1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 // Portions of code courtesy of Clifford Click
  26 
  27 class MultiNode;
  28 class PhaseCCP;
  29 class PhaseTransform;
  30 
  31 //------------------------------MemNode----------------------------------------
  32 // Load or Store, possibly throwing a NULL pointer exception
  33 class MemNode : public Node {
  34 protected:
  35 #ifdef ASSERT
  36   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  37 #endif
  38   virtual uint size_of() const; // Size is bigger (ASSERT only)
  39 public:
  40   enum { Control,               // When is it safe to do this load?
  41          Memory,                // Chunk of memory is being loaded from
  42          Address,               // Actually address, derived from base
  43          ValueIn,               // Value to store
  44          OopStore               // Preceeding oop store, only in StoreCM
  45   };
  46 protected:
  47   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  48     : Node(c0,c1,c2   ) {
  49     init_class_id(Class_Mem);
  50     debug_only(_adr_type=at; adr_type();)
  51   }
  52   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  53     : Node(c0,c1,c2,c3) {
  54     init_class_id(Class_Mem);
  55     debug_only(_adr_type=at; adr_type();)
  56   }
  57   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  58     : Node(c0,c1,c2,c3,c4) {
  59     init_class_id(Class_Mem);
  60     debug_only(_adr_type=at; adr_type();)
  61   }
  62 
  63 public:
  64   // Helpers for the optimizer.  Documented in memnode.cpp.
  65   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  66                                       Node* p2, AllocateNode* a2,
  67                                       PhaseTransform* phase);
  68   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  69 
  70   static Node *optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
  71   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase);
  72   // This one should probably be a phase-specific function:
  73   static bool all_controls_dominate(Node* dom, Node* sub);
  74 
  75   // Find any cast-away of null-ness and keep its control.
  76   static  Node *Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr );
  77   virtual Node *Ideal_DU_postCCP( PhaseCCP *ccp );
  78 
  79   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  80 
  81   // Shared code for Ideal methods:
  82   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
  83 
  84   // Helper function for adr_type() implementations.
  85   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
  86 
  87   // Raw access function, to allow copying of adr_type efficiently in
  88   // product builds and retain the debug info for debug builds.
  89   const TypePtr *raw_adr_type() const {
  90 #ifdef ASSERT
  91     return _adr_type;
  92 #else
  93     return 0;
  94 #endif
  95   }
  96 
  97   // Map a load or store opcode to its corresponding store opcode.
  98   // (Return -1 if unknown.)
  99   virtual int store_Opcode() const { return -1; }
 100 
 101   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 102   virtual BasicType memory_type() const = 0;
 103   virtual int memory_size() const {
 104 #ifdef ASSERT
 105     return type2aelembytes(memory_type(), true);
 106 #else
 107     return type2aelembytes(memory_type());
 108 #endif
 109   }
 110 
 111   // Search through memory states which precede this node (load or store).
 112   // Look for an exact match for the address, with no intervening
 113   // aliased stores.
 114   Node* find_previous_store(PhaseTransform* phase);
 115 
 116   // Can this node (load or store) accurately see a stored value in
 117   // the given memory state?  (The state may or may not be in(Memory).)
 118   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 119 
 120 #ifndef PRODUCT
 121   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 122   virtual void dump_spec(outputStream *st) const;
 123 #endif
 124 };
 125 
 126 //------------------------------LoadNode---------------------------------------
 127 // Load value; requires Memory and Address
 128 class LoadNode : public MemNode {
 129 protected:
 130   virtual uint cmp( const Node &n ) const;
 131   virtual uint size_of() const; // Size is bigger
 132   const Type* const _type;      // What kind of value is loaded?
 133 public:
 134 
 135   LoadNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt )
 136     : MemNode(c,mem,adr,at), _type(rt) {
 137     init_class_id(Class_Load);
 138   }
 139 
 140   // Polymorphic factory method:
 141   static Node* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 142                      const TypePtr* at, const Type *rt, BasicType bt );
 143 
 144   virtual uint hash()   const;  // Check the type
 145 
 146   // Handle algebraic identities here.  If we have an identity, return the Node
 147   // we are equivalent to.  We look for Load of a Store.
 148   virtual Node *Identity( PhaseTransform *phase );
 149 
 150   // If the load is from Field memory and the pointer is non-null, we can
 151   // zero out the control input.
 152   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 153 
 154   // Split instance field load through Phi.
 155   Node* split_through_phi(PhaseGVN *phase);
 156 
 157   // Recover original value from boxed values
 158   Node *eliminate_autobox(PhaseGVN *phase);
 159 
 160   // Compute a new Type for this node.  Basically we just do the pre-check,
 161   // then call the virtual add() to set the type.
 162   virtual const Type *Value( PhaseTransform *phase ) const;
 163 
 164   // Common methods for LoadKlass and LoadNKlass nodes.
 165   const Type *klass_value_common( PhaseTransform *phase ) const;
 166   Node *klass_identity_common( PhaseTransform *phase );
 167 
 168   virtual uint ideal_reg() const;
 169   virtual const Type *bottom_type() const;
 170   // Following method is copied from TypeNode:
 171   void set_type(const Type* t) {
 172     assert(t != NULL, "sanity");
 173     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 174     *(const Type**)&_type = t;   // cast away const-ness
 175     // If this node is in the hash table, make sure it doesn't need a rehash.
 176     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 177   }
 178   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 179 
 180   // Do not match memory edge
 181   virtual uint match_edge(uint idx) const;
 182 
 183   // Map a load opcode to its corresponding store opcode.
 184   virtual int store_Opcode() const = 0;
 185 
 186   // Check if the load's memory input is a Phi node with the same control.
 187   bool is_instance_field_load_with_local_phi(Node* ctrl);
 188 
 189 #ifndef PRODUCT
 190   virtual void dump_spec(outputStream *st) const;
 191 #endif
 192 protected:
 193   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 194                                      ciKlass* klass) const;
 195 };
 196 
 197 //------------------------------LoadBNode--------------------------------------
 198 // Load a byte (8bits signed) from memory
 199 class LoadBNode : public LoadNode {
 200 public:
 201   LoadBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::BYTE )
 202     : LoadNode(c,mem,adr,at,ti) {}
 203   virtual int Opcode() const;
 204   virtual uint ideal_reg() const { return Op_RegI; }
 205   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 206   virtual int store_Opcode() const { return Op_StoreB; }
 207   virtual BasicType memory_type() const { return T_BYTE; }
 208 };
 209 
 210 //------------------------------LoadUBNode-------------------------------------
 211 // Load a unsigned byte (8bits unsigned) from memory
 212 class LoadUBNode : public LoadNode {
 213 public:
 214   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti = TypeInt::UBYTE )
 215     : LoadNode(c, mem, adr, at, ti) {}
 216   virtual int Opcode() const;
 217   virtual uint ideal_reg() const { return Op_RegI; }
 218   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 219   virtual int store_Opcode() const { return Op_StoreB; }
 220   virtual BasicType memory_type() const { return T_BYTE; }
 221 };
 222 
 223 //------------------------------LoadUSNode-------------------------------------
 224 // Load an unsigned short/char (16bits unsigned) from memory
 225 class LoadUSNode : public LoadNode {
 226 public:
 227   LoadUSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::CHAR )
 228     : LoadNode(c,mem,adr,at,ti) {}
 229   virtual int Opcode() const;
 230   virtual uint ideal_reg() const { return Op_RegI; }
 231   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 232   virtual int store_Opcode() const { return Op_StoreC; }
 233   virtual BasicType memory_type() const { return T_CHAR; }
 234 };
 235 
 236 //------------------------------LoadINode--------------------------------------
 237 // Load an integer from memory
 238 class LoadINode : public LoadNode {
 239 public:
 240   LoadINode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::INT )
 241     : LoadNode(c,mem,adr,at,ti) {}
 242   virtual int Opcode() const;
 243   virtual uint ideal_reg() const { return Op_RegI; }
 244   virtual int store_Opcode() const { return Op_StoreI; }
 245   virtual BasicType memory_type() const { return T_INT; }
 246 };
 247 
 248 //------------------------------LoadUI2LNode-----------------------------------
 249 // Load an unsigned integer into long from memory
 250 class LoadUI2LNode : public LoadNode {
 251 public:
 252   LoadUI2LNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeLong* t = TypeLong::UINT)
 253     : LoadNode(c, mem, adr, at, t) {}
 254   virtual int Opcode() const;
 255   virtual uint ideal_reg() const { return Op_RegL; }
 256   virtual int store_Opcode() const { return Op_StoreL; }
 257   virtual BasicType memory_type() const { return T_LONG; }
 258 };
 259 
 260 //------------------------------LoadRangeNode----------------------------------
 261 // Load an array length from the array
 262 class LoadRangeNode : public LoadINode {
 263 public:
 264   LoadRangeNode( Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS )
 265     : LoadINode(c,mem,adr,TypeAryPtr::RANGE,ti) {}
 266   virtual int Opcode() const;
 267   virtual const Type *Value( PhaseTransform *phase ) const;
 268   virtual Node *Identity( PhaseTransform *phase );
 269   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 270 };
 271 
 272 //------------------------------LoadLNode--------------------------------------
 273 // Load a long from memory
 274 class LoadLNode : public LoadNode {
 275   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 276   virtual uint cmp( const Node &n ) const {
 277     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 278       && LoadNode::cmp(n);
 279   }
 280   virtual uint size_of() const { return sizeof(*this); }
 281   const bool _require_atomic_access;  // is piecewise load forbidden?
 282 
 283 public:
 284   LoadLNode( Node *c, Node *mem, Node *adr, const TypePtr* at,
 285              const TypeLong *tl = TypeLong::LONG,
 286              bool require_atomic_access = false )
 287     : LoadNode(c,mem,adr,at,tl)
 288     , _require_atomic_access(require_atomic_access)
 289   {}
 290   virtual int Opcode() const;
 291   virtual uint ideal_reg() const { return Op_RegL; }
 292   virtual int store_Opcode() const { return Op_StoreL; }
 293   virtual BasicType memory_type() const { return T_LONG; }
 294   bool require_atomic_access() { return _require_atomic_access; }
 295   static LoadLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt);
 296 #ifndef PRODUCT
 297   virtual void dump_spec(outputStream *st) const {
 298     LoadNode::dump_spec(st);
 299     if (_require_atomic_access)  st->print(" Atomic!");
 300   }
 301 #endif
 302 };
 303 
 304 //------------------------------LoadL_unalignedNode----------------------------
 305 // Load a long from unaligned memory
 306 class LoadL_unalignedNode : public LoadLNode {
 307 public:
 308   LoadL_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
 309     : LoadLNode(c,mem,adr,at) {}
 310   virtual int Opcode() const;
 311 };
 312 
 313 //------------------------------LoadFNode--------------------------------------
 314 // Load a float (64 bits) from memory
 315 class LoadFNode : public LoadNode {
 316 public:
 317   LoadFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::FLOAT )
 318     : LoadNode(c,mem,adr,at,t) {}
 319   virtual int Opcode() const;
 320   virtual uint ideal_reg() const { return Op_RegF; }
 321   virtual int store_Opcode() const { return Op_StoreF; }
 322   virtual BasicType memory_type() const { return T_FLOAT; }
 323 };
 324 
 325 //------------------------------LoadDNode--------------------------------------
 326 // Load a double (64 bits) from memory
 327 class LoadDNode : public LoadNode {
 328 public:
 329   LoadDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t = Type::DOUBLE )
 330     : LoadNode(c,mem,adr,at,t) {}
 331   virtual int Opcode() const;
 332   virtual uint ideal_reg() const { return Op_RegD; }
 333   virtual int store_Opcode() const { return Op_StoreD; }
 334   virtual BasicType memory_type() const { return T_DOUBLE; }
 335 };
 336 
 337 //------------------------------LoadD_unalignedNode----------------------------
 338 // Load a double from unaligned memory
 339 class LoadD_unalignedNode : public LoadDNode {
 340 public:
 341   LoadD_unalignedNode( Node *c, Node *mem, Node *adr, const TypePtr* at )
 342     : LoadDNode(c,mem,adr,at) {}
 343   virtual int Opcode() const;
 344 };
 345 
 346 //------------------------------LoadPNode--------------------------------------
 347 // Load a pointer from memory (either object or array)
 348 class LoadPNode : public LoadNode {
 349 public:
 350   LoadPNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t )
 351     : LoadNode(c,mem,adr,at,t) {}
 352   virtual int Opcode() const;
 353   virtual uint ideal_reg() const { return Op_RegP; }
 354   virtual int store_Opcode() const { return Op_StoreP; }
 355   virtual BasicType memory_type() const { return T_ADDRESS; }
 356   // depends_only_on_test is almost always true, and needs to be almost always
 357   // true to enable key hoisting & commoning optimizations.  However, for the
 358   // special case of RawPtr loads from TLS top & end, the control edge carries
 359   // the dependence preventing hoisting past a Safepoint instead of the memory
 360   // edge.  (An unfortunate consequence of having Safepoints not set Raw
 361   // Memory; itself an unfortunate consequence of having Nodes which produce
 362   // results (new raw memory state) inside of loops preventing all manner of
 363   // other optimizations).  Basically, it's ugly but so is the alternative.
 364   // See comment in macro.cpp, around line 125 expand_allocate_common().
 365   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
 366 };
 367 
 368 
 369 //------------------------------LoadNNode--------------------------------------
 370 // Load a narrow oop from memory (either object or array)
 371 class LoadNNode : public LoadNode {
 372 public:
 373   LoadNNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t )
 374     : LoadNode(c,mem,adr,at,t) {}
 375   virtual int Opcode() const;
 376   virtual uint ideal_reg() const { return Op_RegN; }
 377   virtual int store_Opcode() const { return Op_StoreN; }
 378   virtual BasicType memory_type() const { return T_NARROWOOP; }
 379   // depends_only_on_test is almost always true, and needs to be almost always
 380   // true to enable key hoisting & commoning optimizations.  However, for the
 381   // special case of RawPtr loads from TLS top & end, the control edge carries
 382   // the dependence preventing hoisting past a Safepoint instead of the memory
 383   // edge.  (An unfortunate consequence of having Safepoints not set Raw
 384   // Memory; itself an unfortunate consequence of having Nodes which produce
 385   // results (new raw memory state) inside of loops preventing all manner of
 386   // other optimizations).  Basically, it's ugly but so is the alternative.
 387   // See comment in macro.cpp, around line 125 expand_allocate_common().
 388   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM; }
 389 };
 390 
 391 //------------------------------LoadKlassNode----------------------------------
 392 // Load a Klass from an object
 393 class LoadKlassNode : public LoadPNode {
 394 public:
 395   LoadKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk )
 396     : LoadPNode(c,mem,adr,at,tk) {}
 397   virtual int Opcode() const;
 398   virtual const Type *Value( PhaseTransform *phase ) const;
 399   virtual Node *Identity( PhaseTransform *phase );
 400   virtual bool depends_only_on_test() const { return true; }
 401 
 402   // Polymorphic factory method:
 403   static Node* make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at,
 404                      const TypeKlassPtr *tk = TypeKlassPtr::OBJECT );
 405 };
 406 
 407 //------------------------------LoadNKlassNode---------------------------------
 408 // Load a narrow Klass from an object.
 409 class LoadNKlassNode : public LoadNNode {
 410 public:
 411   LoadNKlassNode( Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowOop *tk )
 412     : LoadNNode(c,mem,adr,at,tk) {}
 413   virtual int Opcode() const;
 414   virtual uint ideal_reg() const { return Op_RegN; }
 415   virtual int store_Opcode() const { return Op_StoreN; }
 416   virtual BasicType memory_type() const { return T_NARROWOOP; }
 417 
 418   virtual const Type *Value( PhaseTransform *phase ) const;
 419   virtual Node *Identity( PhaseTransform *phase );
 420   virtual bool depends_only_on_test() const { return true; }
 421 };
 422 
 423 
 424 //------------------------------LoadSNode--------------------------------------
 425 // Load a short (16bits signed) from memory
 426 class LoadSNode : public LoadNode {
 427 public:
 428   LoadSNode( Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti = TypeInt::SHORT )
 429     : LoadNode(c,mem,adr,at,ti) {}
 430   virtual int Opcode() const;
 431   virtual uint ideal_reg() const { return Op_RegI; }
 432   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 433   virtual int store_Opcode() const { return Op_StoreC; }
 434   virtual BasicType memory_type() const { return T_SHORT; }
 435 };
 436 
 437 //------------------------------StoreNode--------------------------------------
 438 // Store value; requires Store, Address and Value
 439 class StoreNode : public MemNode {
 440 protected:
 441   virtual uint cmp( const Node &n ) const;
 442   virtual bool depends_only_on_test() const { return false; }
 443 
 444   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 445   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 446 
 447 public:
 448   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val )
 449     : MemNode(c,mem,adr,at,val) {
 450     init_class_id(Class_Store);
 451   }
 452   StoreNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store )
 453     : MemNode(c,mem,adr,at,val,oop_store) {
 454     init_class_id(Class_Store);
 455   }
 456 
 457   // Polymorphic factory method:
 458   static StoreNode* make( PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 459                           const TypePtr* at, Node *val, BasicType bt );
 460 
 461   virtual uint hash() const;    // Check the type
 462 
 463   // If the store is to Field memory and the pointer is non-null, we can
 464   // zero out the control input.
 465   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 466 
 467   // Compute a new Type for this node.  Basically we just do the pre-check,
 468   // then call the virtual add() to set the type.
 469   virtual const Type *Value( PhaseTransform *phase ) const;
 470 
 471   // Check for identity function on memory (Load then Store at same address)
 472   virtual Node *Identity( PhaseTransform *phase );
 473 
 474   // Do not match memory edge
 475   virtual uint match_edge(uint idx) const;
 476 
 477   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 478 
 479   // Map a store opcode to its corresponding own opcode, trivially.
 480   virtual int store_Opcode() const { return Opcode(); }
 481 
 482   // have all possible loads of the value stored been optimized away?
 483   bool value_never_loaded(PhaseTransform *phase) const;
 484 };
 485 
 486 //------------------------------StoreBNode-------------------------------------
 487 // Store byte to memory
 488 class StoreBNode : public StoreNode {
 489 public:
 490   StoreBNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 491   virtual int Opcode() const;
 492   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 493   virtual BasicType memory_type() const { return T_BYTE; }
 494 };
 495 
 496 //------------------------------StoreCNode-------------------------------------
 497 // Store char/short to memory
 498 class StoreCNode : public StoreNode {
 499 public:
 500   StoreCNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 501   virtual int Opcode() const;
 502   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 503   virtual BasicType memory_type() const { return T_CHAR; }
 504 };
 505 
 506 //------------------------------StoreINode-------------------------------------
 507 // Store int to memory
 508 class StoreINode : public StoreNode {
 509 public:
 510   StoreINode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 511   virtual int Opcode() const;
 512   virtual BasicType memory_type() const { return T_INT; }
 513 };
 514 
 515 //------------------------------StoreLNode-------------------------------------
 516 // Store long to memory
 517 class StoreLNode : public StoreNode {
 518   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 519   virtual uint cmp( const Node &n ) const {
 520     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 521       && StoreNode::cmp(n);
 522   }
 523   virtual uint size_of() const { return sizeof(*this); }
 524   const bool _require_atomic_access;  // is piecewise store forbidden?
 525 
 526 public:
 527   StoreLNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 528               bool require_atomic_access = false )
 529     : StoreNode(c,mem,adr,at,val)
 530     , _require_atomic_access(require_atomic_access)
 531   {}
 532   virtual int Opcode() const;
 533   virtual BasicType memory_type() const { return T_LONG; }
 534   bool require_atomic_access() { return _require_atomic_access; }
 535   static StoreLNode* make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val);
 536 #ifndef PRODUCT
 537   virtual void dump_spec(outputStream *st) const {
 538     StoreNode::dump_spec(st);
 539     if (_require_atomic_access)  st->print(" Atomic!");
 540   }
 541 #endif
 542 };
 543 
 544 //------------------------------StoreFNode-------------------------------------
 545 // Store float to memory
 546 class StoreFNode : public StoreNode {
 547 public:
 548   StoreFNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 549   virtual int Opcode() const;
 550   virtual BasicType memory_type() const { return T_FLOAT; }
 551 };
 552 
 553 //------------------------------StoreDNode-------------------------------------
 554 // Store double to memory
 555 class StoreDNode : public StoreNode {
 556 public:
 557   StoreDNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 558   virtual int Opcode() const;
 559   virtual BasicType memory_type() const { return T_DOUBLE; }
 560 };
 561 
 562 //------------------------------StorePNode-------------------------------------
 563 // Store pointer to memory
 564 class StorePNode : public StoreNode {
 565 public:
 566   StorePNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 567   virtual int Opcode() const;
 568   virtual BasicType memory_type() const { return T_ADDRESS; }
 569 };
 570 
 571 //------------------------------StoreNNode-------------------------------------
 572 // Store narrow oop to memory
 573 class StoreNNode : public StoreNode {
 574 public:
 575   StoreNNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val ) : StoreNode(c,mem,adr,at,val) {}
 576   virtual int Opcode() const;
 577   virtual BasicType memory_type() const { return T_NARROWOOP; }
 578 };
 579 
 580 //------------------------------StoreCMNode-----------------------------------
 581 // Store card-mark byte to memory for CM
 582 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 583 // Preceeding equivalent StoreCMs may be eliminated.
 584 class StoreCMNode : public StoreNode {
 585  private:
 586   int _oop_alias_idx;   // The alias_idx of OopStore
 587 public:
 588   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) : StoreNode(c,mem,adr,at,val,oop_store), _oop_alias_idx(oop_alias_idx) {}
 589   virtual int Opcode() const;
 590   virtual Node *Identity( PhaseTransform *phase );
 591   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 592   virtual const Type *Value( PhaseTransform *phase ) const;
 593   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 594   int oop_alias_idx() const { return _oop_alias_idx; }
 595 };
 596 
 597 //------------------------------LoadPLockedNode---------------------------------
 598 // Load-locked a pointer from memory (either object or array).
 599 // On Sparc & Intel this is implemented as a normal pointer load.
 600 // On PowerPC and friends it's a real load-locked.
 601 class LoadPLockedNode : public LoadPNode {
 602 public:
 603   LoadPLockedNode( Node *c, Node *mem, Node *adr )
 604     : LoadPNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM) {}
 605   virtual int Opcode() const;
 606   virtual int store_Opcode() const { return Op_StorePConditional; }
 607   virtual bool depends_only_on_test() const { return true; }
 608 };
 609 
 610 //------------------------------LoadLLockedNode---------------------------------
 611 // Load-locked a pointer from memory (either object or array).
 612 // On Sparc & Intel this is implemented as a normal long load.
 613 class LoadLLockedNode : public LoadLNode {
 614 public:
 615   LoadLLockedNode( Node *c, Node *mem, Node *adr )
 616     : LoadLNode(c,mem,adr,TypeRawPtr::BOTTOM, TypeLong::LONG) {}
 617   virtual int Opcode() const;
 618   virtual int store_Opcode() const { return Op_StoreLConditional; }
 619 };
 620 
 621 //------------------------------SCMemProjNode---------------------------------------
 622 // This class defines a projection of the memory  state of a store conditional node.
 623 // These nodes return a value, but also update memory.
 624 class SCMemProjNode : public ProjNode {
 625 public:
 626   enum {SCMEMPROJCON = (uint)-2};
 627   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 628   virtual int Opcode() const;
 629   virtual bool      is_CFG() const  { return false; }
 630   virtual const Type *bottom_type() const {return Type::MEMORY;}
 631   virtual const TypePtr *adr_type() const { return in(0)->in(MemNode::Memory)->adr_type();}
 632   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 633   virtual const Type *Value( PhaseTransform *phase ) const;
 634 #ifndef PRODUCT
 635   virtual void dump_spec(outputStream *st) const {};
 636 #endif
 637 };
 638 
 639 //------------------------------LoadStoreNode---------------------------
 640 // Note: is_Mem() method returns 'true' for this class.
 641 class LoadStoreNode : public Node {
 642 public:
 643   enum {
 644     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 645   };
 646   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 647   virtual bool depends_only_on_test() const { return false; }
 648   virtual const Type *bottom_type() const { return TypeInt::BOOL; }
 649   virtual uint ideal_reg() const { return Op_RegI; }
 650   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 651 };
 652 
 653 //------------------------------StorePConditionalNode---------------------------
 654 // Conditionally store pointer to memory, if no change since prior
 655 // load-locked.  Sets flags for success or failure of the store.
 656 class StorePConditionalNode : public LoadStoreNode {
 657 public:
 658   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
 659   virtual int Opcode() const;
 660   // Produces flags
 661   virtual uint ideal_reg() const { return Op_RegFlags; }
 662 };
 663 
 664 //------------------------------StoreIConditionalNode---------------------------
 665 // Conditionally store int to memory, if no change since prior
 666 // load-locked.  Sets flags for success or failure of the store.
 667 class StoreIConditionalNode : public LoadStoreNode {
 668 public:
 669   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreNode(c, mem, adr, val, ii) { }
 670   virtual int Opcode() const;
 671   // Produces flags
 672   virtual uint ideal_reg() const { return Op_RegFlags; }
 673 };
 674 
 675 //------------------------------StoreLConditionalNode---------------------------
 676 // Conditionally store long to memory, if no change since prior
 677 // load-locked.  Sets flags for success or failure of the store.
 678 class StoreLConditionalNode : public LoadStoreNode {
 679 public:
 680   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreNode(c, mem, adr, val, ll) { }
 681   virtual int Opcode() const;
 682   // Produces flags
 683   virtual uint ideal_reg() const { return Op_RegFlags; }
 684 };
 685 
 686 
 687 //------------------------------CompareAndSwapLNode---------------------------
 688 class CompareAndSwapLNode : public LoadStoreNode {
 689 public:
 690   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
 691   virtual int Opcode() const;
 692 };
 693 
 694 
 695 //------------------------------CompareAndSwapINode---------------------------
 696 class CompareAndSwapINode : public LoadStoreNode {
 697 public:
 698   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
 699   virtual int Opcode() const;
 700 };
 701 
 702 
 703 //------------------------------CompareAndSwapPNode---------------------------
 704 class CompareAndSwapPNode : public LoadStoreNode {
 705 public:
 706   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
 707   virtual int Opcode() const;
 708 };
 709 
 710 //------------------------------CompareAndSwapNNode---------------------------
 711 class CompareAndSwapNNode : public LoadStoreNode {
 712 public:
 713   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreNode(c, mem, adr, val, ex) { }
 714   virtual int Opcode() const;
 715 };
 716 
 717 //------------------------------ClearArray-------------------------------------
 718 class ClearArrayNode: public Node {
 719 public:
 720   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base ) : Node(ctrl,arymem,word_cnt,base) {}
 721   virtual int         Opcode() const;
 722   virtual const Type *bottom_type() const { return Type::MEMORY; }
 723   // ClearArray modifies array elements, and so affects only the
 724   // array memory addressed by the bottom_type of its base address.
 725   virtual const class TypePtr *adr_type() const;
 726   virtual Node *Identity( PhaseTransform *phase );
 727   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 728   virtual uint match_edge(uint idx) const;
 729 
 730   // Clear the given area of an object or array.
 731   // The start offset must always be aligned mod BytesPerInt.
 732   // The end offset must always be aligned mod BytesPerLong.
 733   // Return the new memory.
 734   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 735                             intptr_t start_offset,
 736                             intptr_t end_offset,
 737                             PhaseGVN* phase);
 738   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 739                             intptr_t start_offset,
 740                             Node* end_offset,
 741                             PhaseGVN* phase);
 742   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 743                             Node* start_offset,
 744                             Node* end_offset,
 745                             PhaseGVN* phase);
 746 };
 747 
 748 //------------------------------StrComp-------------------------------------
 749 class StrCompNode: public Node {
 750 public:
 751   StrCompNode(Node *control,
 752               Node* char_array_mem,
 753               Node* value_mem,
 754               Node* count_mem,
 755               Node* offset_mem,
 756               Node* s1, Node* s2): Node(control,
 757                                         char_array_mem,
 758                                         value_mem,
 759                                         count_mem,
 760                                         offset_mem,
 761                                         s1, s2) {};
 762   virtual int Opcode() const;
 763   virtual bool depends_only_on_test() const { return false; }
 764   virtual const Type* bottom_type() const { return TypeInt::INT; }
 765   // a StrCompNode (conservatively) aliases with everything:
 766   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
 767   virtual uint match_edge(uint idx) const;
 768   virtual uint ideal_reg() const { return Op_RegI; }
 769   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 770 };
 771 
 772 //------------------------------StrEquals-------------------------------------
 773 class StrEqualsNode: public Node {
 774 public:
 775   StrEqualsNode(Node *control,
 776                 Node* char_array_mem,
 777                 Node* value_mem,
 778                 Node* count_mem,
 779                 Node* offset_mem,
 780                 Node* s1, Node* s2): Node(control,
 781                                           char_array_mem,
 782                                           value_mem,
 783                                           count_mem,
 784                                           offset_mem,
 785                                           s1, s2) {};
 786   virtual int Opcode() const;
 787   virtual bool depends_only_on_test() const { return false; }
 788   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
 789   // a StrEqualsNode (conservatively) aliases with everything:
 790   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
 791   virtual uint match_edge(uint idx) const;
 792   virtual uint ideal_reg() const { return Op_RegI; }
 793   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 794 };
 795 
 796 //------------------------------StrIndexOf-------------------------------------
 797 class StrIndexOfNode: public Node {
 798 public:
 799   StrIndexOfNode(Node *control,
 800                  Node* char_array_mem,
 801                  Node* value_mem,
 802                  Node* count_mem,
 803                  Node* offset_mem,
 804                  Node* s1, Node* s2): Node(control,
 805                                            char_array_mem,
 806                                            value_mem,
 807                                            count_mem,
 808                                            offset_mem,
 809                                            s1, s2) {};
 810   virtual int Opcode() const;
 811   virtual bool depends_only_on_test() const { return false; }
 812   virtual const Type* bottom_type() const { return TypeInt::INT; }
 813   // a StrIndexOfNode (conservatively) aliases with everything:
 814   virtual const TypePtr* adr_type() const { return TypePtr::BOTTOM; }
 815   virtual uint match_edge(uint idx) const;
 816   virtual uint ideal_reg() const { return Op_RegI; }
 817   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 818 };
 819 
 820 //------------------------------AryEq---------------------------------------
 821 class AryEqNode: public Node {
 822 public:
 823   AryEqNode(Node *control, Node* s1, Node* s2): Node(control, s1, s2) {};
 824   virtual int Opcode() const;
 825   virtual bool depends_only_on_test() const { return false; }
 826   virtual const Type* bottom_type() const { return TypeInt::BOOL; }
 827   virtual const TypePtr* adr_type() const { return TypeAryPtr::CHARS; }
 828   virtual uint ideal_reg() const { return Op_RegI; }
 829   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 830 };
 831 
 832 //------------------------------MemBar-----------------------------------------
 833 // There are different flavors of Memory Barriers to match the Java Memory
 834 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
 835 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
 836 // volatile-load.  Monitor-exit and volatile-store act as Release: no
 837 // preceding ref can be moved to after them.  We insert a MemBar-Release
 838 // before a FastUnlock or volatile-store.  All volatiles need to be
 839 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
 840 // separate it from any following volatile-load.
 841 class MemBarNode: public MultiNode {
 842   virtual uint hash() const ;                  // { return NO_HASH; }
 843   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
 844 
 845   virtual uint size_of() const { return sizeof(*this); }
 846   // Memory type this node is serializing.  Usually either rawptr or bottom.
 847   const TypePtr* _adr_type;
 848 
 849 public:
 850   enum {
 851     Precedent = TypeFunc::Parms  // optional edge to force precedence
 852   };
 853   MemBarNode(Compile* C, int alias_idx, Node* precedent);
 854   virtual int Opcode() const = 0;
 855   virtual const class TypePtr *adr_type() const { return _adr_type; }
 856   virtual const Type *Value( PhaseTransform *phase ) const;
 857   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 858   virtual uint match_edge(uint idx) const { return 0; }
 859   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
 860   virtual Node *match( const ProjNode *proj, const Matcher *m );
 861   // Factory method.  Builds a wide or narrow membar.
 862   // Optional 'precedent' becomes an extra edge if not null.
 863   static MemBarNode* make(Compile* C, int opcode,
 864                           int alias_idx = Compile::AliasIdxBot,
 865                           Node* precedent = NULL);
 866 };
 867 
 868 // "Acquire" - no following ref can move before (but earlier refs can
 869 // follow, like an early Load stalled in cache).  Requires multi-cpu
 870 // visibility.  Inserted after a volatile load or FastLock.
 871 class MemBarAcquireNode: public MemBarNode {
 872 public:
 873   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
 874     : MemBarNode(C, alias_idx, precedent) {}
 875   virtual int Opcode() const;
 876 };
 877 
 878 // "Release" - no earlier ref can move after (but later refs can move
 879 // up, like a speculative pipelined cache-hitting Load).  Requires
 880 // multi-cpu visibility.  Inserted before a volatile store or FastUnLock.
 881 class MemBarReleaseNode: public MemBarNode {
 882 public:
 883   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
 884     : MemBarNode(C, alias_idx, precedent) {}
 885   virtual int Opcode() const;
 886 };
 887 
 888 // Ordering between a volatile store and a following volatile load.
 889 // Requires multi-CPU visibility?
 890 class MemBarVolatileNode: public MemBarNode {
 891 public:
 892   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
 893     : MemBarNode(C, alias_idx, precedent) {}
 894   virtual int Opcode() const;
 895 };
 896 
 897 // Ordering within the same CPU.  Used to order unsafe memory references
 898 // inside the compiler when we lack alias info.  Not needed "outside" the
 899 // compiler because the CPU does all the ordering for us.
 900 class MemBarCPUOrderNode: public MemBarNode {
 901 public:
 902   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
 903     : MemBarNode(C, alias_idx, precedent) {}
 904   virtual int Opcode() const;
 905   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
 906 };
 907 
 908 // Isolation of object setup after an AllocateNode and before next safepoint.
 909 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
 910 class InitializeNode: public MemBarNode {
 911   friend class AllocateNode;
 912 
 913   bool _is_complete;
 914 
 915 public:
 916   enum {
 917     Control    = TypeFunc::Control,
 918     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
 919     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
 920     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
 921   };
 922 
 923   InitializeNode(Compile* C, int adr_type, Node* rawoop);
 924   virtual int Opcode() const;
 925   virtual uint size_of() const { return sizeof(*this); }
 926   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
 927   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
 928 
 929   // Manage incoming memory edges via a MergeMem on in(Memory):
 930   Node* memory(uint alias_idx);
 931 
 932   // The raw memory edge coming directly from the Allocation.
 933   // The contents of this memory are *always* all-zero-bits.
 934   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
 935 
 936   // Return the corresponding allocation for this initialization (or null if none).
 937   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 938   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 939   AllocateNode* allocation();
 940 
 941   // Anything other than zeroing in this init?
 942   bool is_non_zero();
 943 
 944   // An InitializeNode must completed before macro expansion is done.
 945   // Completion requires that the AllocateNode must be followed by
 946   // initialization of the new memory to zero, then to any initializers.
 947   bool is_complete() { return _is_complete; }
 948 
 949   // Mark complete.  (Must not yet be complete.)
 950   void set_complete(PhaseGVN* phase);
 951 
 952 #ifdef ASSERT
 953   // ensure all non-degenerate stores are ordered and non-overlapping
 954   bool stores_are_sane(PhaseTransform* phase);
 955 #endif //ASSERT
 956 
 957   // See if this store can be captured; return offset where it initializes.
 958   // Return 0 if the store cannot be moved (any sort of problem).
 959   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase);
 960 
 961   // Capture another store; reformat it to write my internal raw memory.
 962   // Return the captured copy, else NULL if there is some sort of problem.
 963   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase);
 964 
 965   // Find captured store which corresponds to the range [start..start+size).
 966   // Return my own memory projection (meaning the initial zero bits)
 967   // if there is no such store.  Return NULL if there is a problem.
 968   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
 969 
 970   // Called when the associated AllocateNode is expanded into CFG.
 971   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
 972                         intptr_t header_size, Node* size_in_bytes,
 973                         PhaseGVN* phase);
 974 
 975  private:
 976   void remove_extra_zeroes();
 977 
 978   // Find out where a captured store should be placed (or already is placed).
 979   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
 980                                      PhaseTransform* phase);
 981 
 982   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
 983 
 984   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
 985 
 986   bool detect_init_independence(Node* n, bool st_is_pinned, int& count);
 987 
 988   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
 989                                PhaseGVN* phase);
 990 
 991   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
 992 };
 993 
 994 //------------------------------MergeMem---------------------------------------
 995 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
 996 class MergeMemNode: public Node {
 997   virtual uint hash() const ;                  // { return NO_HASH; }
 998   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
 999   friend class MergeMemStream;
1000   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1001 
1002 public:
1003   // If the input is a whole memory state, clone it with all its slices intact.
1004   // Otherwise, make a new memory state with just that base memory input.
1005   // In either case, the result is a newly created MergeMem.
1006   static MergeMemNode* make(Compile* C, Node* base_memory);
1007 
1008   virtual int Opcode() const;
1009   virtual Node *Identity( PhaseTransform *phase );
1010   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1011   virtual uint ideal_reg() const { return NotAMachineReg; }
1012   virtual uint match_edge(uint idx) const { return 0; }
1013   virtual const RegMask &out_RegMask() const;
1014   virtual const Type *bottom_type() const { return Type::MEMORY; }
1015   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1016   // sparse accessors
1017   // Fetch the previously stored "set_memory_at", or else the base memory.
1018   // (Caller should clone it if it is a phi-nest.)
1019   Node* memory_at(uint alias_idx) const;
1020   // set the memory, regardless of its previous value
1021   void set_memory_at(uint alias_idx, Node* n);
1022   // the "base" is the memory that provides the non-finite support
1023   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1024   // warning: setting the base can implicitly set any of the other slices too
1025   void set_base_memory(Node* def);
1026   // sentinel value which denotes a copy of the base memory:
1027   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1028   static Node* make_empty_memory(); // where the sentinel comes from
1029   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1030   // hook for the iterator, to perform any necessary setup
1031   void iteration_setup(const MergeMemNode* other = NULL);
1032   // push sentinels until I am at least as long as the other (semantic no-op)
1033   void grow_to_match(const MergeMemNode* other);
1034   bool verify_sparse() const PRODUCT_RETURN0;
1035 #ifndef PRODUCT
1036   virtual void dump_spec(outputStream *st) const;
1037 #endif
1038 };
1039 
1040 class MergeMemStream : public StackObj {
1041  private:
1042   MergeMemNode*       _mm;
1043   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1044   Node*               _mm_base;  // loop-invariant base memory of _mm
1045   int                 _idx;
1046   int                 _cnt;
1047   Node*               _mem;
1048   Node*               _mem2;
1049   int                 _cnt2;
1050 
1051   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1052     // subsume_node will break sparseness at times, whenever a memory slice
1053     // folds down to a copy of the base ("fat") memory.  In such a case,
1054     // the raw edge will update to base, although it should be top.
1055     // This iterator will recognize either top or base_memory as an
1056     // "empty" slice.  See is_empty, is_empty2, and next below.
1057     //
1058     // The sparseness property is repaired in MergeMemNode::Ideal.
1059     // As long as access to a MergeMem goes through this iterator
1060     // or the memory_at accessor, flaws in the sparseness will
1061     // never be observed.
1062     //
1063     // Also, iteration_setup repairs sparseness.
1064     assert(mm->verify_sparse(), "please, no dups of base");
1065     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1066 
1067     _mm  = mm;
1068     _mm_base = mm->base_memory();
1069     _mm2 = mm2;
1070     _cnt = mm->req();
1071     _idx = Compile::AliasIdxBot-1; // start at the base memory
1072     _mem = NULL;
1073     _mem2 = NULL;
1074   }
1075 
1076 #ifdef ASSERT
1077   Node* check_memory() const {
1078     if (at_base_memory())
1079       return _mm->base_memory();
1080     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1081       return _mm->memory_at(_idx);
1082     else
1083       return _mm_base;
1084   }
1085   Node* check_memory2() const {
1086     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1087   }
1088 #endif
1089 
1090   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1091   void assert_synch() const {
1092     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1093            "no side-effects except through the stream");
1094   }
1095 
1096  public:
1097 
1098   // expected usages:
1099   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1100   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1101 
1102   // iterate over one merge
1103   MergeMemStream(MergeMemNode* mm) {
1104     mm->iteration_setup();
1105     init(mm);
1106     debug_only(_cnt2 = 999);
1107   }
1108   // iterate in parallel over two merges
1109   // only iterates through non-empty elements of mm2
1110   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1111     assert(mm2, "second argument must be a MergeMem also");
1112     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1113     mm->iteration_setup(mm2);
1114     init(mm, mm2);
1115     _cnt2 = mm2->req();
1116   }
1117 #ifdef ASSERT
1118   ~MergeMemStream() {
1119     assert_synch();
1120   }
1121 #endif
1122 
1123   MergeMemNode* all_memory() const {
1124     return _mm;
1125   }
1126   Node* base_memory() const {
1127     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1128     return _mm_base;
1129   }
1130   const MergeMemNode* all_memory2() const {
1131     assert(_mm2 != NULL, "");
1132     return _mm2;
1133   }
1134   bool at_base_memory() const {
1135     return _idx == Compile::AliasIdxBot;
1136   }
1137   int alias_idx() const {
1138     assert(_mem, "must call next 1st");
1139     return _idx;
1140   }
1141 
1142   const TypePtr* adr_type() const {
1143     return Compile::current()->get_adr_type(alias_idx());
1144   }
1145 
1146   const TypePtr* adr_type(Compile* C) const {
1147     return C->get_adr_type(alias_idx());
1148   }
1149   bool is_empty() const {
1150     assert(_mem, "must call next 1st");
1151     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1152     return _mem->is_top();
1153   }
1154   bool is_empty2() const {
1155     assert(_mem2, "must call next 1st");
1156     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1157     return _mem2->is_top();
1158   }
1159   Node* memory() const {
1160     assert(!is_empty(), "must not be empty");
1161     assert_synch();
1162     return _mem;
1163   }
1164   // get the current memory, regardless of empty or non-empty status
1165   Node* force_memory() const {
1166     assert(!is_empty() || !at_base_memory(), "");
1167     // Use _mm_base to defend against updates to _mem->base_memory().
1168     Node *mem = _mem->is_top() ? _mm_base : _mem;
1169     assert(mem == check_memory(), "");
1170     return mem;
1171   }
1172   Node* memory2() const {
1173     assert(_mem2 == check_memory2(), "");
1174     return _mem2;
1175   }
1176   void set_memory(Node* mem) {
1177     if (at_base_memory()) {
1178       // Note that this does not change the invariant _mm_base.
1179       _mm->set_base_memory(mem);
1180     } else {
1181       _mm->set_memory_at(_idx, mem);
1182     }
1183     _mem = mem;
1184     assert_synch();
1185   }
1186 
1187   // Recover from a side effect to the MergeMemNode.
1188   void set_memory() {
1189     _mem = _mm->in(_idx);
1190   }
1191 
1192   bool next()  { return next(false); }
1193   bool next2() { return next(true); }
1194 
1195   bool next_non_empty()  { return next_non_empty(false); }
1196   bool next_non_empty2() { return next_non_empty(true); }
1197   // next_non_empty2 can yield states where is_empty() is true
1198 
1199  private:
1200   // find the next item, which might be empty
1201   bool next(bool have_mm2) {
1202     assert((_mm2 != NULL) == have_mm2, "use other next");
1203     assert_synch();
1204     if (++_idx < _cnt) {
1205       // Note:  This iterator allows _mm to be non-sparse.
1206       // It behaves the same whether _mem is top or base_memory.
1207       _mem = _mm->in(_idx);
1208       if (have_mm2)
1209         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1210       return true;
1211     }
1212     return false;
1213   }
1214 
1215   // find the next non-empty item
1216   bool next_non_empty(bool have_mm2) {
1217     while (next(have_mm2)) {
1218       if (!is_empty()) {
1219         // make sure _mem2 is filled in sensibly
1220         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1221         return true;
1222       } else if (have_mm2 && !is_empty2()) {
1223         return true;   // is_empty() == true
1224       }
1225     }
1226     return false;
1227   }
1228 };
1229 
1230 //------------------------------Prefetch---------------------------------------
1231 
1232 // Non-faulting prefetch load.  Prefetch for many reads.
1233 class PrefetchReadNode : public Node {
1234 public:
1235   PrefetchReadNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1236   virtual int Opcode() const;
1237   virtual uint ideal_reg() const { return NotAMachineReg; }
1238   virtual uint match_edge(uint idx) const { return idx==2; }
1239   virtual const Type *bottom_type() const { return Type::ABIO; }
1240 };
1241 
1242 // Non-faulting prefetch load.  Prefetch for many reads & many writes.
1243 class PrefetchWriteNode : public Node {
1244 public:
1245   PrefetchWriteNode(Node *abio, Node *adr) : Node(0,abio,adr) {}
1246   virtual int Opcode() const;
1247   virtual uint ideal_reg() const { return NotAMachineReg; }
1248   virtual uint match_edge(uint idx) const { return idx==2; }
1249   virtual const Type *bottom_type() const { return Type::ABIO; }
1250 };