1 /* 2 * Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. Oracle designates this 8 * particular file as subject to the "Classpath" exception as provided 9 * by Oracle in the LICENSE file that accompanied this code. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 */ 25 26 package java.net; 27 28 import java.io.IOException; 29 import java.io.InvalidObjectException; 30 import java.io.ObjectInputStream; 31 import java.io.ObjectOutputStream; 32 import java.io.Serializable; 33 import java.nio.ByteBuffer; 34 import java.nio.CharBuffer; 35 import java.nio.charset.CharsetDecoder; 36 import java.nio.charset.CharsetEncoder; 37 import java.nio.charset.CoderResult; 38 import java.nio.charset.CodingErrorAction; 39 import java.nio.charset.CharacterCodingException; 40 import java.text.Normalizer; 41 import sun.nio.cs.ThreadLocalCoders; 42 43 import java.lang.Character; // for javadoc 44 import java.lang.NullPointerException; // for javadoc 45 46 47 /** 48 * Represents a Uniform Resource Identifier (URI) reference. 49 * 50 * <p> Aside from some minor deviations noted below, an instance of this 51 * class represents a URI reference as defined by 52 * <a href="http://www.ietf.org/rfc/rfc2396.txt"><i>RFC 2396: Uniform 53 * Resource Identifiers (URI): Generic Syntax</i></a>, amended by <a 54 * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC 2732: Format for 55 * Literal IPv6 Addresses in URLs</i></a>. The Literal IPv6 address format 56 * also supports scope_ids. The syntax and usage of scope_ids is described 57 * <a href="Inet6Address.html#scoped">here</a>. 58 * This class provides constructors for creating URI instances from 59 * their components or by parsing their string forms, methods for accessing the 60 * various components of an instance, and methods for normalizing, resolving, 61 * and relativizing URI instances. Instances of this class are immutable. 62 * 63 * 64 * <h4> URI syntax and components </h4> 65 * 66 * At the highest level a URI reference (hereinafter simply "URI") in string 67 * form has the syntax 68 * 69 * <blockquote> 70 * [<i>scheme</i><tt><b>:</b></tt><i></i>]<i>scheme-specific-part</i>[<tt><b>#</b></tt><i>fragment</i>] 71 * </blockquote> 72 * 73 * where square brackets [...] delineate optional components and the characters 74 * <tt><b>:</b></tt> and <tt><b>#</b></tt> stand for themselves. 75 * 76 * <p> An <i>absolute</i> URI specifies a scheme; a URI that is not absolute is 77 * said to be <i>relative</i>. URIs are also classified according to whether 78 * they are <i>opaque</i> or <i>hierarchical</i>. 79 * 80 * <p> An <i>opaque</i> URI is an absolute URI whose scheme-specific part does 81 * not begin with a slash character (<tt>'/'</tt>). Opaque URIs are not 82 * subject to further parsing. Some examples of opaque URIs are: 83 * 84 * <blockquote><table cellpadding=0 cellspacing=0 summary="layout"> 85 * <tr><td><tt>mailto:java-net@java.sun.com</tt><td></tr> 86 * <tr><td><tt>news:comp.lang.java</tt><td></tr> 87 * <tr><td><tt>urn:isbn:096139210x</tt></td></tr> 88 * </table></blockquote> 89 * 90 * <p> A <i>hierarchical</i> URI is either an absolute URI whose 91 * scheme-specific part begins with a slash character, or a relative URI, that 92 * is, a URI that does not specify a scheme. Some examples of hierarchical 93 * URIs are: 94 * 95 * <blockquote> 96 * <tt>http://java.sun.com/j2se/1.3/</tt><br> 97 * <tt>docs/guide/collections/designfaq.html#28</tt><br> 98 * <tt>../../../demo/jfc/SwingSet2/src/SwingSet2.java</tt><br> 99 * <tt>file:///~/calendar</tt> 100 * </blockquote> 101 * 102 * <p> A hierarchical URI is subject to further parsing according to the syntax 103 * 104 * <blockquote> 105 * [<i>scheme</i><tt><b>:</b></tt>][<tt><b>//</b></tt><i>authority</i>][<i>path</i>][<tt><b>?</b></tt><i>query</i>][<tt><b>#</b></tt><i>fragment</i>] 106 * </blockquote> 107 * 108 * where the characters <tt><b>:</b></tt>, <tt><b>/</b></tt>, 109 * <tt><b>?</b></tt>, and <tt><b>#</b></tt> stand for themselves. The 110 * scheme-specific part of a hierarchical URI consists of the characters 111 * between the scheme and fragment components. 112 * 113 * <p> The authority component of a hierarchical URI is, if specified, either 114 * <i>server-based</i> or <i>registry-based</i>. A server-based authority 115 * parses according to the familiar syntax 116 * 117 * <blockquote> 118 * [<i>user-info</i><tt><b>@</b></tt>]<i>host</i>[<tt><b>:</b></tt><i>port</i>] 119 * </blockquote> 120 * 121 * where the characters <tt><b>@</b></tt> and <tt><b>:</b></tt> stand for 122 * themselves. Nearly all URI schemes currently in use are server-based. An 123 * authority component that does not parse in this way is considered to be 124 * registry-based. 125 * 126 * <p> The path component of a hierarchical URI is itself said to be absolute 127 * if it begins with a slash character (<tt>'/'</tt>); otherwise it is 128 * relative. The path of a hierarchical URI that is either absolute or 129 * specifies an authority is always absolute. 130 * 131 * <p> All told, then, a URI instance has the following nine components: 132 * 133 * <blockquote><table summary="Describes the components of a URI:scheme,scheme-specific-part,authority,user-info,host,port,path,query,fragment"> 134 * <tr><th><i>Component</i></th><th><i>Type</i></th></tr> 135 * <tr><td>scheme</td><td><tt>String</tt></td></tr> 136 * <tr><td>scheme-specific-part </td><td><tt>String</tt></td></tr> 137 * <tr><td>authority</td><td><tt>String</tt></td></tr> 138 * <tr><td>user-info</td><td><tt>String</tt></td></tr> 139 * <tr><td>host</td><td><tt>String</tt></td></tr> 140 * <tr><td>port</td><td><tt>int</tt></td></tr> 141 * <tr><td>path</td><td><tt>String</tt></td></tr> 142 * <tr><td>query</td><td><tt>String</tt></td></tr> 143 * <tr><td>fragment</td><td><tt>String</tt></td></tr> 144 * </table></blockquote> 145 * 146 * In a given instance any particular component is either <i>undefined</i> or 147 * <i>defined</i> with a distinct value. Undefined string components are 148 * represented by <tt>null</tt>, while undefined integer components are 149 * represented by <tt>-1</tt>. A string component may be defined to have the 150 * empty string as its value; this is not equivalent to that component being 151 * undefined. 152 * 153 * <p> Whether a particular component is or is not defined in an instance 154 * depends upon the type of the URI being represented. An absolute URI has a 155 * scheme component. An opaque URI has a scheme, a scheme-specific part, and 156 * possibly a fragment, but has no other components. A hierarchical URI always 157 * has a path (though it may be empty) and a scheme-specific-part (which at 158 * least contains the path), and may have any of the other components. If the 159 * authority component is present and is server-based then the host component 160 * will be defined and the user-information and port components may be defined. 161 * 162 * 163 * <h4> Operations on URI instances </h4> 164 * 165 * The key operations supported by this class are those of 166 * <i>normalization</i>, <i>resolution</i>, and <i>relativization</i>. 167 * 168 * <p> <i>Normalization</i> is the process of removing unnecessary <tt>"."</tt> 169 * and <tt>".."</tt> segments from the path component of a hierarchical URI. 170 * Each <tt>"."</tt> segment is simply removed. A <tt>".."</tt> segment is 171 * removed only if it is preceded by a non-<tt>".."</tt> segment. 172 * Normalization has no effect upon opaque URIs. 173 * 174 * <p> <i>Resolution</i> is the process of resolving one URI against another, 175 * <i>base</i> URI. The resulting URI is constructed from components of both 176 * URIs in the manner specified by RFC 2396, taking components from the 177 * base URI for those not specified in the original. For hierarchical URIs, 178 * the path of the original is resolved against the path of the base and then 179 * normalized. The result, for example, of resolving 180 * 181 * <blockquote> 182 * <tt>docs/guide/collections/designfaq.html#28 </tt>(1) 183 * </blockquote> 184 * 185 * against the base URI <tt>http://java.sun.com/j2se/1.3/</tt> is the result 186 * URI 187 * 188 * <blockquote> 189 * <tt>http://java.sun.com/j2se/1.3/docs/guide/collections/designfaq.html#28</tt> 190 * </blockquote> 191 * 192 * Resolving the relative URI 193 * 194 * <blockquote> 195 * <tt>../../../demo/jfc/SwingSet2/src/SwingSet2.java </tt>(2) 196 * </blockquote> 197 * 198 * against this result yields, in turn, 199 * 200 * <blockquote> 201 * <tt>http://java.sun.com/j2se/1.3/demo/jfc/SwingSet2/src/SwingSet2.java</tt> 202 * </blockquote> 203 * 204 * Resolution of both absolute and relative URIs, and of both absolute and 205 * relative paths in the case of hierarchical URIs, is supported. Resolving 206 * the URI <tt>file:///~calendar</tt> against any other URI simply yields the 207 * original URI, since it is absolute. Resolving the relative URI (2) above 208 * against the relative base URI (1) yields the normalized, but still relative, 209 * URI 210 * 211 * <blockquote> 212 * <tt>demo/jfc/SwingSet2/src/SwingSet2.java</tt> 213 * </blockquote> 214 * 215 * <p> <i>Relativization</i>, finally, is the inverse of resolution: For any 216 * two normalized URIs <i>u</i> and <i>v</i>, 217 * 218 * <blockquote> 219 * <i>u</i><tt>.relativize(</tt><i>u</i><tt>.resolve(</tt><i>v</i><tt>)).equals(</tt><i>v</i><tt>)</tt> and<br> 220 * <i>u</i><tt>.resolve(</tt><i>u</i><tt>.relativize(</tt><i>v</i><tt>)).equals(</tt><i>v</i><tt>)</tt> .<br> 221 * </blockquote> 222 * 223 * This operation is often useful when constructing a document containing URIs 224 * that must be made relative to the base URI of the document wherever 225 * possible. For example, relativizing the URI 226 * 227 * <blockquote> 228 * <tt>http://java.sun.com/j2se/1.3/docs/guide/index.html</tt> 229 * </blockquote> 230 * 231 * against the base URI 232 * 233 * <blockquote> 234 * <tt>http://java.sun.com/j2se/1.3</tt> 235 * </blockquote> 236 * 237 * yields the relative URI <tt>docs/guide/index.html</tt>. 238 * 239 * 240 * <h4> Character categories </h4> 241 * 242 * RFC 2396 specifies precisely which characters are permitted in the 243 * various components of a URI reference. The following categories, most of 244 * which are taken from that specification, are used below to describe these 245 * constraints: 246 * 247 * <blockquote><table cellspacing=2 summary="Describes categories alpha,digit,alphanum,unreserved,punct,reserved,escaped,and other"> 248 * <tr><th valign=top><i>alpha</i></th> 249 * <td>The US-ASCII alphabetic characters, 250 * <tt>'A'</tt> through <tt>'Z'</tt> 251 * and <tt>'a'</tt> through <tt>'z'</tt></td></tr> 252 * <tr><th valign=top><i>digit</i></th> 253 * <td>The US-ASCII decimal digit characters, 254 * <tt>'0'</tt> through <tt>'9'</tt></td></tr> 255 * <tr><th valign=top><i>alphanum</i></th> 256 * <td>All <i>alpha</i> and <i>digit</i> characters</td></tr> 257 * <tr><th valign=top><i>unreserved</i> </th> 258 * <td>All <i>alphanum</i> characters together with those in the string 259 * <tt>"_-!.~'()*"</tt></td></tr> 260 * <tr><th valign=top><i>punct</i></th> 261 * <td>The characters in the string <tt>",;:$&+="</tt></td></tr> 262 * <tr><th valign=top><i>reserved</i></th> 263 * <td>All <i>punct</i> characters together with those in the string 264 * <tt>"?/[]@"</tt></td></tr> 265 * <tr><th valign=top><i>escaped</i></th> 266 * <td>Escaped octets, that is, triplets consisting of the percent 267 * character (<tt>'%'</tt>) followed by two hexadecimal digits 268 * (<tt>'0'</tt>-<tt>'9'</tt>, <tt>'A'</tt>-<tt>'F'</tt>, and 269 * <tt>'a'</tt>-<tt>'f'</tt>)</td></tr> 270 * <tr><th valign=top><i>other</i></th> 271 * <td>The Unicode characters that are not in the US-ASCII character set, 272 * are not control characters (according to the {@link 273 * java.lang.Character#isISOControl(char) Character.isISOControl} 274 * method), and are not space characters (according to the {@link 275 * java.lang.Character#isSpaceChar(char) Character.isSpaceChar} 276 * method) <i>(<b>Deviation from RFC 2396</b>, which is 277 * limited to US-ASCII)</i></td></tr> 278 * </table></blockquote> 279 * 280 * <p><a name="legal-chars"></a> The set of all legal URI characters consists of 281 * the <i>unreserved</i>, <i>reserved</i>, <i>escaped</i>, and <i>other</i> 282 * characters. 283 * 284 * 285 * <h4> Escaped octets, quotation, encoding, and decoding </h4> 286 * 287 * RFC 2396 allows escaped octets to appear in the user-info, path, query, and 288 * fragment components. Escaping serves two purposes in URIs: 289 * 290 * <ul> 291 * 292 * <li><p> To <i>encode</i> non-US-ASCII characters when a URI is required to 293 * conform strictly to RFC 2396 by not containing any <i>other</i> 294 * characters. </p></li> 295 * 296 * <li><p> To <i>quote</i> characters that are otherwise illegal in a 297 * component. The user-info, path, query, and fragment components differ 298 * slightly in terms of which characters are considered legal and illegal. 299 * </p></li> 300 * 301 * </ul> 302 * 303 * These purposes are served in this class by three related operations: 304 * 305 * <ul> 306 * 307 * <li><p><a name="encode"></a> A character is <i>encoded</i> by replacing it 308 * with the sequence of escaped octets that represent that character in the 309 * UTF-8 character set. The Euro currency symbol (<tt>'\u20AC'</tt>), 310 * for example, is encoded as <tt>"%E2%82%AC"</tt>. <i>(<b>Deviation from 311 * RFC 2396</b>, which does not specify any particular character 312 * set.)</i> </p></li> 313 * 314 * <li><p><a name="quote"></a> An illegal character is <i>quoted</i> simply by 315 * encoding it. The space character, for example, is quoted by replacing it 316 * with <tt>"%20"</tt>. UTF-8 contains US-ASCII, hence for US-ASCII 317 * characters this transformation has exactly the effect required by 318 * RFC 2396. </p></li> 319 * 320 * <li><p><a name="decode"></a> 321 * A sequence of escaped octets is <i>decoded</i> by 322 * replacing it with the sequence of characters that it represents in the 323 * UTF-8 character set. UTF-8 contains US-ASCII, hence decoding has the 324 * effect of de-quoting any quoted US-ASCII characters as well as that of 325 * decoding any encoded non-US-ASCII characters. If a <a 326 * href="../nio/charset/CharsetDecoder.html#ce">decoding error</a> occurs 327 * when decoding the escaped octets then the erroneous octets are replaced by 328 * <tt>'\uFFFD'</tt>, the Unicode replacement character. </p></li> 329 * 330 * </ul> 331 * 332 * These operations are exposed in the constructors and methods of this class 333 * as follows: 334 * 335 * <ul> 336 * 337 * <li><p> The {@link #URI(java.lang.String) <code>single-argument 338 * constructor</code>} requires any illegal characters in its argument to be 339 * quoted and preserves any escaped octets and <i>other</i> characters that 340 * are present. </p></li> 341 * 342 * <li><p> The {@link 343 * #URI(java.lang.String,java.lang.String,java.lang.String,int,java.lang.String,java.lang.String,java.lang.String) 344 * <code>multi-argument constructors</code>} quote illegal characters as 345 * required by the components in which they appear. The percent character 346 * (<tt>'%'</tt>) is always quoted by these constructors. Any <i>other</i> 347 * characters are preserved. </p></li> 348 * 349 * <li><p> The {@link #getRawUserInfo() getRawUserInfo}, {@link #getRawPath() 350 * getRawPath}, {@link #getRawQuery() getRawQuery}, {@link #getRawFragment() 351 * getRawFragment}, {@link #getRawAuthority() getRawAuthority}, and {@link 352 * #getRawSchemeSpecificPart() getRawSchemeSpecificPart} methods return the 353 * values of their corresponding components in raw form, without interpreting 354 * any escaped octets. The strings returned by these methods may contain 355 * both escaped octets and <i>other</i> characters, and will not contain any 356 * illegal characters. </p></li> 357 * 358 * <li><p> The {@link #getUserInfo() getUserInfo}, {@link #getPath() 359 * getPath}, {@link #getQuery() getQuery}, {@link #getFragment() 360 * getFragment}, {@link #getAuthority() getAuthority}, and {@link 361 * #getSchemeSpecificPart() getSchemeSpecificPart} methods decode any escaped 362 * octets in their corresponding components. The strings returned by these 363 * methods may contain both <i>other</i> characters and illegal characters, 364 * and will not contain any escaped octets. </p></li> 365 * 366 * <li><p> The {@link #toString() toString} method returns a URI string with 367 * all necessary quotation but which may contain <i>other</i> characters. 368 * </p></li> 369 * 370 * <li><p> The {@link #toASCIIString() toASCIIString} method returns a fully 371 * quoted and encoded URI string that does not contain any <i>other</i> 372 * characters. </p></li> 373 * 374 * </ul> 375 * 376 * 377 * <h4> Identities </h4> 378 * 379 * For any URI <i>u</i>, it is always the case that 380 * 381 * <blockquote> 382 * <tt>new URI(</tt><i>u</i><tt>.toString()).equals(</tt><i>u</i><tt>)</tt> . 383 * </blockquote> 384 * 385 * For any URI <i>u</i> that does not contain redundant syntax such as two 386 * slashes before an empty authority (as in <tt>file:///tmp/</tt> ) or a 387 * colon following a host name but no port (as in 388 * <tt>http://java.sun.com:</tt> ), and that does not encode characters 389 * except those that must be quoted, the following identities also hold: 390 * 391 * <blockquote> 392 * <tt>new URI(</tt><i>u</i><tt>.getScheme(),<br> 393 * </tt><i>u</i><tt>.getSchemeSpecificPart(),<br> 394 * </tt><i>u</i><tt>.getFragment())<br> 395 * .equals(</tt><i>u</i><tt>)</tt> 396 * </blockquote> 397 * 398 * in all cases, 399 * 400 * <blockquote> 401 * <tt>new URI(</tt><i>u</i><tt>.getScheme(),<br> 402 * </tt><i>u</i><tt>.getUserInfo(), </tt><i>u</i><tt>.getAuthority(),<br> 403 * </tt><i>u</i><tt>.getPath(), </tt><i>u</i><tt>.getQuery(),<br> 404 * </tt><i>u</i><tt>.getFragment())<br> 405 * .equals(</tt><i>u</i><tt>)</tt> 406 * </blockquote> 407 * 408 * if <i>u</i> is hierarchical, and 409 * 410 * <blockquote> 411 * <tt>new URI(</tt><i>u</i><tt>.getScheme(),<br> 412 * </tt><i>u</i><tt>.getUserInfo(), </tt><i>u</i><tt>.getHost(), </tt><i>u</i><tt>.getPort(),<br> 413 * </tt><i>u</i><tt>.getPath(), </tt><i>u</i><tt>.getQuery(),<br> 414 * </tt><i>u</i><tt>.getFragment())<br> 415 * .equals(</tt><i>u</i><tt>)</tt> 416 * </blockquote> 417 * 418 * if <i>u</i> is hierarchical and has either no authority or a server-based 419 * authority. 420 * 421 * 422 * <h4> URIs, URLs, and URNs </h4> 423 * 424 * A URI is a uniform resource <i>identifier</i> while a URL is a uniform 425 * resource <i>locator</i>. Hence every URL is a URI, abstractly speaking, but 426 * not every URI is a URL. This is because there is another subcategory of 427 * URIs, uniform resource <i>names</i> (URNs), which name resources but do not 428 * specify how to locate them. The <tt>mailto</tt>, <tt>news</tt>, and 429 * <tt>isbn</tt> URIs shown above are examples of URNs. 430 * 431 * <p> The conceptual distinction between URIs and URLs is reflected in the 432 * differences between this class and the {@link URL} class. 433 * 434 * <p> An instance of this class represents a URI reference in the syntactic 435 * sense defined by RFC 2396. A URI may be either absolute or relative. 436 * A URI string is parsed according to the generic syntax without regard to the 437 * scheme, if any, that it specifies. No lookup of the host, if any, is 438 * performed, and no scheme-dependent stream handler is constructed. Equality, 439 * hashing, and comparison are defined strictly in terms of the character 440 * content of the instance. In other words, a URI instance is little more than 441 * a structured string that supports the syntactic, scheme-independent 442 * operations of comparison, normalization, resolution, and relativization. 443 * 444 * <p> An instance of the {@link URL} class, by contrast, represents the 445 * syntactic components of a URL together with some of the information required 446 * to access the resource that it describes. A URL must be absolute, that is, 447 * it must always specify a scheme. A URL string is parsed according to its 448 * scheme. A stream handler is always established for a URL, and in fact it is 449 * impossible to create a URL instance for a scheme for which no handler is 450 * available. Equality and hashing depend upon both the scheme and the 451 * Internet address of the host, if any; comparison is not defined. In other 452 * words, a URL is a structured string that supports the syntactic operation of 453 * resolution as well as the network I/O operations of looking up the host and 454 * opening a connection to the specified resource. 455 * 456 * 457 * @author Mark Reinhold 458 * @since 1.4 459 * 460 * @see <a href="http://www.ietf.org/rfc/rfc2279.txt"><i>RFC 2279: UTF-8, a 461 * transformation format of ISO 10646</i></a>, <br><a 462 * href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC 2373: IPv6 Addressing 463 * Architecture</i></a>, <br><a 464 * href="http://www.ietf.org/rfc/rfc2396.txt"><i>RFC 2396: Uniform 465 * Resource Identifiers (URI): Generic Syntax</i></a>, <br><a 466 * href="http://www.ietf.org/rfc/rfc2732.txt"><i>RFC 2732: Format for 467 * Literal IPv6 Addresses in URLs</i></a>, <br><a 468 * href="URISyntaxException.html">URISyntaxException</a> 469 */ 470 471 public final class URI 472 implements Comparable<URI>, Serializable 473 { 474 475 // Note: Comments containing the word "ASSERT" indicate places where a 476 // throw of an InternalError should be replaced by an appropriate assertion 477 // statement once asserts are enabled in the build. 478 479 static final long serialVersionUID = -6052424284110960213L; 480 481 482 // -- Properties and components of this instance -- 483 484 // Components of all URIs: [<scheme>:]<scheme-specific-part>[#<fragment>] 485 private transient String scheme; // null ==> relative URI 486 private transient String fragment; 487 488 // Hierarchical URI components: [//<authority>]<path>[?<query>] 489 private transient String authority; // Registry or server 490 491 // Server-based authority: [<userInfo>@]<host>[:<port>] 492 private transient String userInfo; 493 private transient String host; // null ==> registry-based 494 private transient int port = -1; // -1 ==> undefined 495 496 // Remaining components of hierarchical URIs 497 private transient String path; // null ==> opaque 498 private transient String query; 499 500 // The remaining fields may be computed on demand 501 502 private volatile transient String schemeSpecificPart; 503 private volatile transient int hash; // Zero ==> undefined 504 505 private volatile transient String decodedUserInfo = null; 506 private volatile transient String decodedAuthority = null; 507 private volatile transient String decodedPath = null; 508 private volatile transient String decodedQuery = null; 509 private volatile transient String decodedFragment = null; 510 private volatile transient String decodedSchemeSpecificPart = null; 511 512 /** 513 * The string form of this URI. 514 * 515 * @serial 516 */ 517 private volatile String string; // The only serializable field 518 519 520 521 // -- Constructors and factories -- 522 523 private URI() { } // Used internally 524 525 /** 526 * Constructs a URI by parsing the given string. 527 * 528 * <p> This constructor parses the given string exactly as specified by the 529 * grammar in <a 530 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 531 * Appendix A, <b><i>except for the following deviations:</i></b> </p> 532 * 533 * <ul type=disc> 534 * 535 * <li><p> An empty authority component is permitted as long as it is 536 * followed by a non-empty path, a query component, or a fragment 537 * component. This allows the parsing of URIs such as 538 * <tt>"file:///foo/bar"</tt>, which seems to be the intent of 539 * RFC 2396 although the grammar does not permit it. If the 540 * authority component is empty then the user-information, host, and port 541 * components are undefined. </p></li> 542 * 543 * <li><p> Empty relative paths are permitted; this seems to be the 544 * intent of RFC 2396 although the grammar does not permit it. The 545 * primary consequence of this deviation is that a standalone fragment 546 * such as <tt>"#foo"</tt> parses as a relative URI with an empty path 547 * and the given fragment, and can be usefully <a 548 * href="#resolve-frag">resolved</a> against a base URI. 549 * 550 * <li><p> IPv4 addresses in host components are parsed rigorously, as 551 * specified by <a 552 * href="http://www.ietf.org/rfc/rfc2732.txt">RFC 2732</a>: Each 553 * element of a dotted-quad address must contain no more than three 554 * decimal digits. Each element is further constrained to have a value 555 * no greater than 255. </p></li> 556 * 557 * <li> <p> Hostnames in host components that comprise only a single 558 * domain label are permitted to start with an <i>alphanum</i> 559 * character. This seems to be the intent of <a 560 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a> 561 * section 3.2.2 although the grammar does not permit it. The 562 * consequence of this deviation is that the authority component of a 563 * hierarchical URI such as <tt>s://123</tt>, will parse as a server-based 564 * authority. </p></li> 565 * 566 * <li><p> IPv6 addresses are permitted for the host component. An IPv6 567 * address must be enclosed in square brackets (<tt>'['</tt> and 568 * <tt>']'</tt>) as specified by <a 569 * href="http://www.ietf.org/rfc/rfc2732.txt">RFC 2732</a>. The 570 * IPv6 address itself must parse according to <a 571 * href="http://www.ietf.org/rfc/rfc2373.txt">RFC 2373</a>. IPv6 572 * addresses are further constrained to describe no more than sixteen 573 * bytes of address information, a constraint implicit in RFC 2373 574 * but not expressible in the grammar. </p></li> 575 * 576 * <li><p> Characters in the <i>other</i> category are permitted wherever 577 * RFC 2396 permits <i>escaped</i> octets, that is, in the 578 * user-information, path, query, and fragment components, as well as in 579 * the authority component if the authority is registry-based. This 580 * allows URIs to contain Unicode characters beyond those in the US-ASCII 581 * character set. </p></li> 582 * 583 * </ul> 584 * 585 * @param str The string to be parsed into a URI 586 * 587 * @throws NullPointerException 588 * If <tt>str</tt> is <tt>null</tt> 589 * 590 * @throws URISyntaxException 591 * If the given string violates RFC 2396, as augmented 592 * by the above deviations 593 */ 594 public URI(String str) throws URISyntaxException { 595 new Parser(str).parse(false); 596 } 597 598 /** 599 * Constructs a hierarchical URI from the given components. 600 * 601 * <p> If a scheme is given then the path, if also given, must either be 602 * empty or begin with a slash character (<tt>'/'</tt>). Otherwise a 603 * component of the new URI may be left undefined by passing <tt>null</tt> 604 * for the corresponding parameter or, in the case of the <tt>port</tt> 605 * parameter, by passing <tt>-1</tt>. 606 * 607 * <p> This constructor first builds a URI string from the given components 608 * according to the rules specified in <a 609 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 610 * section 5.2, step 7: </p> 611 * 612 * <ol> 613 * 614 * <li><p> Initially, the result string is empty. </p></li> 615 * 616 * <li><p> If a scheme is given then it is appended to the result, 617 * followed by a colon character (<tt>':'</tt>). </p></li> 618 * 619 * <li><p> If user information, a host, or a port are given then the 620 * string <tt>"//"</tt> is appended. </p></li> 621 * 622 * <li><p> If user information is given then it is appended, followed by 623 * a commercial-at character (<tt>'@'</tt>). Any character not in the 624 * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i> 625 * categories is <a href="#quote">quoted</a>. </p></li> 626 * 627 * <li><p> If a host is given then it is appended. If the host is a 628 * literal IPv6 address but is not enclosed in square brackets 629 * (<tt>'['</tt> and <tt>']'</tt>) then the square brackets are added. 630 * </p></li> 631 * 632 * <li><p> If a port number is given then a colon character 633 * (<tt>':'</tt>) is appended, followed by the port number in decimal. 634 * </p></li> 635 * 636 * <li><p> If a path is given then it is appended. Any character not in 637 * the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i> 638 * categories, and not equal to the slash character (<tt>'/'</tt>) or the 639 * commercial-at character (<tt>'@'</tt>), is quoted. </p></li> 640 * 641 * <li><p> If a query is given then a question-mark character 642 * (<tt>'?'</tt>) is appended, followed by the query. Any character that 643 * is not a <a href="#legal-chars">legal URI character</a> is quoted. 644 * </p></li> 645 * 646 * <li><p> Finally, if a fragment is given then a hash character 647 * (<tt>'#'</tt>) is appended, followed by the fragment. Any character 648 * that is not a legal URI character is quoted. </p></li> 649 * 650 * </ol> 651 * 652 * <p> The resulting URI string is then parsed as if by invoking the {@link 653 * #URI(String)} constructor and then invoking the {@link 654 * #parseServerAuthority()} method upon the result; this may cause a {@link 655 * URISyntaxException} to be thrown. </p> 656 * 657 * @param scheme Scheme name 658 * @param userInfo User name and authorization information 659 * @param host Host name 660 * @param port Port number 661 * @param path Path 662 * @param query Query 663 * @param fragment Fragment 664 * 665 * @throws URISyntaxException 666 * If both a scheme and a path are given but the path is relative, 667 * if the URI string constructed from the given components violates 668 * RFC 2396, or if the authority component of the string is 669 * present but cannot be parsed as a server-based authority 670 */ 671 public URI(String scheme, 672 String userInfo, String host, int port, 673 String path, String query, String fragment) 674 throws URISyntaxException 675 { 676 String s = toString(scheme, null, 677 null, userInfo, host, port, 678 path, query, fragment); 679 checkPath(s, scheme, path); 680 new Parser(s).parse(true); 681 } 682 683 /** 684 * Constructs a hierarchical URI from the given components. 685 * 686 * <p> If a scheme is given then the path, if also given, must either be 687 * empty or begin with a slash character (<tt>'/'</tt>). Otherwise a 688 * component of the new URI may be left undefined by passing <tt>null</tt> 689 * for the corresponding parameter. 690 * 691 * <p> This constructor first builds a URI string from the given components 692 * according to the rules specified in <a 693 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 694 * section 5.2, step 7: </p> 695 * 696 * <ol> 697 * 698 * <li><p> Initially, the result string is empty. </p></li> 699 * 700 * <li><p> If a scheme is given then it is appended to the result, 701 * followed by a colon character (<tt>':'</tt>). </p></li> 702 * 703 * <li><p> If an authority is given then the string <tt>"//"</tt> is 704 * appended, followed by the authority. If the authority contains a 705 * literal IPv6 address then the address must be enclosed in square 706 * brackets (<tt>'['</tt> and <tt>']'</tt>). Any character not in the 707 * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i> 708 * categories, and not equal to the commercial-at character 709 * (<tt>'@'</tt>), is <a href="#quote">quoted</a>. </p></li> 710 * 711 * <li><p> If a path is given then it is appended. Any character not in 712 * the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, or <i>other</i> 713 * categories, and not equal to the slash character (<tt>'/'</tt>) or the 714 * commercial-at character (<tt>'@'</tt>), is quoted. </p></li> 715 * 716 * <li><p> If a query is given then a question-mark character 717 * (<tt>'?'</tt>) is appended, followed by the query. Any character that 718 * is not a <a href="#legal-chars">legal URI character</a> is quoted. 719 * </p></li> 720 * 721 * <li><p> Finally, if a fragment is given then a hash character 722 * (<tt>'#'</tt>) is appended, followed by the fragment. Any character 723 * that is not a legal URI character is quoted. </p></li> 724 * 725 * </ol> 726 * 727 * <p> The resulting URI string is then parsed as if by invoking the {@link 728 * #URI(String)} constructor and then invoking the {@link 729 * #parseServerAuthority()} method upon the result; this may cause a {@link 730 * URISyntaxException} to be thrown. </p> 731 * 732 * @param scheme Scheme name 733 * @param authority Authority 734 * @param path Path 735 * @param query Query 736 * @param fragment Fragment 737 * 738 * @throws URISyntaxException 739 * If both a scheme and a path are given but the path is relative, 740 * if the URI string constructed from the given components violates 741 * RFC 2396, or if the authority component of the string is 742 * present but cannot be parsed as a server-based authority 743 */ 744 public URI(String scheme, 745 String authority, 746 String path, String query, String fragment) 747 throws URISyntaxException 748 { 749 String s = toString(scheme, null, 750 authority, null, null, -1, 751 path, query, fragment); 752 checkPath(s, scheme, path); 753 new Parser(s).parse(false); 754 } 755 756 /** 757 * Constructs a hierarchical URI from the given components. 758 * 759 * <p> A component may be left undefined by passing <tt>null</tt>. 760 * 761 * <p> This convenience constructor works as if by invoking the 762 * seven-argument constructor as follows: 763 * 764 * <blockquote><tt> 765 * new {@link #URI(String, String, String, int, String, String, String) 766 * URI}(scheme, null, host, -1, path, null, fragment); 767 * </tt></blockquote> 768 * 769 * @param scheme Scheme name 770 * @param host Host name 771 * @param path Path 772 * @param fragment Fragment 773 * 774 * @throws URISyntaxException 775 * If the URI string constructed from the given components 776 * violates RFC 2396 777 */ 778 public URI(String scheme, String host, String path, String fragment) 779 throws URISyntaxException 780 { 781 this(scheme, null, host, -1, path, null, fragment); 782 } 783 784 /** 785 * Constructs a URI from the given components. 786 * 787 * <p> A component may be left undefined by passing <tt>null</tt>. 788 * 789 * <p> This constructor first builds a URI in string form using the given 790 * components as follows: </p> 791 * 792 * <ol> 793 * 794 * <li><p> Initially, the result string is empty. </p></li> 795 * 796 * <li><p> If a scheme is given then it is appended to the result, 797 * followed by a colon character (<tt>':'</tt>). </p></li> 798 * 799 * <li><p> If a scheme-specific part is given then it is appended. Any 800 * character that is not a <a href="#legal-chars">legal URI character</a> 801 * is <a href="#quote">quoted</a>. </p></li> 802 * 803 * <li><p> Finally, if a fragment is given then a hash character 804 * (<tt>'#'</tt>) is appended to the string, followed by the fragment. 805 * Any character that is not a legal URI character is quoted. </p></li> 806 * 807 * </ol> 808 * 809 * <p> The resulting URI string is then parsed in order to create the new 810 * URI instance as if by invoking the {@link #URI(String)} constructor; 811 * this may cause a {@link URISyntaxException} to be thrown. </p> 812 * 813 * @param scheme Scheme name 814 * @param ssp Scheme-specific part 815 * @param fragment Fragment 816 * 817 * @throws URISyntaxException 818 * If the URI string constructed from the given components 819 * violates RFC 2396 820 */ 821 public URI(String scheme, String ssp, String fragment) 822 throws URISyntaxException 823 { 824 new Parser(toString(scheme, ssp, 825 null, null, null, -1, 826 null, null, fragment)) 827 .parse(false); 828 } 829 830 /** 831 * Creates a URI by parsing the given string. 832 * 833 * <p> This convenience factory method works as if by invoking the {@link 834 * #URI(String)} constructor; any {@link URISyntaxException} thrown by the 835 * constructor is caught and wrapped in a new {@link 836 * IllegalArgumentException} object, which is then thrown. 837 * 838 * <p> This method is provided for use in situations where it is known that 839 * the given string is a legal URI, for example for URI constants declared 840 * within in a program, and so it would be considered a programming error 841 * for the string not to parse as such. The constructors, which throw 842 * {@link URISyntaxException} directly, should be used situations where a 843 * URI is being constructed from user input or from some other source that 844 * may be prone to errors. </p> 845 * 846 * @param str The string to be parsed into a URI 847 * @return The new URI 848 * 849 * @throws NullPointerException 850 * If <tt>str</tt> is <tt>null</tt> 851 * 852 * @throws IllegalArgumentException 853 * If the given string violates RFC 2396 854 */ 855 public static URI create(String str) { 856 try { 857 return new URI(str); 858 } catch (URISyntaxException x) { 859 throw new IllegalArgumentException(x.getMessage(), x); 860 } 861 } 862 863 864 // -- Operations -- 865 866 /** 867 * Attempts to parse this URI's authority component, if defined, into 868 * user-information, host, and port components. 869 * 870 * <p> If this URI's authority component has already been recognized as 871 * being server-based then it will already have been parsed into 872 * user-information, host, and port components. In this case, or if this 873 * URI has no authority component, this method simply returns this URI. 874 * 875 * <p> Otherwise this method attempts once more to parse the authority 876 * component into user-information, host, and port components, and throws 877 * an exception describing why the authority component could not be parsed 878 * in that way. 879 * 880 * <p> This method is provided because the generic URI syntax specified in 881 * <a href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a> 882 * cannot always distinguish a malformed server-based authority from a 883 * legitimate registry-based authority. It must therefore treat some 884 * instances of the former as instances of the latter. The authority 885 * component in the URI string <tt>"//foo:bar"</tt>, for example, is not a 886 * legal server-based authority but it is legal as a registry-based 887 * authority. 888 * 889 * <p> In many common situations, for example when working URIs that are 890 * known to be either URNs or URLs, the hierarchical URIs being used will 891 * always be server-based. They therefore must either be parsed as such or 892 * treated as an error. In these cases a statement such as 893 * 894 * <blockquote> 895 * <tt>URI </tt><i>u</i><tt> = new URI(str).parseServerAuthority();</tt> 896 * </blockquote> 897 * 898 * <p> can be used to ensure that <i>u</i> always refers to a URI that, if 899 * it has an authority component, has a server-based authority with proper 900 * user-information, host, and port components. Invoking this method also 901 * ensures that if the authority could not be parsed in that way then an 902 * appropriate diagnostic message can be issued based upon the exception 903 * that is thrown. </p> 904 * 905 * @return A URI whose authority field has been parsed 906 * as a server-based authority 907 * 908 * @throws URISyntaxException 909 * If the authority component of this URI is defined 910 * but cannot be parsed as a server-based authority 911 * according to RFC 2396 912 */ 913 public URI parseServerAuthority() 914 throws URISyntaxException 915 { 916 // We could be clever and cache the error message and index from the 917 // exception thrown during the original parse, but that would require 918 // either more fields or a more-obscure representation. 919 if ((host != null) || (authority == null)) 920 return this; 921 defineString(); 922 new Parser(string).parse(true); 923 return this; 924 } 925 926 /** 927 * Normalizes this URI's path. 928 * 929 * <p> If this URI is opaque, or if its path is already in normal form, 930 * then this URI is returned. Otherwise a new URI is constructed that is 931 * identical to this URI except that its path is computed by normalizing 932 * this URI's path in a manner consistent with <a 933 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 934 * section 5.2, step 6, sub-steps c through f; that is: 935 * </p> 936 * 937 * <ol> 938 * 939 * <li><p> All <tt>"."</tt> segments are removed. </p></li> 940 * 941 * <li><p> If a <tt>".."</tt> segment is preceded by a non-<tt>".."</tt> 942 * segment then both of these segments are removed. This step is 943 * repeated until it is no longer applicable. </p></li> 944 * 945 * <li><p> If the path is relative, and if its first segment contains a 946 * colon character (<tt>':'</tt>), then a <tt>"."</tt> segment is 947 * prepended. This prevents a relative URI with a path such as 948 * <tt>"a:b/c/d"</tt> from later being re-parsed as an opaque URI with a 949 * scheme of <tt>"a"</tt> and a scheme-specific part of <tt>"b/c/d"</tt>. 950 * <b><i>(Deviation from RFC 2396)</i></b> </p></li> 951 * 952 * </ol> 953 * 954 * <p> A normalized path will begin with one or more <tt>".."</tt> segments 955 * if there were insufficient non-<tt>".."</tt> segments preceding them to 956 * allow their removal. A normalized path will begin with a <tt>"."</tt> 957 * segment if one was inserted by step 3 above. Otherwise, a normalized 958 * path will not contain any <tt>"."</tt> or <tt>".."</tt> segments. </p> 959 * 960 * @return A URI equivalent to this URI, 961 * but whose path is in normal form 962 */ 963 public URI normalize() { 964 return normalize(this); 965 } 966 967 /** 968 * Resolves the given URI against this URI. 969 * 970 * <p> If the given URI is already absolute, or if this URI is opaque, then 971 * the given URI is returned. 972 * 973 * <p><a name="resolve-frag"></a> If the given URI's fragment component is 974 * defined, its path component is empty, and its scheme, authority, and 975 * query components are undefined, then a URI with the given fragment but 976 * with all other components equal to those of this URI is returned. This 977 * allows a URI representing a standalone fragment reference, such as 978 * <tt>"#foo"</tt>, to be usefully resolved against a base URI. 979 * 980 * <p> Otherwise this method constructs a new hierarchical URI in a manner 981 * consistent with <a 982 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 983 * section 5.2; that is: </p> 984 * 985 * <ol> 986 * 987 * <li><p> A new URI is constructed with this URI's scheme and the given 988 * URI's query and fragment components. </p></li> 989 * 990 * <li><p> If the given URI has an authority component then the new URI's 991 * authority and path are taken from the given URI. </p></li> 992 * 993 * <li><p> Otherwise the new URI's authority component is copied from 994 * this URI, and its path is computed as follows: </p> 995 * 996 * <ol type=a> 997 * 998 * <li><p> If the given URI's path is absolute then the new URI's path 999 * is taken from the given URI. </p></li> 1000 * 1001 * <li><p> Otherwise the given URI's path is relative, and so the new 1002 * URI's path is computed by resolving the path of the given URI 1003 * against the path of this URI. This is done by concatenating all but 1004 * the last segment of this URI's path, if any, with the given URI's 1005 * path and then normalizing the result as if by invoking the {@link 1006 * #normalize() normalize} method. </p></li> 1007 * 1008 * </ol></li> 1009 * 1010 * </ol> 1011 * 1012 * <p> The result of this method is absolute if, and only if, either this 1013 * URI is absolute or the given URI is absolute. </p> 1014 * 1015 * @param uri The URI to be resolved against this URI 1016 * @return The resulting URI 1017 * 1018 * @throws NullPointerException 1019 * If <tt>uri</tt> is <tt>null</tt> 1020 */ 1021 public URI resolve(URI uri) { 1022 return resolve(this, uri); 1023 } 1024 1025 /** 1026 * Constructs a new URI by parsing the given string and then resolving it 1027 * against this URI. 1028 * 1029 * <p> This convenience method works as if invoking it were equivalent to 1030 * evaluating the expression <tt>{@link #resolve(java.net.URI) 1031 * resolve}(URI.{@link #create(String) create}(str))</tt>. </p> 1032 * 1033 * @param str The string to be parsed into a URI 1034 * @return The resulting URI 1035 * 1036 * @throws NullPointerException 1037 * If <tt>str</tt> is <tt>null</tt> 1038 * 1039 * @throws IllegalArgumentException 1040 * If the given string violates RFC 2396 1041 */ 1042 public URI resolve(String str) { 1043 return resolve(URI.create(str)); 1044 } 1045 1046 /** 1047 * Relativizes the given URI against this URI. 1048 * 1049 * <p> The relativization of the given URI against this URI is computed as 1050 * follows: </p> 1051 * 1052 * <ol> 1053 * 1054 * <li><p> If either this URI or the given URI are opaque, or if the 1055 * scheme and authority components of the two URIs are not identical, or 1056 * if the path of this URI is not a prefix of the path of the given URI, 1057 * then the given URI is returned. </p></li> 1058 * 1059 * <li><p> Otherwise a new relative hierarchical URI is constructed with 1060 * query and fragment components taken from the given URI and with a path 1061 * component computed by removing this URI's path from the beginning of 1062 * the given URI's path. </p></li> 1063 * 1064 * </ol> 1065 * 1066 * @param uri The URI to be relativized against this URI 1067 * @return The resulting URI 1068 * 1069 * @throws NullPointerException 1070 * If <tt>uri</tt> is <tt>null</tt> 1071 */ 1072 public URI relativize(URI uri) { 1073 return relativize(this, uri); 1074 } 1075 1076 /** 1077 * Constructs a URL from this URI. 1078 * 1079 * <p> This convenience method works as if invoking it were equivalent to 1080 * evaluating the expression <tt>new URL(this.toString())</tt> after 1081 * first checking that this URI is absolute. </p> 1082 * 1083 * @return A URL constructed from this URI 1084 * 1085 * @throws IllegalArgumentException 1086 * If this URL is not absolute 1087 * 1088 * @throws MalformedURLException 1089 * If a protocol handler for the URL could not be found, 1090 * or if some other error occurred while constructing the URL 1091 */ 1092 public URL toURL() 1093 throws MalformedURLException { 1094 if (!isAbsolute()) 1095 throw new IllegalArgumentException("URI is not absolute"); 1096 return new URL(toString()); 1097 } 1098 1099 // -- Component access methods -- 1100 1101 /** 1102 * Returns the scheme component of this URI. 1103 * 1104 * <p> The scheme component of a URI, if defined, only contains characters 1105 * in the <i>alphanum</i> category and in the string <tt>"-.+"</tt>. A 1106 * scheme always starts with an <i>alpha</i> character. <p> 1107 * 1108 * The scheme component of a URI cannot contain escaped octets, hence this 1109 * method does not perform any decoding. 1110 * 1111 * @return The scheme component of this URI, 1112 * or <tt>null</tt> if the scheme is undefined 1113 */ 1114 public String getScheme() { 1115 return scheme; 1116 } 1117 1118 /** 1119 * Tells whether or not this URI is absolute. 1120 * 1121 * <p> A URI is absolute if, and only if, it has a scheme component. </p> 1122 * 1123 * @return <tt>true</tt> if, and only if, this URI is absolute 1124 */ 1125 public boolean isAbsolute() { 1126 return scheme != null; 1127 } 1128 1129 /** 1130 * Tells whether or not this URI is opaque. 1131 * 1132 * <p> A URI is opaque if, and only if, it is absolute and its 1133 * scheme-specific part does not begin with a slash character ('/'). 1134 * An opaque URI has a scheme, a scheme-specific part, and possibly 1135 * a fragment; all other components are undefined. </p> 1136 * 1137 * @return <tt>true</tt> if, and only if, this URI is opaque 1138 */ 1139 public boolean isOpaque() { 1140 return path == null; 1141 } 1142 1143 /** 1144 * Returns the raw scheme-specific part of this URI. The scheme-specific 1145 * part is never undefined, though it may be empty. 1146 * 1147 * <p> The scheme-specific part of a URI only contains legal URI 1148 * characters. </p> 1149 * 1150 * @return The raw scheme-specific part of this URI 1151 * (never <tt>null</tt>) 1152 */ 1153 public String getRawSchemeSpecificPart() { 1154 defineSchemeSpecificPart(); 1155 return schemeSpecificPart; 1156 } 1157 1158 /** 1159 * Returns the decoded scheme-specific part of this URI. 1160 * 1161 * <p> The string returned by this method is equal to that returned by the 1162 * {@link #getRawSchemeSpecificPart() getRawSchemeSpecificPart} method 1163 * except that all sequences of escaped octets are <a 1164 * href="#decode">decoded</a>. </p> 1165 * 1166 * @return The decoded scheme-specific part of this URI 1167 * (never <tt>null</tt>) 1168 */ 1169 public String getSchemeSpecificPart() { 1170 if (decodedSchemeSpecificPart == null) 1171 decodedSchemeSpecificPart = decode(getRawSchemeSpecificPart()); 1172 return decodedSchemeSpecificPart; 1173 } 1174 1175 /** 1176 * Returns the raw authority component of this URI. 1177 * 1178 * <p> The authority component of a URI, if defined, only contains the 1179 * commercial-at character (<tt>'@'</tt>) and characters in the 1180 * <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and <i>other</i> 1181 * categories. If the authority is server-based then it is further 1182 * constrained to have valid user-information, host, and port 1183 * components. </p> 1184 * 1185 * @return The raw authority component of this URI, 1186 * or <tt>null</tt> if the authority is undefined 1187 */ 1188 public String getRawAuthority() { 1189 return authority; 1190 } 1191 1192 /** 1193 * Returns the decoded authority component of this URI. 1194 * 1195 * <p> The string returned by this method is equal to that returned by the 1196 * {@link #getRawAuthority() getRawAuthority} method except that all 1197 * sequences of escaped octets are <a href="#decode">decoded</a>. </p> 1198 * 1199 * @return The decoded authority component of this URI, 1200 * or <tt>null</tt> if the authority is undefined 1201 */ 1202 public String getAuthority() { 1203 if (decodedAuthority == null) 1204 decodedAuthority = decode(authority); 1205 return decodedAuthority; 1206 } 1207 1208 /** 1209 * Returns the raw user-information component of this URI. 1210 * 1211 * <p> The user-information component of a URI, if defined, only contains 1212 * characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, and 1213 * <i>other</i> categories. </p> 1214 * 1215 * @return The raw user-information component of this URI, 1216 * or <tt>null</tt> if the user information is undefined 1217 */ 1218 public String getRawUserInfo() { 1219 return userInfo; 1220 } 1221 1222 /** 1223 * Returns the decoded user-information component of this URI. 1224 * 1225 * <p> The string returned by this method is equal to that returned by the 1226 * {@link #getRawUserInfo() getRawUserInfo} method except that all 1227 * sequences of escaped octets are <a href="#decode">decoded</a>. </p> 1228 * 1229 * @return The decoded user-information component of this URI, 1230 * or <tt>null</tt> if the user information is undefined 1231 */ 1232 public String getUserInfo() { 1233 if ((decodedUserInfo == null) && (userInfo != null)) 1234 decodedUserInfo = decode(userInfo); 1235 return decodedUserInfo; 1236 } 1237 1238 /** 1239 * Returns the host component of this URI. 1240 * 1241 * <p> The host component of a URI, if defined, will have one of the 1242 * following forms: </p> 1243 * 1244 * <ul type=disc> 1245 * 1246 * <li><p> A domain name consisting of one or more <i>labels</i> 1247 * separated by period characters (<tt>'.'</tt>), optionally followed by 1248 * a period character. Each label consists of <i>alphanum</i> characters 1249 * as well as hyphen characters (<tt>'-'</tt>), though hyphens never 1250 * occur as the first or last characters in a label. The rightmost 1251 * label of a domain name consisting of two or more labels, begins 1252 * with an <i>alpha</i> character. </li> 1253 * 1254 * <li><p> A dotted-quad IPv4 address of the form 1255 * <i>digit</i><tt>+.</tt><i>digit</i><tt>+.</tt><i>digit</i><tt>+.</tt><i>digit</i><tt>+</tt>, 1256 * where no <i>digit</i> sequence is longer than three characters and no 1257 * sequence has a value larger than 255. </p></li> 1258 * 1259 * <li><p> An IPv6 address enclosed in square brackets (<tt>'['</tt> and 1260 * <tt>']'</tt>) and consisting of hexadecimal digits, colon characters 1261 * (<tt>':'</tt>), and possibly an embedded IPv4 address. The full 1262 * syntax of IPv6 addresses is specified in <a 1263 * href="http://www.ietf.org/rfc/rfc2373.txt"><i>RFC 2373: IPv6 1264 * Addressing Architecture</i></a>. </p></li> 1265 * 1266 * </ul> 1267 * 1268 * The host component of a URI cannot contain escaped octets, hence this 1269 * method does not perform any decoding. 1270 * 1271 * @return The host component of this URI, 1272 * or <tt>null</tt> if the host is undefined 1273 */ 1274 public String getHost() { 1275 return host; 1276 } 1277 1278 /** 1279 * Returns the port number of this URI. 1280 * 1281 * <p> The port component of a URI, if defined, is a non-negative 1282 * integer. </p> 1283 * 1284 * @return The port component of this URI, 1285 * or <tt>-1</tt> if the port is undefined 1286 */ 1287 public int getPort() { 1288 return port; 1289 } 1290 1291 /** 1292 * Returns the raw path component of this URI. 1293 * 1294 * <p> The path component of a URI, if defined, only contains the slash 1295 * character (<tt>'/'</tt>), the commercial-at character (<tt>'@'</tt>), 1296 * and characters in the <i>unreserved</i>, <i>punct</i>, <i>escaped</i>, 1297 * and <i>other</i> categories. </p> 1298 * 1299 * @return The path component of this URI, 1300 * or <tt>null</tt> if the path is undefined 1301 */ 1302 public String getRawPath() { 1303 return path; 1304 } 1305 1306 /** 1307 * Returns the decoded path component of this URI. 1308 * 1309 * <p> The string returned by this method is equal to that returned by the 1310 * {@link #getRawPath() getRawPath} method except that all sequences of 1311 * escaped octets are <a href="#decode">decoded</a>. </p> 1312 * 1313 * @return The decoded path component of this URI, 1314 * or <tt>null</tt> if the path is undefined 1315 */ 1316 public String getPath() { 1317 if ((decodedPath == null) && (path != null)) 1318 decodedPath = decode(path); 1319 return decodedPath; 1320 } 1321 1322 /** 1323 * Returns the raw query component of this URI. 1324 * 1325 * <p> The query component of a URI, if defined, only contains legal URI 1326 * characters. </p> 1327 * 1328 * @return The raw query component of this URI, 1329 * or <tt>null</tt> if the query is undefined 1330 */ 1331 public String getRawQuery() { 1332 return query; 1333 } 1334 1335 /** 1336 * Returns the decoded query component of this URI. 1337 * 1338 * <p> The string returned by this method is equal to that returned by the 1339 * {@link #getRawQuery() getRawQuery} method except that all sequences of 1340 * escaped octets are <a href="#decode">decoded</a>. </p> 1341 * 1342 * @return The decoded query component of this URI, 1343 * or <tt>null</tt> if the query is undefined 1344 */ 1345 public String getQuery() { 1346 if ((decodedQuery == null) && (query != null)) 1347 decodedQuery = decode(query); 1348 return decodedQuery; 1349 } 1350 1351 /** 1352 * Returns the raw fragment component of this URI. 1353 * 1354 * <p> The fragment component of a URI, if defined, only contains legal URI 1355 * characters. </p> 1356 * 1357 * @return The raw fragment component of this URI, 1358 * or <tt>null</tt> if the fragment is undefined 1359 */ 1360 public String getRawFragment() { 1361 return fragment; 1362 } 1363 1364 /** 1365 * Returns the decoded fragment component of this URI. 1366 * 1367 * <p> The string returned by this method is equal to that returned by the 1368 * {@link #getRawFragment() getRawFragment} method except that all 1369 * sequences of escaped octets are <a href="#decode">decoded</a>. </p> 1370 * 1371 * @return The decoded fragment component of this URI, 1372 * or <tt>null</tt> if the fragment is undefined 1373 */ 1374 public String getFragment() { 1375 if ((decodedFragment == null) && (fragment != null)) 1376 decodedFragment = decode(fragment); 1377 return decodedFragment; 1378 } 1379 1380 1381 // -- Equality, comparison, hash code, toString, and serialization -- 1382 1383 /** 1384 * Tests this URI for equality with another object. 1385 * 1386 * <p> If the given object is not a URI then this method immediately 1387 * returns <tt>false</tt>. 1388 * 1389 * <p> For two URIs to be considered equal requires that either both are 1390 * opaque or both are hierarchical. Their schemes must either both be 1391 * undefined or else be equal without regard to case. Their fragments 1392 * must either both be undefined or else be equal. 1393 * 1394 * <p> For two opaque URIs to be considered equal, their scheme-specific 1395 * parts must be equal. 1396 * 1397 * <p> For two hierarchical URIs to be considered equal, their paths must 1398 * be equal and their queries must either both be undefined or else be 1399 * equal. Their authorities must either both be undefined, or both be 1400 * registry-based, or both be server-based. If their authorities are 1401 * defined and are registry-based, then they must be equal. If their 1402 * authorities are defined and are server-based, then their hosts must be 1403 * equal without regard to case, their port numbers must be equal, and 1404 * their user-information components must be equal. 1405 * 1406 * <p> When testing the user-information, path, query, fragment, authority, 1407 * or scheme-specific parts of two URIs for equality, the raw forms rather 1408 * than the encoded forms of these components are compared and the 1409 * hexadecimal digits of escaped octets are compared without regard to 1410 * case. 1411 * 1412 * <p> This method satisfies the general contract of the {@link 1413 * java.lang.Object#equals(Object) Object.equals} method. </p> 1414 * 1415 * @param ob The object to which this object is to be compared 1416 * 1417 * @return <tt>true</tt> if, and only if, the given object is a URI that 1418 * is identical to this URI 1419 */ 1420 public boolean equals(Object ob) { 1421 if (ob == this) 1422 return true; 1423 if (!(ob instanceof URI)) 1424 return false; 1425 URI that = (URI)ob; 1426 if (this.isOpaque() != that.isOpaque()) return false; 1427 if (!equalIgnoringCase(this.scheme, that.scheme)) return false; 1428 if (!equal(this.fragment, that.fragment)) return false; 1429 1430 // Opaque 1431 if (this.isOpaque()) 1432 return equal(this.schemeSpecificPart, that.schemeSpecificPart); 1433 1434 // Hierarchical 1435 if (!equal(this.path, that.path)) return false; 1436 if (!equal(this.query, that.query)) return false; 1437 1438 // Authorities 1439 if (this.authority == that.authority) return true; 1440 if (this.host != null) { 1441 // Server-based 1442 if (!equal(this.userInfo, that.userInfo)) return false; 1443 if (!equalIgnoringCase(this.host, that.host)) return false; 1444 if (this.port != that.port) return false; 1445 } else if (this.authority != null) { 1446 // Registry-based 1447 if (!equal(this.authority, that.authority)) return false; 1448 } else if (this.authority != that.authority) { 1449 return false; 1450 } 1451 1452 return true; 1453 } 1454 1455 /** 1456 * Returns a hash-code value for this URI. The hash code is based upon all 1457 * of the URI's components, and satisfies the general contract of the 1458 * {@link java.lang.Object#hashCode() Object.hashCode} method. 1459 * 1460 * @return A hash-code value for this URI 1461 */ 1462 public int hashCode() { 1463 if (hash != 0) 1464 return hash; 1465 int h = hashIgnoringCase(0, scheme); 1466 h = hash(h, fragment); 1467 if (isOpaque()) { 1468 h = hash(h, schemeSpecificPart); 1469 } else { 1470 h = hash(h, path); 1471 h = hash(h, query); 1472 if (host != null) { 1473 h = hash(h, userInfo); 1474 h = hashIgnoringCase(h, host); 1475 h += 1949 * port; 1476 } else { 1477 h = hash(h, authority); 1478 } 1479 } 1480 hash = h; 1481 return h; 1482 } 1483 1484 /** 1485 * Compares this URI to another object, which must be a URI. 1486 * 1487 * <p> When comparing corresponding components of two URIs, if one 1488 * component is undefined but the other is defined then the first is 1489 * considered to be less than the second. Unless otherwise noted, string 1490 * components are ordered according to their natural, case-sensitive 1491 * ordering as defined by the {@link java.lang.String#compareTo(Object) 1492 * String.compareTo} method. String components that are subject to 1493 * encoding are compared by comparing their raw forms rather than their 1494 * encoded forms. 1495 * 1496 * <p> The ordering of URIs is defined as follows: </p> 1497 * 1498 * <ul type=disc> 1499 * 1500 * <li><p> Two URIs with different schemes are ordered according the 1501 * ordering of their schemes, without regard to case. </p></li> 1502 * 1503 * <li><p> A hierarchical URI is considered to be less than an opaque URI 1504 * with an identical scheme. </p></li> 1505 * 1506 * <li><p> Two opaque URIs with identical schemes are ordered according 1507 * to the ordering of their scheme-specific parts. </p></li> 1508 * 1509 * <li><p> Two opaque URIs with identical schemes and scheme-specific 1510 * parts are ordered according to the ordering of their 1511 * fragments. </p></li> 1512 * 1513 * <li><p> Two hierarchical URIs with identical schemes are ordered 1514 * according to the ordering of their authority components: </p> 1515 * 1516 * <ul type=disc> 1517 * 1518 * <li><p> If both authority components are server-based then the URIs 1519 * are ordered according to their user-information components; if these 1520 * components are identical then the URIs are ordered according to the 1521 * ordering of their hosts, without regard to case; if the hosts are 1522 * identical then the URIs are ordered according to the ordering of 1523 * their ports. </p></li> 1524 * 1525 * <li><p> If one or both authority components are registry-based then 1526 * the URIs are ordered according to the ordering of their authority 1527 * components. </p></li> 1528 * 1529 * </ul></li> 1530 * 1531 * <li><p> Finally, two hierarchical URIs with identical schemes and 1532 * authority components are ordered according to the ordering of their 1533 * paths; if their paths are identical then they are ordered according to 1534 * the ordering of their queries; if the queries are identical then they 1535 * are ordered according to the order of their fragments. </p></li> 1536 * 1537 * </ul> 1538 * 1539 * <p> This method satisfies the general contract of the {@link 1540 * java.lang.Comparable#compareTo(Object) Comparable.compareTo} 1541 * method. </p> 1542 * 1543 * @param that 1544 * The object to which this URI is to be compared 1545 * 1546 * @return A negative integer, zero, or a positive integer as this URI is 1547 * less than, equal to, or greater than the given URI 1548 * 1549 * @throws ClassCastException 1550 * If the given object is not a URI 1551 */ 1552 public int compareTo(URI that) { 1553 int c; 1554 1555 if ((c = compareIgnoringCase(this.scheme, that.scheme)) != 0) 1556 return c; 1557 1558 if (this.isOpaque()) { 1559 if (that.isOpaque()) { 1560 // Both opaque 1561 if ((c = compare(this.schemeSpecificPart, 1562 that.schemeSpecificPart)) != 0) 1563 return c; 1564 return compare(this.fragment, that.fragment); 1565 } 1566 return +1; // Opaque > hierarchical 1567 } else if (that.isOpaque()) { 1568 return -1; // Hierarchical < opaque 1569 } 1570 1571 // Hierarchical 1572 if ((this.host != null) && (that.host != null)) { 1573 // Both server-based 1574 if ((c = compare(this.userInfo, that.userInfo)) != 0) 1575 return c; 1576 if ((c = compareIgnoringCase(this.host, that.host)) != 0) 1577 return c; 1578 if ((c = this.port - that.port) != 0) 1579 return c; 1580 } else { 1581 // If one or both authorities are registry-based then we simply 1582 // compare them in the usual, case-sensitive way. If one is 1583 // registry-based and one is server-based then the strings are 1584 // guaranteed to be unequal, hence the comparison will never return 1585 // zero and the compareTo and equals methods will remain 1586 // consistent. 1587 if ((c = compare(this.authority, that.authority)) != 0) return c; 1588 } 1589 1590 if ((c = compare(this.path, that.path)) != 0) return c; 1591 if ((c = compare(this.query, that.query)) != 0) return c; 1592 return compare(this.fragment, that.fragment); 1593 } 1594 1595 /** 1596 * Returns the content of this URI as a string. 1597 * 1598 * <p> If this URI was created by invoking one of the constructors in this 1599 * class then a string equivalent to the original input string, or to the 1600 * string computed from the originally-given components, as appropriate, is 1601 * returned. Otherwise this URI was created by normalization, resolution, 1602 * or relativization, and so a string is constructed from this URI's 1603 * components according to the rules specified in <a 1604 * href="http://www.ietf.org/rfc/rfc2396.txt">RFC 2396</a>, 1605 * section 5.2, step 7. </p> 1606 * 1607 * @return The string form of this URI 1608 */ 1609 public String toString() { 1610 defineString(); 1611 return string; 1612 } 1613 1614 /** 1615 * Returns the content of this URI as a US-ASCII string. 1616 * 1617 * <p> If this URI does not contain any characters in the <i>other</i> 1618 * category then an invocation of this method will return the same value as 1619 * an invocation of the {@link #toString() toString} method. Otherwise 1620 * this method works as if by invoking that method and then <a 1621 * href="#encode">encoding</a> the result. </p> 1622 * 1623 * @return The string form of this URI, encoded as needed 1624 * so that it only contains characters in the US-ASCII 1625 * charset 1626 */ 1627 public String toASCIIString() { 1628 defineString(); 1629 return encode(string); 1630 } 1631 1632 1633 // -- Serialization support -- 1634 1635 /** 1636 * Saves the content of this URI to the given serial stream. 1637 * 1638 * <p> The only serializable field of a URI instance is its <tt>string</tt> 1639 * field. That field is given a value, if it does not have one already, 1640 * and then the {@link java.io.ObjectOutputStream#defaultWriteObject()} 1641 * method of the given object-output stream is invoked. </p> 1642 * 1643 * @param os The object-output stream to which this object 1644 * is to be written 1645 */ 1646 private void writeObject(ObjectOutputStream os) 1647 throws IOException 1648 { 1649 defineString(); 1650 os.defaultWriteObject(); // Writes the string field only 1651 } 1652 1653 /** 1654 * Reconstitutes a URI from the given serial stream. 1655 * 1656 * <p> The {@link java.io.ObjectInputStream#defaultReadObject()} method is 1657 * invoked to read the value of the <tt>string</tt> field. The result is 1658 * then parsed in the usual way. 1659 * 1660 * @param is The object-input stream from which this object 1661 * is being read 1662 */ 1663 private void readObject(ObjectInputStream is) 1664 throws ClassNotFoundException, IOException 1665 { 1666 port = -1; // Argh 1667 is.defaultReadObject(); 1668 try { 1669 new Parser(string).parse(false); 1670 } catch (URISyntaxException x) { 1671 IOException y = new InvalidObjectException("Invalid URI"); 1672 y.initCause(x); 1673 throw y; 1674 } 1675 } 1676 1677 1678 // -- End of public methods -- 1679 1680 1681 // -- Utility methods for string-field comparison and hashing -- 1682 1683 // These methods return appropriate values for null string arguments, 1684 // thereby simplifying the equals, hashCode, and compareTo methods. 1685 // 1686 // The case-ignoring methods should only be applied to strings whose 1687 // characters are all known to be US-ASCII. Because of this restriction, 1688 // these methods are faster than the similar methods in the String class. 1689 1690 // US-ASCII only 1691 private static int toLower(char c) { 1692 if ((c >= 'A') && (c <= 'Z')) 1693 return c + ('a' - 'A'); 1694 return c; 1695 } 1696 1697 private static boolean equal(String s, String t) { 1698 if (s == t) return true; 1699 if ((s != null) && (t != null)) { 1700 if (s.length() != t.length()) 1701 return false; 1702 if (s.indexOf('%') < 0) 1703 return s.equals(t); 1704 int n = s.length(); 1705 for (int i = 0; i < n;) { 1706 char c = s.charAt(i); 1707 char d = t.charAt(i); 1708 if (c != '%') { 1709 if (c != d) 1710 return false; 1711 i++; 1712 continue; 1713 } 1714 i++; 1715 if (toLower(s.charAt(i)) != toLower(t.charAt(i))) 1716 return false; 1717 i++; 1718 if (toLower(s.charAt(i)) != toLower(t.charAt(i))) 1719 return false; 1720 i++; 1721 } 1722 return true; 1723 } 1724 return false; 1725 } 1726 1727 // US-ASCII only 1728 private static boolean equalIgnoringCase(String s, String t) { 1729 if (s == t) return true; 1730 if ((s != null) && (t != null)) { 1731 int n = s.length(); 1732 if (t.length() != n) 1733 return false; 1734 for (int i = 0; i < n; i++) { 1735 if (toLower(s.charAt(i)) != toLower(t.charAt(i))) 1736 return false; 1737 } 1738 return true; 1739 } 1740 return false; 1741 } 1742 1743 private static int hash(int hash, String s) { 1744 if (s == null) return hash; 1745 return hash * 127 + s.hashCode(); 1746 } 1747 1748 // US-ASCII only 1749 private static int hashIgnoringCase(int hash, String s) { 1750 if (s == null) return hash; 1751 int h = hash; 1752 int n = s.length(); 1753 for (int i = 0; i < n; i++) 1754 h = 31 * h + toLower(s.charAt(i)); 1755 return h; 1756 } 1757 1758 private static int compare(String s, String t) { 1759 if (s == t) return 0; 1760 if (s != null) { 1761 if (t != null) 1762 return s.compareTo(t); 1763 else 1764 return +1; 1765 } else { 1766 return -1; 1767 } 1768 } 1769 1770 // US-ASCII only 1771 private static int compareIgnoringCase(String s, String t) { 1772 if (s == t) return 0; 1773 if (s != null) { 1774 if (t != null) { 1775 int sn = s.length(); 1776 int tn = t.length(); 1777 int n = sn < tn ? sn : tn; 1778 for (int i = 0; i < n; i++) { 1779 int c = toLower(s.charAt(i)) - toLower(t.charAt(i)); 1780 if (c != 0) 1781 return c; 1782 } 1783 return sn - tn; 1784 } 1785 return +1; 1786 } else { 1787 return -1; 1788 } 1789 } 1790 1791 1792 // -- String construction -- 1793 1794 // If a scheme is given then the path, if given, must be absolute 1795 // 1796 private static void checkPath(String s, String scheme, String path) 1797 throws URISyntaxException 1798 { 1799 if (scheme != null) { 1800 if ((path != null) 1801 && ((path.length() > 0) && (path.charAt(0) != '/'))) 1802 throw new URISyntaxException(s, 1803 "Relative path in absolute URI"); 1804 } 1805 } 1806 1807 private void appendAuthority(StringBuffer sb, 1808 String authority, 1809 String userInfo, 1810 String host, 1811 int port) 1812 { 1813 if (host != null) { 1814 sb.append("//"); 1815 if (userInfo != null) { 1816 sb.append(quote(userInfo, L_USERINFO, H_USERINFO)); 1817 sb.append('@'); 1818 } 1819 boolean needBrackets = ((host.indexOf(':') >= 0) 1820 && !host.startsWith("[") 1821 && !host.endsWith("]")); 1822 if (needBrackets) sb.append('['); 1823 sb.append(host); 1824 if (needBrackets) sb.append(']'); 1825 if (port != -1) { 1826 sb.append(':'); 1827 sb.append(port); 1828 } 1829 } else if (authority != null) { 1830 sb.append("//"); 1831 if (authority.startsWith("[")) { 1832 int end = authority.indexOf("]"); 1833 if (end != -1 && authority.indexOf(":")!=-1) { 1834 String doquote, dontquote; 1835 if (end == authority.length()) { 1836 dontquote = authority; 1837 doquote = ""; 1838 } else { 1839 dontquote = authority.substring(0,end+1); 1840 doquote = authority.substring(end+1); 1841 } 1842 sb.append (dontquote); 1843 sb.append(quote(doquote, 1844 L_REG_NAME | L_SERVER, 1845 H_REG_NAME | H_SERVER)); 1846 } 1847 } else { 1848 sb.append(quote(authority, 1849 L_REG_NAME | L_SERVER, 1850 H_REG_NAME | H_SERVER)); 1851 } 1852 } 1853 } 1854 1855 private void appendSchemeSpecificPart(StringBuffer sb, 1856 String opaquePart, 1857 String authority, 1858 String userInfo, 1859 String host, 1860 int port, 1861 String path, 1862 String query) 1863 { 1864 if (opaquePart != null) { 1865 /* check if SSP begins with an IPv6 address 1866 * because we must not quote a literal IPv6 address 1867 */ 1868 if (opaquePart.startsWith("//[")) { 1869 int end = opaquePart.indexOf("]"); 1870 if (end != -1 && opaquePart.indexOf(":")!=-1) { 1871 String doquote, dontquote; 1872 if (end == opaquePart.length()) { 1873 dontquote = opaquePart; 1874 doquote = ""; 1875 } else { 1876 dontquote = opaquePart.substring(0,end+1); 1877 doquote = opaquePart.substring(end+1); 1878 } 1879 sb.append (dontquote); 1880 sb.append(quote(doquote, L_URIC, H_URIC)); 1881 } 1882 } else { 1883 sb.append(quote(opaquePart, L_URIC, H_URIC)); 1884 } 1885 } else { 1886 appendAuthority(sb, authority, userInfo, host, port); 1887 if (path != null) 1888 sb.append(quote(path, L_PATH, H_PATH)); 1889 if (query != null) { 1890 sb.append('?'); 1891 sb.append(quote(query, L_URIC, H_URIC)); 1892 } 1893 } 1894 } 1895 1896 private void appendFragment(StringBuffer sb, String fragment) { 1897 if (fragment != null) { 1898 sb.append('#'); 1899 sb.append(quote(fragment, L_URIC, H_URIC)); 1900 } 1901 } 1902 1903 private String toString(String scheme, 1904 String opaquePart, 1905 String authority, 1906 String userInfo, 1907 String host, 1908 int port, 1909 String path, 1910 String query, 1911 String fragment) 1912 { 1913 StringBuffer sb = new StringBuffer(); 1914 if (scheme != null) { 1915 sb.append(scheme); 1916 sb.append(':'); 1917 } 1918 appendSchemeSpecificPart(sb, opaquePart, 1919 authority, userInfo, host, port, 1920 path, query); 1921 appendFragment(sb, fragment); 1922 return sb.toString(); 1923 } 1924 1925 private void defineSchemeSpecificPart() { 1926 if (schemeSpecificPart != null) return; 1927 StringBuffer sb = new StringBuffer(); 1928 appendSchemeSpecificPart(sb, null, getAuthority(), getUserInfo(), 1929 host, port, getPath(), getQuery()); 1930 if (sb.length() == 0) return; 1931 schemeSpecificPart = sb.toString(); 1932 } 1933 1934 private void defineString() { 1935 if (string != null) return; 1936 1937 StringBuffer sb = new StringBuffer(); 1938 if (scheme != null) { 1939 sb.append(scheme); 1940 sb.append(':'); 1941 } 1942 if (isOpaque()) { 1943 sb.append(schemeSpecificPart); 1944 } else { 1945 if (host != null) { 1946 sb.append("//"); 1947 if (userInfo != null) { 1948 sb.append(userInfo); 1949 sb.append('@'); 1950 } 1951 boolean needBrackets = ((host.indexOf(':') >= 0) 1952 && !host.startsWith("[") 1953 && !host.endsWith("]")); 1954 if (needBrackets) sb.append('['); 1955 sb.append(host); 1956 if (needBrackets) sb.append(']'); 1957 if (port != -1) { 1958 sb.append(':'); 1959 sb.append(port); 1960 } 1961 } else if (authority != null) { 1962 sb.append("//"); 1963 sb.append(authority); 1964 } 1965 if (path != null) 1966 sb.append(path); 1967 if (query != null) { 1968 sb.append('?'); 1969 sb.append(query); 1970 } 1971 } 1972 if (fragment != null) { 1973 sb.append('#'); 1974 sb.append(fragment); 1975 } 1976 string = sb.toString(); 1977 } 1978 1979 1980 // -- Normalization, resolution, and relativization -- 1981 1982 // RFC2396 5.2 (6) 1983 private static String resolvePath(String base, String child, 1984 boolean absolute) 1985 { 1986 int i = base.lastIndexOf('/'); 1987 int cn = child.length(); 1988 String path = ""; 1989 1990 if (cn == 0) { 1991 // 5.2 (6a) 1992 if (i >= 0) 1993 path = base.substring(0, i + 1); 1994 } else { 1995 StringBuffer sb = new StringBuffer(base.length() + cn); 1996 // 5.2 (6a) 1997 if (i >= 0) 1998 sb.append(base.substring(0, i + 1)); 1999 // 5.2 (6b) 2000 sb.append(child); 2001 path = sb.toString(); 2002 } 2003 2004 // 5.2 (6c-f) 2005 String np = normalize(path); 2006 2007 // 5.2 (6g): If the result is absolute but the path begins with "../", 2008 // then we simply leave the path as-is 2009 2010 return np; 2011 } 2012 2013 // RFC2396 5.2 2014 private static URI resolve(URI base, URI child) { 2015 // check if child if opaque first so that NPE is thrown 2016 // if child is null. 2017 if (child.isOpaque() || base.isOpaque()) 2018 return child; 2019 2020 // 5.2 (2): Reference to current document (lone fragment) 2021 if ((child.scheme == null) && (child.authority == null) 2022 && child.path.equals("") && (child.fragment != null) 2023 && (child.query == null)) { 2024 if ((base.fragment != null) 2025 && child.fragment.equals(base.fragment)) { 2026 return base; 2027 } 2028 URI ru = new URI(); 2029 ru.scheme = base.scheme; 2030 ru.authority = base.authority; 2031 ru.userInfo = base.userInfo; 2032 ru.host = base.host; 2033 ru.port = base.port; 2034 ru.path = base.path; 2035 ru.fragment = child.fragment; 2036 ru.query = base.query; 2037 return ru; 2038 } 2039 2040 // 5.2 (3): Child is absolute 2041 if (child.scheme != null) 2042 return child; 2043 2044 URI ru = new URI(); // Resolved URI 2045 ru.scheme = base.scheme; 2046 ru.query = child.query; 2047 ru.fragment = child.fragment; 2048 2049 // 5.2 (4): Authority 2050 if (child.authority == null) { 2051 ru.authority = base.authority; 2052 ru.host = base.host; 2053 ru.userInfo = base.userInfo; 2054 ru.port = base.port; 2055 2056 String cp = (child.path == null) ? "" : child.path; 2057 if ((cp.length() > 0) && (cp.charAt(0) == '/')) { 2058 // 5.2 (5): Child path is absolute 2059 ru.path = child.path; 2060 } else { 2061 // 5.2 (6): Resolve relative path 2062 ru.path = resolvePath(base.path, cp, base.isAbsolute()); 2063 } 2064 } else { 2065 ru.authority = child.authority; 2066 ru.host = child.host; 2067 ru.userInfo = child.userInfo; 2068 ru.host = child.host; 2069 ru.port = child.port; 2070 ru.path = child.path; 2071 } 2072 2073 // 5.2 (7): Recombine (nothing to do here) 2074 return ru; 2075 } 2076 2077 // If the given URI's path is normal then return the URI; 2078 // o.w., return a new URI containing the normalized path. 2079 // 2080 private static URI normalize(URI u) { 2081 if (u.isOpaque() || (u.path == null) || (u.path.length() == 0)) 2082 return u; 2083 2084 String np = normalize(u.path); 2085 if (np == u.path) 2086 return u; 2087 2088 URI v = new URI(); 2089 v.scheme = u.scheme; 2090 v.fragment = u.fragment; 2091 v.authority = u.authority; 2092 v.userInfo = u.userInfo; 2093 v.host = u.host; 2094 v.port = u.port; 2095 v.path = np; 2096 v.query = u.query; 2097 return v; 2098 } 2099 2100 // If both URIs are hierarchical, their scheme and authority components are 2101 // identical, and the base path is a prefix of the child's path, then 2102 // return a relative URI that, when resolved against the base, yields the 2103 // child; otherwise, return the child. 2104 // 2105 private static URI relativize(URI base, URI child) { 2106 // check if child if opaque first so that NPE is thrown 2107 // if child is null. 2108 if (child.isOpaque() || base.isOpaque()) 2109 return child; 2110 if (!equalIgnoringCase(base.scheme, child.scheme) 2111 || !equal(base.authority, child.authority)) 2112 return child; 2113 2114 String bp = normalize(base.path); 2115 String cp = normalize(child.path); 2116 if (!bp.equals(cp)) { 2117 if (!bp.endsWith("/")) 2118 bp = bp + "/"; 2119 if (!cp.startsWith(bp)) 2120 return child; 2121 } 2122 2123 URI v = new URI(); 2124 v.path = cp.substring(bp.length()); 2125 v.query = child.query; 2126 v.fragment = child.fragment; 2127 return v; 2128 } 2129 2130 2131 2132 // -- Path normalization -- 2133 2134 // The following algorithm for path normalization avoids the creation of a 2135 // string object for each segment, as well as the use of a string buffer to 2136 // compute the final result, by using a single char array and editing it in 2137 // place. The array is first split into segments, replacing each slash 2138 // with '\0' and creating a segment-index array, each element of which is 2139 // the index of the first char in the corresponding segment. We then walk 2140 // through both arrays, removing ".", "..", and other segments as necessary 2141 // by setting their entries in the index array to -1. Finally, the two 2142 // arrays are used to rejoin the segments and compute the final result. 2143 // 2144 // This code is based upon src/solaris/native/java/io/canonicalize_md.c 2145 2146 2147 // Check the given path to see if it might need normalization. A path 2148 // might need normalization if it contains duplicate slashes, a "." 2149 // segment, or a ".." segment. Return -1 if no further normalization is 2150 // possible, otherwise return the number of segments found. 2151 // 2152 // This method takes a string argument rather than a char array so that 2153 // this test can be performed without invoking path.toCharArray(). 2154 // 2155 static private int needsNormalization(String path) { 2156 boolean normal = true; 2157 int ns = 0; // Number of segments 2158 int end = path.length() - 1; // Index of last char in path 2159 int p = 0; // Index of next char in path 2160 2161 // Skip initial slashes 2162 while (p <= end) { 2163 if (path.charAt(p) != '/') break; 2164 p++; 2165 } 2166 if (p > 1) normal = false; 2167 2168 // Scan segments 2169 while (p <= end) { 2170 2171 // Looking at "." or ".." ? 2172 if ((path.charAt(p) == '.') 2173 && ((p == end) 2174 || ((path.charAt(p + 1) == '/') 2175 || ((path.charAt(p + 1) == '.') 2176 && ((p + 1 == end) 2177 || (path.charAt(p + 2) == '/')))))) { 2178 normal = false; 2179 } 2180 ns++; 2181 2182 // Find beginning of next segment 2183 while (p <= end) { 2184 if (path.charAt(p++) != '/') 2185 continue; 2186 2187 // Skip redundant slashes 2188 while (p <= end) { 2189 if (path.charAt(p) != '/') break; 2190 normal = false; 2191 p++; 2192 } 2193 2194 break; 2195 } 2196 } 2197 2198 return normal ? -1 : ns; 2199 } 2200 2201 2202 // Split the given path into segments, replacing slashes with nulls and 2203 // filling in the given segment-index array. 2204 // 2205 // Preconditions: 2206 // segs.length == Number of segments in path 2207 // 2208 // Postconditions: 2209 // All slashes in path replaced by '\0' 2210 // segs[i] == Index of first char in segment i (0 <= i < segs.length) 2211 // 2212 static private void split(char[] path, int[] segs) { 2213 int end = path.length - 1; // Index of last char in path 2214 int p = 0; // Index of next char in path 2215 int i = 0; // Index of current segment 2216 2217 // Skip initial slashes 2218 while (p <= end) { 2219 if (path[p] != '/') break; 2220 path[p] = '\0'; 2221 p++; 2222 } 2223 2224 while (p <= end) { 2225 2226 // Note start of segment 2227 segs[i++] = p++; 2228 2229 // Find beginning of next segment 2230 while (p <= end) { 2231 if (path[p++] != '/') 2232 continue; 2233 path[p - 1] = '\0'; 2234 2235 // Skip redundant slashes 2236 while (p <= end) { 2237 if (path[p] != '/') break; 2238 path[p++] = '\0'; 2239 } 2240 break; 2241 } 2242 } 2243 2244 if (i != segs.length) 2245 throw new InternalError(); // ASSERT 2246 } 2247 2248 2249 // Join the segments in the given path according to the given segment-index 2250 // array, ignoring those segments whose index entries have been set to -1, 2251 // and inserting slashes as needed. Return the length of the resulting 2252 // path. 2253 // 2254 // Preconditions: 2255 // segs[i] == -1 implies segment i is to be ignored 2256 // path computed by split, as above, with '\0' having replaced '/' 2257 // 2258 // Postconditions: 2259 // path[0] .. path[return value] == Resulting path 2260 // 2261 static private int join(char[] path, int[] segs) { 2262 int ns = segs.length; // Number of segments 2263 int end = path.length - 1; // Index of last char in path 2264 int p = 0; // Index of next path char to write 2265 2266 if (path[p] == '\0') { 2267 // Restore initial slash for absolute paths 2268 path[p++] = '/'; 2269 } 2270 2271 for (int i = 0; i < ns; i++) { 2272 int q = segs[i]; // Current segment 2273 if (q == -1) 2274 // Ignore this segment 2275 continue; 2276 2277 if (p == q) { 2278 // We're already at this segment, so just skip to its end 2279 while ((p <= end) && (path[p] != '\0')) 2280 p++; 2281 if (p <= end) { 2282 // Preserve trailing slash 2283 path[p++] = '/'; 2284 } 2285 } else if (p < q) { 2286 // Copy q down to p 2287 while ((q <= end) && (path[q] != '\0')) 2288 path[p++] = path[q++]; 2289 if (q <= end) { 2290 // Preserve trailing slash 2291 path[p++] = '/'; 2292 } 2293 } else 2294 throw new InternalError(); // ASSERT false 2295 } 2296 2297 return p; 2298 } 2299 2300 2301 // Remove "." segments from the given path, and remove segment pairs 2302 // consisting of a non-".." segment followed by a ".." segment. 2303 // 2304 private static void removeDots(char[] path, int[] segs) { 2305 int ns = segs.length; 2306 int end = path.length - 1; 2307 2308 for (int i = 0; i < ns; i++) { 2309 int dots = 0; // Number of dots found (0, 1, or 2) 2310 2311 // Find next occurrence of "." or ".." 2312 do { 2313 int p = segs[i]; 2314 if (path[p] == '.') { 2315 if (p == end) { 2316 dots = 1; 2317 break; 2318 } else if (path[p + 1] == '\0') { 2319 dots = 1; 2320 break; 2321 } else if ((path[p + 1] == '.') 2322 && ((p + 1 == end) 2323 || (path[p + 2] == '\0'))) { 2324 dots = 2; 2325 break; 2326 } 2327 } 2328 i++; 2329 } while (i < ns); 2330 if ((i > ns) || (dots == 0)) 2331 break; 2332 2333 if (dots == 1) { 2334 // Remove this occurrence of "." 2335 segs[i] = -1; 2336 } else { 2337 // If there is a preceding non-".." segment, remove both that 2338 // segment and this occurrence of ".."; otherwise, leave this 2339 // ".." segment as-is. 2340 int j; 2341 for (j = i - 1; j >= 0; j--) { 2342 if (segs[j] != -1) break; 2343 } 2344 if (j >= 0) { 2345 int q = segs[j]; 2346 if (!((path[q] == '.') 2347 && (path[q + 1] == '.') 2348 && (path[q + 2] == '\0'))) { 2349 segs[i] = -1; 2350 segs[j] = -1; 2351 } 2352 } 2353 } 2354 } 2355 } 2356 2357 2358 // DEVIATION: If the normalized path is relative, and if the first 2359 // segment could be parsed as a scheme name, then prepend a "." segment 2360 // 2361 private static void maybeAddLeadingDot(char[] path, int[] segs) { 2362 2363 if (path[0] == '\0') 2364 // The path is absolute 2365 return; 2366 2367 int ns = segs.length; 2368 int f = 0; // Index of first segment 2369 while (f < ns) { 2370 if (segs[f] >= 0) 2371 break; 2372 f++; 2373 } 2374 if ((f >= ns) || (f == 0)) 2375 // The path is empty, or else the original first segment survived, 2376 // in which case we already know that no leading "." is needed 2377 return; 2378 2379 int p = segs[f]; 2380 while ((p < path.length) && (path[p] != ':') && (path[p] != '\0')) p++; 2381 if (p >= path.length || path[p] == '\0') 2382 // No colon in first segment, so no "." needed 2383 return; 2384 2385 // At this point we know that the first segment is unused, 2386 // hence we can insert a "." segment at that position 2387 path[0] = '.'; 2388 path[1] = '\0'; 2389 segs[0] = 0; 2390 } 2391 2392 2393 // Normalize the given path string. A normal path string has no empty 2394 // segments (i.e., occurrences of "//"), no segments equal to ".", and no 2395 // segments equal to ".." that are preceded by a segment not equal to "..". 2396 // In contrast to Unix-style pathname normalization, for URI paths we 2397 // always retain trailing slashes. 2398 // 2399 private static String normalize(String ps) { 2400 2401 // Does this path need normalization? 2402 int ns = needsNormalization(ps); // Number of segments 2403 if (ns < 0) 2404 // Nope -- just return it 2405 return ps; 2406 2407 char[] path = ps.toCharArray(); // Path in char-array form 2408 2409 // Split path into segments 2410 int[] segs = new int[ns]; // Segment-index array 2411 split(path, segs); 2412 2413 // Remove dots 2414 removeDots(path, segs); 2415 2416 // Prevent scheme-name confusion 2417 maybeAddLeadingDot(path, segs); 2418 2419 // Join the remaining segments and return the result 2420 String s = new String(path, 0, join(path, segs)); 2421 if (s.equals(ps)) { 2422 // string was already normalized 2423 return ps; 2424 } 2425 return s; 2426 } 2427 2428 2429 2430 // -- Character classes for parsing -- 2431 2432 // RFC2396 precisely specifies which characters in the US-ASCII charset are 2433 // permissible in the various components of a URI reference. We here 2434 // define a set of mask pairs to aid in enforcing these restrictions. Each 2435 // mask pair consists of two longs, a low mask and a high mask. Taken 2436 // together they represent a 128-bit mask, where bit i is set iff the 2437 // character with value i is permitted. 2438 // 2439 // This approach is more efficient than sequentially searching arrays of 2440 // permitted characters. It could be made still more efficient by 2441 // precompiling the mask information so that a character's presence in a 2442 // given mask could be determined by a single table lookup. 2443 2444 // Compute the low-order mask for the characters in the given string 2445 private static long lowMask(String chars) { 2446 int n = chars.length(); 2447 long m = 0; 2448 for (int i = 0; i < n; i++) { 2449 char c = chars.charAt(i); 2450 if (c < 64) 2451 m |= (1L << c); 2452 } 2453 return m; 2454 } 2455 2456 // Compute the high-order mask for the characters in the given string 2457 private static long highMask(String chars) { 2458 int n = chars.length(); 2459 long m = 0; 2460 for (int i = 0; i < n; i++) { 2461 char c = chars.charAt(i); 2462 if ((c >= 64) && (c < 128)) 2463 m |= (1L << (c - 64)); 2464 } 2465 return m; 2466 } 2467 2468 // Compute a low-order mask for the characters 2469 // between first and last, inclusive 2470 private static long lowMask(char first, char last) { 2471 long m = 0; 2472 int f = Math.max(Math.min(first, 63), 0); 2473 int l = Math.max(Math.min(last, 63), 0); 2474 for (int i = f; i <= l; i++) 2475 m |= 1L << i; 2476 return m; 2477 } 2478 2479 // Compute a high-order mask for the characters 2480 // between first and last, inclusive 2481 private static long highMask(char first, char last) { 2482 long m = 0; 2483 int f = Math.max(Math.min(first, 127), 64) - 64; 2484 int l = Math.max(Math.min(last, 127), 64) - 64; 2485 for (int i = f; i <= l; i++) 2486 m |= 1L << i; 2487 return m; 2488 } 2489 2490 // Tell whether the given character is permitted by the given mask pair 2491 private static boolean match(char c, long lowMask, long highMask) { 2492 if (c == 0) // 0 doesn't have a slot in the mask. So, it never matches. 2493 return false; 2494 if (c < 64) 2495 return ((1L << c) & lowMask) != 0; 2496 if (c < 128) 2497 return ((1L << (c - 64)) & highMask) != 0; 2498 return false; 2499 } 2500 2501 // Character-class masks, in reverse order from RFC2396 because 2502 // initializers for static fields cannot make forward references. 2503 2504 // digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | 2505 // "8" | "9" 2506 private static final long L_DIGIT = lowMask('0', '9'); 2507 private static final long H_DIGIT = 0L; 2508 2509 // upalpha = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | 2510 // "J" | "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | 2511 // "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z" 2512 private static final long L_UPALPHA = 0L; 2513 private static final long H_UPALPHA = highMask('A', 'Z'); 2514 2515 // lowalpha = "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | 2516 // "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | 2517 // "s" | "t" | "u" | "v" | "w" | "x" | "y" | "z" 2518 private static final long L_LOWALPHA = 0L; 2519 private static final long H_LOWALPHA = highMask('a', 'z'); 2520 2521 // alpha = lowalpha | upalpha 2522 private static final long L_ALPHA = L_LOWALPHA | L_UPALPHA; 2523 private static final long H_ALPHA = H_LOWALPHA | H_UPALPHA; 2524 2525 // alphanum = alpha | digit 2526 private static final long L_ALPHANUM = L_DIGIT | L_ALPHA; 2527 private static final long H_ALPHANUM = H_DIGIT | H_ALPHA; 2528 2529 // hex = digit | "A" | "B" | "C" | "D" | "E" | "F" | 2530 // "a" | "b" | "c" | "d" | "e" | "f" 2531 private static final long L_HEX = L_DIGIT; 2532 private static final long H_HEX = highMask('A', 'F') | highMask('a', 'f'); 2533 2534 // mark = "-" | "_" | "." | "!" | "~" | "*" | "'" | 2535 // "(" | ")" 2536 private static final long L_MARK = lowMask("-_.!~*'()"); 2537 private static final long H_MARK = highMask("-_.!~*'()"); 2538 2539 // unreserved = alphanum | mark 2540 private static final long L_UNRESERVED = L_ALPHANUM | L_MARK; 2541 private static final long H_UNRESERVED = H_ALPHANUM | H_MARK; 2542 2543 // reserved = ";" | "/" | "?" | ":" | "@" | "&" | "=" | "+" | 2544 // "$" | "," | "[" | "]" 2545 // Added per RFC2732: "[", "]" 2546 private static final long L_RESERVED = lowMask(";/?:@&=+$,[]"); 2547 private static final long H_RESERVED = highMask(";/?:@&=+$,[]"); 2548 2549 // The zero'th bit is used to indicate that escape pairs and non-US-ASCII 2550 // characters are allowed; this is handled by the scanEscape method below. 2551 private static final long L_ESCAPED = 1L; 2552 private static final long H_ESCAPED = 0L; 2553 2554 // uric = reserved | unreserved | escaped 2555 private static final long L_URIC = L_RESERVED | L_UNRESERVED | L_ESCAPED; 2556 private static final long H_URIC = H_RESERVED | H_UNRESERVED | H_ESCAPED; 2557 2558 // pchar = unreserved | escaped | 2559 // ":" | "@" | "&" | "=" | "+" | "$" | "," 2560 private static final long L_PCHAR 2561 = L_UNRESERVED | L_ESCAPED | lowMask(":@&=+$,"); 2562 private static final long H_PCHAR 2563 = H_UNRESERVED | H_ESCAPED | highMask(":@&=+$,"); 2564 2565 // All valid path characters 2566 private static final long L_PATH = L_PCHAR | lowMask(";/"); 2567 private static final long H_PATH = H_PCHAR | highMask(";/"); 2568 2569 // Dash, for use in domainlabel and toplabel 2570 private static final long L_DASH = lowMask("-"); 2571 private static final long H_DASH = highMask("-"); 2572 2573 // Dot, for use in hostnames 2574 private static final long L_DOT = lowMask("."); 2575 private static final long H_DOT = highMask("."); 2576 2577 // userinfo = *( unreserved | escaped | 2578 // ";" | ":" | "&" | "=" | "+" | "$" | "," ) 2579 private static final long L_USERINFO 2580 = L_UNRESERVED | L_ESCAPED | lowMask(";:&=+$,"); 2581 private static final long H_USERINFO 2582 = H_UNRESERVED | H_ESCAPED | highMask(";:&=+$,"); 2583 2584 // reg_name = 1*( unreserved | escaped | "$" | "," | 2585 // ";" | ":" | "@" | "&" | "=" | "+" ) 2586 private static final long L_REG_NAME 2587 = L_UNRESERVED | L_ESCAPED | lowMask("$,;:@&=+"); 2588 private static final long H_REG_NAME 2589 = H_UNRESERVED | H_ESCAPED | highMask("$,;:@&=+"); 2590 2591 // All valid characters for server-based authorities 2592 private static final long L_SERVER 2593 = L_USERINFO | L_ALPHANUM | L_DASH | lowMask(".:@[]"); 2594 private static final long H_SERVER 2595 = H_USERINFO | H_ALPHANUM | H_DASH | highMask(".:@[]"); 2596 2597 // Special case of server authority that represents an IPv6 address 2598 // In this case, a % does not signify an escape sequence 2599 private static final long L_SERVER_PERCENT 2600 = L_SERVER | lowMask("%"); 2601 private static final long H_SERVER_PERCENT 2602 = H_SERVER | highMask("%"); 2603 private static final long L_LEFT_BRACKET = lowMask("["); 2604 private static final long H_LEFT_BRACKET = highMask("["); 2605 2606 // scheme = alpha *( alpha | digit | "+" | "-" | "." ) 2607 private static final long L_SCHEME = L_ALPHA | L_DIGIT | lowMask("+-."); 2608 private static final long H_SCHEME = H_ALPHA | H_DIGIT | highMask("+-."); 2609 2610 // uric_no_slash = unreserved | escaped | ";" | "?" | ":" | "@" | 2611 // "&" | "=" | "+" | "$" | "," 2612 private static final long L_URIC_NO_SLASH 2613 = L_UNRESERVED | L_ESCAPED | lowMask(";?:@&=+$,"); 2614 private static final long H_URIC_NO_SLASH 2615 = H_UNRESERVED | H_ESCAPED | highMask(";?:@&=+$,"); 2616 2617 2618 // -- Escaping and encoding -- 2619 2620 private final static char[] hexDigits = { 2621 '0', '1', '2', '3', '4', '5', '6', '7', 2622 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' 2623 }; 2624 2625 private static void appendEscape(StringBuffer sb, byte b) { 2626 sb.append('%'); 2627 sb.append(hexDigits[(b >> 4) & 0x0f]); 2628 sb.append(hexDigits[(b >> 0) & 0x0f]); 2629 } 2630 2631 private static void appendEncoded(StringBuffer sb, char c) { 2632 ByteBuffer bb = null; 2633 try { 2634 bb = ThreadLocalCoders.encoderFor("UTF-8") 2635 .encode(CharBuffer.wrap("" + c)); 2636 } catch (CharacterCodingException x) { 2637 assert false; 2638 } 2639 while (bb.hasRemaining()) { 2640 int b = bb.get() & 0xff; 2641 if (b >= 0x80) 2642 appendEscape(sb, (byte)b); 2643 else 2644 sb.append((char)b); 2645 } 2646 } 2647 2648 // Quote any characters in s that are not permitted 2649 // by the given mask pair 2650 // 2651 private static String quote(String s, long lowMask, long highMask) { 2652 int n = s.length(); 2653 StringBuffer sb = null; 2654 boolean allowNonASCII = ((lowMask & L_ESCAPED) != 0); 2655 for (int i = 0; i < s.length(); i++) { 2656 char c = s.charAt(i); 2657 if (c < '\u0080') { 2658 if (!match(c, lowMask, highMask)) { 2659 if (sb == null) { 2660 sb = new StringBuffer(); 2661 sb.append(s.substring(0, i)); 2662 } 2663 appendEscape(sb, (byte)c); 2664 } else { 2665 if (sb != null) 2666 sb.append(c); 2667 } 2668 } else if (allowNonASCII 2669 && (Character.isSpaceChar(c) 2670 || Character.isISOControl(c))) { 2671 if (sb == null) { 2672 sb = new StringBuffer(); 2673 sb.append(s.substring(0, i)); 2674 } 2675 appendEncoded(sb, c); 2676 } else { 2677 if (sb != null) 2678 sb.append(c); 2679 } 2680 } 2681 return (sb == null) ? s : sb.toString(); 2682 } 2683 2684 // Encodes all characters >= \u0080 into escaped, normalized UTF-8 octets, 2685 // assuming that s is otherwise legal 2686 // 2687 private static String encode(String s) { 2688 int n = s.length(); 2689 if (n == 0) 2690 return s; 2691 2692 // First check whether we actually need to encode 2693 for (int i = 0;;) { 2694 if (s.charAt(i) >= '\u0080') 2695 break; 2696 if (++i >= n) 2697 return s; 2698 } 2699 2700 String ns = Normalizer.normalize(s, Normalizer.Form.NFC); 2701 ByteBuffer bb = null; 2702 try { 2703 bb = ThreadLocalCoders.encoderFor("UTF-8") 2704 .encode(CharBuffer.wrap(ns)); 2705 } catch (CharacterCodingException x) { 2706 assert false; 2707 } 2708 2709 StringBuffer sb = new StringBuffer(); 2710 while (bb.hasRemaining()) { 2711 int b = bb.get() & 0xff; 2712 if (b >= 0x80) 2713 appendEscape(sb, (byte)b); 2714 else 2715 sb.append((char)b); 2716 } 2717 return sb.toString(); 2718 } 2719 2720 private static int decode(char c) { 2721 if ((c >= '0') && (c <= '9')) 2722 return c - '0'; 2723 if ((c >= 'a') && (c <= 'f')) 2724 return c - 'a' + 10; 2725 if ((c >= 'A') && (c <= 'F')) 2726 return c - 'A' + 10; 2727 assert false; 2728 return -1; 2729 } 2730 2731 private static byte decode(char c1, char c2) { 2732 return (byte)( ((decode(c1) & 0xf) << 4) 2733 | ((decode(c2) & 0xf) << 0)); 2734 } 2735 2736 // Evaluates all escapes in s, applying UTF-8 decoding if needed. Assumes 2737 // that escapes are well-formed syntactically, i.e., of the form %XX. If a 2738 // sequence of escaped octets is not valid UTF-8 then the erroneous octets 2739 // are replaced with '\uFFFD'. 2740 // Exception: any "%" found between "[]" is left alone. It is an IPv6 literal 2741 // with a scope_id 2742 // 2743 private static String decode(String s) { 2744 if (s == null) 2745 return s; 2746 int n = s.length(); 2747 if (n == 0) 2748 return s; 2749 if (s.indexOf('%') < 0) 2750 return s; 2751 2752 StringBuffer sb = new StringBuffer(n); 2753 ByteBuffer bb = ByteBuffer.allocate(n); 2754 CharBuffer cb = CharBuffer.allocate(n); 2755 CharsetDecoder dec = ThreadLocalCoders.decoderFor("UTF-8") 2756 .onMalformedInput(CodingErrorAction.REPLACE) 2757 .onUnmappableCharacter(CodingErrorAction.REPLACE); 2758 2759 // This is not horribly efficient, but it will do for now 2760 char c = s.charAt(0); 2761 boolean betweenBrackets = false; 2762 2763 for (int i = 0; i < n;) { 2764 assert c == s.charAt(i); // Loop invariant 2765 if (c == '[') { 2766 betweenBrackets = true; 2767 } else if (betweenBrackets && c == ']') { 2768 betweenBrackets = false; 2769 } 2770 if (c != '%' || betweenBrackets) { 2771 sb.append(c); 2772 if (++i >= n) 2773 break; 2774 c = s.charAt(i); 2775 continue; 2776 } 2777 bb.clear(); 2778 int ui = i; 2779 for (;;) { 2780 assert (n - i >= 2); 2781 bb.put(decode(s.charAt(++i), s.charAt(++i))); 2782 if (++i >= n) 2783 break; 2784 c = s.charAt(i); 2785 if (c != '%') 2786 break; 2787 } 2788 bb.flip(); 2789 cb.clear(); 2790 dec.reset(); 2791 CoderResult cr = dec.decode(bb, cb, true); 2792 assert cr.isUnderflow(); 2793 cr = dec.flush(cb); 2794 assert cr.isUnderflow(); 2795 sb.append(cb.flip().toString()); 2796 } 2797 2798 return sb.toString(); 2799 } 2800 2801 2802 // -- Parsing -- 2803 2804 // For convenience we wrap the input URI string in a new instance of the 2805 // following internal class. This saves always having to pass the input 2806 // string as an argument to each internal scan/parse method. 2807 2808 private class Parser { 2809 2810 private String input; // URI input string 2811 private boolean requireServerAuthority = false; 2812 2813 Parser(String s) { 2814 input = s; 2815 string = s; 2816 } 2817 2818 // -- Methods for throwing URISyntaxException in various ways -- 2819 2820 private void fail(String reason) throws URISyntaxException { 2821 throw new URISyntaxException(input, reason); 2822 } 2823 2824 private void fail(String reason, int p) throws URISyntaxException { 2825 throw new URISyntaxException(input, reason, p); 2826 } 2827 2828 private void failExpecting(String expected, int p) 2829 throws URISyntaxException 2830 { 2831 fail("Expected " + expected, p); 2832 } 2833 2834 private void failExpecting(String expected, String prior, int p) 2835 throws URISyntaxException 2836 { 2837 fail("Expected " + expected + " following " + prior, p); 2838 } 2839 2840 2841 // -- Simple access to the input string -- 2842 2843 // Return a substring of the input string 2844 // 2845 private String substring(int start, int end) { 2846 return input.substring(start, end); 2847 } 2848 2849 // Return the char at position p, 2850 // assuming that p < input.length() 2851 // 2852 private char charAt(int p) { 2853 return input.charAt(p); 2854 } 2855 2856 // Tells whether start < end and, if so, whether charAt(start) == c 2857 // 2858 private boolean at(int start, int end, char c) { 2859 return (start < end) && (charAt(start) == c); 2860 } 2861 2862 // Tells whether start + s.length() < end and, if so, 2863 // whether the chars at the start position match s exactly 2864 // 2865 private boolean at(int start, int end, String s) { 2866 int p = start; 2867 int sn = s.length(); 2868 if (sn > end - p) 2869 return false; 2870 int i = 0; 2871 while (i < sn) { 2872 if (charAt(p++) != s.charAt(i)) { 2873 break; 2874 } 2875 i++; 2876 } 2877 return (i == sn); 2878 } 2879 2880 2881 // -- Scanning -- 2882 2883 // The various scan and parse methods that follow use a uniform 2884 // convention of taking the current start position and end index as 2885 // their first two arguments. The start is inclusive while the end is 2886 // exclusive, just as in the String class, i.e., a start/end pair 2887 // denotes the left-open interval [start, end) of the input string. 2888 // 2889 // These methods never proceed past the end position. They may return 2890 // -1 to indicate outright failure, but more often they simply return 2891 // the position of the first char after the last char scanned. Thus 2892 // a typical idiom is 2893 // 2894 // int p = start; 2895 // int q = scan(p, end, ...); 2896 // if (q > p) 2897 // // We scanned something 2898 // ...; 2899 // else if (q == p) 2900 // // We scanned nothing 2901 // ...; 2902 // else if (q == -1) 2903 // // Something went wrong 2904 // ...; 2905 2906 2907 // Scan a specific char: If the char at the given start position is 2908 // equal to c, return the index of the next char; otherwise, return the 2909 // start position. 2910 // 2911 private int scan(int start, int end, char c) { 2912 if ((start < end) && (charAt(start) == c)) 2913 return start + 1; 2914 return start; 2915 } 2916 2917 // Scan forward from the given start position. Stop at the first char 2918 // in the err string (in which case -1 is returned), or the first char 2919 // in the stop string (in which case the index of the preceding char is 2920 // returned), or the end of the input string (in which case the length 2921 // of the input string is returned). May return the start position if 2922 // nothing matches. 2923 // 2924 private int scan(int start, int end, String err, String stop) { 2925 int p = start; 2926 while (p < end) { 2927 char c = charAt(p); 2928 if (err.indexOf(c) >= 0) 2929 return -1; 2930 if (stop.indexOf(c) >= 0) 2931 break; 2932 p++; 2933 } 2934 return p; 2935 } 2936 2937 // Scan a potential escape sequence, starting at the given position, 2938 // with the given first char (i.e., charAt(start) == c). 2939 // 2940 // This method assumes that if escapes are allowed then visible 2941 // non-US-ASCII chars are also allowed. 2942 // 2943 private int scanEscape(int start, int n, char first) 2944 throws URISyntaxException 2945 { 2946 int p = start; 2947 char c = first; 2948 if (c == '%') { 2949 // Process escape pair 2950 if ((p + 3 <= n) 2951 && match(charAt(p + 1), L_HEX, H_HEX) 2952 && match(charAt(p + 2), L_HEX, H_HEX)) { 2953 return p + 3; 2954 } 2955 fail("Malformed escape pair", p); 2956 } else if ((c > 128) 2957 && !Character.isSpaceChar(c) 2958 && !Character.isISOControl(c)) { 2959 // Allow unescaped but visible non-US-ASCII chars 2960 return p + 1; 2961 } 2962 return p; 2963 } 2964 2965 // Scan chars that match the given mask pair 2966 // 2967 private int scan(int start, int n, long lowMask, long highMask) 2968 throws URISyntaxException 2969 { 2970 int p = start; 2971 while (p < n) { 2972 char c = charAt(p); 2973 if (match(c, lowMask, highMask)) { 2974 p++; 2975 continue; 2976 } 2977 if ((lowMask & L_ESCAPED) != 0) { 2978 int q = scanEscape(p, n, c); 2979 if (q > p) { 2980 p = q; 2981 continue; 2982 } 2983 } 2984 break; 2985 } 2986 return p; 2987 } 2988 2989 // Check that each of the chars in [start, end) matches the given mask 2990 // 2991 private void checkChars(int start, int end, 2992 long lowMask, long highMask, 2993 String what) 2994 throws URISyntaxException 2995 { 2996 int p = scan(start, end, lowMask, highMask); 2997 if (p < end) 2998 fail("Illegal character in " + what, p); 2999 } 3000 3001 // Check that the char at position p matches the given mask 3002 // 3003 private void checkChar(int p, 3004 long lowMask, long highMask, 3005 String what) 3006 throws URISyntaxException 3007 { 3008 checkChars(p, p + 1, lowMask, highMask, what); 3009 } 3010 3011 3012 // -- Parsing -- 3013 3014 // [<scheme>:]<scheme-specific-part>[#<fragment>] 3015 // 3016 void parse(boolean rsa) throws URISyntaxException { 3017 requireServerAuthority = rsa; 3018 int ssp; // Start of scheme-specific part 3019 int n = input.length(); 3020 int p = scan(0, n, "/?#", ":"); 3021 if ((p >= 0) && at(p, n, ':')) { 3022 if (p == 0) 3023 failExpecting("scheme name", 0); 3024 checkChar(0, L_ALPHA, H_ALPHA, "scheme name"); 3025 checkChars(1, p, L_SCHEME, H_SCHEME, "scheme name"); 3026 scheme = substring(0, p); 3027 p++; // Skip ':' 3028 ssp = p; 3029 if (at(p, n, '/')) { 3030 p = parseHierarchical(p, n); 3031 } else { 3032 int q = scan(p, n, "", "#"); 3033 if (q <= p) 3034 failExpecting("scheme-specific part", p); 3035 checkChars(p, q, L_URIC, H_URIC, "opaque part"); 3036 p = q; 3037 } 3038 } else { 3039 ssp = 0; 3040 p = parseHierarchical(0, n); 3041 } 3042 schemeSpecificPart = substring(ssp, p); 3043 if (at(p, n, '#')) { 3044 checkChars(p + 1, n, L_URIC, H_URIC, "fragment"); 3045 fragment = substring(p + 1, n); 3046 p = n; 3047 } 3048 if (p < n) 3049 fail("end of URI", p); 3050 } 3051 3052 // [//authority]<path>[?<query>] 3053 // 3054 // DEVIATION from RFC2396: We allow an empty authority component as 3055 // long as it's followed by a non-empty path, query component, or 3056 // fragment component. This is so that URIs such as "file:///foo/bar" 3057 // will parse. This seems to be the intent of RFC2396, though the 3058 // grammar does not permit it. If the authority is empty then the 3059 // userInfo, host, and port components are undefined. 3060 // 3061 // DEVIATION from RFC2396: We allow empty relative paths. This seems 3062 // to be the intent of RFC2396, but the grammar does not permit it. 3063 // The primary consequence of this deviation is that "#f" parses as a 3064 // relative URI with an empty path. 3065 // 3066 private int parseHierarchical(int start, int n) 3067 throws URISyntaxException 3068 { 3069 int p = start; 3070 if (at(p, n, '/') && at(p + 1, n, '/')) { 3071 p += 2; 3072 int q = scan(p, n, "", "/?#"); 3073 if (q > p) { 3074 p = parseAuthority(p, q); 3075 } else if (q < n) { 3076 // DEVIATION: Allow empty authority prior to non-empty 3077 // path, query component or fragment identifier 3078 } else 3079 failExpecting("authority", p); 3080 } 3081 int q = scan(p, n, "", "?#"); // DEVIATION: May be empty 3082 checkChars(p, q, L_PATH, H_PATH, "path"); 3083 path = substring(p, q); 3084 p = q; 3085 if (at(p, n, '?')) { 3086 p++; 3087 q = scan(p, n, "", "#"); 3088 checkChars(p, q, L_URIC, H_URIC, "query"); 3089 query = substring(p, q); 3090 p = q; 3091 } 3092 return p; 3093 } 3094 3095 // authority = server | reg_name 3096 // 3097 // Ambiguity: An authority that is a registry name rather than a server 3098 // might have a prefix that parses as a server. We use the fact that 3099 // the authority component is always followed by '/' or the end of the 3100 // input string to resolve this: If the complete authority did not 3101 // parse as a server then we try to parse it as a registry name. 3102 // 3103 private int parseAuthority(int start, int n) 3104 throws URISyntaxException 3105 { 3106 int p = start; 3107 int q = p; 3108 URISyntaxException ex = null; 3109 3110 boolean serverChars; 3111 boolean regChars; 3112 3113 if (scan(p, n, "", "]") > p) { 3114 // contains a literal IPv6 address, therefore % is allowed 3115 serverChars = (scan(p, n, L_SERVER_PERCENT, H_SERVER_PERCENT) == n); 3116 } else { 3117 serverChars = (scan(p, n, L_SERVER, H_SERVER) == n); 3118 } 3119 regChars = (scan(p, n, L_REG_NAME, H_REG_NAME) == n); 3120 3121 if (regChars && !serverChars) { 3122 // Must be a registry-based authority 3123 authority = substring(p, n); 3124 return n; 3125 } 3126 3127 if (serverChars) { 3128 // Might be (probably is) a server-based authority, so attempt 3129 // to parse it as such. If the attempt fails, try to treat it 3130 // as a registry-based authority. 3131 try { 3132 q = parseServer(p, n); 3133 if (q < n) 3134 failExpecting("end of authority", q); 3135 authority = substring(p, n); 3136 } catch (URISyntaxException x) { 3137 // Undo results of failed parse 3138 userInfo = null; 3139 host = null; 3140 port = -1; 3141 if (requireServerAuthority) { 3142 // If we're insisting upon a server-based authority, 3143 // then just re-throw the exception 3144 throw x; 3145 } else { 3146 // Save the exception in case it doesn't parse as a 3147 // registry either 3148 ex = x; 3149 q = p; 3150 } 3151 } 3152 } 3153 3154 if (q < n) { 3155 if (regChars) { 3156 // Registry-based authority 3157 authority = substring(p, n); 3158 } else if (ex != null) { 3159 // Re-throw exception; it was probably due to 3160 // a malformed IPv6 address 3161 throw ex; 3162 } else { 3163 fail("Illegal character in authority", q); 3164 } 3165 } 3166 3167 return n; 3168 } 3169 3170 3171 // [<userinfo>@]<host>[:<port>] 3172 // 3173 private int parseServer(int start, int n) 3174 throws URISyntaxException 3175 { 3176 int p = start; 3177 int q; 3178 3179 // userinfo 3180 q = scan(p, n, "/?#", "@"); 3181 if ((q >= p) && at(q, n, '@')) { 3182 checkChars(p, q, L_USERINFO, H_USERINFO, "user info"); 3183 userInfo = substring(p, q); 3184 p = q + 1; // Skip '@' 3185 } 3186 3187 // hostname, IPv4 address, or IPv6 address 3188 if (at(p, n, '[')) { 3189 // DEVIATION from RFC2396: Support IPv6 addresses, per RFC2732 3190 p++; 3191 q = scan(p, n, "/?#", "]"); 3192 if ((q > p) && at(q, n, ']')) { 3193 // look for a "%" scope id 3194 int r = scan (p, q, "", "%"); 3195 if (r > p) { 3196 parseIPv6Reference(p, r); 3197 if (r+1 == q) { 3198 fail ("scope id expected"); 3199 } 3200 checkChars (r+1, q, L_ALPHANUM, H_ALPHANUM, 3201 "scope id"); 3202 } else { 3203 parseIPv6Reference(p, q); 3204 } 3205 host = substring(p-1, q+1); 3206 p = q + 1; 3207 } else { 3208 failExpecting("closing bracket for IPv6 address", q); 3209 } 3210 } else { 3211 q = parseIPv4Address(p, n); 3212 if (q <= p) 3213 q = parseHostname(p, n); 3214 p = q; 3215 } 3216 3217 // port 3218 if (at(p, n, ':')) { 3219 p++; 3220 q = scan(p, n, "", "/"); 3221 if (q > p) { 3222 checkChars(p, q, L_DIGIT, H_DIGIT, "port number"); 3223 try { 3224 port = Integer.parseInt(substring(p, q)); 3225 } catch (NumberFormatException x) { 3226 fail("Malformed port number", p); 3227 } 3228 p = q; 3229 } 3230 } 3231 if (p < n) 3232 failExpecting("port number", p); 3233 3234 return p; 3235 } 3236 3237 // Scan a string of decimal digits whose value fits in a byte 3238 // 3239 private int scanByte(int start, int n) 3240 throws URISyntaxException 3241 { 3242 int p = start; 3243 int q = scan(p, n, L_DIGIT, H_DIGIT); 3244 if (q <= p) return q; 3245 if (Integer.parseInt(substring(p, q)) > 255) return p; 3246 return q; 3247 } 3248 3249 // Scan an IPv4 address. 3250 // 3251 // If the strict argument is true then we require that the given 3252 // interval contain nothing besides an IPv4 address; if it is false 3253 // then we only require that it start with an IPv4 address. 3254 // 3255 // If the interval does not contain or start with (depending upon the 3256 // strict argument) a legal IPv4 address characters then we return -1 3257 // immediately; otherwise we insist that these characters parse as a 3258 // legal IPv4 address and throw an exception on failure. 3259 // 3260 // We assume that any string of decimal digits and dots must be an IPv4 3261 // address. It won't parse as a hostname anyway, so making that 3262 // assumption here allows more meaningful exceptions to be thrown. 3263 // 3264 private int scanIPv4Address(int start, int n, boolean strict) 3265 throws URISyntaxException 3266 { 3267 int p = start; 3268 int q; 3269 int m = scan(p, n, L_DIGIT | L_DOT, H_DIGIT | H_DOT); 3270 if ((m <= p) || (strict && (m != n))) 3271 return -1; 3272 for (;;) { 3273 // Per RFC2732: At most three digits per byte 3274 // Further constraint: Each element fits in a byte 3275 if ((q = scanByte(p, m)) <= p) break; p = q; 3276 if ((q = scan(p, m, '.')) <= p) break; p = q; 3277 if ((q = scanByte(p, m)) <= p) break; p = q; 3278 if ((q = scan(p, m, '.')) <= p) break; p = q; 3279 if ((q = scanByte(p, m)) <= p) break; p = q; 3280 if ((q = scan(p, m, '.')) <= p) break; p = q; 3281 if ((q = scanByte(p, m)) <= p) break; p = q; 3282 if (q < m) break; 3283 return q; 3284 } 3285 fail("Malformed IPv4 address", q); 3286 return -1; 3287 } 3288 3289 // Take an IPv4 address: Throw an exception if the given interval 3290 // contains anything except an IPv4 address 3291 // 3292 private int takeIPv4Address(int start, int n, String expected) 3293 throws URISyntaxException 3294 { 3295 int p = scanIPv4Address(start, n, true); 3296 if (p <= start) 3297 failExpecting(expected, start); 3298 return p; 3299 } 3300 3301 // Attempt to parse an IPv4 address, returning -1 on failure but 3302 // allowing the given interval to contain [:<characters>] after 3303 // the IPv4 address. 3304 // 3305 private int parseIPv4Address(int start, int n) { 3306 int p; 3307 3308 try { 3309 p = scanIPv4Address(start, n, false); 3310 } catch (URISyntaxException x) { 3311 return -1; 3312 } catch (NumberFormatException nfe) { 3313 return -1; 3314 } 3315 3316 if (p > start && p < n) { 3317 // IPv4 address is followed by something - check that 3318 // it's a ":" as this is the only valid character to 3319 // follow an address. 3320 if (charAt(p) != ':') { 3321 p = -1; 3322 } 3323 } 3324 3325 if (p > start) 3326 host = substring(start, p); 3327 3328 return p; 3329 } 3330 3331 // hostname = domainlabel [ "." ] | 1*( domainlabel "." ) toplabel [ "." ] 3332 // domainlabel = alphanum | alphanum *( alphanum | "-" ) alphanum 3333 // toplabel = alpha | alpha *( alphanum | "-" ) alphanum 3334 // 3335 private int parseHostname(int start, int n) 3336 throws URISyntaxException 3337 { 3338 int p = start; 3339 int q; 3340 int l = -1; // Start of last parsed label 3341 3342 do { 3343 // domainlabel = alphanum [ *( alphanum | "-" ) alphanum ] 3344 q = scan(p, n, L_ALPHANUM, H_ALPHANUM); 3345 if (q <= p) 3346 break; 3347 l = p; 3348 if (q > p) { 3349 p = q; 3350 q = scan(p, n, L_ALPHANUM | L_DASH, H_ALPHANUM | H_DASH); 3351 if (q > p) { 3352 if (charAt(q - 1) == '-') 3353 fail("Illegal character in hostname", q - 1); 3354 p = q; 3355 } 3356 } 3357 q = scan(p, n, '.'); 3358 if (q <= p) 3359 break; 3360 p = q; 3361 } while (p < n); 3362 3363 if ((p < n) && !at(p, n, ':')) 3364 fail("Illegal character in hostname", p); 3365 3366 if (l < 0) 3367 failExpecting("hostname", start); 3368 3369 // for a fully qualified hostname check that the rightmost 3370 // label starts with an alpha character. 3371 if (l > start && !match(charAt(l), L_ALPHA, H_ALPHA)) { 3372 fail("Illegal character in hostname", l); 3373 } 3374 3375 host = substring(start, p); 3376 return p; 3377 } 3378 3379 3380 // IPv6 address parsing, from RFC2373: IPv6 Addressing Architecture 3381 // 3382 // Bug: The grammar in RFC2373 Appendix B does not allow addresses of 3383 // the form ::12.34.56.78, which are clearly shown in the examples 3384 // earlier in the document. Here is the original grammar: 3385 // 3386 // IPv6address = hexpart [ ":" IPv4address ] 3387 // hexpart = hexseq | hexseq "::" [ hexseq ] | "::" [ hexseq ] 3388 // hexseq = hex4 *( ":" hex4) 3389 // hex4 = 1*4HEXDIG 3390 // 3391 // We therefore use the following revised grammar: 3392 // 3393 // IPv6address = hexseq [ ":" IPv4address ] 3394 // | hexseq [ "::" [ hexpost ] ] 3395 // | "::" [ hexpost ] 3396 // hexpost = hexseq | hexseq ":" IPv4address | IPv4address 3397 // hexseq = hex4 *( ":" hex4) 3398 // hex4 = 1*4HEXDIG 3399 // 3400 // This covers all and only the following cases: 3401 // 3402 // hexseq 3403 // hexseq : IPv4address 3404 // hexseq :: 3405 // hexseq :: hexseq 3406 // hexseq :: hexseq : IPv4address 3407 // hexseq :: IPv4address 3408 // :: hexseq 3409 // :: hexseq : IPv4address 3410 // :: IPv4address 3411 // :: 3412 // 3413 // Additionally we constrain the IPv6 address as follows :- 3414 // 3415 // i. IPv6 addresses without compressed zeros should contain 3416 // exactly 16 bytes. 3417 // 3418 // ii. IPv6 addresses with compressed zeros should contain 3419 // less than 16 bytes. 3420 3421 private int ipv6byteCount = 0; 3422 3423 private int parseIPv6Reference(int start, int n) 3424 throws URISyntaxException 3425 { 3426 int p = start; 3427 int q; 3428 boolean compressedZeros = false; 3429 3430 q = scanHexSeq(p, n); 3431 3432 if (q > p) { 3433 p = q; 3434 if (at(p, n, "::")) { 3435 compressedZeros = true; 3436 p = scanHexPost(p + 2, n); 3437 } else if (at(p, n, ':')) { 3438 p = takeIPv4Address(p + 1, n, "IPv4 address"); 3439 ipv6byteCount += 4; 3440 } 3441 } else if (at(p, n, "::")) { 3442 compressedZeros = true; 3443 p = scanHexPost(p + 2, n); 3444 } 3445 if (p < n) 3446 fail("Malformed IPv6 address", start); 3447 if (ipv6byteCount > 16) 3448 fail("IPv6 address too long", start); 3449 if (!compressedZeros && ipv6byteCount < 16) 3450 fail("IPv6 address too short", start); 3451 if (compressedZeros && ipv6byteCount == 16) 3452 fail("Malformed IPv6 address", start); 3453 3454 return p; 3455 } 3456 3457 private int scanHexPost(int start, int n) 3458 throws URISyntaxException 3459 { 3460 int p = start; 3461 int q; 3462 3463 if (p == n) 3464 return p; 3465 3466 q = scanHexSeq(p, n); 3467 if (q > p) { 3468 p = q; 3469 if (at(p, n, ':')) { 3470 p++; 3471 p = takeIPv4Address(p, n, "hex digits or IPv4 address"); 3472 ipv6byteCount += 4; 3473 } 3474 } else { 3475 p = takeIPv4Address(p, n, "hex digits or IPv4 address"); 3476 ipv6byteCount += 4; 3477 } 3478 return p; 3479 } 3480 3481 // Scan a hex sequence; return -1 if one could not be scanned 3482 // 3483 private int scanHexSeq(int start, int n) 3484 throws URISyntaxException 3485 { 3486 int p = start; 3487 int q; 3488 3489 q = scan(p, n, L_HEX, H_HEX); 3490 if (q <= p) 3491 return -1; 3492 if (at(q, n, '.')) // Beginning of IPv4 address 3493 return -1; 3494 if (q > p + 4) 3495 fail("IPv6 hexadecimal digit sequence too long", p); 3496 ipv6byteCount += 2; 3497 p = q; 3498 while (p < n) { 3499 if (!at(p, n, ':')) 3500 break; 3501 if (at(p + 1, n, ':')) 3502 break; // "::" 3503 p++; 3504 q = scan(p, n, L_HEX, H_HEX); 3505 if (q <= p) 3506 failExpecting("digits for an IPv6 address", p); 3507 if (at(q, n, '.')) { // Beginning of IPv4 address 3508 p--; 3509 break; 3510 } 3511 if (q > p + 4) 3512 fail("IPv6 hexadecimal digit sequence too long", p); 3513 ipv6byteCount += 2; 3514 p = q; 3515 } 3516 3517 return p; 3518 } 3519 3520 } 3521 3522 } --- EOF ---