1 /*
   2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_library_call.cpp.incl"
  27 
  28 class LibraryIntrinsic : public InlineCallGenerator {
  29   // Extend the set of intrinsics known to the runtime:
  30  public:
  31  private:
  32   bool             _is_virtual;
  33   vmIntrinsics::ID _intrinsic_id;
  34 
  35  public:
  36   LibraryIntrinsic(ciMethod* m, bool is_virtual, vmIntrinsics::ID id)
  37     : InlineCallGenerator(m),
  38       _is_virtual(is_virtual),
  39       _intrinsic_id(id)
  40   {
  41   }
  42   virtual bool is_intrinsic() const { return true; }
  43   virtual bool is_virtual()   const { return _is_virtual; }
  44   virtual JVMState* generate(JVMState* jvms);
  45   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  46 };
  47 
  48 
  49 // Local helper class for LibraryIntrinsic:
  50 class LibraryCallKit : public GraphKit {
  51  private:
  52   LibraryIntrinsic* _intrinsic;   // the library intrinsic being called
  53 
  54  public:
  55   LibraryCallKit(JVMState* caller, LibraryIntrinsic* intrinsic)
  56     : GraphKit(caller),
  57       _intrinsic(intrinsic)
  58   {
  59   }
  60 
  61   ciMethod*         caller()    const    { return jvms()->method(); }
  62   int               bci()       const    { return jvms()->bci(); }
  63   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
  64   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
  65   ciMethod*         callee()    const    { return _intrinsic->method(); }
  66   ciSignature*      signature() const    { return callee()->signature(); }
  67   int               arg_size()  const    { return callee()->arg_size(); }
  68 
  69   bool try_to_inline();
  70 
  71   // Helper functions to inline natives
  72   void push_result(RegionNode* region, PhiNode* value);
  73   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
  74   Node* generate_slow_guard(Node* test, RegionNode* region);
  75   Node* generate_fair_guard(Node* test, RegionNode* region);
  76   Node* generate_negative_guard(Node* index, RegionNode* region,
  77                                 // resulting CastII of index:
  78                                 Node* *pos_index = NULL);
  79   Node* generate_nonpositive_guard(Node* index, bool never_negative,
  80                                    // resulting CastII of index:
  81                                    Node* *pos_index = NULL);
  82   Node* generate_limit_guard(Node* offset, Node* subseq_length,
  83                              Node* array_length,
  84                              RegionNode* region);
  85   Node* generate_current_thread(Node* &tls_output);
  86   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
  87                               bool disjoint_bases, const char* &name);
  88   Node* load_mirror_from_klass(Node* klass);
  89   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
  90                                       int nargs,
  91                                       RegionNode* region, int null_path,
  92                                       int offset);
  93   Node* load_klass_from_mirror(Node* mirror, bool never_see_null, int nargs,
  94                                RegionNode* region, int null_path) {
  95     int offset = java_lang_Class::klass_offset_in_bytes();
  96     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
  97                                          region, null_path,
  98                                          offset);
  99   }
 100   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 101                                      int nargs,
 102                                      RegionNode* region, int null_path) {
 103     int offset = java_lang_Class::array_klass_offset_in_bytes();
 104     return load_klass_from_mirror_common(mirror, never_see_null, nargs,
 105                                          region, null_path,
 106                                          offset);
 107   }
 108   Node* generate_access_flags_guard(Node* kls,
 109                                     int modifier_mask, int modifier_bits,
 110                                     RegionNode* region);
 111   Node* generate_interface_guard(Node* kls, RegionNode* region);
 112   Node* generate_array_guard(Node* kls, RegionNode* region) {
 113     return generate_array_guard_common(kls, region, false, false);
 114   }
 115   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 116     return generate_array_guard_common(kls, region, false, true);
 117   }
 118   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 119     return generate_array_guard_common(kls, region, true, false);
 120   }
 121   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 122     return generate_array_guard_common(kls, region, true, true);
 123   }
 124   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 125                                     bool obj_array, bool not_array);
 126   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 127   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 128                                      bool is_virtual = false, bool is_static = false);
 129   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 130     return generate_method_call(method_id, false, true);
 131   }
 132   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 133     return generate_method_call(method_id, true, false);
 134   }
 135 
 136   bool inline_string_compareTo();
 137   bool inline_string_indexOf();
 138   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 139   bool inline_string_equals();
 140   Node* pop_math_arg();
 141   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 142   bool inline_math_native(vmIntrinsics::ID id);
 143   bool inline_trig(vmIntrinsics::ID id);
 144   bool inline_trans(vmIntrinsics::ID id);
 145   bool inline_abs(vmIntrinsics::ID id);
 146   bool inline_sqrt(vmIntrinsics::ID id);
 147   bool inline_pow(vmIntrinsics::ID id);
 148   bool inline_exp(vmIntrinsics::ID id);
 149   bool inline_min_max(vmIntrinsics::ID id);
 150   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 151   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 152   int classify_unsafe_addr(Node* &base, Node* &offset);
 153   Node* make_unsafe_address(Node* base, Node* offset);
 154   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 155   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 156   bool inline_unsafe_allocate();
 157   bool inline_unsafe_copyMemory();
 158   bool inline_native_currentThread();
 159   bool inline_native_time_funcs(bool isNano);
 160   bool inline_native_isInterrupted();
 161   bool inline_native_Class_query(vmIntrinsics::ID id);
 162   bool inline_native_subtype_check();
 163 
 164   bool inline_native_newArray();
 165   bool inline_native_getLength();
 166   bool inline_array_copyOf(bool is_copyOfRange);
 167   bool inline_array_equals();
 168   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 169   bool inline_native_clone(bool is_virtual);
 170   bool inline_native_Reflection_getCallerClass();
 171   bool inline_native_AtomicLong_get();
 172   bool inline_native_AtomicLong_attemptUpdate();
 173   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 174   // Helper function for inlining native object hash method
 175   bool inline_native_hashcode(bool is_virtual, bool is_static);
 176   bool inline_native_getClass();
 177 
 178   // Helper functions for inlining arraycopy
 179   bool inline_arraycopy();
 180   void generate_arraycopy(const TypePtr* adr_type,
 181                           BasicType basic_elem_type,
 182                           Node* src,  Node* src_offset,
 183                           Node* dest, Node* dest_offset,
 184                           Node* copy_length,
 185                           bool disjoint_bases = false,
 186                           bool length_never_negative = false,
 187                           RegionNode* slow_region = NULL);
 188   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 189                                                 RegionNode* slow_region);
 190   void generate_clear_array(const TypePtr* adr_type,
 191                             Node* dest,
 192                             BasicType basic_elem_type,
 193                             Node* slice_off,
 194                             Node* slice_len,
 195                             Node* slice_end);
 196   bool generate_block_arraycopy(const TypePtr* adr_type,
 197                                 BasicType basic_elem_type,
 198                                 AllocateNode* alloc,
 199                                 Node* src,  Node* src_offset,
 200                                 Node* dest, Node* dest_offset,
 201                                 Node* dest_size);
 202   void generate_slow_arraycopy(const TypePtr* adr_type,
 203                                Node* src,  Node* src_offset,
 204                                Node* dest, Node* dest_offset,
 205                                Node* copy_length);
 206   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 207                                      Node* dest_elem_klass,
 208                                      Node* src,  Node* src_offset,
 209                                      Node* dest, Node* dest_offset,
 210                                      Node* copy_length);
 211   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 212                                    Node* src,  Node* src_offset,
 213                                    Node* dest, Node* dest_offset,
 214                                    Node* copy_length);
 215   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 216                                     BasicType basic_elem_type,
 217                                     bool disjoint_bases,
 218                                     Node* src,  Node* src_offset,
 219                                     Node* dest, Node* dest_offset,
 220                                     Node* copy_length);
 221   bool inline_unsafe_CAS(BasicType type);
 222   bool inline_unsafe_ordered_store(BasicType type);
 223   bool inline_fp_conversions(vmIntrinsics::ID id);
 224   bool inline_numberOfLeadingZeros(vmIntrinsics::ID id);
 225   bool inline_numberOfTrailingZeros(vmIntrinsics::ID id);
 226   bool inline_bitCount(vmIntrinsics::ID id);
 227   bool inline_reverseBytes(vmIntrinsics::ID id);
 228 };
 229 
 230 
 231 //---------------------------make_vm_intrinsic----------------------------
 232 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 233   vmIntrinsics::ID id = m->intrinsic_id();
 234   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 235 
 236   if (DisableIntrinsic[0] != '\0'
 237       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 238     // disabled by a user request on the command line:
 239     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 240     return NULL;
 241   }
 242 
 243   if (!m->is_loaded()) {
 244     // do not attempt to inline unloaded methods
 245     return NULL;
 246   }
 247 
 248   // Only a few intrinsics implement a virtual dispatch.
 249   // They are expensive calls which are also frequently overridden.
 250   if (is_virtual) {
 251     switch (id) {
 252     case vmIntrinsics::_hashCode:
 253     case vmIntrinsics::_clone:
 254       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 255       break;
 256     default:
 257       return NULL;
 258     }
 259   }
 260 
 261   // -XX:-InlineNatives disables nearly all intrinsics:
 262   if (!InlineNatives) {
 263     switch (id) {
 264     case vmIntrinsics::_indexOf:
 265     case vmIntrinsics::_compareTo:
 266     case vmIntrinsics::_equals:
 267     case vmIntrinsics::_equalsC:
 268       break;  // InlineNatives does not control String.compareTo
 269     default:
 270       return NULL;
 271     }
 272   }
 273 
 274   switch (id) {
 275   case vmIntrinsics::_compareTo:
 276     if (!SpecialStringCompareTo)  return NULL;
 277     break;
 278   case vmIntrinsics::_indexOf:
 279     if (!SpecialStringIndexOf)  return NULL;
 280     break;
 281   case vmIntrinsics::_equals:
 282     if (!SpecialStringEquals)  return NULL;
 283     break;
 284   case vmIntrinsics::_equalsC:
 285     if (!SpecialArraysEquals)  return NULL;
 286     break;
 287   case vmIntrinsics::_arraycopy:
 288     if (!InlineArrayCopy)  return NULL;
 289     break;
 290   case vmIntrinsics::_copyMemory:
 291     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 292     if (!InlineArrayCopy)  return NULL;
 293     break;
 294   case vmIntrinsics::_hashCode:
 295     if (!InlineObjectHash)  return NULL;
 296     break;
 297   case vmIntrinsics::_clone:
 298   case vmIntrinsics::_copyOf:
 299   case vmIntrinsics::_copyOfRange:
 300     if (!InlineObjectCopy)  return NULL;
 301     // These also use the arraycopy intrinsic mechanism:
 302     if (!InlineArrayCopy)  return NULL;
 303     break;
 304   case vmIntrinsics::_checkIndex:
 305     // We do not intrinsify this.  The optimizer does fine with it.
 306     return NULL;
 307 
 308   case vmIntrinsics::_get_AtomicLong:
 309   case vmIntrinsics::_attemptUpdate:
 310     if (!InlineAtomicLong)  return NULL;
 311     break;
 312 
 313   case vmIntrinsics::_getCallerClass:
 314     if (!UseNewReflection)  return NULL;
 315     if (!InlineReflectionGetCallerClass)  return NULL;
 316     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 317     break;
 318 
 319   case vmIntrinsics::_bitCount_i:
 320   case vmIntrinsics::_bitCount_l:
 321     if (!UsePopCountInstruction)  return NULL;
 322     break;
 323 
 324  default:
 325     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 326     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 327     break;
 328   }
 329 
 330   // -XX:-InlineClassNatives disables natives from the Class class.
 331   // The flag applies to all reflective calls, notably Array.newArray
 332   // (visible to Java programmers as Array.newInstance).
 333   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 334       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 335     if (!InlineClassNatives)  return NULL;
 336   }
 337 
 338   // -XX:-InlineThreadNatives disables natives from the Thread class.
 339   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 340     if (!InlineThreadNatives)  return NULL;
 341   }
 342 
 343   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 344   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 345       m->holder()->name() == ciSymbol::java_lang_Float() ||
 346       m->holder()->name() == ciSymbol::java_lang_Double()) {
 347     if (!InlineMathNatives)  return NULL;
 348   }
 349 
 350   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 351   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 352     if (!InlineUnsafeOps)  return NULL;
 353   }
 354 
 355   return new LibraryIntrinsic(m, is_virtual, (vmIntrinsics::ID) id);
 356 }
 357 
 358 //----------------------register_library_intrinsics-----------------------
 359 // Initialize this file's data structures, for each Compile instance.
 360 void Compile::register_library_intrinsics() {
 361   // Nothing to do here.
 362 }
 363 
 364 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 365   LibraryCallKit kit(jvms, this);
 366   Compile* C = kit.C;
 367   int nodes = C->unique();
 368 #ifndef PRODUCT
 369   if ((PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) && Verbose) {
 370     char buf[1000];
 371     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 372     tty->print_cr("Intrinsic %s", str);
 373   }
 374 #endif
 375   if (kit.try_to_inline()) {
 376     if (PrintIntrinsics || PrintInlining NOT_PRODUCT( || PrintOptoInlining) ) {
 377       tty->print("Inlining intrinsic %s%s at bci:%d in",
 378                  vmIntrinsics::name_at(intrinsic_id()),
 379                  (is_virtual() ? " (virtual)" : ""), kit.bci());
 380       kit.caller()->print_short_name(tty);
 381       tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 382     }
 383     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 384     if (C->log()) {
 385       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 386                      vmIntrinsics::name_at(intrinsic_id()),
 387                      (is_virtual() ? " virtual='1'" : ""),
 388                      C->unique() - nodes);
 389     }
 390     return kit.transfer_exceptions_into_jvms();
 391   }
 392 
 393   if (PrintIntrinsics) {
 394     tty->print("Did not inline intrinsic %s%s at bci:%d in",
 395                vmIntrinsics::name_at(intrinsic_id()),
 396                (is_virtual() ? " (virtual)" : ""), kit.bci());
 397     kit.caller()->print_short_name(tty);
 398     tty->print_cr(" (%d bytes)", kit.caller()->code_size());
 399   }
 400   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 401   return NULL;
 402 }
 403 
 404 bool LibraryCallKit::try_to_inline() {
 405   // Handle symbolic names for otherwise undistinguished boolean switches:
 406   const bool is_store       = true;
 407   const bool is_native_ptr  = true;
 408   const bool is_static      = true;
 409 
 410   switch (intrinsic_id()) {
 411   case vmIntrinsics::_hashCode:
 412     return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 413   case vmIntrinsics::_identityHashCode:
 414     return inline_native_hashcode(/*!virtual*/ false, is_static);
 415   case vmIntrinsics::_getClass:
 416     return inline_native_getClass();
 417 
 418   case vmIntrinsics::_dsin:
 419   case vmIntrinsics::_dcos:
 420   case vmIntrinsics::_dtan:
 421   case vmIntrinsics::_dabs:
 422   case vmIntrinsics::_datan2:
 423   case vmIntrinsics::_dsqrt:
 424   case vmIntrinsics::_dexp:
 425   case vmIntrinsics::_dlog:
 426   case vmIntrinsics::_dlog10:
 427   case vmIntrinsics::_dpow:
 428     return inline_math_native(intrinsic_id());
 429 
 430   case vmIntrinsics::_min:
 431   case vmIntrinsics::_max:
 432     return inline_min_max(intrinsic_id());
 433 
 434   case vmIntrinsics::_arraycopy:
 435     return inline_arraycopy();
 436 
 437   case vmIntrinsics::_compareTo:
 438     return inline_string_compareTo();
 439   case vmIntrinsics::_indexOf:
 440     return inline_string_indexOf();
 441   case vmIntrinsics::_equals:
 442     return inline_string_equals();
 443 
 444   case vmIntrinsics::_getObject:
 445     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, false);
 446   case vmIntrinsics::_getBoolean:
 447     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, false);
 448   case vmIntrinsics::_getByte:
 449     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, false);
 450   case vmIntrinsics::_getShort:
 451     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, false);
 452   case vmIntrinsics::_getChar:
 453     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, false);
 454   case vmIntrinsics::_getInt:
 455     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, false);
 456   case vmIntrinsics::_getLong:
 457     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, false);
 458   case vmIntrinsics::_getFloat:
 459     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, false);
 460   case vmIntrinsics::_getDouble:
 461     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, false);
 462 
 463   case vmIntrinsics::_putObject:
 464     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, false);
 465   case vmIntrinsics::_putBoolean:
 466     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, false);
 467   case vmIntrinsics::_putByte:
 468     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, false);
 469   case vmIntrinsics::_putShort:
 470     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, false);
 471   case vmIntrinsics::_putChar:
 472     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, false);
 473   case vmIntrinsics::_putInt:
 474     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, false);
 475   case vmIntrinsics::_putLong:
 476     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, false);
 477   case vmIntrinsics::_putFloat:
 478     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, false);
 479   case vmIntrinsics::_putDouble:
 480     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, false);
 481 
 482   case vmIntrinsics::_getByte_raw:
 483     return inline_unsafe_access(is_native_ptr, !is_store, T_BYTE, false);
 484   case vmIntrinsics::_getShort_raw:
 485     return inline_unsafe_access(is_native_ptr, !is_store, T_SHORT, false);
 486   case vmIntrinsics::_getChar_raw:
 487     return inline_unsafe_access(is_native_ptr, !is_store, T_CHAR, false);
 488   case vmIntrinsics::_getInt_raw:
 489     return inline_unsafe_access(is_native_ptr, !is_store, T_INT, false);
 490   case vmIntrinsics::_getLong_raw:
 491     return inline_unsafe_access(is_native_ptr, !is_store, T_LONG, false);
 492   case vmIntrinsics::_getFloat_raw:
 493     return inline_unsafe_access(is_native_ptr, !is_store, T_FLOAT, false);
 494   case vmIntrinsics::_getDouble_raw:
 495     return inline_unsafe_access(is_native_ptr, !is_store, T_DOUBLE, false);
 496   case vmIntrinsics::_getAddress_raw:
 497     return inline_unsafe_access(is_native_ptr, !is_store, T_ADDRESS, false);
 498 
 499   case vmIntrinsics::_putByte_raw:
 500     return inline_unsafe_access(is_native_ptr, is_store, T_BYTE, false);
 501   case vmIntrinsics::_putShort_raw:
 502     return inline_unsafe_access(is_native_ptr, is_store, T_SHORT, false);
 503   case vmIntrinsics::_putChar_raw:
 504     return inline_unsafe_access(is_native_ptr, is_store, T_CHAR, false);
 505   case vmIntrinsics::_putInt_raw:
 506     return inline_unsafe_access(is_native_ptr, is_store, T_INT, false);
 507   case vmIntrinsics::_putLong_raw:
 508     return inline_unsafe_access(is_native_ptr, is_store, T_LONG, false);
 509   case vmIntrinsics::_putFloat_raw:
 510     return inline_unsafe_access(is_native_ptr, is_store, T_FLOAT, false);
 511   case vmIntrinsics::_putDouble_raw:
 512     return inline_unsafe_access(is_native_ptr, is_store, T_DOUBLE, false);
 513   case vmIntrinsics::_putAddress_raw:
 514     return inline_unsafe_access(is_native_ptr, is_store, T_ADDRESS, false);
 515 
 516   case vmIntrinsics::_getObjectVolatile:
 517     return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT, true);
 518   case vmIntrinsics::_getBooleanVolatile:
 519     return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, true);
 520   case vmIntrinsics::_getByteVolatile:
 521     return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE, true);
 522   case vmIntrinsics::_getShortVolatile:
 523     return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT, true);
 524   case vmIntrinsics::_getCharVolatile:
 525     return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR, true);
 526   case vmIntrinsics::_getIntVolatile:
 527     return inline_unsafe_access(!is_native_ptr, !is_store, T_INT, true);
 528   case vmIntrinsics::_getLongVolatile:
 529     return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG, true);
 530   case vmIntrinsics::_getFloatVolatile:
 531     return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT, true);
 532   case vmIntrinsics::_getDoubleVolatile:
 533     return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE, true);
 534 
 535   case vmIntrinsics::_putObjectVolatile:
 536     return inline_unsafe_access(!is_native_ptr, is_store, T_OBJECT, true);
 537   case vmIntrinsics::_putBooleanVolatile:
 538     return inline_unsafe_access(!is_native_ptr, is_store, T_BOOLEAN, true);
 539   case vmIntrinsics::_putByteVolatile:
 540     return inline_unsafe_access(!is_native_ptr, is_store, T_BYTE, true);
 541   case vmIntrinsics::_putShortVolatile:
 542     return inline_unsafe_access(!is_native_ptr, is_store, T_SHORT, true);
 543   case vmIntrinsics::_putCharVolatile:
 544     return inline_unsafe_access(!is_native_ptr, is_store, T_CHAR, true);
 545   case vmIntrinsics::_putIntVolatile:
 546     return inline_unsafe_access(!is_native_ptr, is_store, T_INT, true);
 547   case vmIntrinsics::_putLongVolatile:
 548     return inline_unsafe_access(!is_native_ptr, is_store, T_LONG, true);
 549   case vmIntrinsics::_putFloatVolatile:
 550     return inline_unsafe_access(!is_native_ptr, is_store, T_FLOAT, true);
 551   case vmIntrinsics::_putDoubleVolatile:
 552     return inline_unsafe_access(!is_native_ptr, is_store, T_DOUBLE, true);
 553 
 554   case vmIntrinsics::_prefetchRead:
 555     return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 556   case vmIntrinsics::_prefetchWrite:
 557     return inline_unsafe_prefetch(!is_native_ptr, is_store, !is_static);
 558   case vmIntrinsics::_prefetchReadStatic:
 559     return inline_unsafe_prefetch(!is_native_ptr, !is_store, is_static);
 560   case vmIntrinsics::_prefetchWriteStatic:
 561     return inline_unsafe_prefetch(!is_native_ptr, is_store, is_static);
 562 
 563   case vmIntrinsics::_compareAndSwapObject:
 564     return inline_unsafe_CAS(T_OBJECT);
 565   case vmIntrinsics::_compareAndSwapInt:
 566     return inline_unsafe_CAS(T_INT);
 567   case vmIntrinsics::_compareAndSwapLong:
 568     return inline_unsafe_CAS(T_LONG);
 569 
 570   case vmIntrinsics::_putOrderedObject:
 571     return inline_unsafe_ordered_store(T_OBJECT);
 572   case vmIntrinsics::_putOrderedInt:
 573     return inline_unsafe_ordered_store(T_INT);
 574   case vmIntrinsics::_putOrderedLong:
 575     return inline_unsafe_ordered_store(T_LONG);
 576 
 577   case vmIntrinsics::_currentThread:
 578     return inline_native_currentThread();
 579   case vmIntrinsics::_isInterrupted:
 580     return inline_native_isInterrupted();
 581 
 582   case vmIntrinsics::_currentTimeMillis:
 583     return inline_native_time_funcs(false);
 584   case vmIntrinsics::_nanoTime:
 585     return inline_native_time_funcs(true);
 586   case vmIntrinsics::_allocateInstance:
 587     return inline_unsafe_allocate();
 588   case vmIntrinsics::_copyMemory:
 589     return inline_unsafe_copyMemory();
 590   case vmIntrinsics::_newArray:
 591     return inline_native_newArray();
 592   case vmIntrinsics::_getLength:
 593     return inline_native_getLength();
 594   case vmIntrinsics::_copyOf:
 595     return inline_array_copyOf(false);
 596   case vmIntrinsics::_copyOfRange:
 597     return inline_array_copyOf(true);
 598   case vmIntrinsics::_equalsC:
 599     return inline_array_equals();
 600   case vmIntrinsics::_clone:
 601     return inline_native_clone(intrinsic()->is_virtual());
 602 
 603   case vmIntrinsics::_isAssignableFrom:
 604     return inline_native_subtype_check();
 605 
 606   case vmIntrinsics::_isInstance:
 607   case vmIntrinsics::_getModifiers:
 608   case vmIntrinsics::_isInterface:
 609   case vmIntrinsics::_isArray:
 610   case vmIntrinsics::_isPrimitive:
 611   case vmIntrinsics::_getSuperclass:
 612   case vmIntrinsics::_getComponentType:
 613   case vmIntrinsics::_getClassAccessFlags:
 614     return inline_native_Class_query(intrinsic_id());
 615 
 616   case vmIntrinsics::_floatToRawIntBits:
 617   case vmIntrinsics::_floatToIntBits:
 618   case vmIntrinsics::_intBitsToFloat:
 619   case vmIntrinsics::_doubleToRawLongBits:
 620   case vmIntrinsics::_doubleToLongBits:
 621   case vmIntrinsics::_longBitsToDouble:
 622     return inline_fp_conversions(intrinsic_id());
 623 
 624   case vmIntrinsics::_numberOfLeadingZeros_i:
 625   case vmIntrinsics::_numberOfLeadingZeros_l:
 626     return inline_numberOfLeadingZeros(intrinsic_id());
 627 
 628   case vmIntrinsics::_numberOfTrailingZeros_i:
 629   case vmIntrinsics::_numberOfTrailingZeros_l:
 630     return inline_numberOfTrailingZeros(intrinsic_id());
 631 
 632   case vmIntrinsics::_bitCount_i:
 633   case vmIntrinsics::_bitCount_l:
 634     return inline_bitCount(intrinsic_id());
 635 
 636   case vmIntrinsics::_reverseBytes_i:
 637   case vmIntrinsics::_reverseBytes_l:
 638     return inline_reverseBytes((vmIntrinsics::ID) intrinsic_id());
 639 
 640   case vmIntrinsics::_get_AtomicLong:
 641     return inline_native_AtomicLong_get();
 642   case vmIntrinsics::_attemptUpdate:
 643     return inline_native_AtomicLong_attemptUpdate();
 644 
 645   case vmIntrinsics::_getCallerClass:
 646     return inline_native_Reflection_getCallerClass();
 647 
 648   default:
 649     // If you get here, it may be that someone has added a new intrinsic
 650     // to the list in vmSymbols.hpp without implementing it here.
 651 #ifndef PRODUCT
 652     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 653       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 654                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 655     }
 656 #endif
 657     return false;
 658   }
 659 }
 660 
 661 //------------------------------push_result------------------------------
 662 // Helper function for finishing intrinsics.
 663 void LibraryCallKit::push_result(RegionNode* region, PhiNode* value) {
 664   record_for_igvn(region);
 665   set_control(_gvn.transform(region));
 666   BasicType value_type = value->type()->basic_type();
 667   push_node(value_type, _gvn.transform(value));
 668 }
 669 
 670 //------------------------------generate_guard---------------------------
 671 // Helper function for generating guarded fast-slow graph structures.
 672 // The given 'test', if true, guards a slow path.  If the test fails
 673 // then a fast path can be taken.  (We generally hope it fails.)
 674 // In all cases, GraphKit::control() is updated to the fast path.
 675 // The returned value represents the control for the slow path.
 676 // The return value is never 'top'; it is either a valid control
 677 // or NULL if it is obvious that the slow path can never be taken.
 678 // Also, if region and the slow control are not NULL, the slow edge
 679 // is appended to the region.
 680 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 681   if (stopped()) {
 682     // Already short circuited.
 683     return NULL;
 684   }
 685 
 686   // Build an if node and its projections.
 687   // If test is true we take the slow path, which we assume is uncommon.
 688   if (_gvn.type(test) == TypeInt::ZERO) {
 689     // The slow branch is never taken.  No need to build this guard.
 690     return NULL;
 691   }
 692 
 693   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 694 
 695   Node* if_slow = _gvn.transform( new (C, 1) IfTrueNode(iff) );
 696   if (if_slow == top()) {
 697     // The slow branch is never taken.  No need to build this guard.
 698     return NULL;
 699   }
 700 
 701   if (region != NULL)
 702     region->add_req(if_slow);
 703 
 704   Node* if_fast = _gvn.transform( new (C, 1) IfFalseNode(iff) );
 705   set_control(if_fast);
 706 
 707   return if_slow;
 708 }
 709 
 710 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 711   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 712 }
 713 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 714   return generate_guard(test, region, PROB_FAIR);
 715 }
 716 
 717 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 718                                                      Node* *pos_index) {
 719   if (stopped())
 720     return NULL;                // already stopped
 721   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 722     return NULL;                // index is already adequately typed
 723   Node* cmp_lt = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 724   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 725   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 726   if (is_neg != NULL && pos_index != NULL) {
 727     // Emulate effect of Parse::adjust_map_after_if.
 728     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS);
 729     ccast->set_req(0, control());
 730     (*pos_index) = _gvn.transform(ccast);
 731   }
 732   return is_neg;
 733 }
 734 
 735 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 736                                                         Node* *pos_index) {
 737   if (stopped())
 738     return NULL;                // already stopped
 739   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 740     return NULL;                // index is already adequately typed
 741   Node* cmp_le = _gvn.transform( new (C, 3) CmpINode(index, intcon(0)) );
 742   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 743   Node* bol_le = _gvn.transform( new (C, 2) BoolNode(cmp_le, le_or_eq) );
 744   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 745   if (is_notp != NULL && pos_index != NULL) {
 746     // Emulate effect of Parse::adjust_map_after_if.
 747     Node* ccast = new (C, 2) CastIINode(index, TypeInt::POS1);
 748     ccast->set_req(0, control());
 749     (*pos_index) = _gvn.transform(ccast);
 750   }
 751   return is_notp;
 752 }
 753 
 754 // Make sure that 'position' is a valid limit index, in [0..length].
 755 // There are two equivalent plans for checking this:
 756 //   A. (offset + copyLength)  unsigned<=  arrayLength
 757 //   B. offset  <=  (arrayLength - copyLength)
 758 // We require that all of the values above, except for the sum and
 759 // difference, are already known to be non-negative.
 760 // Plan A is robust in the face of overflow, if offset and copyLength
 761 // are both hugely positive.
 762 //
 763 // Plan B is less direct and intuitive, but it does not overflow at
 764 // all, since the difference of two non-negatives is always
 765 // representable.  Whenever Java methods must perform the equivalent
 766 // check they generally use Plan B instead of Plan A.
 767 // For the moment we use Plan A.
 768 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 769                                                   Node* subseq_length,
 770                                                   Node* array_length,
 771                                                   RegionNode* region) {
 772   if (stopped())
 773     return NULL;                // already stopped
 774   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 775   if (zero_offset && _gvn.eqv_uncast(subseq_length, array_length))
 776     return NULL;                // common case of whole-array copy
 777   Node* last = subseq_length;
 778   if (!zero_offset)             // last += offset
 779     last = _gvn.transform( new (C, 3) AddINode(last, offset));
 780   Node* cmp_lt = _gvn.transform( new (C, 3) CmpUNode(array_length, last) );
 781   Node* bol_lt = _gvn.transform( new (C, 2) BoolNode(cmp_lt, BoolTest::lt) );
 782   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 783   return is_over;
 784 }
 785 
 786 
 787 //--------------------------generate_current_thread--------------------
 788 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 789   ciKlass*    thread_klass = env()->Thread_klass();
 790   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 791   Node* thread = _gvn.transform(new (C, 1) ThreadLocalNode());
 792   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 793   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 794   tls_output = thread;
 795   return threadObj;
 796 }
 797 
 798 
 799 //------------------------------inline_string_compareTo------------------------
 800 bool LibraryCallKit::inline_string_compareTo() {
 801 
 802   if (!Matcher::has_match_rule(Op_StrComp)) return false;
 803 
 804   const int value_offset = java_lang_String::value_offset_in_bytes();
 805   const int count_offset = java_lang_String::count_offset_in_bytes();
 806   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 807 
 808   _sp += 2;
 809   Node *argument = pop();  // pop non-receiver first:  it was pushed second
 810   Node *receiver = pop();
 811 
 812   // Null check on self without removing any arguments.  The argument
 813   // null check technically happens in the wrong place, which can lead to
 814   // invalid stack traces when string compare is inlined into a method
 815   // which handles NullPointerExceptions.
 816   _sp += 2;
 817   receiver = do_null_check(receiver, T_OBJECT);
 818   argument = do_null_check(argument, T_OBJECT);
 819   _sp -= 2;
 820   if (stopped()) {
 821     return true;
 822   }
 823 
 824   ciInstanceKlass* klass = env()->String_klass();
 825   const TypeInstPtr* string_type =
 826     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
 827 
 828   Node* compare =
 829     _gvn.transform(new (C, 7) StrCompNode(
 830                         control(),
 831                         memory(TypeAryPtr::CHARS),
 832                         memory(string_type->add_offset(value_offset)),
 833                         memory(string_type->add_offset(count_offset)),
 834                         memory(string_type->add_offset(offset_offset)),
 835                         receiver,
 836                         argument));
 837   push(compare);
 838   return true;
 839 }
 840 
 841 //------------------------------inline_string_equals------------------------
 842 bool LibraryCallKit::inline_string_equals() {
 843 
 844   if (!Matcher::has_match_rule(Op_StrEquals)) return false;
 845 
 846   const int value_offset = java_lang_String::value_offset_in_bytes();
 847   const int count_offset = java_lang_String::count_offset_in_bytes();
 848   const int offset_offset = java_lang_String::offset_offset_in_bytes();
 849 
 850   _sp += 2;
 851   Node* argument = pop();  // pop non-receiver first:  it was pushed second
 852   Node* receiver = pop();
 853 
 854   // Null check on self without removing any arguments.  The argument
 855   // null check technically happens in the wrong place, which can lead to
 856   // invalid stack traces when string compare is inlined into a method
 857   // which handles NullPointerExceptions.
 858   _sp += 2;
 859   receiver = do_null_check(receiver, T_OBJECT);
 860   //should not do null check for argument for String.equals(), because spec
 861   //allows to specify NULL as argument.
 862   _sp -= 2;
 863 
 864   if (stopped()) {
 865     return true;
 866   }
 867 
 868   // get String klass for instanceOf
 869   ciInstanceKlass* klass = env()->String_klass();
 870 
 871   // two paths (plus control) merge
 872   RegionNode* region = new (C, 3) RegionNode(3);
 873   Node* phi = new (C, 3) PhiNode(region, TypeInt::BOOL);
 874 
 875   Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
 876   Node* cmp  = _gvn.transform(new (C, 3) CmpINode(inst, intcon(1)));
 877   Node* bol  = _gvn.transform(new (C, 2) BoolNode(cmp, BoolTest::eq));
 878 
 879   IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
 880 
 881   Node* if_true  = _gvn.transform(new (C, 1) IfTrueNode(iff));
 882   set_control(if_true);
 883 
 884   const TypeInstPtr* string_type =
 885     TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
 886 
 887   // instanceOf == true
 888   Node* equals =
 889     _gvn.transform(new (C, 7) StrEqualsNode(
 890                         control(),
 891                         memory(TypeAryPtr::CHARS),
 892                         memory(string_type->add_offset(value_offset)),
 893                         memory(string_type->add_offset(count_offset)),
 894                         memory(string_type->add_offset(offset_offset)),
 895                         receiver,
 896                         argument));
 897 
 898   phi->init_req(1, _gvn.transform(equals));
 899   region->init_req(1, if_true);
 900 
 901   //instanceOf == false, fallthrough
 902   Node* if_false = _gvn.transform(new (C, 1) IfFalseNode(iff));
 903   set_control(if_false);
 904 
 905   phi->init_req(2, _gvn.transform(intcon(0)));
 906   region->init_req(2, if_false);
 907 
 908   // post merge
 909   set_control(_gvn.transform(region));
 910   record_for_igvn(region);
 911 
 912   push(_gvn.transform(phi));
 913 
 914   return true;
 915 }
 916 
 917 //------------------------------inline_array_equals----------------------------
 918 bool LibraryCallKit::inline_array_equals() {
 919 
 920   if (!Matcher::has_match_rule(Op_AryEq)) return false;
 921 
 922   _sp += 2;
 923   Node *argument2 = pop();
 924   Node *argument1 = pop();
 925 
 926   Node* equals =
 927     _gvn.transform(new (C, 3) AryEqNode(control(),
 928                                         argument1,
 929                                         argument2)
 930                    );
 931   push(equals);
 932   return true;
 933 }
 934 
 935 // Java version of String.indexOf(constant string)
 936 // class StringDecl {
 937 //   StringDecl(char[] ca) {
 938 //     offset = 0;
 939 //     count = ca.length;
 940 //     value = ca;
 941 //   }
 942 //   int offset;
 943 //   int count;
 944 //   char[] value;
 945 // }
 946 //
 947 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
 948 //                             int targetOffset, int cache_i, int md2) {
 949 //   int cache = cache_i;
 950 //   int sourceOffset = string_object.offset;
 951 //   int sourceCount = string_object.count;
 952 //   int targetCount = target_object.length;
 953 //
 954 //   int targetCountLess1 = targetCount - 1;
 955 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
 956 //
 957 //   char[] source = string_object.value;
 958 //   char[] target = target_object;
 959 //   int lastChar = target[targetCountLess1];
 960 //
 961 //  outer_loop:
 962 //   for (int i = sourceOffset; i < sourceEnd; ) {
 963 //     int src = source[i + targetCountLess1];
 964 //     if (src == lastChar) {
 965 //       // With random strings and a 4-character alphabet,
 966 //       // reverse matching at this point sets up 0.8% fewer
 967 //       // frames, but (paradoxically) makes 0.3% more probes.
 968 //       // Since those probes are nearer the lastChar probe,
 969 //       // there is may be a net D$ win with reverse matching.
 970 //       // But, reversing loop inhibits unroll of inner loop
 971 //       // for unknown reason.  So, does running outer loop from
 972 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
 973 //       for (int j = 0; j < targetCountLess1; j++) {
 974 //         if (target[targetOffset + j] != source[i+j]) {
 975 //           if ((cache & (1 << source[i+j])) == 0) {
 976 //             if (md2 < j+1) {
 977 //               i += j+1;
 978 //               continue outer_loop;
 979 //             }
 980 //           }
 981 //           i += md2;
 982 //           continue outer_loop;
 983 //         }
 984 //       }
 985 //       return i - sourceOffset;
 986 //     }
 987 //     if ((cache & (1 << src)) == 0) {
 988 //       i += targetCountLess1;
 989 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
 990 //     i++;
 991 //   }
 992 //   return -1;
 993 // }
 994 
 995 //------------------------------string_indexOf------------------------
 996 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
 997                                      jint cache_i, jint md2_i) {
 998 
 999   Node* no_ctrl  = NULL;
1000   float likely   = PROB_LIKELY(0.9);
1001   float unlikely = PROB_UNLIKELY(0.9);
1002 
1003   const int value_offset  = java_lang_String::value_offset_in_bytes();
1004   const int count_offset  = java_lang_String::count_offset_in_bytes();
1005   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1006 
1007   ciInstanceKlass* klass = env()->String_klass();
1008   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
1009   const TypeAryPtr*  source_type = TypeAryPtr::make(TypePtr::NotNull, TypeAry::make(TypeInt::CHAR,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, 0);
1010 
1011   Node* sourceOffseta = basic_plus_adr(string_object, string_object, offset_offset);
1012   Node* sourceOffset  = make_load(no_ctrl, sourceOffseta, TypeInt::INT, T_INT, string_type->add_offset(offset_offset));
1013   Node* sourceCounta  = basic_plus_adr(string_object, string_object, count_offset);
1014   Node* sourceCount   = make_load(no_ctrl, sourceCounta, TypeInt::INT, T_INT, string_type->add_offset(count_offset));
1015   Node* sourcea       = basic_plus_adr(string_object, string_object, value_offset);
1016   Node* source        = make_load(no_ctrl, sourcea, source_type, T_OBJECT, string_type->add_offset(value_offset));
1017 
1018   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array)) );
1019   jint target_length = target_array->length();
1020   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1021   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1022 
1023   IdealKit kit(gvn(), control(), merged_memory(), false, true);
1024 #define __ kit.
1025   Node* zero             = __ ConI(0);
1026   Node* one              = __ ConI(1);
1027   Node* cache            = __ ConI(cache_i);
1028   Node* md2              = __ ConI(md2_i);
1029   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1030   Node* targetCount      = __ ConI(target_length);
1031   Node* targetCountLess1 = __ ConI(target_length - 1);
1032   Node* targetOffset     = __ ConI(targetOffset_i);
1033   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1034 
1035   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1036   Node* outer_loop = __ make_label(2 /* goto */);
1037   Node* return_    = __ make_label(1);
1038 
1039   __ set(rtn,__ ConI(-1));
1040   __ loop(i, sourceOffset, BoolTest::lt, sourceEnd); {
1041        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1042        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1043        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1044        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1045          __ loop(j, zero, BoolTest::lt, targetCountLess1); {
1046               Node* tpj = __ AddI(targetOffset, __ value(j));
1047               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1048               Node* ipj  = __ AddI(__ value(i), __ value(j));
1049               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1050               __ if_then(targ, BoolTest::ne, src2); {
1051                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1052                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1053                     __ increment(i, __ AddI(__ value(j), one));
1054                     __ goto_(outer_loop);
1055                   } __ end_if(); __ dead(j);
1056                 }__ end_if(); __ dead(j);
1057                 __ increment(i, md2);
1058                 __ goto_(outer_loop);
1059               }__ end_if();
1060               __ increment(j, one);
1061          }__ end_loop(); __ dead(j);
1062          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1063          __ goto_(return_);
1064        }__ end_if();
1065        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1066          __ increment(i, targetCountLess1);
1067        }__ end_if();
1068        __ increment(i, one);
1069        __ bind(outer_loop);
1070   }__ end_loop(); __ dead(i);
1071   __ bind(return_);
1072 
1073   // Final sync IdealKit and GraphKit.
1074   sync_kit(kit);
1075   Node* result = __ value(rtn);
1076 #undef __
1077   C->set_has_loops(true);
1078   return result;
1079 }
1080 
1081 //------------------------------inline_string_indexOf------------------------
1082 bool LibraryCallKit::inline_string_indexOf() {
1083 
1084   const int value_offset  = java_lang_String::value_offset_in_bytes();
1085   const int count_offset  = java_lang_String::count_offset_in_bytes();
1086   const int offset_offset = java_lang_String::offset_offset_in_bytes();
1087 
1088   _sp += 2;
1089   Node *argument = pop();  // pop non-receiver first:  it was pushed second
1090   Node *receiver = pop();
1091 
1092   Node* result;
1093   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1094       UseSSE42Intrinsics) {
1095     // Generate SSE4.2 version of indexOf
1096     // We currently only have match rules that use SSE4.2
1097 
1098     // Null check on self without removing any arguments.  The argument
1099     // null check technically happens in the wrong place, which can lead to
1100     // invalid stack traces when string compare is inlined into a method
1101     // which handles NullPointerExceptions.
1102     _sp += 2;
1103     receiver = do_null_check(receiver, T_OBJECT);
1104     argument = do_null_check(argument, T_OBJECT);
1105     _sp -= 2;
1106 
1107     if (stopped()) {
1108       return true;
1109     }
1110 
1111     ciInstanceKlass* klass = env()->String_klass();
1112     const TypeInstPtr* string_type =
1113       TypeInstPtr::make(TypePtr::BotPTR, klass, false, NULL, 0);
1114 
1115     result =
1116       _gvn.transform(new (C, 7)
1117                      StrIndexOfNode(control(),
1118                                     memory(TypeAryPtr::CHARS),
1119                                     memory(string_type->add_offset(value_offset)),
1120                                     memory(string_type->add_offset(count_offset)),
1121                                     memory(string_type->add_offset(offset_offset)),
1122                                     receiver,
1123                                     argument));
1124   } else { //Use LibraryCallKit::string_indexOf
1125     // don't intrinsify is argument isn't a constant string.
1126     if (!argument->is_Con()) {
1127      return false;
1128     }
1129     const TypeOopPtr* str_type = _gvn.type(argument)->isa_oopptr();
1130     if (str_type == NULL) {
1131       return false;
1132     }
1133     ciInstanceKlass* klass = env()->String_klass();
1134     ciObject* str_const = str_type->const_oop();
1135     if (str_const == NULL || str_const->klass() != klass) {
1136       return false;
1137     }
1138     ciInstance* str = str_const->as_instance();
1139     assert(str != NULL, "must be instance");
1140 
1141     ciObject* v = str->field_value_by_offset(value_offset).as_object();
1142     int       o = str->field_value_by_offset(offset_offset).as_int();
1143     int       c = str->field_value_by_offset(count_offset).as_int();
1144     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1145 
1146     // constant strings have no offset and count == length which
1147     // simplifies the resulting code somewhat so lets optimize for that.
1148     if (o != 0 || c != pat->length()) {
1149      return false;
1150     }
1151 
1152     // Null check on self without removing any arguments.  The argument
1153     // null check technically happens in the wrong place, which can lead to
1154     // invalid stack traces when string compare is inlined into a method
1155     // which handles NullPointerExceptions.
1156     _sp += 2;
1157     receiver = do_null_check(receiver, T_OBJECT);
1158     // No null check on the argument is needed since it's a constant String oop.
1159     _sp -= 2;
1160     if (stopped()) {
1161      return true;
1162     }
1163 
1164     // The null string as a pattern always returns 0 (match at beginning of string)
1165     if (c == 0) {
1166       push(intcon(0));
1167       return true;
1168     }
1169 
1170     // Generate default indexOf
1171     jchar lastChar = pat->char_at(o + (c - 1));
1172     int cache = 0;
1173     int i;
1174     for (i = 0; i < c - 1; i++) {
1175       assert(i < pat->length(), "out of range");
1176       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1177     }
1178 
1179     int md2 = c;
1180     for (i = 0; i < c - 1; i++) {
1181       assert(i < pat->length(), "out of range");
1182       if (pat->char_at(o + i) == lastChar) {
1183         md2 = (c - 1) - i;
1184       }
1185     }
1186 
1187     result = string_indexOf(receiver, pat, o, cache, md2);
1188   }
1189 
1190   push(result);
1191   return true;
1192 }
1193 
1194 //--------------------------pop_math_arg--------------------------------
1195 // Pop a double argument to a math function from the stack
1196 // rounding it if necessary.
1197 Node * LibraryCallKit::pop_math_arg() {
1198   Node *arg = pop_pair();
1199   if( Matcher::strict_fp_requires_explicit_rounding && UseSSE<=1 )
1200     arg = _gvn.transform( new (C, 2) RoundDoubleNode(0, arg) );
1201   return arg;
1202 }
1203 
1204 //------------------------------inline_trig----------------------------------
1205 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1206 // argument reduction which will turn into a fast/slow diamond.
1207 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1208   _sp += arg_size();            // restore stack pointer
1209   Node* arg = pop_math_arg();
1210   Node* trig = NULL;
1211 
1212   switch (id) {
1213   case vmIntrinsics::_dsin:
1214     trig = _gvn.transform((Node*)new (C, 2) SinDNode(arg));
1215     break;
1216   case vmIntrinsics::_dcos:
1217     trig = _gvn.transform((Node*)new (C, 2) CosDNode(arg));
1218     break;
1219   case vmIntrinsics::_dtan:
1220     trig = _gvn.transform((Node*)new (C, 2) TanDNode(arg));
1221     break;
1222   default:
1223     assert(false, "bad intrinsic was passed in");
1224     return false;
1225   }
1226 
1227   // Rounding required?  Check for argument reduction!
1228   if( Matcher::strict_fp_requires_explicit_rounding ) {
1229 
1230     static const double     pi_4 =  0.7853981633974483;
1231     static const double neg_pi_4 = -0.7853981633974483;
1232     // pi/2 in 80-bit extended precision
1233     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1234     // -pi/2 in 80-bit extended precision
1235     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1236     // Cutoff value for using this argument reduction technique
1237     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1238     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1239 
1240     // Pseudocode for sin:
1241     // if (x <= Math.PI / 4.0) {
1242     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1243     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1244     // } else {
1245     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1246     // }
1247     // return StrictMath.sin(x);
1248 
1249     // Pseudocode for cos:
1250     // if (x <= Math.PI / 4.0) {
1251     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1252     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1253     // } else {
1254     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1255     // }
1256     // return StrictMath.cos(x);
1257 
1258     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1259     // requires a special machine instruction to load it.  Instead we'll try
1260     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1261     // probably do the math inside the SIN encoding.
1262 
1263     // Make the merge point
1264     RegionNode *r = new (C, 3) RegionNode(3);
1265     Node *phi = new (C, 3) PhiNode(r,Type::DOUBLE);
1266 
1267     // Flatten arg so we need only 1 test
1268     Node *abs = _gvn.transform(new (C, 2) AbsDNode(arg));
1269     // Node for PI/4 constant
1270     Node *pi4 = makecon(TypeD::make(pi_4));
1271     // Check PI/4 : abs(arg)
1272     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(pi4,abs));
1273     // Check: If PI/4 < abs(arg) then go slow
1274     Node *bol = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::lt ) );
1275     // Branch either way
1276     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1277     set_control(opt_iff(r,iff));
1278 
1279     // Set fast path result
1280     phi->init_req(2,trig);
1281 
1282     // Slow path - non-blocking leaf call
1283     Node* call = NULL;
1284     switch (id) {
1285     case vmIntrinsics::_dsin:
1286       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1287                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1288                                "Sin", NULL, arg, top());
1289       break;
1290     case vmIntrinsics::_dcos:
1291       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1292                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1293                                "Cos", NULL, arg, top());
1294       break;
1295     case vmIntrinsics::_dtan:
1296       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1297                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1298                                "Tan", NULL, arg, top());
1299       break;
1300     }
1301     assert(control()->in(0) == call, "");
1302     Node* slow_result = _gvn.transform(new (C, 1) ProjNode(call,TypeFunc::Parms));
1303     r->init_req(1,control());
1304     phi->init_req(1,slow_result);
1305 
1306     // Post-merge
1307     set_control(_gvn.transform(r));
1308     record_for_igvn(r);
1309     trig = _gvn.transform(phi);
1310 
1311     C->set_has_split_ifs(true); // Has chance for split-if optimization
1312   }
1313   // Push result back on JVM stack
1314   push_pair(trig);
1315   return true;
1316 }
1317 
1318 //------------------------------inline_sqrt-------------------------------------
1319 // Inline square root instruction, if possible.
1320 bool LibraryCallKit::inline_sqrt(vmIntrinsics::ID id) {
1321   assert(id == vmIntrinsics::_dsqrt, "Not square root");
1322   _sp += arg_size();        // restore stack pointer
1323   push_pair(_gvn.transform(new (C, 2) SqrtDNode(0, pop_math_arg())));
1324   return true;
1325 }
1326 
1327 //------------------------------inline_abs-------------------------------------
1328 // Inline absolute value instruction, if possible.
1329 bool LibraryCallKit::inline_abs(vmIntrinsics::ID id) {
1330   assert(id == vmIntrinsics::_dabs, "Not absolute value");
1331   _sp += arg_size();        // restore stack pointer
1332   push_pair(_gvn.transform(new (C, 2) AbsDNode(pop_math_arg())));
1333   return true;
1334 }
1335 
1336 //------------------------------inline_exp-------------------------------------
1337 // Inline exp instructions, if possible.  The Intel hardware only misses
1338 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1339 bool LibraryCallKit::inline_exp(vmIntrinsics::ID id) {
1340   assert(id == vmIntrinsics::_dexp, "Not exp");
1341 
1342   // If this inlining ever returned NaN in the past, we do not intrinsify it
1343   // every again.  NaN results requires StrictMath.exp handling.
1344   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1345 
1346   // Do not intrinsify on older platforms which lack cmove.
1347   if (ConditionalMoveLimit == 0)  return false;
1348 
1349   _sp += arg_size();        // restore stack pointer
1350   Node *x = pop_math_arg();
1351   Node *result = _gvn.transform(new (C, 2) ExpDNode(0,x));
1352 
1353   //-------------------
1354   //result=(result.isNaN())? StrictMath::exp():result;
1355   // Check: If isNaN() by checking result!=result? then go to Strict Math
1356   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1357   // Build the boolean node
1358   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1359 
1360   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1361     // End the current control-flow path
1362     push_pair(x);
1363     // Math.exp intrinsic returned a NaN, which requires StrictMath.exp
1364     // to handle.  Recompile without intrinsifying Math.exp
1365     uncommon_trap(Deoptimization::Reason_intrinsic,
1366                   Deoptimization::Action_make_not_entrant);
1367   }
1368 
1369   C->set_has_split_ifs(true); // Has chance for split-if optimization
1370 
1371   push_pair(result);
1372 
1373   return true;
1374 }
1375 
1376 //------------------------------inline_pow-------------------------------------
1377 // Inline power instructions, if possible.
1378 bool LibraryCallKit::inline_pow(vmIntrinsics::ID id) {
1379   assert(id == vmIntrinsics::_dpow, "Not pow");
1380 
1381   // If this inlining ever returned NaN in the past, we do not intrinsify it
1382   // every again.  NaN results requires StrictMath.pow handling.
1383   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
1384 
1385   // Do not intrinsify on older platforms which lack cmove.
1386   if (ConditionalMoveLimit == 0)  return false;
1387 
1388   // Pseudocode for pow
1389   // if (x <= 0.0) {
1390   //   if ((double)((int)y)==y) { // if y is int
1391   //     result = ((1&(int)y)==0)?-DPow(abs(x), y):DPow(abs(x), y)
1392   //   } else {
1393   //     result = NaN;
1394   //   }
1395   // } else {
1396   //   result = DPow(x,y);
1397   // }
1398   // if (result != result)?  {
1399   //   uncommon_trap();
1400   // }
1401   // return result;
1402 
1403   _sp += arg_size();        // restore stack pointer
1404   Node* y = pop_math_arg();
1405   Node* x = pop_math_arg();
1406 
1407   Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, x, y) );
1408 
1409   // Short form: if not top-level (i.e., Math.pow but inlining Math.pow
1410   // inside of something) then skip the fancy tests and just check for
1411   // NaN result.
1412   Node *result = NULL;
1413   if( jvms()->depth() >= 1 ) {
1414     result = fast_result;
1415   } else {
1416 
1417     // Set the merge point for If node with condition of (x <= 0.0)
1418     // There are four possible paths to region node and phi node
1419     RegionNode *r = new (C, 4) RegionNode(4);
1420     Node *phi = new (C, 4) PhiNode(r, Type::DOUBLE);
1421 
1422     // Build the first if node: if (x <= 0.0)
1423     // Node for 0 constant
1424     Node *zeronode = makecon(TypeD::ZERO);
1425     // Check x:0
1426     Node *cmp = _gvn.transform(new (C, 3) CmpDNode(x, zeronode));
1427     // Check: If (x<=0) then go complex path
1428     Node *bol1 = _gvn.transform( new (C, 2) BoolNode( cmp, BoolTest::le ) );
1429     // Branch either way
1430     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1431     Node *opt_test = _gvn.transform(if1);
1432     //assert( opt_test->is_If(), "Expect an IfNode");
1433     IfNode *opt_if1 = (IfNode*)opt_test;
1434     // Fast path taken; set region slot 3
1435     Node *fast_taken = _gvn.transform( new (C, 1) IfFalseNode(opt_if1) );
1436     r->init_req(3,fast_taken); // Capture fast-control
1437 
1438     // Fast path not-taken, i.e. slow path
1439     Node *complex_path = _gvn.transform( new (C, 1) IfTrueNode(opt_if1) );
1440 
1441     // Set fast path result
1442     Node *fast_result = _gvn.transform( new (C, 3) PowDNode(0, y, x) );
1443     phi->init_req(3, fast_result);
1444 
1445     // Complex path
1446     // Build the second if node (if y is int)
1447     // Node for (int)y
1448     Node *inty = _gvn.transform( new (C, 2) ConvD2INode(y));
1449     // Node for (double)((int) y)
1450     Node *doubleinty= _gvn.transform( new (C, 2) ConvI2DNode(inty));
1451     // Check (double)((int) y) : y
1452     Node *cmpinty= _gvn.transform(new (C, 3) CmpDNode(doubleinty, y));
1453     // Check if (y isn't int) then go to slow path
1454 
1455     Node *bol2 = _gvn.transform( new (C, 2) BoolNode( cmpinty, BoolTest::ne ) );
1456     // Branch either way
1457     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1458     Node *slow_path = opt_iff(r,if2); // Set region path 2
1459 
1460     // Calculate DPow(abs(x), y)*(1 & (int)y)
1461     // Node for constant 1
1462     Node *conone = intcon(1);
1463     // 1& (int)y
1464     Node *signnode= _gvn.transform( new (C, 3) AndINode(conone, inty) );
1465     // zero node
1466     Node *conzero = intcon(0);
1467     // Check (1&(int)y)==0?
1468     Node *cmpeq1 = _gvn.transform(new (C, 3) CmpINode(signnode, conzero));
1469     // Check if (1&(int)y)!=0?, if so the result is negative
1470     Node *bol3 = _gvn.transform( new (C, 2) BoolNode( cmpeq1, BoolTest::ne ) );
1471     // abs(x)
1472     Node *absx=_gvn.transform( new (C, 2) AbsDNode(x));
1473     // abs(x)^y
1474     Node *absxpowy = _gvn.transform( new (C, 3) PowDNode(0, y, absx) );
1475     // -abs(x)^y
1476     Node *negabsxpowy = _gvn.transform(new (C, 2) NegDNode (absxpowy));
1477     // (1&(int)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1478     Node *signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1479     // Set complex path fast result
1480     phi->init_req(2, signresult);
1481 
1482     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1483     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1484     r->init_req(1,slow_path);
1485     phi->init_req(1,slow_result);
1486 
1487     // Post merge
1488     set_control(_gvn.transform(r));
1489     record_for_igvn(r);
1490     result=_gvn.transform(phi);
1491   }
1492 
1493   //-------------------
1494   //result=(result.isNaN())? uncommon_trap():result;
1495   // Check: If isNaN() by checking result!=result? then go to Strict Math
1496   Node* cmpisnan = _gvn.transform(new (C, 3) CmpDNode(result,result));
1497   // Build the boolean node
1498   Node* bolisnum = _gvn.transform( new (C, 2) BoolNode(cmpisnan, BoolTest::eq) );
1499 
1500   { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1501     // End the current control-flow path
1502     push_pair(x);
1503     push_pair(y);
1504     // Math.pow intrinsic returned a NaN, which requires StrictMath.pow
1505     // to handle.  Recompile without intrinsifying Math.pow.
1506     uncommon_trap(Deoptimization::Reason_intrinsic,
1507                   Deoptimization::Action_make_not_entrant);
1508   }
1509 
1510   C->set_has_split_ifs(true); // Has chance for split-if optimization
1511 
1512   push_pair(result);
1513 
1514   return true;
1515 }
1516 
1517 //------------------------------inline_trans-------------------------------------
1518 // Inline transcendental instructions, if possible.  The Intel hardware gets
1519 // these right, no funny corner cases missed.
1520 bool LibraryCallKit::inline_trans(vmIntrinsics::ID id) {
1521   _sp += arg_size();        // restore stack pointer
1522   Node* arg = pop_math_arg();
1523   Node* trans = NULL;
1524 
1525   switch (id) {
1526   case vmIntrinsics::_dlog:
1527     trans = _gvn.transform((Node*)new (C, 2) LogDNode(arg));
1528     break;
1529   case vmIntrinsics::_dlog10:
1530     trans = _gvn.transform((Node*)new (C, 2) Log10DNode(arg));
1531     break;
1532   default:
1533     assert(false, "bad intrinsic was passed in");
1534     return false;
1535   }
1536 
1537   // Push result back on JVM stack
1538   push_pair(trans);
1539   return true;
1540 }
1541 
1542 //------------------------------runtime_math-----------------------------
1543 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1544   Node* a = NULL;
1545   Node* b = NULL;
1546 
1547   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1548          "must be (DD)D or (D)D type");
1549 
1550   // Inputs
1551   _sp += arg_size();        // restore stack pointer
1552   if (call_type == OptoRuntime::Math_DD_D_Type()) {
1553     b = pop_math_arg();
1554   }
1555   a = pop_math_arg();
1556 
1557   const TypePtr* no_memory_effects = NULL;
1558   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1559                                  no_memory_effects,
1560                                  a, top(), b, b ? top() : NULL);
1561   Node* value = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+0));
1562 #ifdef ASSERT
1563   Node* value_top = _gvn.transform(new (C, 1) ProjNode(trig, TypeFunc::Parms+1));
1564   assert(value_top == top(), "second value must be top");
1565 #endif
1566 
1567   push_pair(value);
1568   return true;
1569 }
1570 
1571 //------------------------------inline_math_native-----------------------------
1572 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1573   switch (id) {
1574     // These intrinsics are not properly supported on all hardware
1575   case vmIntrinsics::_dcos: return Matcher::has_match_rule(Op_CosD) ? inline_trig(id) :
1576     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS");
1577   case vmIntrinsics::_dsin: return Matcher::has_match_rule(Op_SinD) ? inline_trig(id) :
1578     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN");
1579   case vmIntrinsics::_dtan: return Matcher::has_match_rule(Op_TanD) ? inline_trig(id) :
1580     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1581 
1582   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD) ? inline_trans(id) :
1583     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG");
1584   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_trans(id) :
1585     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1586 
1587     // These intrinsics are supported on all hardware
1588   case vmIntrinsics::_dsqrt: return Matcher::has_match_rule(Op_SqrtD) ? inline_sqrt(id) : false;
1589   case vmIntrinsics::_dabs:  return Matcher::has_match_rule(Op_AbsD)  ? inline_abs(id)  : false;
1590 
1591     // These intrinsics don't work on X86.  The ad implementation doesn't
1592     // handle NaN's properly.  Instead of returning infinity, the ad
1593     // implementation returns a NaN on overflow. See bug: 6304089
1594     // Once the ad implementations are fixed, change the code below
1595     // to match the intrinsics above
1596 
1597   case vmIntrinsics::_dexp:  return
1598     runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1599   case vmIntrinsics::_dpow:  return
1600     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1601 
1602    // These intrinsics are not yet correctly implemented
1603   case vmIntrinsics::_datan2:
1604     return false;
1605 
1606   default:
1607     ShouldNotReachHere();
1608     return false;
1609   }
1610 }
1611 
1612 static bool is_simple_name(Node* n) {
1613   return (n->req() == 1         // constant
1614           || (n->is_Type() && n->as_Type()->type()->singleton())
1615           || n->is_Proj()       // parameter or return value
1616           || n->is_Phi()        // local of some sort
1617           );
1618 }
1619 
1620 //----------------------------inline_min_max-----------------------------------
1621 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1622   push(generate_min_max(id, argument(0), argument(1)));
1623 
1624   return true;
1625 }
1626 
1627 Node*
1628 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1629   // These are the candidate return value:
1630   Node* xvalue = x0;
1631   Node* yvalue = y0;
1632 
1633   if (xvalue == yvalue) {
1634     return xvalue;
1635   }
1636 
1637   bool want_max = (id == vmIntrinsics::_max);
1638 
1639   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1640   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1641   if (txvalue == NULL || tyvalue == NULL)  return top();
1642   // This is not really necessary, but it is consistent with a
1643   // hypothetical MaxINode::Value method:
1644   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1645 
1646   // %%% This folding logic should (ideally) be in a different place.
1647   // Some should be inside IfNode, and there to be a more reliable
1648   // transformation of ?: style patterns into cmoves.  We also want
1649   // more powerful optimizations around cmove and min/max.
1650 
1651   // Try to find a dominating comparison of these guys.
1652   // It can simplify the index computation for Arrays.copyOf
1653   // and similar uses of System.arraycopy.
1654   // First, compute the normalized version of CmpI(x, y).
1655   int   cmp_op = Op_CmpI;
1656   Node* xkey = xvalue;
1657   Node* ykey = yvalue;
1658   Node* ideal_cmpxy = _gvn.transform( new(C, 3) CmpINode(xkey, ykey) );
1659   if (ideal_cmpxy->is_Cmp()) {
1660     // E.g., if we have CmpI(length - offset, count),
1661     // it might idealize to CmpI(length, count + offset)
1662     cmp_op = ideal_cmpxy->Opcode();
1663     xkey = ideal_cmpxy->in(1);
1664     ykey = ideal_cmpxy->in(2);
1665   }
1666 
1667   // Start by locating any relevant comparisons.
1668   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1669   Node* cmpxy = NULL;
1670   Node* cmpyx = NULL;
1671   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1672     Node* cmp = start_from->fast_out(k);
1673     if (cmp->outcnt() > 0 &&            // must have prior uses
1674         cmp->in(0) == NULL &&           // must be context-independent
1675         cmp->Opcode() == cmp_op) {      // right kind of compare
1676       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1677       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1678     }
1679   }
1680 
1681   const int NCMPS = 2;
1682   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1683   int cmpn;
1684   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1685     if (cmps[cmpn] != NULL)  break;     // find a result
1686   }
1687   if (cmpn < NCMPS) {
1688     // Look for a dominating test that tells us the min and max.
1689     int depth = 0;                // Limit search depth for speed
1690     Node* dom = control();
1691     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1692       if (++depth >= 100)  break;
1693       Node* ifproj = dom;
1694       if (!ifproj->is_Proj())  continue;
1695       Node* iff = ifproj->in(0);
1696       if (!iff->is_If())  continue;
1697       Node* bol = iff->in(1);
1698       if (!bol->is_Bool())  continue;
1699       Node* cmp = bol->in(1);
1700       if (cmp == NULL)  continue;
1701       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1702         if (cmps[cmpn] == cmp)  break;
1703       if (cmpn == NCMPS)  continue;
1704       BoolTest::mask btest = bol->as_Bool()->_test._test;
1705       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1706       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1707       // At this point, we know that 'x btest y' is true.
1708       switch (btest) {
1709       case BoolTest::eq:
1710         // They are proven equal, so we can collapse the min/max.
1711         // Either value is the answer.  Choose the simpler.
1712         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1713           return yvalue;
1714         return xvalue;
1715       case BoolTest::lt:          // x < y
1716       case BoolTest::le:          // x <= y
1717         return (want_max ? yvalue : xvalue);
1718       case BoolTest::gt:          // x > y
1719       case BoolTest::ge:          // x >= y
1720         return (want_max ? xvalue : yvalue);
1721       }
1722     }
1723   }
1724 
1725   // We failed to find a dominating test.
1726   // Let's pick a test that might GVN with prior tests.
1727   Node*          best_bol   = NULL;
1728   BoolTest::mask best_btest = BoolTest::illegal;
1729   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1730     Node* cmp = cmps[cmpn];
1731     if (cmp == NULL)  continue;
1732     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1733       Node* bol = cmp->fast_out(j);
1734       if (!bol->is_Bool())  continue;
1735       BoolTest::mask btest = bol->as_Bool()->_test._test;
1736       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1737       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1738       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1739         best_bol   = bol->as_Bool();
1740         best_btest = btest;
1741       }
1742     }
1743   }
1744 
1745   Node* answer_if_true  = NULL;
1746   Node* answer_if_false = NULL;
1747   switch (best_btest) {
1748   default:
1749     if (cmpxy == NULL)
1750       cmpxy = ideal_cmpxy;
1751     best_bol = _gvn.transform( new(C, 2) BoolNode(cmpxy, BoolTest::lt) );
1752     // and fall through:
1753   case BoolTest::lt:          // x < y
1754   case BoolTest::le:          // x <= y
1755     answer_if_true  = (want_max ? yvalue : xvalue);
1756     answer_if_false = (want_max ? xvalue : yvalue);
1757     break;
1758   case BoolTest::gt:          // x > y
1759   case BoolTest::ge:          // x >= y
1760     answer_if_true  = (want_max ? xvalue : yvalue);
1761     answer_if_false = (want_max ? yvalue : xvalue);
1762     break;
1763   }
1764 
1765   jint hi, lo;
1766   if (want_max) {
1767     // We can sharpen the minimum.
1768     hi = MAX2(txvalue->_hi, tyvalue->_hi);
1769     lo = MAX2(txvalue->_lo, tyvalue->_lo);
1770   } else {
1771     // We can sharpen the maximum.
1772     hi = MIN2(txvalue->_hi, tyvalue->_hi);
1773     lo = MIN2(txvalue->_lo, tyvalue->_lo);
1774   }
1775 
1776   // Use a flow-free graph structure, to avoid creating excess control edges
1777   // which could hinder other optimizations.
1778   // Since Math.min/max is often used with arraycopy, we want
1779   // tightly_coupled_allocation to be able to see beyond min/max expressions.
1780   Node* cmov = CMoveNode::make(C, NULL, best_bol,
1781                                answer_if_false, answer_if_true,
1782                                TypeInt::make(lo, hi, widen));
1783 
1784   return _gvn.transform(cmov);
1785 
1786   /*
1787   // This is not as desirable as it may seem, since Min and Max
1788   // nodes do not have a full set of optimizations.
1789   // And they would interfere, anyway, with 'if' optimizations
1790   // and with CMoveI canonical forms.
1791   switch (id) {
1792   case vmIntrinsics::_min:
1793     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1794   case vmIntrinsics::_max:
1795     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1796   default:
1797     ShouldNotReachHere();
1798   }
1799   */
1800 }
1801 
1802 inline int
1803 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
1804   const TypePtr* base_type = TypePtr::NULL_PTR;
1805   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1806   if (base_type == NULL) {
1807     // Unknown type.
1808     return Type::AnyPtr;
1809   } else if (base_type == TypePtr::NULL_PTR) {
1810     // Since this is a NULL+long form, we have to switch to a rawptr.
1811     base   = _gvn.transform( new (C, 2) CastX2PNode(offset) );
1812     offset = MakeConX(0);
1813     return Type::RawPtr;
1814   } else if (base_type->base() == Type::RawPtr) {
1815     return Type::RawPtr;
1816   } else if (base_type->isa_oopptr()) {
1817     // Base is never null => always a heap address.
1818     if (base_type->ptr() == TypePtr::NotNull) {
1819       return Type::OopPtr;
1820     }
1821     // Offset is small => always a heap address.
1822     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1823     if (offset_type != NULL &&
1824         base_type->offset() == 0 &&     // (should always be?)
1825         offset_type->_lo >= 0 &&
1826         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1827       return Type::OopPtr;
1828     }
1829     // Otherwise, it might either be oop+off or NULL+addr.
1830     return Type::AnyPtr;
1831   } else {
1832     // No information:
1833     return Type::AnyPtr;
1834   }
1835 }
1836 
1837 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
1838   int kind = classify_unsafe_addr(base, offset);
1839   if (kind == Type::RawPtr) {
1840     return basic_plus_adr(top(), base, offset);
1841   } else {
1842     return basic_plus_adr(base, offset);
1843   }
1844 }
1845 
1846 //-------------------inline_numberOfLeadingZeros_int/long-----------------------
1847 // inline int Integer.numberOfLeadingZeros(int)
1848 // inline int Long.numberOfLeadingZeros(long)
1849 bool LibraryCallKit::inline_numberOfLeadingZeros(vmIntrinsics::ID id) {
1850   assert(id == vmIntrinsics::_numberOfLeadingZeros_i || id == vmIntrinsics::_numberOfLeadingZeros_l, "not numberOfLeadingZeros");
1851   if (id == vmIntrinsics::_numberOfLeadingZeros_i && !Matcher::match_rule_supported(Op_CountLeadingZerosI)) return false;
1852   if (id == vmIntrinsics::_numberOfLeadingZeros_l && !Matcher::match_rule_supported(Op_CountLeadingZerosL)) return false;
1853   _sp += arg_size();  // restore stack pointer
1854   switch (id) {
1855   case vmIntrinsics::_numberOfLeadingZeros_i:
1856     push(_gvn.transform(new (C, 2) CountLeadingZerosINode(pop())));
1857     break;
1858   case vmIntrinsics::_numberOfLeadingZeros_l:
1859     push(_gvn.transform(new (C, 2) CountLeadingZerosLNode(pop_pair())));
1860     break;
1861   default:
1862     ShouldNotReachHere();
1863   }
1864   return true;
1865 }
1866 
1867 //-------------------inline_numberOfTrailingZeros_int/long----------------------
1868 // inline int Integer.numberOfTrailingZeros(int)
1869 // inline int Long.numberOfTrailingZeros(long)
1870 bool LibraryCallKit::inline_numberOfTrailingZeros(vmIntrinsics::ID id) {
1871   assert(id == vmIntrinsics::_numberOfTrailingZeros_i || id == vmIntrinsics::_numberOfTrailingZeros_l, "not numberOfTrailingZeros");
1872   if (id == vmIntrinsics::_numberOfTrailingZeros_i && !Matcher::match_rule_supported(Op_CountTrailingZerosI)) return false;
1873   if (id == vmIntrinsics::_numberOfTrailingZeros_l && !Matcher::match_rule_supported(Op_CountTrailingZerosL)) return false;
1874   _sp += arg_size();  // restore stack pointer
1875   switch (id) {
1876   case vmIntrinsics::_numberOfTrailingZeros_i:
1877     push(_gvn.transform(new (C, 2) CountTrailingZerosINode(pop())));
1878     break;
1879   case vmIntrinsics::_numberOfTrailingZeros_l:
1880     push(_gvn.transform(new (C, 2) CountTrailingZerosLNode(pop_pair())));
1881     break;
1882   default:
1883     ShouldNotReachHere();
1884   }
1885   return true;
1886 }
1887 
1888 //----------------------------inline_bitCount_int/long-----------------------
1889 // inline int Integer.bitCount(int)
1890 // inline int Long.bitCount(long)
1891 bool LibraryCallKit::inline_bitCount(vmIntrinsics::ID id) {
1892   assert(id == vmIntrinsics::_bitCount_i || id == vmIntrinsics::_bitCount_l, "not bitCount");
1893   if (id == vmIntrinsics::_bitCount_i && !Matcher::has_match_rule(Op_PopCountI)) return false;
1894   if (id == vmIntrinsics::_bitCount_l && !Matcher::has_match_rule(Op_PopCountL)) return false;
1895   _sp += arg_size();  // restore stack pointer
1896   switch (id) {
1897   case vmIntrinsics::_bitCount_i:
1898     push(_gvn.transform(new (C, 2) PopCountINode(pop())));
1899     break;
1900   case vmIntrinsics::_bitCount_l:
1901     push(_gvn.transform(new (C, 2) PopCountLNode(pop_pair())));
1902     break;
1903   default:
1904     ShouldNotReachHere();
1905   }
1906   return true;
1907 }
1908 
1909 //----------------------------inline_reverseBytes_int/long-------------------
1910 // inline Integer.reverseBytes(int)
1911 // inline Long.reverseBytes(long)
1912 bool LibraryCallKit::inline_reverseBytes(vmIntrinsics::ID id) {
1913   assert(id == vmIntrinsics::_reverseBytes_i || id == vmIntrinsics::_reverseBytes_l, "not reverse Bytes");
1914   if (id == vmIntrinsics::_reverseBytes_i && !Matcher::has_match_rule(Op_ReverseBytesI)) return false;
1915   if (id == vmIntrinsics::_reverseBytes_l && !Matcher::has_match_rule(Op_ReverseBytesL)) return false;
1916   _sp += arg_size();        // restore stack pointer
1917   switch (id) {
1918   case vmIntrinsics::_reverseBytes_i:
1919     push(_gvn.transform(new (C, 2) ReverseBytesINode(0, pop())));
1920     break;
1921   case vmIntrinsics::_reverseBytes_l:
1922     push_pair(_gvn.transform(new (C, 2) ReverseBytesLNode(0, pop_pair())));
1923     break;
1924   default:
1925     ;
1926   }
1927   return true;
1928 }
1929 
1930 //----------------------------inline_unsafe_access----------------------------
1931 
1932 const static BasicType T_ADDRESS_HOLDER = T_LONG;
1933 
1934 // Interpret Unsafe.fieldOffset cookies correctly:
1935 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
1936 
1937 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
1938   if (callee()->is_static())  return false;  // caller must have the capability!
1939 
1940 #ifndef PRODUCT
1941   {
1942     ResourceMark rm;
1943     // Check the signatures.
1944     ciSignature* sig = signature();
1945 #ifdef ASSERT
1946     if (!is_store) {
1947       // Object getObject(Object base, int/long offset), etc.
1948       BasicType rtype = sig->return_type()->basic_type();
1949       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
1950           rtype = T_ADDRESS;  // it is really a C void*
1951       assert(rtype == type, "getter must return the expected value");
1952       if (!is_native_ptr) {
1953         assert(sig->count() == 2, "oop getter has 2 arguments");
1954         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
1955         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
1956       } else {
1957         assert(sig->count() == 1, "native getter has 1 argument");
1958         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
1959       }
1960     } else {
1961       // void putObject(Object base, int/long offset, Object x), etc.
1962       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
1963       if (!is_native_ptr) {
1964         assert(sig->count() == 3, "oop putter has 3 arguments");
1965         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
1966         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
1967       } else {
1968         assert(sig->count() == 2, "native putter has 2 arguments");
1969         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
1970       }
1971       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
1972       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
1973         vtype = T_ADDRESS;  // it is really a C void*
1974       assert(vtype == type, "putter must accept the expected value");
1975     }
1976 #endif // ASSERT
1977  }
1978 #endif //PRODUCT
1979 
1980   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
1981 
1982   int type_words = type2size[ (type == T_ADDRESS) ? T_LONG : type ];
1983 
1984   // Argument words:  "this" plus (oop/offset) or (lo/hi) args plus maybe 1 or 2 value words
1985   int nargs = 1 + (is_native_ptr ? 2 : 3) + (is_store ? type_words : 0);
1986 
1987   debug_only(int saved_sp = _sp);
1988   _sp += nargs;
1989 
1990   Node* val;
1991   debug_only(val = (Node*)(uintptr_t)-1);
1992 
1993 
1994   if (is_store) {
1995     // Get the value being stored.  (Pop it first; it was pushed last.)
1996     switch (type) {
1997     case T_DOUBLE:
1998     case T_LONG:
1999     case T_ADDRESS:
2000       val = pop_pair();
2001       break;
2002     default:
2003       val = pop();
2004     }
2005   }
2006 
2007   // Build address expression.  See the code in inline_unsafe_prefetch.
2008   Node *adr;
2009   Node *heap_base_oop = top();
2010   if (!is_native_ptr) {
2011     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2012     Node* offset = pop_pair();
2013     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2014     Node* base   = pop();
2015     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2016     // to be plain byte offsets, which are also the same as those accepted
2017     // by oopDesc::field_base.
2018     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2019            "fieldOffset must be byte-scaled");
2020     // 32-bit machines ignore the high half!
2021     offset = ConvL2X(offset);
2022     adr = make_unsafe_address(base, offset);
2023     heap_base_oop = base;
2024   } else {
2025     Node* ptr = pop_pair();
2026     // Adjust Java long to machine word:
2027     ptr = ConvL2X(ptr);
2028     adr = make_unsafe_address(NULL, ptr);
2029   }
2030 
2031   // Pop receiver last:  it was pushed first.
2032   Node *receiver = pop();
2033 
2034   assert(saved_sp == _sp, "must have correct argument count");
2035 
2036   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2037 
2038   // First guess at the value type.
2039   const Type *value_type = Type::get_const_basic_type(type);
2040 
2041   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2042   // there was not enough information to nail it down.
2043   Compile::AliasType* alias_type = C->alias_type(adr_type);
2044   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2045 
2046   // We will need memory barriers unless we can determine a unique
2047   // alias category for this reference.  (Note:  If for some reason
2048   // the barriers get omitted and the unsafe reference begins to "pollute"
2049   // the alias analysis of the rest of the graph, either Compile::can_alias
2050   // or Compile::must_alias will throw a diagnostic assert.)
2051   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2052 
2053   if (!is_store && type == T_OBJECT) {
2054     // Attempt to infer a sharper value type from the offset and base type.
2055     ciKlass* sharpened_klass = NULL;
2056 
2057     // See if it is an instance field, with an object type.
2058     if (alias_type->field() != NULL) {
2059       assert(!is_native_ptr, "native pointer op cannot use a java address");
2060       if (alias_type->field()->type()->is_klass()) {
2061         sharpened_klass = alias_type->field()->type()->as_klass();
2062       }
2063     }
2064 
2065     // See if it is a narrow oop array.
2066     if (adr_type->isa_aryptr()) {
2067       if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes(type)) {
2068         const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2069         if (elem_type != NULL) {
2070           sharpened_klass = elem_type->klass();
2071         }
2072       }
2073     }
2074 
2075     if (sharpened_klass != NULL) {
2076       const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2077 
2078       // Sharpen the value type.
2079       value_type = tjp;
2080 
2081 #ifndef PRODUCT
2082       if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2083         tty->print("  from base type:  ");   adr_type->dump();
2084         tty->print("  sharpened value: "); value_type->dump();
2085       }
2086 #endif
2087     }
2088   }
2089 
2090   // Null check on self without removing any arguments.  The argument
2091   // null check technically happens in the wrong place, which can lead to
2092   // invalid stack traces when the primitive is inlined into a method
2093   // which handles NullPointerExceptions.
2094   _sp += nargs;
2095   do_null_check(receiver, T_OBJECT);
2096   _sp -= nargs;
2097   if (stopped()) {
2098     return true;
2099   }
2100   // Heap pointers get a null-check from the interpreter,
2101   // as a courtesy.  However, this is not guaranteed by Unsafe,
2102   // and it is not possible to fully distinguish unintended nulls
2103   // from intended ones in this API.
2104 
2105   if (is_volatile) {
2106     // We need to emit leading and trailing CPU membars (see below) in
2107     // addition to memory membars when is_volatile. This is a little
2108     // too strong, but avoids the need to insert per-alias-type
2109     // volatile membars (for stores; compare Parse::do_put_xxx), which
2110     // we cannot do effectively here because we probably only have a
2111     // rough approximation of type.
2112     need_mem_bar = true;
2113     // For Stores, place a memory ordering barrier now.
2114     if (is_store)
2115       insert_mem_bar(Op_MemBarRelease);
2116   }
2117 
2118   // Memory barrier to prevent normal and 'unsafe' accesses from
2119   // bypassing each other.  Happens after null checks, so the
2120   // exception paths do not take memory state from the memory barrier,
2121   // so there's no problems making a strong assert about mixing users
2122   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2123   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2124   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2125 
2126   if (!is_store) {
2127     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2128     // load value and push onto stack
2129     switch (type) {
2130     case T_BOOLEAN:
2131     case T_CHAR:
2132     case T_BYTE:
2133     case T_SHORT:
2134     case T_INT:
2135     case T_FLOAT:
2136     case T_OBJECT:
2137       push( p );
2138       break;
2139     case T_ADDRESS:
2140       // Cast to an int type.
2141       p = _gvn.transform( new (C, 2) CastP2XNode(NULL,p) );
2142       p = ConvX2L(p);
2143       push_pair(p);
2144       break;
2145     case T_DOUBLE:
2146     case T_LONG:
2147       push_pair( p );
2148       break;
2149     default: ShouldNotReachHere();
2150     }
2151   } else {
2152     // place effect of store into memory
2153     switch (type) {
2154     case T_DOUBLE:
2155       val = dstore_rounding(val);
2156       break;
2157     case T_ADDRESS:
2158       // Repackage the long as a pointer.
2159       val = ConvL2X(val);
2160       val = _gvn.transform( new (C, 2) CastX2PNode(val) );
2161       break;
2162     }
2163 
2164     if (type != T_OBJECT ) {
2165       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile);
2166     } else {
2167       // Possibly an oop being stored to Java heap or native memory
2168       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2169         // oop to Java heap.
2170         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2171       } else {
2172         // We can't tell at compile time if we are storing in the Java heap or outside
2173         // of it. So we need to emit code to conditionally do the proper type of
2174         // store.
2175 
2176         IdealKit ideal(gvn(), control(),  merged_memory());
2177 #define __ ideal.
2178         // QQQ who knows what probability is here??
2179         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2180           // Sync IdealKit and graphKit.
2181           set_all_memory( __ merged_memory());
2182           set_control(__ ctrl());
2183           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type);
2184           // Update IdealKit memory.
2185           __ set_all_memory(merged_memory());
2186           __ set_ctrl(control());
2187         } __ else_(); {
2188           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile);
2189         } __ end_if();
2190         // Final sync IdealKit and GraphKit.
2191         sync_kit(ideal);
2192 #undef __
2193       }
2194     }
2195   }
2196 
2197   if (is_volatile) {
2198     if (!is_store)
2199       insert_mem_bar(Op_MemBarAcquire);
2200     else
2201       insert_mem_bar(Op_MemBarVolatile);
2202   }
2203 
2204   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2205 
2206   return true;
2207 }
2208 
2209 //----------------------------inline_unsafe_prefetch----------------------------
2210 
2211 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2212 #ifndef PRODUCT
2213   {
2214     ResourceMark rm;
2215     // Check the signatures.
2216     ciSignature* sig = signature();
2217 #ifdef ASSERT
2218     // Object getObject(Object base, int/long offset), etc.
2219     BasicType rtype = sig->return_type()->basic_type();
2220     if (!is_native_ptr) {
2221       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2222       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2223       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2224     } else {
2225       assert(sig->count() == 1, "native prefetch has 1 argument");
2226       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2227     }
2228 #endif // ASSERT
2229   }
2230 #endif // !PRODUCT
2231 
2232   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2233 
2234   // Argument words:  "this" if not static, plus (oop/offset) or (lo/hi) args
2235   int nargs = (is_static ? 0 : 1) + (is_native_ptr ? 2 : 3);
2236 
2237   debug_only(int saved_sp = _sp);
2238   _sp += nargs;
2239 
2240   // Build address expression.  See the code in inline_unsafe_access.
2241   Node *adr;
2242   if (!is_native_ptr) {
2243     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2244     Node* offset = pop_pair();
2245     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2246     Node* base   = pop();
2247     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2248     // to be plain byte offsets, which are also the same as those accepted
2249     // by oopDesc::field_base.
2250     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2251            "fieldOffset must be byte-scaled");
2252     // 32-bit machines ignore the high half!
2253     offset = ConvL2X(offset);
2254     adr = make_unsafe_address(base, offset);
2255   } else {
2256     Node* ptr = pop_pair();
2257     // Adjust Java long to machine word:
2258     ptr = ConvL2X(ptr);
2259     adr = make_unsafe_address(NULL, ptr);
2260   }
2261 
2262   if (is_static) {
2263     assert(saved_sp == _sp, "must have correct argument count");
2264   } else {
2265     // Pop receiver last:  it was pushed first.
2266     Node *receiver = pop();
2267     assert(saved_sp == _sp, "must have correct argument count");
2268 
2269     // Null check on self without removing any arguments.  The argument
2270     // null check technically happens in the wrong place, which can lead to
2271     // invalid stack traces when the primitive is inlined into a method
2272     // which handles NullPointerExceptions.
2273     _sp += nargs;
2274     do_null_check(receiver, T_OBJECT);
2275     _sp -= nargs;
2276     if (stopped()) {
2277       return true;
2278     }
2279   }
2280 
2281   // Generate the read or write prefetch
2282   Node *prefetch;
2283   if (is_store) {
2284     prefetch = new (C, 3) PrefetchWriteNode(i_o(), adr);
2285   } else {
2286     prefetch = new (C, 3) PrefetchReadNode(i_o(), adr);
2287   }
2288   prefetch->init_req(0, control());
2289   set_i_o(_gvn.transform(prefetch));
2290 
2291   return true;
2292 }
2293 
2294 //----------------------------inline_unsafe_CAS----------------------------
2295 
2296 bool LibraryCallKit::inline_unsafe_CAS(BasicType type) {
2297   // This basic scheme here is the same as inline_unsafe_access, but
2298   // differs in enough details that combining them would make the code
2299   // overly confusing.  (This is a true fact! I originally combined
2300   // them, but even I was confused by it!) As much code/comments as
2301   // possible are retained from inline_unsafe_access though to make
2302   // the correspondences clearer. - dl
2303 
2304   if (callee()->is_static())  return false;  // caller must have the capability!
2305 
2306 #ifndef PRODUCT
2307   {
2308     ResourceMark rm;
2309     // Check the signatures.
2310     ciSignature* sig = signature();
2311 #ifdef ASSERT
2312     BasicType rtype = sig->return_type()->basic_type();
2313     assert(rtype == T_BOOLEAN, "CAS must return boolean");
2314     assert(sig->count() == 4, "CAS has 4 arguments");
2315     assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2316     assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2317 #endif // ASSERT
2318   }
2319 #endif //PRODUCT
2320 
2321   // number of stack slots per value argument (1 or 2)
2322   int type_words = type2size[type];
2323 
2324   // Cannot inline wide CAS on machines that don't support it natively
2325   if (type2aelembytes(type) > BytesPerInt && !VM_Version::supports_cx8())
2326     return false;
2327 
2328   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2329 
2330   // Argument words:  "this" plus oop plus offset plus oldvalue plus newvalue;
2331   int nargs = 1 + 1 + 2  + type_words + type_words;
2332 
2333   // pop arguments: newval, oldval, offset, base, and receiver
2334   debug_only(int saved_sp = _sp);
2335   _sp += nargs;
2336   Node* newval   = (type_words == 1) ? pop() : pop_pair();
2337   Node* oldval   = (type_words == 1) ? pop() : pop_pair();
2338   Node *offset   = pop_pair();
2339   Node *base     = pop();
2340   Node *receiver = pop();
2341   assert(saved_sp == _sp, "must have correct argument count");
2342 
2343   //  Null check receiver.
2344   _sp += nargs;
2345   do_null_check(receiver, T_OBJECT);
2346   _sp -= nargs;
2347   if (stopped()) {
2348     return true;
2349   }
2350 
2351   // Build field offset expression.
2352   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2353   // to be plain byte offsets, which are also the same as those accepted
2354   // by oopDesc::field_base.
2355   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2356   // 32-bit machines ignore the high half of long offsets
2357   offset = ConvL2X(offset);
2358   Node* adr = make_unsafe_address(base, offset);
2359   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2360 
2361   // (Unlike inline_unsafe_access, there seems no point in trying
2362   // to refine types. Just use the coarse types here.
2363   const Type *value_type = Type::get_const_basic_type(type);
2364   Compile::AliasType* alias_type = C->alias_type(adr_type);
2365   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2366   int alias_idx = C->get_alias_index(adr_type);
2367 
2368   // Memory-model-wise, a CAS acts like a little synchronized block,
2369   // so needs barriers on each side.  These don't translate into
2370   // actual barriers on most machines, but we still need rest of
2371   // compiler to respect ordering.
2372 
2373   insert_mem_bar(Op_MemBarRelease);
2374   insert_mem_bar(Op_MemBarCPUOrder);
2375 
2376   // 4984716: MemBars must be inserted before this
2377   //          memory node in order to avoid a false
2378   //          dependency which will confuse the scheduler.
2379   Node *mem = memory(alias_idx);
2380 
2381   // For now, we handle only those cases that actually exist: ints,
2382   // longs, and Object. Adding others should be straightforward.
2383   Node* cas;
2384   switch(type) {
2385   case T_INT:
2386     cas = _gvn.transform(new (C, 5) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2387     break;
2388   case T_LONG:
2389     cas = _gvn.transform(new (C, 5) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2390     break;
2391   case T_OBJECT:
2392      // reference stores need a store barrier.
2393     // (They don't if CAS fails, but it isn't worth checking.)
2394     pre_barrier(control(), base, adr, alias_idx, newval, value_type->make_oopptr(), T_OBJECT);
2395 #ifdef _LP64
2396     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2397       Node *newval_enc = _gvn.transform(new (C, 2) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2398       Node *oldval_enc = _gvn.transform(new (C, 2) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2399       cas = _gvn.transform(new (C, 5) CompareAndSwapNNode(control(), mem, adr,
2400                                                           newval_enc, oldval_enc));
2401     } else
2402 #endif
2403     {
2404       cas = _gvn.transform(new (C, 5) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2405     }
2406     post_barrier(control(), cas, base, adr, alias_idx, newval, T_OBJECT, true);
2407     break;
2408   default:
2409     ShouldNotReachHere();
2410     break;
2411   }
2412 
2413   // SCMemProjNodes represent the memory state of CAS. Their main
2414   // role is to prevent CAS nodes from being optimized away when their
2415   // results aren't used.
2416   Node* proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
2417   set_memory(proj, alias_idx);
2418 
2419   // Add the trailing membar surrounding the access
2420   insert_mem_bar(Op_MemBarCPUOrder);
2421   insert_mem_bar(Op_MemBarAcquire);
2422 
2423   push(cas);
2424   return true;
2425 }
2426 
2427 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2428   // This is another variant of inline_unsafe_access, differing in
2429   // that it always issues store-store ("release") barrier and ensures
2430   // store-atomicity (which only matters for "long").
2431 
2432   if (callee()->is_static())  return false;  // caller must have the capability!
2433 
2434 #ifndef PRODUCT
2435   {
2436     ResourceMark rm;
2437     // Check the signatures.
2438     ciSignature* sig = signature();
2439 #ifdef ASSERT
2440     BasicType rtype = sig->return_type()->basic_type();
2441     assert(rtype == T_VOID, "must return void");
2442     assert(sig->count() == 3, "has 3 arguments");
2443     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2444     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2445 #endif // ASSERT
2446   }
2447 #endif //PRODUCT
2448 
2449   // number of stack slots per value argument (1 or 2)
2450   int type_words = type2size[type];
2451 
2452   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2453 
2454   // Argument words:  "this" plus oop plus offset plus value;
2455   int nargs = 1 + 1 + 2 + type_words;
2456 
2457   // pop arguments: val, offset, base, and receiver
2458   debug_only(int saved_sp = _sp);
2459   _sp += nargs;
2460   Node* val      = (type_words == 1) ? pop() : pop_pair();
2461   Node *offset   = pop_pair();
2462   Node *base     = pop();
2463   Node *receiver = pop();
2464   assert(saved_sp == _sp, "must have correct argument count");
2465 
2466   //  Null check receiver.
2467   _sp += nargs;
2468   do_null_check(receiver, T_OBJECT);
2469   _sp -= nargs;
2470   if (stopped()) {
2471     return true;
2472   }
2473 
2474   // Build field offset expression.
2475   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2476   // 32-bit machines ignore the high half of long offsets
2477   offset = ConvL2X(offset);
2478   Node* adr = make_unsafe_address(base, offset);
2479   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2480   const Type *value_type = Type::get_const_basic_type(type);
2481   Compile::AliasType* alias_type = C->alias_type(adr_type);
2482 
2483   insert_mem_bar(Op_MemBarRelease);
2484   insert_mem_bar(Op_MemBarCPUOrder);
2485   // Ensure that the store is atomic for longs:
2486   bool require_atomic_access = true;
2487   Node* store;
2488   if (type == T_OBJECT) // reference stores need a store barrier.
2489     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2490   else {
2491     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2492   }
2493   insert_mem_bar(Op_MemBarCPUOrder);
2494   return true;
2495 }
2496 
2497 bool LibraryCallKit::inline_unsafe_allocate() {
2498   if (callee()->is_static())  return false;  // caller must have the capability!
2499   int nargs = 1 + 1;
2500   assert(signature()->size() == nargs-1, "alloc has 1 argument");
2501   null_check_receiver(callee());  // check then ignore argument(0)
2502   _sp += nargs;  // set original stack for use by uncommon_trap
2503   Node* cls = do_null_check(argument(1), T_OBJECT);
2504   _sp -= nargs;
2505   if (stopped())  return true;
2506 
2507   Node* kls = load_klass_from_mirror(cls, false, nargs, NULL, 0);
2508   _sp += nargs;  // set original stack for use by uncommon_trap
2509   kls = do_null_check(kls, T_OBJECT);
2510   _sp -= nargs;
2511   if (stopped())  return true;  // argument was like int.class
2512 
2513   // Note:  The argument might still be an illegal value like
2514   // Serializable.class or Object[].class.   The runtime will handle it.
2515   // But we must make an explicit check for initialization.
2516   Node* insp = basic_plus_adr(kls, instanceKlass::init_state_offset_in_bytes() + sizeof(oopDesc));
2517   Node* inst = make_load(NULL, insp, TypeInt::INT, T_INT);
2518   Node* bits = intcon(instanceKlass::fully_initialized);
2519   Node* test = _gvn.transform( new (C, 3) SubINode(inst, bits) );
2520   // The 'test' is non-zero if we need to take a slow path.
2521 
2522   Node* obj = new_instance(kls, test);
2523   push(obj);
2524 
2525   return true;
2526 }
2527 
2528 //------------------------inline_native_time_funcs--------------
2529 // inline code for System.currentTimeMillis() and System.nanoTime()
2530 // these have the same type and signature
2531 bool LibraryCallKit::inline_native_time_funcs(bool isNano) {
2532   address funcAddr = isNano ? CAST_FROM_FN_PTR(address, os::javaTimeNanos) :
2533                               CAST_FROM_FN_PTR(address, os::javaTimeMillis);
2534   const char * funcName = isNano ? "nanoTime" : "currentTimeMillis";
2535   const TypeFunc *tf = OptoRuntime::current_time_millis_Type();
2536   const TypePtr* no_memory_effects = NULL;
2537   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2538   Node* value = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms+0));
2539 #ifdef ASSERT
2540   Node* value_top = _gvn.transform(new (C, 1) ProjNode(time, TypeFunc::Parms + 1));
2541   assert(value_top == top(), "second value must be top");
2542 #endif
2543   push_pair(value);
2544   return true;
2545 }
2546 
2547 //------------------------inline_native_currentThread------------------
2548 bool LibraryCallKit::inline_native_currentThread() {
2549   Node* junk = NULL;
2550   push(generate_current_thread(junk));
2551   return true;
2552 }
2553 
2554 //------------------------inline_native_isInterrupted------------------
2555 bool LibraryCallKit::inline_native_isInterrupted() {
2556   const int nargs = 1+1;  // receiver + boolean
2557   assert(nargs == arg_size(), "sanity");
2558   // Add a fast path to t.isInterrupted(clear_int):
2559   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2560   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2561   // So, in the common case that the interrupt bit is false,
2562   // we avoid making a call into the VM.  Even if the interrupt bit
2563   // is true, if the clear_int argument is false, we avoid the VM call.
2564   // However, if the receiver is not currentThread, we must call the VM,
2565   // because there must be some locking done around the operation.
2566 
2567   // We only go to the fast case code if we pass two guards.
2568   // Paths which do not pass are accumulated in the slow_region.
2569   RegionNode* slow_region = new (C, 1) RegionNode(1);
2570   record_for_igvn(slow_region);
2571   RegionNode* result_rgn = new (C, 4) RegionNode(1+3); // fast1, fast2, slow
2572   PhiNode*    result_val = new (C, 4) PhiNode(result_rgn, TypeInt::BOOL);
2573   enum { no_int_result_path   = 1,
2574          no_clear_result_path = 2,
2575          slow_result_path     = 3
2576   };
2577 
2578   // (a) Receiving thread must be the current thread.
2579   Node* rec_thr = argument(0);
2580   Node* tls_ptr = NULL;
2581   Node* cur_thr = generate_current_thread(tls_ptr);
2582   Node* cmp_thr = _gvn.transform( new (C, 3) CmpPNode(cur_thr, rec_thr) );
2583   Node* bol_thr = _gvn.transform( new (C, 2) BoolNode(cmp_thr, BoolTest::ne) );
2584 
2585   bool known_current_thread = (_gvn.type(bol_thr) == TypeInt::ZERO);
2586   if (!known_current_thread)
2587     generate_slow_guard(bol_thr, slow_region);
2588 
2589   // (b) Interrupt bit on TLS must be false.
2590   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2591   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2592   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
2593   // Set the control input on the field _interrupted read to prevent it floating up.
2594   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
2595   Node* cmp_bit = _gvn.transform( new (C, 3) CmpINode(int_bit, intcon(0)) );
2596   Node* bol_bit = _gvn.transform( new (C, 2) BoolNode(cmp_bit, BoolTest::ne) );
2597 
2598   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2599 
2600   // First fast path:  if (!TLS._interrupted) return false;
2601   Node* false_bit = _gvn.transform( new (C, 1) IfFalseNode(iff_bit) );
2602   result_rgn->init_req(no_int_result_path, false_bit);
2603   result_val->init_req(no_int_result_path, intcon(0));
2604 
2605   // drop through to next case
2606   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_bit)) );
2607 
2608   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
2609   Node* clr_arg = argument(1);
2610   Node* cmp_arg = _gvn.transform( new (C, 3) CmpINode(clr_arg, intcon(0)) );
2611   Node* bol_arg = _gvn.transform( new (C, 2) BoolNode(cmp_arg, BoolTest::ne) );
2612   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
2613 
2614   // Second fast path:  ... else if (!clear_int) return true;
2615   Node* false_arg = _gvn.transform( new (C, 1) IfFalseNode(iff_arg) );
2616   result_rgn->init_req(no_clear_result_path, false_arg);
2617   result_val->init_req(no_clear_result_path, intcon(1));
2618 
2619   // drop through to next case
2620   set_control( _gvn.transform(new (C, 1) IfTrueNode(iff_arg)) );
2621 
2622   // (d) Otherwise, go to the slow path.
2623   slow_region->add_req(control());
2624   set_control( _gvn.transform(slow_region) );
2625 
2626   if (stopped()) {
2627     // There is no slow path.
2628     result_rgn->init_req(slow_result_path, top());
2629     result_val->init_req(slow_result_path, top());
2630   } else {
2631     // non-virtual because it is a private non-static
2632     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
2633 
2634     Node* slow_val = set_results_for_java_call(slow_call);
2635     // this->control() comes from set_results_for_java_call
2636 
2637     // If we know that the result of the slow call will be true, tell the optimizer!
2638     if (known_current_thread)  slow_val = intcon(1);
2639 
2640     Node* fast_io  = slow_call->in(TypeFunc::I_O);
2641     Node* fast_mem = slow_call->in(TypeFunc::Memory);
2642     // These two phis are pre-filled with copies of of the fast IO and Memory
2643     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2644     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2645 
2646     result_rgn->init_req(slow_result_path, control());
2647     io_phi    ->init_req(slow_result_path, i_o());
2648     mem_phi   ->init_req(slow_result_path, reset_memory());
2649     result_val->init_req(slow_result_path, slow_val);
2650 
2651     set_all_memory( _gvn.transform(mem_phi) );
2652     set_i_o(        _gvn.transform(io_phi) );
2653   }
2654 
2655   push_result(result_rgn, result_val);
2656   C->set_has_split_ifs(true); // Has chance for split-if optimization
2657 
2658   return true;
2659 }
2660 
2661 //---------------------------load_mirror_from_klass----------------------------
2662 // Given a klass oop, load its java mirror (a java.lang.Class oop).
2663 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2664   Node* p = basic_plus_adr(klass, Klass::java_mirror_offset_in_bytes() + sizeof(oopDesc));
2665   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
2666 }
2667 
2668 //-----------------------load_klass_from_mirror_common-------------------------
2669 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2670 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2671 // and branch to the given path on the region.
2672 // If never_see_null, take an uncommon trap on null, so we can optimistically
2673 // compile for the non-null case.
2674 // If the region is NULL, force never_see_null = true.
2675 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2676                                                     bool never_see_null,
2677                                                     int nargs,
2678                                                     RegionNode* region,
2679                                                     int null_path,
2680                                                     int offset) {
2681   if (region == NULL)  never_see_null = true;
2682   Node* p = basic_plus_adr(mirror, offset);
2683   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2684   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
2685   _sp += nargs; // any deopt will start just before call to enclosing method
2686   Node* null_ctl = top();
2687   kls = null_check_oop(kls, &null_ctl, never_see_null);
2688   if (region != NULL) {
2689     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2690     region->init_req(null_path, null_ctl);
2691   } else {
2692     assert(null_ctl == top(), "no loose ends");
2693   }
2694   _sp -= nargs;
2695   return kls;
2696 }
2697 
2698 //--------------------(inline_native_Class_query helpers)---------------------
2699 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
2700 // Fall through if (mods & mask) == bits, take the guard otherwise.
2701 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
2702   // Branch around if the given klass has the given modifier bit set.
2703   // Like generate_guard, adds a new path onto the region.
2704   Node* modp = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2705   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
2706   Node* mask = intcon(modifier_mask);
2707   Node* bits = intcon(modifier_bits);
2708   Node* mbit = _gvn.transform( new (C, 3) AndINode(mods, mask) );
2709   Node* cmp  = _gvn.transform( new (C, 3) CmpINode(mbit, bits) );
2710   Node* bol  = _gvn.transform( new (C, 2) BoolNode(cmp, BoolTest::ne) );
2711   return generate_fair_guard(bol, region);
2712 }
2713 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
2714   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
2715 }
2716 
2717 //-------------------------inline_native_Class_query-------------------
2718 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
2719   int nargs = 1+0;  // just the Class mirror, in most cases
2720   const Type* return_type = TypeInt::BOOL;
2721   Node* prim_return_value = top();  // what happens if it's a primitive class?
2722   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2723   bool expect_prim = false;     // most of these guys expect to work on refs
2724 
2725   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
2726 
2727   switch (id) {
2728   case vmIntrinsics::_isInstance:
2729     nargs = 1+1;  // the Class mirror, plus the object getting queried about
2730     // nothing is an instance of a primitive type
2731     prim_return_value = intcon(0);
2732     break;
2733   case vmIntrinsics::_getModifiers:
2734     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2735     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
2736     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
2737     break;
2738   case vmIntrinsics::_isInterface:
2739     prim_return_value = intcon(0);
2740     break;
2741   case vmIntrinsics::_isArray:
2742     prim_return_value = intcon(0);
2743     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
2744     break;
2745   case vmIntrinsics::_isPrimitive:
2746     prim_return_value = intcon(1);
2747     expect_prim = true;  // obviously
2748     break;
2749   case vmIntrinsics::_getSuperclass:
2750     prim_return_value = null();
2751     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2752     break;
2753   case vmIntrinsics::_getComponentType:
2754     prim_return_value = null();
2755     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2756     break;
2757   case vmIntrinsics::_getClassAccessFlags:
2758     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2759     return_type = TypeInt::INT;  // not bool!  6297094
2760     break;
2761   default:
2762     ShouldNotReachHere();
2763   }
2764 
2765   Node* mirror =                      argument(0);
2766   Node* obj    = (nargs <= 1)? top(): argument(1);
2767 
2768   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
2769   if (mirror_con == NULL)  return false;  // cannot happen?
2770 
2771 #ifndef PRODUCT
2772   if (PrintIntrinsics || PrintInlining || PrintOptoInlining) {
2773     ciType* k = mirror_con->java_mirror_type();
2774     if (k) {
2775       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
2776       k->print_name();
2777       tty->cr();
2778     }
2779   }
2780 #endif
2781 
2782   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
2783   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2784   record_for_igvn(region);
2785   PhiNode* phi = new (C, PATH_LIMIT) PhiNode(region, return_type);
2786 
2787   // The mirror will never be null of Reflection.getClassAccessFlags, however
2788   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
2789   // if it is. See bug 4774291.
2790 
2791   // For Reflection.getClassAccessFlags(), the null check occurs in
2792   // the wrong place; see inline_unsafe_access(), above, for a similar
2793   // situation.
2794   _sp += nargs;  // set original stack for use by uncommon_trap
2795   mirror = do_null_check(mirror, T_OBJECT);
2796   _sp -= nargs;
2797   // If mirror or obj is dead, only null-path is taken.
2798   if (stopped())  return true;
2799 
2800   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
2801 
2802   // Now load the mirror's klass metaobject, and null-check it.
2803   // Side-effects region with the control path if the klass is null.
2804   Node* kls = load_klass_from_mirror(mirror, never_see_null, nargs,
2805                                      region, _prim_path);
2806   // If kls is null, we have a primitive mirror.
2807   phi->init_req(_prim_path, prim_return_value);
2808   if (stopped()) { push_result(region, phi); return true; }
2809 
2810   Node* p;  // handy temp
2811   Node* null_ctl;
2812 
2813   // Now that we have the non-null klass, we can perform the real query.
2814   // For constant classes, the query will constant-fold in LoadNode::Value.
2815   Node* query_value = top();
2816   switch (id) {
2817   case vmIntrinsics::_isInstance:
2818     // nothing is an instance of a primitive type
2819     query_value = gen_instanceof(obj, kls);
2820     break;
2821 
2822   case vmIntrinsics::_getModifiers:
2823     p = basic_plus_adr(kls, Klass::modifier_flags_offset_in_bytes() + sizeof(oopDesc));
2824     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2825     break;
2826 
2827   case vmIntrinsics::_isInterface:
2828     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2829     if (generate_interface_guard(kls, region) != NULL)
2830       // A guard was added.  If the guard is taken, it was an interface.
2831       phi->add_req(intcon(1));
2832     // If we fall through, it's a plain class.
2833     query_value = intcon(0);
2834     break;
2835 
2836   case vmIntrinsics::_isArray:
2837     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
2838     if (generate_array_guard(kls, region) != NULL)
2839       // A guard was added.  If the guard is taken, it was an array.
2840       phi->add_req(intcon(1));
2841     // If we fall through, it's a plain class.
2842     query_value = intcon(0);
2843     break;
2844 
2845   case vmIntrinsics::_isPrimitive:
2846     query_value = intcon(0); // "normal" path produces false
2847     break;
2848 
2849   case vmIntrinsics::_getSuperclass:
2850     // The rules here are somewhat unfortunate, but we can still do better
2851     // with random logic than with a JNI call.
2852     // Interfaces store null or Object as _super, but must report null.
2853     // Arrays store an intermediate super as _super, but must report Object.
2854     // Other types can report the actual _super.
2855     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2856     if (generate_interface_guard(kls, region) != NULL)
2857       // A guard was added.  If the guard is taken, it was an interface.
2858       phi->add_req(null());
2859     if (generate_array_guard(kls, region) != NULL)
2860       // A guard was added.  If the guard is taken, it was an array.
2861       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
2862     // If we fall through, it's a plain class.  Get its _super.
2863     p = basic_plus_adr(kls, Klass::super_offset_in_bytes() + sizeof(oopDesc));
2864     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
2865     null_ctl = top();
2866     kls = null_check_oop(kls, &null_ctl);
2867     if (null_ctl != top()) {
2868       // If the guard is taken, Object.superClass is null (both klass and mirror).
2869       region->add_req(null_ctl);
2870       phi   ->add_req(null());
2871     }
2872     if (!stopped()) {
2873       query_value = load_mirror_from_klass(kls);
2874     }
2875     break;
2876 
2877   case vmIntrinsics::_getComponentType:
2878     if (generate_array_guard(kls, region) != NULL) {
2879       // Be sure to pin the oop load to the guard edge just created:
2880       Node* is_array_ctrl = region->in(region->req()-1);
2881       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()) + sizeof(oopDesc));
2882       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
2883       phi->add_req(cmo);
2884     }
2885     query_value = null();  // non-array case is null
2886     break;
2887 
2888   case vmIntrinsics::_getClassAccessFlags:
2889     p = basic_plus_adr(kls, Klass::access_flags_offset_in_bytes() + sizeof(oopDesc));
2890     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
2891     break;
2892 
2893   default:
2894     ShouldNotReachHere();
2895   }
2896 
2897   // Fall-through is the normal case of a query to a real class.
2898   phi->init_req(1, query_value);
2899   region->init_req(1, control());
2900 
2901   push_result(region, phi);
2902   C->set_has_split_ifs(true); // Has chance for split-if optimization
2903 
2904   return true;
2905 }
2906 
2907 //--------------------------inline_native_subtype_check------------------------
2908 // This intrinsic takes the JNI calls out of the heart of
2909 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
2910 bool LibraryCallKit::inline_native_subtype_check() {
2911   int nargs = 1+1;  // the Class mirror, plus the other class getting examined
2912 
2913   // Pull both arguments off the stack.
2914   Node* args[2];                // two java.lang.Class mirrors: superc, subc
2915   args[0] = argument(0);
2916   args[1] = argument(1);
2917   Node* klasses[2];             // corresponding Klasses: superk, subk
2918   klasses[0] = klasses[1] = top();
2919 
2920   enum {
2921     // A full decision tree on {superc is prim, subc is prim}:
2922     _prim_0_path = 1,           // {P,N} => false
2923                                 // {P,P} & superc!=subc => false
2924     _prim_same_path,            // {P,P} & superc==subc => true
2925     _prim_1_path,               // {N,P} => false
2926     _ref_subtype_path,          // {N,N} & subtype check wins => true
2927     _both_ref_path,             // {N,N} & subtype check loses => false
2928     PATH_LIMIT
2929   };
2930 
2931   RegionNode* region = new (C, PATH_LIMIT) RegionNode(PATH_LIMIT);
2932   Node*       phi    = new (C, PATH_LIMIT) PhiNode(region, TypeInt::BOOL);
2933   record_for_igvn(region);
2934 
2935   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
2936   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2937   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
2938 
2939   // First null-check both mirrors and load each mirror's klass metaobject.
2940   int which_arg;
2941   for (which_arg = 0; which_arg <= 1; which_arg++) {
2942     Node* arg = args[which_arg];
2943     _sp += nargs;  // set original stack for use by uncommon_trap
2944     arg = do_null_check(arg, T_OBJECT);
2945     _sp -= nargs;
2946     if (stopped())  break;
2947     args[which_arg] = _gvn.transform(arg);
2948 
2949     Node* p = basic_plus_adr(arg, class_klass_offset);
2950     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
2951     klasses[which_arg] = _gvn.transform(kls);
2952   }
2953 
2954   // Having loaded both klasses, test each for null.
2955   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2956   for (which_arg = 0; which_arg <= 1; which_arg++) {
2957     Node* kls = klasses[which_arg];
2958     Node* null_ctl = top();
2959     _sp += nargs;  // set original stack for use by uncommon_trap
2960     kls = null_check_oop(kls, &null_ctl, never_see_null);
2961     _sp -= nargs;
2962     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
2963     region->init_req(prim_path, null_ctl);
2964     if (stopped())  break;
2965     klasses[which_arg] = kls;
2966   }
2967 
2968   if (!stopped()) {
2969     // now we have two reference types, in klasses[0..1]
2970     Node* subk   = klasses[1];  // the argument to isAssignableFrom
2971     Node* superk = klasses[0];  // the receiver
2972     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
2973     // now we have a successful reference subtype check
2974     region->set_req(_ref_subtype_path, control());
2975   }
2976 
2977   // If both operands are primitive (both klasses null), then
2978   // we must return true when they are identical primitives.
2979   // It is convenient to test this after the first null klass check.
2980   set_control(region->in(_prim_0_path)); // go back to first null check
2981   if (!stopped()) {
2982     // Since superc is primitive, make a guard for the superc==subc case.
2983     Node* cmp_eq = _gvn.transform( new (C, 3) CmpPNode(args[0], args[1]) );
2984     Node* bol_eq = _gvn.transform( new (C, 2) BoolNode(cmp_eq, BoolTest::eq) );
2985     generate_guard(bol_eq, region, PROB_FAIR);
2986     if (region->req() == PATH_LIMIT+1) {
2987       // A guard was added.  If the added guard is taken, superc==subc.
2988       region->swap_edges(PATH_LIMIT, _prim_same_path);
2989       region->del_req(PATH_LIMIT);
2990     }
2991     region->set_req(_prim_0_path, control()); // Not equal after all.
2992   }
2993 
2994   // these are the only paths that produce 'true':
2995   phi->set_req(_prim_same_path,   intcon(1));
2996   phi->set_req(_ref_subtype_path, intcon(1));
2997 
2998   // pull together the cases:
2999   assert(region->req() == PATH_LIMIT, "sane region");
3000   for (uint i = 1; i < region->req(); i++) {
3001     Node* ctl = region->in(i);
3002     if (ctl == NULL || ctl == top()) {
3003       region->set_req(i, top());
3004       phi   ->set_req(i, top());
3005     } else if (phi->in(i) == NULL) {
3006       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3007     }
3008   }
3009 
3010   set_control(_gvn.transform(region));
3011   push(_gvn.transform(phi));
3012 
3013   return true;
3014 }
3015 
3016 //---------------------generate_array_guard_common------------------------
3017 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3018                                                   bool obj_array, bool not_array) {
3019   // If obj_array/non_array==false/false:
3020   // Branch around if the given klass is in fact an array (either obj or prim).
3021   // If obj_array/non_array==false/true:
3022   // Branch around if the given klass is not an array klass of any kind.
3023   // If obj_array/non_array==true/true:
3024   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3025   // If obj_array/non_array==true/false:
3026   // Branch around if the kls is an oop array (Object[] or subtype)
3027   //
3028   // Like generate_guard, adds a new path onto the region.
3029   jint  layout_con = 0;
3030   Node* layout_val = get_layout_helper(kls, layout_con);
3031   if (layout_val == NULL) {
3032     bool query = (obj_array
3033                   ? Klass::layout_helper_is_objArray(layout_con)
3034                   : Klass::layout_helper_is_javaArray(layout_con));
3035     if (query == not_array) {
3036       return NULL;                       // never a branch
3037     } else {                             // always a branch
3038       Node* always_branch = control();
3039       if (region != NULL)
3040         region->add_req(always_branch);
3041       set_control(top());
3042       return always_branch;
3043     }
3044   }
3045   // Now test the correct condition.
3046   jint  nval = (obj_array
3047                 ? ((jint)Klass::_lh_array_tag_type_value
3048                    <<    Klass::_lh_array_tag_shift)
3049                 : Klass::_lh_neutral_value);
3050   Node* cmp = _gvn.transform( new(C, 3) CmpINode(layout_val, intcon(nval)) );
3051   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3052   // invert the test if we are looking for a non-array
3053   if (not_array)  btest = BoolTest(btest).negate();
3054   Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, btest) );
3055   return generate_fair_guard(bol, region);
3056 }
3057 
3058 
3059 //-----------------------inline_native_newArray--------------------------
3060 bool LibraryCallKit::inline_native_newArray() {
3061   int nargs = 2;
3062   Node* mirror    = argument(0);
3063   Node* count_val = argument(1);
3064 
3065   _sp += nargs;  // set original stack for use by uncommon_trap
3066   mirror = do_null_check(mirror, T_OBJECT);
3067   _sp -= nargs;
3068   // If mirror or obj is dead, only null-path is taken.
3069   if (stopped())  return true;
3070 
3071   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3072   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3073   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3074                                                       TypeInstPtr::NOTNULL);
3075   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3076   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3077                                                       TypePtr::BOTTOM);
3078 
3079   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3080   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3081                                                   nargs,
3082                                                   result_reg, _slow_path);
3083   Node* normal_ctl   = control();
3084   Node* no_array_ctl = result_reg->in(_slow_path);
3085 
3086   // Generate code for the slow case.  We make a call to newArray().
3087   set_control(no_array_ctl);
3088   if (!stopped()) {
3089     // Either the input type is void.class, or else the
3090     // array klass has not yet been cached.  Either the
3091     // ensuing call will throw an exception, or else it
3092     // will cache the array klass for next time.
3093     PreserveJVMState pjvms(this);
3094     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3095     Node* slow_result = set_results_for_java_call(slow_call);
3096     // this->control() comes from set_results_for_java_call
3097     result_reg->set_req(_slow_path, control());
3098     result_val->set_req(_slow_path, slow_result);
3099     result_io ->set_req(_slow_path, i_o());
3100     result_mem->set_req(_slow_path, reset_memory());
3101   }
3102 
3103   set_control(normal_ctl);
3104   if (!stopped()) {
3105     // Normal case:  The array type has been cached in the java.lang.Class.
3106     // The following call works fine even if the array type is polymorphic.
3107     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3108     Node* obj = new_array(klass_node, count_val, nargs);
3109     result_reg->init_req(_normal_path, control());
3110     result_val->init_req(_normal_path, obj);
3111     result_io ->init_req(_normal_path, i_o());
3112     result_mem->init_req(_normal_path, reset_memory());
3113   }
3114 
3115   // Return the combined state.
3116   set_i_o(        _gvn.transform(result_io)  );
3117   set_all_memory( _gvn.transform(result_mem) );
3118   push_result(result_reg, result_val);
3119   C->set_has_split_ifs(true); // Has chance for split-if optimization
3120 
3121   return true;
3122 }
3123 
3124 //----------------------inline_native_getLength--------------------------
3125 bool LibraryCallKit::inline_native_getLength() {
3126   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3127 
3128   int nargs = 1;
3129   Node* array = argument(0);
3130 
3131   _sp += nargs;  // set original stack for use by uncommon_trap
3132   array = do_null_check(array, T_OBJECT);
3133   _sp -= nargs;
3134 
3135   // If array is dead, only null-path is taken.
3136   if (stopped())  return true;
3137 
3138   // Deoptimize if it is a non-array.
3139   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3140 
3141   if (non_array != NULL) {
3142     PreserveJVMState pjvms(this);
3143     set_control(non_array);
3144     _sp += nargs;  // push the arguments back on the stack
3145     uncommon_trap(Deoptimization::Reason_intrinsic,
3146                   Deoptimization::Action_maybe_recompile);
3147   }
3148 
3149   // If control is dead, only non-array-path is taken.
3150   if (stopped())  return true;
3151 
3152   // The works fine even if the array type is polymorphic.
3153   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3154   push( load_array_length(array) );
3155 
3156   C->set_has_split_ifs(true); // Has chance for split-if optimization
3157 
3158   return true;
3159 }
3160 
3161 //------------------------inline_array_copyOf----------------------------
3162 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3163   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3164 
3165   // Restore the stack and pop off the arguments.
3166   int nargs = 3 + (is_copyOfRange? 1: 0);
3167   Node* original          = argument(0);
3168   Node* start             = is_copyOfRange? argument(1): intcon(0);
3169   Node* end               = is_copyOfRange? argument(2): argument(1);
3170   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3171 
3172   _sp += nargs;  // set original stack for use by uncommon_trap
3173   array_type_mirror = do_null_check(array_type_mirror, T_OBJECT);
3174   original          = do_null_check(original, T_OBJECT);
3175   _sp -= nargs;
3176 
3177   // Check if a null path was taken unconditionally.
3178   if (stopped())  return true;
3179 
3180   Node* orig_length = load_array_length(original);
3181 
3182   Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nargs,
3183                                             NULL, 0);
3184   _sp += nargs;  // set original stack for use by uncommon_trap
3185   klass_node = do_null_check(klass_node, T_OBJECT);
3186   _sp -= nargs;
3187 
3188   RegionNode* bailout = new (C, 1) RegionNode(1);
3189   record_for_igvn(bailout);
3190 
3191   // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3192   // Bail out if that is so.
3193   Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3194   if (not_objArray != NULL) {
3195     // Improve the klass node's type from the new optimistic assumption:
3196     ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3197     const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3198     Node* cast = new (C, 2) CastPPNode(klass_node, akls);
3199     cast->init_req(0, control());
3200     klass_node = _gvn.transform(cast);
3201   }
3202 
3203   // Bail out if either start or end is negative.
3204   generate_negative_guard(start, bailout, &start);
3205   generate_negative_guard(end,   bailout, &end);
3206 
3207   Node* length = end;
3208   if (_gvn.type(start) != TypeInt::ZERO) {
3209     length = _gvn.transform( new (C, 3) SubINode(end, start) );
3210   }
3211 
3212   // Bail out if length is negative.
3213   // ...Not needed, since the new_array will throw the right exception.
3214   //generate_negative_guard(length, bailout, &length);
3215 
3216   if (bailout->req() > 1) {
3217     PreserveJVMState pjvms(this);
3218     set_control( _gvn.transform(bailout) );
3219     _sp += nargs;  // push the arguments back on the stack
3220     uncommon_trap(Deoptimization::Reason_intrinsic,
3221                   Deoptimization::Action_maybe_recompile);
3222   }
3223 
3224   if (!stopped()) {
3225     Node *newcopy;
3226     //set the original stack and the reexecute bit for the interpreter to reexecute
3227     //the bytecode that invokes Arrays.copyOf if deoptimization happens
3228     {
3229       PreserveReexecuteState preexecs(this);
3230       _sp += nargs;
3231       jvms()->set_should_reexecute(true);
3232 
3233       // How many elements will we copy from the original?
3234       // The answer is MinI(orig_length - start, length).
3235       Node* orig_tail = _gvn.transform( new(C, 3) SubINode(orig_length, start) );
3236       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3237 
3238       const bool raw_mem_only = true;
3239       newcopy = new_array(klass_node, length, 0, raw_mem_only);
3240 
3241       // Generate a direct call to the right arraycopy function(s).
3242       // We know the copy is disjoint but we might not know if the
3243       // oop stores need checking.
3244       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3245       // This will fail a store-check if x contains any non-nulls.
3246       bool disjoint_bases = true;
3247       bool length_never_negative = true;
3248       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3249                          original, start, newcopy, intcon(0), moved,
3250                          disjoint_bases, length_never_negative);
3251     } //original reexecute and sp are set back here
3252 
3253     push(newcopy);
3254   }
3255 
3256   C->set_has_split_ifs(true); // Has chance for split-if optimization
3257 
3258   return true;
3259 }
3260 
3261 
3262 //----------------------generate_virtual_guard---------------------------
3263 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3264 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3265                                              RegionNode* slow_region) {
3266   ciMethod* method = callee();
3267   int vtable_index = method->vtable_index();
3268   // Get the methodOop out of the appropriate vtable entry.
3269   int entry_offset  = (instanceKlass::vtable_start_offset() +
3270                      vtable_index*vtableEntry::size()) * wordSize +
3271                      vtableEntry::method_offset_in_bytes();
3272   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3273   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3274 
3275   // Compare the target method with the expected method (e.g., Object.hashCode).
3276   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3277 
3278   Node* native_call = makecon(native_call_addr);
3279   Node* chk_native  = _gvn.transform( new(C, 3) CmpPNode(target_call, native_call) );
3280   Node* test_native = _gvn.transform( new(C, 2) BoolNode(chk_native, BoolTest::ne) );
3281 
3282   return generate_slow_guard(test_native, slow_region);
3283 }
3284 
3285 //-----------------------generate_method_call----------------------------
3286 // Use generate_method_call to make a slow-call to the real
3287 // method if the fast path fails.  An alternative would be to
3288 // use a stub like OptoRuntime::slow_arraycopy_Java.
3289 // This only works for expanding the current library call,
3290 // not another intrinsic.  (E.g., don't use this for making an
3291 // arraycopy call inside of the copyOf intrinsic.)
3292 CallJavaNode*
3293 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3294   // When compiling the intrinsic method itself, do not use this technique.
3295   guarantee(callee() != C->method(), "cannot make slow-call to self");
3296 
3297   ciMethod* method = callee();
3298   // ensure the JVMS we have will be correct for this call
3299   guarantee(method_id == method->intrinsic_id(), "must match");
3300 
3301   const TypeFunc* tf = TypeFunc::make(method);
3302   int tfdc = tf->domain()->cnt();
3303   CallJavaNode* slow_call;
3304   if (is_static) {
3305     assert(!is_virtual, "");
3306     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3307                                 SharedRuntime::get_resolve_static_call_stub(),
3308                                 method, bci());
3309   } else if (is_virtual) {
3310     null_check_receiver(method);
3311     int vtable_index = methodOopDesc::invalid_vtable_index;
3312     if (UseInlineCaches) {
3313       // Suppress the vtable call
3314     } else {
3315       // hashCode and clone are not a miranda methods,
3316       // so the vtable index is fixed.
3317       // No need to use the linkResolver to get it.
3318        vtable_index = method->vtable_index();
3319     }
3320     slow_call = new(C, tfdc) CallDynamicJavaNode(tf,
3321                                 SharedRuntime::get_resolve_virtual_call_stub(),
3322                                 method, vtable_index, bci());
3323   } else {  // neither virtual nor static:  opt_virtual
3324     null_check_receiver(method);
3325     slow_call = new(C, tfdc) CallStaticJavaNode(tf,
3326                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3327                                 method, bci());
3328     slow_call->set_optimized_virtual(true);
3329   }
3330   set_arguments_for_java_call(slow_call);
3331   set_edges_for_java_call(slow_call);
3332   return slow_call;
3333 }
3334 
3335 
3336 //------------------------------inline_native_hashcode--------------------
3337 // Build special case code for calls to hashCode on an object.
3338 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3339   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3340   assert(!(is_virtual && is_static), "either virtual, special, or static");
3341 
3342   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3343 
3344   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
3345   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
3346                                                       TypeInt::INT);
3347   PhiNode*    result_io  = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
3348   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
3349                                                       TypePtr::BOTTOM);
3350   Node* obj = NULL;
3351   if (!is_static) {
3352     // Check for hashing null object
3353     obj = null_check_receiver(callee());
3354     if (stopped())  return true;        // unconditionally null
3355     result_reg->init_req(_null_path, top());
3356     result_val->init_req(_null_path, top());
3357   } else {
3358     // Do a null check, and return zero if null.
3359     // System.identityHashCode(null) == 0
3360     obj = argument(0);
3361     Node* null_ctl = top();
3362     obj = null_check_oop(obj, &null_ctl);
3363     result_reg->init_req(_null_path, null_ctl);
3364     result_val->init_req(_null_path, _gvn.intcon(0));
3365   }
3366 
3367   // Unconditionally null?  Then return right away.
3368   if (stopped()) {
3369     set_control( result_reg->in(_null_path) );
3370     if (!stopped())
3371       push(      result_val ->in(_null_path) );
3372     return true;
3373   }
3374 
3375   // After null check, get the object's klass.
3376   Node* obj_klass = load_object_klass(obj);
3377 
3378   // This call may be virtual (invokevirtual) or bound (invokespecial).
3379   // For each case we generate slightly different code.
3380 
3381   // We only go to the fast case code if we pass a number of guards.  The
3382   // paths which do not pass are accumulated in the slow_region.
3383   RegionNode* slow_region = new (C, 1) RegionNode(1);
3384   record_for_igvn(slow_region);
3385 
3386   // If this is a virtual call, we generate a funny guard.  We pull out
3387   // the vtable entry corresponding to hashCode() from the target object.
3388   // If the target method which we are calling happens to be the native
3389   // Object hashCode() method, we pass the guard.  We do not need this
3390   // guard for non-virtual calls -- the caller is known to be the native
3391   // Object hashCode().
3392   if (is_virtual) {
3393     generate_virtual_guard(obj_klass, slow_region);
3394   }
3395 
3396   // Get the header out of the object, use LoadMarkNode when available
3397   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3398   Node* header = make_load(NULL, header_addr, TypeRawPtr::BOTTOM, T_ADDRESS);
3399   header = _gvn.transform( new (C, 2) CastP2XNode(NULL, header) );
3400 
3401   // Test the header to see if it is unlocked.
3402   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3403   Node *lmasked_header = _gvn.transform( new (C, 3) AndXNode(header, lock_mask) );
3404   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3405   Node *chk_unlocked   = _gvn.transform( new (C, 3) CmpXNode( lmasked_header, unlocked_val));
3406   Node *test_unlocked  = _gvn.transform( new (C, 2) BoolNode( chk_unlocked, BoolTest::ne) );
3407 
3408   generate_slow_guard(test_unlocked, slow_region);
3409 
3410   // Get the hash value and check to see that it has been properly assigned.
3411   // We depend on hash_mask being at most 32 bits and avoid the use of
3412   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3413   // vm: see markOop.hpp.
3414   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3415   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3416   Node *hshifted_header= _gvn.transform( new (C, 3) URShiftXNode(header, hash_shift) );
3417   // This hack lets the hash bits live anywhere in the mark object now, as long
3418   // as the shift drops the relevant bits into the low 32 bits.  Note that
3419   // Java spec says that HashCode is an int so there's no point in capturing
3420   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3421   hshifted_header      = ConvX2I(hshifted_header);
3422   Node *hash_val       = _gvn.transform( new (C, 3) AndINode(hshifted_header, hash_mask) );
3423 
3424   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3425   Node *chk_assigned   = _gvn.transform( new (C, 3) CmpINode( hash_val, no_hash_val));
3426   Node *test_assigned  = _gvn.transform( new (C, 2) BoolNode( chk_assigned, BoolTest::eq) );
3427 
3428   generate_slow_guard(test_assigned, slow_region);
3429 
3430   Node* init_mem = reset_memory();
3431   // fill in the rest of the null path:
3432   result_io ->init_req(_null_path, i_o());
3433   result_mem->init_req(_null_path, init_mem);
3434 
3435   result_val->init_req(_fast_path, hash_val);
3436   result_reg->init_req(_fast_path, control());
3437   result_io ->init_req(_fast_path, i_o());
3438   result_mem->init_req(_fast_path, init_mem);
3439 
3440   // Generate code for the slow case.  We make a call to hashCode().
3441   set_control(_gvn.transform(slow_region));
3442   if (!stopped()) {
3443     // No need for PreserveJVMState, because we're using up the present state.
3444     set_all_memory(init_mem);
3445     vmIntrinsics::ID hashCode_id = vmIntrinsics::_hashCode;
3446     if (is_static)   hashCode_id = vmIntrinsics::_identityHashCode;
3447     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3448     Node* slow_result = set_results_for_java_call(slow_call);
3449     // this->control() comes from set_results_for_java_call
3450     result_reg->init_req(_slow_path, control());
3451     result_val->init_req(_slow_path, slow_result);
3452     result_io  ->set_req(_slow_path, i_o());
3453     result_mem ->set_req(_slow_path, reset_memory());
3454   }
3455 
3456   // Return the combined state.
3457   set_i_o(        _gvn.transform(result_io)  );
3458   set_all_memory( _gvn.transform(result_mem) );
3459   push_result(result_reg, result_val);
3460 
3461   return true;
3462 }
3463 
3464 //---------------------------inline_native_getClass----------------------------
3465 // Build special case code for calls to getClass on an object.
3466 bool LibraryCallKit::inline_native_getClass() {
3467   Node* obj = null_check_receiver(callee());
3468   if (stopped())  return true;
3469   push( load_mirror_from_klass(load_object_klass(obj)) );
3470   return true;
3471 }
3472 
3473 //-----------------inline_native_Reflection_getCallerClass---------------------
3474 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3475 //
3476 // NOTE that this code must perform the same logic as
3477 // vframeStream::security_get_caller_frame in that it must skip
3478 // Method.invoke() and auxiliary frames.
3479 
3480 
3481 
3482 
3483 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3484   ciMethod*       method = callee();
3485 
3486 #ifndef PRODUCT
3487   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3488     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3489   }
3490 #endif
3491 
3492   debug_only(int saved_sp = _sp);
3493 
3494   // Argument words:  (int depth)
3495   int nargs = 1;
3496 
3497   _sp += nargs;
3498   Node* caller_depth_node = pop();
3499 
3500   assert(saved_sp == _sp, "must have correct argument count");
3501 
3502   // The depth value must be a constant in order for the runtime call
3503   // to be eliminated.
3504   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3505   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3506 #ifndef PRODUCT
3507     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3508       tty->print_cr("  Bailing out because caller depth was not a constant");
3509     }
3510 #endif
3511     return false;
3512   }
3513   // Note that the JVM state at this point does not include the
3514   // getCallerClass() frame which we are trying to inline. The
3515   // semantics of getCallerClass(), however, are that the "first"
3516   // frame is the getCallerClass() frame, so we subtract one from the
3517   // requested depth before continuing. We don't inline requests of
3518   // getCallerClass(0).
3519   int caller_depth = caller_depth_type->get_con() - 1;
3520   if (caller_depth < 0) {
3521 #ifndef PRODUCT
3522     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3523       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3524     }
3525 #endif
3526     return false;
3527   }
3528 
3529   if (!jvms()->has_method()) {
3530 #ifndef PRODUCT
3531     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3532       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3533     }
3534 #endif
3535     return false;
3536   }
3537   int _depth = jvms()->depth();  // cache call chain depth
3538 
3539   // Walk back up the JVM state to find the caller at the required
3540   // depth. NOTE that this code must perform the same logic as
3541   // vframeStream::security_get_caller_frame in that it must skip
3542   // Method.invoke() and auxiliary frames. Note also that depth is
3543   // 1-based (1 is the bottom of the inlining).
3544   int inlining_depth = _depth;
3545   JVMState* caller_jvms = NULL;
3546 
3547   if (inlining_depth > 0) {
3548     caller_jvms = jvms();
3549     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3550     do {
3551       // The following if-tests should be performed in this order
3552       if (is_method_invoke_or_aux_frame(caller_jvms)) {
3553         // Skip a Method.invoke() or auxiliary frame
3554       } else if (caller_depth > 0) {
3555         // Skip real frame
3556         --caller_depth;
3557       } else {
3558         // We're done: reached desired caller after skipping.
3559         break;
3560       }
3561       caller_jvms = caller_jvms->caller();
3562       --inlining_depth;
3563     } while (inlining_depth > 0);
3564   }
3565 
3566   if (inlining_depth == 0) {
3567 #ifndef PRODUCT
3568     if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3569       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3570       tty->print_cr("  JVM state at this point:");
3571       for (int i = _depth; i >= 1; i--) {
3572         tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3573       }
3574     }
3575 #endif
3576     return false; // Reached end of inlining
3577   }
3578 
3579   // Acquire method holder as java.lang.Class
3580   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3581   ciInstance*      caller_mirror = caller_klass->java_mirror();
3582   // Push this as a constant
3583   push(makecon(TypeInstPtr::make(caller_mirror)));
3584 #ifndef PRODUCT
3585   if ((PrintIntrinsics || PrintInlining || PrintOptoInlining) && Verbose) {
3586     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3587     tty->print_cr("  JVM state at this point:");
3588     for (int i = _depth; i >= 1; i--) {
3589       tty->print_cr("   %d) %s", i, jvms()->of_depth(i)->method()->name()->as_utf8());
3590     }
3591   }
3592 #endif
3593   return true;
3594 }
3595 
3596 // Helper routine for above
3597 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
3598   // Is this the Method.invoke method itself?
3599   if (jvms->method()->intrinsic_id() == vmIntrinsics::_invoke)
3600     return true;
3601 
3602   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
3603   ciKlass* k = jvms->method()->holder();
3604   if (k->is_instance_klass()) {
3605     ciInstanceKlass* ik = k->as_instance_klass();
3606     for (; ik != NULL; ik = ik->super()) {
3607       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
3608           ik == env()->find_system_klass(ik->name())) {
3609         return true;
3610       }
3611     }
3612   }
3613 
3614   return false;
3615 }
3616 
3617 static int value_field_offset = -1;  // offset of the "value" field of AtomicLongCSImpl.  This is needed by
3618                                      // inline_native_AtomicLong_attemptUpdate() but it has no way of
3619                                      // computing it since there is no lookup field by name function in the
3620                                      // CI interface.  This is computed and set by inline_native_AtomicLong_get().
3621                                      // Using a static variable here is safe even if we have multiple compilation
3622                                      // threads because the offset is constant.  At worst the same offset will be
3623                                      // computed and  stored multiple
3624 
3625 bool LibraryCallKit::inline_native_AtomicLong_get() {
3626   // Restore the stack and pop off the argument
3627   _sp+=1;
3628   Node *obj = pop();
3629 
3630   // get the offset of the "value" field. Since the CI interfaces
3631   // does not provide a way to look up a field by name, we scan the bytecodes
3632   // to get the field index.  We expect the first 2 instructions of the method
3633   // to be:
3634   //    0 aload_0
3635   //    1 getfield "value"
3636   ciMethod* method = callee();
3637   if (value_field_offset == -1)
3638   {
3639     ciField* value_field;
3640     ciBytecodeStream iter(method);
3641     Bytecodes::Code bc = iter.next();
3642 
3643     if ((bc != Bytecodes::_aload_0) &&
3644               ((bc != Bytecodes::_aload) || (iter.get_index() != 0)))
3645       return false;
3646     bc = iter.next();
3647     if (bc != Bytecodes::_getfield)
3648       return false;
3649     bool ignore;
3650     value_field = iter.get_field(ignore);
3651     value_field_offset = value_field->offset_in_bytes();
3652   }
3653 
3654   // Null check without removing any arguments.
3655   _sp++;
3656   obj = do_null_check(obj, T_OBJECT);
3657   _sp--;
3658   // Check for locking null object
3659   if (stopped()) return true;
3660 
3661   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3662   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3663   int alias_idx = C->get_alias_index(adr_type);
3664 
3665   Node *result = _gvn.transform(new (C, 3) LoadLLockedNode(control(), memory(alias_idx), adr));
3666 
3667   push_pair(result);
3668 
3669   return true;
3670 }
3671 
3672 bool LibraryCallKit::inline_native_AtomicLong_attemptUpdate() {
3673   // Restore the stack and pop off the arguments
3674   _sp+=5;
3675   Node *newVal = pop_pair();
3676   Node *oldVal = pop_pair();
3677   Node *obj = pop();
3678 
3679   // we need the offset of the "value" field which was computed when
3680   // inlining the get() method.  Give up if we don't have it.
3681   if (value_field_offset == -1)
3682     return false;
3683 
3684   // Null check without removing any arguments.
3685   _sp+=5;
3686   obj = do_null_check(obj, T_OBJECT);
3687   _sp-=5;
3688   // Check for locking null object
3689   if (stopped()) return true;
3690 
3691   Node *adr = basic_plus_adr(obj, obj, value_field_offset);
3692   const TypePtr *adr_type = _gvn.type(adr)->is_ptr();
3693   int alias_idx = C->get_alias_index(adr_type);
3694 
3695   Node *cas = _gvn.transform(new (C, 5) StoreLConditionalNode(control(), memory(alias_idx), adr, newVal, oldVal));
3696   Node *store_proj = _gvn.transform( new (C, 1) SCMemProjNode(cas));
3697   set_memory(store_proj, alias_idx);
3698   Node *bol = _gvn.transform( new (C, 2) BoolNode( cas, BoolTest::eq ) );
3699 
3700   Node *result;
3701   // CMove node is not used to be able fold a possible check code
3702   // after attemptUpdate() call. This code could be transformed
3703   // into CMove node by loop optimizations.
3704   {
3705     RegionNode *r = new (C, 3) RegionNode(3);
3706     result = new (C, 3) PhiNode(r, TypeInt::BOOL);
3707 
3708     Node *iff = create_and_xform_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
3709     Node *iftrue = opt_iff(r, iff);
3710     r->init_req(1, iftrue);
3711     result->init_req(1, intcon(1));
3712     result->init_req(2, intcon(0));
3713 
3714     set_control(_gvn.transform(r));
3715     record_for_igvn(r);
3716 
3717     C->set_has_split_ifs(true); // Has chance for split-if optimization
3718   }
3719 
3720   push(_gvn.transform(result));
3721   return true;
3722 }
3723 
3724 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3725   // restore the arguments
3726   _sp += arg_size();
3727 
3728   switch (id) {
3729   case vmIntrinsics::_floatToRawIntBits:
3730     push(_gvn.transform( new (C, 2) MoveF2INode(pop())));
3731     break;
3732 
3733   case vmIntrinsics::_intBitsToFloat:
3734     push(_gvn.transform( new (C, 2) MoveI2FNode(pop())));
3735     break;
3736 
3737   case vmIntrinsics::_doubleToRawLongBits:
3738     push_pair(_gvn.transform( new (C, 2) MoveD2LNode(pop_pair())));
3739     break;
3740 
3741   case vmIntrinsics::_longBitsToDouble:
3742     push_pair(_gvn.transform( new (C, 2) MoveL2DNode(pop_pair())));
3743     break;
3744 
3745   case vmIntrinsics::_doubleToLongBits: {
3746     Node* value = pop_pair();
3747 
3748     // two paths (plus control) merge in a wood
3749     RegionNode *r = new (C, 3) RegionNode(3);
3750     Node *phi = new (C, 3) PhiNode(r, TypeLong::LONG);
3751 
3752     Node *cmpisnan = _gvn.transform( new (C, 3) CmpDNode(value, value));
3753     // Build the boolean node
3754     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3755 
3756     // Branch either way.
3757     // NaN case is less traveled, which makes all the difference.
3758     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3759     Node *opt_isnan = _gvn.transform(ifisnan);
3760     assert( opt_isnan->is_If(), "Expect an IfNode");
3761     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3762     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3763 
3764     set_control(iftrue);
3765 
3766     static const jlong nan_bits = CONST64(0x7ff8000000000000);
3767     Node *slow_result = longcon(nan_bits); // return NaN
3768     phi->init_req(1, _gvn.transform( slow_result ));
3769     r->init_req(1, iftrue);
3770 
3771     // Else fall through
3772     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3773     set_control(iffalse);
3774 
3775     phi->init_req(2, _gvn.transform( new (C, 2) MoveD2LNode(value)));
3776     r->init_req(2, iffalse);
3777 
3778     // Post merge
3779     set_control(_gvn.transform(r));
3780     record_for_igvn(r);
3781 
3782     Node* result = _gvn.transform(phi);
3783     assert(result->bottom_type()->isa_long(), "must be");
3784     push_pair(result);
3785 
3786     C->set_has_split_ifs(true); // Has chance for split-if optimization
3787 
3788     break;
3789   }
3790 
3791   case vmIntrinsics::_floatToIntBits: {
3792     Node* value = pop();
3793 
3794     // two paths (plus control) merge in a wood
3795     RegionNode *r = new (C, 3) RegionNode(3);
3796     Node *phi = new (C, 3) PhiNode(r, TypeInt::INT);
3797 
3798     Node *cmpisnan = _gvn.transform( new (C, 3) CmpFNode(value, value));
3799     // Build the boolean node
3800     Node *bolisnan = _gvn.transform( new (C, 2) BoolNode( cmpisnan, BoolTest::ne ) );
3801 
3802     // Branch either way.
3803     // NaN case is less traveled, which makes all the difference.
3804     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3805     Node *opt_isnan = _gvn.transform(ifisnan);
3806     assert( opt_isnan->is_If(), "Expect an IfNode");
3807     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3808     Node *iftrue = _gvn.transform( new (C, 1) IfTrueNode(opt_ifisnan) );
3809 
3810     set_control(iftrue);
3811 
3812     static const jint nan_bits = 0x7fc00000;
3813     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
3814     phi->init_req(1, _gvn.transform( slow_result ));
3815     r->init_req(1, iftrue);
3816 
3817     // Else fall through
3818     Node *iffalse = _gvn.transform( new (C, 1) IfFalseNode(opt_ifisnan) );
3819     set_control(iffalse);
3820 
3821     phi->init_req(2, _gvn.transform( new (C, 2) MoveF2INode(value)));
3822     r->init_req(2, iffalse);
3823 
3824     // Post merge
3825     set_control(_gvn.transform(r));
3826     record_for_igvn(r);
3827 
3828     Node* result = _gvn.transform(phi);
3829     assert(result->bottom_type()->isa_int(), "must be");
3830     push(result);
3831 
3832     C->set_has_split_ifs(true); // Has chance for split-if optimization
3833 
3834     break;
3835   }
3836 
3837   default:
3838     ShouldNotReachHere();
3839   }
3840 
3841   return true;
3842 }
3843 
3844 #ifdef _LP64
3845 #define XTOP ,top() /*additional argument*/
3846 #else  //_LP64
3847 #define XTOP        /*no additional argument*/
3848 #endif //_LP64
3849 
3850 //----------------------inline_unsafe_copyMemory-------------------------
3851 bool LibraryCallKit::inline_unsafe_copyMemory() {
3852   if (callee()->is_static())  return false;  // caller must have the capability!
3853   int nargs = 1 + 5 + 3;  // 5 args:  (src: ptr,off, dst: ptr,off, size)
3854   assert(signature()->size() == nargs-1, "copy has 5 arguments");
3855   null_check_receiver(callee());  // check then ignore argument(0)
3856   if (stopped())  return true;
3857 
3858   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3859 
3860   Node* src_ptr = argument(1);
3861   Node* src_off = ConvL2X(argument(2));
3862   assert(argument(3)->is_top(), "2nd half of long");
3863   Node* dst_ptr = argument(4);
3864   Node* dst_off = ConvL2X(argument(5));
3865   assert(argument(6)->is_top(), "2nd half of long");
3866   Node* size    = ConvL2X(argument(7));
3867   assert(argument(8)->is_top(), "2nd half of long");
3868 
3869   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
3870          "fieldOffset must be byte-scaled");
3871 
3872   Node* src = make_unsafe_address(src_ptr, src_off);
3873   Node* dst = make_unsafe_address(dst_ptr, dst_off);
3874 
3875   // Conservatively insert a memory barrier on all memory slices.
3876   // Do not let writes of the copy source or destination float below the copy.
3877   insert_mem_bar(Op_MemBarCPUOrder);
3878 
3879   // Call it.  Note that the length argument is not scaled.
3880   make_runtime_call(RC_LEAF|RC_NO_FP,
3881                     OptoRuntime::fast_arraycopy_Type(),
3882                     StubRoutines::unsafe_arraycopy(),
3883                     "unsafe_arraycopy",
3884                     TypeRawPtr::BOTTOM,
3885                     src, dst, size XTOP);
3886 
3887   // Do not let reads of the copy destination float above the copy.
3888   insert_mem_bar(Op_MemBarCPUOrder);
3889 
3890   return true;
3891 }
3892 
3893 //------------------------clone_coping-----------------------------------
3894 // Helper function for inline_native_clone.
3895 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
3896   assert(obj_size != NULL, "");
3897   Node* raw_obj = alloc_obj->in(1);
3898   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
3899 
3900   if (ReduceBulkZeroing) {
3901     // We will be completely responsible for initializing this object -
3902     // mark Initialize node as complete.
3903     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
3904     // The object was just allocated - there should be no any stores!
3905     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
3906   }
3907 
3908   // Cast to Object for arraycopy.
3909   // We can't use the original CheckCastPP since it should be moved
3910   // after the arraycopy to prevent stores flowing above it.
3911   Node* new_obj = new(C, 2) CheckCastPPNode(alloc_obj->in(0), raw_obj,
3912                                             TypeInstPtr::NOTNULL);
3913   new_obj = _gvn.transform(new_obj);
3914   // Substitute in the locally valid dest_oop.
3915   replace_in_map(alloc_obj, new_obj);
3916 
3917   // Copy the fastest available way.
3918   // TODO: generate fields copies for small objects instead.
3919   Node* src  = obj;
3920   Node* dest = new_obj;
3921   Node* size = _gvn.transform(obj_size);
3922 
3923   // Exclude the header but include array length to copy by 8 bytes words.
3924   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
3925   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
3926                             instanceOopDesc::base_offset_in_bytes();
3927   // base_off:
3928   // 8  - 32-bit VM
3929   // 12 - 64-bit VM, compressed oops
3930   // 16 - 64-bit VM, normal oops
3931   if (base_off % BytesPerLong != 0) {
3932     assert(UseCompressedOops, "");
3933     if (is_array) {
3934       // Exclude length to copy by 8 bytes words.
3935       base_off += sizeof(int);
3936     } else {
3937       // Include klass to copy by 8 bytes words.
3938       base_off = instanceOopDesc::klass_offset_in_bytes();
3939     }
3940     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
3941   }
3942   src  = basic_plus_adr(src,  base_off);
3943   dest = basic_plus_adr(dest, base_off);
3944 
3945   // Compute the length also, if needed:
3946   Node* countx = size;
3947   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(base_off)) );
3948   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong) ));
3949 
3950   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
3951   bool disjoint_bases = true;
3952   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
3953                                src, NULL, dest, NULL, countx);
3954 
3955   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
3956   if (card_mark) {
3957     assert(!is_array, "");
3958     // Put in store barrier for any and all oops we are sticking
3959     // into this object.  (We could avoid this if we could prove
3960     // that the object type contains no oop fields at all.)
3961     Node* no_particular_value = NULL;
3962     Node* no_particular_field = NULL;
3963     int raw_adr_idx = Compile::AliasIdxRaw;
3964     post_barrier(control(),
3965                  memory(raw_adr_type),
3966                  new_obj,
3967                  no_particular_field,
3968                  raw_adr_idx,
3969                  no_particular_value,
3970                  T_OBJECT,
3971                  false);
3972   }
3973 
3974   // Move the original CheckCastPP after arraycopy.
3975   _gvn.hash_delete(alloc_obj);
3976   alloc_obj->set_req(0, control());
3977   // Replace raw memory edge with new CheckCastPP to have a live oop
3978   // at safepoints instead of raw value.
3979   assert(new_obj->is_CheckCastPP() && new_obj->in(1) == alloc_obj->in(1), "sanity");
3980   alloc_obj->set_req(1, new_obj);    // cast to the original type
3981   _gvn.hash_find_insert(alloc_obj);  // put back into GVN table
3982   // Restore in the locally valid dest_oop.
3983   replace_in_map(new_obj, alloc_obj);
3984 }
3985 
3986 //------------------------inline_native_clone----------------------------
3987 // Here are the simple edge cases:
3988 //  null receiver => normal trap
3989 //  virtual and clone was overridden => slow path to out-of-line clone
3990 //  not cloneable or finalizer => slow path to out-of-line Object.clone
3991 //
3992 // The general case has two steps, allocation and copying.
3993 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
3994 //
3995 // Copying also has two cases, oop arrays and everything else.
3996 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
3997 // Everything else uses the tight inline loop supplied by CopyArrayNode.
3998 //
3999 // These steps fold up nicely if and when the cloned object's klass
4000 // can be sharply typed as an object array, a type array, or an instance.
4001 //
4002 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4003   int nargs = 1;
4004   Node* obj = null_check_receiver(callee());
4005   if (stopped())  return true;
4006   Node* obj_klass = load_object_klass(obj);
4007   const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4008   const TypeOopPtr*   toop   = ((tklass != NULL)
4009                                 ? tklass->as_instance_type()
4010                                 : TypeInstPtr::NOTNULL);
4011 
4012   // Conservatively insert a memory barrier on all memory slices.
4013   // Do not let writes into the original float below the clone.
4014   insert_mem_bar(Op_MemBarCPUOrder);
4015 
4016   // paths into result_reg:
4017   enum {
4018     _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4019     _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4020     _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4021     _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4022     PATH_LIMIT
4023   };
4024   RegionNode* result_reg = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4025   PhiNode*    result_val = new(C, PATH_LIMIT) PhiNode(result_reg,
4026                                                       TypeInstPtr::NOTNULL);
4027   PhiNode*    result_i_o = new(C, PATH_LIMIT) PhiNode(result_reg, Type::ABIO);
4028   PhiNode*    result_mem = new(C, PATH_LIMIT) PhiNode(result_reg, Type::MEMORY,
4029                                                       TypePtr::BOTTOM);
4030   record_for_igvn(result_reg);
4031 
4032   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4033   int raw_adr_idx = Compile::AliasIdxRaw;
4034   const bool raw_mem_only = true;
4035 
4036   //set the original stack and the reexecute bit for the interpreter to reexecute
4037   //the bytecode that invokes Object.clone if deoptimization happens
4038   {
4039     PreserveReexecuteState preexecs(this);
4040     _sp += nargs;
4041     jvms()->set_should_reexecute(true);
4042 
4043     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4044     if (array_ctl != NULL) {
4045       // It's an array.
4046       PreserveJVMState pjvms(this);
4047       set_control(array_ctl);
4048       Node* obj_length = load_array_length(obj);
4049       Node* obj_size = NULL;
4050       Node* alloc_obj = new_array(obj_klass, obj_length, 0,
4051                                   raw_mem_only, &obj_size);
4052       
4053       if (!use_ReduceInitialCardMarks()) {
4054         // If it is an oop array, it requires very special treatment,
4055         // because card marking is required on each card of the array.
4056         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4057         if (is_obja != NULL) {
4058           PreserveJVMState pjvms2(this);
4059           set_control(is_obja);
4060           // Generate a direct call to the right arraycopy function(s).
4061           bool disjoint_bases = true;
4062           bool length_never_negative = true;
4063           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4064                              obj, intcon(0), alloc_obj, intcon(0),
4065                              obj_length,
4066                              disjoint_bases, length_never_negative);
4067           result_reg->init_req(_objArray_path, control());
4068           result_val->init_req(_objArray_path, alloc_obj);
4069           result_i_o ->set_req(_objArray_path, i_o());
4070           result_mem ->set_req(_objArray_path, reset_memory());
4071         }
4072       }
4073       // We can dispense with card marks if we know the allocation
4074       // comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4075       // causes the non-eden paths to simulate a fresh allocation,
4076       // insofar that no further card marks are required to initialize
4077       // the object.
4078    
4079       // Otherwise, there are no card marks to worry about.
4080 
4081       if (!stopped()) {
4082         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4083 
4084         // Present the results of the copy.
4085         result_reg->init_req(_array_path, control());
4086         result_val->init_req(_array_path, alloc_obj);
4087         result_i_o ->set_req(_array_path, i_o());
4088         result_mem ->set_req(_array_path, reset_memory());
4089       }
4090     }
4091 
4092     // We only go to the instance fast case code if we pass a number of guards.
4093     // The paths which do not pass are accumulated in the slow_region.
4094     RegionNode* slow_region = new (C, 1) RegionNode(1);
4095     record_for_igvn(slow_region);
4096     if (!stopped()) {
4097       // It's an instance (we did array above).  Make the slow-path tests.
4098       // If this is a virtual call, we generate a funny guard.  We grab
4099       // the vtable entry corresponding to clone() from the target object.
4100       // If the target method which we are calling happens to be the
4101       // Object clone() method, we pass the guard.  We do not need this
4102       // guard for non-virtual calls; the caller is known to be the native
4103       // Object clone().
4104       if (is_virtual) {
4105         generate_virtual_guard(obj_klass, slow_region);
4106       }
4107 
4108       // The object must be cloneable and must not have a finalizer.
4109       // Both of these conditions may be checked in a single test.
4110       // We could optimize the cloneable test further, but we don't care.
4111       generate_access_flags_guard(obj_klass,
4112                                   // Test both conditions:
4113                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4114                                   // Must be cloneable but not finalizer:
4115                                   JVM_ACC_IS_CLONEABLE,
4116                                   slow_region);
4117     }
4118 
4119     if (!stopped()) {
4120       // It's an instance, and it passed the slow-path tests.
4121       PreserveJVMState pjvms(this);
4122       Node* obj_size = NULL;
4123       Node* alloc_obj = new_instance(obj_klass, NULL, raw_mem_only, &obj_size);
4124 
4125       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4126 
4127       // Present the results of the slow call.
4128       result_reg->init_req(_instance_path, control());
4129       result_val->init_req(_instance_path, alloc_obj);
4130       result_i_o ->set_req(_instance_path, i_o());
4131       result_mem ->set_req(_instance_path, reset_memory());
4132     }
4133 
4134     // Generate code for the slow case.  We make a call to clone().
4135     set_control(_gvn.transform(slow_region));
4136     if (!stopped()) {
4137       PreserveJVMState pjvms(this);
4138       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4139       Node* slow_result = set_results_for_java_call(slow_call);
4140       // this->control() comes from set_results_for_java_call
4141       result_reg->init_req(_slow_path, control());
4142       result_val->init_req(_slow_path, slow_result);
4143       result_i_o ->set_req(_slow_path, i_o());
4144       result_mem ->set_req(_slow_path, reset_memory());
4145     }
4146   } //original reexecute and sp are set back here
4147 
4148   // Return the combined state.
4149   set_control(    _gvn.transform(result_reg) );
4150   set_i_o(        _gvn.transform(result_i_o) );
4151   set_all_memory( _gvn.transform(result_mem) );
4152 
4153   push(_gvn.transform(result_val));
4154 
4155   return true;
4156 }
4157 
4158 
4159 // constants for computing the copy function
4160 enum {
4161   COPYFUNC_UNALIGNED = 0,
4162   COPYFUNC_ALIGNED = 1,                 // src, dest aligned to HeapWordSize
4163   COPYFUNC_CONJOINT = 0,
4164   COPYFUNC_DISJOINT = 2                 // src != dest, or transfer can descend
4165 };
4166 
4167 // Note:  The condition "disjoint" applies also for overlapping copies
4168 // where an descending copy is permitted (i.e., dest_offset <= src_offset).
4169 static address
4170 select_arraycopy_function(BasicType t, bool aligned, bool disjoint, const char* &name) {
4171   int selector =
4172     (aligned  ? COPYFUNC_ALIGNED  : COPYFUNC_UNALIGNED) +
4173     (disjoint ? COPYFUNC_DISJOINT : COPYFUNC_CONJOINT);
4174 
4175 #define RETURN_STUB(xxx_arraycopy) { \
4176   name = #xxx_arraycopy; \
4177   return StubRoutines::xxx_arraycopy(); }
4178 
4179   switch (t) {
4180   case T_BYTE:
4181   case T_BOOLEAN:
4182     switch (selector) {
4183     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_arraycopy);
4184     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_arraycopy);
4185     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jbyte_disjoint_arraycopy);
4186     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jbyte_disjoint_arraycopy);
4187     }
4188   case T_CHAR:
4189   case T_SHORT:
4190     switch (selector) {
4191     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_arraycopy);
4192     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_arraycopy);
4193     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jshort_disjoint_arraycopy);
4194     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jshort_disjoint_arraycopy);
4195     }
4196   case T_INT:
4197   case T_FLOAT:
4198     switch (selector) {
4199     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_arraycopy);
4200     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_arraycopy);
4201     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jint_disjoint_arraycopy);
4202     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jint_disjoint_arraycopy);
4203     }
4204   case T_DOUBLE:
4205   case T_LONG:
4206     switch (selector) {
4207     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_arraycopy);
4208     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_arraycopy);
4209     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(jlong_disjoint_arraycopy);
4210     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_jlong_disjoint_arraycopy);
4211     }
4212   case T_ARRAY:
4213   case T_OBJECT:
4214     switch (selector) {
4215     case COPYFUNC_CONJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_arraycopy);
4216     case COPYFUNC_CONJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_arraycopy);
4217     case COPYFUNC_DISJOINT | COPYFUNC_UNALIGNED:  RETURN_STUB(oop_disjoint_arraycopy);
4218     case COPYFUNC_DISJOINT | COPYFUNC_ALIGNED:    RETURN_STUB(arrayof_oop_disjoint_arraycopy);
4219     }
4220   default:
4221     ShouldNotReachHere();
4222     return NULL;
4223   }
4224 
4225 #undef RETURN_STUB
4226 }
4227 
4228 //------------------------------basictype2arraycopy----------------------------
4229 address LibraryCallKit::basictype2arraycopy(BasicType t,
4230                                             Node* src_offset,
4231                                             Node* dest_offset,
4232                                             bool disjoint_bases,
4233                                             const char* &name) {
4234   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4235   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4236 
4237   bool aligned = false;
4238   bool disjoint = disjoint_bases;
4239 
4240   // if the offsets are the same, we can treat the memory regions as
4241   // disjoint, because either the memory regions are in different arrays,
4242   // or they are identical (which we can treat as disjoint.)  We can also
4243   // treat a copy with a destination index  less that the source index
4244   // as disjoint since a low->high copy will work correctly in this case.
4245   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4246       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4247     // both indices are constants
4248     int s_offs = src_offset_inttype->get_con();
4249     int d_offs = dest_offset_inttype->get_con();
4250     int element_size = type2aelembytes(t);
4251     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4252               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4253     if (s_offs >= d_offs)  disjoint = true;
4254   } else if (src_offset == dest_offset && src_offset != NULL) {
4255     // This can occur if the offsets are identical non-constants.
4256     disjoint = true;
4257   }
4258 
4259   return select_arraycopy_function(t, aligned, disjoint, name);
4260 }
4261 
4262 
4263 //------------------------------inline_arraycopy-----------------------
4264 bool LibraryCallKit::inline_arraycopy() {
4265   // Restore the stack and pop off the arguments.
4266   int nargs = 5;  // 2 oops, 3 ints, no size_t or long
4267   assert(callee()->signature()->size() == nargs, "copy has 5 arguments");
4268 
4269   Node *src         = argument(0);
4270   Node *src_offset  = argument(1);
4271   Node *dest        = argument(2);
4272   Node *dest_offset = argument(3);
4273   Node *length      = argument(4);
4274 
4275   // Compile time checks.  If any of these checks cannot be verified at compile time,
4276   // we do not make a fast path for this call.  Instead, we let the call remain as it
4277   // is.  The checks we choose to mandate at compile time are:
4278   //
4279   // (1) src and dest are arrays.
4280   const Type* src_type = src->Value(&_gvn);
4281   const Type* dest_type = dest->Value(&_gvn);
4282   const TypeAryPtr* top_src = src_type->isa_aryptr();
4283   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4284   if (top_src  == NULL || top_src->klass()  == NULL ||
4285       top_dest == NULL || top_dest->klass() == NULL) {
4286     // Conservatively insert a memory barrier on all memory slices.
4287     // Do not let writes into the source float below the arraycopy.
4288     insert_mem_bar(Op_MemBarCPUOrder);
4289 
4290     // Call StubRoutines::generic_arraycopy stub.
4291     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4292                        src, src_offset, dest, dest_offset, length);
4293 
4294     // Do not let reads from the destination float above the arraycopy.
4295     // Since we cannot type the arrays, we don't know which slices
4296     // might be affected.  We could restrict this barrier only to those
4297     // memory slices which pertain to array elements--but don't bother.
4298     if (!InsertMemBarAfterArraycopy)
4299       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4300       insert_mem_bar(Op_MemBarCPUOrder);
4301     return true;
4302   }
4303 
4304   // (2) src and dest arrays must have elements of the same BasicType
4305   // Figure out the size and type of the elements we will be copying.
4306   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4307   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4308   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4309   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4310 
4311   if (src_elem != dest_elem || dest_elem == T_VOID) {
4312     // The component types are not the same or are not recognized.  Punt.
4313     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4314     generate_slow_arraycopy(TypePtr::BOTTOM,
4315                             src, src_offset, dest, dest_offset, length);
4316     return true;
4317   }
4318 
4319   //---------------------------------------------------------------------------
4320   // We will make a fast path for this call to arraycopy.
4321 
4322   // We have the following tests left to perform:
4323   //
4324   // (3) src and dest must not be null.
4325   // (4) src_offset must not be negative.
4326   // (5) dest_offset must not be negative.
4327   // (6) length must not be negative.
4328   // (7) src_offset + length must not exceed length of src.
4329   // (8) dest_offset + length must not exceed length of dest.
4330   // (9) each element of an oop array must be assignable
4331 
4332   RegionNode* slow_region = new (C, 1) RegionNode(1);
4333   record_for_igvn(slow_region);
4334 
4335   // (3) operands must not be null
4336   // We currently perform our null checks with the do_null_check routine.
4337   // This means that the null exceptions will be reported in the caller
4338   // rather than (correctly) reported inside of the native arraycopy call.
4339   // This should be corrected, given time.  We do our null check with the
4340   // stack pointer restored.
4341   _sp += nargs;
4342   src  = do_null_check(src,  T_ARRAY);
4343   dest = do_null_check(dest, T_ARRAY);
4344   _sp -= nargs;
4345 
4346   // (4) src_offset must not be negative.
4347   generate_negative_guard(src_offset, slow_region);
4348 
4349   // (5) dest_offset must not be negative.
4350   generate_negative_guard(dest_offset, slow_region);
4351 
4352   // (6) length must not be negative (moved to generate_arraycopy()).
4353   // generate_negative_guard(length, slow_region);
4354 
4355   // (7) src_offset + length must not exceed length of src.
4356   generate_limit_guard(src_offset, length,
4357                        load_array_length(src),
4358                        slow_region);
4359 
4360   // (8) dest_offset + length must not exceed length of dest.
4361   generate_limit_guard(dest_offset, length,
4362                        load_array_length(dest),
4363                        slow_region);
4364 
4365   // (9) each element of an oop array must be assignable
4366   // The generate_arraycopy subroutine checks this.
4367 
4368   // This is where the memory effects are placed:
4369   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4370   generate_arraycopy(adr_type, dest_elem,
4371                      src, src_offset, dest, dest_offset, length,
4372                      false, false, slow_region);
4373 
4374   return true;
4375 }
4376 
4377 //-----------------------------generate_arraycopy----------------------
4378 // Generate an optimized call to arraycopy.
4379 // Caller must guard against non-arrays.
4380 // Caller must determine a common array basic-type for both arrays.
4381 // Caller must validate offsets against array bounds.
4382 // The slow_region has already collected guard failure paths
4383 // (such as out of bounds length or non-conformable array types).
4384 // The generated code has this shape, in general:
4385 //
4386 //     if (length == 0)  return   // via zero_path
4387 //     slowval = -1
4388 //     if (types unknown) {
4389 //       slowval = call generic copy loop
4390 //       if (slowval == 0)  return  // via checked_path
4391 //     } else if (indexes in bounds) {
4392 //       if ((is object array) && !(array type check)) {
4393 //         slowval = call checked copy loop
4394 //         if (slowval == 0)  return  // via checked_path
4395 //       } else {
4396 //         call bulk copy loop
4397 //         return  // via fast_path
4398 //       }
4399 //     }
4400 //     // adjust params for remaining work:
4401 //     if (slowval != -1) {
4402 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4403 //     }
4404 //   slow_region:
4405 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4406 //     return  // via slow_call_path
4407 //
4408 // This routine is used from several intrinsics:  System.arraycopy,
4409 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4410 //
4411 void
4412 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4413                                    BasicType basic_elem_type,
4414                                    Node* src,  Node* src_offset,
4415                                    Node* dest, Node* dest_offset,
4416                                    Node* copy_length,
4417                                    bool disjoint_bases,
4418                                    bool length_never_negative,
4419                                    RegionNode* slow_region) {
4420 
4421   if (slow_region == NULL) {
4422     slow_region = new(C,1) RegionNode(1);
4423     record_for_igvn(slow_region);
4424   }
4425 
4426   Node* original_dest      = dest;
4427   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4428   bool  must_clear_dest    = false;
4429 
4430   // See if this is the initialization of a newly-allocated array.
4431   // If so, we will take responsibility here for initializing it to zero.
4432   // (Note:  Because tightly_coupled_allocation performs checks on the
4433   // out-edges of the dest, we need to avoid making derived pointers
4434   // from it until we have checked its uses.)
4435   if (ReduceBulkZeroing
4436       && !ZeroTLAB              // pointless if already zeroed
4437       && basic_elem_type != T_CONFLICT // avoid corner case
4438       && !_gvn.eqv_uncast(src, dest)
4439       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4440           != NULL)
4441       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4442       && alloc->maybe_set_complete(&_gvn)) {
4443     // "You break it, you buy it."
4444     InitializeNode* init = alloc->initialization();
4445     assert(init->is_complete(), "we just did this");
4446     assert(dest->is_CheckCastPP(), "sanity");
4447     assert(dest->in(0)->in(0) == init, "dest pinned");
4448 
4449     // Cast to Object for arraycopy.
4450     // We can't use the original CheckCastPP since it should be moved
4451     // after the arraycopy to prevent stores flowing above it.
4452     Node* new_obj = new(C, 2) CheckCastPPNode(dest->in(0), dest->in(1),
4453                                               TypeInstPtr::NOTNULL);
4454     dest = _gvn.transform(new_obj);
4455     // Substitute in the locally valid dest_oop.
4456     replace_in_map(original_dest, dest);
4457     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4458     // From this point on, every exit path is responsible for
4459     // initializing any non-copied parts of the object to zero.
4460     must_clear_dest = true;
4461   } else {
4462     // No zeroing elimination here.
4463     alloc             = NULL;
4464     //original_dest   = dest;
4465     //must_clear_dest = false;
4466   }
4467 
4468   // Results are placed here:
4469   enum { fast_path        = 1,  // normal void-returning assembly stub
4470          checked_path     = 2,  // special assembly stub with cleanup
4471          slow_call_path   = 3,  // something went wrong; call the VM
4472          zero_path        = 4,  // bypass when length of copy is zero
4473          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4474          PATH_LIMIT       = 6
4475   };
4476   RegionNode* result_region = new(C, PATH_LIMIT) RegionNode(PATH_LIMIT);
4477   PhiNode*    result_i_o    = new(C, PATH_LIMIT) PhiNode(result_region, Type::ABIO);
4478   PhiNode*    result_memory = new(C, PATH_LIMIT) PhiNode(result_region, Type::MEMORY, adr_type);
4479   record_for_igvn(result_region);
4480   _gvn.set_type_bottom(result_i_o);
4481   _gvn.set_type_bottom(result_memory);
4482   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4483 
4484   // The slow_control path:
4485   Node* slow_control;
4486   Node* slow_i_o = i_o();
4487   Node* slow_mem = memory(adr_type);
4488   debug_only(slow_control = (Node*) badAddress);
4489 
4490   // Checked control path:
4491   Node* checked_control = top();
4492   Node* checked_mem     = NULL;
4493   Node* checked_i_o     = NULL;
4494   Node* checked_value   = NULL;
4495 
4496   if (basic_elem_type == T_CONFLICT) {
4497     assert(!must_clear_dest, "");
4498     Node* cv = generate_generic_arraycopy(adr_type,
4499                                           src, src_offset, dest, dest_offset,
4500                                           copy_length);
4501     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4502     checked_control = control();
4503     checked_i_o     = i_o();
4504     checked_mem     = memory(adr_type);
4505     checked_value   = cv;
4506     set_control(top());         // no fast path
4507   }
4508 
4509   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4510   if (not_pos != NULL) {
4511     PreserveJVMState pjvms(this);
4512     set_control(not_pos);
4513 
4514     // (6) length must not be negative.
4515     if (!length_never_negative) {
4516       generate_negative_guard(copy_length, slow_region);
4517     }
4518 
4519     // copy_length is 0.
4520     if (!stopped() && must_clear_dest) {
4521       Node* dest_length = alloc->in(AllocateNode::ALength);
4522       if (_gvn.eqv_uncast(copy_length, dest_length)
4523           || _gvn.find_int_con(dest_length, 1) <= 0) {
4524         // There is no zeroing to do. No need for a secondary raw memory barrier.
4525       } else {
4526         // Clear the whole thing since there are no source elements to copy.
4527         generate_clear_array(adr_type, dest, basic_elem_type,
4528                              intcon(0), NULL,
4529                              alloc->in(AllocateNode::AllocSize));
4530         // Use a secondary InitializeNode as raw memory barrier.
4531         // Currently it is needed only on this path since other
4532         // paths have stub or runtime calls as raw memory barriers.
4533         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4534                                                        Compile::AliasIdxRaw,
4535                                                        top())->as_Initialize();
4536         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4537       }
4538     }
4539 
4540     // Present the results of the fast call.
4541     result_region->init_req(zero_path, control());
4542     result_i_o   ->init_req(zero_path, i_o());
4543     result_memory->init_req(zero_path, memory(adr_type));
4544   }
4545 
4546   if (!stopped() && must_clear_dest) {
4547     // We have to initialize the *uncopied* part of the array to zero.
4548     // The copy destination is the slice dest[off..off+len].  The other slices
4549     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4550     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4551     Node* dest_length = alloc->in(AllocateNode::ALength);
4552     Node* dest_tail   = _gvn.transform( new(C,3) AddINode(dest_offset,
4553                                                           copy_length) );
4554 
4555     // If there is a head section that needs zeroing, do it now.
4556     if (find_int_con(dest_offset, -1) != 0) {
4557       generate_clear_array(adr_type, dest, basic_elem_type,
4558                            intcon(0), dest_offset,
4559                            NULL);
4560     }
4561 
4562     // Next, perform a dynamic check on the tail length.
4563     // It is often zero, and we can win big if we prove this.
4564     // There are two wins:  Avoid generating the ClearArray
4565     // with its attendant messy index arithmetic, and upgrade
4566     // the copy to a more hardware-friendly word size of 64 bits.
4567     Node* tail_ctl = NULL;
4568     if (!stopped() && !_gvn.eqv_uncast(dest_tail, dest_length)) {
4569       Node* cmp_lt   = _gvn.transform( new(C,3) CmpINode(dest_tail, dest_length) );
4570       Node* bol_lt   = _gvn.transform( new(C,2) BoolNode(cmp_lt, BoolTest::lt) );
4571       tail_ctl = generate_slow_guard(bol_lt, NULL);
4572       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4573     }
4574 
4575     // At this point, let's assume there is no tail.
4576     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4577       // There is no tail.  Try an upgrade to a 64-bit copy.
4578       bool didit = false;
4579       { PreserveJVMState pjvms(this);
4580         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4581                                          src, src_offset, dest, dest_offset,
4582                                          dest_size);
4583         if (didit) {
4584           // Present the results of the block-copying fast call.
4585           result_region->init_req(bcopy_path, control());
4586           result_i_o   ->init_req(bcopy_path, i_o());
4587           result_memory->init_req(bcopy_path, memory(adr_type));
4588         }
4589       }
4590       if (didit)
4591         set_control(top());     // no regular fast path
4592     }
4593 
4594     // Clear the tail, if any.
4595     if (tail_ctl != NULL) {
4596       Node* notail_ctl = stopped() ? NULL : control();
4597       set_control(tail_ctl);
4598       if (notail_ctl == NULL) {
4599         generate_clear_array(adr_type, dest, basic_elem_type,
4600                              dest_tail, NULL,
4601                              dest_size);
4602       } else {
4603         // Make a local merge.
4604         Node* done_ctl = new(C,3) RegionNode(3);
4605         Node* done_mem = new(C,3) PhiNode(done_ctl, Type::MEMORY, adr_type);
4606         done_ctl->init_req(1, notail_ctl);
4607         done_mem->init_req(1, memory(adr_type));
4608         generate_clear_array(adr_type, dest, basic_elem_type,
4609                              dest_tail, NULL,
4610                              dest_size);
4611         done_ctl->init_req(2, control());
4612         done_mem->init_req(2, memory(adr_type));
4613         set_control( _gvn.transform(done_ctl) );
4614         set_memory(  _gvn.transform(done_mem), adr_type );
4615       }
4616     }
4617   }
4618 
4619   BasicType copy_type = basic_elem_type;
4620   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4621   if (!stopped() && copy_type == T_OBJECT) {
4622     // If src and dest have compatible element types, we can copy bits.
4623     // Types S[] and D[] are compatible if D is a supertype of S.
4624     //
4625     // If they are not, we will use checked_oop_disjoint_arraycopy,
4626     // which performs a fast optimistic per-oop check, and backs off
4627     // further to JVM_ArrayCopy on the first per-oop check that fails.
4628     // (Actually, we don't move raw bits only; the GC requires card marks.)
4629 
4630     // Get the klassOop for both src and dest
4631     Node* src_klass  = load_object_klass(src);
4632     Node* dest_klass = load_object_klass(dest);
4633 
4634     // Generate the subtype check.
4635     // This might fold up statically, or then again it might not.
4636     //
4637     // Non-static example:  Copying List<String>.elements to a new String[].
4638     // The backing store for a List<String> is always an Object[],
4639     // but its elements are always type String, if the generic types
4640     // are correct at the source level.
4641     //
4642     // Test S[] against D[], not S against D, because (probably)
4643     // the secondary supertype cache is less busy for S[] than S.
4644     // This usually only matters when D is an interface.
4645     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4646     // Plug failing path into checked_oop_disjoint_arraycopy
4647     if (not_subtype_ctrl != top()) {
4648       PreserveJVMState pjvms(this);
4649       set_control(not_subtype_ctrl);
4650       // (At this point we can assume disjoint_bases, since types differ.)
4651       int ek_offset = objArrayKlass::element_klass_offset_in_bytes() + sizeof(oopDesc);
4652       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4653       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4654       Node* dest_elem_klass = _gvn.transform(n1);
4655       Node* cv = generate_checkcast_arraycopy(adr_type,
4656                                               dest_elem_klass,
4657                                               src, src_offset, dest, dest_offset,
4658                                               copy_length);
4659       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4660       checked_control = control();
4661       checked_i_o     = i_o();
4662       checked_mem     = memory(adr_type);
4663       checked_value   = cv;
4664     }
4665     // At this point we know we do not need type checks on oop stores.
4666 
4667     // Let's see if we need card marks:
4668     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4669       // If we do not need card marks, copy using the jint or jlong stub.
4670       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4671       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4672              "sizes agree");
4673     }
4674   }
4675 
4676   if (!stopped()) {
4677     // Generate the fast path, if possible.
4678     PreserveJVMState pjvms(this);
4679     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4680                                  src, src_offset, dest, dest_offset,
4681                                  ConvI2X(copy_length));
4682 
4683     // Present the results of the fast call.
4684     result_region->init_req(fast_path, control());
4685     result_i_o   ->init_req(fast_path, i_o());
4686     result_memory->init_req(fast_path, memory(adr_type));
4687   }
4688 
4689   // Here are all the slow paths up to this point, in one bundle:
4690   slow_control = top();
4691   if (slow_region != NULL)
4692     slow_control = _gvn.transform(slow_region);
4693   debug_only(slow_region = (RegionNode*)badAddress);
4694 
4695   set_control(checked_control);
4696   if (!stopped()) {
4697     // Clean up after the checked call.
4698     // The returned value is either 0 or -1^K,
4699     // where K = number of partially transferred array elements.
4700     Node* cmp = _gvn.transform( new(C, 3) CmpINode(checked_value, intcon(0)) );
4701     Node* bol = _gvn.transform( new(C, 2) BoolNode(cmp, BoolTest::eq) );
4702     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4703 
4704     // If it is 0, we are done, so transfer to the end.
4705     Node* checks_done = _gvn.transform( new(C, 1) IfTrueNode(iff) );
4706     result_region->init_req(checked_path, checks_done);
4707     result_i_o   ->init_req(checked_path, checked_i_o);
4708     result_memory->init_req(checked_path, checked_mem);
4709 
4710     // If it is not zero, merge into the slow call.
4711     set_control( _gvn.transform( new(C, 1) IfFalseNode(iff) ));
4712     RegionNode* slow_reg2 = new(C, 3) RegionNode(3);
4713     PhiNode*    slow_i_o2 = new(C, 3) PhiNode(slow_reg2, Type::ABIO);
4714     PhiNode*    slow_mem2 = new(C, 3) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4715     record_for_igvn(slow_reg2);
4716     slow_reg2  ->init_req(1, slow_control);
4717     slow_i_o2  ->init_req(1, slow_i_o);
4718     slow_mem2  ->init_req(1, slow_mem);
4719     slow_reg2  ->init_req(2, control());
4720     slow_i_o2  ->init_req(2, checked_i_o);
4721     slow_mem2  ->init_req(2, checked_mem);
4722 
4723     slow_control = _gvn.transform(slow_reg2);
4724     slow_i_o     = _gvn.transform(slow_i_o2);
4725     slow_mem     = _gvn.transform(slow_mem2);
4726 
4727     if (alloc != NULL) {
4728       // We'll restart from the very beginning, after zeroing the whole thing.
4729       // This can cause double writes, but that's OK since dest is brand new.
4730       // So we ignore the low 31 bits of the value returned from the stub.
4731     } else {
4732       // We must continue the copy exactly where it failed, or else
4733       // another thread might see the wrong number of writes to dest.
4734       Node* checked_offset = _gvn.transform( new(C, 3) XorINode(checked_value, intcon(-1)) );
4735       Node* slow_offset    = new(C, 3) PhiNode(slow_reg2, TypeInt::INT);
4736       slow_offset->init_req(1, intcon(0));
4737       slow_offset->init_req(2, checked_offset);
4738       slow_offset  = _gvn.transform(slow_offset);
4739 
4740       // Adjust the arguments by the conditionally incoming offset.
4741       Node* src_off_plus  = _gvn.transform( new(C, 3) AddINode(src_offset,  slow_offset) );
4742       Node* dest_off_plus = _gvn.transform( new(C, 3) AddINode(dest_offset, slow_offset) );
4743       Node* length_minus  = _gvn.transform( new(C, 3) SubINode(copy_length, slow_offset) );
4744 
4745       // Tweak the node variables to adjust the code produced below:
4746       src_offset  = src_off_plus;
4747       dest_offset = dest_off_plus;
4748       copy_length = length_minus;
4749     }
4750   }
4751 
4752   set_control(slow_control);
4753   if (!stopped()) {
4754     // Generate the slow path, if needed.
4755     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4756 
4757     set_memory(slow_mem, adr_type);
4758     set_i_o(slow_i_o);
4759 
4760     if (must_clear_dest) {
4761       generate_clear_array(adr_type, dest, basic_elem_type,
4762                            intcon(0), NULL,
4763                            alloc->in(AllocateNode::AllocSize));
4764     }
4765 
4766     generate_slow_arraycopy(adr_type,
4767                             src, src_offset, dest, dest_offset,
4768                             copy_length);
4769 
4770     result_region->init_req(slow_call_path, control());
4771     result_i_o   ->init_req(slow_call_path, i_o());
4772     result_memory->init_req(slow_call_path, memory(adr_type));
4773   }
4774 
4775   // Remove unused edges.
4776   for (uint i = 1; i < result_region->req(); i++) {
4777     if (result_region->in(i) == NULL)
4778       result_region->init_req(i, top());
4779   }
4780 
4781   // Finished; return the combined state.
4782   set_control( _gvn.transform(result_region) );
4783   set_i_o(     _gvn.transform(result_i_o)    );
4784   set_memory(  _gvn.transform(result_memory), adr_type );
4785 
4786   if (dest != original_dest) {
4787     // Pin the "finished" array node after the arraycopy/zeroing operations.
4788     _gvn.hash_delete(original_dest);
4789     original_dest->set_req(0, control());
4790     // Replace raw memory edge with new CheckCastPP to have a live oop
4791     // at safepoints instead of raw value.
4792     assert(dest->is_CheckCastPP() && dest->in(1) == original_dest->in(1), "sanity");
4793     original_dest->set_req(1, dest);       // cast to the original type
4794     _gvn.hash_find_insert(original_dest);  // put back into GVN table
4795     // Restore in the locally valid dest_oop.
4796     replace_in_map(dest, original_dest);
4797   }
4798   // The memory edges above are precise in order to model effects around
4799   // array copies accurately to allow value numbering of field loads around
4800   // arraycopy.  Such field loads, both before and after, are common in Java
4801   // collections and similar classes involving header/array data structures.
4802   //
4803   // But with low number of register or when some registers are used or killed
4804   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4805   // The next memory barrier is added to avoid it. If the arraycopy can be
4806   // optimized away (which it can, sometimes) then we can manually remove
4807   // the membar also.
4808   if (InsertMemBarAfterArraycopy)
4809     insert_mem_bar(Op_MemBarCPUOrder);
4810 }
4811 
4812 
4813 // Helper function which determines if an arraycopy immediately follows
4814 // an allocation, with no intervening tests or other escapes for the object.
4815 AllocateArrayNode*
4816 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4817                                            RegionNode* slow_region) {
4818   if (stopped())             return NULL;  // no fast path
4819   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4820 
4821   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4822   if (alloc == NULL)  return NULL;
4823 
4824   Node* rawmem = memory(Compile::AliasIdxRaw);
4825   // Is the allocation's memory state untouched?
4826   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4827     // Bail out if there have been raw-memory effects since the allocation.
4828     // (Example:  There might have been a call or safepoint.)
4829     return NULL;
4830   }
4831   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4832   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4833     return NULL;
4834   }
4835 
4836   // There must be no unexpected observers of this allocation.
4837   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4838     Node* obs = ptr->fast_out(i);
4839     if (obs != this->map()) {
4840       return NULL;
4841     }
4842   }
4843 
4844   // This arraycopy must unconditionally follow the allocation of the ptr.
4845   Node* alloc_ctl = ptr->in(0);
4846   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
4847 
4848   Node* ctl = control();
4849   while (ctl != alloc_ctl) {
4850     // There may be guards which feed into the slow_region.
4851     // Any other control flow means that we might not get a chance
4852     // to finish initializing the allocated object.
4853     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4854       IfNode* iff = ctl->in(0)->as_If();
4855       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
4856       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4857       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4858         ctl = iff->in(0);       // This test feeds the known slow_region.
4859         continue;
4860       }
4861       // One more try:  Various low-level checks bottom out in
4862       // uncommon traps.  If the debug-info of the trap omits
4863       // any reference to the allocation, as we've already
4864       // observed, then there can be no objection to the trap.
4865       bool found_trap = false;
4866       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4867         Node* obs = not_ctl->fast_out(j);
4868         if (obs->in(0) == not_ctl && obs->is_Call() &&
4869             (obs->as_Call()->entry_point() ==
4870              SharedRuntime::uncommon_trap_blob()->instructions_begin())) {
4871           found_trap = true; break;
4872         }
4873       }
4874       if (found_trap) {
4875         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4876         continue;
4877       }
4878     }
4879     return NULL;
4880   }
4881 
4882   // If we get this far, we have an allocation which immediately
4883   // precedes the arraycopy, and we can take over zeroing the new object.
4884   // The arraycopy will finish the initialization, and provide
4885   // a new control state to which we will anchor the destination pointer.
4886 
4887   return alloc;
4888 }
4889 
4890 // Helper for initialization of arrays, creating a ClearArray.
4891 // It writes zero bits in [start..end), within the body of an array object.
4892 // The memory effects are all chained onto the 'adr_type' alias category.
4893 //
4894 // Since the object is otherwise uninitialized, we are free
4895 // to put a little "slop" around the edges of the cleared area,
4896 // as long as it does not go back into the array's header,
4897 // or beyond the array end within the heap.
4898 //
4899 // The lower edge can be rounded down to the nearest jint and the
4900 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
4901 //
4902 // Arguments:
4903 //   adr_type           memory slice where writes are generated
4904 //   dest               oop of the destination array
4905 //   basic_elem_type    element type of the destination
4906 //   slice_idx          array index of first element to store
4907 //   slice_len          number of elements to store (or NULL)
4908 //   dest_size          total size in bytes of the array object
4909 //
4910 // Exactly one of slice_len or dest_size must be non-NULL.
4911 // If dest_size is non-NULL, zeroing extends to the end of the object.
4912 // If slice_len is non-NULL, the slice_idx value must be a constant.
4913 void
4914 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
4915                                      Node* dest,
4916                                      BasicType basic_elem_type,
4917                                      Node* slice_idx,
4918                                      Node* slice_len,
4919                                      Node* dest_size) {
4920   // one or the other but not both of slice_len and dest_size:
4921   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
4922   if (slice_len == NULL)  slice_len = top();
4923   if (dest_size == NULL)  dest_size = top();
4924 
4925   // operate on this memory slice:
4926   Node* mem = memory(adr_type); // memory slice to operate on
4927 
4928   // scaling and rounding of indexes:
4929   int scale = exact_log2(type2aelembytes(basic_elem_type));
4930   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4931   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
4932   int bump_bit  = (-1 << scale) & BytesPerInt;
4933 
4934   // determine constant starts and ends
4935   const intptr_t BIG_NEG = -128;
4936   assert(BIG_NEG + 2*abase < 0, "neg enough");
4937   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
4938   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
4939   if (slice_len_con == 0) {
4940     return;                     // nothing to do here
4941   }
4942   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
4943   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
4944   if (slice_idx_con >= 0 && slice_len_con >= 0) {
4945     assert(end_con < 0, "not two cons");
4946     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
4947                        BytesPerLong);
4948   }
4949 
4950   if (start_con >= 0 && end_con >= 0) {
4951     // Constant start and end.  Simple.
4952     mem = ClearArrayNode::clear_memory(control(), mem, dest,
4953                                        start_con, end_con, &_gvn);
4954   } else if (start_con >= 0 && dest_size != top()) {
4955     // Constant start, pre-rounded end after the tail of the array.
4956     Node* end = dest_size;
4957     mem = ClearArrayNode::clear_memory(control(), mem, dest,
4958                                        start_con, end, &_gvn);
4959   } else if (start_con >= 0 && slice_len != top()) {
4960     // Constant start, non-constant end.  End needs rounding up.
4961     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
4962     intptr_t end_base  = abase + (slice_idx_con << scale);
4963     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
4964     Node*    end       = ConvI2X(slice_len);
4965     if (scale != 0)
4966       end = _gvn.transform( new(C,3) LShiftXNode(end, intcon(scale) ));
4967     end_base += end_round;
4968     end = _gvn.transform( new(C,3) AddXNode(end, MakeConX(end_base)) );
4969     end = _gvn.transform( new(C,3) AndXNode(end, MakeConX(~end_round)) );
4970     mem = ClearArrayNode::clear_memory(control(), mem, dest,
4971                                        start_con, end, &_gvn);
4972   } else if (start_con < 0 && dest_size != top()) {
4973     // Non-constant start, pre-rounded end after the tail of the array.
4974     // This is almost certainly a "round-to-end" operation.
4975     Node* start = slice_idx;
4976     start = ConvI2X(start);
4977     if (scale != 0)
4978       start = _gvn.transform( new(C,3) LShiftXNode( start, intcon(scale) ));
4979     start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(abase)) );
4980     if ((bump_bit | clear_low) != 0) {
4981       int to_clear = (bump_bit | clear_low);
4982       // Align up mod 8, then store a jint zero unconditionally
4983       // just before the mod-8 boundary.
4984       if (((abase + bump_bit) & ~to_clear) - bump_bit
4985           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
4986         bump_bit = 0;
4987         assert((abase & to_clear) == 0, "array base must be long-aligned");
4988       } else {
4989         // Bump 'start' up to (or past) the next jint boundary:
4990         start = _gvn.transform( new(C,3) AddXNode(start, MakeConX(bump_bit)) );
4991         assert((abase & clear_low) == 0, "array base must be int-aligned");
4992       }
4993       // Round bumped 'start' down to jlong boundary in body of array.
4994       start = _gvn.transform( new(C,3) AndXNode(start, MakeConX(~to_clear)) );
4995       if (bump_bit != 0) {
4996         // Store a zero to the immediately preceding jint:
4997         Node* x1 = _gvn.transform( new(C,3) AddXNode(start, MakeConX(-bump_bit)) );
4998         Node* p1 = basic_plus_adr(dest, x1);
4999         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT);
5000         mem = _gvn.transform(mem);
5001       }
5002     }
5003     Node* end = dest_size; // pre-rounded
5004     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5005                                        start, end, &_gvn);
5006   } else {
5007     // Non-constant start, unrounded non-constant end.
5008     // (Nobody zeroes a random midsection of an array using this routine.)
5009     ShouldNotReachHere();       // fix caller
5010   }
5011 
5012   // Done.
5013   set_memory(mem, adr_type);
5014 }
5015 
5016 
5017 bool
5018 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5019                                          BasicType basic_elem_type,
5020                                          AllocateNode* alloc,
5021                                          Node* src,  Node* src_offset,
5022                                          Node* dest, Node* dest_offset,
5023                                          Node* dest_size) {
5024   // See if there is an advantage from block transfer.
5025   int scale = exact_log2(type2aelembytes(basic_elem_type));
5026   if (scale >= LogBytesPerLong)
5027     return false;               // it is already a block transfer
5028 
5029   // Look at the alignment of the starting offsets.
5030   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5031   const intptr_t BIG_NEG = -128;
5032   assert(BIG_NEG + 2*abase < 0, "neg enough");
5033 
5034   intptr_t src_off  = abase + ((intptr_t) find_int_con(src_offset, -1)  << scale);
5035   intptr_t dest_off = abase + ((intptr_t) find_int_con(dest_offset, -1) << scale);
5036   if (src_off < 0 || dest_off < 0)
5037     // At present, we can only understand constants.
5038     return false;
5039 
5040   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5041     // Non-aligned; too bad.
5042     // One more chance:  Pick off an initial 32-bit word.
5043     // This is a common case, since abase can be odd mod 8.
5044     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5045         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5046       Node* sptr = basic_plus_adr(src,  src_off);
5047       Node* dptr = basic_plus_adr(dest, dest_off);
5048       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5049       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5050       src_off += BytesPerInt;
5051       dest_off += BytesPerInt;
5052     } else {
5053       return false;
5054     }
5055   }
5056   assert(src_off % BytesPerLong == 0, "");
5057   assert(dest_off % BytesPerLong == 0, "");
5058 
5059   // Do this copy by giant steps.
5060   Node* sptr  = basic_plus_adr(src,  src_off);
5061   Node* dptr  = basic_plus_adr(dest, dest_off);
5062   Node* countx = dest_size;
5063   countx = _gvn.transform( new (C, 3) SubXNode(countx, MakeConX(dest_off)) );
5064   countx = _gvn.transform( new (C, 3) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5065 
5066   bool disjoint_bases = true;   // since alloc != NULL
5067   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5068                                sptr, NULL, dptr, NULL, countx);
5069 
5070   return true;
5071 }
5072 
5073 
5074 // Helper function; generates code for the slow case.
5075 // We make a call to a runtime method which emulates the native method,
5076 // but without the native wrapper overhead.
5077 void
5078 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5079                                         Node* src,  Node* src_offset,
5080                                         Node* dest, Node* dest_offset,
5081                                         Node* copy_length) {
5082   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5083                                  OptoRuntime::slow_arraycopy_Type(),
5084                                  OptoRuntime::slow_arraycopy_Java(),
5085                                  "slow_arraycopy", adr_type,
5086                                  src, src_offset, dest, dest_offset,
5087                                  copy_length);
5088 
5089   // Handle exceptions thrown by this fellow:
5090   make_slow_call_ex(call, env()->Throwable_klass(), false);
5091 }
5092 
5093 // Helper function; generates code for cases requiring runtime checks.
5094 Node*
5095 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5096                                              Node* dest_elem_klass,
5097                                              Node* src,  Node* src_offset,
5098                                              Node* dest, Node* dest_offset,
5099                                              Node* copy_length) {
5100   if (stopped())  return NULL;
5101 
5102   address copyfunc_addr = StubRoutines::checkcast_arraycopy();
5103   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5104     return NULL;
5105   }
5106 
5107   // Pick out the parameters required to perform a store-check
5108   // for the target array.  This is an optimistic check.  It will
5109   // look in each non-null element's class, at the desired klass's
5110   // super_check_offset, for the desired klass.
5111   int sco_offset = Klass::super_check_offset_offset_in_bytes() + sizeof(oopDesc);
5112   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5113   Node* n3 = new(C, 3) LoadINode(NULL, immutable_memory(), p3, TypeRawPtr::BOTTOM);
5114   Node* check_offset = _gvn.transform(n3);
5115   Node* check_value  = dest_elem_klass;
5116 
5117   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5118   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5119 
5120   // (We know the arrays are never conjoint, because their types differ.)
5121   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5122                                  OptoRuntime::checkcast_arraycopy_Type(),
5123                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5124                                  // five arguments, of which two are
5125                                  // intptr_t (jlong in LP64)
5126                                  src_start, dest_start,
5127                                  copy_length XTOP,
5128                                  check_offset XTOP,
5129                                  check_value);
5130 
5131   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5132 }
5133 
5134 
5135 // Helper function; generates code for cases requiring runtime checks.
5136 Node*
5137 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5138                                            Node* src,  Node* src_offset,
5139                                            Node* dest, Node* dest_offset,
5140                                            Node* copy_length) {
5141   if (stopped())  return NULL;
5142 
5143   address copyfunc_addr = StubRoutines::generic_arraycopy();
5144   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5145     return NULL;
5146   }
5147 
5148   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5149                     OptoRuntime::generic_arraycopy_Type(),
5150                     copyfunc_addr, "generic_arraycopy", adr_type,
5151                     src, src_offset, dest, dest_offset, copy_length);
5152 
5153   return _gvn.transform(new (C, 1) ProjNode(call, TypeFunc::Parms));
5154 }
5155 
5156 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5157 void
5158 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5159                                              BasicType basic_elem_type,
5160                                              bool disjoint_bases,
5161                                              Node* src,  Node* src_offset,
5162                                              Node* dest, Node* dest_offset,
5163                                              Node* copy_length) {
5164   if (stopped())  return;               // nothing to do
5165 
5166   Node* src_start  = src;
5167   Node* dest_start = dest;
5168   if (src_offset != NULL || dest_offset != NULL) {
5169     assert(src_offset != NULL && dest_offset != NULL, "");
5170     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5171     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5172   }
5173 
5174   // Figure out which arraycopy runtime method to call.
5175   const char* copyfunc_name = "arraycopy";
5176   address     copyfunc_addr =
5177       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5178                           disjoint_bases, copyfunc_name);
5179 
5180   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5181   make_runtime_call(RC_LEAF|RC_NO_FP,
5182                     OptoRuntime::fast_arraycopy_Type(),
5183                     copyfunc_addr, copyfunc_name, adr_type,
5184                     src_start, dest_start, copy_length XTOP);
5185 }