================================================================
 211 // Do we Match on this edge index or not?  Match only target address & method
 212 uint TailCallNode::match_edge(uint idx) const {
 213   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 214 }
 215 
 216 //=============================================================================
 217 // Do we Match on this edge index or not?  Match only target address & oop
 218 uint TailJumpNode::match_edge(uint idx) const {
 219   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 220 }
 221 
 222 //=============================================================================
 223 JVMState::JVMState(ciMethod* method, JVMState* caller) {
 224   assert(method != NULL, "must be valid call site");
 225   _method = method;
 226   _reexecute = Reexecute_Undefined;
 227   debug_only(_bci = -99);  // random garbage value
 228   debug_only(_map = (SafePointNode*)-1);
 229   _caller = caller;
 230   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
 231   _locoff = TypeFunc::Parms;
 232   _stkoff = _locoff + _method->max_locals();
 233   _monoff = _stkoff + _method->max_stack();
 234   _scloff = _monoff;
 235   _endoff = _monoff;
 236   _sp = 0;
 237 }
 238 JVMState::JVMState(int stack_size) {
 239   _method = NULL;
 240   _bci = InvocationEntryBci;
 241   _reexecute = Reexecute_Undefined;
 242   debug_only(_map = (SafePointNode*)-1);
 243   _caller = NULL;
 244   _depth  = 1;
 245   _locoff = TypeFunc::Parms;
 246   _stkoff = _locoff;
 247   _monoff = _stkoff + stack_size;
 248   _scloff = _monoff;
 249   _endoff = _monoff;
 250   _sp = 0;
 251 }
 252 
 253 //--------------------------------of_depth-------------------------------------
 254 JVMState* JVMState::of_depth(int d) const {
 255   const JVMState* jvmp = this;
 256   assert(0 < d && (uint)d <= depth(), "oob");
 257   for (int skip = depth() - d; skip > 0; skip--) {
 258     jvmp = jvmp->caller();
 259   }
 260   assert(jvmp->depth() == (uint)d, "found the right one");
 261   return (JVMState*)jvmp;
 262 }
 263 
 264 //-----------------------------same_calls_as-----------------------------------
 265 bool JVMState::same_calls_as(const JVMState* that) const {
 266   if (this == that)                    return true;
 267   if (this->depth() != that->depth())  return false;
 268   const JVMState* p = this;
 269   const JVMState* q = that;
 270   for (;;) {
 271     if (p->_method != q->_method)    return false;
 272     if (p->_method == NULL)          return true;   // bci is irrelevant
 273     if (p->_bci    != q->_bci)       return false;
 274     if (p->_reexecute != q->_reexecute)  return false;
 275     p = p->caller();
 276     q = q->caller();
 277     if (p == q)                      return true;
 278     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
 279   }
 280 }
 281 
 282 //------------------------------debug_start------------------------------------
 283 uint JVMState::debug_start()  const {
 284   debug_only(JVMState* jvmroot = of_depth(1));
 285   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 286   return of_depth(1)->locoff();
 287 }
 288 
 289 //-------------------------------debug_end-------------------------------------
 290 uint JVMState::debug_end() const {
 291   debug_only(JVMState* jvmroot = of_depth(1));
 292   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 293   return endoff();
 294 }
 295 
 296 //------------------------------debug_depth------------------------------------
 297 uint JVMState::debug_depth() const {
 298   uint total = 0;
 299   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
 300     total += jvmp->debug_size();
 301   }
 302   return total;
 303 }
 304 
 305 #ifndef PRODUCT
 306 
 307 //------------------------------format_helper----------------------------------
 308 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 309 // any defined value or not.  If it does, print out the register or constant.
 310 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 311   if (n == NULL) { st->print(" NULL"); return; }
 312   if (n->is_SafePointScalarObject()) {
 313     // Scalar replacement.
 314     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 315     scobjs->append_if_missing(spobj);
 316     int sco_n = scobjs->find(spobj);
 317     assert(sco_n >= 0, "");
 318     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 319     return;
 320   }
 321   if( OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 322     char buf[50];
 323     regalloc->dump_register(n,buf);
 324     st->print(" %s%d]=%s",msg,i,buf);
 325   } else {                      // No register, but might be constant
 326     const Type *t = n->bottom_type();
 327     switch (t->base()) {
 328     case Type::Int:
 329       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
 330       break;
 331     case Type::AnyPtr:
 332       assert( t == TypePtr::NULL_PTR, "" );
 333       st->print(" %s%d]=#NULL",msg,i);
 334       break;
 335     case Type::AryPtr:
 336     case Type::KlassPtr:
 337     case Type::InstPtr:
 338       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
 339       break;
 340     case Type::NarrowOop:
 341       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
 342       break;
 343     case Type::RawPtr:
 344       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
 345       break;
 346     case Type::DoubleCon:
 347       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 348       break;
 349     case Type::FloatCon:
 350       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 351       break;
 352     case Type::Long:
 353       st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
 354       break;
 355     case Type::Half:
 356     case Type::Top:
 357       st->print(" %s%d]=_",msg,i);
 358       break;
 359     default: ShouldNotReachHere();
 360     }
 361   }
 362 }
 363 
 364 //------------------------------format-----------------------------------------
 365 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 366   st->print("        #");
 367   if( _method ) {
 368     _method->print_short_name(st);
 369     st->print(" @ bci:%d ",_bci);
 370   } else {
 371     st->print_cr(" runtime stub ");
 372     return;
 373   }
 374   if (n->is_MachSafePoint()) {
 375     GrowableArray<SafePointScalarObjectNode*> scobjs;
 376     MachSafePointNode *mcall = n->as_MachSafePoint();
 377     uint i;
 378     // Print locals
 379     for( i = 0; i < (uint)loc_size(); i++ )
 380       format_helper( regalloc, st, mcall->local(this, i), "L[", i, &scobjs );
 381     // Print stack
 382     for (i = 0; i < (uint)stk_size(); i++) {
 383       if ((uint)(_stkoff + i) >= mcall->len())
 384         st->print(" oob ");
 385       else
 386        format_helper( regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs );
 387     }
 388     for (i = 0; (int)i < nof_monitors(); i++) {
 389       Node *box = mcall->monitor_box(this, i);
 390       Node *obj = mcall->monitor_obj(this, i);
 391       if ( OptoReg::is_valid(regalloc->get_reg_first(box)) ) {
 392         while( !box->is_BoxLock() )  box = box->in(1);
 393         format_helper( regalloc, st, box, "MON-BOX[", i, &scobjs );
 394       } else {
 395         OptoReg::Name box_reg = BoxLockNode::stack_slot(box);
 396         st->print(" MON-BOX%d=%s+%d",
 397                    i,
 398                    OptoReg::regname(OptoReg::c_frame_pointer),
 399                    regalloc->reg2offset(box_reg));
 400       }
 401       const char* obj_msg = "MON-OBJ[";
 402       if (EliminateLocks) {
 403         while( !box->is_BoxLock() )  box = box->in(1);
 404         if (box->as_BoxLock()->is_eliminated())
 405           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 406       }
 407       format_helper( regalloc, st, obj, obj_msg, i, &scobjs );
 408     }
 409 
 410     for (i = 0; i < (uint)scobjs.length(); i++) {
 411       // Scalar replaced objects.
 412       st->print_cr("");
 413       st->print("        # ScObj" INT32_FORMAT " ", i);
 414       SafePointScalarObjectNode* spobj = scobjs.at(i);
 415       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
 416       assert(cik->is_instance_klass() ||
 417              cik->is_array_klass(), "Not supported allocation.");
 418       ciInstanceKlass *iklass = NULL;
 419       if (cik->is_instance_klass()) {
 420         cik->print_name_on(st);
 421         iklass = cik->as_instance_klass();
 422       } else if (cik->is_type_array_klass()) {
 423         cik->as_array_klass()->base_element_type()->print_name_on(st);
 424         st->print("[%d]=", spobj->n_fields());
 425       } else if (cik->is_obj_array_klass()) {
 426         ciType* cie = cik->as_array_klass()->base_element_type();
 427         int ndim = 1;
 428         while (cie->is_obj_array_klass()) {
 429           ndim += 1;
 430           cie = cie->as_array_klass()->base_element_type();
 431         }
 432         cie->print_name_on(st);
 433         while (ndim-- > 0) {
 434           st->print("[]");
 435         }
 436         st->print("[%d]=", spobj->n_fields());
 437       }
 438       st->print("{");
 439       uint nf = spobj->n_fields();
 440       if (nf > 0) {
 441         uint first_ind = spobj->first_index();
 442         Node* fld_node = mcall->in(first_ind);
 443         ciField* cifield;
 444         if (iklass != NULL) {
 445           st->print(" [");
 446           cifield = iklass->nonstatic_field_at(0);
 447           cifield->print_name_on(st);
 448           format_helper( regalloc, st, fld_node, ":", 0, &scobjs );
 449         } else {
 450           format_helper( regalloc, st, fld_node, "[", 0, &scobjs );
 451         }
 452         for (uint j = 1; j < nf; j++) {
 453           fld_node = mcall->in(first_ind+j);
 454           if (iklass != NULL) {
 455             st->print(", [");
 456             cifield = iklass->nonstatic_field_at(j);
 457             cifield->print_name_on(st);
 458             format_helper( regalloc, st, fld_node, ":", j, &scobjs );
 459           } else {
 460             format_helper( regalloc, st, fld_node, ", [", j, &scobjs );
 461           }
 462         }
 463       }
 464       st->print(" }");
 465     }
 466   }
 467   st->print_cr("");
 468   if (caller() != NULL)  caller()->format(regalloc, n, st);
 469 }
 470 
 471 
 472 void JVMState::dump_spec(outputStream *st) const {
 473   if (_method != NULL) {
 474     bool printed = false;
 475     if (!Verbose) {
 476       // The JVMS dumps make really, really long lines.
 477       // Take out the most boring parts, which are the package prefixes.
 478       char buf[500];
 479       stringStream namest(buf, sizeof(buf));
 480       _method->print_short_name(&namest);
 481       if (namest.count() < sizeof(buf)) {
 482         const char* name = namest.base();
 483         if (name[0] == ' ')  ++name;
 484         const char* endcn = strchr(name, ':');  // end of class name
 485         if (endcn == NULL)  endcn = strchr(name, '(');
 486         if (endcn == NULL)  endcn = name + strlen(name);
 487         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 488           --endcn;
 489         st->print(" %s", endcn);
 490         printed = true;
 491       }
 492     }
 493     if (!printed)
 494       _method->print_short_name(st);
 495     st->print(" @ bci:%d",_bci);
 496     st->print(" reexecute:%s", _reexecute==Reexecute_True?"true":"false");
 497   } else {
 498     st->print(" runtime stub");
 499   }
 500   if (caller() != NULL)  caller()->dump_spec(st);
 501 }
 502 
 503 
 504 void JVMState::dump_on(outputStream* st) const {
 505   if (_map && !((uintptr_t)_map & 1)) {
 506     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 507       Node* ex = _map->in(_map->req());  // _map->next_exception()
 508       // skip the first one; it's already being printed
 509       while (ex != NULL && ex->len() > ex->req()) {
 510         ex = ex->in(ex->req());  // ex->next_exception()
 511         ex->dump(1);
 512       }
 513     }
 514     _map->dump(2);
 515   }
 516   st->print("JVMS depth=%d loc=%d stk=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 517              depth(), locoff(), stkoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 518   if (_method == NULL) {
 519     st->print_cr("(none)");
 520   } else {
 521     _method->print_name(st);
 522     st->cr();
 523     if (bci() >= 0 && bci() < _method->code_size()) {
 524       st->print("    bc: ");
 525       _method->print_codes_on(bci(), bci()+1, st);
 526     }
 527   }
 528   if (caller() != NULL) {
 529     caller()->dump_on(st);
 530   }
 531 }
 532 
 533 // Extra way to dump a jvms from the debugger,
 534 // to avoid a bug with C++ member function calls.
 535 void dump_jvms(JVMState* jvms) {
 536   jvms->dump();
 537 }
 538 #endif
 539 
 540 //--------------------------clone_shallow--------------------------------------
 541 JVMState* JVMState::clone_shallow(Compile* C) const {
 542   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 543   n->set_bci(_bci);
 544   n->_reexecute = _reexecute;
 545   n->set_locoff(_locoff);
 546   n->set_stkoff(_stkoff);
 547   n->set_monoff(_monoff);
 548   n->set_scloff(_scloff);
 549   n->set_endoff(_endoff);
 550   n->set_sp(_sp);
 551   n->set_map(_map);
 552   return n;
 553 }
 554 
 555 //---------------------------clone_deep----------------------------------------
 556 JVMState* JVMState::clone_deep(Compile* C) const {
 557   JVMState* n = clone_shallow(C);
 558   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
 559     p->_caller = p->_caller->clone_shallow(C);
 560   }
 561   assert(n->depth() == depth(), "sanity");
 562   assert(n->debug_depth() == debug_depth(), "sanity");
 563   return n;
 564 }
 565 
 566 //=============================================================================
 567 uint CallNode::cmp( const Node &n ) const
 568 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 569 #ifndef PRODUCT
 570 void CallNode::dump_req() const {
 571   // Dump the required inputs, enclosed in '(' and ')'
 572   uint i;                       // Exit value of loop
 573   for( i=0; i<req(); i++ ) {    // For all required inputs
 574     if( i == TypeFunc::Parms ) tty->print("(");
 575     if( in(i) ) tty->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 576     else tty->print("_ ");
 577   }
 578   tty->print(")");
 579 }
 580 
 581 void CallNode::dump_spec(outputStream *st) const {
 582   st->print(" ");
 583   tf()->dump_on(st);
 584   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 585   if (jvms() != NULL)  jvms()->dump_spec(st);
 586 }
 587 #endif
 588 
 589 const Type *CallNode::bottom_type() const { return tf()->range(); }
 590 const Type *CallNode::Value(PhaseTransform *phase) const {
 591   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
 592   return tf()->range();
 593 }
 594 
 595 //------------------------------calling_convention-----------------------------
 596 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 597   // Use the standard compiler calling convention
 598   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
 599 }
 600 
 601 
 602 //------------------------------match------------------------------------------
 603 // Construct projections for control, I/O, memory-fields, ..., and
 604 // return result(s) along with their RegMask info
 605 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 606   switch (proj->_con) {
 607   case TypeFunc::Control:
 608   case TypeFunc::I_O:
 609   case TypeFunc::Memory:
 610     return new (match->C, 1) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 611 
 612   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 613     assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 614     // 2nd half of doubles and longs
 615     return new (match->C, 1) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
 616 
 617   case TypeFunc::Parms: {       // Normal returns
 618     uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
 619     OptoRegPair regs = is_CallRuntime()
 620       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
 621       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
 622     RegMask rm = RegMask(regs.first());
 623     if( OptoReg::is_valid(regs.second()) )
 624       rm.Insert( regs.second() );
 625     return new (match->C, 1) MachProjNode(this,proj->_con,rm,ideal_reg);
 626   }
 627 
 628   case TypeFunc::ReturnAdr:
 629   case TypeFunc::FramePtr:
 630   default:
 631     ShouldNotReachHere();
 632   }
 633   return NULL;
 634 }
 635 
 636 // Do we Match on this edge index or not?  Match no edges
 637 uint CallNode::match_edge(uint idx) const {
 638   return 0;
 639 }
 640 
 641 //
 642 // Determine whether the call could modify the field of the specified
 643 // instance at the specified offset.
 644 //
 645 bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) {
 646   const TypeOopPtr *adrInst_t  = addr_t->isa_oopptr();
 647 
 648   // If not an OopPtr or not an instance type, assume the worst.
 649   // Note: currently this method is called only for instance types.
 650   if (adrInst_t == NULL || !adrInst_t->is_known_instance()) {
 651     return true;
 652   }
 653   // The instance_id is set only for scalar-replaceable allocations which
 654   // are not passed as arguments according to Escape Analysis.
 655   return false;
 656 }
 657 
 658 // Does this call have a direct reference to n other than debug information?
 659 bool CallNode::has_non_debug_use(Node *n) {
 660   const TypeTuple * d = tf()->domain();
 661   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 662     Node *arg = in(i);
 663     if (arg == n) {
 664       return true;
 665     }
 666   }
 667   return false;
 668 }
 669 
 670 // Returns the unique CheckCastPP of a call
 671 // or 'this' if there are several CheckCastPP
 672 // or returns NULL if there is no one.
 673 Node *CallNode::result_cast() {
 674   Node *cast = NULL;
 675 
 676   Node *p = proj_out(TypeFunc::Parms);
 677   if (p == NULL)
 678     return NULL;
 679 
 680   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 681     Node *use = p->fast_out(i);
 682     if (use->is_CheckCastPP()) {
 683       if (cast != NULL) {
 684         return this;  // more than 1 CheckCastPP
 685       }
 686       cast = use;
 687     }
 688   }
 689   return cast;
 690 }
 691 
 692 
 693 //=============================================================================
 694 uint CallJavaNode::size_of() const { return sizeof(*this); }
 695 uint CallJavaNode::cmp( const Node &n ) const {
 696   CallJavaNode &call = (CallJavaNode&)n;
 697   return CallNode::cmp(call) && _method == call._method;
 698 }
 699 #ifndef PRODUCT
 700 void CallJavaNode::dump_spec(outputStream *st) const {
 701   if( _method ) _method->print_short_name(st);
 702   CallNode::dump_spec(st);
 703 }
 704 #endif
 705 
 706 //=============================================================================
 707 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
 708 uint CallStaticJavaNode::cmp( const Node &n ) const {
 709   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
 710   return CallJavaNode::cmp(call);
 711 }
 712 
 713 //----------------------------uncommon_trap_request----------------------------
 714 // If this is an uncommon trap, return the request code, else zero.
 715 int CallStaticJavaNode::uncommon_trap_request() const {
 716   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
 717     return extract_uncommon_trap_request(this);
 718   }
 719   return 0;
 720 }
 721 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
 722 #ifndef PRODUCT
 723   if (!(call->req() > TypeFunc::Parms &&
 724         call->in(TypeFunc::Parms) != NULL &&
 725         call->in(TypeFunc::Parms)->is_Con())) {
 726     assert(_in_dump_cnt != 0, "OK if dumping");
 727     tty->print("[bad uncommon trap]");
 728     return 0;
 729   }
 730 #endif
 731   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
 732 }
 733 
 734 #ifndef PRODUCT
 735 void CallStaticJavaNode::dump_spec(outputStream *st) const {
 736   st->print("# Static ");
 737   if (_name != NULL) {
 738     st->print("%s", _name);
 739     int trap_req = uncommon_trap_request();
 740     if (trap_req != 0) {
 741       char buf[100];
 742       st->print("(%s)",
 743                  Deoptimization::format_trap_request(buf, sizeof(buf),
 744                                                      trap_req));
 745     }
 746     st->print(" ");
 747   }
 748   CallJavaNode::dump_spec(st);
 749 }
 750 #endif
 751 
 752 //=============================================================================
 753 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
 754 uint CallDynamicJavaNode::cmp( const Node &n ) const {
 755   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
 756   return CallJavaNode::cmp(call);
 757 }
 758 #ifndef PRODUCT
 759 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
 760   st->print("# Dynamic ");
 761   CallJavaNode::dump_spec(st);
 762 }
 763 #endif
 764 
 765 //=============================================================================
 766 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
 767 uint CallRuntimeNode::cmp( const Node &n ) const {
 768   CallRuntimeNode &call = (CallRuntimeNode&)n;
 769   return CallNode::cmp(call) && !strcmp(_name,call._name);
 770 }
 771 #ifndef PRODUCT
 772 void CallRuntimeNode::dump_spec(outputStream *st) const {
 773   st->print("# ");
 774   st->print(_name);
 775   CallNode::dump_spec(st);
 776 }
 777 #endif
 778 
 779 //------------------------------calling_convention-----------------------------
 780 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 781   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
 782 }
 783 
 784 //=============================================================================
 785 //------------------------------calling_convention-----------------------------
 786 
 787 
 788 //=============================================================================
 789 #ifndef PRODUCT
 790 void CallLeafNode::dump_spec(outputStream *st) const {
 791   st->print("# ");
 792   st->print(_name);
 793   CallNode::dump_spec(st);
 794 }
 795 #endif
 796 
 797 //=============================================================================
 798 
 799 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
 800   assert(verify_jvms(jvms), "jvms must match");
 801   int loc = jvms->locoff() + idx;
 802   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
 803     // If current local idx is top then local idx - 1 could
 804     // be a long/double that needs to be killed since top could
 805     // represent the 2nd half ofthe long/double.
 806     uint ideal = in(loc -1)->ideal_reg();
 807     if (ideal == Op_RegD || ideal == Op_RegL) {
 808       // set other (low index) half to top
 809       set_req(loc - 1, in(loc));
 810     }
 811   }
 812   set_req(loc, c);
 813 }
 814 
 815 uint SafePointNode::size_of() const { return sizeof(*this); }
 816 uint SafePointNode::cmp( const Node &n ) const {
 817   return (&n == this);          // Always fail except on self
 818 }
 819 
 820 //-------------------------set_next_exception----------------------------------
 821 void SafePointNode::set_next_exception(SafePointNode* n) {
 822   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
 823   if (len() == req()) {
 824     if (n != NULL)  add_prec(n);
 825   } else {
 826     set_prec(req(), n);
 827   }
 828 }
 829 
 830 
 831 //----------------------------next_exception-----------------------------------
 832 SafePointNode* SafePointNode::next_exception() const {
 833   if (len() == req()) {
 834     return NULL;
 835   } else {
 836     Node* n = in(req());
 837     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
 838     return (SafePointNode*) n;
 839   }
 840 }
 841 
 842 
 843 //------------------------------Ideal------------------------------------------
 844 // Skip over any collapsed Regions
 845 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 846   return remove_dead_region(phase, can_reshape) ? this : NULL;
 847 }
 848 
 849 //------------------------------Identity---------------------------------------
 850 // Remove obviously duplicate safepoints
 851 Node *SafePointNode::Identity( PhaseTransform *phase ) {
 852 
 853   // If you have back to back safepoints, remove one
 854   if( in(TypeFunc::Control)->is_SafePoint() )
 855     return in(TypeFunc::Control);
 856 
 857   if( in(0)->is_Proj() ) {
 858     Node *n0 = in(0)->in(0);
 859     // Check if he is a call projection (except Leaf Call)
 860     if( n0->is_Catch() ) {
 861       n0 = n0->in(0)->in(0);
 862       assert( n0->is_Call(), "expect a call here" );
 863     }
 864     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
 865       // Useless Safepoint, so remove it
 866       return in(TypeFunc::Control);
 867     }
 868   }
 869 
 870   return this;
 871 }
 872 
 873 //------------------------------Value------------------------------------------
 874 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
 875   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
 876   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
 877   return Type::CONTROL;
 878 }
 879 
 880 #ifndef PRODUCT
 881 void SafePointNode::dump_spec(outputStream *st) const {
 882   st->print(" SafePoint ");
 883 }
 884 #endif
 885 
 886 const RegMask &SafePointNode::in_RegMask(uint idx) const {
 887   if( idx < TypeFunc::Parms ) return RegMask::Empty;
 888   // Values outside the domain represent debug info
 889   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
 890 }
 891 const RegMask &SafePointNode::out_RegMask() const {
 892   return RegMask::Empty;
 893 }
 894 
 895 
 896 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
 897   assert((int)grow_by > 0, "sanity");
 898   int monoff = jvms->monoff();
 899   int scloff = jvms->scloff();
 900   int endoff = jvms->endoff();
 901   assert(endoff == (int)req(), "no other states or debug info after me");
 902   Node* top = Compile::current()->top();
 903   for (uint i = 0; i < grow_by; i++) {
 904     ins_req(monoff, top);
 905   }
 906   jvms->set_monoff(monoff + grow_by);
 907   jvms->set_scloff(scloff + grow_by);
 908   jvms->set_endoff(endoff + grow_by);
 909 }
 910 
 911 void SafePointNode::push_monitor(const FastLockNode *lock) {
 912   // Add a LockNode, which points to both the original BoxLockNode (the
 913   // stack space for the monitor) and the Object being locked.
 914   const int MonitorEdges = 2;
 915   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
 916   assert(req() == jvms()->endoff(), "correct sizing");
 917   int nextmon = jvms()->scloff();
 918   if (GenerateSynchronizationCode) {
 919     add_req(lock->box_node());
 920     add_req(lock->obj_node());
 921   } else {
 922     Node* top = Compile::current()->top();
 923     add_req(top);
 924     add_req(top);
 925   }
 926   jvms()->set_scloff(nextmon+MonitorEdges);
 927   jvms()->set_endoff(req());
 928 }
 929 
 930 void SafePointNode::pop_monitor() {
 931   // Delete last monitor from debug info
 932   debug_only(int num_before_pop = jvms()->nof_monitors());
 933   const int MonitorEdges = (1<<JVMState::logMonitorEdges);
 934   int scloff = jvms()->scloff();
 935   int endoff = jvms()->endoff();
 936   int new_scloff = scloff - MonitorEdges;
 937   int new_endoff = endoff - MonitorEdges;
 938   jvms()->set_scloff(new_scloff);
 939   jvms()->set_endoff(new_endoff);
 940   while (scloff > new_scloff)  del_req(--scloff);
 941   assert(jvms()->nof_monitors() == num_before_pop-1, "");
 942 }
 943 
 944 Node *SafePointNode::peek_monitor_box() const {
 945   int mon = jvms()->nof_monitors() - 1;
 946   assert(mon >= 0, "most have a monitor");
 947   return monitor_box(jvms(), mon);
 948 }
 949 
 950 Node *SafePointNode::peek_monitor_obj() const {
 951   int mon = jvms()->nof_monitors() - 1;
 952   assert(mon >= 0, "most have a monitor");
 953   return monitor_obj(jvms(), mon);
 954 }
 955 
 956 // Do we Match on this edge index or not?  Match no edges
 957 uint SafePointNode::match_edge(uint idx) const {
 958   if( !needs_polling_address_input() )
 959     return 0;
 960 
 961   return (TypeFunc::Parms == idx);
 962 }
 963 
 964 //==============  SafePointScalarObjectNode  ==============
 965 
 966 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
 967 #ifdef ASSERT
 968                                                      AllocateNode* alloc,
 969 #endif
 970                                                      uint first_index,
 971                                                      uint n_fields) :
 972   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
 973 #ifdef ASSERT
 974   _alloc(alloc),
 975 #endif
 976   _first_index(first_index),
 977   _n_fields(n_fields)
 978 {
 979   init_class_id(Class_SafePointScalarObject);
 980 }
 981 
 982 bool SafePointScalarObjectNode::pinned() const { return true; }
 983 bool SafePointScalarObjectNode::depends_only_on_test() const { return false; }
 984 
 985 uint SafePointScalarObjectNode::ideal_reg() const {
 986   return 0; // No matching to machine instruction
 987 }
 988 
 989 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
 990   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
 991 }
 992 
 993 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
 994   return RegMask::Empty;
 995 }
 996 
 997 uint SafePointScalarObjectNode::match_edge(uint idx) const {
 998   return 0;
 999 }
1000 
1001 SafePointScalarObjectNode*
1002 SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
1003   void* cached = (*sosn_map)[(void*)this];
1004   if (cached != NULL) {
1005     return (SafePointScalarObjectNode*)cached;
1006   }
1007   Compile* C = Compile::current();
1008   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1009   res->_first_index += jvms_adj;
1010   sosn_map->Insert((void*)this, (void*)res);
1011   return res;
1012 }
1013 
1014 
1015 #ifndef PRODUCT
1016 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1017   st->print(" # fields@[%d..%d]", first_index(),
1018              first_index() + n_fields() - 1);
1019 }
1020 
1021 #endif
1022 
1023 //=============================================================================
1024 uint AllocateNode::size_of() const { return sizeof(*this); }
1025 
1026 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1027                            Node *ctrl, Node *mem, Node *abio,
1028                            Node *size, Node *klass_node, Node *initial_test)
1029   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1030 {
1031   init_class_id(Class_Allocate);
1032   init_flags(Flag_is_macro);
1033   _is_scalar_replaceable = false;
1034   Node *topnode = C->top();
1035 
1036   init_req( TypeFunc::Control  , ctrl );
1037   init_req( TypeFunc::I_O      , abio );
1038   init_req( TypeFunc::Memory   , mem );
1039   init_req( TypeFunc::ReturnAdr, topnode );
1040   init_req( TypeFunc::FramePtr , topnode );
1041   init_req( AllocSize          , size);
1042   init_req( KlassNode          , klass_node);
1043   init_req( InitialTest        , initial_test);
1044   init_req( ALength            , topnode);
1045   C->add_macro_node(this);
1046 }
1047 
1048 //=============================================================================
1049 uint AllocateArrayNode::size_of() const { return sizeof(*this); }
1050 
1051 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1052   if (remove_dead_region(phase, can_reshape))  return this;
1053 
1054   const Type* type = phase->type(Ideal_length());
1055   if (type->isa_int() && type->is_int()->_hi < 0) {
1056     if (can_reshape) {
1057       PhaseIterGVN *igvn = phase->is_IterGVN();
1058       // Unreachable fall through path (negative array length),
1059       // the allocation can only throw so disconnect it.
1060       Node* proj = proj_out(TypeFunc::Control);
1061       Node* catchproj = NULL;
1062       if (proj != NULL) {
1063         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1064           Node *cn = proj->fast_out(i);
1065           if (cn->is_Catch()) {
1066             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
1067             break;
1068           }
1069         }
1070       }
1071       if (catchproj != NULL && catchproj->outcnt() > 0 &&
1072           (catchproj->outcnt() > 1 ||
1073            catchproj->unique_out()->Opcode() != Op_Halt)) {
1074         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1075         Node* nproj = catchproj->clone();
1076         igvn->register_new_node_with_optimizer(nproj);
1077 
1078         Node *frame = new (phase->C, 1) ParmNode( phase->C->start(), TypeFunc::FramePtr );
1079         frame = phase->transform(frame);
1080         // Halt & Catch Fire
1081         Node *halt = new (phase->C, TypeFunc::Parms) HaltNode( nproj, frame );
1082         phase->C->root()->add_req(halt);
1083         phase->transform(halt);
1084 
1085         igvn->replace_node(catchproj, phase->C->top());
1086         return this;
1087       }
1088     } else {
1089       // Can't correct it during regular GVN so register for IGVN
1090       phase->C->record_for_igvn(this);
1091     }
1092   }
1093   return NULL;
1094 }
1095 
1096 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1097 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1098 // a CastII is appropriate, return NULL.
1099 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1100   Node *length = in(AllocateNode::ALength);
1101   assert(length != NULL, "length is not null");
1102 
1103   const TypeInt* length_type = phase->find_int_type(length);
1104   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1105 
1106   if (ary_type != NULL && length_type != NULL) {
1107     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1108     if (narrow_length_type != length_type) {
1109       // Assert one of:
1110       //   - the narrow_length is 0
1111       //   - the narrow_length is not wider than length
1112       assert(narrow_length_type == TypeInt::ZERO ||
1113              (narrow_length_type->_hi <= length_type->_hi &&
1114               narrow_length_type->_lo >= length_type->_lo),
1115              "narrow type must be narrower than length type");
1116 
1117       // Return NULL if new nodes are not allowed
1118       if (!allow_new_nodes) return NULL;
1119       // Create a cast which is control dependent on the initialization to
1120       // propagate the fact that the array length must be positive.
1121       length = new (phase->C, 2) CastIINode(length, narrow_length_type);
1122       length->set_req(0, initialization()->proj_out(0));
1123     }
1124   }
1125 
1126   return length;
1127 }
1128 
1129 //=============================================================================
1130 uint LockNode::size_of() const { return sizeof(*this); }
1131 
1132 // Redundant lock elimination
1133 //
1134 // There are various patterns of locking where we release and
1135 // immediately reacquire a lock in a piece of code where no operations
1136 // occur in between that would be observable.  In those cases we can
1137 // skip releasing and reacquiring the lock without violating any
1138 // fairness requirements.  Doing this around a loop could cause a lock
1139 // to be held for a very long time so we concentrate on non-looping
1140 // control flow.  We also require that the operations are fully
1141 // redundant meaning that we don't introduce new lock operations on
1142 // some paths so to be able to eliminate it on others ala PRE.  This
1143 // would probably require some more extensive graph manipulation to
1144 // guarantee that the memory edges were all handled correctly.
1145 //
1146 // Assuming p is a simple predicate which can't trap in any way and s
1147 // is a synchronized method consider this code:
1148 //
1149 //   s();
1150 //   if (p)
1151 //     s();
1152 //   else
1153 //     s();
1154 //   s();
1155 //
1156 // 1. The unlocks of the first call to s can be eliminated if the
1157 // locks inside the then and else branches are eliminated.
1158 //
1159 // 2. The unlocks of the then and else branches can be eliminated if
1160 // the lock of the final call to s is eliminated.
1161 //
1162 // Either of these cases subsumes the simple case of sequential control flow
1163 //
1164 // Addtionally we can eliminate versions without the else case:
1165 //
1166 //   s();
1167 //   if (p)
1168 //     s();
1169 //   s();
1170 //
1171 // 3. In this case we eliminate the unlock of the first s, the lock
1172 // and unlock in the then case and the lock in the final s.
1173 //
1174 // Note also that in all these cases the then/else pieces don't have
1175 // to be trivial as long as they begin and end with synchronization
1176 // operations.
1177 //
1178 //   s();
1179 //   if (p)
1180 //     s();
1181 //     f();
1182 //     s();
1183 //   s();
1184 //
1185 // The code will work properly for this case, leaving in the unlock
1186 // before the call to f and the relock after it.
1187 //
1188 // A potentially interesting case which isn't handled here is when the
1189 // locking is partially redundant.
1190 //
1191 //   s();
1192 //   if (p)
1193 //     s();
1194 //
1195 // This could be eliminated putting unlocking on the else case and
1196 // eliminating the first unlock and the lock in the then side.
1197 // Alternatively the unlock could be moved out of the then side so it
1198 // was after the merge and the first unlock and second lock
1199 // eliminated.  This might require less manipulation of the memory
1200 // state to get correct.
1201 //
1202 // Additionally we might allow work between a unlock and lock before
1203 // giving up eliminating the locks.  The current code disallows any
1204 // conditional control flow between these operations.  A formulation
1205 // similar to partial redundancy elimination computing the
1206 // availability of unlocking and the anticipatability of locking at a
1207 // program point would allow detection of fully redundant locking with
1208 // some amount of work in between.  I'm not sure how often I really
1209 // think that would occur though.  Most of the cases I've seen
1210 // indicate it's likely non-trivial work would occur in between.
1211 // There may be other more complicated constructs where we could
1212 // eliminate locking but I haven't seen any others appear as hot or
1213 // interesting.
1214 //
1215 // Locking and unlocking have a canonical form in ideal that looks
1216 // roughly like this:
1217 //
1218 //              <obj>
1219 //                | \\------+
1220 //                |  \       \
1221 //                | BoxLock   \
1222 //                |  |   |     \
1223 //                |  |    \     \
1224 //                |  |   FastLock
1225 //                |  |   /
1226 //                |  |  /
1227 //                |  |  |
1228 //
1229 //               Lock
1230 //                |
1231 //            Proj #0
1232 //                |
1233 //            MembarAcquire
1234 //                |
1235 //            Proj #0
1236 //
1237 //            MembarRelease
1238 //                |
1239 //            Proj #0
1240 //                |
1241 //              Unlock
1242 //                |
1243 //            Proj #0
1244 //
1245 //
1246 // This code proceeds by processing Lock nodes during PhaseIterGVN
1247 // and searching back through its control for the proper code
1248 // patterns.  Once it finds a set of lock and unlock operations to
1249 // eliminate they are marked as eliminatable which causes the
1250 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
1251 //
1252 //=============================================================================
1253 
1254 //
1255 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1256 //   - copy regions.  (These may not have been optimized away yet.)
1257 //   - eliminated locking nodes
1258 //
1259 static Node *next_control(Node *ctrl) {
1260   if (ctrl == NULL)
1261     return NULL;
1262   while (1) {
1263     if (ctrl->is_Region()) {
1264       RegionNode *r = ctrl->as_Region();
1265       Node *n = r->is_copy();
1266       if (n == NULL)
1267         break;  // hit a region, return it
1268       else
1269         ctrl = n;
1270     } else if (ctrl->is_Proj()) {
1271       Node *in0 = ctrl->in(0);
1272       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1273         ctrl = in0->in(0);
1274       } else {
1275         break;
1276       }
1277     } else {
1278       break; // found an interesting control
1279     }
1280   }
1281   return ctrl;
1282 }
1283 //
1284 // Given a control, see if it's the control projection of an Unlock which
1285 // operating on the same object as lock.
1286 //
1287 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1288                                             GrowableArray<AbstractLockNode*> &lock_ops) {
1289   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1290   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1291     Node *n = ctrl_proj->in(0);
1292     if (n != NULL && n->is_Unlock()) {
1293       UnlockNode *unlock = n->as_Unlock();
1294       if ((lock->obj_node() == unlock->obj_node()) &&
1295           (lock->box_node() == unlock->box_node()) && !unlock->is_eliminated()) {
1296         lock_ops.append(unlock);
1297         return true;
1298       }
1299     }
1300   }
1301   return false;
1302 }
1303 
1304 //
1305 // Find the lock matching an unlock.  Returns null if a safepoint
1306 // or complicated control is encountered first.
1307 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1308   LockNode *lock_result = NULL;
1309   // find the matching lock, or an intervening safepoint
1310   Node *ctrl = next_control(unlock->in(0));
1311   while (1) {
1312     assert(ctrl != NULL, "invalid control graph");
1313     assert(!ctrl->is_Start(), "missing lock for unlock");
1314     if (ctrl->is_top()) break;  // dead control path
1315     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1316     if (ctrl->is_SafePoint()) {
1317         break;  // found a safepoint (may be the lock we are searching for)
1318     } else if (ctrl->is_Region()) {
1319       // Check for a simple diamond pattern.  Punt on anything more complicated
1320       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1321         Node *in1 = next_control(ctrl->in(1));
1322         Node *in2 = next_control(ctrl->in(2));
1323         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1324              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1325           ctrl = next_control(in1->in(0)->in(0));
1326         } else {
1327           break;
1328         }
1329       } else {
1330         break;
1331       }
1332     } else {
1333       ctrl = next_control(ctrl->in(0));  // keep searching
1334     }
1335   }
1336   if (ctrl->is_Lock()) {
1337     LockNode *lock = ctrl->as_Lock();
1338     if ((lock->obj_node() == unlock->obj_node()) &&
1339             (lock->box_node() == unlock->box_node())) {
1340       lock_result = lock;
1341     }
1342   }
1343   return lock_result;
1344 }
1345 
1346 // This code corresponds to case 3 above.
1347 
1348 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1349                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
1350   Node* if_node = node->in(0);
1351   bool  if_true = node->is_IfTrue();
1352 
1353   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1354     Node *lock_ctrl = next_control(if_node->in(0));
1355     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1356       Node* lock1_node = NULL;
1357       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1358       if (if_true) {
1359         if (proj->is_IfFalse() && proj->outcnt() == 1) {
1360           lock1_node = proj->unique_out();
1361         }
1362       } else {
1363         if (proj->is_IfTrue() && proj->outcnt() == 1) {
1364           lock1_node = proj->unique_out();
1365         }
1366       }
1367       if (lock1_node != NULL && lock1_node->is_Lock()) {
1368         LockNode *lock1 = lock1_node->as_Lock();
1369         if ((lock->obj_node() == lock1->obj_node()) &&
1370             (lock->box_node() == lock1->box_node()) && !lock1->is_eliminated()) {
1371           lock_ops.append(lock1);
1372           return true;
1373         }
1374       }
1375     }
1376   }
1377 
1378   lock_ops.trunc_to(0);
1379   return false;
1380 }
1381 
1382 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1383                                GrowableArray<AbstractLockNode*> &lock_ops) {
1384   // check each control merging at this point for a matching unlock.
1385   // in(0) should be self edge so skip it.
1386   for (int i = 1; i < (int)region->req(); i++) {
1387     Node *in_node = next_control(region->in(i));
1388     if (in_node != NULL) {
1389       if (find_matching_unlock(in_node, lock, lock_ops)) {
1390         // found a match so keep on checking.
1391         continue;
1392       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1393         continue;
1394       }
1395 
1396       // If we fall through to here then it was some kind of node we
1397       // don't understand or there wasn't a matching unlock, so give
1398       // up trying to merge locks.
1399       lock_ops.trunc_to(0);
1400       return false;
1401     }
1402   }
1403   return true;
1404 
1405 }
1406 
1407 #ifndef PRODUCT
1408 //
1409 // Create a counter which counts the number of times this lock is acquired
1410 //
1411 void AbstractLockNode::create_lock_counter(JVMState* state) {
1412   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1413 }
1414 #endif
1415 
1416 void AbstractLockNode::set_eliminated() {
1417   _eliminate = true;
1418 #ifndef PRODUCT
1419   if (_counter) {
1420     // Update the counter to indicate that this lock was eliminated.
1421     // The counter update code will stay around even though the
1422     // optimizer will eliminate the lock operation itself.
1423     _counter->set_tag(NamedCounter::EliminatedLockCounter);
1424   }
1425 #endif
1426 }
1427 
1428 //=============================================================================
1429 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1430 
1431   // perform any generic optimizations first (returns 'this' or NULL)
1432   Node *result = SafePointNode::Ideal(phase, can_reshape);
1433 
1434   // Now see if we can optimize away this lock.  We don't actually
1435   // remove the locking here, we simply set the _eliminate flag which
1436   // prevents macro expansion from expanding the lock.  Since we don't
1437   // modify the graph, the value returned from this function is the
1438   // one computed above.
1439   if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
1440     //
1441     // If we are locking an unescaped object, the lock/unlock is unnecessary
1442     //
1443     ConnectionGraph *cgr = phase->C->congraph();
1444     PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
1445     if (cgr != NULL)
1446       es = cgr->escape_state(obj_node(), phase);
1447     if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
1448       // Mark it eliminated to update any counters
1449       this->set_eliminated();
1450       return result;
1451     }
1452 
1453     //
1454     // Try lock coarsening
1455     //
1456     PhaseIterGVN* iter = phase->is_IterGVN();
1457     if (iter != NULL) {
1458 
1459       GrowableArray<AbstractLockNode*>   lock_ops;
1460 
1461       Node *ctrl = next_control(in(0));
1462 
1463       // now search back for a matching Unlock
1464       if (find_matching_unlock(ctrl, this, lock_ops)) {
1465         // found an unlock directly preceding this lock.  This is the
1466         // case of single unlock directly control dependent on a
1467         // single lock which is the trivial version of case 1 or 2.
1468       } else if (ctrl->is_Region() ) {
1469         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1470         // found lock preceded by multiple unlocks along all paths
1471         // joining at this point which is case 3 in description above.
1472         }
1473       } else {
1474         // see if this lock comes from either half of an if and the
1475         // predecessors merges unlocks and the other half of the if
1476         // performs a lock.
1477         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1478           // found unlock splitting to an if with locks on both branches.
1479         }
1480       }
1481 
1482       if (lock_ops.length() > 0) {
1483         // add ourselves to the list of locks to be eliminated.
1484         lock_ops.append(this);
1485 
1486   #ifndef PRODUCT
1487         if (PrintEliminateLocks) {
1488           int locks = 0;
1489           int unlocks = 0;
1490           for (int i = 0; i < lock_ops.length(); i++) {
1491             AbstractLockNode* lock = lock_ops.at(i);
1492             if (lock->Opcode() == Op_Lock)
1493               locks++;
1494             else
1495               unlocks++;
1496             if (Verbose) {
1497               lock->dump(1);
1498             }
1499           }
1500           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1501         }
1502   #endif
1503 
1504         // for each of the identified locks, mark them
1505         // as eliminatable
1506         for (int i = 0; i < lock_ops.length(); i++) {
1507           AbstractLockNode* lock = lock_ops.at(i);
1508 
1509           // Mark it eliminated to update any counters
1510           lock->set_eliminated();
1511           lock->set_coarsened();
1512         }
1513       } else if (result != NULL && ctrl->is_Region() &&
1514                  iter->_worklist.member(ctrl)) {
1515         // We weren't able to find any opportunities but the region this
1516         // lock is control dependent on hasn't been processed yet so put
1517         // this lock back on the worklist so we can check again once any
1518         // region simplification has occurred.
1519         iter->_worklist.push(this);
1520       }
1521     }
1522   }
1523 
1524   return result;
1525 }
1526 
1527 //=============================================================================
1528 uint UnlockNode::size_of() const { return sizeof(*this); }
1529 
1530 //=============================================================================
1531 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1532 
1533   // perform any generic optimizations first (returns 'this' or NULL)
1534   Node * result = SafePointNode::Ideal(phase, can_reshape);
1535 
1536   // Now see if we can optimize away this unlock.  We don't actually
1537   // remove the unlocking here, we simply set the _eliminate flag which
1538   // prevents macro expansion from expanding the unlock.  Since we don't
1539   // modify the graph, the value returned from this function is the
1540   // one computed above.
1541   // Escape state is defined after Parse phase.
1542   if (result == NULL && can_reshape && EliminateLocks && !is_eliminated()) {
1543     //
1544     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1545     //
1546     ConnectionGraph *cgr = phase->C->congraph();
1547     PointsToNode::EscapeState es = PointsToNode::GlobalEscape;
1548     if (cgr != NULL)
1549       es = cgr->escape_state(obj_node(), phase);
1550     if (es != PointsToNode::UnknownEscape && es != PointsToNode::GlobalEscape) {
1551       // Mark it eliminated to update any counters
1552       this->set_eliminated();
1553     }
1554   }
1555   return result;
1556 }