1 /*
   2  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 // Optimization - Graph Style
  28 
  29 class Chaitin;
  30 class NamedCounter;
  31 class MultiNode;
  32 class  SafePointNode;
  33 class   CallNode;
  34 class     CallJavaNode;
  35 class       CallStaticJavaNode;
  36 class       CallDynamicJavaNode;
  37 class     CallRuntimeNode;
  38 class       CallLeafNode;
  39 class         CallLeafNoFPNode;
  40 class     AllocateNode;
  41 class       AllocateArrayNode;
  42 class     LockNode;
  43 class     UnlockNode;
  44 class JVMState;
  45 class OopMap;
  46 class State;
  47 class StartNode;
  48 class MachCallNode;
  49 class FastLockNode;
  50 
  51 //------------------------------StartNode--------------------------------------
  52 // The method start node
  53 class StartNode : public MultiNode {
  54   virtual uint cmp( const Node &n ) const;
  55   virtual uint size_of() const; // Size is bigger
  56 public:
  57   const TypeTuple *_domain;
  58   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  59     init_class_id(Class_Start);
  60     init_flags(Flag_is_block_start);
  61     init_req(0,this);
  62     init_req(1,root);
  63   }
  64   virtual int Opcode() const;
  65   virtual bool pinned() const { return true; };
  66   virtual const Type *bottom_type() const;
  67   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  68   virtual const Type *Value( PhaseTransform *phase ) const;
  69   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  70   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  71   virtual const RegMask &in_RegMask(uint) const;
  72   virtual Node *match( const ProjNode *proj, const Matcher *m );
  73   virtual uint ideal_reg() const { return 0; }
  74 #ifndef PRODUCT
  75   virtual void  dump_spec(outputStream *st) const;
  76 #endif
  77 };
  78 
  79 //------------------------------StartOSRNode-----------------------------------
  80 // The method start node for on stack replacement code
  81 class StartOSRNode : public StartNode {
  82 public:
  83   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  84   virtual int   Opcode() const;
  85   static  const TypeTuple *osr_domain();
  86 };
  87 
  88 
  89 //------------------------------ParmNode---------------------------------------
  90 // Incoming parameters
  91 class ParmNode : public ProjNode {
  92   static const char * const names[TypeFunc::Parms+1];
  93 public:
  94   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
  95     init_class_id(Class_Parm);
  96   }
  97   virtual int Opcode() const;
  98   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
  99   virtual uint ideal_reg() const;
 100 #ifndef PRODUCT
 101   virtual void dump_spec(outputStream *st) const;
 102 #endif
 103 };
 104 
 105 
 106 //------------------------------ReturnNode-------------------------------------
 107 // Return from subroutine node
 108 class ReturnNode : public Node {
 109 public:
 110   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 111   virtual int Opcode() const;
 112   virtual bool  is_CFG() const { return true; }
 113   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 114   virtual bool depends_only_on_test() const { return false; }
 115   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 116   virtual const Type *Value( PhaseTransform *phase ) const;
 117   virtual uint ideal_reg() const { return NotAMachineReg; }
 118   virtual uint match_edge(uint idx) const;
 119 #ifndef PRODUCT
 120   virtual void dump_req() const;
 121 #endif
 122 };
 123 
 124 
 125 //------------------------------RethrowNode------------------------------------
 126 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 127 // ends the current basic block like a ReturnNode.  Restores registers and
 128 // unwinds stack.  Rethrow happens in the caller's method.
 129 class RethrowNode : public Node {
 130  public:
 131   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 132   virtual int Opcode() const;
 133   virtual bool  is_CFG() const { return true; }
 134   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 135   virtual bool depends_only_on_test() const { return false; }
 136   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 137   virtual const Type *Value( PhaseTransform *phase ) const;
 138   virtual uint match_edge(uint idx) const;
 139   virtual uint ideal_reg() const { return NotAMachineReg; }
 140 #ifndef PRODUCT
 141   virtual void dump_req() const;
 142 #endif
 143 };
 144 
 145 
 146 //------------------------------TailCallNode-----------------------------------
 147 // Pop stack frame and jump indirect
 148 class TailCallNode : public ReturnNode {
 149 public:
 150   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 151     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 152     init_req(TypeFunc::Parms, target);
 153     init_req(TypeFunc::Parms+1, moop);
 154   }
 155 
 156   virtual int Opcode() const;
 157   virtual uint match_edge(uint idx) const;
 158 };
 159 
 160 //------------------------------TailJumpNode-----------------------------------
 161 // Pop stack frame and jump indirect
 162 class TailJumpNode : public ReturnNode {
 163 public:
 164   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 165     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 166     init_req(TypeFunc::Parms, target);
 167     init_req(TypeFunc::Parms+1, ex_oop);
 168   }
 169 
 170   virtual int Opcode() const;
 171   virtual uint match_edge(uint idx) const;
 172 };
 173 
 174 //-------------------------------JVMState-------------------------------------
 175 // A linked list of JVMState nodes captures the whole interpreter state,
 176 // plus GC roots, for all active calls at some call site in this compilation
 177 // unit.  (If there is no inlining, then the list has exactly one link.)
 178 // This provides a way to map the optimized program back into the interpreter,
 179 // or to let the GC mark the stack.
 180 class JVMState : public ResourceObj {
 181 public:
 182   typedef enum {
 183     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 184     Reexecute_False     =  0, // false       -- do not reexecute
 185     Reexecute_True      =  1  // true        -- reexecute the bytecode
 186   } ReexecuteState; //Reexecute State
 187 
 188 private:
 189   JVMState*         _caller;    // List pointer for forming scope chains
 190   uint              _depth;     // One mroe than caller depth, or one.
 191   uint              _locoff;    // Offset to locals in input edge mapping
 192   uint              _stkoff;    // Offset to stack in input edge mapping
 193   uint              _monoff;    // Offset to monitors in input edge mapping
 194   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 195   uint              _endoff;    // Offset to end of input edge mapping
 196   uint              _sp;        // Jave Expression Stack Pointer for this state
 197   int               _bci;       // Byte Code Index of this JVM point
 198   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 199   ciMethod*         _method;    // Method Pointer
 200   SafePointNode*    _map;       // Map node associated with this scope
 201 public:
 202   friend class Compile;
 203   friend class PreserveReexecuteState;
 204 
 205   // Because JVMState objects live over the entire lifetime of the
 206   // Compile object, they are allocated into the comp_arena, which
 207   // does not get resource marked or reset during the compile process
 208   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
 209   void operator delete( void * ) { } // fast deallocation
 210 
 211   // Create a new JVMState, ready for abstract interpretation.
 212   JVMState(ciMethod* method, JVMState* caller);
 213   JVMState(int stack_size);  // root state; has a null method
 214 
 215   // Access functions for the JVM
 216   uint              locoff() const { return _locoff; }
 217   uint              stkoff() const { return _stkoff; }
 218   uint              argoff() const { return _stkoff + _sp; }
 219   uint              monoff() const { return _monoff; }
 220   uint              scloff() const { return _scloff; }
 221   uint              endoff() const { return _endoff; }
 222   uint              oopoff() const { return debug_end(); }
 223 
 224   int            loc_size() const { return _stkoff - _locoff; }
 225   int            stk_size() const { return _monoff - _stkoff; }
 226   int            mon_size() const { return _scloff - _monoff; }
 227   int            scl_size() const { return _endoff - _scloff; }
 228 
 229   bool        is_loc(uint i) const { return i >= _locoff && i < _stkoff; }
 230   bool        is_stk(uint i) const { return i >= _stkoff && i < _monoff; }
 231   bool        is_mon(uint i) const { return i >= _monoff && i < _scloff; }
 232   bool        is_scl(uint i) const { return i >= _scloff && i < _endoff; }
 233 
 234   uint                      sp() const { return _sp; }
 235   int                      bci() const { return _bci; }
 236   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 237   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 238   bool              has_method() const { return _method != NULL; }
 239   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 240   JVMState*             caller() const { return _caller; }
 241   SafePointNode*           map() const { return _map; }
 242   uint                   depth() const { return _depth; }
 243   uint             debug_start() const; // returns locoff of root caller
 244   uint               debug_end() const; // returns endoff of self
 245   uint              debug_size() const {
 246     return loc_size() + sp() + mon_size() + scl_size();
 247   }
 248   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 249 
 250   // Returns the JVM state at the desired depth (1 == root).
 251   JVMState* of_depth(int d) const;
 252 
 253   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 254   bool same_calls_as(const JVMState* that) const;
 255 
 256   // Monitors (monitors are stored as (boxNode, objNode) pairs
 257   enum { logMonitorEdges = 1 };
 258   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 259   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 260   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 261   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 262   bool is_monitor_box(uint off)    const {
 263     assert(is_mon(off), "should be called only for monitor edge");
 264     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 265   }
 266   bool is_monitor_use(uint off)    const { return (is_mon(off)
 267                                                    && is_monitor_box(off))
 268                                              || (caller() && caller()->is_monitor_use(off)); }
 269 
 270   // Initialization functions for the JVM
 271   void              set_locoff(uint off) { _locoff = off; }
 272   void              set_stkoff(uint off) { _stkoff = off; }
 273   void              set_monoff(uint off) { _monoff = off; }
 274   void              set_scloff(uint off) { _scloff = off; }
 275   void              set_endoff(uint off) { _endoff = off; }
 276   void              set_offsets(uint off) {
 277     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 278   }
 279   void              set_map(SafePointNode *map) { _map = map; }
 280   void              set_sp(uint sp) { _sp = sp; }
 281   //Note: _reexecute should always be undefined when a new _bci is set
 282   void              set_bci(int bci) {assert(_reexecute==Reexecute_Undefined || _bci==bci, "sanity check"); _bci = bci; }
 283   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 284   void              set_reexecute_undefined() {_reexecute = Reexecute_Undefined; }
 285 
 286   // Miscellaneous utility functions
 287   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 288   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 289 
 290 #ifndef PRODUCT
 291   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 292   void      dump_spec(outputStream *st) const;
 293   void      dump_on(outputStream* st) const;
 294   void      dump() const {
 295     dump_on(tty);
 296   }
 297 #endif
 298 };
 299 
 300 //------------------------------SafePointNode----------------------------------
 301 // A SafePointNode is a subclass of a MultiNode for convenience (and
 302 // potential code sharing) only - conceptually it is independent of
 303 // the Node semantics.
 304 class SafePointNode : public MultiNode {
 305   virtual uint           cmp( const Node &n ) const;
 306   virtual uint           size_of() const;       // Size is bigger
 307 
 308 public:
 309   SafePointNode(uint edges, JVMState* jvms,
 310                 // A plain safepoint advertises no memory effects (NULL):
 311                 const TypePtr* adr_type = NULL)
 312     : MultiNode( edges ),
 313       _jvms(jvms),
 314       _oop_map(NULL),
 315       _adr_type(adr_type)
 316   {
 317     init_class_id(Class_SafePoint);
 318   }
 319 
 320   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 321   JVMState* const _jvms;      // Pointer to list of JVM State objects
 322   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 323 
 324   // Many calls take *all* of memory as input,
 325   // but some produce a limited subset of that memory as output.
 326   // The adr_type reports the call's behavior as a store, not a load.
 327 
 328   virtual JVMState* jvms() const { return _jvms; }
 329   void set_jvms(JVMState* s) {
 330     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 331   }
 332   OopMap *oop_map() const { return _oop_map; }
 333   void set_oop_map(OopMap *om) { _oop_map = om; }
 334 
 335   // Functionality from old debug nodes which has changed
 336   Node *local(JVMState* jvms, uint idx) const {
 337     assert(verify_jvms(jvms), "jvms must match");
 338     return in(jvms->locoff() + idx);
 339   }
 340   Node *stack(JVMState* jvms, uint idx) const {
 341     assert(verify_jvms(jvms), "jvms must match");
 342     return in(jvms->stkoff() + idx);
 343   }
 344   Node *argument(JVMState* jvms, uint idx) const {
 345     assert(verify_jvms(jvms), "jvms must match");
 346     return in(jvms->argoff() + idx);
 347   }
 348   Node *monitor_box(JVMState* jvms, uint idx) const {
 349     assert(verify_jvms(jvms), "jvms must match");
 350     return in(jvms->monitor_box_offset(idx));
 351   }
 352   Node *monitor_obj(JVMState* jvms, uint idx) const {
 353     assert(verify_jvms(jvms), "jvms must match");
 354     return in(jvms->monitor_obj_offset(idx));
 355   }
 356 
 357   void  set_local(JVMState* jvms, uint idx, Node *c);
 358 
 359   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 360     assert(verify_jvms(jvms), "jvms must match");
 361     set_req(jvms->stkoff() + idx, c);
 362   }
 363   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 364     assert(verify_jvms(jvms), "jvms must match");
 365     set_req(jvms->argoff() + idx, c);
 366   }
 367   void ensure_stack(JVMState* jvms, uint stk_size) {
 368     assert(verify_jvms(jvms), "jvms must match");
 369     int grow_by = (int)stk_size - (int)jvms->stk_size();
 370     if (grow_by > 0)  grow_stack(jvms, grow_by);
 371   }
 372   void grow_stack(JVMState* jvms, uint grow_by);
 373   // Handle monitor stack
 374   void push_monitor( const FastLockNode *lock );
 375   void pop_monitor ();
 376   Node *peek_monitor_box() const;
 377   Node *peek_monitor_obj() const;
 378 
 379   // Access functions for the JVM
 380   Node *control  () const { return in(TypeFunc::Control  ); }
 381   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 382   Node *memory   () const { return in(TypeFunc::Memory   ); }
 383   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 384   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 385 
 386   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 387   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 388   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 389 
 390   MergeMemNode* merged_memory() const {
 391     return in(TypeFunc::Memory)->as_MergeMem();
 392   }
 393 
 394   // The parser marks useless maps as dead when it's done with them:
 395   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 396 
 397   // Exception states bubbling out of subgraphs such as inlined calls
 398   // are recorded here.  (There might be more than one, hence the "next".)
 399   // This feature is used only for safepoints which serve as "maps"
 400   // for JVM states during parsing, intrinsic expansion, etc.
 401   SafePointNode*         next_exception() const;
 402   void               set_next_exception(SafePointNode* n);
 403   bool                   has_exceptions() const { return next_exception() != NULL; }
 404 
 405   // Standard Node stuff
 406   virtual int            Opcode() const;
 407   virtual bool           pinned() const { return true; }
 408   virtual const Type    *Value( PhaseTransform *phase ) const;
 409   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 410   virtual const TypePtr *adr_type() const { return _adr_type; }
 411   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 412   virtual Node          *Identity( PhaseTransform *phase );
 413   virtual uint           ideal_reg() const { return 0; }
 414   virtual const RegMask &in_RegMask(uint) const;
 415   virtual const RegMask &out_RegMask() const;
 416   virtual uint           match_edge(uint idx) const;
 417 
 418   static  bool           needs_polling_address_input();
 419 
 420 #ifndef PRODUCT
 421   virtual void              dump_spec(outputStream *st) const;
 422 #endif
 423 };
 424 
 425 //------------------------------SafePointScalarObjectNode----------------------
 426 // A SafePointScalarObjectNode represents the state of a scalarized object
 427 // at a safepoint.
 428 
 429 class SafePointScalarObjectNode: public TypeNode {
 430   uint _first_index; // First input edge index of a SafePoint node where
 431                      // states of the scalarized object fields are collected.
 432   uint _n_fields;    // Number of non-static fields of the scalarized object.
 433   DEBUG_ONLY(AllocateNode* _alloc;)
 434 public:
 435   SafePointScalarObjectNode(const TypeOopPtr* tp,
 436 #ifdef ASSERT
 437                             AllocateNode* alloc,
 438 #endif
 439                             uint first_index, uint n_fields);
 440   virtual int Opcode() const;
 441   virtual uint           ideal_reg() const;
 442   virtual const RegMask &in_RegMask(uint) const;
 443   virtual const RegMask &out_RegMask() const;
 444   virtual uint           match_edge(uint idx) const;
 445 
 446   uint first_index() const { return _first_index; }
 447   uint n_fields()    const { return _n_fields; }
 448   DEBUG_ONLY(AllocateNode* alloc() const { return _alloc; })
 449 
 450   // SafePointScalarObject should be always pinned to the control edge
 451   // of the SafePoint node for which it was generated.
 452   virtual bool pinned() const; // { return true; }
 453 
 454   // SafePointScalarObject depends on the SafePoint node
 455   // for which it was generated.
 456   virtual bool depends_only_on_test() const; // { return false; }
 457 
 458   virtual uint size_of() const { return sizeof(*this); }
 459 
 460   // Assumes that "this" is an argument to a safepoint node "s", and that
 461   // "new_call" is being created to correspond to "s".  But the difference
 462   // between the start index of the jvmstates of "new_call" and "s" is
 463   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 464   // corresponds appropriately to "this" in "new_call".  Assumes that
 465   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 466   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 467   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
 468 
 469 #ifndef PRODUCT
 470   virtual void              dump_spec(outputStream *st) const;
 471 #endif
 472 };
 473 
 474 //------------------------------CallNode---------------------------------------
 475 // Call nodes now subsume the function of debug nodes at callsites, so they
 476 // contain the functionality of a full scope chain of debug nodes.
 477 class CallNode : public SafePointNode {
 478 public:
 479   const TypeFunc *_tf;        // Function type
 480   address      _entry_point;  // Address of method being called
 481   float        _cnt;          // Estimate of number of times called
 482 
 483   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 484     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 485       _tf(tf),
 486       _entry_point(addr),
 487       _cnt(COUNT_UNKNOWN)
 488   {
 489     init_class_id(Class_Call);
 490     init_flags(Flag_is_Call);
 491   }
 492 
 493   const TypeFunc* tf()        const { return _tf; }
 494   const address entry_point() const { return _entry_point; }
 495   const float   cnt()         const { return _cnt; }
 496 
 497   void set_tf(const TypeFunc* tf) { _tf = tf; }
 498   void set_entry_point(address p) { _entry_point = p; }
 499   void set_cnt(float c)           { _cnt = c; }
 500 
 501   virtual const Type *bottom_type() const;
 502   virtual const Type *Value( PhaseTransform *phase ) const;
 503   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 504   virtual uint        cmp( const Node &n ) const;
 505   virtual uint        size_of() const = 0;
 506   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 507   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 508   virtual uint        ideal_reg() const { return NotAMachineReg; }
 509   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 510   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 511   virtual bool        guaranteed_safepoint()  { return true; }
 512   // For macro nodes, the JVMState gets modified during expansion, so when cloning
 513   // the node the JVMState must be cloned.
 514   virtual void        clone_jvms() { }   // default is not to clone
 515 
 516   // Returns true if the call may modify n
 517   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
 518   // Does this node have a use of n other than in debug information?
 519   bool                has_non_debug_use(Node *n);
 520   // Returns the unique CheckCastPP of a call
 521   // or result projection is there are several CheckCastPP
 522   // or returns NULL if there is no one.
 523   Node *result_cast();
 524 
 525   virtual uint match_edge(uint idx) const;
 526 
 527 #ifndef PRODUCT
 528   virtual void        dump_req()  const;
 529   virtual void        dump_spec(outputStream *st) const;
 530 #endif
 531 };
 532 
 533 //------------------------------CallJavaNode-----------------------------------
 534 // Make a static or dynamic subroutine call node using Java calling
 535 // convention.  (The "Java" calling convention is the compiler's calling
 536 // convention, as opposed to the interpreter's or that of native C.)
 537 class CallJavaNode : public CallNode {
 538 protected:
 539   virtual uint cmp( const Node &n ) const;
 540   virtual uint size_of() const; // Size is bigger
 541 
 542   bool    _optimized_virtual;
 543   ciMethod* _method;            // Method being direct called
 544 public:
 545   const int       _bci;         // Byte Code Index of call byte code
 546   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 547     : CallNode(tf, addr, TypePtr::BOTTOM),
 548       _method(method), _bci(bci), _optimized_virtual(false)
 549   {
 550     init_class_id(Class_CallJava);
 551   }
 552 
 553   virtual int   Opcode() const;
 554   ciMethod* method() const                { return _method; }
 555   void  set_method(ciMethod *m)           { _method = m; }
 556   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 557   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 558 
 559 #ifndef PRODUCT
 560   virtual void  dump_spec(outputStream *st) const;
 561 #endif
 562 };
 563 
 564 //------------------------------CallStaticJavaNode-----------------------------
 565 // Make a direct subroutine call using Java calling convention (for static
 566 // calls and optimized virtual calls, plus calls to wrappers for run-time
 567 // routines); generates static stub.
 568 class CallStaticJavaNode : public CallJavaNode {
 569   virtual uint cmp( const Node &n ) const;
 570   virtual uint size_of() const; // Size is bigger
 571 public:
 572   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
 573     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 574     init_class_id(Class_CallStaticJava);
 575   }
 576   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 577                      const TypePtr* adr_type)
 578     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 579     init_class_id(Class_CallStaticJava);
 580     // This node calls a runtime stub, which often has narrow memory effects.
 581     _adr_type = adr_type;
 582   }
 583   const char *_name;            // Runtime wrapper name
 584 
 585   // If this is an uncommon trap, return the request code, else zero.
 586   int uncommon_trap_request() const;
 587   static int extract_uncommon_trap_request(const Node* call);
 588 
 589   virtual int         Opcode() const;
 590 #ifndef PRODUCT
 591   virtual void        dump_spec(outputStream *st) const;
 592 #endif
 593 };
 594 
 595 //------------------------------CallDynamicJavaNode----------------------------
 596 // Make a dispatched call using Java calling convention.
 597 class CallDynamicJavaNode : public CallJavaNode {
 598   virtual uint cmp( const Node &n ) const;
 599   virtual uint size_of() const; // Size is bigger
 600 public:
 601   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 602     init_class_id(Class_CallDynamicJava);
 603   }
 604 
 605   int _vtable_index;
 606   virtual int   Opcode() const;
 607 #ifndef PRODUCT
 608   virtual void  dump_spec(outputStream *st) const;
 609 #endif
 610 };
 611 
 612 //------------------------------CallRuntimeNode--------------------------------
 613 // Make a direct subroutine call node into compiled C++ code.
 614 class CallRuntimeNode : public CallNode {
 615   virtual uint cmp( const Node &n ) const;
 616   virtual uint size_of() const; // Size is bigger
 617 public:
 618   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 619                   const TypePtr* adr_type)
 620     : CallNode(tf, addr, adr_type),
 621       _name(name)
 622   {
 623     init_class_id(Class_CallRuntime);
 624   }
 625 
 626   const char *_name;            // Printable name, if _method is NULL
 627   virtual int   Opcode() const;
 628   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 629 
 630 #ifndef PRODUCT
 631   virtual void  dump_spec(outputStream *st) const;
 632 #endif
 633 };
 634 
 635 //------------------------------CallLeafNode-----------------------------------
 636 // Make a direct subroutine call node into compiled C++ code, without
 637 // safepoints
 638 class CallLeafNode : public CallRuntimeNode {
 639 public:
 640   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 641                const TypePtr* adr_type)
 642     : CallRuntimeNode(tf, addr, name, adr_type)
 643   {
 644     init_class_id(Class_CallLeaf);
 645   }
 646   virtual int   Opcode() const;
 647   virtual bool        guaranteed_safepoint()  { return false; }
 648 #ifndef PRODUCT
 649   virtual void  dump_spec(outputStream *st) const;
 650 #endif
 651 };
 652 
 653 //------------------------------CallLeafNoFPNode-------------------------------
 654 // CallLeafNode, not using floating point or using it in the same manner as
 655 // the generated code
 656 class CallLeafNoFPNode : public CallLeafNode {
 657 public:
 658   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 659                    const TypePtr* adr_type)
 660     : CallLeafNode(tf, addr, name, adr_type)
 661   {
 662   }
 663   virtual int   Opcode() const;
 664 };
 665 
 666 
 667 //------------------------------Allocate---------------------------------------
 668 // High-level memory allocation
 669 //
 670 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 671 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 672 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 673 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 674 //  order to differentiate the uses of the projection on the normal control path from
 675 //  those on the exception return path.
 676 //
 677 class AllocateNode : public CallNode {
 678 public:
 679   enum {
 680     // Output:
 681     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 682     // Inputs:
 683     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 684     KlassNode,                        // type (maybe dynamic) of the obj.
 685     InitialTest,                      // slow-path test (may be constant)
 686     ALength,                          // array length (or TOP if none)
 687     ParmLimit
 688   };
 689 
 690   static const TypeFunc* alloc_type() {
 691     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 692     fields[AllocSize]   = TypeInt::POS;
 693     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 694     fields[InitialTest] = TypeInt::BOOL;
 695     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
 696 
 697     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 698 
 699     // create result type (range)
 700     fields = TypeTuple::fields(1);
 701     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 702 
 703     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 704 
 705     return TypeFunc::make(domain, range);
 706   }
 707 
 708   bool _is_scalar_replaceable;  // Result of Escape Analysis
 709 
 710   virtual uint size_of() const; // Size is bigger
 711   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 712                Node *size, Node *klass_node, Node *initial_test);
 713   // Expansion modifies the JVMState, so we need to clone it
 714   virtual void  clone_jvms() {
 715     set_jvms(jvms()->clone_deep(Compile::current()));
 716   }
 717   virtual int Opcode() const;
 718   virtual uint ideal_reg() const { return Op_RegP; }
 719   virtual bool        guaranteed_safepoint()  { return false; }
 720 
 721   // allocations do not modify their arguments
 722   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
 723 
 724   // Pattern-match a possible usage of AllocateNode.
 725   // Return null if no allocation is recognized.
 726   // The operand is the pointer produced by the (possible) allocation.
 727   // It must be a projection of the Allocate or its subsequent CastPP.
 728   // (Note:  This function is defined in file graphKit.cpp, near
 729   // GraphKit::new_instance/new_array, whose output it recognizes.)
 730   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 731   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 732 
 733   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 734   // an offset, which is reported back to the caller.
 735   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 736   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 737                                         intptr_t& offset);
 738 
 739   // Dig the klass operand out of a (possible) allocation site.
 740   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 741     AllocateNode* allo = Ideal_allocation(ptr, phase);
 742     return (allo == NULL) ? NULL : allo->in(KlassNode);
 743   }
 744 
 745   // Conservatively small estimate of offset of first non-header byte.
 746   int minimum_header_size() {
 747     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 748                                 instanceOopDesc::base_offset_in_bytes();
 749   }
 750 
 751   // Return the corresponding initialization barrier (or null if none).
 752   // Walks out edges to find it...
 753   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 754   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 755   InitializeNode* initialization();
 756 
 757   // Convenience for initialization->maybe_set_complete(phase)
 758   bool maybe_set_complete(PhaseGVN* phase);
 759 };
 760 
 761 //------------------------------AllocateArray---------------------------------
 762 //
 763 // High-level array allocation
 764 //
 765 class AllocateArrayNode : public AllocateNode {
 766 public:
 767   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 768                     Node* size, Node* klass_node, Node* initial_test,
 769                     Node* count_val
 770                     )
 771     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 772                    initial_test)
 773   {
 774     init_class_id(Class_AllocateArray);
 775     set_req(AllocateNode::ALength,        count_val);
 776   }
 777   virtual int Opcode() const;
 778   virtual uint size_of() const; // Size is bigger
 779   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 780 
 781   // Dig the length operand out of a array allocation site.
 782   Node* Ideal_length() {
 783     return in(AllocateNode::ALength);
 784   }
 785 
 786   // Dig the length operand out of a array allocation site and narrow the
 787   // type with a CastII, if necesssary
 788   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 789 
 790   // Pattern-match a possible usage of AllocateArrayNode.
 791   // Return null if no allocation is recognized.
 792   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 793     AllocateNode* allo = Ideal_allocation(ptr, phase);
 794     return (allo == NULL || !allo->is_AllocateArray())
 795            ? NULL : allo->as_AllocateArray();
 796   }
 797 };
 798 
 799 //------------------------------AbstractLockNode-----------------------------------
 800 class AbstractLockNode: public CallNode {
 801 private:
 802   bool _eliminate;    // indicates this lock can be safely eliminated
 803   bool _coarsened;    // indicates this lock was coarsened
 804 #ifndef PRODUCT
 805   NamedCounter* _counter;
 806 #endif
 807 
 808 protected:
 809   // helper functions for lock elimination
 810   //
 811 
 812   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 813                             GrowableArray<AbstractLockNode*> &lock_ops);
 814   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 815                                        GrowableArray<AbstractLockNode*> &lock_ops);
 816   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 817                                GrowableArray<AbstractLockNode*> &lock_ops);
 818   LockNode *find_matching_lock(UnlockNode* unlock);
 819 
 820 
 821 public:
 822   AbstractLockNode(const TypeFunc *tf)
 823     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 824       _coarsened(false),
 825       _eliminate(false)
 826   {
 827 #ifndef PRODUCT
 828     _counter = NULL;
 829 #endif
 830   }
 831   virtual int Opcode() const = 0;
 832   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 833   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 834   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
 835   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
 836 
 837   virtual uint size_of() const { return sizeof(*this); }
 838 
 839   bool is_eliminated()         {return _eliminate; }
 840   // mark node as eliminated and update the counter if there is one
 841   void set_eliminated();
 842 
 843   bool is_coarsened()  { return _coarsened; }
 844   void set_coarsened() { _coarsened = true; }
 845 
 846   // locking does not modify its arguments
 847   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
 848 
 849 #ifndef PRODUCT
 850   void create_lock_counter(JVMState* s);
 851   NamedCounter* counter() const { return _counter; }
 852 #endif
 853 };
 854 
 855 //------------------------------Lock---------------------------------------
 856 // High-level lock operation
 857 //
 858 // This is a subclass of CallNode because it is a macro node which gets expanded
 859 // into a code sequence containing a call.  This node takes 3 "parameters":
 860 //    0  -  object to lock
 861 //    1 -   a BoxLockNode
 862 //    2 -   a FastLockNode
 863 //
 864 class LockNode : public AbstractLockNode {
 865 public:
 866 
 867   static const TypeFunc *lock_type() {
 868     // create input type (domain)
 869     const Type **fields = TypeTuple::fields(3);
 870     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 871     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
 872     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
 873     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 874 
 875     // create result type (range)
 876     fields = TypeTuple::fields(0);
 877 
 878     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 879 
 880     return TypeFunc::make(domain,range);
 881   }
 882 
 883   virtual int Opcode() const;
 884   virtual uint size_of() const; // Size is bigger
 885   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 886     init_class_id(Class_Lock);
 887     init_flags(Flag_is_macro);
 888     C->add_macro_node(this);
 889   }
 890   virtual bool        guaranteed_safepoint()  { return false; }
 891 
 892   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 893   // Expansion modifies the JVMState, so we need to clone it
 894   virtual void  clone_jvms() {
 895     set_jvms(jvms()->clone_deep(Compile::current()));
 896   }
 897 };
 898 
 899 //------------------------------Unlock---------------------------------------
 900 // High-level unlock operation
 901 class UnlockNode : public AbstractLockNode {
 902 public:
 903   virtual int Opcode() const;
 904   virtual uint size_of() const; // Size is bigger
 905   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 906     init_class_id(Class_Unlock);
 907     init_flags(Flag_is_macro);
 908     C->add_macro_node(this);
 909   }
 910   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 911   // unlock is never a safepoint
 912   virtual bool        guaranteed_safepoint()  { return false; }
 913 };