1 /*
   2  * Copyright 1998-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  20  * CA 95054 USA or visit www.sun.com if you need additional information or
  21  * have any questions.
  22  *
  23  */
  24 
  25 #include "incls/_precompiled.incl"
  26 #include "incls/_loopnode.cpp.incl"
  27 
  28 //=============================================================================
  29 //------------------------------is_loop_iv-------------------------------------
  30 // Determine if a node is Counted loop induction variable.
  31 // The method is declared in node.hpp.
  32 const Node* Node::is_loop_iv() const {
  33   if (this->is_Phi() && !this->as_Phi()->is_copy() &&
  34       this->as_Phi()->region()->is_CountedLoop() &&
  35       this->as_Phi()->region()->as_CountedLoop()->phi() == this) {
  36     return this;
  37   } else {
  38     return NULL;
  39   }
  40 }
  41 
  42 //=============================================================================
  43 //------------------------------dump_spec--------------------------------------
  44 // Dump special per-node info
  45 #ifndef PRODUCT
  46 void LoopNode::dump_spec(outputStream *st) const {
  47   if( is_inner_loop () ) st->print( "inner " );
  48   if( is_partial_peel_loop () ) st->print( "partial_peel " );
  49   if( partial_peel_has_failed () ) st->print( "partial_peel_failed " );
  50 }
  51 #endif
  52 
  53 //------------------------------get_early_ctrl---------------------------------
  54 // Compute earliest legal control
  55 Node *PhaseIdealLoop::get_early_ctrl( Node *n ) {
  56   assert( !n->is_Phi() && !n->is_CFG(), "this code only handles data nodes" );
  57   uint i;
  58   Node *early;
  59   if( n->in(0) ) {
  60     early = n->in(0);
  61     if( !early->is_CFG() ) // Might be a non-CFG multi-def
  62       early = get_ctrl(early);        // So treat input as a straight data input
  63     i = 1;
  64   } else {
  65     early = get_ctrl(n->in(1));
  66     i = 2;
  67   }
  68   uint e_d = dom_depth(early);
  69   assert( early, "" );
  70   for( ; i < n->req(); i++ ) {
  71     Node *cin = get_ctrl(n->in(i));
  72     assert( cin, "" );
  73     // Keep deepest dominator depth
  74     uint c_d = dom_depth(cin);
  75     if( c_d > e_d ) {           // Deeper guy?
  76       early = cin;              // Keep deepest found so far
  77       e_d = c_d;
  78     } else if( c_d == e_d &&    // Same depth?
  79                early != cin ) { // If not equal, must use slower algorithm
  80       // If same depth but not equal, one _must_ dominate the other
  81       // and we want the deeper (i.e., dominated) guy.
  82       Node *n1 = early;
  83       Node *n2 = cin;
  84       while( 1 ) {
  85         n1 = idom(n1);          // Walk up until break cycle
  86         n2 = idom(n2);
  87         if( n1 == cin ||        // Walked early up to cin
  88             dom_depth(n2) < c_d )
  89           break;                // early is deeper; keep him
  90         if( n2 == early ||      // Walked cin up to early
  91             dom_depth(n1) < c_d ) {
  92           early = cin;          // cin is deeper; keep him
  93           break;
  94         }
  95       }
  96       e_d = dom_depth(early);   // Reset depth register cache
  97     }
  98   }
  99  
 100   // Return earliest legal location
 101   assert(early == find_non_split_ctrl(early), "unexpected early control");
 102 
 103   return early;
 104 }
 105 
 106 //------------------------------set_early_ctrl---------------------------------
 107 // Set earliest legal control
 108 void PhaseIdealLoop::set_early_ctrl( Node *n ) {
 109   Node *early = get_early_ctrl(n);
 110 
 111   // Record earliest legal location
 112   set_ctrl(n, early);
 113 }
 114 
 115 //------------------------------set_subtree_ctrl-------------------------------
 116 // set missing _ctrl entries on new nodes
 117 void PhaseIdealLoop::set_subtree_ctrl( Node *n ) {
 118   // Already set?  Get out.
 119   if( _nodes[n->_idx] ) return;
 120   // Recursively set _nodes array to indicate where the Node goes
 121   uint i;
 122   for( i = 0; i < n->req(); ++i ) {
 123     Node *m = n->in(i);
 124     if( m && m != C->root() )
 125       set_subtree_ctrl( m );
 126   }
 127 
 128   // Fixup self
 129   set_early_ctrl( n );
 130 }
 131 
 132 //------------------------------is_counted_loop--------------------------------
 133 Node *PhaseIdealLoop::is_counted_loop( Node *x, IdealLoopTree *loop ) {
 134   PhaseGVN *gvn = &_igvn;
 135 
 136   // Counted loop head must be a good RegionNode with only 3 not NULL
 137   // control input edges: Self, Entry, LoopBack.
 138   if ( x->in(LoopNode::Self) == NULL || x->req() != 3 )
 139     return NULL;
 140 
 141   Node *init_control = x->in(LoopNode::EntryControl);
 142   Node *back_control = x->in(LoopNode::LoopBackControl);
 143   if( init_control == NULL || back_control == NULL )    // Partially dead
 144     return NULL;
 145   // Must also check for TOP when looking for a dead loop
 146   if( init_control->is_top() || back_control->is_top() )
 147     return NULL;
 148 
 149   // Allow funny placement of Safepoint
 150   if( back_control->Opcode() == Op_SafePoint )
 151     back_control = back_control->in(TypeFunc::Control);
 152 
 153   // Controlling test for loop
 154   Node *iftrue = back_control;
 155   uint iftrue_op = iftrue->Opcode();
 156   if( iftrue_op != Op_IfTrue &&
 157       iftrue_op != Op_IfFalse )
 158     // I have a weird back-control.  Probably the loop-exit test is in
 159     // the middle of the loop and I am looking at some trailing control-flow
 160     // merge point.  To fix this I would have to partially peel the loop.
 161     return NULL; // Obscure back-control
 162 
 163   // Get boolean guarding loop-back test
 164   Node *iff = iftrue->in(0);
 165   if( get_loop(iff) != loop || !iff->in(1)->is_Bool() ) return NULL;
 166   BoolNode *test = iff->in(1)->as_Bool();
 167   BoolTest::mask bt = test->_test._test;
 168   float cl_prob = iff->as_If()->_prob;
 169   if( iftrue_op == Op_IfFalse ) {
 170     bt = BoolTest(bt).negate();
 171     cl_prob = 1.0 - cl_prob;
 172   }
 173   // Get backedge compare
 174   Node *cmp = test->in(1);
 175   int cmp_op = cmp->Opcode();
 176   if( cmp_op != Op_CmpI )
 177     return NULL;                // Avoid pointer & float compares
 178 
 179   // Find the trip-counter increment & limit.  Limit must be loop invariant.
 180   Node *incr  = cmp->in(1);
 181   Node *limit = cmp->in(2);
 182 
 183   // ---------
 184   // need 'loop()' test to tell if limit is loop invariant
 185   // ---------
 186 
 187   if( !is_member( loop, get_ctrl(incr) ) ) { // Swapped trip counter and limit?
 188     Node *tmp = incr;           // Then reverse order into the CmpI
 189     incr = limit;
 190     limit = tmp;
 191     bt = BoolTest(bt).commute(); // And commute the exit test
 192   }
 193   if( is_member( loop, get_ctrl(limit) ) ) // Limit must loop-invariant
 194     return NULL;
 195 
 196   // Trip-counter increment must be commutative & associative.
 197   uint incr_op = incr->Opcode();
 198   if( incr_op == Op_Phi && incr->req() == 3 ) {
 199     incr = incr->in(2);         // Assume incr is on backedge of Phi
 200     incr_op = incr->Opcode();
 201   }
 202   Node* trunc1 = NULL;
 203   Node* trunc2 = NULL;
 204   const TypeInt* iv_trunc_t = NULL;
 205   if (!(incr = CountedLoopNode::match_incr_with_optional_truncation(incr, &trunc1, &trunc2, &iv_trunc_t))) {
 206     return NULL; // Funny increment opcode
 207   }
 208 
 209   // Get merge point
 210   Node *xphi = incr->in(1);
 211   Node *stride = incr->in(2);
 212   if( !stride->is_Con() ) {     // Oops, swap these
 213     if( !xphi->is_Con() )       // Is the other guy a constant?
 214       return NULL;              // Nope, unknown stride, bail out
 215     Node *tmp = xphi;           // 'incr' is commutative, so ok to swap
 216     xphi = stride;
 217     stride = tmp;
 218   }
 219   //if( loop(xphi) != l) return NULL;// Merge point is in inner loop??
 220   if( !xphi->is_Phi() ) return NULL; // Too much math on the trip counter
 221   PhiNode *phi = xphi->as_Phi();
 222 
 223   // Stride must be constant
 224   const Type *stride_t = stride->bottom_type();
 225   int stride_con = stride_t->is_int()->get_con();
 226   assert( stride_con, "missed some peephole opt" );
 227 
 228   // Phi must be of loop header; backedge must wrap to increment
 229   if( phi->region() != x ) return NULL;
 230   if( trunc1 == NULL && phi->in(LoopNode::LoopBackControl) != incr ||
 231       trunc1 != NULL && phi->in(LoopNode::LoopBackControl) != trunc1 ) {
 232     return NULL;
 233   }
 234   Node *init_trip = phi->in(LoopNode::EntryControl);
 235   //if (!init_trip->is_Con()) return NULL; // avoid rolling over MAXINT/MININT
 236 
 237   // If iv trunc type is smaller than int, check for possible wrap.
 238   if (!TypeInt::INT->higher_equal(iv_trunc_t)) {
 239     assert(trunc1 != NULL, "must have found some truncation");
 240 
 241     // Get a better type for the phi (filtered thru if's)
 242     const TypeInt* phi_ft = filtered_type(phi);
 243 
 244     // Can iv take on a value that will wrap?
 245     //
 246     // Ensure iv's limit is not within "stride" of the wrap value.
 247     //
 248     // Example for "short" type
 249     //    Truncation ensures value is in the range -32768..32767 (iv_trunc_t)
 250     //    If the stride is +10, then the last value of the induction
 251     //    variable before the increment (phi_ft->_hi) must be
 252     //    <= 32767 - 10 and (phi_ft->_lo) must be >= -32768 to
 253     //    ensure no truncation occurs after the increment.
 254 
 255     if (stride_con > 0) {
 256       if (iv_trunc_t->_hi - phi_ft->_hi < stride_con ||
 257           iv_trunc_t->_lo > phi_ft->_lo) {
 258         return NULL;  // truncation may occur
 259       }
 260     } else if (stride_con < 0) {
 261       if (iv_trunc_t->_lo - phi_ft->_lo > stride_con ||
 262           iv_trunc_t->_hi < phi_ft->_hi) {
 263         return NULL;  // truncation may occur
 264       }
 265     }
 266     // No possibility of wrap so truncation can be discarded
 267     // Promote iv type to Int
 268   } else {
 269     assert(trunc1 == NULL && trunc2 == NULL, "no truncation for int");
 270   }
 271 
 272   // =================================================
 273   // ---- SUCCESS!   Found A Trip-Counted Loop!  -----
 274   //
 275   // Canonicalize the condition on the test.  If we can exactly determine
 276   // the trip-counter exit value, then set limit to that value and use
 277   // a '!=' test.  Otherwise use condition '<' for count-up loops and
 278   // '>' for count-down loops.  If the condition is inverted and we will
 279   // be rolling through MININT to MAXINT, then bail out.
 280 
 281   C->print_method("Before CountedLoop", 3);
 282 
 283   // Check for SafePoint on backedge and remove
 284   Node *sfpt = x->in(LoopNode::LoopBackControl);
 285   if( sfpt->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt)) {
 286     lazy_replace( sfpt, iftrue );
 287     loop->_tail = iftrue;
 288   }
 289 
 290 
 291   // If compare points to incr, we are ok.  Otherwise the compare
 292   // can directly point to the phi; in this case adjust the compare so that
 293   // it points to the incr by adjusting the limit.
 294   if( cmp->in(1) == phi || cmp->in(2) == phi )
 295     limit = gvn->transform(new (C, 3) AddINode(limit,stride));
 296 
 297   // trip-count for +-tive stride should be: (limit - init_trip + stride - 1)/stride.
 298   // Final value for iterator should be: trip_count * stride + init_trip.
 299   const Type *limit_t = limit->bottom_type();
 300   const Type *init_t = init_trip->bottom_type();
 301   Node *one_p = gvn->intcon( 1);
 302   Node *one_m = gvn->intcon(-1);
 303 
 304   Node *trip_count = NULL;
 305   Node *hook = new (C, 6) Node(6);
 306   switch( bt ) {
 307   case BoolTest::eq:
 308     return NULL;                // Bail out, but this loop trips at most twice!
 309   case BoolTest::ne:            // Ahh, the case we desire
 310     if( stride_con == 1 )
 311       trip_count = gvn->transform(new (C, 3) SubINode(limit,init_trip));
 312     else if( stride_con == -1 )
 313       trip_count = gvn->transform(new (C, 3) SubINode(init_trip,limit));
 314     else
 315       return NULL;              // Odd stride; must prove we hit limit exactly
 316     set_subtree_ctrl( trip_count );
 317     //_loop.map(trip_count->_idx,loop(limit));
 318     break;
 319   case BoolTest::le:            // Maybe convert to '<' case
 320     limit = gvn->transform(new (C, 3) AddINode(limit,one_p));
 321     set_subtree_ctrl( limit );
 322     hook->init_req(4, limit);
 323 
 324     bt = BoolTest::lt;
 325     // Make the new limit be in the same loop nest as the old limit
 326     //_loop.map(limit->_idx,limit_loop);
 327     // Fall into next case
 328   case BoolTest::lt: {          // Maybe convert to '!=' case
 329     if( stride_con < 0 ) return NULL; // Count down loop rolls through MAXINT
 330     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
 331     set_subtree_ctrl( range );
 332     hook->init_req(0, range);
 333 
 334     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
 335     set_subtree_ctrl( bias );
 336     hook->init_req(1, bias);
 337 
 338     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_m));
 339     set_subtree_ctrl( bias1 );
 340     hook->init_req(2, bias1);
 341 
 342     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
 343     set_subtree_ctrl( trip_count );
 344     hook->init_req(3, trip_count);
 345     break;
 346   }
 347 
 348   case BoolTest::ge:            // Maybe convert to '>' case
 349     limit = gvn->transform(new (C, 3) AddINode(limit,one_m));
 350     set_subtree_ctrl( limit );
 351     hook->init_req(4 ,limit);
 352 
 353     bt = BoolTest::gt;
 354     // Make the new limit be in the same loop nest as the old limit
 355     //_loop.map(limit->_idx,limit_loop);
 356     // Fall into next case
 357   case BoolTest::gt: {          // Maybe convert to '!=' case
 358     if( stride_con > 0 ) return NULL; // count up loop rolls through MININT
 359     Node *range = gvn->transform(new (C, 3) SubINode(limit,init_trip));
 360     set_subtree_ctrl( range );
 361     hook->init_req(0, range);
 362 
 363     Node *bias  = gvn->transform(new (C, 3) AddINode(range,stride));
 364     set_subtree_ctrl( bias );
 365     hook->init_req(1, bias);
 366 
 367     Node *bias1 = gvn->transform(new (C, 3) AddINode(bias,one_p));
 368     set_subtree_ctrl( bias1 );
 369     hook->init_req(2, bias1);
 370 
 371     trip_count  = gvn->transform(new (C, 3) DivINode(0,bias1,stride));
 372     set_subtree_ctrl( trip_count );
 373     hook->init_req(3, trip_count);
 374     break;
 375   }
 376   }
 377 
 378   Node *span = gvn->transform(new (C, 3) MulINode(trip_count,stride));
 379   set_subtree_ctrl( span );
 380   hook->init_req(5, span);
 381 
 382   limit = gvn->transform(new (C, 3) AddINode(span,init_trip));
 383   set_subtree_ctrl( limit );
 384 
 385   // Build a canonical trip test.
 386   // Clone code, as old values may be in use.
 387   incr = incr->clone();
 388   incr->set_req(1,phi);
 389   incr->set_req(2,stride);
 390   incr = _igvn.register_new_node_with_optimizer(incr);
 391   set_early_ctrl( incr );
 392   _igvn.hash_delete(phi);
 393   phi->set_req_X( LoopNode::LoopBackControl, incr, &_igvn );
 394 
 395   // If phi type is more restrictive than Int, raise to
 396   // Int to prevent (almost) infinite recursion in igvn
 397   // which can only handle integer types for constants or minint..maxint.
 398   if (!TypeInt::INT->higher_equal(phi->bottom_type())) {
 399     Node* nphi = PhiNode::make(phi->in(0), phi->in(LoopNode::EntryControl), TypeInt::INT);
 400     nphi->set_req(LoopNode::LoopBackControl, phi->in(LoopNode::LoopBackControl));
 401     nphi = _igvn.register_new_node_with_optimizer(nphi);
 402     set_ctrl(nphi, get_ctrl(phi));
 403     _igvn.subsume_node(phi, nphi);
 404     phi = nphi->as_Phi();
 405   }
 406   cmp = cmp->clone();
 407   cmp->set_req(1,incr);
 408   cmp->set_req(2,limit);
 409   cmp = _igvn.register_new_node_with_optimizer(cmp);
 410   set_ctrl(cmp, iff->in(0));
 411 
 412   Node *tmp = test->clone();
 413   assert( tmp->is_Bool(), "" );
 414   test = (BoolNode*)tmp;
 415   (*(BoolTest*)&test->_test)._test = bt; //BoolTest::ne;
 416   test->set_req(1,cmp);
 417   _igvn.register_new_node_with_optimizer(test);
 418   set_ctrl(test, iff->in(0));
 419   // If the exit test is dead, STOP!
 420   if( test == NULL ) return NULL;
 421   _igvn.hash_delete(iff);
 422   iff->set_req_X( 1, test, &_igvn );
 423 
 424   // Replace the old IfNode with a new LoopEndNode
 425   Node *lex = _igvn.register_new_node_with_optimizer(new (C, 2) CountedLoopEndNode( iff->in(0), iff->in(1), cl_prob, iff->as_If()->_fcnt ));
 426   IfNode *le = lex->as_If();
 427   uint dd = dom_depth(iff);
 428   set_idom(le, le->in(0), dd); // Update dominance for loop exit
 429   set_loop(le, loop);
 430 
 431   // Get the loop-exit control
 432   Node *if_f = iff->as_If()->proj_out(!(iftrue_op == Op_IfTrue));
 433 
 434   // Need to swap loop-exit and loop-back control?
 435   if( iftrue_op == Op_IfFalse ) {
 436     Node *ift2=_igvn.register_new_node_with_optimizer(new (C, 1) IfTrueNode (le));
 437     Node *iff2=_igvn.register_new_node_with_optimizer(new (C, 1) IfFalseNode(le));
 438 
 439     loop->_tail = back_control = ift2;
 440     set_loop(ift2, loop);
 441     set_loop(iff2, get_loop(if_f));
 442 
 443     // Lazy update of 'get_ctrl' mechanism.
 444     lazy_replace_proj( if_f  , iff2 );
 445     lazy_replace_proj( iftrue, ift2 );
 446 
 447     // Swap names
 448     if_f   = iff2;
 449     iftrue = ift2;
 450   } else {
 451     _igvn.hash_delete(if_f  );
 452     _igvn.hash_delete(iftrue);
 453     if_f  ->set_req_X( 0, le, &_igvn );
 454     iftrue->set_req_X( 0, le, &_igvn );
 455   }
 456 
 457   set_idom(iftrue, le, dd+1);
 458   set_idom(if_f,   le, dd+1);
 459 
 460   // Now setup a new CountedLoopNode to replace the existing LoopNode
 461   CountedLoopNode *l = new (C, 3) CountedLoopNode(init_control, back_control);
 462   // The following assert is approximately true, and defines the intention
 463   // of can_be_counted_loop.  It fails, however, because phase->type
 464   // is not yet initialized for this loop and its parts.
 465   //assert(l->can_be_counted_loop(this), "sanity");
 466   _igvn.register_new_node_with_optimizer(l);
 467   set_loop(l, loop);
 468   loop->_head = l;
 469   // Fix all data nodes placed at the old loop head.
 470   // Uses the lazy-update mechanism of 'get_ctrl'.
 471   lazy_replace( x, l );
 472   set_idom(l, init_control, dom_depth(x));
 473 
 474   // Check for immediately preceding SafePoint and remove
 475   Node *sfpt2 = le->in(0);
 476   if( sfpt2->Opcode() == Op_SafePoint && is_deleteable_safept(sfpt2))
 477     lazy_replace( sfpt2, sfpt2->in(TypeFunc::Control));
 478 
 479   // Free up intermediate goo
 480   _igvn.remove_dead_node(hook);
 481 
 482   C->print_method("After CountedLoop", 3);
 483 
 484   // Return trip counter
 485   return trip_count;
 486 }
 487 
 488 
 489 //------------------------------Ideal------------------------------------------
 490 // Return a node which is more "ideal" than the current node.
 491 // Attempt to convert into a counted-loop.
 492 Node *LoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 493   if (!can_be_counted_loop(phase)) {
 494     phase->C->set_major_progress();
 495   }
 496   return RegionNode::Ideal(phase, can_reshape);
 497 }
 498 
 499 
 500 //=============================================================================
 501 //------------------------------Ideal------------------------------------------
 502 // Return a node which is more "ideal" than the current node.
 503 // Attempt to convert into a counted-loop.
 504 Node *CountedLoopNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 505   return RegionNode::Ideal(phase, can_reshape);
 506 }
 507 
 508 //------------------------------dump_spec--------------------------------------
 509 // Dump special per-node info
 510 #ifndef PRODUCT
 511 void CountedLoopNode::dump_spec(outputStream *st) const {
 512   LoopNode::dump_spec(st);
 513   if( stride_is_con() ) {
 514     st->print("stride: %d ",stride_con());
 515   } else {
 516     st->print("stride: not constant ");
 517   }
 518   if( is_pre_loop () ) st->print("pre of N%d" , _main_idx );
 519   if( is_main_loop() ) st->print("main of N%d", _idx );
 520   if( is_post_loop() ) st->print("post of N%d", _main_idx );
 521 }
 522 #endif
 523 
 524 //=============================================================================
 525 int CountedLoopEndNode::stride_con() const {
 526   return stride()->bottom_type()->is_int()->get_con();
 527 }
 528 
 529 
 530 //----------------------match_incr_with_optional_truncation--------------------
 531 // Match increment with optional truncation:
 532 // CHAR: (i+1)&0x7fff, BYTE: ((i+1)<<8)>>8, or SHORT: ((i+1)<<16)>>16
 533 // Return NULL for failure. Success returns the increment node.
 534 Node* CountedLoopNode::match_incr_with_optional_truncation(
 535                       Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type) {
 536   // Quick cutouts:
 537   if (expr == NULL || expr->req() != 3)  return false;
 538 
 539   Node *t1 = NULL;
 540   Node *t2 = NULL;
 541   const TypeInt* trunc_t = TypeInt::INT;
 542   Node* n1 = expr;
 543   int   n1op = n1->Opcode();
 544 
 545   // Try to strip (n1 & M) or (n1 << N >> N) from n1.
 546   if (n1op == Op_AndI &&
 547       n1->in(2)->is_Con() &&
 548       n1->in(2)->bottom_type()->is_int()->get_con() == 0x7fff) {
 549     // %%% This check should match any mask of 2**K-1.
 550     t1 = n1;
 551     n1 = t1->in(1);
 552     n1op = n1->Opcode();
 553     trunc_t = TypeInt::CHAR;
 554   } else if (n1op == Op_RShiftI &&
 555              n1->in(1) != NULL &&
 556              n1->in(1)->Opcode() == Op_LShiftI &&
 557              n1->in(2) == n1->in(1)->in(2) &&
 558              n1->in(2)->is_Con()) {
 559     jint shift = n1->in(2)->bottom_type()->is_int()->get_con();
 560     // %%% This check should match any shift in [1..31].
 561     if (shift == 16 || shift == 8) {
 562       t1 = n1;
 563       t2 = t1->in(1);
 564       n1 = t2->in(1);
 565       n1op = n1->Opcode();
 566       if (shift == 16) {
 567         trunc_t = TypeInt::SHORT;
 568       } else if (shift == 8) {
 569         trunc_t = TypeInt::BYTE;
 570       }
 571     }
 572   }
 573 
 574   // If (maybe after stripping) it is an AddI, we won:
 575   if (n1op == Op_AddI) {
 576     *trunc1 = t1;
 577     *trunc2 = t2;
 578     *trunc_type = trunc_t;
 579     return n1;
 580   }
 581 
 582   // failed
 583   return NULL;
 584 }
 585 
 586 
 587 //------------------------------filtered_type--------------------------------
 588 // Return a type based on condition control flow
 589 // A successful return will be a type that is restricted due
 590 // to a series of dominating if-tests, such as:
 591 //    if (i < 10) {
 592 //       if (i > 0) {
 593 //          here: "i" type is [1..10)
 594 //       }
 595 //    }
 596 // or a control flow merge
 597 //    if (i < 10) {
 598 //       do {
 599 //          phi( , ) -- at top of loop type is [min_int..10)
 600 //         i = ?
 601 //       } while ( i < 10)
 602 //
 603 const TypeInt* PhaseIdealLoop::filtered_type( Node *n, Node* n_ctrl) {
 604   assert(n && n->bottom_type()->is_int(), "must be int");
 605   const TypeInt* filtered_t = NULL;
 606   if (!n->is_Phi()) {
 607     assert(n_ctrl != NULL || n_ctrl == C->top(), "valid control");
 608     filtered_t = filtered_type_from_dominators(n, n_ctrl);
 609 
 610   } else {
 611     Node* phi    = n->as_Phi();
 612     Node* region = phi->in(0);
 613     assert(n_ctrl == NULL || n_ctrl == region, "ctrl parameter must be region");
 614     if (region && region != C->top()) {
 615       for (uint i = 1; i < phi->req(); i++) {
 616         Node* val   = phi->in(i);
 617         Node* use_c = region->in(i);
 618         const TypeInt* val_t = filtered_type_from_dominators(val, use_c);
 619         if (val_t != NULL) {
 620           if (filtered_t == NULL) {
 621             filtered_t = val_t;
 622           } else {
 623             filtered_t = filtered_t->meet(val_t)->is_int();
 624           }
 625         }
 626       }
 627     }
 628   }
 629   const TypeInt* n_t = _igvn.type(n)->is_int();
 630   if (filtered_t != NULL) {
 631     n_t = n_t->join(filtered_t)->is_int();
 632   }
 633   return n_t;
 634 }
 635 
 636 
 637 //------------------------------filtered_type_from_dominators--------------------------------
 638 // Return a possibly more restrictive type for val based on condition control flow of dominators
 639 const TypeInt* PhaseIdealLoop::filtered_type_from_dominators( Node* val, Node *use_ctrl) {
 640   if (val->is_Con()) {
 641      return val->bottom_type()->is_int();
 642   }
 643   uint if_limit = 10; // Max number of dominating if's visited
 644   const TypeInt* rtn_t = NULL;
 645 
 646   if (use_ctrl && use_ctrl != C->top()) {
 647     Node* val_ctrl = get_ctrl(val);
 648     uint val_dom_depth = dom_depth(val_ctrl);
 649     Node* pred = use_ctrl;
 650     uint if_cnt = 0;
 651     while (if_cnt < if_limit) {
 652       if ((pred->Opcode() == Op_IfTrue || pred->Opcode() == Op_IfFalse)) {
 653         if_cnt++;
 654         const TypeInt* if_t = IfNode::filtered_int_type(&_igvn, val, pred);
 655         if (if_t != NULL) {
 656           if (rtn_t == NULL) {
 657             rtn_t = if_t;
 658           } else {
 659             rtn_t = rtn_t->join(if_t)->is_int();
 660           }
 661         }
 662       }
 663       pred = idom(pred);
 664       if (pred == NULL || pred == C->top()) {
 665         break;
 666       }
 667       // Stop if going beyond definition block of val
 668       if (dom_depth(pred) < val_dom_depth) {
 669         break;
 670       }
 671     }
 672   }
 673   return rtn_t;
 674 }
 675 
 676 
 677 //------------------------------dump_spec--------------------------------------
 678 // Dump special per-node info
 679 #ifndef PRODUCT
 680 void CountedLoopEndNode::dump_spec(outputStream *st) const {
 681   if( in(TestValue)->is_Bool() ) {
 682     BoolTest bt( test_trip()); // Added this for g++.
 683 
 684     st->print("[");
 685     bt.dump_on(st);
 686     st->print("]");
 687   }
 688   st->print(" ");
 689   IfNode::dump_spec(st);
 690 }
 691 #endif
 692 
 693 //=============================================================================
 694 //------------------------------is_member--------------------------------------
 695 // Is 'l' a member of 'this'?
 696 int IdealLoopTree::is_member( const IdealLoopTree *l ) const {
 697   while( l->_nest > _nest ) l = l->_parent;
 698   return l == this;
 699 }
 700 
 701 //------------------------------set_nest---------------------------------------
 702 // Set loop tree nesting depth.  Accumulate _has_call bits.
 703 int IdealLoopTree::set_nest( uint depth ) {
 704   _nest = depth;
 705   int bits = _has_call;
 706   if( _child ) bits |= _child->set_nest(depth+1);
 707   if( bits ) _has_call = 1;
 708   if( _next  ) bits |= _next ->set_nest(depth  );
 709   return bits;
 710 }
 711 
 712 //------------------------------split_fall_in----------------------------------
 713 // Split out multiple fall-in edges from the loop header.  Move them to a
 714 // private RegionNode before the loop.  This becomes the loop landing pad.
 715 void IdealLoopTree::split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt ) {
 716   PhaseIterGVN &igvn = phase->_igvn;
 717   uint i;
 718 
 719   // Make a new RegionNode to be the landing pad.
 720   Node *landing_pad = new (phase->C, fall_in_cnt+1) RegionNode( fall_in_cnt+1 );
 721   phase->set_loop(landing_pad,_parent);
 722   // Gather all the fall-in control paths into the landing pad
 723   uint icnt = fall_in_cnt;
 724   uint oreq = _head->req();
 725   for( i = oreq-1; i>0; i-- )
 726     if( !phase->is_member( this, _head->in(i) ) )
 727       landing_pad->set_req(icnt--,_head->in(i));
 728 
 729   // Peel off PhiNode edges as well
 730   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
 731     Node *oj = _head->fast_out(j);
 732     if( oj->is_Phi() ) {
 733       PhiNode* old_phi = oj->as_Phi();
 734       assert( old_phi->region() == _head, "" );
 735       igvn.hash_delete(old_phi);   // Yank from hash before hacking edges
 736       Node *p = PhiNode::make_blank(landing_pad, old_phi);
 737       uint icnt = fall_in_cnt;
 738       for( i = oreq-1; i>0; i-- ) {
 739         if( !phase->is_member( this, _head->in(i) ) ) {
 740           p->init_req(icnt--, old_phi->in(i));
 741           // Go ahead and clean out old edges from old phi
 742           old_phi->del_req(i);
 743         }
 744       }
 745       // Search for CSE's here, because ZKM.jar does a lot of
 746       // loop hackery and we need to be a little incremental
 747       // with the CSE to avoid O(N^2) node blow-up.
 748       Node *p2 = igvn.hash_find_insert(p); // Look for a CSE
 749       if( p2 ) {                // Found CSE
 750         p->destruct();          // Recover useless new node
 751         p = p2;                 // Use old node
 752       } else {
 753         igvn.register_new_node_with_optimizer(p, old_phi);
 754       }
 755       // Make old Phi refer to new Phi.
 756       old_phi->add_req(p);
 757       // Check for the special case of making the old phi useless and
 758       // disappear it.  In JavaGrande I have a case where this useless
 759       // Phi is the loop limit and prevents recognizing a CountedLoop
 760       // which in turn prevents removing an empty loop.
 761       Node *id_old_phi = old_phi->Identity( &igvn );
 762       if( id_old_phi != old_phi ) { // Found a simple identity?
 763         // Note that I cannot call 'subsume_node' here, because
 764         // that will yank the edge from old_phi to the Region and
 765         // I'm mid-iteration over the Region's uses.
 766         for (DUIterator_Last imin, i = old_phi->last_outs(imin); i >= imin; ) {
 767           Node* use = old_phi->last_out(i);
 768           igvn.hash_delete(use);
 769           igvn._worklist.push(use);
 770           uint uses_found = 0;
 771           for (uint j = 0; j < use->len(); j++) {
 772             if (use->in(j) == old_phi) {
 773               if (j < use->req()) use->set_req (j, id_old_phi);
 774               else                use->set_prec(j, id_old_phi);
 775               uses_found++;
 776             }
 777           }
 778           i -= uses_found;    // we deleted 1 or more copies of this edge
 779         }
 780       }
 781       igvn._worklist.push(old_phi);
 782     }
 783   }
 784   // Finally clean out the fall-in edges from the RegionNode
 785   for( i = oreq-1; i>0; i-- ) {
 786     if( !phase->is_member( this, _head->in(i) ) ) {
 787       _head->del_req(i);
 788     }
 789   }
 790   // Transform landing pad
 791   igvn.register_new_node_with_optimizer(landing_pad, _head);
 792   // Insert landing pad into the header
 793   _head->add_req(landing_pad);
 794 }
 795 
 796 //------------------------------split_outer_loop-------------------------------
 797 // Split out the outermost loop from this shared header.
 798 void IdealLoopTree::split_outer_loop( PhaseIdealLoop *phase ) {
 799   PhaseIterGVN &igvn = phase->_igvn;
 800 
 801   // Find index of outermost loop; it should also be my tail.
 802   uint outer_idx = 1;
 803   while( _head->in(outer_idx) != _tail ) outer_idx++;
 804 
 805   // Make a LoopNode for the outermost loop.
 806   Node *ctl = _head->in(LoopNode::EntryControl);
 807   Node *outer = new (phase->C, 3) LoopNode( ctl, _head->in(outer_idx) );
 808   outer = igvn.register_new_node_with_optimizer(outer, _head);
 809   phase->set_created_loop_node();
 810   // Outermost loop falls into '_head' loop
 811   _head->set_req(LoopNode::EntryControl, outer);
 812   _head->del_req(outer_idx);
 813   // Split all the Phis up between '_head' loop and 'outer' loop.
 814   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
 815     Node *out = _head->fast_out(j);
 816     if( out->is_Phi() ) {
 817       PhiNode *old_phi = out->as_Phi();
 818       assert( old_phi->region() == _head, "" );
 819       Node *phi = PhiNode::make_blank(outer, old_phi);
 820       phi->init_req(LoopNode::EntryControl,    old_phi->in(LoopNode::EntryControl));
 821       phi->init_req(LoopNode::LoopBackControl, old_phi->in(outer_idx));
 822       phi = igvn.register_new_node_with_optimizer(phi, old_phi);
 823       // Make old Phi point to new Phi on the fall-in path
 824       igvn.hash_delete(old_phi);
 825       old_phi->set_req(LoopNode::EntryControl, phi);
 826       old_phi->del_req(outer_idx);
 827       igvn._worklist.push(old_phi);
 828     }
 829   }
 830 
 831   // Use the new loop head instead of the old shared one
 832   _head = outer;
 833   phase->set_loop(_head, this);
 834 }
 835 
 836 //------------------------------fix_parent-------------------------------------
 837 static void fix_parent( IdealLoopTree *loop, IdealLoopTree *parent ) {
 838   loop->_parent = parent;
 839   if( loop->_child ) fix_parent( loop->_child, loop   );
 840   if( loop->_next  ) fix_parent( loop->_next , parent );
 841 }
 842 
 843 //------------------------------estimate_path_freq-----------------------------
 844 static float estimate_path_freq( Node *n ) {
 845   // Try to extract some path frequency info
 846   IfNode *iff;
 847   for( int i = 0; i < 50; i++ ) { // Skip through a bunch of uncommon tests
 848     uint nop = n->Opcode();
 849     if( nop == Op_SafePoint ) {   // Skip any safepoint
 850       n = n->in(0);
 851       continue;
 852     }
 853     if( nop == Op_CatchProj ) {   // Get count from a prior call
 854       // Assume call does not always throw exceptions: means the call-site
 855       // count is also the frequency of the fall-through path.
 856       assert( n->is_CatchProj(), "" );
 857       if( ((CatchProjNode*)n)->_con != CatchProjNode::fall_through_index )
 858         return 0.0f;            // Assume call exception path is rare
 859       Node *call = n->in(0)->in(0)->in(0);
 860       assert( call->is_Call(), "expect a call here" );
 861       const JVMState *jvms = ((CallNode*)call)->jvms();
 862       ciMethodData* methodData = jvms->method()->method_data();
 863       if (!methodData->is_mature())  return 0.0f; // No call-site data
 864       ciProfileData* data = methodData->bci_to_data(jvms->bci());
 865       if ((data == NULL) || !data->is_CounterData()) {
 866         // no call profile available, try call's control input
 867         n = n->in(0);
 868         continue;
 869       }
 870       return data->as_CounterData()->count()/FreqCountInvocations;
 871     }
 872     // See if there's a gating IF test
 873     Node *n_c = n->in(0);
 874     if( !n_c->is_If() ) break;       // No estimate available
 875     iff = n_c->as_If();
 876     if( iff->_fcnt != COUNT_UNKNOWN )   // Have a valid count?
 877       // Compute how much count comes on this path
 878       return ((nop == Op_IfTrue) ? iff->_prob : 1.0f - iff->_prob) * iff->_fcnt;
 879     // Have no count info.  Skip dull uncommon-trap like branches.
 880     if( (nop == Op_IfTrue  && iff->_prob < PROB_LIKELY_MAG(5)) ||
 881         (nop == Op_IfFalse && iff->_prob > PROB_UNLIKELY_MAG(5)) )
 882       break;
 883     // Skip through never-taken branch; look for a real loop exit.
 884     n = iff->in(0);
 885   }
 886   return 0.0f;                  // No estimate available
 887 }
 888 
 889 //------------------------------merge_many_backedges---------------------------
 890 // Merge all the backedges from the shared header into a private Region.
 891 // Feed that region as the one backedge to this loop.
 892 void IdealLoopTree::merge_many_backedges( PhaseIdealLoop *phase ) {
 893   uint i;
 894 
 895   // Scan for the top 2 hottest backedges
 896   float hotcnt = 0.0f;
 897   float warmcnt = 0.0f;
 898   uint hot_idx = 0;
 899   // Loop starts at 2 because slot 1 is the fall-in path
 900   for( i = 2; i < _head->req(); i++ ) {
 901     float cnt = estimate_path_freq(_head->in(i));
 902     if( cnt > hotcnt ) {       // Grab hottest path
 903       warmcnt = hotcnt;
 904       hotcnt = cnt;
 905       hot_idx = i;
 906     } else if( cnt > warmcnt ) { // And 2nd hottest path
 907       warmcnt = cnt;
 908     }
 909   }
 910 
 911   // See if the hottest backedge is worthy of being an inner loop
 912   // by being much hotter than the next hottest backedge.
 913   if( hotcnt <= 0.0001 ||
 914       hotcnt < 2.0*warmcnt ) hot_idx = 0;// No hot backedge
 915 
 916   // Peel out the backedges into a private merge point; peel
 917   // them all except optionally hot_idx.
 918   PhaseIterGVN &igvn = phase->_igvn;
 919 
 920   Node *hot_tail = NULL;
 921   // Make a Region for the merge point
 922   Node *r = new (phase->C, 1) RegionNode(1);
 923   for( i = 2; i < _head->req(); i++ ) {
 924     if( i != hot_idx )
 925       r->add_req( _head->in(i) );
 926     else hot_tail = _head->in(i);
 927   }
 928   igvn.register_new_node_with_optimizer(r, _head);
 929   // Plug region into end of loop _head, followed by hot_tail
 930   while( _head->req() > 3 ) _head->del_req( _head->req()-1 );
 931   _head->set_req(2, r);
 932   if( hot_idx ) _head->add_req(hot_tail);
 933 
 934   // Split all the Phis up between '_head' loop and the Region 'r'
 935   for (DUIterator_Fast jmax, j = _head->fast_outs(jmax); j < jmax; j++) {
 936     Node *out = _head->fast_out(j);
 937     if( out->is_Phi() ) {
 938       PhiNode* n = out->as_Phi();
 939       igvn.hash_delete(n);      // Delete from hash before hacking edges
 940       Node *hot_phi = NULL;
 941       Node *phi = new (phase->C, r->req()) PhiNode(r, n->type(), n->adr_type());
 942       // Check all inputs for the ones to peel out
 943       uint j = 1;
 944       for( uint i = 2; i < n->req(); i++ ) {
 945         if( i != hot_idx )
 946           phi->set_req( j++, n->in(i) );
 947         else hot_phi = n->in(i);
 948       }
 949       // Register the phi but do not transform until whole place transforms
 950       igvn.register_new_node_with_optimizer(phi, n);
 951       // Add the merge phi to the old Phi
 952       while( n->req() > 3 ) n->del_req( n->req()-1 );
 953       n->set_req(2, phi);
 954       if( hot_idx ) n->add_req(hot_phi);
 955     }
 956   }
 957 
 958 
 959   // Insert a new IdealLoopTree inserted below me.  Turn it into a clone
 960   // of self loop tree.  Turn self into a loop headed by _head and with
 961   // tail being the new merge point.
 962   IdealLoopTree *ilt = new IdealLoopTree( phase, _head, _tail );
 963   phase->set_loop(_tail,ilt);   // Adjust tail
 964   _tail = r;                    // Self's tail is new merge point
 965   phase->set_loop(r,this);
 966   ilt->_child = _child;         // New guy has my children
 967   _child = ilt;                 // Self has new guy as only child
 968   ilt->_parent = this;          // new guy has self for parent
 969   ilt->_nest = _nest;           // Same nesting depth (for now)
 970 
 971   // Starting with 'ilt', look for child loop trees using the same shared
 972   // header.  Flatten these out; they will no longer be loops in the end.
 973   IdealLoopTree **pilt = &_child;
 974   while( ilt ) {
 975     if( ilt->_head == _head ) {
 976       uint i;
 977       for( i = 2; i < _head->req(); i++ )
 978         if( _head->in(i) == ilt->_tail )
 979           break;                // Still a loop
 980       if( i == _head->req() ) { // No longer a loop
 981         // Flatten ilt.  Hang ilt's "_next" list from the end of
 982         // ilt's '_child' list.  Move the ilt's _child up to replace ilt.
 983         IdealLoopTree **cp = &ilt->_child;
 984         while( *cp ) cp = &(*cp)->_next;   // Find end of child list
 985         *cp = ilt->_next;       // Hang next list at end of child list
 986         *pilt = ilt->_child;    // Move child up to replace ilt
 987         ilt->_head = NULL;      // Flag as a loop UNIONED into parent
 988         ilt = ilt->_child;      // Repeat using new ilt
 989         continue;               // do not advance over ilt->_child
 990       }
 991       assert( ilt->_tail == hot_tail, "expected to only find the hot inner loop here" );
 992       phase->set_loop(_head,ilt);
 993     }
 994     pilt = &ilt->_child;        // Advance to next
 995     ilt = *pilt;
 996   }
 997 
 998   if( _child ) fix_parent( _child, this );
 999 }
1000 
1001 //------------------------------beautify_loops---------------------------------
1002 // Split shared headers and insert loop landing pads.
1003 // Insert a LoopNode to replace the RegionNode.
1004 // Return TRUE if loop tree is structurally changed.
1005 bool IdealLoopTree::beautify_loops( PhaseIdealLoop *phase ) {
1006   bool result = false;
1007   // Cache parts in locals for easy
1008   PhaseIterGVN &igvn = phase->_igvn;
1009 
1010   phase->C->print_method("Before beautify loops", 3);
1011 
1012   igvn.hash_delete(_head);      // Yank from hash before hacking edges
1013 
1014   // Check for multiple fall-in paths.  Peel off a landing pad if need be.
1015   int fall_in_cnt = 0;
1016   for( uint i = 1; i < _head->req(); i++ )
1017     if( !phase->is_member( this, _head->in(i) ) )
1018       fall_in_cnt++;
1019   assert( fall_in_cnt, "at least 1 fall-in path" );
1020   if( fall_in_cnt > 1 )         // Need a loop landing pad to merge fall-ins
1021     split_fall_in( phase, fall_in_cnt );
1022 
1023   // Swap inputs to the _head and all Phis to move the fall-in edge to
1024   // the left.
1025   fall_in_cnt = 1;
1026   while( phase->is_member( this, _head->in(fall_in_cnt) ) )
1027     fall_in_cnt++;
1028   if( fall_in_cnt > 1 ) {
1029     // Since I am just swapping inputs I do not need to update def-use info
1030     Node *tmp = _head->in(1);
1031     _head->set_req( 1, _head->in(fall_in_cnt) );
1032     _head->set_req( fall_in_cnt, tmp );
1033     // Swap also all Phis
1034     for (DUIterator_Fast imax, i = _head->fast_outs(imax); i < imax; i++) {
1035       Node* phi = _head->fast_out(i);
1036       if( phi->is_Phi() ) {
1037         igvn.hash_delete(phi); // Yank from hash before hacking edges
1038         tmp = phi->in(1);
1039         phi->set_req( 1, phi->in(fall_in_cnt) );
1040         phi->set_req( fall_in_cnt, tmp );
1041       }
1042     }
1043   }
1044   assert( !phase->is_member( this, _head->in(1) ), "left edge is fall-in" );
1045   assert(  phase->is_member( this, _head->in(2) ), "right edge is loop" );
1046 
1047   // If I am a shared header (multiple backedges), peel off the many
1048   // backedges into a private merge point and use the merge point as
1049   // the one true backedge.
1050   if( _head->req() > 3 ) {
1051     // Merge the many backedges into a single backedge.
1052     merge_many_backedges( phase );
1053     result = true;
1054   }
1055 
1056   // If I am a shared header (multiple backedges), peel off myself loop.
1057   // I better be the outermost loop.
1058   if( _head->req() > 3 ) {
1059     split_outer_loop( phase );
1060     result = true;
1061 
1062   } else if( !_head->is_Loop() && !_irreducible ) {
1063     // Make a new LoopNode to replace the old loop head
1064     Node *l = new (phase->C, 3) LoopNode( _head->in(1), _head->in(2) );
1065     l = igvn.register_new_node_with_optimizer(l, _head);
1066     phase->set_created_loop_node();
1067     // Go ahead and replace _head
1068     phase->_igvn.subsume_node( _head, l );
1069     _head = l;
1070     phase->set_loop(_head, this);
1071     for (DUIterator_Fast imax, i = l->fast_outs(imax); i < imax; i++)
1072       phase->_igvn.add_users_to_worklist(l->fast_out(i));
1073   }
1074 
1075   // Now recursively beautify nested loops
1076   if( _child ) result |= _child->beautify_loops( phase );
1077   if( _next  ) result |= _next ->beautify_loops( phase );
1078   return result;
1079 }
1080 
1081 //------------------------------allpaths_check_safepts----------------------------
1082 // Allpaths backwards scan from loop tail, terminating each path at first safepoint
1083 // encountered.  Helper for check_safepts.
1084 void IdealLoopTree::allpaths_check_safepts(VectorSet &visited, Node_List &stack) {
1085   assert(stack.size() == 0, "empty stack");
1086   stack.push(_tail);
1087   visited.Clear();
1088   visited.set(_tail->_idx);
1089   while (stack.size() > 0) {
1090     Node* n = stack.pop();
1091     if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1092       // Terminate this path
1093     } else if (n->Opcode() == Op_SafePoint) {
1094       if (_phase->get_loop(n) != this) {
1095         if (_required_safept == NULL) _required_safept = new Node_List();
1096         _required_safept->push(n);  // save the one closest to the tail
1097       }
1098       // Terminate this path
1099     } else {
1100       uint start = n->is_Region() ? 1 : 0;
1101       uint end   = n->is_Region() && !n->is_Loop() ? n->req() : start + 1;
1102       for (uint i = start; i < end; i++) {
1103         Node* in = n->in(i);
1104         assert(in->is_CFG(), "must be");
1105         if (!visited.test_set(in->_idx) && is_member(_phase->get_loop(in))) {
1106           stack.push(in);
1107         }
1108       }
1109     }
1110   }
1111 }
1112 
1113 //------------------------------check_safepts----------------------------
1114 // Given dominators, try to find loops with calls that must always be
1115 // executed (call dominates loop tail).  These loops do not need non-call
1116 // safepoints (ncsfpt).
1117 //
1118 // A complication is that a safepoint in a inner loop may be needed
1119 // by an outer loop. In the following, the inner loop sees it has a
1120 // call (block 3) on every path from the head (block 2) to the
1121 // backedge (arc 3->2).  So it deletes the ncsfpt (non-call safepoint)
1122 // in block 2, _but_ this leaves the outer loop without a safepoint.
1123 //
1124 //          entry  0
1125 //                 |
1126 //                 v
1127 // outer 1,2    +->1
1128 //              |  |
1129 //              |  v
1130 //              |  2<---+  ncsfpt in 2
1131 //              |_/|\   |
1132 //                 | v  |
1133 // inner 2,3      /  3  |  call in 3
1134 //               /   |  |
1135 //              v    +--+
1136 //        exit  4
1137 //
1138 //
1139 // This method creates a list (_required_safept) of ncsfpt nodes that must
1140 // be protected is created for each loop. When a ncsfpt maybe deleted, it
1141 // is first looked for in the lists for the outer loops of the current loop.
1142 //
1143 // The insights into the problem:
1144 //  A) counted loops are okay
1145 //  B) innermost loops are okay (only an inner loop can delete
1146 //     a ncsfpt needed by an outer loop)
1147 //  C) a loop is immune from an inner loop deleting a safepoint
1148 //     if the loop has a call on the idom-path
1149 //  D) a loop is also immune if it has a ncsfpt (non-call safepoint) on the
1150 //     idom-path that is not in a nested loop
1151 //  E) otherwise, an ncsfpt on the idom-path that is nested in an inner
1152 //     loop needs to be prevented from deletion by an inner loop
1153 //
1154 // There are two analyses:
1155 //  1) The first, and cheaper one, scans the loop body from
1156 //     tail to head following the idom (immediate dominator)
1157 //     chain, looking for the cases (C,D,E) above.
1158 //     Since inner loops are scanned before outer loops, there is summary
1159 //     information about inner loops.  Inner loops can be skipped over
1160 //     when the tail of an inner loop is encountered.
1161 //
1162 //  2) The second, invoked if the first fails to find a call or ncsfpt on
1163 //     the idom path (which is rare), scans all predecessor control paths
1164 //     from the tail to the head, terminating a path when a call or sfpt
1165 //     is encountered, to find the ncsfpt's that are closest to the tail.
1166 //
1167 void IdealLoopTree::check_safepts(VectorSet &visited, Node_List &stack) {
1168   // Bottom up traversal
1169   IdealLoopTree* ch = _child;
1170   while (ch != NULL) {
1171     ch->check_safepts(visited, stack);
1172     ch = ch->_next;
1173   }
1174 
1175   if (!_head->is_CountedLoop() && !_has_sfpt && _parent != NULL && !_irreducible) {
1176     bool  has_call         = false; // call on dom-path
1177     bool  has_local_ncsfpt = false; // ncsfpt on dom-path at this loop depth
1178     Node* nonlocal_ncsfpt  = NULL;  // ncsfpt on dom-path at a deeper depth
1179     // Scan the dom-path nodes from tail to head
1180     for (Node* n = tail(); n != _head; n = _phase->idom(n)) {
1181       if (n->is_Call() && n->as_Call()->guaranteed_safepoint()) {
1182         has_call = true;
1183         _has_sfpt = 1;          // Then no need for a safept!
1184         break;
1185       } else if (n->Opcode() == Op_SafePoint) {
1186         if (_phase->get_loop(n) == this) {
1187           has_local_ncsfpt = true;
1188           break;
1189         }
1190         if (nonlocal_ncsfpt == NULL) {
1191           nonlocal_ncsfpt = n; // save the one closest to the tail
1192         }
1193       } else {
1194         IdealLoopTree* nlpt = _phase->get_loop(n);
1195         if (this != nlpt) {
1196           // If at an inner loop tail, see if the inner loop has already
1197           // recorded seeing a call on the dom-path (and stop.)  If not,
1198           // jump to the head of the inner loop.
1199           assert(is_member(nlpt), "nested loop");
1200           Node* tail = nlpt->_tail;
1201           if (tail->in(0)->is_If()) tail = tail->in(0);
1202           if (n == tail) {
1203             // If inner loop has call on dom-path, so does outer loop
1204             if (nlpt->_has_sfpt) {
1205               has_call = true;
1206               _has_sfpt = 1;
1207               break;
1208             }
1209             // Skip to head of inner loop
1210             assert(_phase->is_dominator(_head, nlpt->_head), "inner head dominated by outer head");
1211             n = nlpt->_head;
1212           }
1213         }
1214       }
1215     }
1216     // Record safept's that this loop needs preserved when an
1217     // inner loop attempts to delete it's safepoints.
1218     if (_child != NULL && !has_call && !has_local_ncsfpt) {
1219       if (nonlocal_ncsfpt != NULL) {
1220         if (_required_safept == NULL) _required_safept = new Node_List();
1221         _required_safept->push(nonlocal_ncsfpt);
1222       } else {
1223         // Failed to find a suitable safept on the dom-path.  Now use
1224         // an all paths walk from tail to head, looking for safepoints to preserve.
1225         allpaths_check_safepts(visited, stack);
1226       }
1227     }
1228   }
1229 }
1230 
1231 //---------------------------is_deleteable_safept----------------------------
1232 // Is safept not required by an outer loop?
1233 bool PhaseIdealLoop::is_deleteable_safept(Node* sfpt) {
1234   assert(sfpt->Opcode() == Op_SafePoint, "");
1235   IdealLoopTree* lp = get_loop(sfpt)->_parent;
1236   while (lp != NULL) {
1237     Node_List* sfpts = lp->_required_safept;
1238     if (sfpts != NULL) {
1239       for (uint i = 0; i < sfpts->size(); i++) {
1240         if (sfpt == sfpts->at(i))
1241           return false;
1242       }
1243     }
1244     lp = lp->_parent;
1245   }
1246   return true;
1247 }
1248 
1249 //------------------------------counted_loop-----------------------------------
1250 // Convert to counted loops where possible
1251 void IdealLoopTree::counted_loop( PhaseIdealLoop *phase ) {
1252 
1253   // For grins, set the inner-loop flag here
1254   if( !_child ) {
1255     if( _head->is_Loop() ) _head->as_Loop()->set_inner_loop();
1256   }
1257 
1258   if( _head->is_CountedLoop() ||
1259       phase->is_counted_loop( _head, this ) ) {
1260     _has_sfpt = 1;              // Indicate we do not need a safepoint here
1261 
1262     // Look for a safepoint to remove
1263     for (Node* n = tail(); n != _head; n = phase->idom(n))
1264       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
1265           phase->is_deleteable_safept(n))
1266         phase->lazy_replace(n,n->in(TypeFunc::Control));
1267 
1268     CountedLoopNode *cl = _head->as_CountedLoop();
1269     Node *incr = cl->incr();
1270     if( !incr ) return;         // Dead loop?
1271     Node *init = cl->init_trip();
1272     Node *phi  = cl->phi();
1273     // protect against stride not being a constant
1274     if( !cl->stride_is_con() ) return;
1275     int stride_con = cl->stride_con();
1276 
1277     // Look for induction variables
1278 
1279     // Visit all children, looking for Phis
1280     for (DUIterator i = cl->outs(); cl->has_out(i); i++) {
1281       Node *out = cl->out(i);
1282       // Look for other phis (secondary IVs). Skip dead ones
1283       if (!out->is_Phi() || out == phi || !phase->has_node(out)) continue;
1284       PhiNode* phi2 = out->as_Phi();
1285       Node *incr2 = phi2->in( LoopNode::LoopBackControl );
1286       // Look for induction variables of the form:  X += constant
1287       if( phi2->region() != _head ||
1288           incr2->req() != 3 ||
1289           incr2->in(1) != phi2 ||
1290           incr2 == incr ||
1291           incr2->Opcode() != Op_AddI ||
1292           !incr2->in(2)->is_Con() )
1293         continue;
1294 
1295       // Check for parallel induction variable (parallel to trip counter)
1296       // via an affine function.  In particular, count-down loops with
1297       // count-up array indices are common. We only RCE references off
1298       // the trip-counter, so we need to convert all these to trip-counter
1299       // expressions.
1300       Node *init2 = phi2->in( LoopNode::EntryControl );
1301       int stride_con2 = incr2->in(2)->get_int();
1302 
1303       // The general case here gets a little tricky.  We want to find the
1304       // GCD of all possible parallel IV's and make a new IV using this
1305       // GCD for the loop.  Then all possible IVs are simple multiples of
1306       // the GCD.  In practice, this will cover very few extra loops.
1307       // Instead we require 'stride_con2' to be a multiple of 'stride_con',
1308       // where +/-1 is the common case, but other integer multiples are
1309       // also easy to handle.
1310       int ratio_con = stride_con2/stride_con;
1311 
1312       if( ratio_con * stride_con == stride_con2 ) { // Check for exact
1313         // Convert to using the trip counter.  The parallel induction
1314         // variable differs from the trip counter by a loop-invariant
1315         // amount, the difference between their respective initial values.
1316         // It is scaled by the 'ratio_con'.
1317         Compile* C = phase->C;
1318         Node* ratio = phase->_igvn.intcon(ratio_con);
1319         phase->set_ctrl(ratio, C->root());
1320         Node* ratio_init = new (C, 3) MulINode(init, ratio);
1321         phase->_igvn.register_new_node_with_optimizer(ratio_init, init);
1322         phase->set_early_ctrl(ratio_init);
1323         Node* diff = new (C, 3) SubINode(init2, ratio_init);
1324         phase->_igvn.register_new_node_with_optimizer(diff, init2);
1325         phase->set_early_ctrl(diff);
1326         Node* ratio_idx = new (C, 3) MulINode(phi, ratio);
1327         phase->_igvn.register_new_node_with_optimizer(ratio_idx, phi);
1328         phase->set_ctrl(ratio_idx, cl);
1329         Node* add  = new (C, 3) AddINode(ratio_idx, diff);
1330         phase->_igvn.register_new_node_with_optimizer(add);
1331         phase->set_ctrl(add, cl);
1332         phase->_igvn.hash_delete( phi2 );
1333         phase->_igvn.subsume_node( phi2, add );
1334         // Sometimes an induction variable is unused
1335         if (add->outcnt() == 0) {
1336           phase->_igvn.remove_dead_node(add);
1337         }
1338         --i; // deleted this phi; rescan starting with next position
1339         continue;
1340       }
1341     }
1342   } else if (_parent != NULL && !_irreducible) {
1343     // Not a counted loop.
1344     // Look for a safepoint on the idom-path to remove, preserving the first one
1345     bool found = false;
1346     Node* n = tail();
1347     for (; n != _head && !found; n = phase->idom(n)) {
1348       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this)
1349         found = true; // Found one
1350     }
1351     // Skip past it and delete the others
1352     for (; n != _head; n = phase->idom(n)) {
1353       if (n->Opcode() == Op_SafePoint && phase->get_loop(n) == this &&
1354           phase->is_deleteable_safept(n))
1355         phase->lazy_replace(n,n->in(TypeFunc::Control));
1356     }
1357   }
1358 
1359   // Recursively
1360   if( _child ) _child->counted_loop( phase );
1361   if( _next  ) _next ->counted_loop( phase );
1362 }
1363 
1364 #ifndef PRODUCT
1365 //------------------------------dump_head--------------------------------------
1366 // Dump 1 liner for loop header info
1367 void IdealLoopTree::dump_head( ) const {
1368   for( uint i=0; i<_nest; i++ )
1369     tty->print("  ");
1370   tty->print("Loop: N%d/N%d ",_head->_idx,_tail->_idx);
1371   if( _irreducible ) tty->print(" IRREDUCIBLE");
1372   if( _head->is_CountedLoop() ) {
1373     CountedLoopNode *cl = _head->as_CountedLoop();
1374     tty->print(" counted");
1375     if( cl->is_pre_loop () ) tty->print(" pre" );
1376     if( cl->is_main_loop() ) tty->print(" main");
1377     if( cl->is_post_loop() ) tty->print(" post");
1378   }
1379   tty->cr();
1380 }
1381 
1382 //------------------------------dump-------------------------------------------
1383 // Dump loops by loop tree
1384 void IdealLoopTree::dump( ) const {
1385   dump_head();
1386   if( _child ) _child->dump();
1387   if( _next  ) _next ->dump();
1388 }
1389 
1390 #endif
1391 
1392 static void log_loop_tree(IdealLoopTree* root, IdealLoopTree* loop, CompileLog* log) {
1393   if (loop == root) {
1394     if (loop->_child != NULL) {
1395       log->begin_head("loop_tree");
1396       log->end_head();
1397       if( loop->_child ) log_loop_tree(root, loop->_child, log);
1398       log->tail("loop_tree");
1399       assert(loop->_next == NULL, "what?");
1400     }
1401   } else {
1402     Node* head = loop->_head;
1403     log->begin_head("loop");
1404     log->print(" idx='%d' ", head->_idx);
1405     if (loop->_irreducible) log->print("irreducible='1' ");
1406     if (head->is_Loop()) {
1407       if (head->as_Loop()->is_inner_loop()) log->print("inner_loop='1' ");
1408       if (head->as_Loop()->is_partial_peel_loop()) log->print("partial_peel_loop='1' ");
1409     }
1410     if (head->is_CountedLoop()) {
1411       CountedLoopNode* cl = head->as_CountedLoop();
1412       if (cl->is_pre_loop())  log->print("pre_loop='%d' ",  cl->main_idx());
1413       if (cl->is_main_loop()) log->print("main_loop='%d' ", cl->_idx);
1414       if (cl->is_post_loop()) log->print("post_loop='%d' ",  cl->main_idx());
1415     }
1416     log->end_head();
1417     if( loop->_child ) log_loop_tree(root, loop->_child, log);
1418     log->tail("loop");
1419     if( loop->_next  ) log_loop_tree(root, loop->_next, log);
1420   }
1421 }
1422 
1423 //---------------------collect_potentially_useful_predicates-----------------------
1424 //Helper function to collect potentially useful predicates to prevent them from
1425 //being eliminated by PhaseIdealLoop::eliminate_useless_predicates
1426 void PhaseIdealLoop::collect_potentially_useful_predicates(
1427                          IdealLoopTree * loop, Unique_Node_List &useful_predicates) {
1428   if (loop->_child) { // child
1429     collect_potentially_useful_predicates(loop->_child, useful_predicates);
1430   }
1431 
1432   //self (only loops that we can apply loop predication may use their predicates)
1433   if (loop->_head->is_Loop()     &&
1434       !loop->_irreducible        &&
1435       !loop->tail()->is_top()) {
1436     LoopNode *lpn  = loop->_head->as_Loop();
1437     Node* entry = lpn->in(LoopNode::EntryControl);
1438     ProjNode *predicate_proj = find_predicate_insertion_point(entry);
1439     if (predicate_proj != NULL ) { //right pattern that can be used by loop predication
1440       assert(entry->in(0)->in(1)->in(1)->Opcode()==Op_Opaque1, "must be");
1441       useful_predicates.push(entry->in(0)->in(1)->in(1)); //good one
1442     }
1443   }
1444 
1445   if( loop->_next ) { // sibling
1446     collect_potentially_useful_predicates(loop->_next, useful_predicates);
1447   }
1448 }
1449 
1450 //------------------------eliminate_useless_predicates-----------------------------
1451 // Eliminate all inserted predicates if they could not be used by loop predication.
1452 void PhaseIdealLoop::eliminate_useless_predicates() {
1453   if(C->predicate_count() == 0) return; //no predicate left
1454 
1455   Unique_Node_List useful_predicates; //to store useful predicates
1456   if( C->has_loops()) {
1457     collect_potentially_useful_predicates(_ltree_root->_child, useful_predicates);
1458   }
1459 
1460   for (int i = C->predicate_count(); i > 0; i--) {
1461      Node * n = C->predicate_opaque1_node(i-1);
1462      assert(n->Opcode() == Op_Opaque1, "must be");
1463      if(!useful_predicates.member(n)) { //not in the useful list
1464        _igvn.replace_node(n, n->in(1));
1465      }
1466   }
1467 }
1468 
1469 //=============================================================================
1470 //----------------------------build_and_optimize-------------------------------
1471 // Create a PhaseLoop.  Build the ideal Loop tree.  Map each Ideal Node to
1472 // its corresponding LoopNode.  If 'optimize' is true, do some loop cleanups.
1473 void PhaseIdealLoop::build_and_optimize(bool do_split_ifs, bool do_loop_pred) {
1474   int old_progress = C->major_progress();
1475 
1476   // Reset major-progress flag for the driver's heuristics
1477   C->clear_major_progress();
1478 
1479 #ifndef PRODUCT
1480   // Capture for later assert
1481   uint unique = C->unique();
1482   _loop_invokes++;
1483   _loop_work += unique;
1484 #endif
1485 
1486   // True if the method has at least 1 irreducible loop
1487   _has_irreducible_loops = false;
1488 
1489   _created_loop_node = false;
1490 
1491   Arena *a = Thread::current()->resource_area();
1492   VectorSet visited(a);
1493   // Pre-grow the mapping from Nodes to IdealLoopTrees.
1494   _nodes.map(C->unique(), NULL);
1495   memset(_nodes.adr(), 0, wordSize * C->unique());
1496 
1497   // Pre-build the top-level outermost loop tree entry
1498   _ltree_root = new IdealLoopTree( this, C->root(), C->root() );
1499   // Do not need a safepoint at the top level
1500   _ltree_root->_has_sfpt = 1;
1501 
1502   // Empty pre-order array
1503   allocate_preorders();
1504 
1505   // Build a loop tree on the fly.  Build a mapping from CFG nodes to
1506   // IdealLoopTree entries.  Data nodes are NOT walked.
1507   build_loop_tree();
1508   // Check for bailout, and return
1509   if (C->failing()) {
1510     return;
1511   }
1512 
1513   // No loops after all
1514   if( !_ltree_root->_child && !_verify_only ) C->set_has_loops(false);
1515 
1516   // There should always be an outer loop containing the Root and Return nodes.
1517   // If not, we have a degenerate empty program.  Bail out in this case.
1518   if (!has_node(C->root())) {
1519     if (!_verify_only) {
1520       C->clear_major_progress();
1521       C->record_method_not_compilable("empty program detected during loop optimization");
1522     }
1523     return;
1524   }
1525 
1526   // Nothing to do, so get out
1527   if( !C->has_loops() && !do_split_ifs && !_verify_me && !_verify_only ) {
1528     _igvn.optimize();           // Cleanup NeverBranches
1529     return;
1530   }
1531 
1532   // Set loop nesting depth
1533   _ltree_root->set_nest( 0 );
1534 
1535   // Split shared headers and insert loop landing pads.
1536   // Do not bother doing this on the Root loop of course.
1537   if( !_verify_me && !_verify_only && _ltree_root->_child ) {
1538     if( _ltree_root->_child->beautify_loops( this ) ) {
1539       // Re-build loop tree!
1540       _ltree_root->_child = NULL;
1541       _nodes.clear();
1542       reallocate_preorders();
1543       build_loop_tree();
1544       // Check for bailout, and return
1545       if (C->failing()) {
1546         return;
1547       }
1548       // Reset loop nesting depth
1549       _ltree_root->set_nest( 0 );
1550 
1551       C->print_method("After beautify loops", 3);
1552     }
1553   }
1554 
1555   // Build Dominators for elision of NULL checks & loop finding.
1556   // Since nodes do not have a slot for immediate dominator, make
1557   // a persistent side array for that info indexed on node->_idx.
1558   _idom_size = C->unique();
1559   _idom      = NEW_RESOURCE_ARRAY( Node*, _idom_size );
1560   _dom_depth = NEW_RESOURCE_ARRAY( uint,  _idom_size );
1561   _dom_stk   = NULL; // Allocated on demand in recompute_dom_depth
1562   memset( _dom_depth, 0, _idom_size * sizeof(uint) );
1563 
1564   Dominators();
1565 
1566   if (!_verify_only) {
1567     // As a side effect, Dominators removed any unreachable CFG paths
1568     // into RegionNodes.  It doesn't do this test against Root, so
1569     // we do it here.
1570     for( uint i = 1; i < C->root()->req(); i++ ) {
1571       if( !_nodes[C->root()->in(i)->_idx] ) {    // Dead path into Root?
1572         _igvn.hash_delete(C->root());
1573         C->root()->del_req(i);
1574         _igvn._worklist.push(C->root());
1575         i--;                      // Rerun same iteration on compressed edges
1576       }
1577     }
1578 
1579     // Given dominators, try to find inner loops with calls that must
1580     // always be executed (call dominates loop tail).  These loops do
1581     // not need a separate safepoint.
1582     Node_List cisstack(a);
1583     _ltree_root->check_safepts(visited, cisstack);
1584   }
1585 
1586   // Walk the DATA nodes and place into loops.  Find earliest control
1587   // node.  For CFG nodes, the _nodes array starts out and remains
1588   // holding the associated IdealLoopTree pointer.  For DATA nodes, the
1589   // _nodes array holds the earliest legal controlling CFG node.
1590 
1591   // Allocate stack with enough space to avoid frequent realloc
1592   int stack_size = (C->unique() >> 1) + 16; // (unique>>1)+16 from Java2D stats
1593   Node_Stack nstack( a, stack_size );
1594 
1595   visited.Clear();
1596   Node_List worklist(a);
1597   // Don't need C->root() on worklist since
1598   // it will be processed among C->top() inputs
1599   worklist.push( C->top() );
1600   visited.set( C->top()->_idx ); // Set C->top() as visited now
1601   build_loop_early( visited, worklist, nstack );
1602 
1603   // Given early legal placement, try finding counted loops.  This placement
1604   // is good enough to discover most loop invariants.
1605   if( !_verify_me && !_verify_only )
1606     _ltree_root->counted_loop( this );
1607 
1608   // Find latest loop placement.  Find ideal loop placement.
1609   visited.Clear();
1610   init_dom_lca_tags();
1611   // Need C->root() on worklist when processing outs
1612   worklist.push( C->root() );
1613   NOT_PRODUCT( C->verify_graph_edges(); )
1614   worklist.push( C->top() );
1615   build_loop_late( visited, worklist, nstack );
1616 
1617   if (_verify_only) {
1618     // restore major progress flag
1619     for (int i = 0; i < old_progress; i++)
1620       C->set_major_progress();
1621     assert(C->unique() == unique, "verification mode made Nodes? ? ?");
1622     assert(_igvn._worklist.size() == 0, "shouldn't push anything");
1623     return;
1624   }
1625 
1626   // some parser-inserted loop predicates could never be used by loop 
1627   // predication. Eliminate them before loop optimization 
1628   if(UseLoopPredicate) {
1629     eliminate_useless_predicates();
1630   }
1631 
1632   // clear out the dead code
1633   while(_deadlist.size()) {
1634     _igvn.remove_globally_dead_node(_deadlist.pop());
1635   }
1636 
1637 #ifndef PRODUCT
1638   C->verify_graph_edges();
1639   if( _verify_me ) {             // Nested verify pass?
1640     // Check to see if the verify mode is broken
1641     assert(C->unique() == unique, "non-optimize mode made Nodes? ? ?");
1642     return;
1643   }
1644   if( VerifyLoopOptimizations ) verify();
1645 #endif
1646 
1647   if (ReassociateInvariants) {
1648     // Reassociate invariants and prep for split_thru_phi
1649     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1650       IdealLoopTree* lpt = iter.current();
1651       if (!lpt->is_counted() || !lpt->is_inner()) continue;
1652 
1653       lpt->reassociate_invariants(this);
1654 
1655       // Because RCE opportunities can be masked by split_thru_phi,
1656       // look for RCE candidates and inhibit split_thru_phi
1657       // on just their loop-phi's for this pass of loop opts
1658       if( SplitIfBlocks && do_split_ifs ) {
1659         if (lpt->policy_range_check(this)) {
1660           lpt->_rce_candidate = 1; // = true
1661         }
1662       }
1663     }
1664   }
1665 
1666   // Check for aggressive application of split-if and other transforms
1667   // that require basic-block info (like cloning through Phi's)
1668   if( SplitIfBlocks && do_split_ifs ) {
1669     visited.Clear();
1670     split_if_with_blocks( visited, nstack );
1671     NOT_PRODUCT( if( VerifyLoopOptimizations ) verify(); );
1672   }
1673 
1674   // Perform loop predication before iteration splitting
1675   if(do_loop_pred && C->has_loops() && !C->major_progress()) {
1676     _ltree_root->_child->loop_predication(this);
1677   }
1678 
1679   // Perform iteration-splitting on inner loops.  Split iterations to avoid
1680   // range checks or one-shot null checks.
1681 
1682   // If split-if's didn't hack the graph too bad (no CFG changes)
1683   // then do loop opts.
1684   if( C->has_loops() && !C->major_progress() ) {
1685     memset( worklist.adr(), 0, worklist.Size()*sizeof(Node*) );
1686     _ltree_root->_child->iteration_split( this, worklist );
1687     // No verify after peeling!  GCM has hoisted code out of the loop.
1688     // After peeling, the hoisted code could sink inside the peeled area.
1689     // The peeling code does not try to recompute the best location for
1690     // all the code before the peeled area, so the verify pass will always
1691     // complain about it.
1692   }
1693   // Do verify graph edges in any case
1694   NOT_PRODUCT( C->verify_graph_edges(); );
1695 
1696   if( !do_split_ifs ) {
1697     // We saw major progress in Split-If to get here.  We forced a
1698     // pass with unrolling and not split-if, however more split-if's
1699     // might make progress.  If the unrolling didn't make progress
1700     // then the major-progress flag got cleared and we won't try
1701     // another round of Split-If.  In particular the ever-common
1702     // instance-of/check-cast pattern requires at least 2 rounds of
1703     // Split-If to clear out.
1704     C->set_major_progress();
1705   }
1706 
1707   // Repeat loop optimizations if new loops were seen
1708   if (created_loop_node()) {
1709     C->set_major_progress();
1710   }
1711 
1712   // Convert scalar to superword operations
1713 
1714   if (UseSuperWord && C->has_loops() && !C->major_progress()) {
1715     // SuperWord transform
1716     SuperWord sw(this);
1717     for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1718       IdealLoopTree* lpt = iter.current();
1719       if (lpt->is_counted()) {
1720         sw.transform_loop(lpt);
1721       }
1722     }
1723   }
1724 
1725   // Cleanup any modified bits
1726   _igvn.optimize();
1727 
1728   // disable assert until issue with split_flow_path is resolved (6742111)
1729   // assert(!_has_irreducible_loops || C->parsed_irreducible_loop() || C->is_osr_compilation(),
1730   //        "shouldn't introduce irreducible loops");
1731 
1732   if (C->log() != NULL) {
1733     log_loop_tree(_ltree_root, _ltree_root, C->log());
1734   }
1735 }
1736 
1737 #ifndef PRODUCT
1738 //------------------------------print_statistics-------------------------------
1739 int PhaseIdealLoop::_loop_invokes=0;// Count of PhaseIdealLoop invokes
1740 int PhaseIdealLoop::_loop_work=0; // Sum of PhaseIdealLoop x unique
1741 void PhaseIdealLoop::print_statistics() {
1742   tty->print_cr("PhaseIdealLoop=%d, sum _unique=%d", _loop_invokes, _loop_work);
1743 }
1744 
1745 //------------------------------verify-----------------------------------------
1746 // Build a verify-only PhaseIdealLoop, and see that it agrees with me.
1747 static int fail;                // debug only, so its multi-thread dont care
1748 void PhaseIdealLoop::verify() const {
1749   int old_progress = C->major_progress();
1750   ResourceMark rm;
1751   PhaseIdealLoop loop_verify( _igvn, this );
1752   VectorSet visited(Thread::current()->resource_area());
1753 
1754   fail = 0;
1755   verify_compare( C->root(), &loop_verify, visited );
1756   assert( fail == 0, "verify loops failed" );
1757   // Verify loop structure is the same
1758   _ltree_root->verify_tree(loop_verify._ltree_root, NULL);
1759   // Reset major-progress.  It was cleared by creating a verify version of
1760   // PhaseIdealLoop.
1761   for( int i=0; i<old_progress; i++ )
1762     C->set_major_progress();
1763 }
1764 
1765 //------------------------------verify_compare---------------------------------
1766 // Make sure me and the given PhaseIdealLoop agree on key data structures
1767 void PhaseIdealLoop::verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const {
1768   if( !n ) return;
1769   if( visited.test_set( n->_idx ) ) return;
1770   if( !_nodes[n->_idx] ) {      // Unreachable
1771     assert( !loop_verify->_nodes[n->_idx], "both should be unreachable" );
1772     return;
1773   }
1774 
1775   uint i;
1776   for( i = 0; i < n->req(); i++ )
1777     verify_compare( n->in(i), loop_verify, visited );
1778 
1779   // Check the '_nodes' block/loop structure
1780   i = n->_idx;
1781   if( has_ctrl(n) ) {           // We have control; verify has loop or ctrl
1782     if( _nodes[i] != loop_verify->_nodes[i] &&
1783         get_ctrl_no_update(n) != loop_verify->get_ctrl_no_update(n) ) {
1784       tty->print("Mismatched control setting for: ");
1785       n->dump();
1786       if( fail++ > 10 ) return;
1787       Node *c = get_ctrl_no_update(n);
1788       tty->print("We have it as: ");
1789       if( c->in(0) ) c->dump();
1790         else tty->print_cr("N%d",c->_idx);
1791       tty->print("Verify thinks: ");
1792       if( loop_verify->has_ctrl(n) )
1793         loop_verify->get_ctrl_no_update(n)->dump();
1794       else
1795         loop_verify->get_loop_idx(n)->dump();
1796       tty->cr();
1797     }
1798   } else {                    // We have a loop
1799     IdealLoopTree *us = get_loop_idx(n);
1800     if( loop_verify->has_ctrl(n) ) {
1801       tty->print("Mismatched loop setting for: ");
1802       n->dump();
1803       if( fail++ > 10 ) return;
1804       tty->print("We have it as: ");
1805       us->dump();
1806       tty->print("Verify thinks: ");
1807       loop_verify->get_ctrl_no_update(n)->dump();
1808       tty->cr();
1809     } else if (!C->major_progress()) {
1810       // Loop selection can be messed up if we did a major progress
1811       // operation, like split-if.  Do not verify in that case.
1812       IdealLoopTree *them = loop_verify->get_loop_idx(n);
1813       if( us->_head != them->_head ||  us->_tail != them->_tail ) {
1814         tty->print("Unequals loops for: ");
1815         n->dump();
1816         if( fail++ > 10 ) return;
1817         tty->print("We have it as: ");
1818         us->dump();
1819         tty->print("Verify thinks: ");
1820         them->dump();
1821         tty->cr();
1822       }
1823     }
1824   }
1825 
1826   // Check for immediate dominators being equal
1827   if( i >= _idom_size ) {
1828     if( !n->is_CFG() ) return;
1829     tty->print("CFG Node with no idom: ");
1830     n->dump();
1831     return;
1832   }
1833   if( !n->is_CFG() ) return;
1834   if( n == C->root() ) return; // No IDOM here
1835 
1836   assert(n->_idx == i, "sanity");
1837   Node *id = idom_no_update(n);
1838   if( id != loop_verify->idom_no_update(n) ) {
1839     tty->print("Unequals idoms for: ");
1840     n->dump();
1841     if( fail++ > 10 ) return;
1842     tty->print("We have it as: ");
1843     id->dump();
1844     tty->print("Verify thinks: ");
1845     loop_verify->idom_no_update(n)->dump();
1846     tty->cr();
1847   }
1848 
1849 }
1850 
1851 //------------------------------verify_tree------------------------------------
1852 // Verify that tree structures match.  Because the CFG can change, siblings
1853 // within the loop tree can be reordered.  We attempt to deal with that by
1854 // reordering the verify's loop tree if possible.
1855 void IdealLoopTree::verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const {
1856   assert( _parent == parent, "Badly formed loop tree" );
1857 
1858   // Siblings not in same order?  Attempt to re-order.
1859   if( _head != loop->_head ) {
1860     // Find _next pointer to update
1861     IdealLoopTree **pp = &loop->_parent->_child;
1862     while( *pp != loop )
1863       pp = &((*pp)->_next);
1864     // Find proper sibling to be next
1865     IdealLoopTree **nn = &loop->_next;
1866     while( (*nn) && (*nn)->_head != _head )
1867       nn = &((*nn)->_next);
1868 
1869     // Check for no match.
1870     if( !(*nn) ) {
1871       // Annoyingly, irreducible loops can pick different headers
1872       // after a major_progress operation, so the rest of the loop
1873       // tree cannot be matched.
1874       if (_irreducible && Compile::current()->major_progress())  return;
1875       assert( 0, "failed to match loop tree" );
1876     }
1877 
1878     // Move (*nn) to (*pp)
1879     IdealLoopTree *hit = *nn;
1880     *nn = hit->_next;
1881     hit->_next = loop;
1882     *pp = loop;
1883     loop = hit;
1884     // Now try again to verify
1885   }
1886 
1887   assert( _head  == loop->_head , "mismatched loop head" );
1888   Node *tail = _tail;           // Inline a non-updating version of
1889   while( !tail->in(0) )         // the 'tail()' call.
1890     tail = tail->in(1);
1891   assert( tail == loop->_tail, "mismatched loop tail" );
1892 
1893   // Counted loops that are guarded should be able to find their guards
1894   if( _head->is_CountedLoop() && _head->as_CountedLoop()->is_main_loop() ) {
1895     CountedLoopNode *cl = _head->as_CountedLoop();
1896     Node *init = cl->init_trip();
1897     Node *ctrl = cl->in(LoopNode::EntryControl);
1898     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
1899     Node *iff  = ctrl->in(0);
1900     assert( iff->Opcode() == Op_If, "" );
1901     Node *bol  = iff->in(1);
1902     assert( bol->Opcode() == Op_Bool, "" );
1903     Node *cmp  = bol->in(1);
1904     assert( cmp->Opcode() == Op_CmpI, "" );
1905     Node *add  = cmp->in(1);
1906     Node *opaq;
1907     if( add->Opcode() == Op_Opaque1 ) {
1908       opaq = add;
1909     } else {
1910       assert( add->Opcode() == Op_AddI || add->Opcode() == Op_ConI , "" );
1911       assert( add == init, "" );
1912       opaq = cmp->in(2);
1913     }
1914     assert( opaq->Opcode() == Op_Opaque1, "" );
1915 
1916   }
1917 
1918   if (_child != NULL)  _child->verify_tree(loop->_child, this);
1919   if (_next  != NULL)  _next ->verify_tree(loop->_next,  parent);
1920   // Innermost loops need to verify loop bodies,
1921   // but only if no 'major_progress'
1922   int fail = 0;
1923   if (!Compile::current()->major_progress() && _child == NULL) {
1924     for( uint i = 0; i < _body.size(); i++ ) {
1925       Node *n = _body.at(i);
1926       if (n->outcnt() == 0)  continue; // Ignore dead
1927       uint j;
1928       for( j = 0; j < loop->_body.size(); j++ )
1929         if( loop->_body.at(j) == n )
1930           break;
1931       if( j == loop->_body.size() ) { // Not found in loop body
1932         // Last ditch effort to avoid assertion: Its possible that we
1933         // have some users (so outcnt not zero) but are still dead.
1934         // Try to find from root.
1935         if (Compile::current()->root()->find(n->_idx)) {
1936           fail++;
1937           tty->print("We have that verify does not: ");
1938           n->dump();
1939         }
1940       }
1941     }
1942     for( uint i2 = 0; i2 < loop->_body.size(); i2++ ) {
1943       Node *n = loop->_body.at(i2);
1944       if (n->outcnt() == 0)  continue; // Ignore dead
1945       uint j;
1946       for( j = 0; j < _body.size(); j++ )
1947         if( _body.at(j) == n )
1948           break;
1949       if( j == _body.size() ) { // Not found in loop body
1950         // Last ditch effort to avoid assertion: Its possible that we
1951         // have some users (so outcnt not zero) but are still dead.
1952         // Try to find from root.
1953         if (Compile::current()->root()->find(n->_idx)) {
1954           fail++;
1955           tty->print("Verify has that we do not: ");
1956           n->dump();
1957         }
1958       }
1959     }
1960     assert( !fail, "loop body mismatch" );
1961   }
1962 }
1963 
1964 #endif
1965 
1966 //------------------------------set_idom---------------------------------------
1967 void PhaseIdealLoop::set_idom(Node* d, Node* n, uint dom_depth) {
1968   uint idx = d->_idx;
1969   if (idx >= _idom_size) {
1970     uint newsize = _idom_size<<1;
1971     while( idx >= newsize ) {
1972       newsize <<= 1;
1973     }
1974     _idom      = REALLOC_RESOURCE_ARRAY( Node*,     _idom,_idom_size,newsize);
1975     _dom_depth = REALLOC_RESOURCE_ARRAY( uint, _dom_depth,_idom_size,newsize);
1976     memset( _dom_depth + _idom_size, 0, (newsize - _idom_size) * sizeof(uint) );
1977     _idom_size = newsize;
1978   }
1979   _idom[idx] = n;
1980   _dom_depth[idx] = dom_depth;
1981 }
1982 
1983 //------------------------------recompute_dom_depth---------------------------------------
1984 // The dominator tree is constructed with only parent pointers.
1985 // This recomputes the depth in the tree by first tagging all
1986 // nodes as "no depth yet" marker.  The next pass then runs up
1987 // the dom tree from each node marked "no depth yet", and computes
1988 // the depth on the way back down.
1989 void PhaseIdealLoop::recompute_dom_depth() {
1990   uint no_depth_marker = C->unique();
1991   uint i;
1992   // Initialize depth to "no depth yet"
1993   for (i = 0; i < _idom_size; i++) {
1994     if (_dom_depth[i] > 0 && _idom[i] != NULL) {
1995      _dom_depth[i] = no_depth_marker;
1996     }
1997   }
1998   if (_dom_stk == NULL) {
1999     uint init_size = C->unique() / 100; // Guess that 1/100 is a reasonable initial size.
2000     if (init_size < 10) init_size = 10;
2001     _dom_stk = new (C->node_arena()) GrowableArray<uint>(C->node_arena(), init_size, 0, 0);
2002   }
2003   // Compute new depth for each node.
2004   for (i = 0; i < _idom_size; i++) {
2005     uint j = i;
2006     // Run up the dom tree to find a node with a depth
2007     while (_dom_depth[j] == no_depth_marker) {
2008       _dom_stk->push(j);
2009       j = _idom[j]->_idx;
2010     }
2011     // Compute the depth on the way back down this tree branch
2012     uint dd = _dom_depth[j] + 1;
2013     while (_dom_stk->length() > 0) {
2014       uint j = _dom_stk->pop();
2015       _dom_depth[j] = dd;
2016       dd++;
2017     }
2018   }
2019 }
2020 
2021 //------------------------------sort-------------------------------------------
2022 // Insert 'loop' into the existing loop tree.  'innermost' is a leaf of the
2023 // loop tree, not the root.
2024 IdealLoopTree *PhaseIdealLoop::sort( IdealLoopTree *loop, IdealLoopTree *innermost ) {
2025   if( !innermost ) return loop; // New innermost loop
2026 
2027   int loop_preorder = get_preorder(loop->_head); // Cache pre-order number
2028   assert( loop_preorder, "not yet post-walked loop" );
2029   IdealLoopTree **pp = &innermost;      // Pointer to previous next-pointer
2030   IdealLoopTree *l = *pp;               // Do I go before or after 'l'?
2031 
2032   // Insert at start of list
2033   while( l ) {                  // Insertion sort based on pre-order
2034     if( l == loop ) return innermost; // Already on list!
2035     int l_preorder = get_preorder(l->_head); // Cache pre-order number
2036     assert( l_preorder, "not yet post-walked l" );
2037     // Check header pre-order number to figure proper nesting
2038     if( loop_preorder > l_preorder )
2039       break;                    // End of insertion
2040     // If headers tie (e.g., shared headers) check tail pre-order numbers.
2041     // Since I split shared headers, you'd think this could not happen.
2042     // BUT: I must first do the preorder numbering before I can discover I
2043     // have shared headers, so the split headers all get the same preorder
2044     // number as the RegionNode they split from.
2045     if( loop_preorder == l_preorder &&
2046         get_preorder(loop->_tail) < get_preorder(l->_tail) )
2047       break;                    // Also check for shared headers (same pre#)
2048     pp = &l->_parent;           // Chain up list
2049     l = *pp;
2050   }
2051   // Link into list
2052   // Point predecessor to me
2053   *pp = loop;
2054   // Point me to successor
2055   IdealLoopTree *p = loop->_parent;
2056   loop->_parent = l;            // Point me to successor
2057   if( p ) sort( p, innermost ); // Insert my parents into list as well
2058   return innermost;
2059 }
2060 
2061 //------------------------------build_loop_tree--------------------------------
2062 // I use a modified Vick/Tarjan algorithm.  I need pre- and a post- visit
2063 // bits.  The _nodes[] array is mapped by Node index and holds a NULL for
2064 // not-yet-pre-walked, pre-order # for pre-but-not-post-walked and holds the
2065 // tightest enclosing IdealLoopTree for post-walked.
2066 //
2067 // During my forward walk I do a short 1-layer lookahead to see if I can find
2068 // a loop backedge with that doesn't have any work on the backedge.  This
2069 // helps me construct nested loops with shared headers better.
2070 //
2071 // Once I've done the forward recursion, I do the post-work.  For each child
2072 // I check to see if there is a backedge.  Backedges define a loop!  I
2073 // insert an IdealLoopTree at the target of the backedge.
2074 //
2075 // During the post-work I also check to see if I have several children
2076 // belonging to different loops.  If so, then this Node is a decision point
2077 // where control flow can choose to change loop nests.  It is at this
2078 // decision point where I can figure out how loops are nested.  At this
2079 // time I can properly order the different loop nests from my children.
2080 // Note that there may not be any backedges at the decision point!
2081 //
2082 // Since the decision point can be far removed from the backedges, I can't
2083 // order my loops at the time I discover them.  Thus at the decision point
2084 // I need to inspect loop header pre-order numbers to properly nest my
2085 // loops.  This means I need to sort my childrens' loops by pre-order.
2086 // The sort is of size number-of-control-children, which generally limits
2087 // it to size 2 (i.e., I just choose between my 2 target loops).
2088 void PhaseIdealLoop::build_loop_tree() {
2089   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2090   GrowableArray <Node *> bltstack(C->unique() >> 1);
2091   Node *n = C->root();
2092   bltstack.push(n);
2093   int pre_order = 1;
2094   int stack_size;
2095 
2096   while ( ( stack_size = bltstack.length() ) != 0 ) {
2097     n = bltstack.top(); // Leave node on stack
2098     if ( !is_visited(n) ) {
2099       // ---- Pre-pass Work ----
2100       // Pre-walked but not post-walked nodes need a pre_order number.
2101 
2102       set_preorder_visited( n, pre_order ); // set as visited
2103 
2104       // ---- Scan over children ----
2105       // Scan first over control projections that lead to loop headers.
2106       // This helps us find inner-to-outer loops with shared headers better.
2107 
2108       // Scan children's children for loop headers.
2109       for ( int i = n->outcnt() - 1; i >= 0; --i ) {
2110         Node* m = n->raw_out(i);       // Child
2111         if( m->is_CFG() && !is_visited(m) ) { // Only for CFG children
2112           // Scan over children's children to find loop
2113           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2114             Node* l = m->fast_out(j);
2115             if( is_visited(l) &&       // Been visited?
2116                 !is_postvisited(l) &&  // But not post-visited
2117                 get_preorder(l) < pre_order ) { // And smaller pre-order
2118               // Found!  Scan the DFS down this path before doing other paths
2119               bltstack.push(m);
2120               break;
2121             }
2122           }
2123         }
2124       }
2125       pre_order++;
2126     }
2127     else if ( !is_postvisited(n) ) {
2128       // Note: build_loop_tree_impl() adds out edges on rare occasions,
2129       // such as com.sun.rsasign.am::a.
2130       // For non-recursive version, first, process current children.
2131       // On next iteration, check if additional children were added.
2132       for ( int k = n->outcnt() - 1; k >= 0; --k ) {
2133         Node* u = n->raw_out(k);
2134         if ( u->is_CFG() && !is_visited(u) ) {
2135           bltstack.push(u);
2136         }
2137       }
2138       if ( bltstack.length() == stack_size ) {
2139         // There were no additional children, post visit node now
2140         (void)bltstack.pop(); // Remove node from stack
2141         pre_order = build_loop_tree_impl( n, pre_order );
2142         // Check for bailout
2143         if (C->failing()) {
2144           return;
2145         }
2146         // Check to grow _preorders[] array for the case when
2147         // build_loop_tree_impl() adds new nodes.
2148         check_grow_preorders();
2149       }
2150     }
2151     else {
2152       (void)bltstack.pop(); // Remove post-visited node from stack
2153     }
2154   }
2155 }
2156 
2157 //------------------------------build_loop_tree_impl---------------------------
2158 int PhaseIdealLoop::build_loop_tree_impl( Node *n, int pre_order ) {
2159   // ---- Post-pass Work ----
2160   // Pre-walked but not post-walked nodes need a pre_order number.
2161 
2162   // Tightest enclosing loop for this Node
2163   IdealLoopTree *innermost = NULL;
2164 
2165   // For all children, see if any edge is a backedge.  If so, make a loop
2166   // for it.  Then find the tightest enclosing loop for the self Node.
2167   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2168     Node* m = n->fast_out(i);   // Child
2169     if( n == m ) continue;      // Ignore control self-cycles
2170     if( !m->is_CFG() ) continue;// Ignore non-CFG edges
2171 
2172     IdealLoopTree *l;           // Child's loop
2173     if( !is_postvisited(m) ) {  // Child visited but not post-visited?
2174       // Found a backedge
2175       assert( get_preorder(m) < pre_order, "should be backedge" );
2176       // Check for the RootNode, which is already a LoopNode and is allowed
2177       // to have multiple "backedges".
2178       if( m == C->root()) {     // Found the root?
2179         l = _ltree_root;        // Root is the outermost LoopNode
2180       } else {                  // Else found a nested loop
2181         // Insert a LoopNode to mark this loop.
2182         l = new IdealLoopTree(this, m, n);
2183       } // End of Else found a nested loop
2184       if( !has_loop(m) )        // If 'm' does not already have a loop set
2185         set_loop(m, l);         // Set loop header to loop now
2186 
2187     } else {                    // Else not a nested loop
2188       if( !_nodes[m->_idx] ) continue; // Dead code has no loop
2189       l = get_loop(m);          // Get previously determined loop
2190       // If successor is header of a loop (nest), move up-loop till it
2191       // is a member of some outer enclosing loop.  Since there are no
2192       // shared headers (I've split them already) I only need to go up
2193       // at most 1 level.
2194       while( l && l->_head == m ) // Successor heads loop?
2195         l = l->_parent;         // Move up 1 for me
2196       // If this loop is not properly parented, then this loop
2197       // has no exit path out, i.e. its an infinite loop.
2198       if( !l ) {
2199         // Make loop "reachable" from root so the CFG is reachable.  Basically
2200         // insert a bogus loop exit that is never taken.  'm', the loop head,
2201         // points to 'n', one (of possibly many) fall-in paths.  There may be
2202         // many backedges as well.
2203 
2204         // Here I set the loop to be the root loop.  I could have, after
2205         // inserting a bogus loop exit, restarted the recursion and found my
2206         // new loop exit.  This would make the infinite loop a first-class
2207         // loop and it would then get properly optimized.  What's the use of
2208         // optimizing an infinite loop?
2209         l = _ltree_root;        // Oops, found infinite loop
2210 
2211         if (!_verify_only) {
2212           // Insert the NeverBranch between 'm' and it's control user.
2213           NeverBranchNode *iff = new (C, 1) NeverBranchNode( m );
2214           _igvn.register_new_node_with_optimizer(iff);
2215           set_loop(iff, l);
2216           Node *if_t = new (C, 1) CProjNode( iff, 0 );
2217           _igvn.register_new_node_with_optimizer(if_t);
2218           set_loop(if_t, l);
2219 
2220           Node* cfg = NULL;       // Find the One True Control User of m
2221           for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
2222             Node* x = m->fast_out(j);
2223             if (x->is_CFG() && x != m && x != iff)
2224               { cfg = x; break; }
2225           }
2226           assert(cfg != NULL, "must find the control user of m");
2227           uint k = 0;             // Probably cfg->in(0)
2228           while( cfg->in(k) != m ) k++; // But check incase cfg is a Region
2229           cfg->set_req( k, if_t ); // Now point to NeverBranch
2230 
2231           // Now create the never-taken loop exit
2232           Node *if_f = new (C, 1) CProjNode( iff, 1 );
2233           _igvn.register_new_node_with_optimizer(if_f);
2234           set_loop(if_f, l);
2235           // Find frame ptr for Halt.  Relies on the optimizer
2236           // V-N'ing.  Easier and quicker than searching through
2237           // the program structure.
2238           Node *frame = new (C, 1) ParmNode( C->start(), TypeFunc::FramePtr );
2239           _igvn.register_new_node_with_optimizer(frame);
2240           // Halt & Catch Fire
2241           Node *halt = new (C, TypeFunc::Parms) HaltNode( if_f, frame );
2242           _igvn.register_new_node_with_optimizer(halt);
2243           set_loop(halt, l);
2244           C->root()->add_req(halt);
2245         }
2246         set_loop(C->root(), _ltree_root);
2247       }
2248     }
2249     // Weeny check for irreducible.  This child was already visited (this
2250     // IS the post-work phase).  Is this child's loop header post-visited
2251     // as well?  If so, then I found another entry into the loop.
2252     if (!_verify_only) {
2253       while( is_postvisited(l->_head) ) {
2254         // found irreducible
2255         l->_irreducible = 1; // = true
2256         l = l->_parent;
2257         _has_irreducible_loops = true;
2258         // Check for bad CFG here to prevent crash, and bailout of compile
2259         if (l == NULL) {
2260           C->record_method_not_compilable("unhandled CFG detected during loop optimization");
2261           return pre_order;
2262         }
2263       }
2264     }
2265 
2266     // This Node might be a decision point for loops.  It is only if
2267     // it's children belong to several different loops.  The sort call
2268     // does a trivial amount of work if there is only 1 child or all
2269     // children belong to the same loop.  If however, the children
2270     // belong to different loops, the sort call will properly set the
2271     // _parent pointers to show how the loops nest.
2272     //
2273     // In any case, it returns the tightest enclosing loop.
2274     innermost = sort( l, innermost );
2275   }
2276 
2277   // Def-use info will have some dead stuff; dead stuff will have no
2278   // loop decided on.
2279 
2280   // Am I a loop header?  If so fix up my parent's child and next ptrs.
2281   if( innermost && innermost->_head == n ) {
2282     assert( get_loop(n) == innermost, "" );
2283     IdealLoopTree *p = innermost->_parent;
2284     IdealLoopTree *l = innermost;
2285     while( p && l->_head == n ) {
2286       l->_next = p->_child;     // Put self on parents 'next child'
2287       p->_child = l;            // Make self as first child of parent
2288       l = p;                    // Now walk up the parent chain
2289       p = l->_parent;
2290     }
2291   } else {
2292     // Note that it is possible for a LoopNode to reach here, if the
2293     // backedge has been made unreachable (hence the LoopNode no longer
2294     // denotes a Loop, and will eventually be removed).
2295 
2296     // Record tightest enclosing loop for self.  Mark as post-visited.
2297     set_loop(n, innermost);
2298     // Also record has_call flag early on
2299     if( innermost ) {
2300       if( n->is_Call() && !n->is_CallLeaf() && !n->is_macro() ) {
2301         // Do not count uncommon calls
2302         if( !n->is_CallStaticJava() || !n->as_CallStaticJava()->_name ) {
2303           Node *iff = n->in(0)->in(0);
2304           if( !iff->is_If() ||
2305               (n->in(0)->Opcode() == Op_IfFalse &&
2306                (1.0 - iff->as_If()->_prob) >= 0.01) ||
2307               (iff->as_If()->_prob >= 0.01) )
2308             innermost->_has_call = 1;
2309         }
2310       } else if( n->is_Allocate() && n->as_Allocate()->_is_scalar_replaceable ) {
2311         // Disable loop optimizations if the loop has a scalar replaceable
2312         // allocation. This disabling may cause a potential performance lost
2313         // if the allocation is not eliminated for some reason.
2314         innermost->_allow_optimizations = false;
2315         innermost->_has_call = 1; // = true
2316       }
2317     }
2318   }
2319 
2320   // Flag as post-visited now
2321   set_postvisited(n);
2322   return pre_order;
2323 }
2324 
2325 
2326 //------------------------------build_loop_early-------------------------------
2327 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
2328 // First pass computes the earliest controlling node possible.  This is the
2329 // controlling input with the deepest dominating depth.
2330 void PhaseIdealLoop::build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
2331   while (worklist.size() != 0) {
2332     // Use local variables nstack_top_n & nstack_top_i to cache values
2333     // on nstack's top.
2334     Node *nstack_top_n = worklist.pop();
2335     uint  nstack_top_i = 0;
2336 //while_nstack_nonempty:
2337     while (true) {
2338       // Get parent node and next input's index from stack's top.
2339       Node  *n = nstack_top_n;
2340       uint   i = nstack_top_i;
2341       uint cnt = n->req(); // Count of inputs
2342       if (i == 0) {        // Pre-process the node.
2343         if( has_node(n) &&            // Have either loop or control already?
2344             !has_ctrl(n) ) {          // Have loop picked out already?
2345           // During "merge_many_backedges" we fold up several nested loops
2346           // into a single loop.  This makes the members of the original
2347           // loop bodies pointing to dead loops; they need to move up
2348           // to the new UNION'd larger loop.  I set the _head field of these
2349           // dead loops to NULL and the _parent field points to the owning
2350           // loop.  Shades of UNION-FIND algorithm.
2351           IdealLoopTree *ilt;
2352           while( !(ilt = get_loop(n))->_head ) {
2353             // Normally I would use a set_loop here.  But in this one special
2354             // case, it is legal (and expected) to change what loop a Node
2355             // belongs to.
2356             _nodes.map(n->_idx, (Node*)(ilt->_parent) );
2357           }
2358           // Remove safepoints ONLY if I've already seen I don't need one.
2359           // (the old code here would yank a 2nd safepoint after seeing a
2360           // first one, even though the 1st did not dominate in the loop body
2361           // and thus could be avoided indefinitely)
2362           if( !_verify_only && !_verify_me && ilt->_has_sfpt && n->Opcode() == Op_SafePoint &&
2363               is_deleteable_safept(n)) {
2364             Node *in = n->in(TypeFunc::Control);
2365             lazy_replace(n,in);       // Pull safepoint now
2366             // Carry on with the recursion "as if" we are walking
2367             // only the control input
2368             if( !visited.test_set( in->_idx ) ) {
2369               worklist.push(in);      // Visit this guy later, using worklist
2370             }
2371             // Get next node from nstack:
2372             // - skip n's inputs processing by setting i > cnt;
2373             // - we also will not call set_early_ctrl(n) since
2374             //   has_node(n) == true (see the condition above).
2375             i = cnt + 1;
2376           }
2377         }
2378       } // if (i == 0)
2379 
2380       // Visit all inputs
2381       bool done = true;       // Assume all n's inputs will be processed
2382       while (i < cnt) {
2383         Node *in = n->in(i);
2384         ++i;
2385         if (in == NULL) continue;
2386         if (in->pinned() && !in->is_CFG())
2387           set_ctrl(in, in->in(0));
2388         int is_visited = visited.test_set( in->_idx );
2389         if (!has_node(in)) {  // No controlling input yet?
2390           assert( !in->is_CFG(), "CFG Node with no controlling input?" );
2391           assert( !is_visited, "visit only once" );
2392           nstack.push(n, i);  // Save parent node and next input's index.
2393           nstack_top_n = in;  // Process current input now.
2394           nstack_top_i = 0;
2395           done = false;       // Not all n's inputs processed.
2396           break; // continue while_nstack_nonempty;
2397         } else if (!is_visited) {
2398           // This guy has a location picked out for him, but has not yet
2399           // been visited.  Happens to all CFG nodes, for instance.
2400           // Visit him using the worklist instead of recursion, to break
2401           // cycles.  Since he has a location already we do not need to
2402           // find his location before proceeding with the current Node.
2403           worklist.push(in);  // Visit this guy later, using worklist
2404         }
2405       }
2406       if (done) {
2407         // All of n's inputs have been processed, complete post-processing.
2408 
2409         // Compute earliest point this Node can go.
2410         // CFG, Phi, pinned nodes already know their controlling input.
2411         if (!has_node(n)) {
2412           // Record earliest legal location
2413           set_early_ctrl( n );
2414         }
2415         if (nstack.is_empty()) {
2416           // Finished all nodes on stack.
2417           // Process next node on the worklist.
2418           break;
2419         }
2420         // Get saved parent node and next input's index.
2421         nstack_top_n = nstack.node();
2422         nstack_top_i = nstack.index();
2423         nstack.pop();
2424       }
2425     } // while (true)
2426   }
2427 }
2428 
2429 //------------------------------dom_lca_internal--------------------------------
2430 // Pair-wise LCA
2431 Node *PhaseIdealLoop::dom_lca_internal( Node *n1, Node *n2 ) const {
2432   if( !n1 ) return n2;          // Handle NULL original LCA
2433   assert( n1->is_CFG(), "" );
2434   assert( n2->is_CFG(), "" );
2435   // find LCA of all uses
2436   uint d1 = dom_depth(n1);
2437   uint d2 = dom_depth(n2);
2438   while (n1 != n2) {
2439     if (d1 > d2) {
2440       n1 =      idom(n1);
2441       d1 = dom_depth(n1);
2442     } else if (d1 < d2) {
2443       n2 =      idom(n2);
2444       d2 = dom_depth(n2);
2445     } else {
2446       // Here d1 == d2.  Due to edits of the dominator-tree, sections
2447       // of the tree might have the same depth.  These sections have
2448       // to be searched more carefully.
2449 
2450       // Scan up all the n1's with equal depth, looking for n2.
2451       Node *t1 = idom(n1);
2452       while (dom_depth(t1) == d1) {
2453         if (t1 == n2)  return n2;
2454         t1 = idom(t1);
2455       }
2456       // Scan up all the n2's with equal depth, looking for n1.
2457       Node *t2 = idom(n2);
2458       while (dom_depth(t2) == d2) {
2459         if (t2 == n1)  return n1;
2460         t2 = idom(t2);
2461       }
2462       // Move up to a new dominator-depth value as well as up the dom-tree.
2463       n1 = t1;
2464       n2 = t2;
2465       d1 = dom_depth(n1);
2466       d2 = dom_depth(n2);
2467     }
2468   }
2469   return n1;
2470 }
2471 
2472 //------------------------------compute_idom-----------------------------------
2473 // Locally compute IDOM using dom_lca call.  Correct only if the incoming
2474 // IDOMs are correct.
2475 Node *PhaseIdealLoop::compute_idom( Node *region ) const {
2476   assert( region->is_Region(), "" );
2477   Node *LCA = NULL;
2478   for( uint i = 1; i < region->req(); i++ ) {
2479     if( region->in(i) != C->top() )
2480       LCA = dom_lca( LCA, region->in(i) );
2481   }
2482   return LCA;
2483 }
2484 
2485 bool PhaseIdealLoop::verify_dominance(Node* n, Node* use, Node* LCA, Node* early) {
2486   bool had_error = false;
2487 #ifdef ASSERT
2488   if (early != C->root()) {
2489     // Make sure that there's a dominance path from use to LCA
2490     Node* d = use;
2491     while (d != LCA) {
2492       d = idom(d);
2493       if (d == C->root()) {
2494         tty->print_cr("*** Use %d isn't dominated by def %s", use->_idx, n->_idx);
2495         n->dump();
2496         use->dump();
2497         had_error = true;
2498         break;
2499       }
2500     }
2501   }
2502 #endif
2503   return had_error;
2504 }
2505 
2506 
2507 Node* PhaseIdealLoop::compute_lca_of_uses(Node* n, Node* early, bool verify) {
2508   // Compute LCA over list of uses
2509   bool had_error = false;
2510   Node *LCA = NULL;
2511   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax && LCA != early; i++) {
2512     Node* c = n->fast_out(i);
2513     if (_nodes[c->_idx] == NULL)
2514       continue;                 // Skip the occasional dead node
2515     if( c->is_Phi() ) {         // For Phis, we must land above on the path
2516       for( uint j=1; j<c->req(); j++ ) {// For all inputs
2517         if( c->in(j) == n ) {   // Found matching input?
2518           Node *use = c->in(0)->in(j);
2519           if (_verify_only && use->is_top()) continue;
2520           LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
2521           if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
2522         }
2523       }
2524     } else {
2525       // For CFG data-users, use is in the block just prior
2526       Node *use = has_ctrl(c) ? get_ctrl(c) : c->in(0);
2527       LCA = dom_lca_for_get_late_ctrl( LCA, use, n );
2528       if (verify) had_error = verify_dominance(n, use, LCA, early) || had_error;
2529     }
2530   }
2531   assert(!had_error, "bad dominance");
2532   return LCA;
2533 }
2534 
2535 //------------------------------get_late_ctrl----------------------------------
2536 // Compute latest legal control.
2537 Node *PhaseIdealLoop::get_late_ctrl( Node *n, Node *early ) {
2538   assert(early != NULL, "early control should not be NULL");
2539 
2540   Node* LCA = compute_lca_of_uses(n, early);
2541 #ifdef ASSERT
2542   if (LCA == C->root() && LCA != early) {
2543     // def doesn't dominate uses so print some useful debugging output
2544     compute_lca_of_uses(n, early, true);
2545   }
2546 #endif
2547 
2548   // if this is a load, check for anti-dependent stores
2549   // We use a conservative algorithm to identify potential interfering
2550   // instructions and for rescheduling the load.  The users of the memory
2551   // input of this load are examined.  Any use which is not a load and is
2552   // dominated by early is considered a potentially interfering store.
2553   // This can produce false positives.
2554   if (n->is_Load() && LCA != early) {
2555     Node_List worklist;
2556 
2557     Node *mem = n->in(MemNode::Memory);
2558     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
2559       Node* s = mem->fast_out(i);
2560       worklist.push(s);
2561     }
2562     while(worklist.size() != 0 && LCA != early) {
2563       Node* s = worklist.pop();
2564       if (s->is_Load()) {
2565         continue;
2566       } else if (s->is_MergeMem()) {
2567         for (DUIterator_Fast imax, i = s->fast_outs(imax); i < imax; i++) {
2568           Node* s1 = s->fast_out(i);
2569           worklist.push(s1);
2570         }
2571       } else {
2572         Node *sctrl = has_ctrl(s) ? get_ctrl(s) : s->in(0);
2573         assert(sctrl != NULL || s->outcnt() == 0, "must have control");
2574         if (sctrl != NULL && !sctrl->is_top() && is_dominator(early, sctrl)) {
2575           LCA = dom_lca_for_get_late_ctrl(LCA, sctrl, n);
2576         }
2577       }
2578     }
2579   }
2580 
2581   assert(LCA == find_non_split_ctrl(LCA), "unexpected late control");
2582   return LCA;
2583 }
2584 
2585 // true if CFG node d dominates CFG node n
2586 bool PhaseIdealLoop::is_dominator(Node *d, Node *n) {
2587   if (d == n)
2588     return true;
2589   assert(d->is_CFG() && n->is_CFG(), "must have CFG nodes");
2590   uint dd = dom_depth(d);
2591   while (dom_depth(n) >= dd) {
2592     if (n == d)
2593       return true;
2594     n = idom(n);
2595   }
2596   return false;
2597 }
2598 
2599 //------------------------------dom_lca_for_get_late_ctrl_internal-------------
2600 // Pair-wise LCA with tags.
2601 // Tag each index with the node 'tag' currently being processed
2602 // before advancing up the dominator chain using idom().
2603 // Later calls that find a match to 'tag' know that this path has already
2604 // been considered in the current LCA (which is input 'n1' by convention).
2605 // Since get_late_ctrl() is only called once for each node, the tag array
2606 // does not need to be cleared between calls to get_late_ctrl().
2607 // Algorithm trades a larger constant factor for better asymptotic behavior
2608 //
2609 Node *PhaseIdealLoop::dom_lca_for_get_late_ctrl_internal( Node *n1, Node *n2, Node *tag ) {
2610   uint d1 = dom_depth(n1);
2611   uint d2 = dom_depth(n2);
2612 
2613   do {
2614     if (d1 > d2) {
2615       // current lca is deeper than n2
2616       _dom_lca_tags.map(n1->_idx, tag);
2617       n1 =      idom(n1);
2618       d1 = dom_depth(n1);
2619     } else if (d1 < d2) {
2620       // n2 is deeper than current lca
2621       Node *memo = _dom_lca_tags[n2->_idx];
2622       if( memo == tag ) {
2623         return n1;    // Return the current LCA
2624       }
2625       _dom_lca_tags.map(n2->_idx, tag);
2626       n2 =      idom(n2);
2627       d2 = dom_depth(n2);
2628     } else {
2629       // Here d1 == d2.  Due to edits of the dominator-tree, sections
2630       // of the tree might have the same depth.  These sections have
2631       // to be searched more carefully.
2632 
2633       // Scan up all the n1's with equal depth, looking for n2.
2634       _dom_lca_tags.map(n1->_idx, tag);
2635       Node *t1 = idom(n1);
2636       while (dom_depth(t1) == d1) {
2637         if (t1 == n2)  return n2;
2638         _dom_lca_tags.map(t1->_idx, tag);
2639         t1 = idom(t1);
2640       }
2641       // Scan up all the n2's with equal depth, looking for n1.
2642       _dom_lca_tags.map(n2->_idx, tag);
2643       Node *t2 = idom(n2);
2644       while (dom_depth(t2) == d2) {
2645         if (t2 == n1)  return n1;
2646         _dom_lca_tags.map(t2->_idx, tag);
2647         t2 = idom(t2);
2648       }
2649       // Move up to a new dominator-depth value as well as up the dom-tree.
2650       n1 = t1;
2651       n2 = t2;
2652       d1 = dom_depth(n1);
2653       d2 = dom_depth(n2);
2654     }
2655   } while (n1 != n2);
2656   return n1;
2657 }
2658 
2659 //------------------------------init_dom_lca_tags------------------------------
2660 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
2661 // Intended use does not involve any growth for the array, so it could
2662 // be of fixed size.
2663 void PhaseIdealLoop::init_dom_lca_tags() {
2664   uint limit = C->unique() + 1;
2665   _dom_lca_tags.map( limit, NULL );
2666 #ifdef ASSERT
2667   for( uint i = 0; i < limit; ++i ) {
2668     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
2669   }
2670 #endif // ASSERT
2671 }
2672 
2673 //------------------------------clear_dom_lca_tags------------------------------
2674 // Tag could be a node's integer index, 32bits instead of 64bits in some cases
2675 // Intended use does not involve any growth for the array, so it could
2676 // be of fixed size.
2677 void PhaseIdealLoop::clear_dom_lca_tags() {
2678   uint limit = C->unique() + 1;
2679   _dom_lca_tags.map( limit, NULL );
2680   _dom_lca_tags.clear();
2681 #ifdef ASSERT
2682   for( uint i = 0; i < limit; ++i ) {
2683     assert(_dom_lca_tags[i] == NULL, "Must be distinct from each node pointer");
2684   }
2685 #endif // ASSERT
2686 }
2687 
2688 //------------------------------build_loop_late--------------------------------
2689 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
2690 // Second pass finds latest legal placement, and ideal loop placement.
2691 void PhaseIdealLoop::build_loop_late( VectorSet &visited, Node_List &worklist, Node_Stack &nstack ) {
2692   while (worklist.size() != 0) {
2693     Node *n = worklist.pop();
2694     // Only visit once
2695     if (visited.test_set(n->_idx)) continue;
2696     uint cnt = n->outcnt();
2697     uint   i = 0;
2698     while (true) {
2699       assert( _nodes[n->_idx], "no dead nodes" );
2700       // Visit all children
2701       if (i < cnt) {
2702         Node* use = n->raw_out(i);
2703         ++i;
2704         // Check for dead uses.  Aggressively prune such junk.  It might be
2705         // dead in the global sense, but still have local uses so I cannot
2706         // easily call 'remove_dead_node'.
2707         if( _nodes[use->_idx] != NULL || use->is_top() ) { // Not dead?
2708           // Due to cycles, we might not hit the same fixed point in the verify
2709           // pass as we do in the regular pass.  Instead, visit such phis as
2710           // simple uses of the loop head.
2711           if( use->in(0) && (use->is_CFG() || use->is_Phi()) ) {
2712             if( !visited.test(use->_idx) )
2713               worklist.push(use);
2714           } else if( !visited.test_set(use->_idx) ) {
2715             nstack.push(n, i); // Save parent and next use's index.
2716             n   = use;         // Process all children of current use.
2717             cnt = use->outcnt();
2718             i   = 0;
2719           }
2720         } else {
2721           // Do not visit around the backedge of loops via data edges.
2722           // push dead code onto a worklist
2723           _deadlist.push(use);
2724         }
2725       } else {
2726         // All of n's children have been processed, complete post-processing.
2727         build_loop_late_post(n);
2728         if (nstack.is_empty()) {
2729           // Finished all nodes on stack.
2730           // Process next node on the worklist.
2731           break;
2732         }
2733         // Get saved parent node and next use's index. Visit the rest of uses.
2734         n   = nstack.node();
2735         cnt = n->outcnt();
2736         i   = nstack.index();
2737         nstack.pop();
2738       }
2739     }
2740   }
2741 }
2742 
2743 //------------------------------build_loop_late_post---------------------------
2744 // Put Data nodes into some loop nest, by setting the _nodes[]->loop mapping.
2745 // Second pass finds latest legal placement, and ideal loop placement.
2746 void PhaseIdealLoop::build_loop_late_post( Node *n ) {
2747 
2748   if (n->req() == 2 && n->Opcode() == Op_ConvI2L && !C->major_progress() && !_verify_only) {
2749     _igvn._worklist.push(n);  // Maybe we'll normalize it, if no more loops.
2750   }
2751 
2752   // CFG and pinned nodes already handled
2753   if( n->in(0) ) {
2754     if( n->in(0)->is_top() ) return; // Dead?
2755 
2756     // We'd like +VerifyLoopOptimizations to not believe that Mod's/Loads
2757     // _must_ be pinned (they have to observe their control edge of course).
2758     // Unlike Stores (which modify an unallocable resource, the memory
2759     // state), Mods/Loads can float around.  So free them up.
2760     bool pinned = true;
2761     switch( n->Opcode() ) {
2762     case Op_DivI:
2763     case Op_DivF:
2764     case Op_DivD:
2765     case Op_ModI:
2766     case Op_ModF:
2767     case Op_ModD:
2768     case Op_LoadB:              // Same with Loads; they can sink
2769     case Op_LoadUS:             // during loop optimizations.
2770     case Op_LoadD:
2771     case Op_LoadF:
2772     case Op_LoadI:
2773     case Op_LoadKlass:
2774     case Op_LoadNKlass:
2775     case Op_LoadL:
2776     case Op_LoadS:
2777     case Op_LoadP:
2778     case Op_LoadN:
2779     case Op_LoadRange:
2780     case Op_LoadD_unaligned:
2781     case Op_LoadL_unaligned:
2782     case Op_StrComp:            // Does a bunch of load-like effects
2783     case Op_StrEquals:
2784     case Op_StrIndexOf:
2785     case Op_AryEq:
2786       pinned = false;
2787     }
2788     if( pinned ) {
2789       IdealLoopTree *chosen_loop = get_loop(n->is_CFG() ? n : get_ctrl(n));
2790       if( !chosen_loop->_child )       // Inner loop?
2791         chosen_loop->_body.push(n); // Collect inner loops
2792       return;
2793     }
2794   } else {                      // No slot zero
2795     if( n->is_CFG() ) {         // CFG with no slot 0 is dead
2796       _nodes.map(n->_idx,0);    // No block setting, it's globally dead
2797       return;
2798     }
2799     assert(!n->is_CFG() || n->outcnt() == 0, "");
2800   }
2801 
2802   // Do I have a "safe range" I can select over?
2803   Node *early = get_ctrl(n);// Early location already computed
2804 
2805   // Compute latest point this Node can go
2806   Node *LCA = get_late_ctrl( n, early );
2807   // LCA is NULL due to uses being dead
2808   if( LCA == NULL ) {
2809 #ifdef ASSERT
2810     for (DUIterator i1 = n->outs(); n->has_out(i1); i1++) {
2811       assert( _nodes[n->out(i1)->_idx] == NULL, "all uses must also be dead");
2812     }
2813 #endif
2814     _nodes.map(n->_idx, 0);     // This node is useless
2815     _deadlist.push(n);
2816     return;
2817   }
2818   assert(LCA != NULL && !LCA->is_top(), "no dead nodes");
2819 
2820   Node *legal = LCA;            // Walk 'legal' up the IDOM chain
2821   Node *least = legal;          // Best legal position so far
2822   while( early != legal ) {     // While not at earliest legal
2823 #ifdef ASSERT
2824     if (legal->is_Start() && !early->is_Root()) {
2825       // Bad graph. Print idom path and fail.
2826       tty->print_cr( "Bad graph detected in build_loop_late");
2827       tty->print("n: ");n->dump(); tty->cr();
2828       tty->print("early: ");early->dump(); tty->cr();
2829       int ct = 0;
2830       Node *dbg_legal = LCA;
2831       while(!dbg_legal->is_Start() && ct < 100) {
2832         tty->print("idom[%d] ",ct); dbg_legal->dump(); tty->cr();
2833         ct++;
2834         dbg_legal = idom(dbg_legal);
2835       }
2836       assert(false, "Bad graph detected in build_loop_late");
2837     }
2838 #endif
2839     // Find least loop nesting depth
2840     legal = idom(legal);        // Bump up the IDOM tree
2841     // Check for lower nesting depth
2842     if( get_loop(legal)->_nest < get_loop(least)->_nest )
2843       least = legal;
2844   }
2845   assert(early == legal || legal != C->root(), "bad dominance of inputs");
2846 
2847   // Try not to place code on a loop entry projection
2848   // which can inhibit range check elimination.
2849   if (least != early) {
2850     Node* ctrl_out = least->unique_ctrl_out();
2851     if (ctrl_out && ctrl_out->is_CountedLoop() &&
2852         least == ctrl_out->in(LoopNode::EntryControl)) {
2853       Node* least_dom = idom(least);
2854       if (get_loop(least_dom)->is_member(get_loop(least))) {
2855         least = least_dom;
2856       }
2857     }
2858   }
2859 
2860 #ifdef ASSERT
2861   // If verifying, verify that 'verify_me' has a legal location
2862   // and choose it as our location.
2863   if( _verify_me ) {
2864     Node *v_ctrl = _verify_me->get_ctrl_no_update(n);
2865     Node *legal = LCA;
2866     while( early != legal ) {   // While not at earliest legal
2867       if( legal == v_ctrl ) break;  // Check for prior good location
2868       legal = idom(legal)      ;// Bump up the IDOM tree
2869     }
2870     // Check for prior good location
2871     if( legal == v_ctrl ) least = legal; // Keep prior if found
2872   }
2873 #endif
2874 
2875   // Assign discovered "here or above" point
2876   least = find_non_split_ctrl(least);
2877   set_ctrl(n, least);
2878 
2879   // Collect inner loop bodies
2880   IdealLoopTree *chosen_loop = get_loop(least);
2881   if( !chosen_loop->_child )   // Inner loop?
2882     chosen_loop->_body.push(n);// Collect inner loops
2883 }
2884 
2885 #ifndef PRODUCT
2886 //------------------------------dump-------------------------------------------
2887 void PhaseIdealLoop::dump( ) const {
2888   ResourceMark rm;
2889   Arena* arena = Thread::current()->resource_area();
2890   Node_Stack stack(arena, C->unique() >> 2);
2891   Node_List rpo_list;
2892   VectorSet visited(arena);
2893   visited.set(C->top()->_idx);
2894   rpo( C->root(), stack, visited, rpo_list );
2895   // Dump root loop indexed by last element in PO order
2896   dump( _ltree_root, rpo_list.size(), rpo_list );
2897 }
2898 
2899 void PhaseIdealLoop::dump( IdealLoopTree *loop, uint idx, Node_List &rpo_list ) const {
2900   loop->dump_head();
2901 
2902   // Now scan for CFG nodes in the same loop
2903   for( uint j=idx; j > 0;  j-- ) {
2904     Node *n = rpo_list[j-1];
2905     if( !_nodes[n->_idx] )      // Skip dead nodes
2906       continue;
2907     if( get_loop(n) != loop ) { // Wrong loop nest
2908       if( get_loop(n)->_head == n &&    // Found nested loop?
2909           get_loop(n)->_parent == loop )
2910         dump(get_loop(n),rpo_list.size(),rpo_list);     // Print it nested-ly
2911       continue;
2912     }
2913 
2914     // Dump controlling node
2915     for( uint x = 0; x < loop->_nest; x++ )
2916       tty->print("  ");
2917     tty->print("C");
2918     if( n == C->root() ) {
2919       n->dump();
2920     } else {
2921       Node* cached_idom   = idom_no_update(n);
2922       Node *computed_idom = n->in(0);
2923       if( n->is_Region() ) {
2924         computed_idom = compute_idom(n);
2925         // computed_idom() will return n->in(0) when idom(n) is an IfNode (or
2926         // any MultiBranch ctrl node), so apply a similar transform to
2927         // the cached idom returned from idom_no_update.
2928         cached_idom = find_non_split_ctrl(cached_idom);
2929       }
2930       tty->print(" ID:%d",computed_idom->_idx);
2931       n->dump();
2932       if( cached_idom != computed_idom ) {
2933         tty->print_cr("*** BROKEN IDOM!  Computed as: %d, cached as: %d",
2934                       computed_idom->_idx, cached_idom->_idx);
2935       }
2936     }
2937     // Dump nodes it controls
2938     for( uint k = 0; k < _nodes.Size(); k++ ) {
2939       // (k < C->unique() && get_ctrl(find(k)) == n)
2940       if (k < C->unique() && _nodes[k] == (Node*)((intptr_t)n + 1)) {
2941         Node *m = C->root()->find(k);
2942         if( m && m->outcnt() > 0 ) {
2943           if (!(has_ctrl(m) && get_ctrl_no_update(m) == n)) {
2944             tty->print_cr("*** BROKEN CTRL ACCESSOR!  _nodes[k] is %p, ctrl is %p",
2945                           _nodes[k], has_ctrl(m) ? get_ctrl_no_update(m) : NULL);
2946           }
2947           for( uint j = 0; j < loop->_nest; j++ )
2948             tty->print("  ");
2949           tty->print(" ");
2950           m->dump();
2951         }
2952       }
2953     }
2954   }
2955 }
2956 
2957 // Collect a R-P-O for the whole CFG.
2958 // Result list is in post-order (scan backwards for RPO)
2959 void PhaseIdealLoop::rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const {
2960   stk.push(start, 0);
2961   visited.set(start->_idx);
2962 
2963   while (stk.is_nonempty()) {
2964     Node* m   = stk.node();
2965     uint  idx = stk.index();
2966     if (idx < m->outcnt()) {
2967       stk.set_index(idx + 1);
2968       Node* n = m->raw_out(idx);
2969       if (n->is_CFG() && !visited.test_set(n->_idx)) {
2970         stk.push(n, 0);
2971       }
2972     } else {
2973       rpo_list.push(m);
2974       stk.pop();
2975     }
2976   }
2977 }
2978 #endif
2979 
2980 
2981 //=============================================================================
2982 //------------------------------LoopTreeIterator-----------------------------------
2983 
2984 // Advance to next loop tree using a preorder, left-to-right traversal.
2985 void LoopTreeIterator::next() {
2986   assert(!done(), "must not be done.");
2987   if (_curnt->_child != NULL) {
2988     _curnt = _curnt->_child;
2989   } else if (_curnt->_next != NULL) {
2990     _curnt = _curnt->_next;
2991   } else {
2992     while (_curnt != _root && _curnt->_next == NULL) {
2993       _curnt = _curnt->_parent;
2994     }
2995     if (_curnt == _root) {
2996       _curnt = NULL;
2997       assert(done(), "must be done.");
2998     } else {
2999       assert(_curnt->_next != NULL, "must be more to do");
3000       _curnt = _curnt->_next;
3001     }
3002   }
3003 }