1 /*
   2  * Copyright 2001-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_graphKit.cpp.incl"
  27 
  28 //----------------------------GraphKit-----------------------------------------
  29 // Main utility constructor.
  30 GraphKit::GraphKit(JVMState* jvms)
  31   : Phase(Phase::Parser),
  32     _env(C->env()),
  33     _gvn(*C->initial_gvn())
  34 {
  35   _exceptions = jvms->map()->next_exception();
  36   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  37   set_jvms(jvms);
  38 }
  39 
  40 // Private constructor for parser.
  41 GraphKit::GraphKit()
  42   : Phase(Phase::Parser),
  43     _env(C->env()),
  44     _gvn(*C->initial_gvn())
  45 {
  46   _exceptions = NULL;
  47   set_map(NULL);
  48   debug_only(_sp = -99);
  49   debug_only(set_bci(-99));
  50 }
  51 
  52 
  53 
  54 //---------------------------clean_stack---------------------------------------
  55 // Clear away rubbish from the stack area of the JVM state.
  56 // This destroys any arguments that may be waiting on the stack.
  57 void GraphKit::clean_stack(int from_sp) {
  58   SafePointNode* map      = this->map();
  59   JVMState*      jvms     = this->jvms();
  60   int            stk_size = jvms->stk_size();
  61   int            stkoff   = jvms->stkoff();
  62   Node*          top      = this->top();
  63   for (int i = from_sp; i < stk_size; i++) {
  64     if (map->in(stkoff + i) != top) {
  65       map->set_req(stkoff + i, top);
  66     }
  67   }
  68 }
  69 
  70 
  71 //--------------------------------sync_jvms-----------------------------------
  72 // Make sure our current jvms agrees with our parse state.
  73 JVMState* GraphKit::sync_jvms() const {
  74   JVMState* jvms = this->jvms();
  75   jvms->set_bci(bci());       // Record the new bci in the JVMState
  76   jvms->set_sp(sp());         // Record the new sp in the JVMState
  77   assert(jvms_in_sync(), "jvms is now in sync");
  78   return jvms;
  79 }
  80 
  81 #ifdef ASSERT
  82 bool GraphKit::jvms_in_sync() const {
  83   Parse* parse = is_Parse();
  84   if (parse == NULL) {
  85     if (bci() !=      jvms()->bci())          return false;
  86     if (sp()  != (int)jvms()->sp())           return false;
  87     return true;
  88   }
  89   if (jvms()->method() != parse->method())    return false;
  90   if (jvms()->bci()    != parse->bci())       return false;
  91   int jvms_sp = jvms()->sp();
  92   if (jvms_sp          != parse->sp())        return false;
  93   int jvms_depth = jvms()->depth();
  94   if (jvms_depth       != parse->depth())     return false;
  95   return true;
  96 }
  97 
  98 // Local helper checks for special internal merge points
  99 // used to accumulate and merge exception states.
 100 // They are marked by the region's in(0) edge being the map itself.
 101 // Such merge points must never "escape" into the parser at large,
 102 // until they have been handed to gvn.transform.
 103 static bool is_hidden_merge(Node* reg) {
 104   if (reg == NULL)  return false;
 105   if (reg->is_Phi()) {
 106     reg = reg->in(0);
 107     if (reg == NULL)  return false;
 108   }
 109   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 110 }
 111 
 112 void GraphKit::verify_map() const {
 113   if (map() == NULL)  return;  // null map is OK
 114   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 115   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 116   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 117 }
 118 
 119 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 120   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 121   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 122 }
 123 #endif
 124 
 125 //---------------------------stop_and_kill_map---------------------------------
 126 // Set _map to NULL, signalling a stop to further bytecode execution.
 127 // First smash the current map's control to a constant, to mark it dead.
 128 void GraphKit::stop_and_kill_map() {
 129   SafePointNode* dead_map = stop();
 130   if (dead_map != NULL) {
 131     dead_map->disconnect_inputs(NULL); // Mark the map as killed.
 132     assert(dead_map->is_killed(), "must be so marked");
 133   }
 134 }
 135 
 136 
 137 //--------------------------------stopped--------------------------------------
 138 // Tell if _map is NULL, or control is top.
 139 bool GraphKit::stopped() {
 140   if (map() == NULL)           return true;
 141   else if (control() == top()) return true;
 142   else                         return false;
 143 }
 144 
 145 
 146 //-----------------------------has_ex_handler----------------------------------
 147 // Tell if this method or any caller method has exception handlers.
 148 bool GraphKit::has_ex_handler() {
 149   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 150     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 151       return true;
 152     }
 153   }
 154   return false;
 155 }
 156 
 157 //------------------------------save_ex_oop------------------------------------
 158 // Save an exception without blowing stack contents or other JVM state.
 159 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 160   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 161   ex_map->add_req(ex_oop);
 162   debug_only(verify_exception_state(ex_map));
 163 }
 164 
 165 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 166   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 167   Node* ex_oop = ex_map->in(ex_map->req()-1);
 168   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 169   return ex_oop;
 170 }
 171 
 172 //-----------------------------saved_ex_oop------------------------------------
 173 // Recover a saved exception from its map.
 174 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 175   return common_saved_ex_oop(ex_map, false);
 176 }
 177 
 178 //--------------------------clear_saved_ex_oop---------------------------------
 179 // Erase a previously saved exception from its map.
 180 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 181   return common_saved_ex_oop(ex_map, true);
 182 }
 183 
 184 #ifdef ASSERT
 185 //---------------------------has_saved_ex_oop----------------------------------
 186 // Erase a previously saved exception from its map.
 187 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 188   return ex_map->req() == ex_map->jvms()->endoff()+1;
 189 }
 190 #endif
 191 
 192 //-------------------------make_exception_state--------------------------------
 193 // Turn the current JVM state into an exception state, appending the ex_oop.
 194 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 195   sync_jvms();
 196   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 197   set_saved_ex_oop(ex_map, ex_oop);
 198   return ex_map;
 199 }
 200 
 201 
 202 //--------------------------add_exception_state--------------------------------
 203 // Add an exception to my list of exceptions.
 204 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 205   if (ex_map == NULL || ex_map->control() == top()) {
 206     return;
 207   }
 208 #ifdef ASSERT
 209   verify_exception_state(ex_map);
 210   if (has_exceptions()) {
 211     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 212   }
 213 #endif
 214 
 215   // If there is already an exception of exactly this type, merge with it.
 216   // In particular, null-checks and other low-level exceptions common up here.
 217   Node*       ex_oop  = saved_ex_oop(ex_map);
 218   const Type* ex_type = _gvn.type(ex_oop);
 219   if (ex_oop == top()) {
 220     // No action needed.
 221     return;
 222   }
 223   assert(ex_type->isa_instptr(), "exception must be an instance");
 224   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 225     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 226     // We check sp also because call bytecodes can generate exceptions
 227     // both before and after arguments are popped!
 228     if (ex_type2 == ex_type
 229         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 230       combine_exception_states(ex_map, e2);
 231       return;
 232     }
 233   }
 234 
 235   // No pre-existing exception of the same type.  Chain it on the list.
 236   push_exception_state(ex_map);
 237 }
 238 
 239 //-----------------------add_exception_states_from-----------------------------
 240 void GraphKit::add_exception_states_from(JVMState* jvms) {
 241   SafePointNode* ex_map = jvms->map()->next_exception();
 242   if (ex_map != NULL) {
 243     jvms->map()->set_next_exception(NULL);
 244     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 245       next_map = ex_map->next_exception();
 246       ex_map->set_next_exception(NULL);
 247       add_exception_state(ex_map);
 248     }
 249   }
 250 }
 251 
 252 //-----------------------transfer_exceptions_into_jvms-------------------------
 253 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 254   if (map() == NULL) {
 255     // We need a JVMS to carry the exceptions, but the map has gone away.
 256     // Create a scratch JVMS, cloned from any of the exception states...
 257     if (has_exceptions()) {
 258       _map = _exceptions;
 259       _map = clone_map();
 260       _map->set_next_exception(NULL);
 261       clear_saved_ex_oop(_map);
 262       debug_only(verify_map());
 263     } else {
 264       // ...or created from scratch
 265       JVMState* jvms = new (C) JVMState(_method, NULL);
 266       jvms->set_bci(_bci);
 267       jvms->set_sp(_sp);
 268       jvms->set_map(new (C, TypeFunc::Parms) SafePointNode(TypeFunc::Parms, jvms));
 269       set_jvms(jvms);
 270       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 271       set_all_memory(top());
 272       while (map()->req() < jvms->endoff())  map()->add_req(top());
 273     }
 274     // (This is a kludge, in case you didn't notice.)
 275     set_control(top());
 276   }
 277   JVMState* jvms = sync_jvms();
 278   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 279   jvms->map()->set_next_exception(_exceptions);
 280   _exceptions = NULL;   // done with this set of exceptions
 281   return jvms;
 282 }
 283 
 284 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 285   assert(is_hidden_merge(dstphi), "must be a special merge node");
 286   assert(is_hidden_merge(srcphi), "must be a special merge node");
 287   uint limit = srcphi->req();
 288   for (uint i = PhiNode::Input; i < limit; i++) {
 289     dstphi->add_req(srcphi->in(i));
 290   }
 291 }
 292 static inline void add_one_req(Node* dstphi, Node* src) {
 293   assert(is_hidden_merge(dstphi), "must be a special merge node");
 294   assert(!is_hidden_merge(src), "must not be a special merge node");
 295   dstphi->add_req(src);
 296 }
 297 
 298 //-----------------------combine_exception_states------------------------------
 299 // This helper function combines exception states by building phis on a
 300 // specially marked state-merging region.  These regions and phis are
 301 // untransformed, and can build up gradually.  The region is marked by
 302 // having a control input of its exception map, rather than NULL.  Such
 303 // regions do not appear except in this function, and in use_exception_state.
 304 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 305   if (failing())  return;  // dying anyway...
 306   JVMState* ex_jvms = ex_map->_jvms;
 307   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 308   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 309   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 310   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 311   assert(ex_map->req() == phi_map->req(), "matching maps");
 312   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 313   Node*         hidden_merge_mark = root();
 314   Node*         region  = phi_map->control();
 315   MergeMemNode* phi_mem = phi_map->merged_memory();
 316   MergeMemNode* ex_mem  = ex_map->merged_memory();
 317   if (region->in(0) != hidden_merge_mark) {
 318     // The control input is not (yet) a specially-marked region in phi_map.
 319     // Make it so, and build some phis.
 320     region = new (C, 2) RegionNode(2);
 321     _gvn.set_type(region, Type::CONTROL);
 322     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 323     region->init_req(1, phi_map->control());
 324     phi_map->set_control(region);
 325     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 326     record_for_igvn(io_phi);
 327     _gvn.set_type(io_phi, Type::ABIO);
 328     phi_map->set_i_o(io_phi);
 329     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 330       Node* m = mms.memory();
 331       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 332       record_for_igvn(m_phi);
 333       _gvn.set_type(m_phi, Type::MEMORY);
 334       mms.set_memory(m_phi);
 335     }
 336   }
 337 
 338   // Either or both of phi_map and ex_map might already be converted into phis.
 339   Node* ex_control = ex_map->control();
 340   // if there is special marking on ex_map also, we add multiple edges from src
 341   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 342   // how wide was the destination phi_map, originally?
 343   uint orig_width = region->req();
 344 
 345   if (add_multiple) {
 346     add_n_reqs(region, ex_control);
 347     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 348   } else {
 349     // ex_map has no merges, so we just add single edges everywhere
 350     add_one_req(region, ex_control);
 351     add_one_req(phi_map->i_o(), ex_map->i_o());
 352   }
 353   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 354     if (mms.is_empty()) {
 355       // get a copy of the base memory, and patch some inputs into it
 356       const TypePtr* adr_type = mms.adr_type(C);
 357       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 358       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 359       mms.set_memory(phi);
 360       // Prepare to append interesting stuff onto the newly sliced phi:
 361       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 362     }
 363     // Append stuff from ex_map:
 364     if (add_multiple) {
 365       add_n_reqs(mms.memory(), mms.memory2());
 366     } else {
 367       add_one_req(mms.memory(), mms.memory2());
 368     }
 369   }
 370   uint limit = ex_map->req();
 371   for (uint i = TypeFunc::Parms; i < limit; i++) {
 372     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 373     if (i == tos)  i = ex_jvms->monoff();
 374     Node* src = ex_map->in(i);
 375     Node* dst = phi_map->in(i);
 376     if (src != dst) {
 377       PhiNode* phi;
 378       if (dst->in(0) != region) {
 379         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 380         record_for_igvn(phi);
 381         _gvn.set_type(phi, phi->type());
 382         phi_map->set_req(i, dst);
 383         // Prepare to append interesting stuff onto the new phi:
 384         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 385       } else {
 386         assert(dst->is_Phi(), "nobody else uses a hidden region");
 387         phi = (PhiNode*)dst;
 388       }
 389       if (add_multiple && src->in(0) == ex_control) {
 390         // Both are phis.
 391         add_n_reqs(dst, src);
 392       } else {
 393         while (dst->req() < region->req())  add_one_req(dst, src);
 394       }
 395       const Type* srctype = _gvn.type(src);
 396       if (phi->type() != srctype) {
 397         const Type* dsttype = phi->type()->meet(srctype);
 398         if (phi->type() != dsttype) {
 399           phi->set_type(dsttype);
 400           _gvn.set_type(phi, dsttype);
 401         }
 402       }
 403     }
 404   }
 405 }
 406 
 407 //--------------------------use_exception_state--------------------------------
 408 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 409   if (failing()) { stop(); return top(); }
 410   Node* region = phi_map->control();
 411   Node* hidden_merge_mark = root();
 412   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 413   Node* ex_oop = clear_saved_ex_oop(phi_map);
 414   if (region->in(0) == hidden_merge_mark) {
 415     // Special marking for internal ex-states.  Process the phis now.
 416     region->set_req(0, region);  // now it's an ordinary region
 417     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 418     // Note: Setting the jvms also sets the bci and sp.
 419     set_control(_gvn.transform(region));
 420     uint tos = jvms()->stkoff() + sp();
 421     for (uint i = 1; i < tos; i++) {
 422       Node* x = phi_map->in(i);
 423       if (x->in(0) == region) {
 424         assert(x->is_Phi(), "expected a special phi");
 425         phi_map->set_req(i, _gvn.transform(x));
 426       }
 427     }
 428     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 429       Node* x = mms.memory();
 430       if (x->in(0) == region) {
 431         assert(x->is_Phi(), "nobody else uses a hidden region");
 432         mms.set_memory(_gvn.transform(x));
 433       }
 434     }
 435     if (ex_oop->in(0) == region) {
 436       assert(ex_oop->is_Phi(), "expected a special phi");
 437       ex_oop = _gvn.transform(ex_oop);
 438     }
 439   } else {
 440     set_jvms(phi_map->jvms());
 441   }
 442 
 443   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 444   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 445   return ex_oop;
 446 }
 447 
 448 //---------------------------------java_bc-------------------------------------
 449 Bytecodes::Code GraphKit::java_bc() const {
 450   ciMethod* method = this->method();
 451   int       bci    = this->bci();
 452   if (method != NULL && bci != InvocationEntryBci)
 453     return method->java_code_at_bci(bci);
 454   else
 455     return Bytecodes::_illegal;
 456 }
 457 
 458 //------------------------------builtin_throw----------------------------------
 459 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 460   bool must_throw = true;
 461 
 462   if (env()->jvmti_can_post_exceptions()) {
 463     // Do not try anything fancy if we're notifying the VM on every throw.
 464     // Cf. case Bytecodes::_athrow in parse2.cpp.
 465     uncommon_trap(reason, Deoptimization::Action_none,
 466                   (ciKlass*)NULL, (char*)NULL, must_throw);
 467     return;
 468   }
 469 
 470   // If this particular condition has not yet happened at this
 471   // bytecode, then use the uncommon trap mechanism, and allow for
 472   // a future recompilation if several traps occur here.
 473   // If the throw is hot, try to use a more complicated inline mechanism
 474   // which keeps execution inside the compiled code.
 475   bool treat_throw_as_hot = false;
 476   ciMethodData* md = method()->method_data();
 477 
 478   if (ProfileTraps) {
 479     if (too_many_traps(reason)) {
 480       treat_throw_as_hot = true;
 481     }
 482     // (If there is no MDO at all, assume it is early in
 483     // execution, and that any deopts are part of the
 484     // startup transient, and don't need to be remembered.)
 485 
 486     // Also, if there is a local exception handler, treat all throws
 487     // as hot if there has been at least one in this method.
 488     if (C->trap_count(reason) != 0
 489         && method()->method_data()->trap_count(reason) != 0
 490         && has_ex_handler()) {
 491         treat_throw_as_hot = true;
 492     }
 493   }
 494 
 495   // If this throw happens frequently, an uncommon trap might cause
 496   // a performance pothole.  If there is a local exception handler,
 497   // and if this particular bytecode appears to be deoptimizing often,
 498   // let us handle the throw inline, with a preconstructed instance.
 499   // Note:   If the deopt count has blown up, the uncommon trap
 500   // runtime is going to flush this nmethod, not matter what.
 501   if (treat_throw_as_hot
 502       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 503     // If the throw is local, we use a pre-existing instance and
 504     // punt on the backtrace.  This would lead to a missing backtrace
 505     // (a repeat of 4292742) if the backtrace object is ever asked
 506     // for its backtrace.
 507     // Fixing this remaining case of 4292742 requires some flavor of
 508     // escape analysis.  Leave that for the future.
 509     ciInstance* ex_obj = NULL;
 510     switch (reason) {
 511     case Deoptimization::Reason_null_check:
 512       ex_obj = env()->NullPointerException_instance();
 513       break;
 514     case Deoptimization::Reason_div0_check:
 515       ex_obj = env()->ArithmeticException_instance();
 516       break;
 517     case Deoptimization::Reason_range_check:
 518       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 519       break;
 520     case Deoptimization::Reason_class_check:
 521       if (java_bc() == Bytecodes::_aastore) {
 522         ex_obj = env()->ArrayStoreException_instance();
 523       } else {
 524         ex_obj = env()->ClassCastException_instance();
 525       }
 526       break;
 527     }
 528     if (failing()) { stop(); return; }  // exception allocation might fail
 529     if (ex_obj != NULL) {
 530       // Cheat with a preallocated exception object.
 531       if (C->log() != NULL)
 532         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 533                        Deoptimization::trap_reason_name(reason));
 534       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 535       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
 536 
 537       // Clear the detail message of the preallocated exception object.
 538       // Weblogic sometimes mutates the detail message of exceptions
 539       // using reflection.
 540       int offset = java_lang_Throwable::get_detailMessage_offset();
 541       const TypePtr* adr_typ = ex_con->add_offset(offset);
 542 
 543       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 544       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), ex_con, T_OBJECT);
 545 
 546       add_exception_state(make_exception_state(ex_node));
 547       return;
 548     }
 549   }
 550 
 551   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 552   // It won't be much cheaper than bailing to the interp., since we'll
 553   // have to pass up all the debug-info, and the runtime will have to
 554   // create the stack trace.
 555 
 556   // Usual case:  Bail to interpreter.
 557   // Reserve the right to recompile if we haven't seen anything yet.
 558 
 559   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 560   if (treat_throw_as_hot
 561       && (method()->method_data()->trap_recompiled_at(bci())
 562           || C->too_many_traps(reason))) {
 563     // We cannot afford to take more traps here.  Suffer in the interpreter.
 564     if (C->log() != NULL)
 565       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 566                      Deoptimization::trap_reason_name(reason),
 567                      C->trap_count(reason));
 568     action = Deoptimization::Action_none;
 569   }
 570 
 571   // "must_throw" prunes the JVM state to include only the stack, if there
 572   // are no local exception handlers.  This should cut down on register
 573   // allocation time and code size, by drastically reducing the number
 574   // of in-edges on the call to the uncommon trap.
 575 
 576   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 577 }
 578 
 579 
 580 //----------------------------PreserveJVMState---------------------------------
 581 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 582   debug_only(kit->verify_map());
 583   _kit    = kit;
 584   _map    = kit->map();   // preserve the map
 585   _sp     = kit->sp();
 586   kit->set_map(clone_map ? kit->clone_map() : NULL);
 587 #ifdef ASSERT
 588   _bci    = kit->bci();
 589   Parse* parser = kit->is_Parse();
 590   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 591   _block  = block;
 592 #endif
 593 }
 594 PreserveJVMState::~PreserveJVMState() {
 595   GraphKit* kit = _kit;
 596 #ifdef ASSERT
 597   assert(kit->bci() == _bci, "bci must not shift");
 598   Parse* parser = kit->is_Parse();
 599   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 600   assert(block == _block,    "block must not shift");
 601 #endif
 602   kit->set_map(_map);
 603   kit->set_sp(_sp);
 604 }
 605 
 606 
 607 //-----------------------------BuildCutout-------------------------------------
 608 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 609   : PreserveJVMState(kit)
 610 {
 611   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 612   SafePointNode* outer_map = _map;   // preserved map is caller's
 613   SafePointNode* inner_map = kit->map();
 614   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 615   outer_map->set_control(kit->gvn().transform( new (kit->C, 1) IfTrueNode(iff) ));
 616   inner_map->set_control(kit->gvn().transform( new (kit->C, 1) IfFalseNode(iff) ));
 617 }
 618 BuildCutout::~BuildCutout() {
 619   GraphKit* kit = _kit;
 620   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 621 }
 622 
 623 
 624 //------------------------------clone_map--------------------------------------
 625 // Implementation of PreserveJVMState
 626 //
 627 // Only clone_map(...) here. If this function is only used in the
 628 // PreserveJVMState class we may want to get rid of this extra
 629 // function eventually and do it all there.
 630 
 631 SafePointNode* GraphKit::clone_map() {
 632   if (map() == NULL)  return NULL;
 633 
 634   // Clone the memory edge first
 635   Node* mem = MergeMemNode::make(C, map()->memory());
 636   gvn().set_type_bottom(mem);
 637 
 638   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 639   JVMState* jvms = this->jvms();
 640   JVMState* clonejvms = jvms->clone_shallow(C);
 641   clonemap->set_memory(mem);
 642   clonemap->set_jvms(clonejvms);
 643   clonejvms->set_map(clonemap);
 644   record_for_igvn(clonemap);
 645   gvn().set_type_bottom(clonemap);
 646   return clonemap;
 647 }
 648 
 649 
 650 //-----------------------------set_map_clone-----------------------------------
 651 void GraphKit::set_map_clone(SafePointNode* m) {
 652   _map = m;
 653   _map = clone_map();
 654   _map->set_next_exception(NULL);
 655   debug_only(verify_map());
 656 }
 657 
 658 
 659 //----------------------------kill_dead_locals---------------------------------
 660 // Detect any locals which are known to be dead, and force them to top.
 661 void GraphKit::kill_dead_locals() {
 662   // Consult the liveness information for the locals.  If any
 663   // of them are unused, then they can be replaced by top().  This
 664   // should help register allocation time and cut down on the size
 665   // of the deoptimization information.
 666 
 667   // This call is made from many of the bytecode handling
 668   // subroutines called from the Big Switch in do_one_bytecode.
 669   // Every bytecode which might include a slow path is responsible
 670   // for killing its dead locals.  The more consistent we
 671   // are about killing deads, the fewer useless phis will be
 672   // constructed for them at various merge points.
 673 
 674   // bci can be -1 (InvocationEntryBci).  We return the entry
 675   // liveness for the method.
 676 
 677   if (method() == NULL || method()->code_size() == 0) {
 678     // We are building a graph for a call to a native method.
 679     // All locals are live.
 680     return;
 681   }
 682 
 683   ResourceMark rm;
 684 
 685   // Consult the liveness information for the locals.  If any
 686   // of them are unused, then they can be replaced by top().  This
 687   // should help register allocation time and cut down on the size
 688   // of the deoptimization information.
 689   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 690 
 691   int len = (int)live_locals.size();
 692   assert(len <= jvms()->loc_size(), "too many live locals");
 693   for (int local = 0; local < len; local++) {
 694     if (!live_locals.at(local)) {
 695       set_local(local, top());
 696     }
 697   }
 698 }
 699 
 700 #ifdef ASSERT
 701 //-------------------------dead_locals_are_killed------------------------------
 702 // Return true if all dead locals are set to top in the map.
 703 // Used to assert "clean" debug info at various points.
 704 bool GraphKit::dead_locals_are_killed() {
 705   if (method() == NULL || method()->code_size() == 0) {
 706     // No locals need to be dead, so all is as it should be.
 707     return true;
 708   }
 709 
 710   // Make sure somebody called kill_dead_locals upstream.
 711   ResourceMark rm;
 712   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 713     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 714     SafePointNode* map = jvms->map();
 715     ciMethod* method = jvms->method();
 716     int       bci    = jvms->bci();
 717     if (jvms == this->jvms()) {
 718       bci = this->bci();  // it might not yet be synched
 719     }
 720     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 721     int len = (int)live_locals.size();
 722     if (!live_locals.is_valid() || len == 0)
 723       // This method is trivial, or is poisoned by a breakpoint.
 724       return true;
 725     assert(len == jvms->loc_size(), "live map consistent with locals map");
 726     for (int local = 0; local < len; local++) {
 727       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 728         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 729           tty->print_cr("Zombie local %d: ", local);
 730           jvms->dump();
 731         }
 732         return false;
 733       }
 734     }
 735   }
 736   return true;
 737 }
 738 
 739 #endif //ASSERT
 740 
 741 // Helper function for adding JVMState and debug information to node
 742 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 743   // Add the safepoint edges to the call (or other safepoint).
 744 
 745   // Make sure dead locals are set to top.  This
 746   // should help register allocation time and cut down on the size
 747   // of the deoptimization information.
 748   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 749 
 750   // Walk the inline list to fill in the correct set of JVMState's
 751   // Also fill in the associated edges for each JVMState.
 752 
 753   JVMState* youngest_jvms = sync_jvms();
 754 
 755   // Do we need debug info here?  If it is a SafePoint and this method
 756   // cannot de-opt, then we do NOT need any debug info.
 757   bool full_info = (C->deopt_happens() || call->Opcode() != Op_SafePoint);
 758 
 759   // If we are guaranteed to throw, we can prune everything but the
 760   // input to the current bytecode.
 761   bool can_prune_locals = false;
 762   uint stack_slots_not_pruned = 0;
 763   int inputs = 0, depth = 0;
 764   if (must_throw) {
 765     assert(method() == youngest_jvms->method(), "sanity");
 766     if (compute_stack_effects(inputs, depth)) {
 767       can_prune_locals = true;
 768       stack_slots_not_pruned = inputs;
 769     }
 770   }
 771 
 772   if (env()->jvmti_can_examine_or_deopt_anywhere()) {
 773     // At any safepoint, this method can get breakpointed, which would
 774     // then require an immediate deoptimization.
 775     full_info = true;
 776     can_prune_locals = false;  // do not prune locals
 777     stack_slots_not_pruned = 0;
 778   }
 779 
 780   // do not scribble on the input jvms
 781   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 782   call->set_jvms(out_jvms); // Start jvms list for call node
 783 
 784   // Presize the call:
 785   debug_only(uint non_debug_edges = call->req());
 786   call->add_req_batch(top(), youngest_jvms->debug_depth());
 787   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 788 
 789   // Set up edges so that the call looks like this:
 790   //  Call [state:] ctl io mem fptr retadr
 791   //       [parms:] parm0 ... parmN
 792   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 793   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 794   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 795   // Note that caller debug info precedes callee debug info.
 796 
 797   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 798   uint debug_ptr = call->req();
 799 
 800   // Loop over the map input edges associated with jvms, add them
 801   // to the call node, & reset all offsets to match call node array.
 802   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 803     uint debug_end   = debug_ptr;
 804     uint debug_start = debug_ptr - in_jvms->debug_size();
 805     debug_ptr = debug_start;  // back up the ptr
 806 
 807     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 808     uint j, k, l;
 809     SafePointNode* in_map = in_jvms->map();
 810     out_jvms->set_map(call);
 811 
 812     if (can_prune_locals) {
 813       assert(in_jvms->method() == out_jvms->method(), "sanity");
 814       // If the current throw can reach an exception handler in this JVMS,
 815       // then we must keep everything live that can reach that handler.
 816       // As a quick and dirty approximation, we look for any handlers at all.
 817       if (in_jvms->method()->has_exception_handlers()) {
 818         can_prune_locals = false;
 819       }
 820     }
 821 
 822     // Add the Locals
 823     k = in_jvms->locoff();
 824     l = in_jvms->loc_size();
 825     out_jvms->set_locoff(p);
 826     if (full_info && !can_prune_locals) {
 827       for (j = 0; j < l; j++)
 828         call->set_req(p++, in_map->in(k+j));
 829     } else {
 830       p += l;  // already set to top above by add_req_batch
 831     }
 832 
 833     // Add the Expression Stack
 834     k = in_jvms->stkoff();
 835     l = in_jvms->sp();
 836     out_jvms->set_stkoff(p);
 837     if (full_info && !can_prune_locals) {
 838       for (j = 0; j < l; j++)
 839         call->set_req(p++, in_map->in(k+j));
 840     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 841       // Divide stack into {S0,...,S1}, where S0 is set to top.
 842       uint s1 = stack_slots_not_pruned;
 843       stack_slots_not_pruned = 0;  // for next iteration
 844       if (s1 > l)  s1 = l;
 845       uint s0 = l - s1;
 846       p += s0;  // skip the tops preinstalled by add_req_batch
 847       for (j = s0; j < l; j++)
 848         call->set_req(p++, in_map->in(k+j));
 849     } else {
 850       p += l;  // already set to top above by add_req_batch
 851     }
 852 
 853     // Add the Monitors
 854     k = in_jvms->monoff();
 855     l = in_jvms->mon_size();
 856     out_jvms->set_monoff(p);
 857     for (j = 0; j < l; j++)
 858       call->set_req(p++, in_map->in(k+j));
 859 
 860     // Copy any scalar object fields.
 861     k = in_jvms->scloff();
 862     l = in_jvms->scl_size();
 863     out_jvms->set_scloff(p);
 864     for (j = 0; j < l; j++)
 865       call->set_req(p++, in_map->in(k+j));
 866 
 867     // Finish the new jvms.
 868     out_jvms->set_endoff(p);
 869 
 870     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 871     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 872     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 873     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 874     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 875     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 876 
 877     // Update the two tail pointers in parallel.
 878     out_jvms = out_jvms->caller();
 879     in_jvms  = in_jvms->caller();
 880   }
 881 
 882   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 883 
 884   // Test the correctness of JVMState::debug_xxx accessors:
 885   assert(call->jvms()->debug_start() == non_debug_edges, "");
 886   assert(call->jvms()->debug_end()   == call->req(), "");
 887   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 888 }
 889 
 890 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 891   Bytecodes::Code code = java_bc();
 892   if (code == Bytecodes::_wide) {
 893     code = method()->java_code_at_bci(bci() + 1);
 894   }
 895 
 896   BasicType rtype = T_ILLEGAL;
 897   int       rsize = 0;
 898 
 899   if (code != Bytecodes::_illegal) {
 900     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
 901     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
 902     if (rtype < T_CONFLICT)
 903       rsize = type2size[rtype];
 904   }
 905 
 906   switch (code) {
 907   case Bytecodes::_illegal:
 908     return false;
 909 
 910   case Bytecodes::_ldc:
 911   case Bytecodes::_ldc_w:
 912   case Bytecodes::_ldc2_w:
 913     inputs = 0;
 914     break;
 915 
 916   case Bytecodes::_dup:         inputs = 1;  break;
 917   case Bytecodes::_dup_x1:      inputs = 2;  break;
 918   case Bytecodes::_dup_x2:      inputs = 3;  break;
 919   case Bytecodes::_dup2:        inputs = 2;  break;
 920   case Bytecodes::_dup2_x1:     inputs = 3;  break;
 921   case Bytecodes::_dup2_x2:     inputs = 4;  break;
 922   case Bytecodes::_swap:        inputs = 2;  break;
 923   case Bytecodes::_arraylength: inputs = 1;  break;
 924 
 925   case Bytecodes::_getstatic:
 926   case Bytecodes::_putstatic:
 927   case Bytecodes::_getfield:
 928   case Bytecodes::_putfield:
 929     {
 930       bool is_get = (depth >= 0), is_static = (depth & 1);
 931       bool ignore;
 932       ciBytecodeStream iter(method());
 933       iter.reset_to_bci(bci());
 934       iter.next();
 935       ciField* field = iter.get_field(ignore);
 936       int      size  = field->type()->size();
 937       inputs  = (is_static ? 0 : 1);
 938       if (is_get) {
 939         depth = size - inputs;
 940       } else {
 941         inputs += size;        // putxxx pops the value from the stack
 942         depth = - inputs;
 943       }
 944     }
 945     break;
 946 
 947   case Bytecodes::_invokevirtual:
 948   case Bytecodes::_invokespecial:
 949   case Bytecodes::_invokestatic:
 950   case Bytecodes::_invokedynamic:
 951   case Bytecodes::_invokeinterface:
 952     {
 953       bool is_static = (depth == 0);
 954       bool ignore;
 955       ciBytecodeStream iter(method());
 956       iter.reset_to_bci(bci());
 957       iter.next();
 958       ciMethod* method = iter.get_method(ignore);
 959       inputs = method->arg_size_no_receiver();
 960       if (!is_static)  inputs += 1;
 961       int size = method->return_type()->size();
 962       depth = size - inputs;
 963     }
 964     break;
 965 
 966   case Bytecodes::_multianewarray:
 967     {
 968       ciBytecodeStream iter(method());
 969       iter.reset_to_bci(bci());
 970       iter.next();
 971       inputs = iter.get_dimensions();
 972       assert(rsize == 1, "");
 973       depth = rsize - inputs;
 974     }
 975     break;
 976 
 977   case Bytecodes::_ireturn:
 978   case Bytecodes::_lreturn:
 979   case Bytecodes::_freturn:
 980   case Bytecodes::_dreturn:
 981   case Bytecodes::_areturn:
 982     assert(rsize = -depth, "");
 983     inputs = rsize;
 984     break;
 985 
 986   case Bytecodes::_jsr:
 987   case Bytecodes::_jsr_w:
 988     inputs = 0;
 989     depth  = 1;                  // S.B. depth=1, not zero
 990     break;
 991 
 992   default:
 993     // bytecode produces a typed result
 994     inputs = rsize - depth;
 995     assert(inputs >= 0, "");
 996     break;
 997   }
 998 
 999 #ifdef ASSERT
1000   // spot check
1001   int outputs = depth + inputs;
1002   assert(outputs >= 0, "sanity");
1003   switch (code) {
1004   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1005   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1006   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1007   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1008   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1009   }
1010 #endif //ASSERT
1011 
1012   return true;
1013 }
1014 
1015 
1016 
1017 //------------------------------basic_plus_adr---------------------------------
1018 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1019   // short-circuit a common case
1020   if (offset == intcon(0))  return ptr;
1021   return _gvn.transform( new (C, 4) AddPNode(base, ptr, offset) );
1022 }
1023 
1024 Node* GraphKit::ConvI2L(Node* offset) {
1025   // short-circuit a common case
1026   jint offset_con = find_int_con(offset, Type::OffsetBot);
1027   if (offset_con != Type::OffsetBot) {
1028     return longcon((long) offset_con);
1029   }
1030   return _gvn.transform( new (C, 2) ConvI2LNode(offset));
1031 }
1032 Node* GraphKit::ConvL2I(Node* offset) {
1033   // short-circuit a common case
1034   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1035   if (offset_con != (jlong)Type::OffsetBot) {
1036     return intcon((int) offset_con);
1037   }
1038   return _gvn.transform( new (C, 2) ConvL2INode(offset));
1039 }
1040 
1041 //-------------------------load_object_klass-----------------------------------
1042 Node* GraphKit::load_object_klass(Node* obj) {
1043   // Special-case a fresh allocation to avoid building nodes:
1044   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1045   if (akls != NULL)  return akls;
1046   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1047   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
1048 }
1049 
1050 //-------------------------load_array_length-----------------------------------
1051 Node* GraphKit::load_array_length(Node* array) {
1052   // Special-case a fresh allocation to avoid building nodes:
1053   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1054   Node *alen;
1055   if (alloc == NULL) {
1056     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1057     alen = _gvn.transform( new (C, 3) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1058   } else {
1059     alen = alloc->Ideal_length();
1060     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_aryptr(), &_gvn);
1061     if (ccast != alen) {
1062       alen = _gvn.transform(ccast);
1063     }
1064   }
1065   return alen;
1066 }
1067 
1068 //------------------------------do_null_check----------------------------------
1069 // Helper function to do a NULL pointer check.  Returned value is
1070 // the incoming address with NULL casted away.  You are allowed to use the
1071 // not-null value only if you are control dependent on the test.
1072 extern int explicit_null_checks_inserted,
1073            explicit_null_checks_elided;
1074 Node* GraphKit::null_check_common(Node* value, BasicType type,
1075                                   // optional arguments for variations:
1076                                   bool assert_null,
1077                                   Node* *null_control) {
1078   assert(!assert_null || null_control == NULL, "not both at once");
1079   if (stopped())  return top();
1080   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1081     // For some performance testing, we may wish to suppress null checking.
1082     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1083     return value;
1084   }
1085   explicit_null_checks_inserted++;
1086 
1087   // Construct NULL check
1088   Node *chk = NULL;
1089   switch(type) {
1090     case T_LONG   : chk = new (C, 3) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1091     case T_INT    : chk = new (C, 3) CmpINode( value, _gvn.intcon(0)); break;
1092     case T_ARRAY  : // fall through
1093       type = T_OBJECT;  // simplify further tests
1094     case T_OBJECT : {
1095       const Type *t = _gvn.type( value );
1096 
1097       const TypeInstPtr* tp = t->isa_instptr();
1098       if (tp != NULL && !tp->klass()->is_loaded()
1099           // Only for do_null_check, not any of its siblings:
1100           && !assert_null && null_control == NULL) {
1101         // Usually, any field access or invocation on an unloaded oop type
1102         // will simply fail to link, since the statically linked class is
1103         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1104         // the static class is loaded but the sharper oop type is not.
1105         // Rather than checking for this obscure case in lots of places,
1106         // we simply observe that a null check on an unloaded class
1107         // will always be followed by a nonsense operation, so we
1108         // can just issue the uncommon trap here.
1109         // Our access to the unloaded class will only be correct
1110         // after it has been loaded and initialized, which requires
1111         // a trip through the interpreter.
1112 #ifndef PRODUCT
1113         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1114 #endif
1115         uncommon_trap(Deoptimization::Reason_unloaded,
1116                       Deoptimization::Action_reinterpret,
1117                       tp->klass(), "!loaded");
1118         return top();
1119       }
1120 
1121       if (assert_null) {
1122         // See if the type is contained in NULL_PTR.
1123         // If so, then the value is already null.
1124         if (t->higher_equal(TypePtr::NULL_PTR)) {
1125           explicit_null_checks_elided++;
1126           return value;           // Elided null assert quickly!
1127         }
1128       } else {
1129         // See if mixing in the NULL pointer changes type.
1130         // If so, then the NULL pointer was not allowed in the original
1131         // type.  In other words, "value" was not-null.
1132         if (t->meet(TypePtr::NULL_PTR) != t) {
1133           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1134           explicit_null_checks_elided++;
1135           return value;           // Elided null check quickly!
1136         }
1137       }
1138       chk = new (C, 3) CmpPNode( value, null() );
1139       break;
1140     }
1141 
1142     default      : ShouldNotReachHere();
1143   }
1144   assert(chk != NULL, "sanity check");
1145   chk = _gvn.transform(chk);
1146 
1147   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1148   BoolNode *btst = new (C, 2) BoolNode( chk, btest);
1149   Node   *tst = _gvn.transform( btst );
1150 
1151   //-----------
1152   // if peephole optimizations occurred, a prior test existed.
1153   // If a prior test existed, maybe it dominates as we can avoid this test.
1154   if (tst != btst && type == T_OBJECT) {
1155     // At this point we want to scan up the CFG to see if we can
1156     // find an identical test (and so avoid this test altogether).
1157     Node *cfg = control();
1158     int depth = 0;
1159     while( depth < 16 ) {       // Limit search depth for speed
1160       if( cfg->Opcode() == Op_IfTrue &&
1161           cfg->in(0)->in(1) == tst ) {
1162         // Found prior test.  Use "cast_not_null" to construct an identical
1163         // CastPP (and hence hash to) as already exists for the prior test.
1164         // Return that casted value.
1165         if (assert_null) {
1166           replace_in_map(value, null());
1167           return null();  // do not issue the redundant test
1168         }
1169         Node *oldcontrol = control();
1170         set_control(cfg);
1171         Node *res = cast_not_null(value);
1172         set_control(oldcontrol);
1173         explicit_null_checks_elided++;
1174         return res;
1175       }
1176       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1177       if (cfg == NULL)  break;  // Quit at region nodes
1178       depth++;
1179     }
1180   }
1181 
1182   //-----------
1183   // Branch to failure if null
1184   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1185   Deoptimization::DeoptReason reason;
1186   if (assert_null)
1187     reason = Deoptimization::Reason_null_assert;
1188   else if (type == T_OBJECT)
1189     reason = Deoptimization::Reason_null_check;
1190   else
1191     reason = Deoptimization::Reason_div0_check;
1192 
1193   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1194   // ciMethodData::has_trap_at will return a conservative -1 if any
1195   // must-be-null assertion has failed.  This could cause performance
1196   // problems for a method after its first do_null_assert failure.
1197   // Consider using 'Reason_class_check' instead?
1198 
1199   // To cause an implicit null check, we set the not-null probability
1200   // to the maximum (PROB_MAX).  For an explicit check the probability
1201   // is set to a smaller value.
1202   if (null_control != NULL || too_many_traps(reason)) {
1203     // probability is less likely
1204     ok_prob =  PROB_LIKELY_MAG(3);
1205   } else if (!assert_null &&
1206              (ImplicitNullCheckThreshold > 0) &&
1207              method() != NULL &&
1208              (method()->method_data()->trap_count(reason)
1209               >= (uint)ImplicitNullCheckThreshold)) {
1210     ok_prob =  PROB_LIKELY_MAG(3);
1211   }
1212 
1213   if (null_control != NULL) {
1214     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1215     Node* null_true = _gvn.transform( new (C, 1) IfFalseNode(iff));
1216     set_control(      _gvn.transform( new (C, 1) IfTrueNode(iff)));
1217     if (null_true == top())
1218       explicit_null_checks_elided++;
1219     (*null_control) = null_true;
1220   } else {
1221     BuildCutout unless(this, tst, ok_prob);
1222     // Check for optimizer eliding test at parse time
1223     if (stopped()) {
1224       // Failure not possible; do not bother making uncommon trap.
1225       explicit_null_checks_elided++;
1226     } else if (assert_null) {
1227       uncommon_trap(reason,
1228                     Deoptimization::Action_make_not_entrant,
1229                     NULL, "assert_null");
1230     } else {
1231       replace_in_map(value, zerocon(type));
1232       builtin_throw(reason);
1233     }
1234   }
1235 
1236   // Must throw exception, fall-thru not possible?
1237   if (stopped()) {
1238     return top();               // No result
1239   }
1240 
1241   if (assert_null) {
1242     // Cast obj to null on this path.
1243     replace_in_map(value, zerocon(type));
1244     return zerocon(type);
1245   }
1246 
1247   // Cast obj to not-null on this path, if there is no null_control.
1248   // (If there is a null_control, a non-null value may come back to haunt us.)
1249   if (type == T_OBJECT) {
1250     Node* cast = cast_not_null(value, false);
1251     if (null_control == NULL || (*null_control) == top())
1252       replace_in_map(value, cast);
1253     value = cast;
1254   }
1255 
1256   return value;
1257 }
1258 
1259 
1260 //------------------------------cast_not_null----------------------------------
1261 // Cast obj to not-null on this path
1262 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1263   const Type *t = _gvn.type(obj);
1264   const Type *t_not_null = t->join(TypePtr::NOTNULL);
1265   // Object is already not-null?
1266   if( t == t_not_null ) return obj;
1267 
1268   Node *cast = new (C, 2) CastPPNode(obj,t_not_null);
1269   cast->init_req(0, control());
1270   cast = _gvn.transform( cast );
1271 
1272   // Scan for instances of 'obj' in the current JVM mapping.
1273   // These instances are known to be not-null after the test.
1274   if (do_replace_in_map)
1275     replace_in_map(obj, cast);
1276 
1277   return cast;                  // Return casted value
1278 }
1279 
1280 
1281 //--------------------------replace_in_map-------------------------------------
1282 void GraphKit::replace_in_map(Node* old, Node* neww) {
1283   this->map()->replace_edge(old, neww);
1284 
1285   // Note: This operation potentially replaces any edge
1286   // on the map.  This includes locals, stack, and monitors
1287   // of the current (innermost) JVM state.
1288 
1289   // We can consider replacing in caller maps.
1290   // The idea would be that an inlined function's null checks
1291   // can be shared with the entire inlining tree.
1292   // The expense of doing this is that the PreserveJVMState class
1293   // would have to preserve caller states too, with a deep copy.
1294 }
1295 
1296 
1297 
1298 //=============================================================================
1299 //--------------------------------memory---------------------------------------
1300 Node* GraphKit::memory(uint alias_idx) {
1301   MergeMemNode* mem = merged_memory();
1302   Node* p = mem->memory_at(alias_idx);
1303   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1304   return p;
1305 }
1306 
1307 //-----------------------------reset_memory------------------------------------
1308 Node* GraphKit::reset_memory() {
1309   Node* mem = map()->memory();
1310   // do not use this node for any more parsing!
1311   debug_only( map()->set_memory((Node*)NULL) );
1312   return _gvn.transform( mem );
1313 }
1314 
1315 //------------------------------set_all_memory---------------------------------
1316 void GraphKit::set_all_memory(Node* newmem) {
1317   Node* mergemem = MergeMemNode::make(C, newmem);
1318   gvn().set_type_bottom(mergemem);
1319   map()->set_memory(mergemem);
1320 }
1321 
1322 //------------------------------set_all_memory_call----------------------------
1323 void GraphKit::set_all_memory_call(Node* call) {
1324   Node* newmem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) );
1325   set_all_memory(newmem);
1326 }
1327 
1328 //=============================================================================
1329 //
1330 // parser factory methods for MemNodes
1331 //
1332 // These are layered on top of the factory methods in LoadNode and StoreNode,
1333 // and integrate with the parser's memory state and _gvn engine.
1334 //
1335 
1336 // factory methods in "int adr_idx"
1337 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1338                           int adr_idx,
1339                           bool require_atomic_access) {
1340   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1341   const TypePtr* adr_type = NULL; // debug-mode-only argument
1342   debug_only(adr_type = C->get_adr_type(adr_idx));
1343   Node* mem = memory(adr_idx);
1344   Node* ld;
1345   if (require_atomic_access && bt == T_LONG) {
1346     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t);
1347   } else {
1348     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt);
1349   }
1350   return _gvn.transform(ld);
1351 }
1352 
1353 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1354                                 int adr_idx,
1355                                 bool require_atomic_access) {
1356   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1357   const TypePtr* adr_type = NULL;
1358   debug_only(adr_type = C->get_adr_type(adr_idx));
1359   Node *mem = memory(adr_idx);
1360   Node* st;
1361   if (require_atomic_access && bt == T_LONG) {
1362     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val);
1363   } else {
1364     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt);
1365   }
1366   st = _gvn.transform(st);
1367   set_memory(st, adr_idx);
1368   // Back-to-back stores can only remove intermediate store with DU info
1369   // so push on worklist for optimizer.
1370   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1371     record_for_igvn(st);
1372 
1373   return st;
1374 }
1375 
1376 
1377 void GraphKit::pre_barrier(Node* ctl,
1378                            Node* obj,
1379                            Node* adr,
1380                            uint  adr_idx,
1381                            Node* val,
1382                            const TypeOopPtr* val_type,
1383                            BasicType bt) {
1384   BarrierSet* bs = Universe::heap()->barrier_set();
1385   set_control(ctl);
1386   switch (bs->kind()) {
1387     case BarrierSet::G1SATBCT:
1388     case BarrierSet::G1SATBCTLogging:
1389       g1_write_barrier_pre(obj, adr, adr_idx, val, val_type, bt);
1390       break;
1391 
1392     case BarrierSet::CardTableModRef:
1393     case BarrierSet::CardTableExtension:
1394     case BarrierSet::ModRef:
1395       break;
1396 
1397     case BarrierSet::Other:
1398     default      :
1399       ShouldNotReachHere();
1400 
1401   }
1402 }
1403 
1404 void GraphKit::post_barrier(Node* ctl,
1405                             Node* store,
1406                             Node* obj,
1407                             Node* adr,
1408                             uint  adr_idx,
1409                             Node* val,
1410                             BasicType bt,
1411                             bool use_precise) {
1412   BarrierSet* bs = Universe::heap()->barrier_set();
1413   set_control(ctl);
1414   switch (bs->kind()) {
1415     case BarrierSet::G1SATBCT:
1416     case BarrierSet::G1SATBCTLogging:
1417       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1418       break;
1419 
1420     case BarrierSet::CardTableModRef:
1421     case BarrierSet::CardTableExtension:
1422       write_barrier_post(store, obj, adr, val, use_precise);
1423       break;
1424 
1425     case BarrierSet::ModRef:
1426       break;
1427 
1428     case BarrierSet::Other:
1429     default      :
1430       ShouldNotReachHere();
1431 
1432   }
1433 }
1434 
1435 Node* GraphKit::store_oop(Node* ctl,
1436                           Node* obj,
1437                           Node* adr,
1438                           const TypePtr* adr_type,
1439                           Node* val,
1440                           const TypeOopPtr* val_type,
1441                           BasicType bt,
1442                           bool use_precise) {
1443 
1444   set_control(ctl);
1445   if (stopped()) return top(); // Dead path ?
1446 
1447   assert(bt == T_OBJECT, "sanity");
1448   assert(val != NULL, "not dead path");
1449   uint adr_idx = C->get_alias_index(adr_type);
1450   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1451 
1452   pre_barrier(control(), obj, adr, adr_idx, val, val_type, bt);
1453   Node* store = store_to_memory(control(), adr, val, bt, adr_idx);
1454   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1455   return store;
1456 }
1457 
1458 // Could be an array or object we don't know at compile time (unsafe ref.)
1459 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1460                              Node* obj,   // containing obj
1461                              Node* adr,  // actual adress to store val at
1462                              const TypePtr* adr_type,
1463                              Node* val,
1464                              BasicType bt) {
1465   Compile::AliasType* at = C->alias_type(adr_type);
1466   const TypeOopPtr* val_type = NULL;
1467   if (adr_type->isa_instptr()) {
1468     if (at->field() != NULL) {
1469       // known field.  This code is a copy of the do_put_xxx logic.
1470       ciField* field = at->field();
1471       if (!field->type()->is_loaded()) {
1472         val_type = TypeInstPtr::BOTTOM;
1473       } else {
1474         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1475       }
1476     }
1477   } else if (adr_type->isa_aryptr()) {
1478     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1479   }
1480   if (val_type == NULL) {
1481     val_type = TypeInstPtr::BOTTOM;
1482   }
1483   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true);
1484 }
1485 
1486 
1487 //-------------------------array_element_address-------------------------
1488 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1489                                       const TypeInt* sizetype) {
1490   uint shift  = exact_log2(type2aelembytes(elembt));
1491   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1492 
1493   // short-circuit a common case (saves lots of confusing waste motion)
1494   jint idx_con = find_int_con(idx, -1);
1495   if (idx_con >= 0) {
1496     intptr_t offset = header + ((intptr_t)idx_con << shift);
1497     return basic_plus_adr(ary, offset);
1498   }
1499 
1500   // must be correct type for alignment purposes
1501   Node* base  = basic_plus_adr(ary, header);
1502 #ifdef _LP64
1503   // The scaled index operand to AddP must be a clean 64-bit value.
1504   // Java allows a 32-bit int to be incremented to a negative
1505   // value, which appears in a 64-bit register as a large
1506   // positive number.  Using that large positive number as an
1507   // operand in pointer arithmetic has bad consequences.
1508   // On the other hand, 32-bit overflow is rare, and the possibility
1509   // can often be excluded, if we annotate the ConvI2L node with
1510   // a type assertion that its value is known to be a small positive
1511   // number.  (The prior range check has ensured this.)
1512   // This assertion is used by ConvI2LNode::Ideal.
1513   int index_max = max_jint - 1;  // array size is max_jint, index is one less
1514   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1515   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1516   idx = _gvn.transform( new (C, 2) ConvI2LNode(idx, lidxtype) );
1517 #endif
1518   Node* scale = _gvn.transform( new (C, 3) LShiftXNode(idx, intcon(shift)) );
1519   return basic_plus_adr(ary, base, scale);
1520 }
1521 
1522 //-------------------------load_array_element-------------------------
1523 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1524   const Type* elemtype = arytype->elem();
1525   BasicType elembt = elemtype->array_element_basic_type();
1526   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1527   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype);
1528   return ld;
1529 }
1530 
1531 //-------------------------set_arguments_for_java_call-------------------------
1532 // Arguments (pre-popped from the stack) are taken from the JVMS.
1533 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1534   // Add the call arguments:
1535   uint nargs = call->method()->arg_size();
1536   for (uint i = 0; i < nargs; i++) {
1537     Node* arg = argument(i);
1538     call->init_req(i + TypeFunc::Parms, arg);
1539   }
1540 }
1541 
1542 //---------------------------set_edges_for_java_call---------------------------
1543 // Connect a newly created call into the current JVMS.
1544 // A return value node (if any) is returned from set_edges_for_java_call.
1545 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw) {
1546 
1547   // Add the predefined inputs:
1548   call->init_req( TypeFunc::Control, control() );
1549   call->init_req( TypeFunc::I_O    , i_o() );
1550   call->init_req( TypeFunc::Memory , reset_memory() );
1551   call->init_req( TypeFunc::FramePtr, frameptr() );
1552   call->init_req( TypeFunc::ReturnAdr, top() );
1553 
1554   add_safepoint_edges(call, must_throw);
1555 
1556   Node* xcall = _gvn.transform(call);
1557 
1558   if (xcall == top()) {
1559     set_control(top());
1560     return;
1561   }
1562   assert(xcall == call, "call identity is stable");
1563 
1564   // Re-use the current map to produce the result.
1565 
1566   set_control(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Control)));
1567   set_i_o(    _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O    )));
1568   set_all_memory_call(xcall);
1569 
1570   //return xcall;   // no need, caller already has it
1571 }
1572 
1573 Node* GraphKit::set_results_for_java_call(CallJavaNode* call) {
1574   if (stopped())  return top();  // maybe the call folded up?
1575 
1576   // Capture the return value, if any.
1577   Node* ret;
1578   if (call->method() == NULL ||
1579       call->method()->return_type()->basic_type() == T_VOID)
1580         ret = top();
1581   else  ret = _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
1582 
1583   // Note:  Since any out-of-line call can produce an exception,
1584   // we always insert an I_O projection from the call into the result.
1585 
1586   make_slow_call_ex(call, env()->Throwable_klass(), false);
1587 
1588   return ret;
1589 }
1590 
1591 //--------------------set_predefined_input_for_runtime_call--------------------
1592 // Reading and setting the memory state is way conservative here.
1593 // The real problem is that I am not doing real Type analysis on memory,
1594 // so I cannot distinguish card mark stores from other stores.  Across a GC
1595 // point the Store Barrier and the card mark memory has to agree.  I cannot
1596 // have a card mark store and its barrier split across the GC point from
1597 // either above or below.  Here I get that to happen by reading ALL of memory.
1598 // A better answer would be to separate out card marks from other memory.
1599 // For now, return the input memory state, so that it can be reused
1600 // after the call, if this call has restricted memory effects.
1601 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1602   // Set fixed predefined input arguments
1603   Node* memory = reset_memory();
1604   call->init_req( TypeFunc::Control,   control()  );
1605   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1606   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1607   call->init_req( TypeFunc::FramePtr,  frameptr() );
1608   call->init_req( TypeFunc::ReturnAdr, top()      );
1609   return memory;
1610 }
1611 
1612 //-------------------set_predefined_output_for_runtime_call--------------------
1613 // Set control and memory (not i_o) from the call.
1614 // If keep_mem is not NULL, use it for the output state,
1615 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1616 // If hook_mem is NULL, this call produces no memory effects at all.
1617 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1618 // then only that memory slice is taken from the call.
1619 // In the last case, we must put an appropriate memory barrier before
1620 // the call, so as to create the correct anti-dependencies on loads
1621 // preceding the call.
1622 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1623                                                       Node* keep_mem,
1624                                                       const TypePtr* hook_mem) {
1625   // no i/o
1626   set_control(_gvn.transform( new (C, 1) ProjNode(call,TypeFunc::Control) ));
1627   if (keep_mem) {
1628     // First clone the existing memory state
1629     set_all_memory(keep_mem);
1630     if (hook_mem != NULL) {
1631       // Make memory for the call
1632       Node* mem = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::Memory) );
1633       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1634       // We also use hook_mem to extract specific effects from arraycopy stubs.
1635       set_memory(mem, hook_mem);
1636     }
1637     // ...else the call has NO memory effects.
1638 
1639     // Make sure the call advertises its memory effects precisely.
1640     // This lets us build accurate anti-dependences in gcm.cpp.
1641     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1642            "call node must be constructed correctly");
1643   } else {
1644     assert(hook_mem == NULL, "");
1645     // This is not a "slow path" call; all memory comes from the call.
1646     set_all_memory_call(call);
1647   }
1648 }
1649 
1650 //------------------------------increment_counter------------------------------
1651 // for statistics: increment a VM counter by 1
1652 
1653 void GraphKit::increment_counter(address counter_addr) {
1654   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1655   increment_counter(adr1);
1656 }
1657 
1658 void GraphKit::increment_counter(Node* counter_addr) {
1659   int adr_type = Compile::AliasIdxRaw;
1660   Node* cnt  = make_load(NULL, counter_addr, TypeInt::INT, T_INT, adr_type);
1661   Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
1662   store_to_memory( NULL, counter_addr, incr, T_INT, adr_type );
1663 }
1664 
1665 
1666 //------------------------------uncommon_trap----------------------------------
1667 // Bail out to the interpreter in mid-method.  Implemented by calling the
1668 // uncommon_trap blob.  This helper function inserts a runtime call with the
1669 // right debug info.
1670 void GraphKit::uncommon_trap(int trap_request,
1671                              ciKlass* klass, const char* comment,
1672                              bool must_throw,
1673                              bool keep_exact_action) {
1674   if (failing())  stop();
1675   if (stopped())  return; // trap reachable?
1676 
1677   // Note:  If ProfileTraps is true, and if a deopt. actually
1678   // occurs here, the runtime will make sure an MDO exists.  There is
1679   // no need to call method()->build_method_data() at this point.
1680 
1681 #ifdef ASSERT
1682   if (!must_throw) {
1683     // Make sure the stack has at least enough depth to execute
1684     // the current bytecode.
1685     int inputs, ignore;
1686     if (compute_stack_effects(inputs, ignore)) {
1687       assert(sp() >= inputs, "must have enough JVMS stack to execute");
1688       // It is a frequent error in library_call.cpp to issue an
1689       // uncommon trap with the _sp value already popped.
1690     }
1691   }
1692 #endif
1693 
1694   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1695   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1696 
1697   switch (action) {
1698   case Deoptimization::Action_maybe_recompile:
1699   case Deoptimization::Action_reinterpret:
1700     // Temporary fix for 6529811 to allow virtual calls to be sure they
1701     // get the chance to go from mono->bi->mega
1702     if (!keep_exact_action &&
1703         Deoptimization::trap_request_index(trap_request) < 0 &&
1704         too_many_recompiles(reason)) {
1705       // This BCI is causing too many recompilations.
1706       action = Deoptimization::Action_none;
1707       trap_request = Deoptimization::make_trap_request(reason, action);
1708     } else {
1709       C->set_trap_can_recompile(true);
1710     }
1711     break;
1712   case Deoptimization::Action_make_not_entrant:
1713     C->set_trap_can_recompile(true);
1714     break;
1715 #ifdef ASSERT
1716   case Deoptimization::Action_none:
1717   case Deoptimization::Action_make_not_compilable:
1718     break;
1719   default:
1720     assert(false, "bad action");
1721 #endif
1722   }
1723 
1724   if (TraceOptoParse) {
1725     char buf[100];
1726     tty->print_cr("Uncommon trap %s at bci:%d",
1727                   Deoptimization::format_trap_request(buf, sizeof(buf),
1728                                                       trap_request), bci());
1729   }
1730 
1731   CompileLog* log = C->log();
1732   if (log != NULL) {
1733     int kid = (klass == NULL)? -1: log->identify(klass);
1734     log->begin_elem("uncommon_trap bci='%d'", bci());
1735     char buf[100];
1736     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
1737                                                           trap_request));
1738     if (kid >= 0)         log->print(" klass='%d'", kid);
1739     if (comment != NULL)  log->print(" comment='%s'", comment);
1740     log->end_elem();
1741   }
1742 
1743   // Make sure any guarding test views this path as very unlikely
1744   Node *i0 = control()->in(0);
1745   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
1746     IfNode *iff = i0->as_If();
1747     float f = iff->_prob;   // Get prob
1748     if (control()->Opcode() == Op_IfTrue) {
1749       if (f > PROB_UNLIKELY_MAG(4))
1750         iff->_prob = PROB_MIN;
1751     } else {
1752       if (f < PROB_LIKELY_MAG(4))
1753         iff->_prob = PROB_MAX;
1754     }
1755   }
1756 
1757   // Clear out dead values from the debug info.
1758   kill_dead_locals();
1759 
1760   // Now insert the uncommon trap subroutine call
1761   address call_addr = SharedRuntime::uncommon_trap_blob()->instructions_begin();
1762   const TypePtr* no_memory_effects = NULL;
1763   // Pass the index of the class to be loaded
1764   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
1765                                  (must_throw ? RC_MUST_THROW : 0),
1766                                  OptoRuntime::uncommon_trap_Type(),
1767                                  call_addr, "uncommon_trap", no_memory_effects,
1768                                  intcon(trap_request));
1769   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
1770          "must extract request correctly from the graph");
1771   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
1772 
1773   call->set_req(TypeFunc::ReturnAdr, returnadr());
1774   // The debug info is the only real input to this call.
1775 
1776   // Halt-and-catch fire here.  The above call should never return!
1777   HaltNode* halt = new(C, TypeFunc::Parms) HaltNode(control(), frameptr());
1778   _gvn.set_type_bottom(halt);
1779   root()->add_req(halt);
1780 
1781   stop_and_kill_map();
1782 }
1783 
1784 
1785 //--------------------------just_allocated_object------------------------------
1786 // Report the object that was just allocated.
1787 // It must be the case that there are no intervening safepoints.
1788 // We use this to determine if an object is so "fresh" that
1789 // it does not require card marks.
1790 Node* GraphKit::just_allocated_object(Node* current_control) {
1791   if (C->recent_alloc_ctl() == current_control)
1792     return C->recent_alloc_obj();
1793   return NULL;
1794 }
1795 
1796 
1797 void GraphKit::round_double_arguments(ciMethod* dest_method) {
1798   // (Note:  TypeFunc::make has a cache that makes this fast.)
1799   const TypeFunc* tf    = TypeFunc::make(dest_method);
1800   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
1801   for (int j = 0; j < nargs; j++) {
1802     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
1803     if( targ->basic_type() == T_DOUBLE ) {
1804       // If any parameters are doubles, they must be rounded before
1805       // the call, dstore_rounding does gvn.transform
1806       Node *arg = argument(j);
1807       arg = dstore_rounding(arg);
1808       set_argument(j, arg);
1809     }
1810   }
1811 }
1812 
1813 void GraphKit::round_double_result(ciMethod* dest_method) {
1814   // A non-strict method may return a double value which has an extended
1815   // exponent, but this must not be visible in a caller which is 'strict'
1816   // If a strict caller invokes a non-strict callee, round a double result
1817 
1818   BasicType result_type = dest_method->return_type()->basic_type();
1819   assert( method() != NULL, "must have caller context");
1820   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
1821     // Destination method's return value is on top of stack
1822     // dstore_rounding() does gvn.transform
1823     Node *result = pop_pair();
1824     result = dstore_rounding(result);
1825     push_pair(result);
1826   }
1827 }
1828 
1829 // rounding for strict float precision conformance
1830 Node* GraphKit::precision_rounding(Node* n) {
1831   return UseStrictFP && _method->flags().is_strict()
1832     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
1833     ? _gvn.transform( new (C, 2) RoundFloatNode(0, n) )
1834     : n;
1835 }
1836 
1837 // rounding for strict double precision conformance
1838 Node* GraphKit::dprecision_rounding(Node *n) {
1839   return UseStrictFP && _method->flags().is_strict()
1840     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
1841     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
1842     : n;
1843 }
1844 
1845 // rounding for non-strict double stores
1846 Node* GraphKit::dstore_rounding(Node* n) {
1847   return Matcher::strict_fp_requires_explicit_rounding
1848     && UseSSE <= 1
1849     ? _gvn.transform( new (C, 2) RoundDoubleNode(0, n) )
1850     : n;
1851 }
1852 
1853 //=============================================================================
1854 // Generate a fast path/slow path idiom.  Graph looks like:
1855 // [foo] indicates that 'foo' is a parameter
1856 //
1857 //              [in]     NULL
1858 //                 \    /
1859 //                  CmpP
1860 //                  Bool ne
1861 //                   If
1862 //                  /  \
1863 //              True    False-<2>
1864 //              / |
1865 //             /  cast_not_null
1866 //           Load  |    |   ^
1867 //        [fast_test]   |   |
1868 // gvn to   opt_test    |   |
1869 //          /    \      |  <1>
1870 //      True     False  |
1871 //        |         \\  |
1872 //   [slow_call]     \[fast_result]
1873 //    Ctl   Val       \      \
1874 //     |               \      \
1875 //    Catch       <1>   \      \
1876 //   /    \        ^     \      \
1877 //  Ex    No_Ex    |      \      \
1878 //  |       \   \  |       \ <2>  \
1879 //  ...      \  [slow_res] |  |    \   [null_result]
1880 //            \         \--+--+---  |  |
1881 //             \           | /    \ | /
1882 //              --------Region     Phi
1883 //
1884 //=============================================================================
1885 // Code is structured as a series of driver functions all called 'do_XXX' that
1886 // call a set of helper functions.  Helper functions first, then drivers.
1887 
1888 //------------------------------null_check_oop---------------------------------
1889 // Null check oop.  Set null-path control into Region in slot 3.
1890 // Make a cast-not-nullness use the other not-null control.  Return cast.
1891 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
1892                                bool never_see_null) {
1893   // Initial NULL check taken path
1894   (*null_control) = top();
1895   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
1896 
1897   // Generate uncommon_trap:
1898   if (never_see_null && (*null_control) != top()) {
1899     // If we see an unexpected null at a check-cast we record it and force a
1900     // recompile; the offending check-cast will be compiled to handle NULLs.
1901     // If we see more than one offending BCI, then all checkcasts in the
1902     // method will be compiled to handle NULLs.
1903     PreserveJVMState pjvms(this);
1904     set_control(*null_control);
1905     replace_in_map(value, null());
1906     uncommon_trap(Deoptimization::Reason_null_check,
1907                   Deoptimization::Action_make_not_entrant);
1908     (*null_control) = top();    // NULL path is dead
1909   }
1910 
1911   // Cast away null-ness on the result
1912   return cast;
1913 }
1914 
1915 //------------------------------opt_iff----------------------------------------
1916 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
1917 // Return slow-path control.
1918 Node* GraphKit::opt_iff(Node* region, Node* iff) {
1919   IfNode *opt_iff = _gvn.transform(iff)->as_If();
1920 
1921   // Fast path taken; set region slot 2
1922   Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_iff) );
1923   region->init_req(2,fast_taken); // Capture fast-control
1924 
1925   // Fast path not-taken, i.e. slow path
1926   Node *slow_taken = _gvn.transform( new (C, 1) IfTrueNode(opt_iff) );
1927   return slow_taken;
1928 }
1929 
1930 //-----------------------------make_runtime_call-------------------------------
1931 Node* GraphKit::make_runtime_call(int flags,
1932                                   const TypeFunc* call_type, address call_addr,
1933                                   const char* call_name,
1934                                   const TypePtr* adr_type,
1935                                   // The following parms are all optional.
1936                                   // The first NULL ends the list.
1937                                   Node* parm0, Node* parm1,
1938                                   Node* parm2, Node* parm3,
1939                                   Node* parm4, Node* parm5,
1940                                   Node* parm6, Node* parm7) {
1941   // Slow-path call
1942   int size = call_type->domain()->cnt();
1943   bool is_leaf = !(flags & RC_NO_LEAF);
1944   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
1945   if (call_name == NULL) {
1946     assert(!is_leaf, "must supply name for leaf");
1947     call_name = OptoRuntime::stub_name(call_addr);
1948   }
1949   CallNode* call;
1950   if (!is_leaf) {
1951     call = new(C, size) CallStaticJavaNode(call_type, call_addr, call_name,
1952                                            bci(), adr_type);
1953   } else if (flags & RC_NO_FP) {
1954     call = new(C, size) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
1955   } else {
1956     call = new(C, size) CallLeafNode(call_type, call_addr, call_name, adr_type);
1957   }
1958 
1959   // The following is similar to set_edges_for_java_call,
1960   // except that the memory effects of the call are restricted to AliasIdxRaw.
1961 
1962   // Slow path call has no side-effects, uses few values
1963   bool wide_in  = !(flags & RC_NARROW_MEM);
1964   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
1965 
1966   Node* prev_mem = NULL;
1967   if (wide_in) {
1968     prev_mem = set_predefined_input_for_runtime_call(call);
1969   } else {
1970     assert(!wide_out, "narrow in => narrow out");
1971     Node* narrow_mem = memory(adr_type);
1972     prev_mem = reset_memory();
1973     map()->set_memory(narrow_mem);
1974     set_predefined_input_for_runtime_call(call);
1975   }
1976 
1977   // Hook each parm in order.  Stop looking at the first NULL.
1978   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
1979   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
1980   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
1981   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
1982   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
1983   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
1984   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
1985   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
1986     /* close each nested if ===> */  } } } } } } } }
1987   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
1988 
1989   if (!is_leaf) {
1990     // Non-leaves can block and take safepoints:
1991     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
1992   }
1993   // Non-leaves can throw exceptions:
1994   if (has_io) {
1995     call->set_req(TypeFunc::I_O, i_o());
1996   }
1997 
1998   if (flags & RC_UNCOMMON) {
1999     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2000     // (An "if" probability corresponds roughly to an unconditional count.
2001     // Sort of.)
2002     call->set_cnt(PROB_UNLIKELY_MAG(4));
2003   }
2004 
2005   Node* c = _gvn.transform(call);
2006   assert(c == call, "cannot disappear");
2007 
2008   if (wide_out) {
2009     // Slow path call has full side-effects.
2010     set_predefined_output_for_runtime_call(call);
2011   } else {
2012     // Slow path call has few side-effects, and/or sets few values.
2013     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2014   }
2015 
2016   if (has_io) {
2017     set_i_o(_gvn.transform(new (C, 1) ProjNode(call, TypeFunc::I_O)));
2018   }
2019   return call;
2020 
2021 }
2022 
2023 //------------------------------merge_memory-----------------------------------
2024 // Merge memory from one path into the current memory state.
2025 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2026   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2027     Node* old_slice = mms.force_memory();
2028     Node* new_slice = mms.memory2();
2029     if (old_slice != new_slice) {
2030       PhiNode* phi;
2031       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
2032         phi = new_slice->as_Phi();
2033         #ifdef ASSERT
2034         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
2035           old_slice = old_slice->in(new_path);
2036         // Caller is responsible for ensuring that any pre-existing
2037         // phis are already aware of old memory.
2038         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
2039         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
2040         #endif
2041         mms.set_memory(phi);
2042       } else {
2043         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2044         _gvn.set_type(phi, Type::MEMORY);
2045         phi->set_req(new_path, new_slice);
2046         mms.set_memory(_gvn.transform(phi));  // assume it is complete
2047       }
2048     }
2049   }
2050 }
2051 
2052 //------------------------------make_slow_call_ex------------------------------
2053 // Make the exception handler hookups for the slow call
2054 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
2055   if (stopped())  return;
2056 
2057   // Make a catch node with just two handlers:  fall-through and catch-all
2058   Node* i_o  = _gvn.transform( new (C, 1) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2059   Node* catc = _gvn.transform( new (C, 2) CatchNode(control(), i_o, 2) );
2060   Node* norm = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2061   Node* excp = _gvn.transform( new (C, 1) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2062 
2063   { PreserveJVMState pjvms(this);
2064     set_control(excp);
2065     set_i_o(i_o);
2066 
2067     if (excp != top()) {
2068       // Create an exception state also.
2069       // Use an exact type if the caller has specified a specific exception.
2070       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2071       Node*       ex_oop  = new (C, 2) CreateExNode(ex_type, control(), i_o);
2072       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2073     }
2074   }
2075 
2076   // Get the no-exception control from the CatchNode.
2077   set_control(norm);
2078 }
2079 
2080 
2081 //-------------------------------gen_subtype_check-----------------------------
2082 // Generate a subtyping check.  Takes as input the subtype and supertype.
2083 // Returns 2 values: sets the default control() to the true path and returns
2084 // the false path.  Only reads invariant memory; sets no (visible) memory.
2085 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2086 // but that's not exposed to the optimizer.  This call also doesn't take in an
2087 // Object; if you wish to check an Object you need to load the Object's class
2088 // prior to coming here.
2089 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2090   // Fast check for identical types, perhaps identical constants.
2091   // The types can even be identical non-constants, in cases
2092   // involving Array.newInstance, Object.clone, etc.
2093   if (subklass == superklass)
2094     return top();             // false path is dead; no test needed.
2095 
2096   if (_gvn.type(superklass)->singleton()) {
2097     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2098     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2099 
2100     // In the common case of an exact superklass, try to fold up the
2101     // test before generating code.  You may ask, why not just generate
2102     // the code and then let it fold up?  The answer is that the generated
2103     // code will necessarily include null checks, which do not always
2104     // completely fold away.  If they are also needless, then they turn
2105     // into a performance loss.  Example:
2106     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2107     // Here, the type of 'fa' is often exact, so the store check
2108     // of fa[1]=x will fold up, without testing the nullness of x.
2109     switch (static_subtype_check(superk, subk)) {
2110     case SSC_always_false:
2111       {
2112         Node* always_fail = control();
2113         set_control(top());
2114         return always_fail;
2115       }
2116     case SSC_always_true:
2117       return top();
2118     case SSC_easy_test:
2119       {
2120         // Just do a direct pointer compare and be done.
2121         Node* cmp = _gvn.transform( new(C, 3) CmpPNode(subklass, superklass) );
2122         Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
2123         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2124         set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ) );
2125         return       _gvn.transform( new(C, 1) IfFalseNode(iff) );
2126       }
2127     case SSC_full_test:
2128       break;
2129     default:
2130       ShouldNotReachHere();
2131     }
2132   }
2133 
2134   // %%% Possible further optimization:  Even if the superklass is not exact,
2135   // if the subklass is the unique subtype of the superklass, the check
2136   // will always succeed.  We could leave a dependency behind to ensure this.
2137 
2138   // First load the super-klass's check-offset
2139   Node *p1 = basic_plus_adr( superklass, superklass, sizeof(oopDesc) + Klass::super_check_offset_offset_in_bytes() );
2140   Node *chk_off = _gvn.transform( new (C, 3) LoadINode( NULL, memory(p1), p1, _gvn.type(p1)->is_ptr() ) );
2141   int cacheoff_con = sizeof(oopDesc) + Klass::secondary_super_cache_offset_in_bytes();
2142   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2143 
2144   // Load from the sub-klass's super-class display list, or a 1-word cache of
2145   // the secondary superclass list, or a failing value with a sentinel offset
2146   // if the super-klass is an interface or exceptionally deep in the Java
2147   // hierarchy and we have to scan the secondary superclass list the hard way.
2148   // Worst-case type is a little odd: NULL is allowed as a result (usually
2149   // klass loads can never produce a NULL).
2150   Node *chk_off_X = ConvI2X(chk_off);
2151   Node *p2 = _gvn.transform( new (C, 4) AddPNode(subklass,subklass,chk_off_X) );
2152   // For some types like interfaces the following loadKlass is from a 1-word
2153   // cache which is mutable so can't use immutable memory.  Other
2154   // types load from the super-class display table which is immutable.
2155   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2156   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
2157 
2158   // Compile speed common case: ARE a subtype and we canNOT fail
2159   if( superklass == nkls )
2160     return top();             // false path is dead; no test needed.
2161 
2162   // See if we get an immediate positive hit.  Happens roughly 83% of the
2163   // time.  Test to see if the value loaded just previously from the subklass
2164   // is exactly the superklass.
2165   Node *cmp1 = _gvn.transform( new (C, 3) CmpPNode( superklass, nkls ) );
2166   Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp1, BoolTest::eq ) );
2167   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2168   Node *iftrue1 = _gvn.transform( new (C, 1) IfTrueNode ( iff1 ) );
2169   set_control(    _gvn.transform( new (C, 1) IfFalseNode( iff1 ) ) );
2170 
2171   // Compile speed common case: Check for being deterministic right now.  If
2172   // chk_off is a constant and not equal to cacheoff then we are NOT a
2173   // subklass.  In this case we need exactly the 1 test above and we can
2174   // return those results immediately.
2175   if (!might_be_cache) {
2176     Node* not_subtype_ctrl = control();
2177     set_control(iftrue1); // We need exactly the 1 test above
2178     return not_subtype_ctrl;
2179   }
2180 
2181   // Gather the various success & failures here
2182   RegionNode *r_ok_subtype = new (C, 4) RegionNode(4);
2183   record_for_igvn(r_ok_subtype);
2184   RegionNode *r_not_subtype = new (C, 3) RegionNode(3);
2185   record_for_igvn(r_not_subtype);
2186 
2187   r_ok_subtype->init_req(1, iftrue1);
2188 
2189   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2190   // is roughly 63% of the remaining cases).  Test to see if the loaded
2191   // check-offset points into the subklass display list or the 1-element
2192   // cache.  If it points to the display (and NOT the cache) and the display
2193   // missed then it's not a subtype.
2194   Node *cacheoff = _gvn.intcon(cacheoff_con);
2195   Node *cmp2 = _gvn.transform( new (C, 3) CmpINode( chk_off, cacheoff ) );
2196   Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmp2, BoolTest::ne ) );
2197   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2198   r_not_subtype->init_req(1, _gvn.transform( new (C, 1) IfTrueNode (iff2) ) );
2199   set_control(                _gvn.transform( new (C, 1) IfFalseNode(iff2) ) );
2200 
2201   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2202   // No performance impact (too rare) but allows sharing of secondary arrays
2203   // which has some footprint reduction.
2204   Node *cmp3 = _gvn.transform( new (C, 3) CmpPNode( subklass, superklass ) );
2205   Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmp3, BoolTest::eq ) );
2206   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2207   r_ok_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode ( iff3 ) ) );
2208   set_control(               _gvn.transform( new (C, 1) IfFalseNode( iff3 ) ) );
2209 
2210   // -- Roads not taken here: --
2211   // We could also have chosen to perform the self-check at the beginning
2212   // of this code sequence, as the assembler does.  This would not pay off
2213   // the same way, since the optimizer, unlike the assembler, can perform
2214   // static type analysis to fold away many successful self-checks.
2215   // Non-foldable self checks work better here in second position, because
2216   // the initial primary superclass check subsumes a self-check for most
2217   // types.  An exception would be a secondary type like array-of-interface,
2218   // which does not appear in its own primary supertype display.
2219   // Finally, we could have chosen to move the self-check into the
2220   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2221   // dependent manner.  But it is worthwhile to have the check here,
2222   // where it can be perhaps be optimized.  The cost in code space is
2223   // small (register compare, branch).
2224 
2225   // Now do a linear scan of the secondary super-klass array.  Again, no real
2226   // performance impact (too rare) but it's gotta be done.
2227   // Since the code is rarely used, there is no penalty for moving it
2228   // out of line, and it can only improve I-cache density.
2229   // The decision to inline or out-of-line this final check is platform
2230   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2231   Node* psc = _gvn.transform(
2232     new (C, 3) PartialSubtypeCheckNode(control(), subklass, superklass) );
2233 
2234   Node *cmp4 = _gvn.transform( new (C, 3) CmpPNode( psc, null() ) );
2235   Node *bol4 = _gvn.transform( new (C, 2) BoolNode( cmp4, BoolTest::ne ) );
2236   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2237   r_not_subtype->init_req(2, _gvn.transform( new (C, 1) IfTrueNode (iff4) ) );
2238   r_ok_subtype ->init_req(3, _gvn.transform( new (C, 1) IfFalseNode(iff4) ) );
2239 
2240   // Return false path; set default control to true path.
2241   set_control( _gvn.transform(r_ok_subtype) );
2242   return _gvn.transform(r_not_subtype);
2243 }
2244 
2245 //----------------------------static_subtype_check-----------------------------
2246 // Shortcut important common cases when superklass is exact:
2247 // (0) superklass is java.lang.Object (can occur in reflective code)
2248 // (1) subklass is already limited to a subtype of superklass => always ok
2249 // (2) subklass does not overlap with superklass => always fail
2250 // (3) superklass has NO subtypes and we can check with a simple compare.
2251 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2252   if (StressReflectiveCode) {
2253     return SSC_full_test;       // Let caller generate the general case.
2254   }
2255 
2256   if (superk == env()->Object_klass()) {
2257     return SSC_always_true;     // (0) this test cannot fail
2258   }
2259 
2260   ciType* superelem = superk;
2261   if (superelem->is_array_klass())
2262     superelem = superelem->as_array_klass()->base_element_type();
2263 
2264   if (!subk->is_interface()) {  // cannot trust static interface types yet
2265     if (subk->is_subtype_of(superk)) {
2266       return SSC_always_true;   // (1) false path dead; no dynamic test needed
2267     }
2268     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2269         !superk->is_subtype_of(subk)) {
2270       return SSC_always_false;
2271     }
2272   }
2273 
2274   // If casting to an instance klass, it must have no subtypes
2275   if (superk->is_interface()) {
2276     // Cannot trust interfaces yet.
2277     // %%% S.B. superk->nof_implementors() == 1
2278   } else if (superelem->is_instance_klass()) {
2279     ciInstanceKlass* ik = superelem->as_instance_klass();
2280     if (!ik->has_subklass() && !ik->is_interface()) {
2281       if (!ik->is_final()) {
2282         // Add a dependency if there is a chance of a later subclass.
2283         C->dependencies()->assert_leaf_type(ik);
2284       }
2285       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2286     }
2287   } else {
2288     // A primitive array type has no subtypes.
2289     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2290   }
2291 
2292   return SSC_full_test;
2293 }
2294 
2295 // Profile-driven exact type check:
2296 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2297                                     float prob,
2298                                     Node* *casted_receiver) {
2299   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2300   Node* recv_klass = load_object_klass(receiver);
2301   Node* want_klass = makecon(tklass);
2302   Node* cmp = _gvn.transform( new(C, 3) CmpPNode(recv_klass, want_klass) );
2303   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
2304   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2305   set_control( _gvn.transform( new(C, 1) IfTrueNode (iff) ));
2306   Node* fail = _gvn.transform( new(C, 1) IfFalseNode(iff) );
2307 
2308   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2309   assert(recv_xtype->klass_is_exact(), "");
2310 
2311   // Subsume downstream occurrences of receiver with a cast to
2312   // recv_xtype, since now we know what the type will be.
2313   Node* cast = new(C, 2) CheckCastPPNode(control(), receiver, recv_xtype);
2314   (*casted_receiver) = _gvn.transform(cast);
2315   // (User must make the replace_in_map call.)
2316 
2317   return fail;
2318 }
2319 
2320 
2321 //-------------------------------gen_instanceof--------------------------------
2322 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2323 // and the reflective instance-of call.
2324 Node* GraphKit::gen_instanceof( Node *subobj, Node* superklass ) {
2325   C->set_has_split_ifs(true); // Has chance for split-if optimization
2326   assert( !stopped(), "dead parse path should be checked in callers" );
2327   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2328          "must check for not-null not-dead klass in callers");
2329 
2330   // Make the merge point
2331   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2332   RegionNode* region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2333   Node*       phi    = new(C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
2334   C->set_has_split_ifs(true); // Has chance for split-if optimization
2335 
2336   // Null check; get casted pointer; set region slot 3
2337   Node* null_ctl = top();
2338   Node* not_null_obj = null_check_oop(subobj, &null_ctl);
2339 
2340   // If not_null_obj is dead, only null-path is taken
2341   if (stopped()) {              // Doing instance-of on a NULL?
2342     set_control(null_ctl);
2343     return intcon(0);
2344   }
2345   region->init_req(_null_path, null_ctl);
2346   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2347 
2348   // Load the object's klass
2349   Node* obj_klass = load_object_klass(not_null_obj);
2350 
2351   // Generate the subtype check
2352   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2353 
2354   // Plug in the success path to the general merge in slot 1.
2355   region->init_req(_obj_path, control());
2356   phi   ->init_req(_obj_path, intcon(1));
2357 
2358   // Plug in the failing path to the general merge in slot 2.
2359   region->init_req(_fail_path, not_subtype_ctrl);
2360   phi   ->init_req(_fail_path, intcon(0));
2361 
2362   // Return final merged results
2363   set_control( _gvn.transform(region) );
2364   record_for_igvn(region);
2365   return _gvn.transform(phi);
2366 }
2367 
2368 //-------------------------------gen_checkcast---------------------------------
2369 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2370 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2371 // uncommon-trap paths work.  Adjust stack after this call.
2372 // If failure_control is supplied and not null, it is filled in with
2373 // the control edge for the cast failure.  Otherwise, an appropriate
2374 // uncommon trap or exception is thrown.
2375 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2376                               Node* *failure_control) {
2377   kill_dead_locals();           // Benefit all the uncommon traps
2378   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2379   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2380 
2381   // Fast cutout:  Check the case that the cast is vacuously true.
2382   // This detects the common cases where the test will short-circuit
2383   // away completely.  We do this before we perform the null check,
2384   // because if the test is going to turn into zero code, we don't
2385   // want a residual null check left around.  (Causes a slowdown,
2386   // for example, in some objArray manipulations, such as a[i]=a[j].)
2387   if (tk->singleton()) {
2388     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2389     if (objtp != NULL && objtp->klass() != NULL) {
2390       switch (static_subtype_check(tk->klass(), objtp->klass())) {
2391       case SSC_always_true:
2392         return obj;
2393       case SSC_always_false:
2394         // It needs a null check because a null will *pass* the cast check.
2395         // A non-null value will always produce an exception.
2396         return do_null_assert(obj, T_OBJECT);
2397       }
2398     }
2399   }
2400 
2401   ciProfileData* data = NULL;
2402   if (failure_control == NULL) {        // use MDO in regular case only
2403     assert(java_bc() == Bytecodes::_aastore ||
2404            java_bc() == Bytecodes::_checkcast,
2405            "interpreter profiles type checks only for these BCs");
2406     data = method()->method_data()->bci_to_data(bci());
2407   }
2408 
2409   // Make the merge point
2410   enum { _obj_path = 1, _null_path, PATH_LIMIT };
2411   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2412   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, toop);
2413   C->set_has_split_ifs(true); // Has chance for split-if optimization
2414 
2415   // Use null-cast information if it is available
2416   bool never_see_null = false;
2417   // If we see an unexpected null at a check-cast we record it and force a
2418   // recompile; the offending check-cast will be compiled to handle NULLs.
2419   // If we see several offending BCIs, then all checkcasts in the
2420   // method will be compiled to handle NULLs.
2421   if (UncommonNullCast            // Cutout for this technique
2422       && failure_control == NULL  // regular case
2423       && obj != null()            // And not the -Xcomp stupid case?
2424       && !too_many_traps(Deoptimization::Reason_null_check)) {
2425     // Finally, check the "null_seen" bit from the interpreter.
2426     if (data == NULL || !data->as_BitData()->null_seen()) {
2427       never_see_null = true;
2428     }
2429   }
2430 
2431   // Null check; get casted pointer; set region slot 3
2432   Node* null_ctl = top();
2433   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
2434 
2435   // If not_null_obj is dead, only null-path is taken
2436   if (stopped()) {              // Doing instance-of on a NULL?
2437     set_control(null_ctl);
2438     return null();
2439   }
2440   region->init_req(_null_path, null_ctl);
2441   phi   ->init_req(_null_path, null());  // Set null path value
2442 
2443   Node* cast_obj = NULL;        // the casted version of the object
2444 
2445   // If the profile has seen exactly one type, narrow to that type.
2446   // (The subsequent subtype check will always fold up.)
2447   if (UseTypeProfile && TypeProfileCasts && data != NULL &&
2448       // Counter has never been decremented (due to cast failure).
2449       // ...This is a reasonable thing to expect.  It is true of
2450       // all casts inserted by javac to implement generic types.
2451       data->as_CounterData()->count() >= 0 &&
2452       !too_many_traps(Deoptimization::Reason_class_check)) {
2453     // (No, this isn't a call, but it's enough like a virtual call
2454     // to use the same ciMethod accessor to get the profile info...)
2455     ciCallProfile profile = method()->call_profile_at_bci(bci());
2456     if (profile.count() >= 0 &&         // no cast failures here
2457         profile.has_receiver(0) &&
2458         profile.morphism() == 1) {
2459       ciKlass* exact_kls = profile.receiver(0);
2460       int ssc = static_subtype_check(tk->klass(), exact_kls);
2461       if (ssc == SSC_always_true) {
2462         // If we narrow the type to match what the type profile sees,
2463         // we can then remove the rest of the cast.
2464         // This is a win, even if the exact_kls is very specific,
2465         // because downstream operations, such as method calls,
2466         // will often benefit from the sharper type.
2467         Node* exact_obj = not_null_obj; // will get updated in place...
2468         Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2469                                               &exact_obj);
2470         { PreserveJVMState pjvms(this);
2471           set_control(slow_ctl);
2472           uncommon_trap(Deoptimization::Reason_class_check,
2473                         Deoptimization::Action_maybe_recompile);
2474         }
2475         if (failure_control != NULL) // failure is now impossible
2476           (*failure_control) = top();
2477         replace_in_map(not_null_obj, exact_obj);
2478         // adjust the type of the phi to the exact klass:
2479         phi->raise_bottom_type(_gvn.type(exact_obj)->meet(TypePtr::NULL_PTR));
2480         cast_obj = exact_obj;
2481       }
2482       // assert(cast_obj != NULL)... except maybe the profile lied to us.
2483     }
2484   }
2485 
2486   if (cast_obj == NULL) {
2487     // Load the object's klass
2488     Node* obj_klass = load_object_klass(not_null_obj);
2489 
2490     // Generate the subtype check
2491     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
2492 
2493     // Plug in success path into the merge
2494     cast_obj = _gvn.transform(new (C, 2) CheckCastPPNode(control(),
2495                                                          not_null_obj, toop));
2496     // Failure path ends in uncommon trap (or may be dead - failure impossible)
2497     if (failure_control == NULL) {
2498       if (not_subtype_ctrl != top()) { // If failure is possible
2499         PreserveJVMState pjvms(this);
2500         set_control(not_subtype_ctrl);
2501         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
2502       }
2503     } else {
2504       (*failure_control) = not_subtype_ctrl;
2505     }
2506   }
2507 
2508   region->init_req(_obj_path, control());
2509   phi   ->init_req(_obj_path, cast_obj);
2510 
2511   // A merge of NULL or Casted-NotNull obj
2512   Node* res = _gvn.transform(phi);
2513 
2514   // Note I do NOT always 'replace_in_map(obj,result)' here.
2515   //  if( tk->klass()->can_be_primary_super()  )
2516     // This means that if I successfully store an Object into an array-of-String
2517     // I 'forget' that the Object is really now known to be a String.  I have to
2518     // do this because we don't have true union types for interfaces - if I store
2519     // a Baz into an array-of-Interface and then tell the optimizer it's an
2520     // Interface, I forget that it's also a Baz and cannot do Baz-like field
2521     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
2522   //  replace_in_map( obj, res );
2523 
2524   // Return final merged results
2525   set_control( _gvn.transform(region) );
2526   record_for_igvn(region);
2527   return res;
2528 }
2529 
2530 //------------------------------next_monitor-----------------------------------
2531 // What number should be given to the next monitor?
2532 int GraphKit::next_monitor() {
2533   int current = jvms()->monitor_depth()* C->sync_stack_slots();
2534   int next = current + C->sync_stack_slots();
2535   // Keep the toplevel high water mark current:
2536   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
2537   return current;
2538 }
2539 
2540 //------------------------------insert_mem_bar---------------------------------
2541 // Memory barrier to avoid floating things around
2542 // The membar serves as a pinch point between both control and all memory slices.
2543 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
2544   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
2545   mb->init_req(TypeFunc::Control, control());
2546   mb->init_req(TypeFunc::Memory,  reset_memory());
2547   Node* membar = _gvn.transform(mb);
2548   set_control(_gvn.transform(new (C, 1) ProjNode(membar,TypeFunc::Control) ));
2549   set_all_memory_call(membar);
2550   return membar;
2551 }
2552 
2553 //-------------------------insert_mem_bar_volatile----------------------------
2554 // Memory barrier to avoid floating things around
2555 // The membar serves as a pinch point between both control and memory(alias_idx).
2556 // If you want to make a pinch point on all memory slices, do not use this
2557 // function (even with AliasIdxBot); use insert_mem_bar() instead.
2558 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
2559   // When Parse::do_put_xxx updates a volatile field, it appends a series
2560   // of MemBarVolatile nodes, one for *each* volatile field alias category.
2561   // The first membar is on the same memory slice as the field store opcode.
2562   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
2563   // All the other membars (for other volatile slices, including AliasIdxBot,
2564   // which stands for all unknown volatile slices) are control-dependent
2565   // on the first membar.  This prevents later volatile loads or stores
2566   // from sliding up past the just-emitted store.
2567 
2568   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
2569   mb->set_req(TypeFunc::Control,control());
2570   if (alias_idx == Compile::AliasIdxBot) {
2571     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
2572   } else {
2573     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
2574     mb->set_req(TypeFunc::Memory, memory(alias_idx));
2575   }
2576   Node* membar = _gvn.transform(mb);
2577   set_control(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Control)));
2578   if (alias_idx == Compile::AliasIdxBot) {
2579     merged_memory()->set_base_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)));
2580   } else {
2581     set_memory(_gvn.transform(new (C, 1) ProjNode(membar, TypeFunc::Memory)),alias_idx);
2582   }
2583   return membar;
2584 }
2585 
2586 //------------------------------shared_lock------------------------------------
2587 // Emit locking code.
2588 FastLockNode* GraphKit::shared_lock(Node* obj) {
2589   // bci is either a monitorenter bc or InvocationEntryBci
2590   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2591   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2592 
2593   if( !GenerateSynchronizationCode )
2594     return NULL;                // Not locking things?
2595   if (stopped())                // Dead monitor?
2596     return NULL;
2597 
2598   assert(dead_locals_are_killed(), "should kill locals before sync. point");
2599 
2600   // Box the stack location
2601   Node* box = _gvn.transform(new (C, 1) BoxLockNode(next_monitor()));
2602   Node* mem = reset_memory();
2603 
2604   FastLockNode * flock = _gvn.transform(new (C, 3) FastLockNode(0, obj, box) )->as_FastLock();
2605   if (PrintPreciseBiasedLockingStatistics) {
2606     // Create the counters for this fast lock.
2607     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
2608   }
2609   // Add monitor to debug info for the slow path.  If we block inside the
2610   // slow path and de-opt, we need the monitor hanging around
2611   map()->push_monitor( flock );
2612 
2613   const TypeFunc *tf = LockNode::lock_type();
2614   LockNode *lock = new (C, tf->domain()->cnt()) LockNode(C, tf);
2615 
2616   lock->init_req( TypeFunc::Control, control() );
2617   lock->init_req( TypeFunc::Memory , mem );
2618   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2619   lock->init_req( TypeFunc::FramePtr, frameptr() );
2620   lock->init_req( TypeFunc::ReturnAdr, top() );
2621 
2622   lock->init_req(TypeFunc::Parms + 0, obj);
2623   lock->init_req(TypeFunc::Parms + 1, box);
2624   lock->init_req(TypeFunc::Parms + 2, flock);
2625   add_safepoint_edges(lock);
2626 
2627   lock = _gvn.transform( lock )->as_Lock();
2628 
2629   // lock has no side-effects, sets few values
2630   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
2631 
2632   insert_mem_bar(Op_MemBarAcquire);
2633 
2634   // Add this to the worklist so that the lock can be eliminated
2635   record_for_igvn(lock);
2636 
2637 #ifndef PRODUCT
2638   if (PrintLockStatistics) {
2639     // Update the counter for this lock.  Don't bother using an atomic
2640     // operation since we don't require absolute accuracy.
2641     lock->create_lock_counter(map()->jvms());
2642     int adr_type = Compile::AliasIdxRaw;
2643     Node* counter_addr = makecon(TypeRawPtr::make(lock->counter()->addr()));
2644     Node* cnt  = make_load(NULL, counter_addr, TypeInt::INT, T_INT, adr_type);
2645     Node* incr = _gvn.transform(new (C, 3) AddINode(cnt, _gvn.intcon(1)));
2646     store_to_memory(control(), counter_addr, incr, T_INT, adr_type);
2647   }
2648 #endif
2649 
2650   return flock;
2651 }
2652 
2653 
2654 //------------------------------shared_unlock----------------------------------
2655 // Emit unlocking code.
2656 void GraphKit::shared_unlock(Node* box, Node* obj) {
2657   // bci is either a monitorenter bc or InvocationEntryBci
2658   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2659   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2660 
2661   if( !GenerateSynchronizationCode )
2662     return;
2663   if (stopped()) {               // Dead monitor?
2664     map()->pop_monitor();        // Kill monitor from debug info
2665     return;
2666   }
2667 
2668   // Memory barrier to avoid floating things down past the locked region
2669   insert_mem_bar(Op_MemBarRelease);
2670 
2671   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
2672   UnlockNode *unlock = new (C, tf->domain()->cnt()) UnlockNode(C, tf);
2673   uint raw_idx = Compile::AliasIdxRaw;
2674   unlock->init_req( TypeFunc::Control, control() );
2675   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
2676   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2677   unlock->init_req( TypeFunc::FramePtr, frameptr() );
2678   unlock->init_req( TypeFunc::ReturnAdr, top() );
2679 
2680   unlock->init_req(TypeFunc::Parms + 0, obj);
2681   unlock->init_req(TypeFunc::Parms + 1, box);
2682   unlock = _gvn.transform(unlock)->as_Unlock();
2683 
2684   Node* mem = reset_memory();
2685 
2686   // unlock has no side-effects, sets few values
2687   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
2688 
2689   // Kill monitor from debug info
2690   map()->pop_monitor( );
2691 }
2692 
2693 //-------------------------------get_layout_helper-----------------------------
2694 // If the given klass is a constant or known to be an array,
2695 // fetch the constant layout helper value into constant_value
2696 // and return (Node*)NULL.  Otherwise, load the non-constant
2697 // layout helper value, and return the node which represents it.
2698 // This two-faced routine is useful because allocation sites
2699 // almost always feature constant types.
2700 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
2701   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
2702   if (!StressReflectiveCode && inst_klass != NULL) {
2703     ciKlass* klass = inst_klass->klass();
2704     bool    xklass = inst_klass->klass_is_exact();
2705     if (xklass || klass->is_array_klass()) {
2706       jint lhelper = klass->layout_helper();
2707       if (lhelper != Klass::_lh_neutral_value) {
2708         constant_value = lhelper;
2709         return (Node*) NULL;
2710       }
2711     }
2712   }
2713   constant_value = Klass::_lh_neutral_value;  // put in a known value
2714   Node* lhp = basic_plus_adr(klass_node, klass_node, Klass::layout_helper_offset_in_bytes() + sizeof(oopDesc));
2715   return make_load(NULL, lhp, TypeInt::INT, T_INT);
2716 }
2717 
2718 // We just put in an allocate/initialize with a big raw-memory effect.
2719 // Hook selected additional alias categories on the initialization.
2720 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
2721                                 MergeMemNode* init_in_merge,
2722                                 Node* init_out_raw) {
2723   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
2724   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
2725 
2726   Node* prevmem = kit.memory(alias_idx);
2727   init_in_merge->set_memory_at(alias_idx, prevmem);
2728   kit.set_memory(init_out_raw, alias_idx);
2729 }
2730 
2731 //---------------------------set_output_for_allocation-------------------------
2732 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
2733                                           const TypeOopPtr* oop_type,
2734                                           bool raw_mem_only) {
2735   int rawidx = Compile::AliasIdxRaw;
2736   alloc->set_req( TypeFunc::FramePtr, frameptr() );
2737   add_safepoint_edges(alloc);
2738   Node* allocx = _gvn.transform(alloc);
2739   set_control( _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Control) ) );
2740   // create memory projection for i_o
2741   set_memory ( _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
2742   make_slow_call_ex(allocx, env()->OutOfMemoryError_klass(), true);
2743 
2744   // create a memory projection as for the normal control path
2745   Node* malloc = _gvn.transform(new (C, 1) ProjNode(allocx, TypeFunc::Memory));
2746   set_memory(malloc, rawidx);
2747 
2748   // a normal slow-call doesn't change i_o, but an allocation does
2749   // we create a separate i_o projection for the normal control path
2750   set_i_o(_gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::I_O, false) ) );
2751   Node* rawoop = _gvn.transform( new (C, 1) ProjNode(allocx, TypeFunc::Parms) );
2752 
2753   // put in an initialization barrier
2754   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
2755                                                  rawoop)->as_Initialize();
2756   assert(alloc->initialization() == init,  "2-way macro link must work");
2757   assert(init ->allocation()     == alloc, "2-way macro link must work");
2758   if (ReduceFieldZeroing && !raw_mem_only) {
2759     // Extract memory strands which may participate in the new object's
2760     // initialization, and source them from the new InitializeNode.
2761     // This will allow us to observe initializations when they occur,
2762     // and link them properly (as a group) to the InitializeNode.
2763     assert(init->in(InitializeNode::Memory) == malloc, "");
2764     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
2765     init->set_req(InitializeNode::Memory, minit_in);
2766     record_for_igvn(minit_in); // fold it up later, if possible
2767     Node* minit_out = memory(rawidx);
2768     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
2769     if (oop_type->isa_aryptr()) {
2770       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
2771       int            elemidx  = C->get_alias_index(telemref);
2772       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
2773     } else if (oop_type->isa_instptr()) {
2774       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
2775       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
2776         ciField* field = ik->nonstatic_field_at(i);
2777         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
2778           continue;  // do not bother to track really large numbers of fields
2779         // Find (or create) the alias category for this field:
2780         int fieldidx = C->alias_type(field)->index();
2781         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
2782       }
2783     }
2784   }
2785 
2786   // Cast raw oop to the real thing...
2787   Node* javaoop = new (C, 2) CheckCastPPNode(control(), rawoop, oop_type);
2788   javaoop = _gvn.transform(javaoop);
2789   C->set_recent_alloc(control(), javaoop);
2790   assert(just_allocated_object(control()) == javaoop, "just allocated");
2791 
2792 #ifdef ASSERT
2793   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
2794     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
2795            "Ideal_allocation works");
2796     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
2797            "Ideal_allocation works");
2798     if (alloc->is_AllocateArray()) {
2799       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
2800              "Ideal_allocation works");
2801       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
2802              "Ideal_allocation works");
2803     } else {
2804       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
2805     }
2806   }
2807 #endif //ASSERT
2808 
2809   return javaoop;
2810 }
2811 
2812 //---------------------------new_instance--------------------------------------
2813 // This routine takes a klass_node which may be constant (for a static type)
2814 // or may be non-constant (for reflective code).  It will work equally well
2815 // for either, and the graph will fold nicely if the optimizer later reduces
2816 // the type to a constant.
2817 // The optional arguments are for specialized use by intrinsics:
2818 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
2819 //  - If 'raw_mem_only', do not cast the result to an oop.
2820 //  - If 'return_size_val', report the the total object size to the caller.
2821 Node* GraphKit::new_instance(Node* klass_node,
2822                              Node* extra_slow_test,
2823                              bool raw_mem_only, // affect only raw memory
2824                              Node* *return_size_val) {
2825   // Compute size in doublewords
2826   // The size is always an integral number of doublewords, represented
2827   // as a positive bytewise size stored in the klass's layout_helper.
2828   // The layout_helper also encodes (in a low bit) the need for a slow path.
2829   jint  layout_con = Klass::_lh_neutral_value;
2830   Node* layout_val = get_layout_helper(klass_node, layout_con);
2831   int   layout_is_con = (layout_val == NULL);
2832 
2833   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
2834   // Generate the initial go-slow test.  It's either ALWAYS (return a
2835   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
2836   // case) a computed value derived from the layout_helper.
2837   Node* initial_slow_test = NULL;
2838   if (layout_is_con) {
2839     assert(!StressReflectiveCode, "stress mode does not use these paths");
2840     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
2841     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
2842 
2843   } else {   // reflective case
2844     // This reflective path is used by Unsafe.allocateInstance.
2845     // (It may be stress-tested by specifying StressReflectiveCode.)
2846     // Basically, we want to get into the VM is there's an illegal argument.
2847     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
2848     initial_slow_test = _gvn.transform( new (C, 3) AndINode(layout_val, bit) );
2849     if (extra_slow_test != intcon(0)) {
2850       initial_slow_test = _gvn.transform( new (C, 3) OrINode(initial_slow_test, extra_slow_test) );
2851     }
2852     // (Macro-expander will further convert this to a Bool, if necessary.)
2853   }
2854 
2855   // Find the size in bytes.  This is easy; it's the layout_helper.
2856   // The size value must be valid even if the slow path is taken.
2857   Node* size = NULL;
2858   if (layout_is_con) {
2859     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
2860   } else {   // reflective case
2861     // This reflective path is used by clone and Unsafe.allocateInstance.
2862     size = ConvI2X(layout_val);
2863 
2864     // Clear the low bits to extract layout_helper_size_in_bytes:
2865     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
2866     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
2867     size = _gvn.transform( new (C, 3) AndXNode(size, mask) );
2868   }
2869   if (return_size_val != NULL) {
2870     (*return_size_val) = size;
2871   }
2872 
2873   // This is a precise notnull oop of the klass.
2874   // (Actually, it need not be precise if this is a reflective allocation.)
2875   // It's what we cast the result to.
2876   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
2877   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
2878   const TypeOopPtr* oop_type = tklass->as_instance_type();
2879 
2880   // Now generate allocation code
2881 
2882   // The entire memory state is needed for slow path of the allocation
2883   // since GC and deoptimization can happened.
2884   Node *mem = reset_memory();
2885   set_all_memory(mem); // Create new memory state
2886 
2887   AllocateNode* alloc
2888     = new (C, AllocateNode::ParmLimit)
2889         AllocateNode(C, AllocateNode::alloc_type(),
2890                      control(), mem, i_o(),
2891                      size, klass_node,
2892                      initial_slow_test);
2893 
2894   return set_output_for_allocation(alloc, oop_type, raw_mem_only);
2895 }
2896 
2897 //-------------------------------new_array-------------------------------------
2898 // helper for both newarray and anewarray
2899 // The 'length' parameter is (obviously) the length of the array.
2900 // See comments on new_instance for the meaning of the other arguments.
2901 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
2902                           Node* length,         // number of array elements
2903                           int   nargs,          // number of arguments to push back for uncommon trap
2904                           bool raw_mem_only,    // affect only raw memory
2905                           Node* *return_size_val) {
2906   jint  layout_con = Klass::_lh_neutral_value;
2907   Node* layout_val = get_layout_helper(klass_node, layout_con);
2908   int   layout_is_con = (layout_val == NULL);
2909 
2910   if (!layout_is_con && !StressReflectiveCode &&
2911       !too_many_traps(Deoptimization::Reason_class_check)) {
2912     // This is a reflective array creation site.
2913     // Optimistically assume that it is a subtype of Object[],
2914     // so that we can fold up all the address arithmetic.
2915     layout_con = Klass::array_layout_helper(T_OBJECT);
2916     Node* cmp_lh = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(layout_con)) );
2917     Node* bol_lh = _gvn.transform( new(C, 2) BoolNode(cmp_lh, BoolTest::eq) );
2918     { BuildCutout unless(this, bol_lh, PROB_MAX);
2919       _sp += nargs;
2920       uncommon_trap(Deoptimization::Reason_class_check,
2921                     Deoptimization::Action_maybe_recompile);
2922     }
2923     layout_val = NULL;
2924     layout_is_con = true;
2925   }
2926 
2927   // Generate the initial go-slow test.  Make sure we do not overflow
2928   // if length is huge (near 2Gig) or negative!  We do not need
2929   // exact double-words here, just a close approximation of needed
2930   // double-words.  We can't add any offset or rounding bits, lest we
2931   // take a size -1 of bytes and make it positive.  Use an unsigned
2932   // compare, so negative sizes look hugely positive.
2933   int fast_size_limit = FastAllocateSizeLimit;
2934   if (layout_is_con) {
2935     assert(!StressReflectiveCode, "stress mode does not use these paths");
2936     // Increase the size limit if we have exact knowledge of array type.
2937     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
2938     fast_size_limit <<= (LogBytesPerLong - log2_esize);
2939   }
2940 
2941   Node* initial_slow_cmp  = _gvn.transform( new (C, 3) CmpUNode( length, intcon( fast_size_limit ) ) );
2942   Node* initial_slow_test = _gvn.transform( new (C, 2) BoolNode( initial_slow_cmp, BoolTest::gt ) );
2943   if (initial_slow_test->is_Bool()) {
2944     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
2945     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
2946   }
2947 
2948   // --- Size Computation ---
2949   // array_size = round_to_heap(array_header + (length << elem_shift));
2950   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
2951   // and round_to(x, y) == ((x + y-1) & ~(y-1))
2952   // The rounding mask is strength-reduced, if possible.
2953   int round_mask = MinObjAlignmentInBytes - 1;
2954   Node* header_size = NULL;
2955   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
2956   // (T_BYTE has the weakest alignment and size restrictions...)
2957   if (layout_is_con) {
2958     int       hsize  = Klass::layout_helper_header_size(layout_con);
2959     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
2960     BasicType etype  = Klass::layout_helper_element_type(layout_con);
2961     if ((round_mask & ~right_n_bits(eshift)) == 0)
2962       round_mask = 0;  // strength-reduce it if it goes away completely
2963     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
2964     assert(header_size_min <= hsize, "generic minimum is smallest");
2965     header_size_min = hsize;
2966     header_size = intcon(hsize + round_mask);
2967   } else {
2968     Node* hss   = intcon(Klass::_lh_header_size_shift);
2969     Node* hsm   = intcon(Klass::_lh_header_size_mask);
2970     Node* hsize = _gvn.transform( new(C, 3) URShiftINode(layout_val, hss) );
2971     hsize       = _gvn.transform( new(C, 3) AndINode(hsize, hsm) );
2972     Node* mask  = intcon(round_mask);
2973     header_size = _gvn.transform( new(C, 3) AddINode(hsize, mask) );
2974   }
2975 
2976   Node* elem_shift = NULL;
2977   if (layout_is_con) {
2978     int eshift = Klass::layout_helper_log2_element_size(layout_con);
2979     if (eshift != 0)
2980       elem_shift = intcon(eshift);
2981   } else {
2982     // There is no need to mask or shift this value.
2983     // The semantics of LShiftINode include an implicit mask to 0x1F.
2984     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
2985     elem_shift = layout_val;
2986   }
2987 
2988   // Transition to native address size for all offset calculations:
2989   Node* lengthx = ConvI2X(length);
2990   Node* headerx = ConvI2X(header_size);
2991 #ifdef _LP64
2992   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
2993     if (tllen != NULL && tllen->_lo < 0) {
2994       // Add a manual constraint to a positive range.  Cf. array_element_address.
2995       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
2996       if (size_max > tllen->_hi)  size_max = tllen->_hi;
2997       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
2998       lengthx = _gvn.transform( new (C, 2) ConvI2LNode(length, tlcon));
2999     }
3000   }
3001 #endif
3002 
3003   // Combine header size (plus rounding) and body size.  Then round down.
3004   // This computation cannot overflow, because it is used only in two
3005   // places, one where the length is sharply limited, and the other
3006   // after a successful allocation.
3007   Node* abody = lengthx;
3008   if (elem_shift != NULL)
3009     abody     = _gvn.transform( new(C, 3) LShiftXNode(lengthx, elem_shift) );
3010   Node* size  = _gvn.transform( new(C, 3) AddXNode(headerx, abody) );
3011   if (round_mask != 0) {
3012     Node* mask = MakeConX(~round_mask);
3013     size       = _gvn.transform( new(C, 3) AndXNode(size, mask) );
3014   }
3015   // else if round_mask == 0, the size computation is self-rounding
3016 
3017   if (return_size_val != NULL) {
3018     // This is the size
3019     (*return_size_val) = size;
3020   }
3021 
3022   // Now generate allocation code
3023 
3024   // The entire memory state is needed for slow path of the allocation
3025   // since GC and deoptimization can happened.
3026   Node *mem = reset_memory();
3027   set_all_memory(mem); // Create new memory state
3028 
3029   // Create the AllocateArrayNode and its result projections
3030   AllocateArrayNode* alloc
3031     = new (C, AllocateArrayNode::ParmLimit)
3032         AllocateArrayNode(C, AllocateArrayNode::alloc_type(),
3033                           control(), mem, i_o(),
3034                           size, klass_node,
3035                           initial_slow_test,
3036                           length);
3037 
3038   // Cast to correct type.  Note that the klass_node may be constant or not,
3039   // and in the latter case the actual array type will be inexact also.
3040   // (This happens via a non-constant argument to inline_native_newArray.)
3041   // In any case, the value of klass_node provides the desired array type.
3042   const TypeInt* length_type = _gvn.find_int_type(length);
3043   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3044   if (ary_type->isa_aryptr() && length_type != NULL) {
3045     // Try to get a better type than POS for the size
3046     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3047   }
3048 
3049   Node* javaoop = set_output_for_allocation(alloc, ary_type, raw_mem_only);
3050 
3051   // Cast length on remaining path to be as narrow as possible
3052   if (map()->find_edge(length) >= 0) {
3053     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3054     if (ccast != length) {
3055       _gvn.set_type_bottom(ccast);
3056       record_for_igvn(ccast);
3057       replace_in_map(length, ccast);
3058     }
3059   }
3060 
3061   return javaoop;
3062 }
3063 
3064 // The following "Ideal_foo" functions are placed here because they recognize
3065 // the graph shapes created by the functions immediately above.
3066 
3067 //---------------------------Ideal_allocation----------------------------------
3068 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3069 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3070   if (ptr == NULL) {     // reduce dumb test in callers
3071     return NULL;
3072   }
3073   if (ptr->is_CheckCastPP()) {  // strip a raw-to-oop cast
3074     ptr = ptr->in(1);
3075     if (ptr == NULL)  return NULL;
3076   }
3077   if (ptr->is_Proj()) {
3078     Node* allo = ptr->in(0);
3079     if (allo != NULL && allo->is_Allocate()) {
3080       return allo->as_Allocate();
3081     }
3082   }
3083   // Report failure to match.
3084   return NULL;
3085 }
3086 
3087 // Fancy version which also strips off an offset (and reports it to caller).
3088 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3089                                              intptr_t& offset) {
3090   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3091   if (base == NULL)  return NULL;
3092   return Ideal_allocation(base, phase);
3093 }
3094 
3095 // Trace Initialize <- Proj[Parm] <- Allocate
3096 AllocateNode* InitializeNode::allocation() {
3097   Node* rawoop = in(InitializeNode::RawAddress);
3098   if (rawoop->is_Proj()) {
3099     Node* alloc = rawoop->in(0);
3100     if (alloc->is_Allocate()) {
3101       return alloc->as_Allocate();
3102     }
3103   }
3104   return NULL;
3105 }
3106 
3107 // Trace Allocate -> Proj[Parm] -> Initialize
3108 InitializeNode* AllocateNode::initialization() {
3109   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3110   if (rawoop == NULL)  return NULL;
3111   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3112     Node* init = rawoop->fast_out(i);
3113     if (init->is_Initialize()) {
3114       assert(init->as_Initialize()->allocation() == this, "2-way link");
3115       return init->as_Initialize();
3116     }
3117   }
3118   return NULL;
3119 }
3120 
3121 //----------------------------- store barriers ----------------------------
3122 #define __ ideal.
3123 
3124 void GraphKit::sync_kit(IdealKit& ideal) {
3125   // Final sync IdealKit and graphKit.
3126   __ drain_delay_transform();
3127   set_all_memory(__ merged_memory());
3128   set_control(__ ctrl());
3129 }
3130 
3131 // vanilla/CMS post barrier
3132 // Insert a write-barrier store.  This is to let generational GC work; we have
3133 // to flag all oop-stores before the next GC point.
3134 void GraphKit::write_barrier_post(Node* oop_store,
3135                                   Node* obj,
3136                                   Node* adr,
3137                                   Node* val,
3138                                   bool use_precise) {
3139   // No store check needed if we're storing a NULL or an old object
3140   // (latter case is probably a string constant). The concurrent
3141   // mark sweep garbage collector, however, needs to have all nonNull
3142   // oop updates flagged via card-marks.
3143   if (val != NULL && val->is_Con()) {
3144     // must be either an oop or NULL
3145     const Type* t = val->bottom_type();
3146     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3147       // stores of null never (?) need barriers
3148       return;
3149     ciObject* con = t->is_oopptr()->const_oop();
3150     if (con != NULL
3151         && con->is_perm()
3152         && Universe::heap()->can_elide_permanent_oop_store_barriers())
3153       // no store barrier needed, because no old-to-new ref created
3154       return;
3155   }
3156 
3157   if (!use_precise) {
3158     // All card marks for a (non-array) instance are in one place:
3159     adr = obj;
3160   }
3161   // (Else it's an array (or unknown), and we want more precise card marks.)
3162   assert(adr != NULL, "");
3163 
3164   IdealKit ideal(gvn(), control(), merged_memory(), true);
3165 
3166   // Convert the pointer to an int prior to doing math on it
3167   Node* cast = __ CastPX(__ ctrl(), adr);
3168 
3169   // Divide by card size
3170   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3171          "Only one we handle so far.");
3172   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3173 
3174   // Combine card table base and card offset
3175   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3176 
3177   // Get the alias_index for raw card-mark memory
3178   int adr_type = Compile::AliasIdxRaw;
3179   // Smash zero into card
3180   Node*   zero = __ ConI(0);
3181   BasicType bt = T_BYTE;
3182   if( !UseConcMarkSweepGC ) {
3183     __ store(__ ctrl(), card_adr, zero, bt, adr_type);
3184   } else {
3185     // Specialized path for CM store barrier
3186     __ storeCM(__ ctrl(), card_adr, zero, oop_store, bt, adr_type);
3187   }
3188 
3189   // Final sync IdealKit and GraphKit.
3190   sync_kit(ideal);
3191 }
3192 
3193 // G1 pre/post barriers
3194 void GraphKit::g1_write_barrier_pre(Node* obj,
3195                                     Node* adr,
3196                                     uint alias_idx,
3197                                     Node* val,
3198                                     const TypeOopPtr* val_type,
3199                                     BasicType bt) {
3200   IdealKit ideal(gvn(), control(), merged_memory(), true);
3201 
3202   Node* tls = __ thread(); // ThreadLocalStorage
3203 
3204   Node* no_ctrl = NULL;
3205   Node* no_base = __ top();
3206   Node* zero = __ ConI(0);
3207 
3208   float likely  = PROB_LIKELY(0.999);
3209   float unlikely  = PROB_UNLIKELY(0.999);
3210 
3211   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3212   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3213 
3214   // Offsets into the thread
3215   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3216                                           PtrQueue::byte_offset_of_active());
3217   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3218                                           PtrQueue::byte_offset_of_index());
3219   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3220                                           PtrQueue::byte_offset_of_buf());
3221   // Now the actual pointers into the thread
3222 
3223   // set_control( ctl);
3224 
3225   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
3226   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
3227   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
3228 
3229   // Now some of the values
3230 
3231   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3232 
3233   // if (!marking)
3234   __ if_then(marking, BoolTest::ne, zero); {
3235     Node* index   = __ load(__ ctrl(), index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
3236 
3237     const Type* t1 = adr->bottom_type();
3238     const Type* t2 = val->bottom_type();
3239 
3240     Node* orig = __ load(no_ctrl, adr, val_type, bt, alias_idx);
3241     // if (orig != NULL)
3242     __ if_then(orig, BoolTest::ne, null()); {
3243       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3244 
3245       // load original value
3246       // alias_idx correct??
3247 
3248       // is the queue for this thread full?
3249       __ if_then(index, BoolTest::ne, zero, likely); {
3250 
3251         // decrement the index
3252         Node* next_index = __ SubI(index,  __ ConI(sizeof(intptr_t)));
3253         Node* next_indexX = next_index;
3254 #ifdef _LP64
3255         // We could refine the type for what it's worth
3256         // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
3257         next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
3258 #endif
3259 
3260         // Now get the buffer location we will log the original value into and store it
3261         Node *log_addr = __ AddP(no_base, buffer, next_indexX);
3262         __ store(__ ctrl(), log_addr, orig, T_OBJECT, Compile::AliasIdxRaw);
3263 
3264         // update the index
3265         __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
3266 
3267       } __ else_(); {
3268 
3269         // logging buffer is full, call the runtime
3270         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3271         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", orig, tls);
3272       } __ end_if();  // (!index)
3273     } __ end_if();  // (orig != NULL)
3274   } __ end_if();  // (!marking)
3275 
3276   // Final sync IdealKit and GraphKit.
3277   sync_kit(ideal);
3278 }
3279 
3280 //
3281 // Update the card table and add card address to the queue
3282 //
3283 void GraphKit::g1_mark_card(IdealKit& ideal,
3284                             Node* card_adr,
3285                             Node* oop_store,
3286                             Node* index,
3287                             Node* index_adr,
3288                             Node* buffer,
3289                             const TypeFunc* tf) {
3290 
3291   Node* zero = __ ConI(0);
3292   Node* no_base = __ top();
3293   BasicType card_bt = T_BYTE;
3294   // Smash zero into card. MUST BE ORDERED WRT TO STORE
3295   __ storeCM(__ ctrl(), card_adr, zero, oop_store, card_bt, Compile::AliasIdxRaw);
3296 
3297   //  Now do the queue work
3298   __ if_then(index, BoolTest::ne, zero); {
3299 
3300     Node* next_index = __ SubI(index, __ ConI(sizeof(intptr_t)));
3301     Node* next_indexX = next_index;
3302 #ifdef _LP64
3303     // We could refine the type for what it's worth
3304     // const TypeLong* lidxtype = TypeLong::make(CONST64(0), get_size_from_queue);
3305     next_indexX = _gvn.transform( new (C, 2) ConvI2LNode(next_index, TypeLong::make(0, max_jlong, Type::WidenMax)) );
3306 #endif // _LP64
3307     Node* log_addr = __ AddP(no_base, buffer, next_indexX);
3308 
3309     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw);
3310     __ store(__ ctrl(), index_adr, next_index, T_INT, Compile::AliasIdxRaw);
3311 
3312   } __ else_(); {
3313     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
3314   } __ end_if();
3315 
3316 }
3317 
3318 void GraphKit::g1_write_barrier_post(Node* oop_store,
3319                                      Node* obj,
3320                                      Node* adr,
3321                                      uint alias_idx,
3322                                      Node* val,
3323                                      BasicType bt,
3324                                      bool use_precise) {
3325   // If we are writing a NULL then we need no post barrier
3326 
3327   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
3328     // Must be NULL
3329     const Type* t = val->bottom_type();
3330     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
3331     // No post barrier if writing NULLx
3332     return;
3333   }
3334 
3335   if (!use_precise) {
3336     // All card marks for a (non-array) instance are in one place:
3337     adr = obj;
3338   }
3339   // (Else it's an array (or unknown), and we want more precise card marks.)
3340   assert(adr != NULL, "");
3341 
3342   IdealKit ideal(gvn(), control(), merged_memory(), true);
3343 
3344   Node* tls = __ thread(); // ThreadLocalStorage
3345 
3346   Node* no_ctrl = NULL;
3347   Node* no_base = __ top();
3348   float likely  = PROB_LIKELY(0.999);
3349   float unlikely  = PROB_UNLIKELY(0.999);
3350   Node* zero = __ ConI(0);
3351   Node* zeroX = __ ConX(0);
3352 
3353   // Get the alias_index for raw card-mark memory
3354   const TypePtr* card_type = TypeRawPtr::BOTTOM;
3355 
3356   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
3357 
3358   // Offsets into the thread
3359   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
3360                                      PtrQueue::byte_offset_of_index());
3361   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
3362                                      PtrQueue::byte_offset_of_buf());
3363 
3364   // Pointers into the thread
3365 
3366   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
3367   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
3368 
3369   // Now some values
3370 
3371   Node* index  = __ load(no_ctrl, index_adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw);
3372   Node* buffer = __ load(no_ctrl, buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3373 
3374 
3375   // Convert the store obj pointer to an int prior to doing math on it
3376   // Must use ctrl to prevent "integerized oop" existing across safepoint
3377   Node* cast =  __ CastPX(__ ctrl(), adr);
3378 
3379   // Divide pointer by card size
3380   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3381 
3382   // Combine card table base and card offset
3383   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
3384 
3385   // If we know the value being stored does it cross regions?
3386 
3387   if (val != NULL) {
3388     // Does the store cause us to cross regions?
3389 
3390     // Should be able to do an unsigned compare of region_size instead of
3391     // and extra shift. Do we have an unsigned compare??
3392     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
3393     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
3394 
3395     // if (xor_res == 0) same region so skip
3396     __ if_then(xor_res, BoolTest::ne, zeroX); {
3397 
3398       // No barrier if we are storing a NULL
3399       __ if_then(val, BoolTest::ne, null(), unlikely); {
3400 
3401         // Ok must mark the card if not already dirty
3402 
3403         // load the original value of the card
3404         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
3405 
3406         __ if_then(card_val, BoolTest::ne, zero); {
3407           g1_mark_card(ideal, card_adr, oop_store, index, index_adr, buffer, tf);
3408         } __ end_if();
3409       } __ end_if();
3410     } __ end_if();
3411   } else {
3412     // Object.clone() instrinsic uses this path.
3413     g1_mark_card(ideal, card_adr, oop_store, index, index_adr, buffer, tf);
3414   }
3415 
3416   // Final sync IdealKit and GraphKit.
3417   sync_kit(ideal);
3418 }
3419 #undef __
3420