1 /*
   2  * Copyright 1997-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_compile.cpp.incl"
  27 
  28 /// Support for intrinsics.
  29 
  30 // Return the index at which m must be inserted (or already exists).
  31 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  32 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  33 #ifdef ASSERT
  34   for (int i = 1; i < _intrinsics->length(); i++) {
  35     CallGenerator* cg1 = _intrinsics->at(i-1);
  36     CallGenerator* cg2 = _intrinsics->at(i);
  37     assert(cg1->method() != cg2->method()
  38            ? cg1->method()     < cg2->method()
  39            : cg1->is_virtual() < cg2->is_virtual(),
  40            "compiler intrinsics list must stay sorted");
  41   }
  42 #endif
  43   // Binary search sorted list, in decreasing intervals [lo, hi].
  44   int lo = 0, hi = _intrinsics->length()-1;
  45   while (lo <= hi) {
  46     int mid = (uint)(hi + lo) / 2;
  47     ciMethod* mid_m = _intrinsics->at(mid)->method();
  48     if (m < mid_m) {
  49       hi = mid-1;
  50     } else if (m > mid_m) {
  51       lo = mid+1;
  52     } else {
  53       // look at minor sort key
  54       bool mid_virt = _intrinsics->at(mid)->is_virtual();
  55       if (is_virtual < mid_virt) {
  56         hi = mid-1;
  57       } else if (is_virtual > mid_virt) {
  58         lo = mid+1;
  59       } else {
  60         return mid;  // exact match
  61       }
  62     }
  63   }
  64   return lo;  // inexact match
  65 }
  66 
  67 void Compile::register_intrinsic(CallGenerator* cg) {
  68   if (_intrinsics == NULL) {
  69     _intrinsics = new GrowableArray<CallGenerator*>(60);
  70   }
  71   // This code is stolen from ciObjectFactory::insert.
  72   // Really, GrowableArray should have methods for
  73   // insert_at, remove_at, and binary_search.
  74   int len = _intrinsics->length();
  75   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
  76   if (index == len) {
  77     _intrinsics->append(cg);
  78   } else {
  79 #ifdef ASSERT
  80     CallGenerator* oldcg = _intrinsics->at(index);
  81     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
  82 #endif
  83     _intrinsics->append(_intrinsics->at(len-1));
  84     int pos;
  85     for (pos = len-2; pos >= index; pos--) {
  86       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
  87     }
  88     _intrinsics->at_put(index, cg);
  89   }
  90   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
  91 }
  92 
  93 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
  94   assert(m->is_loaded(), "don't try this on unloaded methods");
  95   if (_intrinsics != NULL) {
  96     int index = intrinsic_insertion_index(m, is_virtual);
  97     if (index < _intrinsics->length()
  98         && _intrinsics->at(index)->method() == m
  99         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 100       return _intrinsics->at(index);
 101     }
 102   }
 103   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 104   if (m->intrinsic_id() != vmIntrinsics::_none &&
 105       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 106     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 107     if (cg != NULL) {
 108       // Save it for next time:
 109       register_intrinsic(cg);
 110       return cg;
 111     } else {
 112       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 113     }
 114   }
 115   return NULL;
 116 }
 117 
 118 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 119 // in library_call.cpp.
 120 
 121 
 122 #ifndef PRODUCT
 123 // statistics gathering...
 124 
 125 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 126 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 127 
 128 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 129   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 130   int oflags = _intrinsic_hist_flags[id];
 131   assert(flags != 0, "what happened?");
 132   if (is_virtual) {
 133     flags |= _intrinsic_virtual;
 134   }
 135   bool changed = (flags != oflags);
 136   if ((flags & _intrinsic_worked) != 0) {
 137     juint count = (_intrinsic_hist_count[id] += 1);
 138     if (count == 1) {
 139       changed = true;           // first time
 140     }
 141     // increment the overall count also:
 142     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 143   }
 144   if (changed) {
 145     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 146       // Something changed about the intrinsic's virtuality.
 147       if ((flags & _intrinsic_virtual) != 0) {
 148         // This is the first use of this intrinsic as a virtual call.
 149         if (oflags != 0) {
 150           // We already saw it as a non-virtual, so note both cases.
 151           flags |= _intrinsic_both;
 152         }
 153       } else if ((oflags & _intrinsic_both) == 0) {
 154         // This is the first use of this intrinsic as a non-virtual
 155         flags |= _intrinsic_both;
 156       }
 157     }
 158     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 159   }
 160   // update the overall flags also:
 161   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 162   return changed;
 163 }
 164 
 165 static char* format_flags(int flags, char* buf) {
 166   buf[0] = 0;
 167   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 168   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 169   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 170   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 171   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 172   if (buf[0] == 0)  strcat(buf, ",");
 173   assert(buf[0] == ',', "must be");
 174   return &buf[1];
 175 }
 176 
 177 void Compile::print_intrinsic_statistics() {
 178   char flagsbuf[100];
 179   ttyLocker ttyl;
 180   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 181   tty->print_cr("Compiler intrinsic usage:");
 182   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 183   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 184   #define PRINT_STAT_LINE(name, c, f) \
 185     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 186   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 187     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 188     int   flags = _intrinsic_hist_flags[id];
 189     juint count = _intrinsic_hist_count[id];
 190     if ((flags | count) != 0) {
 191       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 192     }
 193   }
 194   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 195   if (xtty != NULL)  xtty->tail("statistics");
 196 }
 197 
 198 void Compile::print_statistics() {
 199   { ttyLocker ttyl;
 200     if (xtty != NULL)  xtty->head("statistics type='opto'");
 201     Parse::print_statistics();
 202     PhaseCCP::print_statistics();
 203     PhaseRegAlloc::print_statistics();
 204     Scheduling::print_statistics();
 205     PhasePeephole::print_statistics();
 206     PhaseIdealLoop::print_statistics();
 207     if (xtty != NULL)  xtty->tail("statistics");
 208   }
 209   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 210     // put this under its own <statistics> element.
 211     print_intrinsic_statistics();
 212   }
 213 }
 214 #endif //PRODUCT
 215 
 216 // Support for bundling info
 217 Bundle* Compile::node_bundling(const Node *n) {
 218   assert(valid_bundle_info(n), "oob");
 219   return &_node_bundling_base[n->_idx];
 220 }
 221 
 222 bool Compile::valid_bundle_info(const Node *n) {
 223   return (_node_bundling_limit > n->_idx);
 224 }
 225 
 226 
 227 void Compile::gvn_replace_by(Node* n, Node* nn) {
 228   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 229     Node* use = n->last_out(i);
 230     bool is_in_table = initial_gvn()->hash_delete(use);
 231     uint uses_found = 0;
 232     for (uint j = 0; j < use->len(); j++) {
 233       if (use->in(j) == n) {
 234         if (j < use->req())
 235           use->set_req(j, nn);
 236         else
 237           use->set_prec(j, nn);
 238         uses_found++;
 239       }
 240     }
 241     if (is_in_table) {
 242       // reinsert into table
 243       initial_gvn()->hash_find_insert(use);
 244     }
 245     record_for_igvn(use);
 246     i -= uses_found;    // we deleted 1 or more copies of this edge
 247   }
 248 }
 249 
 250 
 251 
 252 
 253 // Identify all nodes that are reachable from below, useful.
 254 // Use breadth-first pass that records state in a Unique_Node_List,
 255 // recursive traversal is slower.
 256 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 257   int estimated_worklist_size = unique();
 258   useful.map( estimated_worklist_size, NULL );  // preallocate space
 259 
 260   // Initialize worklist
 261   if (root() != NULL)     { useful.push(root()); }
 262   // If 'top' is cached, declare it useful to preserve cached node
 263   if( cached_top_node() ) { useful.push(cached_top_node()); }
 264 
 265   // Push all useful nodes onto the list, breadthfirst
 266   for( uint next = 0; next < useful.size(); ++next ) {
 267     assert( next < unique(), "Unique useful nodes < total nodes");
 268     Node *n  = useful.at(next);
 269     uint max = n->len();
 270     for( uint i = 0; i < max; ++i ) {
 271       Node *m = n->in(i);
 272       if( m == NULL ) continue;
 273       useful.push(m);
 274     }
 275   }
 276 }
 277 
 278 // Disconnect all useless nodes by disconnecting those at the boundary.
 279 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 280   uint next = 0;
 281   while( next < useful.size() ) {
 282     Node *n = useful.at(next++);
 283     // Use raw traversal of out edges since this code removes out edges
 284     int max = n->outcnt();
 285     for (int j = 0; j < max; ++j ) {
 286       Node* child = n->raw_out(j);
 287       if( ! useful.member(child) ) {
 288         assert( !child->is_top() || child != top(),
 289                 "If top is cached in Compile object it is in useful list");
 290         // Only need to remove this out-edge to the useless node
 291         n->raw_del_out(j);
 292         --j;
 293         --max;
 294       }
 295     }
 296     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 297       record_for_igvn( n->unique_out() );
 298     }
 299   }
 300   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 301 }
 302 
 303 //------------------------------frame_size_in_words-----------------------------
 304 // frame_slots in units of words
 305 int Compile::frame_size_in_words() const {
 306   // shift is 0 in LP32 and 1 in LP64
 307   const int shift = (LogBytesPerWord - LogBytesPerInt);
 308   int words = _frame_slots >> shift;
 309   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 310   return words;
 311 }
 312 
 313 // ============================================================================
 314 //------------------------------CompileWrapper---------------------------------
 315 class CompileWrapper : public StackObj {
 316   Compile *const _compile;
 317  public:
 318   CompileWrapper(Compile* compile);
 319 
 320   ~CompileWrapper();
 321 };
 322 
 323 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 324   // the Compile* pointer is stored in the current ciEnv:
 325   ciEnv* env = compile->env();
 326   assert(env == ciEnv::current(), "must already be a ciEnv active");
 327   assert(env->compiler_data() == NULL, "compile already active?");
 328   env->set_compiler_data(compile);
 329   assert(compile == Compile::current(), "sanity");
 330 
 331   compile->set_type_dict(NULL);
 332   compile->set_type_hwm(NULL);
 333   compile->set_type_last_size(0);
 334   compile->set_last_tf(NULL, NULL);
 335   compile->set_indexSet_arena(NULL);
 336   compile->set_indexSet_free_block_list(NULL);
 337   compile->init_type_arena();
 338   Type::Initialize(compile);
 339   _compile->set_scratch_buffer_blob(NULL);
 340   _compile->begin_method();
 341 }
 342 CompileWrapper::~CompileWrapper() {
 343   _compile->end_method();
 344   if (_compile->scratch_buffer_blob() != NULL)
 345     BufferBlob::free(_compile->scratch_buffer_blob());
 346   _compile->env()->set_compiler_data(NULL);
 347 }
 348 
 349 
 350 //----------------------------print_compile_messages---------------------------
 351 void Compile::print_compile_messages() {
 352 #ifndef PRODUCT
 353   // Check if recompiling
 354   if (_subsume_loads == false && PrintOpto) {
 355     // Recompiling without allowing machine instructions to subsume loads
 356     tty->print_cr("*********************************************************");
 357     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 358     tty->print_cr("*********************************************************");
 359   }
 360   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 361     // Recompiling without escape analysis
 362     tty->print_cr("*********************************************************");
 363     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 364     tty->print_cr("*********************************************************");
 365   }
 366   if (env()->break_at_compile()) {
 367     // Open the debugger when compiling this method.
 368     tty->print("### Breaking when compiling: ");
 369     method()->print_short_name();
 370     tty->cr();
 371     BREAKPOINT;
 372   }
 373 
 374   if( PrintOpto ) {
 375     if (is_osr_compilation()) {
 376       tty->print("[OSR]%3d", _compile_id);
 377     } else {
 378       tty->print("%3d", _compile_id);
 379     }
 380   }
 381 #endif
 382 }
 383 
 384 
 385 void Compile::init_scratch_buffer_blob() {
 386   if( scratch_buffer_blob() != NULL )  return;
 387 
 388   // Construct a temporary CodeBuffer to have it construct a BufferBlob
 389   // Cache this BufferBlob for this compile.
 390   ResourceMark rm;
 391   int size = (MAX_inst_size + MAX_stubs_size + MAX_const_size);
 392   BufferBlob* blob = BufferBlob::create("Compile::scratch_buffer", size);
 393   // Record the buffer blob for next time.
 394   set_scratch_buffer_blob(blob);
 395   // Have we run out of code space?
 396   if (scratch_buffer_blob() == NULL) {
 397     // Let CompilerBroker disable further compilations.
 398     record_failure("Not enough space for scratch buffer in CodeCache");
 399     return;
 400   }
 401 
 402   // Initialize the relocation buffers
 403   relocInfo* locs_buf = (relocInfo*) blob->instructions_end() - MAX_locs_size;
 404   set_scratch_locs_memory(locs_buf);
 405 }
 406 
 407 
 408 //-----------------------scratch_emit_size-------------------------------------
 409 // Helper function that computes size by emitting code
 410 uint Compile::scratch_emit_size(const Node* n) {
 411   // Emit into a trash buffer and count bytes emitted.
 412   // This is a pretty expensive way to compute a size,
 413   // but it works well enough if seldom used.
 414   // All common fixed-size instructions are given a size
 415   // method by the AD file.
 416   // Note that the scratch buffer blob and locs memory are
 417   // allocated at the beginning of the compile task, and
 418   // may be shared by several calls to scratch_emit_size.
 419   // The allocation of the scratch buffer blob is particularly
 420   // expensive, since it has to grab the code cache lock.
 421   BufferBlob* blob = this->scratch_buffer_blob();
 422   assert(blob != NULL, "Initialize BufferBlob at start");
 423   assert(blob->size() > MAX_inst_size, "sanity");
 424   relocInfo* locs_buf = scratch_locs_memory();
 425   address blob_begin = blob->instructions_begin();
 426   address blob_end   = (address)locs_buf;
 427   assert(blob->instructions_contains(blob_end), "sanity");
 428   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 429   buf.initialize_consts_size(MAX_const_size);
 430   buf.initialize_stubs_size(MAX_stubs_size);
 431   assert(locs_buf != NULL, "sanity");
 432   int lsize = MAX_locs_size / 2;
 433   buf.insts()->initialize_shared_locs(&locs_buf[0],     lsize);
 434   buf.stubs()->initialize_shared_locs(&locs_buf[lsize], lsize);
 435   n->emit(buf, this->regalloc());
 436   return buf.code_size();
 437 }
 438 
 439 
 440 // ============================================================================
 441 //------------------------------Compile standard-------------------------------
 442 debug_only( int Compile::_debug_idx = 100000; )
 443 
 444 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 445 // the continuation bci for on stack replacement.
 446 
 447 
 448 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
 449                 : Phase(Compiler),
 450                   _env(ci_env),
 451                   _log(ci_env->log()),
 452                   _compile_id(ci_env->compile_id()),
 453                   _save_argument_registers(false),
 454                   _stub_name(NULL),
 455                   _stub_function(NULL),
 456                   _stub_entry_point(NULL),
 457                   _method(target),
 458                   _entry_bci(osr_bci),
 459                   _initial_gvn(NULL),
 460                   _for_igvn(NULL),
 461                   _warm_calls(NULL),
 462                   _subsume_loads(subsume_loads),
 463                   _do_escape_analysis(do_escape_analysis),
 464                   _failure_reason(NULL),
 465                   _code_buffer("Compile::Fill_buffer"),
 466                   _orig_pc_slot(0),
 467                   _orig_pc_slot_offset_in_bytes(0),
 468                   _node_bundling_limit(0),
 469                   _node_bundling_base(NULL),
 470                   _java_calls(0),
 471                   _inner_loops(0),
 472 #ifndef PRODUCT
 473                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 474                   _printer(IdealGraphPrinter::printer()),
 475 #endif
 476                   _congraph(NULL) {
 477   C = this;
 478 
 479   CompileWrapper cw(this);
 480 #ifndef PRODUCT
 481   if (TimeCompiler2) {
 482     tty->print(" ");
 483     target->holder()->name()->print();
 484     tty->print(".");
 485     target->print_short_name();
 486     tty->print("  ");
 487   }
 488   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 489   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 490   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 491   if (!print_opto_assembly) {
 492     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 493     if (print_assembly && !Disassembler::can_decode()) {
 494       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 495       print_opto_assembly = true;
 496     }
 497   }
 498   set_print_assembly(print_opto_assembly);
 499   set_parsed_irreducible_loop(false);
 500 #endif
 501 
 502   if (ProfileTraps) {
 503     // Make sure the method being compiled gets its own MDO,
 504     // so we can at least track the decompile_count().
 505     method()->build_method_data();
 506   }
 507 
 508   Init(::AliasLevel);
 509 
 510 
 511   print_compile_messages();
 512 
 513   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 514     _ilt = InlineTree::build_inline_tree_root();
 515   else
 516     _ilt = NULL;
 517 
 518   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 519   assert(num_alias_types() >= AliasIdxRaw, "");
 520 
 521 #define MINIMUM_NODE_HASH  1023
 522   // Node list that Iterative GVN will start with
 523   Unique_Node_List for_igvn(comp_arena());
 524   set_for_igvn(&for_igvn);
 525 
 526   // GVN that will be run immediately on new nodes
 527   uint estimated_size = method()->code_size()*4+64;
 528   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 529   PhaseGVN gvn(node_arena(), estimated_size);
 530   set_initial_gvn(&gvn);
 531 
 532   { // Scope for timing the parser
 533     TracePhase t3("parse", &_t_parser, true);
 534 
 535     // Put top into the hash table ASAP.
 536     initial_gvn()->transform_no_reclaim(top());
 537 
 538     // Set up tf(), start(), and find a CallGenerator.
 539     CallGenerator* cg;
 540     if (is_osr_compilation()) {
 541       const TypeTuple *domain = StartOSRNode::osr_domain();
 542       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 543       init_tf(TypeFunc::make(domain, range));
 544       StartNode* s = new (this, 2) StartOSRNode(root(), domain);
 545       initial_gvn()->set_type_bottom(s);
 546       init_start(s);
 547       cg = CallGenerator::for_osr(method(), entry_bci());
 548     } else {
 549       // Normal case.
 550       init_tf(TypeFunc::make(method()));
 551       StartNode* s = new (this, 2) StartNode(root(), tf()->domain());
 552       initial_gvn()->set_type_bottom(s);
 553       init_start(s);
 554       float past_uses = method()->interpreter_invocation_count();
 555       float expected_uses = past_uses;
 556       cg = CallGenerator::for_inline(method(), expected_uses);
 557     }
 558     if (failing())  return;
 559     if (cg == NULL) {
 560       record_method_not_compilable_all_tiers("cannot parse method");
 561       return;
 562     }
 563     JVMState* jvms = build_start_state(start(), tf());
 564     if ((jvms = cg->generate(jvms)) == NULL) {
 565       record_method_not_compilable("method parse failed");
 566       return;
 567     }
 568     GraphKit kit(jvms);
 569 
 570     if (!kit.stopped()) {
 571       // Accept return values, and transfer control we know not where.
 572       // This is done by a special, unique ReturnNode bound to root.
 573       return_values(kit.jvms());
 574     }
 575 
 576     if (kit.has_exceptions()) {
 577       // Any exceptions that escape from this call must be rethrown
 578       // to whatever caller is dynamically above us on the stack.
 579       // This is done by a special, unique RethrowNode bound to root.
 580       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 581     }
 582 
 583     if (!failing() && has_stringbuilder()) {
 584       {
 585         // remove useless nodes to make the usage analysis simpler
 586         ResourceMark rm;
 587         PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 588       }
 589 
 590       {
 591         ResourceMark rm;
 592         print_method("Before StringOpts", 3);
 593         PhaseStringOpts pso(initial_gvn(), &for_igvn);
 594         print_method("After StringOpts", 3);
 595       }
 596 
 597       // now inline anything that we skipped the first time around
 598       while (_late_inlines.length() > 0) {
 599         CallGenerator* cg = _late_inlines.pop();
 600         cg->do_late_inline();
 601       }
 602     }
 603     assert(_late_inlines.length() == 0, "should have been processed");
 604 
 605     print_method("Before RemoveUseless", 3);
 606 
 607     // Remove clutter produced by parsing.
 608     if (!failing()) {
 609       ResourceMark rm;
 610       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 611     }
 612   }
 613 
 614   // Note:  Large methods are capped off in do_one_bytecode().
 615   if (failing())  return;
 616 
 617   // After parsing, node notes are no longer automagic.
 618   // They must be propagated by register_new_node_with_optimizer(),
 619   // clone(), or the like.
 620   set_default_node_notes(NULL);
 621 
 622   for (;;) {
 623     int successes = Inline_Warm();
 624     if (failing())  return;
 625     if (successes == 0)  break;
 626   }
 627 
 628   // Drain the list.
 629   Finish_Warm();
 630 #ifndef PRODUCT
 631   if (_printer) {
 632     _printer->print_inlining(this);
 633   }
 634 #endif
 635 
 636   if (failing())  return;
 637   NOT_PRODUCT( verify_graph_edges(); )
 638 
 639   // Perform escape analysis
 640   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
 641     TracePhase t2("escapeAnalysis", &_t_escapeAnalysis, true);
 642     // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction.
 643     PhaseGVN* igvn = initial_gvn();
 644     Node* oop_null = igvn->zerocon(T_OBJECT);
 645     Node* noop_null = igvn->zerocon(T_NARROWOOP);
 646 
 647     _congraph = new(comp_arena()) ConnectionGraph(this);
 648     bool has_non_escaping_obj = _congraph->compute_escape();
 649 
 650 #ifndef PRODUCT
 651     if (PrintEscapeAnalysis) {
 652       _congraph->dump();
 653     }
 654 #endif
 655     // Cleanup.
 656     if (oop_null->outcnt() == 0)
 657       igvn->hash_delete(oop_null);
 658     if (noop_null->outcnt() == 0)
 659       igvn->hash_delete(noop_null);
 660 
 661     if (!has_non_escaping_obj) {
 662       _congraph = NULL;
 663     }
 664 
 665     if (failing())  return;
 666   }
 667   // Now optimize
 668   Optimize();
 669   if (failing())  return;
 670   NOT_PRODUCT( verify_graph_edges(); )
 671 
 672 #ifndef PRODUCT
 673   if (PrintIdeal) {
 674     ttyLocker ttyl;  // keep the following output all in one block
 675     // This output goes directly to the tty, not the compiler log.
 676     // To enable tools to match it up with the compilation activity,
 677     // be sure to tag this tty output with the compile ID.
 678     if (xtty != NULL) {
 679       xtty->head("ideal compile_id='%d'%s", compile_id(),
 680                  is_osr_compilation()    ? " compile_kind='osr'" :
 681                  "");
 682     }
 683     root()->dump(9999);
 684     if (xtty != NULL) {
 685       xtty->tail("ideal");
 686     }
 687   }
 688 #endif
 689 
 690   // Now that we know the size of all the monitors we can add a fixed slot
 691   // for the original deopt pc.
 692 
 693   _orig_pc_slot =  fixed_slots();
 694   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 695   set_fixed_slots(next_slot);
 696 
 697   // Now generate code
 698   Code_Gen();
 699   if (failing())  return;
 700 
 701   // Check if we want to skip execution of all compiled code.
 702   {
 703 #ifndef PRODUCT
 704     if (OptoNoExecute) {
 705       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 706       return;
 707     }
 708     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 709 #endif
 710 
 711     if (is_osr_compilation()) {
 712       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 713       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 714     } else {
 715       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 716       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 717     }
 718 
 719     env()->register_method(_method, _entry_bci,
 720                            &_code_offsets,
 721                            _orig_pc_slot_offset_in_bytes,
 722                            code_buffer(),
 723                            frame_size_in_words(), _oop_map_set,
 724                            &_handler_table, &_inc_table,
 725                            compiler,
 726                            env()->comp_level(),
 727                            true, /*has_debug_info*/
 728                            has_unsafe_access()
 729                            );
 730   }
 731 }
 732 
 733 //------------------------------Compile----------------------------------------
 734 // Compile a runtime stub
 735 Compile::Compile( ciEnv* ci_env,
 736                   TypeFunc_generator generator,
 737                   address stub_function,
 738                   const char *stub_name,
 739                   int is_fancy_jump,
 740                   bool pass_tls,
 741                   bool save_arg_registers,
 742                   bool return_pc )
 743   : Phase(Compiler),
 744     _env(ci_env),
 745     _log(ci_env->log()),
 746     _compile_id(-1),
 747     _save_argument_registers(save_arg_registers),
 748     _method(NULL),
 749     _stub_name(stub_name),
 750     _stub_function(stub_function),
 751     _stub_entry_point(NULL),
 752     _entry_bci(InvocationEntryBci),
 753     _initial_gvn(NULL),
 754     _for_igvn(NULL),
 755     _warm_calls(NULL),
 756     _orig_pc_slot(0),
 757     _orig_pc_slot_offset_in_bytes(0),
 758     _subsume_loads(true),
 759     _do_escape_analysis(false),
 760     _failure_reason(NULL),
 761     _code_buffer("Compile::Fill_buffer"),
 762     _node_bundling_limit(0),
 763     _node_bundling_base(NULL),
 764     _java_calls(0),
 765     _inner_loops(0),
 766 #ifndef PRODUCT
 767     _trace_opto_output(TraceOptoOutput),
 768     _printer(NULL),
 769 #endif
 770     _congraph(NULL) {
 771   C = this;
 772 
 773 #ifndef PRODUCT
 774   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 775   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 776   set_print_assembly(PrintFrameConverterAssembly);
 777   set_parsed_irreducible_loop(false);
 778 #endif
 779   CompileWrapper cw(this);
 780   Init(/*AliasLevel=*/ 0);
 781   init_tf((*generator)());
 782 
 783   {
 784     // The following is a dummy for the sake of GraphKit::gen_stub
 785     Unique_Node_List for_igvn(comp_arena());
 786     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 787     PhaseGVN gvn(Thread::current()->resource_area(),255);
 788     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 789     gvn.transform_no_reclaim(top());
 790 
 791     GraphKit kit;
 792     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 793   }
 794 
 795   NOT_PRODUCT( verify_graph_edges(); )
 796   Code_Gen();
 797   if (failing())  return;
 798 
 799 
 800   // Entry point will be accessed using compile->stub_entry_point();
 801   if (code_buffer() == NULL) {
 802     Matcher::soft_match_failure();
 803   } else {
 804     if (PrintAssembly && (WizardMode || Verbose))
 805       tty->print_cr("### Stub::%s", stub_name);
 806 
 807     if (!failing()) {
 808       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 809 
 810       // Make the NMethod
 811       // For now we mark the frame as never safe for profile stackwalking
 812       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 813                                                       code_buffer(),
 814                                                       CodeOffsets::frame_never_safe,
 815                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 816                                                       frame_size_in_words(),
 817                                                       _oop_map_set,
 818                                                       save_arg_registers);
 819       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 820 
 821       _stub_entry_point = rs->entry_point();
 822     }
 823   }
 824 }
 825 
 826 #ifndef PRODUCT
 827 void print_opto_verbose_signature( const TypeFunc *j_sig, const char *stub_name ) {
 828   if(PrintOpto && Verbose) {
 829     tty->print("%s   ", stub_name); j_sig->print_flattened(); tty->cr();
 830   }
 831 }
 832 #endif
 833 
 834 void Compile::print_codes() {
 835 }
 836 
 837 //------------------------------Init-------------------------------------------
 838 // Prepare for a single compilation
 839 void Compile::Init(int aliaslevel) {
 840   _unique  = 0;
 841   _regalloc = NULL;
 842 
 843   _tf      = NULL;  // filled in later
 844   _top     = NULL;  // cached later
 845   _matcher = NULL;  // filled in later
 846   _cfg     = NULL;  // filled in later
 847 
 848   set_24_bit_selection_and_mode(Use24BitFP, false);
 849 
 850   _node_note_array = NULL;
 851   _default_node_notes = NULL;
 852 
 853   _immutable_memory = NULL; // filled in at first inquiry
 854 
 855   // Globally visible Nodes
 856   // First set TOP to NULL to give safe behavior during creation of RootNode
 857   set_cached_top_node(NULL);
 858   set_root(new (this, 3) RootNode());
 859   // Now that you have a Root to point to, create the real TOP
 860   set_cached_top_node( new (this, 1) ConNode(Type::TOP) );
 861   set_recent_alloc(NULL, NULL);
 862 
 863   // Create Debug Information Recorder to record scopes, oopmaps, etc.
 864   env()->set_oop_recorder(new OopRecorder(comp_arena()));
 865   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
 866   env()->set_dependencies(new Dependencies(env()));
 867 
 868   _fixed_slots = 0;
 869   set_has_split_ifs(false);
 870   set_has_loops(has_method() && method()->has_loops()); // first approximation
 871   set_has_stringbuilder(false);
 872   _deopt_happens = true;  // start out assuming the worst
 873   _trap_can_recompile = false;  // no traps emitted yet
 874   _major_progress = true; // start out assuming good things will happen
 875   set_has_unsafe_access(false);
 876   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
 877   set_decompile_count(0);
 878 
 879   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
 880   // Compilation level related initialization
 881   if (env()->comp_level() == CompLevel_fast_compile) {
 882     set_num_loop_opts(Tier1LoopOptsCount);
 883     set_do_inlining(Tier1Inline != 0);
 884     set_max_inline_size(Tier1MaxInlineSize);
 885     set_freq_inline_size(Tier1FreqInlineSize);
 886     set_do_scheduling(false);
 887     set_do_count_invocations(Tier1CountInvocations);
 888     set_do_method_data_update(Tier1UpdateMethodData);
 889   } else {
 890     assert(env()->comp_level() == CompLevel_full_optimization, "unknown comp level");
 891     set_num_loop_opts(LoopOptsCount);
 892     set_do_inlining(Inline);
 893     set_max_inline_size(MaxInlineSize);
 894     set_freq_inline_size(FreqInlineSize);
 895     set_do_scheduling(OptoScheduling);
 896     set_do_count_invocations(false);
 897     set_do_method_data_update(false);
 898   }
 899 
 900   if (debug_info()->recording_non_safepoints()) {
 901     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
 902                         (comp_arena(), 8, 0, NULL));
 903     set_default_node_notes(Node_Notes::make(this));
 904   }
 905 
 906   // // -- Initialize types before each compile --
 907   // // Update cached type information
 908   // if( _method && _method->constants() )
 909   //   Type::update_loaded_types(_method, _method->constants());
 910 
 911   // Init alias_type map.
 912   if (!_do_escape_analysis && aliaslevel == 3)
 913     aliaslevel = 2;  // No unique types without escape analysis
 914   _AliasLevel = aliaslevel;
 915   const int grow_ats = 16;
 916   _max_alias_types = grow_ats;
 917   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
 918   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
 919   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
 920   {
 921     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
 922   }
 923   // Initialize the first few types.
 924   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
 925   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
 926   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
 927   _num_alias_types = AliasIdxRaw+1;
 928   // Zero out the alias type cache.
 929   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
 930   // A NULL adr_type hits in the cache right away.  Preload the right answer.
 931   probe_alias_cache(NULL)->_index = AliasIdxTop;
 932 
 933   _intrinsics = NULL;
 934   _macro_nodes = new GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
 935   _predicate_opaqs = new GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
 936   register_library_intrinsics();
 937 }
 938 
 939 //---------------------------init_start----------------------------------------
 940 // Install the StartNode on this compile object.
 941 void Compile::init_start(StartNode* s) {
 942   if (failing())
 943     return; // already failing
 944   assert(s == start(), "");
 945 }
 946 
 947 StartNode* Compile::start() const {
 948   assert(!failing(), "");
 949   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
 950     Node* start = root()->fast_out(i);
 951     if( start->is_Start() )
 952       return start->as_Start();
 953   }
 954   ShouldNotReachHere();
 955   return NULL;
 956 }
 957 
 958 //-------------------------------immutable_memory-------------------------------------
 959 // Access immutable memory
 960 Node* Compile::immutable_memory() {
 961   if (_immutable_memory != NULL) {
 962     return _immutable_memory;
 963   }
 964   StartNode* s = start();
 965   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
 966     Node *p = s->fast_out(i);
 967     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
 968       _immutable_memory = p;
 969       return _immutable_memory;
 970     }
 971   }
 972   ShouldNotReachHere();
 973   return NULL;
 974 }
 975 
 976 //----------------------set_cached_top_node------------------------------------
 977 // Install the cached top node, and make sure Node::is_top works correctly.
 978 void Compile::set_cached_top_node(Node* tn) {
 979   if (tn != NULL)  verify_top(tn);
 980   Node* old_top = _top;
 981   _top = tn;
 982   // Calling Node::setup_is_top allows the nodes the chance to adjust
 983   // their _out arrays.
 984   if (_top != NULL)     _top->setup_is_top();
 985   if (old_top != NULL)  old_top->setup_is_top();
 986   assert(_top == NULL || top()->is_top(), "");
 987 }
 988 
 989 #ifndef PRODUCT
 990 void Compile::verify_top(Node* tn) const {
 991   if (tn != NULL) {
 992     assert(tn->is_Con(), "top node must be a constant");
 993     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
 994     assert(tn->in(0) != NULL, "must have live top node");
 995   }
 996 }
 997 #endif
 998 
 999 
1000 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1001 
1002 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1003   guarantee(arr != NULL, "");
1004   int num_blocks = arr->length();
1005   if (grow_by < num_blocks)  grow_by = num_blocks;
1006   int num_notes = grow_by * _node_notes_block_size;
1007   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1008   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1009   while (num_notes > 0) {
1010     arr->append(notes);
1011     notes     += _node_notes_block_size;
1012     num_notes -= _node_notes_block_size;
1013   }
1014   assert(num_notes == 0, "exact multiple, please");
1015 }
1016 
1017 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1018   if (source == NULL || dest == NULL)  return false;
1019 
1020   if (dest->is_Con())
1021     return false;               // Do not push debug info onto constants.
1022 
1023 #ifdef ASSERT
1024   // Leave a bread crumb trail pointing to the original node:
1025   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1026     dest->set_debug_orig(source);
1027   }
1028 #endif
1029 
1030   if (node_note_array() == NULL)
1031     return false;               // Not collecting any notes now.
1032 
1033   // This is a copy onto a pre-existing node, which may already have notes.
1034   // If both nodes have notes, do not overwrite any pre-existing notes.
1035   Node_Notes* source_notes = node_notes_at(source->_idx);
1036   if (source_notes == NULL || source_notes->is_clear())  return false;
1037   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1038   if (dest_notes == NULL || dest_notes->is_clear()) {
1039     return set_node_notes_at(dest->_idx, source_notes);
1040   }
1041 
1042   Node_Notes merged_notes = (*source_notes);
1043   // The order of operations here ensures that dest notes will win...
1044   merged_notes.update_from(dest_notes);
1045   return set_node_notes_at(dest->_idx, &merged_notes);
1046 }
1047 
1048 
1049 //--------------------------allow_range_check_smearing-------------------------
1050 // Gating condition for coalescing similar range checks.
1051 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1052 // single covering check that is at least as strong as any of them.
1053 // If the optimization succeeds, the simplified (strengthened) range check
1054 // will always succeed.  If it fails, we will deopt, and then give up
1055 // on the optimization.
1056 bool Compile::allow_range_check_smearing() const {
1057   // If this method has already thrown a range-check,
1058   // assume it was because we already tried range smearing
1059   // and it failed.
1060   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1061   return !already_trapped;
1062 }
1063 
1064 
1065 //------------------------------flatten_alias_type-----------------------------
1066 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1067   int offset = tj->offset();
1068   TypePtr::PTR ptr = tj->ptr();
1069 
1070   // Known instance (scalarizable allocation) alias only with itself.
1071   bool is_known_inst = tj->isa_oopptr() != NULL &&
1072                        tj->is_oopptr()->is_known_instance();
1073 
1074   // Process weird unsafe references.
1075   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1076     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1077     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1078     tj = TypeOopPtr::BOTTOM;
1079     ptr = tj->ptr();
1080     offset = tj->offset();
1081   }
1082 
1083   // Array pointers need some flattening
1084   const TypeAryPtr *ta = tj->isa_aryptr();
1085   if( ta && is_known_inst ) {
1086     if ( offset != Type::OffsetBot &&
1087          offset > arrayOopDesc::length_offset_in_bytes() ) {
1088       offset = Type::OffsetBot; // Flatten constant access into array body only
1089       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1090     }
1091   } else if( ta && _AliasLevel >= 2 ) {
1092     // For arrays indexed by constant indices, we flatten the alias
1093     // space to include all of the array body.  Only the header, klass
1094     // and array length can be accessed un-aliased.
1095     if( offset != Type::OffsetBot ) {
1096       if( ta->const_oop() ) { // methodDataOop or methodOop
1097         offset = Type::OffsetBot;   // Flatten constant access into array body
1098         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1099       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1100         // range is OK as-is.
1101         tj = ta = TypeAryPtr::RANGE;
1102       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1103         tj = TypeInstPtr::KLASS; // all klass loads look alike
1104         ta = TypeAryPtr::RANGE; // generic ignored junk
1105         ptr = TypePtr::BotPTR;
1106       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1107         tj = TypeInstPtr::MARK;
1108         ta = TypeAryPtr::RANGE; // generic ignored junk
1109         ptr = TypePtr::BotPTR;
1110       } else {                  // Random constant offset into array body
1111         offset = Type::OffsetBot;   // Flatten constant access into array body
1112         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1113       }
1114     }
1115     // Arrays of fixed size alias with arrays of unknown size.
1116     if (ta->size() != TypeInt::POS) {
1117       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1118       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1119     }
1120     // Arrays of known objects become arrays of unknown objects.
1121     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1122       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1123       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1124     }
1125     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1126       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1127       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1128     }
1129     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1130     // cannot be distinguished by bytecode alone.
1131     if (ta->elem() == TypeInt::BOOL) {
1132       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1133       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1134       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1135     }
1136     // During the 2nd round of IterGVN, NotNull castings are removed.
1137     // Make sure the Bottom and NotNull variants alias the same.
1138     // Also, make sure exact and non-exact variants alias the same.
1139     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1140       if (ta->const_oop()) {
1141         tj = ta = TypeAryPtr::make(TypePtr::Constant,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1142       } else {
1143         tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1144       }
1145     }
1146   }
1147 
1148   // Oop pointers need some flattening
1149   const TypeInstPtr *to = tj->isa_instptr();
1150   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1151     if( ptr == TypePtr::Constant ) {
1152       // No constant oop pointers (such as Strings); they alias with
1153       // unknown strings.
1154       assert(!is_known_inst, "not scalarizable allocation");
1155       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1156     } else if( is_known_inst ) {
1157       tj = to; // Keep NotNull and klass_is_exact for instance type
1158     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1159       // During the 2nd round of IterGVN, NotNull castings are removed.
1160       // Make sure the Bottom and NotNull variants alias the same.
1161       // Also, make sure exact and non-exact variants alias the same.
1162       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1163     }
1164     // Canonicalize the holder of this field
1165     ciInstanceKlass *k = to->klass()->as_instance_klass();
1166     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1167       // First handle header references such as a LoadKlassNode, even if the
1168       // object's klass is unloaded at compile time (4965979).
1169       if (!is_known_inst) { // Do it only for non-instance types
1170         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1171       }
1172     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1173       to = NULL;
1174       tj = TypeOopPtr::BOTTOM;
1175       offset = tj->offset();
1176     } else {
1177       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1178       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1179         if( is_known_inst ) {
1180           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1181         } else {
1182           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1183         }
1184       }
1185     }
1186   }
1187 
1188   // Klass pointers to object array klasses need some flattening
1189   const TypeKlassPtr *tk = tj->isa_klassptr();
1190   if( tk ) {
1191     // If we are referencing a field within a Klass, we need
1192     // to assume the worst case of an Object.  Both exact and
1193     // inexact types must flatten to the same alias class.
1194     // Since the flattened result for a klass is defined to be
1195     // precisely java.lang.Object, use a constant ptr.
1196     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1197 
1198       tj = tk = TypeKlassPtr::make(TypePtr::Constant,
1199                                    TypeKlassPtr::OBJECT->klass(),
1200                                    offset);
1201     }
1202 
1203     ciKlass* klass = tk->klass();
1204     if( klass->is_obj_array_klass() ) {
1205       ciKlass* k = TypeAryPtr::OOPS->klass();
1206       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1207         k = TypeInstPtr::BOTTOM->klass();
1208       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1209     }
1210 
1211     // Check for precise loads from the primary supertype array and force them
1212     // to the supertype cache alias index.  Check for generic array loads from
1213     // the primary supertype array and also force them to the supertype cache
1214     // alias index.  Since the same load can reach both, we need to merge
1215     // these 2 disparate memories into the same alias class.  Since the
1216     // primary supertype array is read-only, there's no chance of confusion
1217     // where we bypass an array load and an array store.
1218     uint off2 = offset - Klass::primary_supers_offset_in_bytes();
1219     if( offset == Type::OffsetBot ||
1220         off2 < Klass::primary_super_limit()*wordSize ) {
1221       offset = sizeof(oopDesc) +Klass::secondary_super_cache_offset_in_bytes();
1222       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1223     }
1224   }
1225 
1226   // Flatten all Raw pointers together.
1227   if (tj->base() == Type::RawPtr)
1228     tj = TypeRawPtr::BOTTOM;
1229 
1230   if (tj->base() == Type::AnyPtr)
1231     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1232 
1233   // Flatten all to bottom for now
1234   switch( _AliasLevel ) {
1235   case 0:
1236     tj = TypePtr::BOTTOM;
1237     break;
1238   case 1:                       // Flatten to: oop, static, field or array
1239     switch (tj->base()) {
1240     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1241     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1242     case Type::AryPtr:   // do not distinguish arrays at all
1243     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1244     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1245     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1246     default: ShouldNotReachHere();
1247     }
1248     break;
1249   case 2:                       // No collapsing at level 2; keep all splits
1250   case 3:                       // No collapsing at level 3; keep all splits
1251     break;
1252   default:
1253     Unimplemented();
1254   }
1255 
1256   offset = tj->offset();
1257   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1258 
1259   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1260           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1261           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1262           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1263           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1264           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1265           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1266           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1267   assert( tj->ptr() != TypePtr::TopPTR &&
1268           tj->ptr() != TypePtr::AnyNull &&
1269           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1270 //    assert( tj->ptr() != TypePtr::Constant ||
1271 //            tj->base() == Type::RawPtr ||
1272 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1273 
1274   return tj;
1275 }
1276 
1277 void Compile::AliasType::Init(int i, const TypePtr* at) {
1278   _index = i;
1279   _adr_type = at;
1280   _field = NULL;
1281   _is_rewritable = true; // default
1282   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1283   if (atoop != NULL && atoop->is_known_instance()) {
1284     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1285     _general_index = Compile::current()->get_alias_index(gt);
1286   } else {
1287     _general_index = 0;
1288   }
1289 }
1290 
1291 //---------------------------------print_on------------------------------------
1292 #ifndef PRODUCT
1293 void Compile::AliasType::print_on(outputStream* st) {
1294   if (index() < 10)
1295         st->print("@ <%d> ", index());
1296   else  st->print("@ <%d>",  index());
1297   st->print(is_rewritable() ? "   " : " RO");
1298   int offset = adr_type()->offset();
1299   if (offset == Type::OffsetBot)
1300         st->print(" +any");
1301   else  st->print(" +%-3d", offset);
1302   st->print(" in ");
1303   adr_type()->dump_on(st);
1304   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1305   if (field() != NULL && tjp) {
1306     if (tjp->klass()  != field()->holder() ||
1307         tjp->offset() != field()->offset_in_bytes()) {
1308       st->print(" != ");
1309       field()->print();
1310       st->print(" ***");
1311     }
1312   }
1313 }
1314 
1315 void print_alias_types() {
1316   Compile* C = Compile::current();
1317   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1318   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1319     C->alias_type(idx)->print_on(tty);
1320     tty->cr();
1321   }
1322 }
1323 #endif
1324 
1325 
1326 //----------------------------probe_alias_cache--------------------------------
1327 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1328   intptr_t key = (intptr_t) adr_type;
1329   key ^= key >> logAliasCacheSize;
1330   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1331 }
1332 
1333 
1334 //-----------------------------grow_alias_types--------------------------------
1335 void Compile::grow_alias_types() {
1336   const int old_ats  = _max_alias_types; // how many before?
1337   const int new_ats  = old_ats;          // how many more?
1338   const int grow_ats = old_ats+new_ats;  // how many now?
1339   _max_alias_types = grow_ats;
1340   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1341   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1342   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1343   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1344 }
1345 
1346 
1347 //--------------------------------find_alias_type------------------------------
1348 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create) {
1349   if (_AliasLevel == 0)
1350     return alias_type(AliasIdxBot);
1351 
1352   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1353   if (ace->_adr_type == adr_type) {
1354     return alias_type(ace->_index);
1355   }
1356 
1357   // Handle special cases.
1358   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1359   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1360 
1361   // Do it the slow way.
1362   const TypePtr* flat = flatten_alias_type(adr_type);
1363 
1364 #ifdef ASSERT
1365   assert(flat == flatten_alias_type(flat), "idempotent");
1366   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1367   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1368     const TypeOopPtr* foop = flat->is_oopptr();
1369     // Scalarizable allocations have exact klass always.
1370     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1371     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1372     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1373   }
1374   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1375 #endif
1376 
1377   int idx = AliasIdxTop;
1378   for (int i = 0; i < num_alias_types(); i++) {
1379     if (alias_type(i)->adr_type() == flat) {
1380       idx = i;
1381       break;
1382     }
1383   }
1384 
1385   if (idx == AliasIdxTop) {
1386     if (no_create)  return NULL;
1387     // Grow the array if necessary.
1388     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1389     // Add a new alias type.
1390     idx = _num_alias_types++;
1391     _alias_types[idx]->Init(idx, flat);
1392     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1393     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1394     if (flat->isa_instptr()) {
1395       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1396           && flat->is_instptr()->klass() == env()->Class_klass())
1397         alias_type(idx)->set_rewritable(false);
1398     }
1399     if (flat->isa_klassptr()) {
1400       if (flat->offset() == Klass::super_check_offset_offset_in_bytes() + (int)sizeof(oopDesc))
1401         alias_type(idx)->set_rewritable(false);
1402       if (flat->offset() == Klass::modifier_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1403         alias_type(idx)->set_rewritable(false);
1404       if (flat->offset() == Klass::access_flags_offset_in_bytes() + (int)sizeof(oopDesc))
1405         alias_type(idx)->set_rewritable(false);
1406       if (flat->offset() == Klass::java_mirror_offset_in_bytes() + (int)sizeof(oopDesc))
1407         alias_type(idx)->set_rewritable(false);
1408     }
1409     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1410     // but the base pointer type is not distinctive enough to identify
1411     // references into JavaThread.)
1412 
1413     // Check for final instance fields.
1414     const TypeInstPtr* tinst = flat->isa_instptr();
1415     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1416       ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1417       ciField* field = k->get_field_by_offset(tinst->offset(), false);
1418       // Set field() and is_rewritable() attributes.
1419       if (field != NULL)  alias_type(idx)->set_field(field);
1420     }
1421     const TypeKlassPtr* tklass = flat->isa_klassptr();
1422     // Check for final static fields.
1423     if (tklass && tklass->klass()->is_instance_klass()) {
1424       ciInstanceKlass *k = tklass->klass()->as_instance_klass();
1425       ciField* field = k->get_field_by_offset(tklass->offset(), true);
1426       // Set field() and is_rewritable() attributes.
1427       if (field != NULL)   alias_type(idx)->set_field(field);
1428     }
1429   }
1430 
1431   // Fill the cache for next time.
1432   ace->_adr_type = adr_type;
1433   ace->_index    = idx;
1434   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1435 
1436   // Might as well try to fill the cache for the flattened version, too.
1437   AliasCacheEntry* face = probe_alias_cache(flat);
1438   if (face->_adr_type == NULL) {
1439     face->_adr_type = flat;
1440     face->_index    = idx;
1441     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1442   }
1443 
1444   return alias_type(idx);
1445 }
1446 
1447 
1448 Compile::AliasType* Compile::alias_type(ciField* field) {
1449   const TypeOopPtr* t;
1450   if (field->is_static())
1451     t = TypeKlassPtr::make(field->holder());
1452   else
1453     t = TypeOopPtr::make_from_klass_raw(field->holder());
1454   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()));
1455   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1456   return atp;
1457 }
1458 
1459 
1460 //------------------------------have_alias_type--------------------------------
1461 bool Compile::have_alias_type(const TypePtr* adr_type) {
1462   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1463   if (ace->_adr_type == adr_type) {
1464     return true;
1465   }
1466 
1467   // Handle special cases.
1468   if (adr_type == NULL)             return true;
1469   if (adr_type == TypePtr::BOTTOM)  return true;
1470 
1471   return find_alias_type(adr_type, true) != NULL;
1472 }
1473 
1474 //-----------------------------must_alias--------------------------------------
1475 // True if all values of the given address type are in the given alias category.
1476 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1477   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1478   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1479   if (alias_idx == AliasIdxTop)         return false; // the empty category
1480   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1481 
1482   // the only remaining possible overlap is identity
1483   int adr_idx = get_alias_index(adr_type);
1484   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1485   assert(adr_idx == alias_idx ||
1486          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1487           && adr_type                       != TypeOopPtr::BOTTOM),
1488          "should not be testing for overlap with an unsafe pointer");
1489   return adr_idx == alias_idx;
1490 }
1491 
1492 //------------------------------can_alias--------------------------------------
1493 // True if any values of the given address type are in the given alias category.
1494 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1495   if (alias_idx == AliasIdxTop)         return false; // the empty category
1496   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1497   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1498   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1499 
1500   // the only remaining possible overlap is identity
1501   int adr_idx = get_alias_index(adr_type);
1502   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1503   return adr_idx == alias_idx;
1504 }
1505 
1506 
1507 
1508 //---------------------------pop_warm_call-------------------------------------
1509 WarmCallInfo* Compile::pop_warm_call() {
1510   WarmCallInfo* wci = _warm_calls;
1511   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1512   return wci;
1513 }
1514 
1515 //----------------------------Inline_Warm--------------------------------------
1516 int Compile::Inline_Warm() {
1517   // If there is room, try to inline some more warm call sites.
1518   // %%% Do a graph index compaction pass when we think we're out of space?
1519   if (!InlineWarmCalls)  return 0;
1520 
1521   int calls_made_hot = 0;
1522   int room_to_grow   = NodeCountInliningCutoff - unique();
1523   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1524   int amount_grown   = 0;
1525   WarmCallInfo* call;
1526   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1527     int est_size = (int)call->size();
1528     if (est_size > (room_to_grow - amount_grown)) {
1529       // This one won't fit anyway.  Get rid of it.
1530       call->make_cold();
1531       continue;
1532     }
1533     call->make_hot();
1534     calls_made_hot++;
1535     amount_grown   += est_size;
1536     amount_to_grow -= est_size;
1537   }
1538 
1539   if (calls_made_hot > 0)  set_major_progress();
1540   return calls_made_hot;
1541 }
1542 
1543 
1544 //----------------------------Finish_Warm--------------------------------------
1545 void Compile::Finish_Warm() {
1546   if (!InlineWarmCalls)  return;
1547   if (failing())  return;
1548   if (warm_calls() == NULL)  return;
1549 
1550   // Clean up loose ends, if we are out of space for inlining.
1551   WarmCallInfo* call;
1552   while ((call = pop_warm_call()) != NULL) {
1553     call->make_cold();
1554   }
1555 }
1556 
1557 //---------------------cleanup_loop_predicates-----------------------
1558 // Remove the opaque nodes that protect the predicates so that all unused
1559 // checks and uncommon_traps will be eliminated from the ideal graph 
1560 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1561   if (predicate_count()==0 ) return;
1562   for (int i = predicate_count(); i > 0; i--) {
1563     Node * n = predicate_opaque1_node(i-1);
1564     assert(n->Opcode() == Op_Opaque1, "must be");
1565     igvn.replace_node(n, n->in(1));
1566   }
1567   assert(predicate_count()==0, "should be clean!");
1568   igvn.optimize();
1569 }
1570 
1571 //------------------------------Optimize---------------------------------------
1572 // Given a graph, optimize it.
1573 void Compile::Optimize() {
1574   TracePhase t1("optimizer", &_t_optimizer, true);
1575 
1576 #ifndef PRODUCT
1577   if (env()->break_at_compile()) {
1578     BREAKPOINT;
1579   }
1580 
1581 #endif
1582 
1583   ResourceMark rm;
1584   int          loop_opts_cnt;
1585 
1586   NOT_PRODUCT( verify_graph_edges(); )
1587 
1588   print_method("After Parsing");
1589 
1590  {
1591   // Iterative Global Value Numbering, including ideal transforms
1592   // Initialize IterGVN with types and values from parse-time GVN
1593   PhaseIterGVN igvn(initial_gvn());
1594   {
1595     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1596     igvn.optimize();
1597   }
1598 
1599   print_method("Iter GVN 1", 2);
1600 
1601   if (failing())  return;
1602 
1603   // Loop transforms on the ideal graph.  Range Check Elimination,
1604   // peeling, unrolling, etc.
1605   
1606   // Set loop opts counter
1607   loop_opts_cnt = num_loop_opts();
1608   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1609     {
1610       TracePhase t2("idealLoop", &_t_idealLoop, true);
1611       PhaseIdealLoop ideal_loop( igvn, true, UseLoopPredicate);
1612       loop_opts_cnt--;
1613       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1614       if (failing())  return;
1615     }
1616     // Loop opts pass if partial peeling occurred in previous pass
1617     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1618       TracePhase t3("idealLoop", &_t_idealLoop, true);
1619       PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
1620       loop_opts_cnt--;
1621       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1622       if (failing())  return;
1623     }
1624     // Loop opts pass for loop-unrolling before CCP
1625     if(major_progress() && (loop_opts_cnt > 0)) {
1626       TracePhase t4("idealLoop", &_t_idealLoop, true);
1627       PhaseIdealLoop ideal_loop( igvn, false, UseLoopPredicate);
1628       loop_opts_cnt--;
1629       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1630     }
1631     if (!failing()) {
1632       // Verify that last round of loop opts produced a valid graph
1633       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1634       PhaseIdealLoop::verify(igvn);
1635     }
1636   }
1637   if (failing())  return;
1638 
1639   // Conditional Constant Propagation;
1640   PhaseCCP ccp( &igvn );
1641   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1642   {
1643     TracePhase t2("ccp", &_t_ccp, true);
1644     ccp.do_transform();
1645   }
1646   print_method("PhaseCPP 1", 2);
1647 
1648   assert( true, "Break here to ccp.dump_old2new_map()");
1649 
1650   // Iterative Global Value Numbering, including ideal transforms
1651   {
1652     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1653     igvn = ccp;
1654     igvn.optimize();
1655   }
1656 
1657   print_method("Iter GVN 2", 2);
1658 
1659   if (failing())  return;
1660 
1661   // Loop transforms on the ideal graph.  Range Check Elimination,
1662   // peeling, unrolling, etc.
1663   if(loop_opts_cnt > 0) {
1664     debug_only( int cnt = 0; );
1665     bool loop_predication = UseLoopPredicate;
1666     while(major_progress() && (loop_opts_cnt > 0)) {
1667       TracePhase t2("idealLoop", &_t_idealLoop, true);
1668       assert( cnt++ < 40, "infinite cycle in loop optimization" );
1669       PhaseIdealLoop ideal_loop( igvn, true, loop_predication);
1670       loop_opts_cnt--;
1671       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1672       if (failing())  return;
1673       // Perform loop predication optimization during first iteration after CCP.
1674       // After that switch it off and cleanup unused loop predicates.
1675       if (loop_predication) {
1676         loop_predication = false;
1677         cleanup_loop_predicates(igvn);
1678         if (failing())  return;
1679       } 
1680     }
1681   }
1682 
1683   {
1684     // Verify that all previous optimizations produced a valid graph
1685     // at least to this point, even if no loop optimizations were done.
1686     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1687     PhaseIdealLoop::verify(igvn);
1688   }
1689 
1690   {
1691     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1692     PhaseMacroExpand  mex(igvn);
1693     if (mex.expand_macro_nodes()) {
1694       assert(failing(), "must bail out w/ explicit message");
1695       return;
1696     }
1697   }
1698 
1699  } // (End scope of igvn; run destructor if necessary for asserts.)
1700 
1701   // A method with only infinite loops has no edges entering loops from root
1702   {
1703     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1704     if (final_graph_reshaping()) {
1705       assert(failing(), "must bail out w/ explicit message");
1706       return;
1707     }
1708   }
1709 
1710   print_method("Optimize finished", 2);
1711 }
1712 
1713 
1714 //------------------------------Code_Gen---------------------------------------
1715 // Given a graph, generate code for it
1716 void Compile::Code_Gen() {
1717   if (failing())  return;
1718 
1719   // Perform instruction selection.  You might think we could reclaim Matcher
1720   // memory PDQ, but actually the Matcher is used in generating spill code.
1721   // Internals of the Matcher (including some VectorSets) must remain live
1722   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1723   // set a bit in reclaimed memory.
1724 
1725   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1726   // nodes.  Mapping is only valid at the root of each matched subtree.
1727   NOT_PRODUCT( verify_graph_edges(); )
1728 
1729   Node_List proj_list;
1730   Matcher m(proj_list);
1731   _matcher = &m;
1732   {
1733     TracePhase t2("matcher", &_t_matcher, true);
1734     m.match();
1735   }
1736   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1737   // nodes.  Mapping is only valid at the root of each matched subtree.
1738   NOT_PRODUCT( verify_graph_edges(); )
1739 
1740   // If you have too many nodes, or if matching has failed, bail out
1741   check_node_count(0, "out of nodes matching instructions");
1742   if (failing())  return;
1743 
1744   // Build a proper-looking CFG
1745   PhaseCFG cfg(node_arena(), root(), m);
1746   _cfg = &cfg;
1747   {
1748     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1749     cfg.Dominators();
1750     if (failing())  return;
1751 
1752     NOT_PRODUCT( verify_graph_edges(); )
1753 
1754     cfg.Estimate_Block_Frequency();
1755     cfg.GlobalCodeMotion(m,unique(),proj_list);
1756 
1757     print_method("Global code motion", 2);
1758 
1759     if (failing())  return;
1760     NOT_PRODUCT( verify_graph_edges(); )
1761 
1762     debug_only( cfg.verify(); )
1763   }
1764   NOT_PRODUCT( verify_graph_edges(); )
1765 
1766   PhaseChaitin regalloc(unique(),cfg,m);
1767   _regalloc = &regalloc;
1768   {
1769     TracePhase t2("regalloc", &_t_registerAllocation, true);
1770     // Perform any platform dependent preallocation actions.  This is used,
1771     // for example, to avoid taking an implicit null pointer exception
1772     // using the frame pointer on win95.
1773     _regalloc->pd_preallocate_hook();
1774 
1775     // Perform register allocation.  After Chaitin, use-def chains are
1776     // no longer accurate (at spill code) and so must be ignored.
1777     // Node->LRG->reg mappings are still accurate.
1778     _regalloc->Register_Allocate();
1779 
1780     // Bail out if the allocator builds too many nodes
1781     if (failing())  return;
1782   }
1783 
1784   // Prior to register allocation we kept empty basic blocks in case the
1785   // the allocator needed a place to spill.  After register allocation we
1786   // are not adding any new instructions.  If any basic block is empty, we
1787   // can now safely remove it.
1788   {
1789     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
1790     cfg.remove_empty();
1791     if (do_freq_based_layout()) {
1792       PhaseBlockLayout layout(cfg);
1793     } else {
1794       cfg.set_loop_alignment();
1795     }
1796     cfg.fixup_flow();
1797   }
1798 
1799   // Perform any platform dependent postallocation verifications.
1800   debug_only( _regalloc->pd_postallocate_verify_hook(); )
1801 
1802   // Apply peephole optimizations
1803   if( OptoPeephole ) {
1804     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
1805     PhasePeephole peep( _regalloc, cfg);
1806     peep.do_transform();
1807   }
1808 
1809   // Convert Nodes to instruction bits in a buffer
1810   {
1811     // %%%% workspace merge brought two timers together for one job
1812     TracePhase t2a("output", &_t_output, true);
1813     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
1814     Output();
1815   }
1816 
1817   print_method("Final Code");
1818 
1819   // He's dead, Jim.
1820   _cfg     = (PhaseCFG*)0xdeadbeef;
1821   _regalloc = (PhaseChaitin*)0xdeadbeef;
1822 }
1823 
1824 
1825 //------------------------------dump_asm---------------------------------------
1826 // Dump formatted assembly
1827 #ifndef PRODUCT
1828 void Compile::dump_asm(int *pcs, uint pc_limit) {
1829   bool cut_short = false;
1830   tty->print_cr("#");
1831   tty->print("#  ");  _tf->dump();  tty->cr();
1832   tty->print_cr("#");
1833 
1834   // For all blocks
1835   int pc = 0x0;                 // Program counter
1836   char starts_bundle = ' ';
1837   _regalloc->dump_frame();
1838 
1839   Node *n = NULL;
1840   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1841     if (VMThread::should_terminate()) { cut_short = true; break; }
1842     Block *b = _cfg->_blocks[i];
1843     if (b->is_connector() && !Verbose) continue;
1844     n = b->_nodes[0];
1845     if (pcs && n->_idx < pc_limit)
1846       tty->print("%3.3x   ", pcs[n->_idx]);
1847     else
1848       tty->print("      ");
1849     b->dump_head( &_cfg->_bbs );
1850     if (b->is_connector()) {
1851       tty->print_cr("        # Empty connector block");
1852     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
1853       tty->print_cr("        # Block is sole successor of call");
1854     }
1855 
1856     // For all instructions
1857     Node *delay = NULL;
1858     for( uint j = 0; j<b->_nodes.size(); j++ ) {
1859       if (VMThread::should_terminate()) { cut_short = true; break; }
1860       n = b->_nodes[j];
1861       if (valid_bundle_info(n)) {
1862         Bundle *bundle = node_bundling(n);
1863         if (bundle->used_in_unconditional_delay()) {
1864           delay = n;
1865           continue;
1866         }
1867         if (bundle->starts_bundle())
1868           starts_bundle = '+';
1869       }
1870 
1871       if (WizardMode) n->dump();
1872 
1873       if( !n->is_Region() &&    // Dont print in the Assembly
1874           !n->is_Phi() &&       // a few noisely useless nodes
1875           !n->is_Proj() &&
1876           !n->is_MachTemp() &&
1877           !n->is_SafePointScalarObject() &&
1878           !n->is_Catch() &&     // Would be nice to print exception table targets
1879           !n->is_MergeMem() &&  // Not very interesting
1880           !n->is_top() &&       // Debug info table constants
1881           !(n->is_Con() && !n->is_Mach())// Debug info table constants
1882           ) {
1883         if (pcs && n->_idx < pc_limit)
1884           tty->print("%3.3x", pcs[n->_idx]);
1885         else
1886           tty->print("   ");
1887         tty->print(" %c ", starts_bundle);
1888         starts_bundle = ' ';
1889         tty->print("\t");
1890         n->format(_regalloc, tty);
1891         tty->cr();
1892       }
1893 
1894       // If we have an instruction with a delay slot, and have seen a delay,
1895       // then back up and print it
1896       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1897         assert(delay != NULL, "no unconditional delay instruction");
1898         if (WizardMode) delay->dump();
1899 
1900         if (node_bundling(delay)->starts_bundle())
1901           starts_bundle = '+';
1902         if (pcs && n->_idx < pc_limit)
1903           tty->print("%3.3x", pcs[n->_idx]);
1904         else
1905           tty->print("   ");
1906         tty->print(" %c ", starts_bundle);
1907         starts_bundle = ' ';
1908         tty->print("\t");
1909         delay->format(_regalloc, tty);
1910         tty->print_cr("");
1911         delay = NULL;
1912       }
1913 
1914       // Dump the exception table as well
1915       if( n->is_Catch() && (Verbose || WizardMode) ) {
1916         // Print the exception table for this offset
1917         _handler_table.print_subtable_for(pc);
1918       }
1919     }
1920 
1921     if (pcs && n->_idx < pc_limit)
1922       tty->print_cr("%3.3x", pcs[n->_idx]);
1923     else
1924       tty->print_cr("");
1925 
1926     assert(cut_short || delay == NULL, "no unconditional delay branch");
1927 
1928   } // End of per-block dump
1929   tty->print_cr("");
1930 
1931   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
1932 }
1933 #endif
1934 
1935 //------------------------------Final_Reshape_Counts---------------------------
1936 // This class defines counters to help identify when a method
1937 // may/must be executed using hardware with only 24-bit precision.
1938 struct Final_Reshape_Counts : public StackObj {
1939   int  _call_count;             // count non-inlined 'common' calls
1940   int  _float_count;            // count float ops requiring 24-bit precision
1941   int  _double_count;           // count double ops requiring more precision
1942   int  _java_call_count;        // count non-inlined 'java' calls
1943   int  _inner_loop_count;       // count loops which need alignment
1944   VectorSet _visited;           // Visitation flags
1945   Node_List _tests;             // Set of IfNodes & PCTableNodes
1946 
1947   Final_Reshape_Counts() :
1948     _call_count(0), _float_count(0), _double_count(0),
1949     _java_call_count(0), _inner_loop_count(0),
1950     _visited( Thread::current()->resource_area() ) { }
1951 
1952   void inc_call_count  () { _call_count  ++; }
1953   void inc_float_count () { _float_count ++; }
1954   void inc_double_count() { _double_count++; }
1955   void inc_java_call_count() { _java_call_count++; }
1956   void inc_inner_loop_count() { _inner_loop_count++; }
1957 
1958   int  get_call_count  () const { return _call_count  ; }
1959   int  get_float_count () const { return _float_count ; }
1960   int  get_double_count() const { return _double_count; }
1961   int  get_java_call_count() const { return _java_call_count; }
1962   int  get_inner_loop_count() const { return _inner_loop_count; }
1963 };
1964 
1965 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
1966   ciInstanceKlass *k = tp->klass()->as_instance_klass();
1967   // Make sure the offset goes inside the instance layout.
1968   return k->contains_field_offset(tp->offset());
1969   // Note that OffsetBot and OffsetTop are very negative.
1970 }
1971 
1972 //------------------------------final_graph_reshaping_impl----------------------
1973 // Implement items 1-5 from final_graph_reshaping below.
1974 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
1975 
1976   if ( n->outcnt() == 0 ) return; // dead node
1977   uint nop = n->Opcode();
1978 
1979   // Check for 2-input instruction with "last use" on right input.
1980   // Swap to left input.  Implements item (2).
1981   if( n->req() == 3 &&          // two-input instruction
1982       n->in(1)->outcnt() > 1 && // left use is NOT a last use
1983       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
1984       n->in(2)->outcnt() == 1 &&// right use IS a last use
1985       !n->in(2)->is_Con() ) {   // right use is not a constant
1986     // Check for commutative opcode
1987     switch( nop ) {
1988     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
1989     case Op_MaxI:  case Op_MinI:
1990     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
1991     case Op_AndL:  case Op_XorL:  case Op_OrL:
1992     case Op_AndI:  case Op_XorI:  case Op_OrI: {
1993       // Move "last use" input to left by swapping inputs
1994       n->swap_edges(1, 2);
1995       break;
1996     }
1997     default:
1998       break;
1999     }
2000   }
2001 
2002   // Count FPU ops and common calls, implements item (3)
2003   switch( nop ) {
2004   // Count all float operations that may use FPU
2005   case Op_AddF:
2006   case Op_SubF:
2007   case Op_MulF:
2008   case Op_DivF:
2009   case Op_NegF:
2010   case Op_ModF:
2011   case Op_ConvI2F:
2012   case Op_ConF:
2013   case Op_CmpF:
2014   case Op_CmpF3:
2015   // case Op_ConvL2F: // longs are split into 32-bit halves
2016     frc.inc_float_count();
2017     break;
2018 
2019   case Op_ConvF2D:
2020   case Op_ConvD2F:
2021     frc.inc_float_count();
2022     frc.inc_double_count();
2023     break;
2024 
2025   // Count all double operations that may use FPU
2026   case Op_AddD:
2027   case Op_SubD:
2028   case Op_MulD:
2029   case Op_DivD:
2030   case Op_NegD:
2031   case Op_ModD:
2032   case Op_ConvI2D:
2033   case Op_ConvD2I:
2034   // case Op_ConvL2D: // handled by leaf call
2035   // case Op_ConvD2L: // handled by leaf call
2036   case Op_ConD:
2037   case Op_CmpD:
2038   case Op_CmpD3:
2039     frc.inc_double_count();
2040     break;
2041   case Op_Opaque1:              // Remove Opaque Nodes before matching
2042   case Op_Opaque2:              // Remove Opaque Nodes before matching
2043     n->subsume_by(n->in(1));
2044     break;
2045   case Op_CallStaticJava:
2046   case Op_CallJava:
2047   case Op_CallDynamicJava:
2048     frc.inc_java_call_count(); // Count java call site;
2049   case Op_CallRuntime:
2050   case Op_CallLeaf:
2051   case Op_CallLeafNoFP: {
2052     assert( n->is_Call(), "" );
2053     CallNode *call = n->as_Call();
2054     // Count call sites where the FP mode bit would have to be flipped.
2055     // Do not count uncommon runtime calls:
2056     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2057     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2058     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2059       frc.inc_call_count();   // Count the call site
2060     } else {                  // See if uncommon argument is shared
2061       Node *n = call->in(TypeFunc::Parms);
2062       int nop = n->Opcode();
2063       // Clone shared simple arguments to uncommon calls, item (1).
2064       if( n->outcnt() > 1 &&
2065           !n->is_Proj() &&
2066           nop != Op_CreateEx &&
2067           nop != Op_CheckCastPP &&
2068           nop != Op_DecodeN &&
2069           !n->is_Mem() ) {
2070         Node *x = n->clone();
2071         call->set_req( TypeFunc::Parms, x );
2072       }
2073     }
2074     break;
2075   }
2076 
2077   case Op_StoreD:
2078   case Op_LoadD:
2079   case Op_LoadD_unaligned:
2080     frc.inc_double_count();
2081     goto handle_mem;
2082   case Op_StoreF:
2083   case Op_LoadF:
2084     frc.inc_float_count();
2085     goto handle_mem;
2086 
2087   case Op_StoreB:
2088   case Op_StoreC:
2089   case Op_StoreCM:
2090   case Op_StorePConditional:
2091   case Op_StoreI:
2092   case Op_StoreL:
2093   case Op_StoreIConditional:
2094   case Op_StoreLConditional:
2095   case Op_CompareAndSwapI:
2096   case Op_CompareAndSwapL:
2097   case Op_CompareAndSwapP:
2098   case Op_CompareAndSwapN:
2099   case Op_StoreP:
2100   case Op_StoreN:
2101   case Op_LoadB:
2102   case Op_LoadUB:
2103   case Op_LoadUS:
2104   case Op_LoadI:
2105   case Op_LoadUI2L:
2106   case Op_LoadKlass:
2107   case Op_LoadNKlass:
2108   case Op_LoadL:
2109   case Op_LoadL_unaligned:
2110   case Op_LoadPLocked:
2111   case Op_LoadLLocked:
2112   case Op_LoadP:
2113   case Op_LoadN:
2114   case Op_LoadRange:
2115   case Op_LoadS: {
2116   handle_mem:
2117 #ifdef ASSERT
2118     if( VerifyOptoOopOffsets ) {
2119       assert( n->is_Mem(), "" );
2120       MemNode *mem  = (MemNode*)n;
2121       // Check to see if address types have grounded out somehow.
2122       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2123       assert( !tp || oop_offset_is_sane(tp), "" );
2124     }
2125 #endif
2126     break;
2127   }
2128 
2129   case Op_AddP: {               // Assert sane base pointers
2130     Node *addp = n->in(AddPNode::Address);
2131     assert( !addp->is_AddP() ||
2132             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2133             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2134             "Base pointers must match" );
2135 #ifdef _LP64
2136     if (UseCompressedOops &&
2137         addp->Opcode() == Op_ConP &&
2138         addp == n->in(AddPNode::Base) &&
2139         n->in(AddPNode::Offset)->is_Con()) {
2140       // Use addressing with narrow klass to load with offset on x86.
2141       // On sparc loading 32-bits constant and decoding it have less
2142       // instructions (4) then load 64-bits constant (7).
2143       // Do this transformation here since IGVN will convert ConN back to ConP.
2144       const Type* t = addp->bottom_type();
2145       if (t->isa_oopptr()) {
2146         Node* nn = NULL;
2147 
2148         // Look for existing ConN node of the same exact type.
2149         Compile* C = Compile::current();
2150         Node* r  = C->root();
2151         uint cnt = r->outcnt();
2152         for (uint i = 0; i < cnt; i++) {
2153           Node* m = r->raw_out(i);
2154           if (m!= NULL && m->Opcode() == Op_ConN &&
2155               m->bottom_type()->make_ptr() == t) {
2156             nn = m;
2157             break;
2158           }
2159         }
2160         if (nn != NULL) {
2161           // Decode a narrow oop to match address
2162           // [R12 + narrow_oop_reg<<3 + offset]
2163           nn = new (C,  2) DecodeNNode(nn, t);
2164           n->set_req(AddPNode::Base, nn);
2165           n->set_req(AddPNode::Address, nn);
2166           if (addp->outcnt() == 0) {
2167             addp->disconnect_inputs(NULL);
2168           }
2169         }
2170       }
2171     }
2172 #endif
2173     break;
2174   }
2175 
2176 #ifdef _LP64
2177   case Op_CastPP:
2178     if (n->in(1)->is_DecodeN() && Universe::narrow_oop_use_implicit_null_checks()) {
2179       Compile* C = Compile::current();
2180       Node* in1 = n->in(1);
2181       const Type* t = n->bottom_type();
2182       Node* new_in1 = in1->clone();
2183       new_in1->as_DecodeN()->set_type(t);
2184 
2185       if (!Matcher::clone_shift_expressions) {
2186         //
2187         // x86, ARM and friends can handle 2 adds in addressing mode
2188         // and Matcher can fold a DecodeN node into address by using
2189         // a narrow oop directly and do implicit NULL check in address:
2190         //
2191         // [R12 + narrow_oop_reg<<3 + offset]
2192         // NullCheck narrow_oop_reg
2193         //
2194         // On other platforms (Sparc) we have to keep new DecodeN node and
2195         // use it to do implicit NULL check in address:
2196         //
2197         // decode_not_null narrow_oop_reg, base_reg
2198         // [base_reg + offset]
2199         // NullCheck base_reg
2200         //
2201         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2202         // to keep the information to which NULL check the new DecodeN node
2203         // corresponds to use it as value in implicit_null_check().
2204         //
2205         new_in1->set_req(0, n->in(0));
2206       }
2207 
2208       n->subsume_by(new_in1);
2209       if (in1->outcnt() == 0) {
2210         in1->disconnect_inputs(NULL);
2211       }
2212     }
2213     break;
2214 
2215   case Op_CmpP:
2216     // Do this transformation here to preserve CmpPNode::sub() and
2217     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2218     if (n->in(1)->is_DecodeN() || n->in(2)->is_DecodeN()) {
2219       Node* in1 = n->in(1);
2220       Node* in2 = n->in(2);
2221       if (!in1->is_DecodeN()) {
2222         in2 = in1;
2223         in1 = n->in(2);
2224       }
2225       assert(in1->is_DecodeN(), "sanity");
2226 
2227       Compile* C = Compile::current();
2228       Node* new_in2 = NULL;
2229       if (in2->is_DecodeN()) {
2230         new_in2 = in2->in(1);
2231       } else if (in2->Opcode() == Op_ConP) {
2232         const Type* t = in2->bottom_type();
2233         if (t == TypePtr::NULL_PTR && Universe::narrow_oop_use_implicit_null_checks()) {
2234           new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
2235           //
2236           // This transformation together with CastPP transformation above
2237           // will generated code for implicit NULL checks for compressed oops.
2238           //
2239           // The original code after Optimize()
2240           //
2241           //    LoadN memory, narrow_oop_reg
2242           //    decode narrow_oop_reg, base_reg
2243           //    CmpP base_reg, NULL
2244           //    CastPP base_reg // NotNull
2245           //    Load [base_reg + offset], val_reg
2246           //
2247           // after these transformations will be
2248           //
2249           //    LoadN memory, narrow_oop_reg
2250           //    CmpN narrow_oop_reg, NULL
2251           //    decode_not_null narrow_oop_reg, base_reg
2252           //    Load [base_reg + offset], val_reg
2253           //
2254           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2255           // since narrow oops can be used in debug info now (see the code in
2256           // final_graph_reshaping_walk()).
2257           //
2258           // At the end the code will be matched to
2259           // on x86:
2260           //
2261           //    Load_narrow_oop memory, narrow_oop_reg
2262           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2263           //    NullCheck narrow_oop_reg
2264           //
2265           // and on sparc:
2266           //
2267           //    Load_narrow_oop memory, narrow_oop_reg
2268           //    decode_not_null narrow_oop_reg, base_reg
2269           //    Load [base_reg + offset], val_reg
2270           //    NullCheck base_reg
2271           //
2272         } else if (t->isa_oopptr()) {
2273           new_in2 = ConNode::make(C, t->make_narrowoop());
2274         }
2275       }
2276       if (new_in2 != NULL) {
2277         Node* cmpN = new (C, 3) CmpNNode(in1->in(1), new_in2);
2278         n->subsume_by( cmpN );
2279         if (in1->outcnt() == 0) {
2280           in1->disconnect_inputs(NULL);
2281         }
2282         if (in2->outcnt() == 0) {
2283           in2->disconnect_inputs(NULL);
2284         }
2285       }
2286     }
2287     break;
2288 
2289   case Op_DecodeN:
2290     assert(!n->in(1)->is_EncodeP(), "should be optimized out");
2291     // DecodeN could be pinned on Sparc where it can't be fold into
2292     // an address expression, see the code for Op_CastPP above.
2293     assert(n->in(0) == NULL || !Matcher::clone_shift_expressions, "no control except on sparc");
2294     break;
2295 
2296   case Op_EncodeP: {
2297     Node* in1 = n->in(1);
2298     if (in1->is_DecodeN()) {
2299       n->subsume_by(in1->in(1));
2300     } else if (in1->Opcode() == Op_ConP) {
2301       Compile* C = Compile::current();
2302       const Type* t = in1->bottom_type();
2303       if (t == TypePtr::NULL_PTR) {
2304         n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
2305       } else if (t->isa_oopptr()) {
2306         n->subsume_by(ConNode::make(C, t->make_narrowoop()));
2307       }
2308     }
2309     if (in1->outcnt() == 0) {
2310       in1->disconnect_inputs(NULL);
2311     }
2312     break;
2313   }
2314 
2315   case Op_Proj: {
2316     if (OptimizeStringConcat) {
2317       ProjNode* p = n->as_Proj();
2318       if (p->_is_io_use) {
2319         // Separate projections were used for the exception path which
2320         // are normally removed by a late inline.  If it wasn't inlined
2321         // then they will hang around and should just be replaced with
2322         // the original one.
2323         Node* proj = NULL;
2324         // Replace with just one
2325         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2326           Node *use = i.get();
2327           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2328             proj = use;
2329             break;
2330           }
2331         }
2332         assert(p != NULL, "must be found");
2333         p->subsume_by(proj);
2334       }
2335     }
2336     break;
2337   }
2338 
2339   case Op_Phi:
2340     if (n->as_Phi()->bottom_type()->isa_narrowoop()) {
2341       // The EncodeP optimization may create Phi with the same edges
2342       // for all paths. It is not handled well by Register Allocator.
2343       Node* unique_in = n->in(1);
2344       assert(unique_in != NULL, "");
2345       uint cnt = n->req();
2346       for (uint i = 2; i < cnt; i++) {
2347         Node* m = n->in(i);
2348         assert(m != NULL, "");
2349         if (unique_in != m)
2350           unique_in = NULL;
2351       }
2352       if (unique_in != NULL) {
2353         n->subsume_by(unique_in);
2354       }
2355     }
2356     break;
2357 
2358 #endif
2359 
2360   case Op_ModI:
2361     if (UseDivMod) {
2362       // Check if a%b and a/b both exist
2363       Node* d = n->find_similar(Op_DivI);
2364       if (d) {
2365         // Replace them with a fused divmod if supported
2366         Compile* C = Compile::current();
2367         if (Matcher::has_match_rule(Op_DivModI)) {
2368           DivModINode* divmod = DivModINode::make(C, n);
2369           d->subsume_by(divmod->div_proj());
2370           n->subsume_by(divmod->mod_proj());
2371         } else {
2372           // replace a%b with a-((a/b)*b)
2373           Node* mult = new (C, 3) MulINode(d, d->in(2));
2374           Node* sub  = new (C, 3) SubINode(d->in(1), mult);
2375           n->subsume_by( sub );
2376         }
2377       }
2378     }
2379     break;
2380 
2381   case Op_ModL:
2382     if (UseDivMod) {
2383       // Check if a%b and a/b both exist
2384       Node* d = n->find_similar(Op_DivL);
2385       if (d) {
2386         // Replace them with a fused divmod if supported
2387         Compile* C = Compile::current();
2388         if (Matcher::has_match_rule(Op_DivModL)) {
2389           DivModLNode* divmod = DivModLNode::make(C, n);
2390           d->subsume_by(divmod->div_proj());
2391           n->subsume_by(divmod->mod_proj());
2392         } else {
2393           // replace a%b with a-((a/b)*b)
2394           Node* mult = new (C, 3) MulLNode(d, d->in(2));
2395           Node* sub  = new (C, 3) SubLNode(d->in(1), mult);
2396           n->subsume_by( sub );
2397         }
2398       }
2399     }
2400     break;
2401 
2402   case Op_Load16B:
2403   case Op_Load8B:
2404   case Op_Load4B:
2405   case Op_Load8S:
2406   case Op_Load4S:
2407   case Op_Load2S:
2408   case Op_Load8C:
2409   case Op_Load4C:
2410   case Op_Load2C:
2411   case Op_Load4I:
2412   case Op_Load2I:
2413   case Op_Load2L:
2414   case Op_Load4F:
2415   case Op_Load2F:
2416   case Op_Load2D:
2417   case Op_Store16B:
2418   case Op_Store8B:
2419   case Op_Store4B:
2420   case Op_Store8C:
2421   case Op_Store4C:
2422   case Op_Store2C:
2423   case Op_Store4I:
2424   case Op_Store2I:
2425   case Op_Store2L:
2426   case Op_Store4F:
2427   case Op_Store2F:
2428   case Op_Store2D:
2429     break;
2430 
2431   case Op_PackB:
2432   case Op_PackS:
2433   case Op_PackC:
2434   case Op_PackI:
2435   case Op_PackF:
2436   case Op_PackL:
2437   case Op_PackD:
2438     if (n->req()-1 > 2) {
2439       // Replace many operand PackNodes with a binary tree for matching
2440       PackNode* p = (PackNode*) n;
2441       Node* btp = p->binaryTreePack(Compile::current(), 1, n->req());
2442       n->subsume_by(btp);
2443     }
2444     break;
2445   case Op_Loop:
2446   case Op_CountedLoop:
2447     if (n->as_Loop()->is_inner_loop()) {
2448       frc.inc_inner_loop_count();
2449     }
2450     break;
2451   default:
2452     assert( !n->is_Call(), "" );
2453     assert( !n->is_Mem(), "" );
2454     break;
2455   }
2456 
2457   // Collect CFG split points
2458   if (n->is_MultiBranch())
2459     frc._tests.push(n);
2460 }
2461 
2462 //------------------------------final_graph_reshaping_walk---------------------
2463 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2464 // requires that the walk visits a node's inputs before visiting the node.
2465 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2466   ResourceArea *area = Thread::current()->resource_area();
2467   Unique_Node_List sfpt(area);
2468 
2469   frc._visited.set(root->_idx); // first, mark node as visited
2470   uint cnt = root->req();
2471   Node *n = root;
2472   uint  i = 0;
2473   while (true) {
2474     if (i < cnt) {
2475       // Place all non-visited non-null inputs onto stack
2476       Node* m = n->in(i);
2477       ++i;
2478       if (m != NULL && !frc._visited.test_set(m->_idx)) {
2479         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2480           sfpt.push(m);
2481         cnt = m->req();
2482         nstack.push(n, i); // put on stack parent and next input's index
2483         n = m;
2484         i = 0;
2485       }
2486     } else {
2487       // Now do post-visit work
2488       final_graph_reshaping_impl( n, frc );
2489       if (nstack.is_empty())
2490         break;             // finished
2491       n = nstack.node();   // Get node from stack
2492       cnt = n->req();
2493       i = nstack.index();
2494       nstack.pop();        // Shift to the next node on stack
2495     }
2496   }
2497 
2498   // Go over safepoints nodes to skip DecodeN nodes for debug edges.
2499   // It could be done for an uncommon traps or any safepoints/calls
2500   // if the DecodeN node is referenced only in a debug info.
2501   while (sfpt.size() > 0) {
2502     n = sfpt.pop();
2503     JVMState *jvms = n->as_SafePoint()->jvms();
2504     assert(jvms != NULL, "sanity");
2505     int start = jvms->debug_start();
2506     int end   = n->req();
2507     bool is_uncommon = (n->is_CallStaticJava() &&
2508                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
2509     for (int j = start; j < end; j++) {
2510       Node* in = n->in(j);
2511       if (in->is_DecodeN()) {
2512         bool safe_to_skip = true;
2513         if (!is_uncommon ) {
2514           // Is it safe to skip?
2515           for (uint i = 0; i < in->outcnt(); i++) {
2516             Node* u = in->raw_out(i);
2517             if (!u->is_SafePoint() ||
2518                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
2519               safe_to_skip = false;
2520             }
2521           }
2522         }
2523         if (safe_to_skip) {
2524           n->set_req(j, in->in(1));
2525         }
2526         if (in->outcnt() == 0) {
2527           in->disconnect_inputs(NULL);
2528         }
2529       }
2530     }
2531   }
2532 }
2533 
2534 //------------------------------final_graph_reshaping--------------------------
2535 // Final Graph Reshaping.
2536 //
2537 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2538 //     and not commoned up and forced early.  Must come after regular
2539 //     optimizations to avoid GVN undoing the cloning.  Clone constant
2540 //     inputs to Loop Phis; these will be split by the allocator anyways.
2541 //     Remove Opaque nodes.
2542 // (2) Move last-uses by commutative operations to the left input to encourage
2543 //     Intel update-in-place two-address operations and better register usage
2544 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
2545 //     calls canonicalizing them back.
2546 // (3) Count the number of double-precision FP ops, single-precision FP ops
2547 //     and call sites.  On Intel, we can get correct rounding either by
2548 //     forcing singles to memory (requires extra stores and loads after each
2549 //     FP bytecode) or we can set a rounding mode bit (requires setting and
2550 //     clearing the mode bit around call sites).  The mode bit is only used
2551 //     if the relative frequency of single FP ops to calls is low enough.
2552 //     This is a key transform for SPEC mpeg_audio.
2553 // (4) Detect infinite loops; blobs of code reachable from above but not
2554 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
2555 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
2556 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
2557 //     Detection is by looking for IfNodes where only 1 projection is
2558 //     reachable from below or CatchNodes missing some targets.
2559 // (5) Assert for insane oop offsets in debug mode.
2560 
2561 bool Compile::final_graph_reshaping() {
2562   // an infinite loop may have been eliminated by the optimizer,
2563   // in which case the graph will be empty.
2564   if (root()->req() == 1) {
2565     record_method_not_compilable("trivial infinite loop");
2566     return true;
2567   }
2568 
2569   Final_Reshape_Counts frc;
2570 
2571   // Visit everybody reachable!
2572   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2573   Node_Stack nstack(unique() >> 1);
2574   final_graph_reshaping_walk(nstack, root(), frc);
2575 
2576   // Check for unreachable (from below) code (i.e., infinite loops).
2577   for( uint i = 0; i < frc._tests.size(); i++ ) {
2578     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
2579     // Get number of CFG targets.
2580     // Note that PCTables include exception targets after calls.
2581     uint required_outcnt = n->required_outcnt();
2582     if (n->outcnt() != required_outcnt) {
2583       // Check for a few special cases.  Rethrow Nodes never take the
2584       // 'fall-thru' path, so expected kids is 1 less.
2585       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2586         if (n->in(0)->in(0)->is_Call()) {
2587           CallNode *call = n->in(0)->in(0)->as_Call();
2588           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2589             required_outcnt--;      // Rethrow always has 1 less kid
2590           } else if (call->req() > TypeFunc::Parms &&
2591                      call->is_CallDynamicJava()) {
2592             // Check for null receiver. In such case, the optimizer has
2593             // detected that the virtual call will always result in a null
2594             // pointer exception. The fall-through projection of this CatchNode
2595             // will not be populated.
2596             Node *arg0 = call->in(TypeFunc::Parms);
2597             if (arg0->is_Type() &&
2598                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2599               required_outcnt--;
2600             }
2601           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2602                      call->req() > TypeFunc::Parms+1 &&
2603                      call->is_CallStaticJava()) {
2604             // Check for negative array length. In such case, the optimizer has
2605             // detected that the allocation attempt will always result in an
2606             // exception. There is no fall-through projection of this CatchNode .
2607             Node *arg1 = call->in(TypeFunc::Parms+1);
2608             if (arg1->is_Type() &&
2609                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2610               required_outcnt--;
2611             }
2612           }
2613         }
2614       }
2615       // Recheck with a better notion of 'required_outcnt'
2616       if (n->outcnt() != required_outcnt) {
2617         record_method_not_compilable("malformed control flow");
2618         return true;            // Not all targets reachable!
2619       }
2620     }
2621     // Check that I actually visited all kids.  Unreached kids
2622     // must be infinite loops.
2623     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2624       if (!frc._visited.test(n->fast_out(j)->_idx)) {
2625         record_method_not_compilable("infinite loop");
2626         return true;            // Found unvisited kid; must be unreach
2627       }
2628   }
2629 
2630   // If original bytecodes contained a mixture of floats and doubles
2631   // check if the optimizer has made it homogenous, item (3).
2632   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
2633       frc.get_float_count() > 32 &&
2634       frc.get_double_count() == 0 &&
2635       (10 * frc.get_call_count() < frc.get_float_count()) ) {
2636     set_24_bit_selection_and_mode( false,  true );
2637   }
2638 
2639   set_java_calls(frc.get_java_call_count());
2640   set_inner_loops(frc.get_inner_loop_count());
2641 
2642   // No infinite loops, no reason to bail out.
2643   return false;
2644 }
2645 
2646 //-----------------------------too_many_traps----------------------------------
2647 // Report if there are too many traps at the current method and bci.
2648 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2649 bool Compile::too_many_traps(ciMethod* method,
2650                              int bci,
2651                              Deoptimization::DeoptReason reason) {
2652   ciMethodData* md = method->method_data();
2653   if (md->is_empty()) {
2654     // Assume the trap has not occurred, or that it occurred only
2655     // because of a transient condition during start-up in the interpreter.
2656     return false;
2657   }
2658   if (md->has_trap_at(bci, reason) != 0) {
2659     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2660     // Also, if there are multiple reasons, or if there is no per-BCI record,
2661     // assume the worst.
2662     if (log())
2663       log()->elem("observe trap='%s' count='%d'",
2664                   Deoptimization::trap_reason_name(reason),
2665                   md->trap_count(reason));
2666     return true;
2667   } else {
2668     // Ignore method/bci and see if there have been too many globally.
2669     return too_many_traps(reason, md);
2670   }
2671 }
2672 
2673 // Less-accurate variant which does not require a method and bci.
2674 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2675                              ciMethodData* logmd) {
2676  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2677     // Too many traps globally.
2678     // Note that we use cumulative trap_count, not just md->trap_count.
2679     if (log()) {
2680       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2681       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2682                   Deoptimization::trap_reason_name(reason),
2683                   mcount, trap_count(reason));
2684     }
2685     return true;
2686   } else {
2687     // The coast is clear.
2688     return false;
2689   }
2690 }
2691 
2692 //--------------------------too_many_recompiles--------------------------------
2693 // Report if there are too many recompiles at the current method and bci.
2694 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2695 // Is not eager to return true, since this will cause the compiler to use
2696 // Action_none for a trap point, to avoid too many recompilations.
2697 bool Compile::too_many_recompiles(ciMethod* method,
2698                                   int bci,
2699                                   Deoptimization::DeoptReason reason) {
2700   ciMethodData* md = method->method_data();
2701   if (md->is_empty()) {
2702     // Assume the trap has not occurred, or that it occurred only
2703     // because of a transient condition during start-up in the interpreter.
2704     return false;
2705   }
2706   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
2707   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
2708   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
2709   Deoptimization::DeoptReason per_bc_reason
2710     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
2711   if ((per_bc_reason == Deoptimization::Reason_none
2712        || md->has_trap_at(bci, reason) != 0)
2713       // The trap frequency measure we care about is the recompile count:
2714       && md->trap_recompiled_at(bci)
2715       && md->overflow_recompile_count() >= bc_cutoff) {
2716     // Do not emit a trap here if it has already caused recompilations.
2717     // Also, if there are multiple reasons, or if there is no per-BCI record,
2718     // assume the worst.
2719     if (log())
2720       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
2721                   Deoptimization::trap_reason_name(reason),
2722                   md->trap_count(reason),
2723                   md->overflow_recompile_count());
2724     return true;
2725   } else if (trap_count(reason) != 0
2726              && decompile_count() >= m_cutoff) {
2727     // Too many recompiles globally, and we have seen this sort of trap.
2728     // Use cumulative decompile_count, not just md->decompile_count.
2729     if (log())
2730       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
2731                   Deoptimization::trap_reason_name(reason),
2732                   md->trap_count(reason), trap_count(reason),
2733                   md->decompile_count(), decompile_count());
2734     return true;
2735   } else {
2736     // The coast is clear.
2737     return false;
2738   }
2739 }
2740 
2741 
2742 #ifndef PRODUCT
2743 //------------------------------verify_graph_edges---------------------------
2744 // Walk the Graph and verify that there is a one-to-one correspondence
2745 // between Use-Def edges and Def-Use edges in the graph.
2746 void Compile::verify_graph_edges(bool no_dead_code) {
2747   if (VerifyGraphEdges) {
2748     ResourceArea *area = Thread::current()->resource_area();
2749     Unique_Node_List visited(area);
2750     // Call recursive graph walk to check edges
2751     _root->verify_edges(visited);
2752     if (no_dead_code) {
2753       // Now make sure that no visited node is used by an unvisited node.
2754       bool dead_nodes = 0;
2755       Unique_Node_List checked(area);
2756       while (visited.size() > 0) {
2757         Node* n = visited.pop();
2758         checked.push(n);
2759         for (uint i = 0; i < n->outcnt(); i++) {
2760           Node* use = n->raw_out(i);
2761           if (checked.member(use))  continue;  // already checked
2762           if (visited.member(use))  continue;  // already in the graph
2763           if (use->is_Con())        continue;  // a dead ConNode is OK
2764           // At this point, we have found a dead node which is DU-reachable.
2765           if (dead_nodes++ == 0)
2766             tty->print_cr("*** Dead nodes reachable via DU edges:");
2767           use->dump(2);
2768           tty->print_cr("---");
2769           checked.push(use);  // No repeats; pretend it is now checked.
2770         }
2771       }
2772       assert(dead_nodes == 0, "using nodes must be reachable from root");
2773     }
2774   }
2775 }
2776 #endif
2777 
2778 // The Compile object keeps track of failure reasons separately from the ciEnv.
2779 // This is required because there is not quite a 1-1 relation between the
2780 // ciEnv and its compilation task and the Compile object.  Note that one
2781 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
2782 // to backtrack and retry without subsuming loads.  Other than this backtracking
2783 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
2784 // by the logic in C2Compiler.
2785 void Compile::record_failure(const char* reason) {
2786   if (log() != NULL) {
2787     log()->elem("failure reason='%s' phase='compile'", reason);
2788   }
2789   if (_failure_reason == NULL) {
2790     // Record the first failure reason.
2791     _failure_reason = reason;
2792   }
2793   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
2794     C->print_method(_failure_reason);
2795   }
2796   _root = NULL;  // flush the graph, too
2797 }
2798 
2799 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
2800   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
2801 {
2802   if (dolog) {
2803     C = Compile::current();
2804     _log = C->log();
2805   } else {
2806     C = NULL;
2807     _log = NULL;
2808   }
2809   if (_log != NULL) {
2810     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
2811     _log->stamp();
2812     _log->end_head();
2813   }
2814 }
2815 
2816 Compile::TracePhase::~TracePhase() {
2817   if (_log != NULL) {
2818     _log->done("phase nodes='%d'", C->unique());
2819   }
2820 }