1 /*
2 * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "classfile/classLoader.hpp"
27 #include "classfile/javaClasses.hpp"
28 #include "classfile/systemDictionary.hpp"
29 #include "classfile/vmSymbols.hpp"
30 #include "code/codeCache.hpp"
31 #include "code/icBuffer.hpp"
32 #include "code/vtableStubs.hpp"
33 #include "gc_implementation/shared/vmGCOperations.hpp"
34 #include "interpreter/interpreter.hpp"
35 #include "memory/allocation.inline.hpp"
36 #ifdef ASSERT
37 #include "memory/guardedMemory.hpp"
38 #endif
39 #include "oops/oop.inline.hpp"
40 #include "prims/jvm.h"
41 #include "prims/jvm_misc.hpp"
42 #include "prims/privilegedStack.hpp"
43 #include "runtime/arguments.hpp"
44 #include "runtime/atomic.inline.hpp"
45 #include "runtime/frame.inline.hpp"
46 #include "runtime/interfaceSupport.hpp"
47 #include "runtime/java.hpp"
48 #include "runtime/javaCalls.hpp"
49 #include "runtime/mutexLocker.hpp"
50 #include "runtime/os.inline.hpp"
51 #include "runtime/stubRoutines.hpp"
52 #include "runtime/thread.inline.hpp"
53 #include "runtime/vm_version.hpp"
54 #include "services/attachListener.hpp"
55 #include "services/nmtCommon.hpp"
56 #include "services/mallocTracker.hpp"
57 #include "services/memTracker.hpp"
58 #include "services/threadService.hpp"
59 #include "utilities/defaultStream.hpp"
60 #include "utilities/events.hpp"
61
62 # include <signal.h>
63
64 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
65
66 OSThread* os::_starting_thread = NULL;
67 address os::_polling_page = NULL;
68 volatile int32_t* os::_mem_serialize_page = NULL;
69 uintptr_t os::_serialize_page_mask = 0;
70 long os::_rand_seed = 1;
71 int os::_processor_count = 0;
72 size_t os::_page_sizes[os::page_sizes_max];
73
74 #ifndef PRODUCT
75 julong os::num_mallocs = 0; // # of calls to malloc/realloc
76 julong os::alloc_bytes = 0; // # of bytes allocated
77 julong os::num_frees = 0; // # of calls to free
78 julong os::free_bytes = 0; // # of bytes freed
79 #endif
80
81 static juint cur_malloc_words = 0; // current size for MallocMaxTestWords
82
83 void os_init_globals() {
84 // Called from init_globals().
85 // See Threads::create_vm() in thread.cpp, and init.cpp.
86 os::init_globals();
87 }
88
89 // Fill in buffer with current local time as an ISO-8601 string.
90 // E.g., yyyy-mm-ddThh:mm:ss-zzzz.
91 // Returns buffer, or NULL if it failed.
92 // This would mostly be a call to
93 // strftime(...., "%Y-%m-%d" "T" "%H:%M:%S" "%z", ....)
94 // except that on Windows the %z behaves badly, so we do it ourselves.
95 // Also, people wanted milliseconds on there,
96 // and strftime doesn't do milliseconds.
97 char* os::iso8601_time(char* buffer, size_t buffer_length) {
98 // Output will be of the form "YYYY-MM-DDThh:mm:ss.mmm+zzzz\0"
99 // 1 2
100 // 12345678901234567890123456789
101 static const char* iso8601_format =
102 "%04d-%02d-%02dT%02d:%02d:%02d.%03d%c%02d%02d";
103 static const size_t needed_buffer = 29;
104
105 // Sanity check the arguments
106 if (buffer == NULL) {
107 assert(false, "NULL buffer");
108 return NULL;
109 }
110 if (buffer_length < needed_buffer) {
111 assert(false, "buffer_length too small");
112 return NULL;
113 }
114 // Get the current time
115 jlong milliseconds_since_19700101 = javaTimeMillis();
116 const int milliseconds_per_microsecond = 1000;
117 const time_t seconds_since_19700101 =
118 milliseconds_since_19700101 / milliseconds_per_microsecond;
119 const int milliseconds_after_second =
120 milliseconds_since_19700101 % milliseconds_per_microsecond;
121 // Convert the time value to a tm and timezone variable
122 struct tm time_struct;
123 if (localtime_pd(&seconds_since_19700101, &time_struct) == NULL) {
124 assert(false, "Failed localtime_pd");
125 return NULL;
126 }
127 #if defined(_ALLBSD_SOURCE)
128 const time_t zone = (time_t) time_struct.tm_gmtoff;
129 #else
130 const time_t zone = timezone;
131 #endif
132
133 // If daylight savings time is in effect,
134 // we are 1 hour East of our time zone
135 const time_t seconds_per_minute = 60;
136 const time_t minutes_per_hour = 60;
137 const time_t seconds_per_hour = seconds_per_minute * minutes_per_hour;
138 time_t UTC_to_local = zone;
139 if (time_struct.tm_isdst > 0) {
140 UTC_to_local = UTC_to_local - seconds_per_hour;
141 }
142 // Compute the time zone offset.
143 // localtime_pd() sets timezone to the difference (in seconds)
144 // between UTC and and local time.
145 // ISO 8601 says we need the difference between local time and UTC,
146 // we change the sign of the localtime_pd() result.
147 const time_t local_to_UTC = -(UTC_to_local);
148 // Then we have to figure out if if we are ahead (+) or behind (-) UTC.
149 char sign_local_to_UTC = '+';
150 time_t abs_local_to_UTC = local_to_UTC;
151 if (local_to_UTC < 0) {
152 sign_local_to_UTC = '-';
153 abs_local_to_UTC = -(abs_local_to_UTC);
154 }
155 // Convert time zone offset seconds to hours and minutes.
156 const time_t zone_hours = (abs_local_to_UTC / seconds_per_hour);
157 const time_t zone_min =
158 ((abs_local_to_UTC % seconds_per_hour) / seconds_per_minute);
159
160 // Print an ISO 8601 date and time stamp into the buffer
161 const int year = 1900 + time_struct.tm_year;
162 const int month = 1 + time_struct.tm_mon;
163 const int printed = jio_snprintf(buffer, buffer_length, iso8601_format,
164 year,
165 month,
166 time_struct.tm_mday,
167 time_struct.tm_hour,
168 time_struct.tm_min,
169 time_struct.tm_sec,
170 milliseconds_after_second,
171 sign_local_to_UTC,
172 zone_hours,
173 zone_min);
174 if (printed == 0) {
175 assert(false, "Failed jio_printf");
176 return NULL;
177 }
178 return buffer;
179 }
180
181 OSReturn os::set_priority(Thread* thread, ThreadPriority p) {
182 #ifdef ASSERT
183 if (!(!thread->is_Java_thread() ||
184 Thread::current() == thread ||
185 Threads_lock->owned_by_self()
186 || thread->is_Compiler_thread()
187 )) {
188 assert(false, "possibility of dangling Thread pointer");
189 }
190 #endif
191
192 if (p >= MinPriority && p <= MaxPriority) {
193 int priority = java_to_os_priority[p];
194 return set_native_priority(thread, priority);
195 } else {
196 assert(false, "Should not happen");
197 return OS_ERR;
198 }
199 }
200
201 // The mapping from OS priority back to Java priority may be inexact because
202 // Java priorities can map M:1 with native priorities. If you want the definite
203 // Java priority then use JavaThread::java_priority()
204 OSReturn os::get_priority(const Thread* const thread, ThreadPriority& priority) {
205 int p;
206 int os_prio;
207 OSReturn ret = get_native_priority(thread, &os_prio);
208 if (ret != OS_OK) return ret;
209
210 if (java_to_os_priority[MaxPriority] > java_to_os_priority[MinPriority]) {
211 for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] > os_prio; p--) ;
212 } else {
213 // niceness values are in reverse order
214 for (p = MaxPriority; p > MinPriority && java_to_os_priority[p] < os_prio; p--) ;
215 }
216 priority = (ThreadPriority)p;
217 return OS_OK;
218 }
219
220
221 // --------------------- sun.misc.Signal (optional) ---------------------
222
223
224 // SIGBREAK is sent by the keyboard to query the VM state
225 #ifndef SIGBREAK
226 #define SIGBREAK SIGQUIT
227 #endif
228
229 // sigexitnum_pd is a platform-specific special signal used for terminating the Signal thread.
230
231
232 static void signal_thread_entry(JavaThread* thread, TRAPS) {
233 os::set_priority(thread, NearMaxPriority);
234 while (true) {
235 int sig;
236 {
237 // FIXME : Currently we have not decided what should be the status
238 // for this java thread blocked here. Once we decide about
239 // that we should fix this.
240 sig = os::signal_wait();
241 }
242 if (sig == os::sigexitnum_pd()) {
243 // Terminate the signal thread
244 return;
245 }
246
247 switch (sig) {
248 case SIGBREAK: {
249 // Check if the signal is a trigger to start the Attach Listener - in that
250 // case don't print stack traces.
251 if (!DisableAttachMechanism && AttachListener::is_init_trigger()) {
252 continue;
253 }
254 // Print stack traces
255 // Any SIGBREAK operations added here should make sure to flush
256 // the output stream (e.g. tty->flush()) after output. See 4803766.
257 // Each module also prints an extra carriage return after its output.
258 VM_PrintThreads op;
259 VMThread::execute(&op);
260 VM_PrintJNI jni_op;
261 VMThread::execute(&jni_op);
262 VM_FindDeadlocks op1(tty);
263 VMThread::execute(&op1);
264 Universe::print_heap_at_SIGBREAK();
265 if (PrintClassHistogram) {
266 VM_GC_HeapInspection op1(gclog_or_tty, true /* force full GC before heap inspection */);
267 VMThread::execute(&op1);
268 }
269 if (JvmtiExport::should_post_data_dump()) {
270 JvmtiExport::post_data_dump();
271 }
272 break;
273 }
274 default: {
275 // Dispatch the signal to java
276 HandleMark hm(THREAD);
277 Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_Signal(), THREAD);
278 KlassHandle klass (THREAD, k);
279 if (klass.not_null()) {
280 JavaValue result(T_VOID);
281 JavaCallArguments args;
282 args.push_int(sig);
283 JavaCalls::call_static(
284 &result,
285 klass,
286 vmSymbols::dispatch_name(),
287 vmSymbols::int_void_signature(),
288 &args,
289 THREAD
290 );
291 }
292 if (HAS_PENDING_EXCEPTION) {
293 // tty is initialized early so we don't expect it to be null, but
294 // if it is we can't risk doing an initialization that might
295 // trigger additional out-of-memory conditions
296 if (tty != NULL) {
297 char klass_name[256];
298 char tmp_sig_name[16];
299 const char* sig_name = "UNKNOWN";
300 InstanceKlass::cast(PENDING_EXCEPTION->klass())->
301 name()->as_klass_external_name(klass_name, 256);
302 if (os::exception_name(sig, tmp_sig_name, 16) != NULL)
303 sig_name = tmp_sig_name;
304 warning("Exception %s occurred dispatching signal %s to handler"
305 "- the VM may need to be forcibly terminated",
306 klass_name, sig_name );
307 }
308 CLEAR_PENDING_EXCEPTION;
309 }
310 }
311 }
312 }
313 }
314
315 void os::init_before_ergo() {
316 // We need to initialize large page support here because ergonomics takes some
317 // decisions depending on large page support and the calculated large page size.
318 large_page_init();
319 }
320
321 void os::signal_init() {
322 if (!ReduceSignalUsage) {
323 // Setup JavaThread for processing signals
324 EXCEPTION_MARK;
325 Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
326 instanceKlassHandle klass (THREAD, k);
327 instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
328
329 const char thread_name[] = "Signal Dispatcher";
330 Handle string = java_lang_String::create_from_str(thread_name, CHECK);
331
332 // Initialize thread_oop to put it into the system threadGroup
333 Handle thread_group (THREAD, Universe::system_thread_group());
334 JavaValue result(T_VOID);
335 JavaCalls::call_special(&result, thread_oop,
336 klass,
337 vmSymbols::object_initializer_name(),
338 vmSymbols::threadgroup_string_void_signature(),
339 thread_group,
340 string,
341 CHECK);
342
343 KlassHandle group(THREAD, SystemDictionary::ThreadGroup_klass());
344 JavaCalls::call_special(&result,
345 thread_group,
346 group,
347 vmSymbols::add_method_name(),
348 vmSymbols::thread_void_signature(),
349 thread_oop, // ARG 1
350 CHECK);
351
352 os::signal_init_pd();
353
354 { MutexLocker mu(Threads_lock);
355 JavaThread* signal_thread = new JavaThread(&signal_thread_entry);
356
357 // At this point it may be possible that no osthread was created for the
358 // JavaThread due to lack of memory. We would have to throw an exception
359 // in that case. However, since this must work and we do not allow
360 // exceptions anyway, check and abort if this fails.
361 if (signal_thread == NULL || signal_thread->osthread() == NULL) {
362 vm_exit_during_initialization("java.lang.OutOfMemoryError",
363 os::native_thread_creation_failed_msg());
364 }
365
366 java_lang_Thread::set_thread(thread_oop(), signal_thread);
367 java_lang_Thread::set_priority(thread_oop(), NearMaxPriority);
368 java_lang_Thread::set_daemon(thread_oop());
369
370 signal_thread->set_threadObj(thread_oop());
371 Threads::add(signal_thread);
372 Thread::start(signal_thread);
373 }
374 // Handle ^BREAK
375 os::signal(SIGBREAK, os::user_handler());
376 }
377 }
378
379
380 void os::terminate_signal_thread() {
381 if (!ReduceSignalUsage)
382 signal_notify(sigexitnum_pd());
383 }
384
385
386 // --------------------- loading libraries ---------------------
387
388 typedef jint (JNICALL *JNI_OnLoad_t)(JavaVM *, void *);
389 extern struct JavaVM_ main_vm;
390
391 static void* _native_java_library = NULL;
392
393 void* os::native_java_library() {
394 if (_native_java_library == NULL) {
395 char buffer[JVM_MAXPATHLEN];
396 char ebuf[1024];
397
398 // Try to load verify dll first. In 1.3 java dll depends on it and is not
399 // always able to find it when the loading executable is outside the JDK.
400 // In order to keep working with 1.2 we ignore any loading errors.
401 if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
402 "verify")) {
403 dll_load(buffer, ebuf, sizeof(ebuf));
404 }
405
406 // Load java dll
407 if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
408 "java")) {
409 _native_java_library = dll_load(buffer, ebuf, sizeof(ebuf));
410 }
411 if (_native_java_library == NULL) {
412 vm_exit_during_initialization("Unable to load native library", ebuf);
413 }
414
415 #if defined(__OpenBSD__)
416 // Work-around OpenBSD's lack of $ORIGIN support by pre-loading libnet.so
417 // ignore errors
418 if (dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
419 "net")) {
420 dll_load(buffer, ebuf, sizeof(ebuf));
421 }
422 #endif
423 }
424 static jboolean onLoaded = JNI_FALSE;
425 if (onLoaded) {
426 // We may have to wait to fire OnLoad until TLS is initialized.
427 if (ThreadLocalStorage::is_initialized()) {
428 // The JNI_OnLoad handling is normally done by method load in
429 // java.lang.ClassLoader$NativeLibrary, but the VM loads the base library
430 // explicitly so we have to check for JNI_OnLoad as well
431 const char *onLoadSymbols[] = JNI_ONLOAD_SYMBOLS;
432 JNI_OnLoad_t JNI_OnLoad = CAST_TO_FN_PTR(
433 JNI_OnLoad_t, dll_lookup(_native_java_library, onLoadSymbols[0]));
434 if (JNI_OnLoad != NULL) {
435 JavaThread* thread = JavaThread::current();
436 ThreadToNativeFromVM ttn(thread);
437 HandleMark hm(thread);
438 jint ver = (*JNI_OnLoad)(&main_vm, NULL);
439 onLoaded = JNI_TRUE;
440 if (!Threads::is_supported_jni_version_including_1_1(ver)) {
441 vm_exit_during_initialization("Unsupported JNI version");
442 }
443 }
444 }
445 }
446 return _native_java_library;
447 }
448
449 /*
450 * Support for finding Agent_On(Un)Load/Attach<_lib_name> if it exists.
451 * If check_lib == true then we are looking for an
452 * Agent_OnLoad_lib_name or Agent_OnAttach_lib_name function to determine if
453 * this library is statically linked into the image.
454 * If check_lib == false then we will look for the appropriate symbol in the
455 * executable if agent_lib->is_static_lib() == true or in the shared library
456 * referenced by 'handle'.
457 */
458 void* os::find_agent_function(AgentLibrary *agent_lib, bool check_lib,
459 const char *syms[], size_t syms_len) {
460 assert(agent_lib != NULL, "sanity check");
461 const char *lib_name;
462 void *handle = agent_lib->os_lib();
463 void *entryName = NULL;
464 char *agent_function_name;
465 size_t i;
466
467 // If checking then use the agent name otherwise test is_static_lib() to
468 // see how to process this lookup
469 lib_name = ((check_lib || agent_lib->is_static_lib()) ? agent_lib->name() : NULL);
470 for (i = 0; i < syms_len; i++) {
471 agent_function_name = build_agent_function_name(syms[i], lib_name, agent_lib->is_absolute_path());
472 if (agent_function_name == NULL) {
473 break;
474 }
475 entryName = dll_lookup(handle, agent_function_name);
476 FREE_C_HEAP_ARRAY(char, agent_function_name, mtThread);
477 if (entryName != NULL) {
478 break;
479 }
480 }
481 return entryName;
482 }
483
484 // See if the passed in agent is statically linked into the VM image.
485 bool os::find_builtin_agent(AgentLibrary *agent_lib, const char *syms[],
486 size_t syms_len) {
487 void *ret;
488 void *proc_handle;
489 void *save_handle;
490
491 assert(agent_lib != NULL, "sanity check");
492 if (agent_lib->name() == NULL) {
493 return false;
494 }
495 proc_handle = get_default_process_handle();
496 // Check for Agent_OnLoad/Attach_lib_name function
497 save_handle = agent_lib->os_lib();
498 // We want to look in this process' symbol table.
499 agent_lib->set_os_lib(proc_handle);
500 ret = find_agent_function(agent_lib, true, syms, syms_len);
501 if (ret != NULL) {
502 // Found an entry point like Agent_OnLoad_lib_name so we have a static agent
503 agent_lib->set_valid();
504 agent_lib->set_static_lib(true);
505 return true;
506 }
507 agent_lib->set_os_lib(save_handle);
508 return false;
509 }
510
511 // --------------------- heap allocation utilities ---------------------
512
513 char *os::strdup(const char *str, MEMFLAGS flags) {
514 size_t size = strlen(str);
515 char *dup_str = (char *)malloc(size + 1, flags);
516 if (dup_str == NULL) return NULL;
517 strcpy(dup_str, str);
518 return dup_str;
519 }
520
521 char* os::strdup_check_oom(const char* str, MEMFLAGS flags) {
522 char* p = os::strdup(str, flags);
523 if (p == NULL) {
524 vm_exit_out_of_memory(strlen(str) + 1, OOM_MALLOC_ERROR, "os::strdup_check_oom");
525 }
526 return p;
527 }
528
529
530 #define paranoid 0 /* only set to 1 if you suspect checking code has bug */
531
532 #ifdef ASSERT
533
534 static void verify_memory(void* ptr) {
535 GuardedMemory guarded(ptr);
536 if (!guarded.verify_guards()) {
537 tty->print_cr("## nof_mallocs = " UINT64_FORMAT ", nof_frees = " UINT64_FORMAT, os::num_mallocs, os::num_frees);
538 tty->print_cr("## memory stomp:");
539 guarded.print_on(tty);
540 fatal("memory stomping error");
541 }
542 }
543
544 #endif
545
546 //
547 // This function supports testing of the malloc out of memory
548 // condition without really running the system out of memory.
549 //
550 static u_char* testMalloc(size_t alloc_size) {
551 assert(MallocMaxTestWords > 0, "sanity check");
552
553 if ((cur_malloc_words + (alloc_size / BytesPerWord)) > MallocMaxTestWords) {
554 return NULL;
555 }
556
557 u_char* ptr = (u_char*)::malloc(alloc_size);
558
559 if (ptr != NULL) {
560 Atomic::add(((jint) (alloc_size / BytesPerWord)),
561 (volatile jint *) &cur_malloc_words);
562 }
563 return ptr;
564 }
565
566 void* os::malloc(size_t size, MEMFLAGS flags) {
567 return os::malloc(size, flags, CALLER_PC);
568 }
569
570 void* os::malloc(size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
571 NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
572 NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
573
574 #ifdef ASSERT
575 // checking for the WatcherThread and crash_protection first
576 // since os::malloc can be called when the libjvm.{dll,so} is
577 // first loaded and we don't have a thread yet.
578 // try to find the thread after we see that the watcher thread
579 // exists and has crash protection.
580 WatcherThread *wt = WatcherThread::watcher_thread();
581 if (wt != NULL && wt->has_crash_protection()) {
582 Thread* thread = ThreadLocalStorage::get_thread_slow();
583 if (thread == wt) {
584 assert(!wt->has_crash_protection(),
585 "Can't malloc with crash protection from WatcherThread");
586 }
587 }
588 #endif
589
590 if (size == 0) {
591 // return a valid pointer if size is zero
592 // if NULL is returned the calling functions assume out of memory.
593 size = 1;
594 }
595
596 // NMT support
597 NMT_TrackingLevel level = MemTracker::tracking_level();
598 size_t nmt_header_size = MemTracker::malloc_header_size(level);
599
600 #ifndef ASSERT
601 const size_t alloc_size = size + nmt_header_size;
602 #else
603 const size_t alloc_size = GuardedMemory::get_total_size(size + nmt_header_size);
604 if (size + nmt_header_size > alloc_size) { // Check for rollover.
605 return NULL;
606 }
607 #endif
608
609 NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
610
611 u_char* ptr;
612 if (MallocMaxTestWords > 0) {
613 ptr = testMalloc(alloc_size);
614 } else {
615 ptr = (u_char*)::malloc(alloc_size);
616 }
617
618 #ifdef ASSERT
619 if (ptr == NULL) {
620 return NULL;
621 }
622 // Wrap memory with guard
623 GuardedMemory guarded(ptr, size + nmt_header_size);
624 ptr = guarded.get_user_ptr();
625 #endif
626 if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
627 tty->print_cr("os::malloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
628 breakpoint();
629 }
630 debug_only(if (paranoid) verify_memory(ptr));
631 if (PrintMalloc && tty != NULL) {
632 tty->print_cr("os::malloc " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
633 }
634
635 // we do not track guard memory
636 return MemTracker::record_malloc((address)ptr, size, memflags, stack, level);
637 }
638
639 void* os::realloc(void *memblock, size_t size, MEMFLAGS flags) {
640 return os::realloc(memblock, size, flags, CALLER_PC);
641 }
642
643 void* os::realloc(void *memblock, size_t size, MEMFLAGS memflags, const NativeCallStack& stack) {
644
645 #ifndef ASSERT
646 NOT_PRODUCT(inc_stat_counter(&num_mallocs, 1));
647 NOT_PRODUCT(inc_stat_counter(&alloc_bytes, size));
648 // NMT support
649 void* membase = MemTracker::record_free(memblock);
650 NMT_TrackingLevel level = MemTracker::tracking_level();
651 size_t nmt_header_size = MemTracker::malloc_header_size(level);
652 void* ptr = ::realloc(membase, size + nmt_header_size);
653 return MemTracker::record_malloc(ptr, size, memflags, stack, level);
654 #else
655 if (memblock == NULL) {
656 return os::malloc(size, memflags, stack);
657 }
658 if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
659 tty->print_cr("os::realloc caught " PTR_FORMAT, memblock);
660 breakpoint();
661 }
662 // NMT support
663 void* membase = MemTracker::malloc_base(memblock);
664 verify_memory(membase);
665 NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
666 if (size == 0) {
667 return NULL;
668 }
669 // always move the block
670 void* ptr = os::malloc(size, memflags, stack);
671 if (PrintMalloc) {
672 tty->print_cr("os::remalloc " SIZE_FORMAT " bytes, " PTR_FORMAT " --> " PTR_FORMAT, size, memblock, ptr);
673 }
674 // Copy to new memory if malloc didn't fail
675 if ( ptr != NULL ) {
676 GuardedMemory guarded(MemTracker::malloc_base(memblock));
677 // Guard's user data contains NMT header
678 size_t memblock_size = guarded.get_user_size() - MemTracker::malloc_header_size(memblock);
679 memcpy(ptr, memblock, MIN2(size, memblock_size));
680 if (paranoid) verify_memory(MemTracker::malloc_base(ptr));
681 if ((intptr_t)ptr == (intptr_t)MallocCatchPtr) {
682 tty->print_cr("os::realloc caught, " SIZE_FORMAT " bytes --> " PTR_FORMAT, size, ptr);
683 breakpoint();
684 }
685 os::free(memblock);
686 }
687 return ptr;
688 #endif
689 }
690
691
692 void os::free(void *memblock, MEMFLAGS memflags) {
693 NOT_PRODUCT(inc_stat_counter(&num_frees, 1));
694 #ifdef ASSERT
695 if (memblock == NULL) return;
696 if ((intptr_t)memblock == (intptr_t)MallocCatchPtr) {
697 if (tty != NULL) tty->print_cr("os::free caught " PTR_FORMAT, memblock);
698 breakpoint();
699 }
700 void* membase = MemTracker::record_free(memblock);
701 verify_memory(membase);
702 NOT_PRODUCT(if (MallocVerifyInterval > 0) check_heap());
703
704 GuardedMemory guarded(membase);
705 size_t size = guarded.get_user_size();
706 inc_stat_counter(&free_bytes, size);
707 membase = guarded.release_for_freeing();
708 if (PrintMalloc && tty != NULL) {
709 fprintf(stderr, "os::free " SIZE_FORMAT " bytes --> " PTR_FORMAT "\n", size, (uintptr_t)membase);
710 }
711 ::free(membase);
712 #else
713 void* membase = MemTracker::record_free(memblock);
714 ::free(membase);
715 #endif
716 }
717
718 void os::init_random(long initval) {
719 _rand_seed = initval;
720 }
721
722
723 long os::random() {
724 /* standard, well-known linear congruential random generator with
725 * next_rand = (16807*seed) mod (2**31-1)
726 * see
727 * (1) "Random Number Generators: Good Ones Are Hard to Find",
728 * S.K. Park and K.W. Miller, Communications of the ACM 31:10 (Oct 1988),
729 * (2) "Two Fast Implementations of the 'Minimal Standard' Random
730 * Number Generator", David G. Carta, Comm. ACM 33, 1 (Jan 1990), pp. 87-88.
731 */
732 const long a = 16807;
733 const unsigned long m = 2147483647;
734 const long q = m / a; assert(q == 127773, "weird math");
735 const long r = m % a; assert(r == 2836, "weird math");
736
737 // compute az=2^31p+q
738 unsigned long lo = a * (long)(_rand_seed & 0xFFFF);
739 unsigned long hi = a * (long)((unsigned long)_rand_seed >> 16);
740 lo += (hi & 0x7FFF) << 16;
741
742 // if q overflowed, ignore the overflow and increment q
743 if (lo > m) {
744 lo &= m;
745 ++lo;
746 }
747 lo += hi >> 15;
748
749 // if (p+q) overflowed, ignore the overflow and increment (p+q)
750 if (lo > m) {
751 lo &= m;
752 ++lo;
753 }
754 return (_rand_seed = lo);
755 }
756
757 // The INITIALIZED state is distinguished from the SUSPENDED state because the
758 // conditions in which a thread is first started are different from those in which
759 // a suspension is resumed. These differences make it hard for us to apply the
760 // tougher checks when starting threads that we want to do when resuming them.
761 // However, when start_thread is called as a result of Thread.start, on a Java
762 // thread, the operation is synchronized on the Java Thread object. So there
763 // cannot be a race to start the thread and hence for the thread to exit while
764 // we are working on it. Non-Java threads that start Java threads either have
765 // to do so in a context in which races are impossible, or should do appropriate
766 // locking.
767
768 void os::start_thread(Thread* thread) {
769 // guard suspend/resume
770 MutexLockerEx ml(thread->SR_lock(), Mutex::_no_safepoint_check_flag);
771 OSThread* osthread = thread->osthread();
772 osthread->set_state(RUNNABLE);
773 pd_start_thread(thread);
774 }
775
776 //---------------------------------------------------------------------------
777 // Helper functions for fatal error handler
778
779 void os::print_hex_dump(outputStream* st, address start, address end, int unitsize) {
780 assert(unitsize == 1 || unitsize == 2 || unitsize == 4 || unitsize == 8, "just checking");
781
782 int cols = 0;
783 int cols_per_line = 0;
784 switch (unitsize) {
785 case 1: cols_per_line = 16; break;
786 case 2: cols_per_line = 8; break;
787 case 4: cols_per_line = 4; break;
788 case 8: cols_per_line = 2; break;
789 default: return;
790 }
791
792 address p = start;
793 st->print(PTR_FORMAT ": ", start);
794 while (p < end) {
795 switch (unitsize) {
796 case 1: st->print("%02x", *(u1*)p); break;
797 case 2: st->print("%04x", *(u2*)p); break;
798 case 4: st->print("%08x", *(u4*)p); break;
799 case 8: st->print("%016" FORMAT64_MODIFIER "x", *(u8*)p); break;
800 }
801 p += unitsize;
802 cols++;
803 if (cols >= cols_per_line && p < end) {
804 cols = 0;
805 st->cr();
806 st->print(PTR_FORMAT ": ", p);
807 } else {
808 st->print(" ");
809 }
810 }
811 st->cr();
812 }
813
814 void os::print_environment_variables(outputStream* st, const char** env_list,
815 char* buffer, int len) {
816 if (env_list) {
817 st->print_cr("Environment Variables:");
818
819 for (int i = 0; env_list[i] != NULL; i++) {
820 if (getenv(env_list[i], buffer, len)) {
821 st->print("%s", env_list[i]);
822 st->print("=");
823 st->print_cr("%s", buffer);
824 }
825 }
826 }
827 }
828
829 void os::print_cpu_info(outputStream* st) {
830 // cpu
831 st->print("CPU:");
832 st->print("total %d", os::processor_count());
833 // It's not safe to query number of active processors after crash
834 // st->print("(active %d)", os::active_processor_count());
835 st->print(" %s", VM_Version::cpu_features());
836 st->cr();
837 pd_print_cpu_info(st);
838 }
839
840 void os::print_date_and_time(outputStream *st) {
841 const int secs_per_day = 86400;
842 const int secs_per_hour = 3600;
843 const int secs_per_min = 60;
844
845 time_t tloc;
846 (void)time(&tloc);
847 st->print("time: %s", ctime(&tloc)); // ctime adds newline.
848
849 double t = os::elapsedTime();
850 // NOTE: It tends to crash after a SEGV if we want to printf("%f",...) in
851 // Linux. Must be a bug in glibc ? Workaround is to round "t" to int
852 // before printf. We lost some precision, but who cares?
853 int eltime = (int)t; // elapsed time in seconds
854
855 // print elapsed time in a human-readable format:
856 int eldays = eltime / secs_per_day;
857 int day_secs = eldays * secs_per_day;
858 int elhours = (eltime - day_secs) / secs_per_hour;
859 int hour_secs = elhours * secs_per_hour;
860 int elmins = (eltime - day_secs - hour_secs) / secs_per_min;
861 int minute_secs = elmins * secs_per_min;
862 int elsecs = (eltime - day_secs - hour_secs - minute_secs);
863 st->print_cr("elapsed time: %d seconds (%dd %dh %dm %ds)", eltime, eldays, elhours, elmins, elsecs);
864 }
865
866 // moved from debug.cpp (used to be find()) but still called from there
867 // The verbose parameter is only set by the debug code in one case
868 void os::print_location(outputStream* st, intptr_t x, bool verbose) {
869 address addr = (address)x;
870 CodeBlob* b = CodeCache::find_blob_unsafe(addr);
871 if (b != NULL) {
872 if (b->is_buffer_blob()) {
873 // the interpreter is generated into a buffer blob
874 InterpreterCodelet* i = Interpreter::codelet_containing(addr);
875 if (i != NULL) {
876 st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an Interpreter codelet", addr, (int)(addr - i->code_begin()));
877 i->print_on(st);
878 return;
879 }
880 if (Interpreter::contains(addr)) {
881 st->print_cr(INTPTR_FORMAT " is pointing into interpreter code"
882 " (not bytecode specific)", addr);
883 return;
884 }
885 //
886 if (AdapterHandlerLibrary::contains(b)) {
887 st->print_cr(INTPTR_FORMAT " is at code_begin+%d in an AdapterHandler", addr, (int)(addr - b->code_begin()));
888 AdapterHandlerLibrary::print_handler_on(st, b);
889 }
890 // the stubroutines are generated into a buffer blob
891 StubCodeDesc* d = StubCodeDesc::desc_for(addr);
892 if (d != NULL) {
893 st->print_cr(INTPTR_FORMAT " is at begin+%d in a stub", addr, (int)(addr - d->begin()));
894 d->print_on(st);
895 st->cr();
896 return;
897 }
898 if (StubRoutines::contains(addr)) {
899 st->print_cr(INTPTR_FORMAT " is pointing to an (unnamed) "
900 "stub routine", addr);
901 return;
902 }
903 // the InlineCacheBuffer is using stubs generated into a buffer blob
904 if (InlineCacheBuffer::contains(addr)) {
905 st->print_cr(INTPTR_FORMAT " is pointing into InlineCacheBuffer", addr);
906 return;
907 }
908 VtableStub* v = VtableStubs::stub_containing(addr);
909 if (v != NULL) {
910 st->print_cr(INTPTR_FORMAT " is at entry_point+%d in a vtable stub", addr, (int)(addr - v->entry_point()));
911 v->print_on(st);
912 st->cr();
913 return;
914 }
915 }
916 nmethod* nm = b->as_nmethod_or_null();
917 if (nm != NULL) {
918 ResourceMark rm;
919 st->print(INTPTR_FORMAT " is at entry_point+%d in (nmethod*)" INTPTR_FORMAT,
920 addr, (int)(addr - nm->entry_point()), nm);
921 if (verbose) {
922 st->print(" for ");
923 nm->method()->print_value_on(st);
924 }
925 st->cr();
926 nm->print_nmethod(verbose);
927 return;
928 }
929 st->print_cr(INTPTR_FORMAT " is at code_begin+%d in ", addr, (int)(addr - b->code_begin()));
930 b->print_on(st);
931 return;
932 }
933
934 if (Universe::heap()->is_in(addr)) {
935 HeapWord* p = Universe::heap()->block_start(addr);
936 bool print = false;
937 // If we couldn't find it it just may mean that heap wasn't parsable
938 // See if we were just given an oop directly
939 if (p != NULL && Universe::heap()->block_is_obj(p)) {
940 print = true;
941 } else if (p == NULL && ((oopDesc*)addr)->is_oop()) {
942 p = (HeapWord*) addr;
943 print = true;
944 }
945 if (print) {
946 if (p == (HeapWord*) addr) {
947 st->print_cr(INTPTR_FORMAT " is an oop", addr);
948 } else {
949 st->print_cr(INTPTR_FORMAT " is pointing into object: " INTPTR_FORMAT, addr, p);
950 }
951 oop(p)->print_on(st);
952 return;
953 }
954 } else {
955 if (Universe::heap()->is_in_reserved(addr)) {
956 st->print_cr(INTPTR_FORMAT " is an unallocated location "
957 "in the heap", addr);
958 return;
959 }
960 }
961 if (JNIHandles::is_global_handle((jobject) addr)) {
962 st->print_cr(INTPTR_FORMAT " is a global jni handle", addr);
963 return;
964 }
965 if (JNIHandles::is_weak_global_handle((jobject) addr)) {
966 st->print_cr(INTPTR_FORMAT " is a weak global jni handle", addr);
967 return;
968 }
969 #ifndef PRODUCT
970 // we don't keep the block list in product mode
971 if (JNIHandleBlock::any_contains((jobject) addr)) {
972 st->print_cr(INTPTR_FORMAT " is a local jni handle", addr);
973 return;
974 }
975 #endif
976
977 for(JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
978 // Check for privilege stack
979 if (thread->privileged_stack_top() != NULL &&
980 thread->privileged_stack_top()->contains(addr)) {
981 st->print_cr(INTPTR_FORMAT " is pointing into the privilege stack "
982 "for thread: " INTPTR_FORMAT, addr, thread);
983 if (verbose) thread->print_on(st);
984 return;
985 }
986 // If the addr is a java thread print information about that.
987 if (addr == (address)thread) {
988 if (verbose) {
989 thread->print_on(st);
990 } else {
991 st->print_cr(INTPTR_FORMAT " is a thread", addr);
992 }
993 return;
994 }
995 // If the addr is in the stack region for this thread then report that
996 // and print thread info
997 if (thread->stack_base() >= addr &&
998 addr > (thread->stack_base() - thread->stack_size())) {
999 st->print_cr(INTPTR_FORMAT " is pointing into the stack for thread: "
1000 INTPTR_FORMAT, addr, thread);
1001 if (verbose) thread->print_on(st);
1002 return;
1003 }
1004
1005 }
1006
1007 // Check if in metaspace and print types that have vptrs (only method now)
1008 if (Metaspace::contains(addr)) {
1009 if (Method::has_method_vptr((const void*)addr)) {
1010 ((Method*)addr)->print_value_on(st);
1011 st->cr();
1012 } else {
1013 // Use addr->print() from the debugger instead (not here)
1014 st->print_cr(INTPTR_FORMAT " is pointing into metadata", addr);
1015 }
1016 return;
1017 }
1018
1019 // Try an OS specific find
1020 if (os::find(addr, st)) {
1021 return;
1022 }
1023
1024 st->print_cr(INTPTR_FORMAT " is an unknown value", addr);
1025 }
1026
1027 // Looks like all platforms except IA64 can use the same function to check
1028 // if C stack is walkable beyond current frame. The check for fp() is not
1029 // necessary on Sparc, but it's harmless.
1030 bool os::is_first_C_frame(frame* fr) {
1031 #if (defined(IA64) && !defined(AIX)) && !defined(_WIN32)
1032 // On IA64 we have to check if the callers bsp is still valid
1033 // (i.e. within the register stack bounds).
1034 // Notice: this only works for threads created by the VM and only if
1035 // we walk the current stack!!! If we want to be able to walk
1036 // arbitrary other threads, we'll have to somehow store the thread
1037 // object in the frame.
1038 Thread *thread = Thread::current();
1039 if ((address)fr->fp() <=
1040 thread->register_stack_base() HPUX_ONLY(+ 0x0) LINUX_ONLY(+ 0x50)) {
1041 // This check is a little hacky, because on Linux the first C
1042 // frame's ('start_thread') register stack frame starts at
1043 // "register_stack_base + 0x48" while on HPUX, the first C frame's
1044 // ('__pthread_bound_body') register stack frame seems to really
1045 // start at "register_stack_base".
1046 return true;
1047 } else {
1048 return false;
1049 }
1050 #elif defined(IA64) && defined(_WIN32)
1051 return true;
1052 #else
1053 // Load up sp, fp, sender sp and sender fp, check for reasonable values.
1054 // Check usp first, because if that's bad the other accessors may fault
1055 // on some architectures. Ditto ufp second, etc.
1056 uintptr_t fp_align_mask = (uintptr_t)(sizeof(address)-1);
1057 // sp on amd can be 32 bit aligned.
1058 uintptr_t sp_align_mask = (uintptr_t)(sizeof(int)-1);
1059
1060 uintptr_t usp = (uintptr_t)fr->sp();
1061 if ((usp & sp_align_mask) != 0) return true;
1062
1063 uintptr_t ufp = (uintptr_t)fr->fp();
1064 if ((ufp & fp_align_mask) != 0) return true;
1065
1066 uintptr_t old_sp = (uintptr_t)fr->sender_sp();
1067 if ((old_sp & sp_align_mask) != 0) return true;
1068 if (old_sp == 0 || old_sp == (uintptr_t)-1) return true;
1069
1070 uintptr_t old_fp = (uintptr_t)fr->link();
1071 if ((old_fp & fp_align_mask) != 0) return true;
1072 if (old_fp == 0 || old_fp == (uintptr_t)-1 || old_fp == ufp) return true;
1073
1074 // stack grows downwards; if old_fp is below current fp or if the stack
1075 // frame is too large, either the stack is corrupted or fp is not saved
1076 // on stack (i.e. on x86, ebp may be used as general register). The stack
1077 // is not walkable beyond current frame.
1078 if (old_fp < ufp) return true;
1079 if (old_fp - ufp > 64 * K) return true;
1080
1081 return false;
1082 #endif
1083 }
1084
1085 #ifdef ASSERT
1086 extern "C" void test_random() {
1087 const double m = 2147483647;
1088 double mean = 0.0, variance = 0.0, t;
1089 long reps = 10000;
1090 unsigned long seed = 1;
1091
1092 tty->print_cr("seed %ld for %ld repeats...", seed, reps);
1093 os::init_random(seed);
1094 long num;
1095 for (int k = 0; k < reps; k++) {
1096 num = os::random();
1097 double u = (double)num / m;
1098 assert(u >= 0.0 && u <= 1.0, "bad random number!");
1099
1100 // calculate mean and variance of the random sequence
1101 mean += u;
1102 variance += (u*u);
1103 }
1104 mean /= reps;
1105 variance /= (reps - 1);
1106
1107 assert(num == 1043618065, "bad seed");
1108 tty->print_cr("mean of the 1st 10000 numbers: %f", mean);
1109 tty->print_cr("variance of the 1st 10000 numbers: %f", variance);
1110 const double eps = 0.0001;
1111 t = fabsd(mean - 0.5018);
1112 assert(t < eps, "bad mean");
1113 t = (variance - 0.3355) < 0.0 ? -(variance - 0.3355) : variance - 0.3355;
1114 assert(t < eps, "bad variance");
1115 }
1116 #endif
1117
1118
1119 // Set up the boot classpath.
1120
1121 char* os::format_boot_path(const char* format_string,
1122 const char* home,
1123 int home_len,
1124 char fileSep,
1125 char pathSep) {
1126 assert((fileSep == '/' && pathSep == ':') ||
1127 (fileSep == '\\' && pathSep == ';'), "unexpected separator chars");
1128
1129 // Scan the format string to determine the length of the actual
1130 // boot classpath, and handle platform dependencies as well.
1131 int formatted_path_len = 0;
1132 const char* p;
1133 for (p = format_string; *p != 0; ++p) {
1134 if (*p == '%') formatted_path_len += home_len - 1;
1135 ++formatted_path_len;
1136 }
1137
1138 char* formatted_path = NEW_C_HEAP_ARRAY(char, formatted_path_len + 1, mtInternal);
1139 if (formatted_path == NULL) {
1140 return NULL;
1141 }
1142
1143 // Create boot classpath from format, substituting separator chars and
1144 // java home directory.
1145 char* q = formatted_path;
1146 for (p = format_string; *p != 0; ++p) {
1147 switch (*p) {
1148 case '%':
1149 strcpy(q, home);
1150 q += home_len;
1151 break;
1152 case '/':
1153 *q++ = fileSep;
1154 break;
1155 case ':':
1156 *q++ = pathSep;
1157 break;
1158 default:
1159 *q++ = *p;
1160 }
1161 }
1162 *q = '\0';
1163
1164 assert((q - formatted_path) == formatted_path_len, "formatted_path size botched");
1165 return formatted_path;
1166 }
1167
1168 // returns a PATH of all entries in the given directory that do not start with a '.'
1169 static char* expand_entries_to_path(char* directory, char fileSep, char pathSep) {
1170 DIR* dir = os::opendir(directory);
1171 if (dir == NULL) return NULL;
1172
1173 char* path = NULL;
1174 size_t path_len = 0; // path length including \0 terminator
1175
1176 size_t directory_len = strlen(directory);
1177 struct dirent *entry;
1178 char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(directory), mtInternal);
1179 while ((entry = os::readdir(dir, (dirent *) dbuf)) != NULL) {
1180 const char* name = entry->d_name;
1181 if (name[0] == '.') continue;
1182
1183 size_t name_len = strlen(name);
1184 size_t needed = directory_len + name_len + 2;
1185 size_t new_len = path_len + needed;
1186 if (path == NULL) {
1187 path = NEW_C_HEAP_ARRAY(char, new_len, mtInternal);
1188 } else {
1189 path = REALLOC_C_HEAP_ARRAY(char, path, new_len, mtInternal);
1190 }
1191 if (path == NULL)
1192 break;
1193
1194 // append <pathSep>directory<fileSep>name
1195 char* p = path;
1196 if (path_len > 0) {
1197 p += (path_len -1);
1198 *p = pathSep;
1199 p++;
1200 }
1201
1202 strcpy(p, directory);
1203 p += directory_len;
1204
1205 *p = fileSep;
1206 p++;
1207
1208 strcpy(p, name);
1209 p += name_len;
1210
1211 path_len = new_len;
1212 }
1213
1214 FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
1215 os::closedir(dir);
1216
1217 return path;
1218 }
1219
1220 bool os::set_boot_path(char fileSep, char pathSep) {
1221 const char* home = Arguments::get_java_home();
1222 int home_len = (int)strlen(home);
1223
1224 static const char* meta_index_dir_format = "%/lib/";
1225 static const char* meta_index_format = "%/lib/meta-index";
1226 char* meta_index = format_boot_path(meta_index_format, home, home_len, fileSep, pathSep);
1227 if (meta_index == NULL) return false;
1228 char* meta_index_dir = format_boot_path(meta_index_dir_format, home, home_len, fileSep, pathSep);
1229 if (meta_index_dir == NULL) return false;
1230 Arguments::set_meta_index_path(meta_index, meta_index_dir);
1231
1232 char* sysclasspath = NULL;
1233
1234 // images build if rt.jar exists
1235 char* rt_jar = format_boot_path("%/lib/rt.jar", home, home_len, fileSep, pathSep);
1236 if (rt_jar == NULL) return false;
1237 struct stat st;
1238 bool has_rt_jar = (os::stat(rt_jar, &st) == 0);
1239 FREE_C_HEAP_ARRAY(char, rt_jar, mtInternal);
1240
1241 if (has_rt_jar) {
1242 // Any modification to the JAR-file list, for the boot classpath must be
1243 // aligned with install/install/make/common/Pack.gmk. Note: boot class
1244 // path class JARs, are stripped for StackMapTable to reduce download size.
1245 static const char classpath_format[] =
1246 "%/lib/resources.jar:"
1247 "%/lib/rt.jar:"
1248 "%/lib/jsse.jar:"
1249 "%/lib/jce.jar:"
1250 "%/lib/charsets.jar:"
1251 "%/lib/jfr.jar:"
1252 "%/classes";
1253 sysclasspath = format_boot_path(classpath_format, home, home_len, fileSep, pathSep);
1254 } else {
1255 // no rt.jar, check if developer build with exploded modules
1256 char* modules_dir = format_boot_path("%/modules", home, home_len, fileSep, pathSep);
1257 if (os::stat(modules_dir, &st) == 0) {
1258 if ((st.st_mode & S_IFDIR) == S_IFDIR) {
1259 sysclasspath = expand_entries_to_path(modules_dir, fileSep, pathSep);
1260 }
1261 }
1262
1263 // fallback to classes
1264 if (sysclasspath == NULL)
1265 sysclasspath = format_boot_path("%/classes", home, home_len, fileSep, pathSep);
1266 }
1267
1268 if (sysclasspath == NULL) return false;
1269 Arguments::set_sysclasspath(sysclasspath);
1270
1271 return true;
1272 }
1273
1274 /*
1275 * Splits a path, based on its separator, the number of
1276 * elements is returned back in n.
1277 * It is the callers responsibility to:
1278 * a> check the value of n, and n may be 0.
1279 * b> ignore any empty path elements
1280 * c> free up the data.
1281 */
1282 char** os::split_path(const char* path, int* n) {
1283 *n = 0;
1284 if (path == NULL || strlen(path) == 0) {
1285 return NULL;
1286 }
1287 const char psepchar = *os::path_separator();
1288 char* inpath = (char*)NEW_C_HEAP_ARRAY(char, strlen(path) + 1, mtInternal);
1289 if (inpath == NULL) {
1290 return NULL;
1291 }
1292 strcpy(inpath, path);
1293 int count = 1;
1294 char* p = strchr(inpath, psepchar);
1295 // Get a count of elements to allocate memory
1296 while (p != NULL) {
1297 count++;
1298 p++;
1299 p = strchr(p, psepchar);
1300 }
1301 char** opath = (char**) NEW_C_HEAP_ARRAY(char*, count, mtInternal);
1302 if (opath == NULL) {
1303 return NULL;
1304 }
1305
1306 // do the actual splitting
1307 p = inpath;
1308 for (int i = 0 ; i < count ; i++) {
1309 size_t len = strcspn(p, os::path_separator());
1310 if (len > JVM_MAXPATHLEN) {
1311 return NULL;
1312 }
1313 // allocate the string and add terminator storage
1314 char* s = (char*)NEW_C_HEAP_ARRAY(char, len + 1, mtInternal);
1315 if (s == NULL) {
1316 return NULL;
1317 }
1318 strncpy(s, p, len);
1319 s[len] = '\0';
1320 opath[i] = s;
1321 p += len + 1;
1322 }
1323 FREE_C_HEAP_ARRAY(char, inpath, mtInternal);
1324 *n = count;
1325 return opath;
1326 }
1327
1328 void os::set_memory_serialize_page(address page) {
1329 int count = log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
1330 _mem_serialize_page = (volatile int32_t *)page;
1331 // We initialize the serialization page shift count here
1332 // We assume a cache line size of 64 bytes
1333 assert(SerializePageShiftCount == count,
1334 "thread size changed, fix SerializePageShiftCount constant");
1335 set_serialize_page_mask((uintptr_t)(vm_page_size() - sizeof(int32_t)));
1336 }
1337
1338 static volatile intptr_t SerializePageLock = 0;
1339
1340 // This method is called from signal handler when SIGSEGV occurs while the current
1341 // thread tries to store to the "read-only" memory serialize page during state
1342 // transition.
1343 void os::block_on_serialize_page_trap() {
1344 if (TraceSafepoint) {
1345 tty->print_cr("Block until the serialize page permission restored");
1346 }
1347 // When VMThread is holding the SerializePageLock during modifying the
1348 // access permission of the memory serialize page, the following call
1349 // will block until the permission of that page is restored to rw.
1350 // Generally, it is unsafe to manipulate locks in signal handlers, but in
1351 // this case, it's OK as the signal is synchronous and we know precisely when
1352 // it can occur.
1353 Thread::muxAcquire(&SerializePageLock, "set_memory_serialize_page");
1354 Thread::muxRelease(&SerializePageLock);
1355 }
1356
1357 // Serialize all thread state variables
1358 void os::serialize_thread_states() {
1359 // On some platforms such as Solaris & Linux, the time duration of the page
1360 // permission restoration is observed to be much longer than expected due to
1361 // scheduler starvation problem etc. To avoid the long synchronization
1362 // time and expensive page trap spinning, 'SerializePageLock' is used to block
1363 // the mutator thread if such case is encountered. See bug 6546278 for details.
1364 Thread::muxAcquire(&SerializePageLock, "serialize_thread_states");
1365 os::protect_memory((char *)os::get_memory_serialize_page(),
1366 os::vm_page_size(), MEM_PROT_READ);
1367 os::protect_memory((char *)os::get_memory_serialize_page(),
1368 os::vm_page_size(), MEM_PROT_RW);
1369 Thread::muxRelease(&SerializePageLock);
1370 }
1371
1372 // Returns true if the current stack pointer is above the stack shadow
1373 // pages, false otherwise.
1374
1375 bool os::stack_shadow_pages_available(Thread *thread, methodHandle method) {
1376 assert(StackRedPages > 0 && StackYellowPages > 0,"Sanity check");
1377 address sp = current_stack_pointer();
1378 // Check if we have StackShadowPages above the yellow zone. This parameter
1379 // is dependent on the depth of the maximum VM call stack possible from
1380 // the handler for stack overflow. 'instanceof' in the stack overflow
1381 // handler or a println uses at least 8k stack of VM and native code
1382 // respectively.
1383 const int framesize_in_bytes =
1384 Interpreter::size_top_interpreter_activation(method()) * wordSize;
1385 int reserved_area = ((StackShadowPages + StackRedPages + StackYellowPages)
1386 * vm_page_size()) + framesize_in_bytes;
1387 // The very lower end of the stack
1388 address stack_limit = thread->stack_base() - thread->stack_size();
1389 return (sp > (stack_limit + reserved_area));
1390 }
1391
1392 size_t os::page_size_for_region(size_t region_size, size_t min_pages) {
1393 assert(min_pages > 0, "sanity");
1394 if (UseLargePages) {
1395 const size_t max_page_size = region_size / min_pages;
1396
1397 for (size_t i = 0; _page_sizes[i] != 0; ++i) {
1398 const size_t page_size = _page_sizes[i];
1399 if (page_size <= max_page_size && is_size_aligned(region_size, page_size)) {
1400 return page_size;
1401 }
1402 }
1403 }
1404
1405 return vm_page_size();
1406 }
1407
1408 #ifndef PRODUCT
1409 void os::trace_page_sizes(const char* str, const size_t* page_sizes, int count)
1410 {
1411 if (TracePageSizes) {
1412 tty->print("%s: ", str);
1413 for (int i = 0; i < count; ++i) {
1414 tty->print(" " SIZE_FORMAT, page_sizes[i]);
1415 }
1416 tty->cr();
1417 }
1418 }
1419
1420 void os::trace_page_sizes(const char* str, const size_t region_min_size,
1421 const size_t region_max_size, const size_t page_size,
1422 const char* base, const size_t size)
1423 {
1424 if (TracePageSizes) {
1425 tty->print_cr("%s: min=" SIZE_FORMAT " max=" SIZE_FORMAT
1426 " pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT
1427 " size=" SIZE_FORMAT,
1428 str, region_min_size, region_max_size,
1429 page_size, base, size);
1430 }
1431 }
1432 #endif // #ifndef PRODUCT
1433
1434 // This is the working definition of a server class machine:
1435 // >= 2 physical CPU's and >=2GB of memory, with some fuzz
1436 // because the graphics memory (?) sometimes masks physical memory.
1437 // If you want to change the definition of a server class machine
1438 // on some OS or platform, e.g., >=4GB on Windows platforms,
1439 // then you'll have to parameterize this method based on that state,
1440 // as was done for logical processors here, or replicate and
1441 // specialize this method for each platform. (Or fix os to have
1442 // some inheritance structure and use subclassing. Sigh.)
1443 // If you want some platform to always or never behave as a server
1444 // class machine, change the setting of AlwaysActAsServerClassMachine
1445 // and NeverActAsServerClassMachine in globals*.hpp.
1446 bool os::is_server_class_machine() {
1447 // First check for the early returns
1448 if (NeverActAsServerClassMachine) {
1449 return false;
1450 }
1451 if (AlwaysActAsServerClassMachine) {
1452 return true;
1453 }
1454 // Then actually look at the machine
1455 bool result = false;
1456 const unsigned int server_processors = 2;
1457 const julong server_memory = 2UL * G;
1458 // We seem not to get our full complement of memory.
1459 // We allow some part (1/8?) of the memory to be "missing",
1460 // based on the sizes of DIMMs, and maybe graphics cards.
1461 const julong missing_memory = 256UL * M;
1462
1463 /* Is this a server class machine? */
1464 if ((os::active_processor_count() >= (int)server_processors) &&
1465 (os::physical_memory() >= (server_memory - missing_memory))) {
1466 const unsigned int logical_processors =
1467 VM_Version::logical_processors_per_package();
1468 if (logical_processors > 1) {
1469 const unsigned int physical_packages =
1470 os::active_processor_count() / logical_processors;
1471 if (physical_packages > server_processors) {
1472 result = true;
1473 }
1474 } else {
1475 result = true;
1476 }
1477 }
1478 return result;
1479 }
1480
1481 void os::SuspendedThreadTask::run() {
1482 assert(Threads_lock->owned_by_self() || (_thread == VMThread::vm_thread()), "must have threads lock to call this");
1483 internal_do_task();
1484 _done = true;
1485 }
1486
1487 bool os::create_stack_guard_pages(char* addr, size_t bytes) {
1488 return os::pd_create_stack_guard_pages(addr, bytes);
1489 }
1490
1491 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
1492 char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1493 if (result != NULL) {
1494 MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1495 }
1496
1497 return result;
1498 }
1499
1500 char* os::reserve_memory(size_t bytes, char* addr, size_t alignment_hint,
1501 MEMFLAGS flags) {
1502 char* result = pd_reserve_memory(bytes, addr, alignment_hint);
1503 if (result != NULL) {
1504 MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1505 MemTracker::record_virtual_memory_type((address)result, flags);
1506 }
1507
1508 return result;
1509 }
1510
1511 char* os::attempt_reserve_memory_at(size_t bytes, char* addr) {
1512 char* result = pd_attempt_reserve_memory_at(bytes, addr);
1513 if (result != NULL) {
1514 MemTracker::record_virtual_memory_reserve((address)result, bytes, CALLER_PC);
1515 }
1516 return result;
1517 }
1518
1519 void os::split_reserved_memory(char *base, size_t size,
1520 size_t split, bool realloc) {
1521 pd_split_reserved_memory(base, size, split, realloc);
1522 }
1523
1524 bool os::commit_memory(char* addr, size_t bytes, bool executable) {
1525 bool res = pd_commit_memory(addr, bytes, executable);
1526 if (res) {
1527 MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1528 }
1529 return res;
1530 }
1531
1532 bool os::commit_memory(char* addr, size_t size, size_t alignment_hint,
1533 bool executable) {
1534 bool res = os::pd_commit_memory(addr, size, alignment_hint, executable);
1535 if (res) {
1536 MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1537 }
1538 return res;
1539 }
1540
1541 void os::commit_memory_or_exit(char* addr, size_t bytes, bool executable,
1542 const char* mesg) {
1543 pd_commit_memory_or_exit(addr, bytes, executable, mesg);
1544 MemTracker::record_virtual_memory_commit((address)addr, bytes, CALLER_PC);
1545 }
1546
1547 void os::commit_memory_or_exit(char* addr, size_t size, size_t alignment_hint,
1548 bool executable, const char* mesg) {
1549 os::pd_commit_memory_or_exit(addr, size, alignment_hint, executable, mesg);
1550 MemTracker::record_virtual_memory_commit((address)addr, size, CALLER_PC);
1551 }
1552
1553 bool os::uncommit_memory(char* addr, size_t bytes) {
1554 bool res;
1555 if (MemTracker::tracking_level() > NMT_minimal) {
1556 Tracker tkr = MemTracker::get_virtual_memory_uncommit_tracker();
1557 res = pd_uncommit_memory(addr, bytes);
1558 if (res) {
1559 tkr.record((address)addr, bytes);
1560 }
1561 } else {
1562 res = pd_uncommit_memory(addr, bytes);
1563 }
1564 return res;
1565 }
1566
1567 bool os::release_memory(char* addr, size_t bytes) {
1568 bool res;
1569 if (MemTracker::tracking_level() > NMT_minimal) {
1570 Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1571 res = pd_release_memory(addr, bytes);
1572 if (res) {
1573 tkr.record((address)addr, bytes);
1574 }
1575 } else {
1576 res = pd_release_memory(addr, bytes);
1577 }
1578 return res;
1579 }
1580
1581
1582 char* os::map_memory(int fd, const char* file_name, size_t file_offset,
1583 char *addr, size_t bytes, bool read_only,
1584 bool allow_exec) {
1585 char* result = pd_map_memory(fd, file_name, file_offset, addr, bytes, read_only, allow_exec);
1586 if (result != NULL) {
1587 MemTracker::record_virtual_memory_reserve_and_commit((address)result, bytes, CALLER_PC);
1588 }
1589 return result;
1590 }
1591
1592 char* os::remap_memory(int fd, const char* file_name, size_t file_offset,
1593 char *addr, size_t bytes, bool read_only,
1594 bool allow_exec) {
1595 return pd_remap_memory(fd, file_name, file_offset, addr, bytes,
1596 read_only, allow_exec);
1597 }
1598
1599 bool os::unmap_memory(char *addr, size_t bytes) {
1600 bool result;
1601 if (MemTracker::tracking_level() > NMT_minimal) {
1602 Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
1603 result = pd_unmap_memory(addr, bytes);
1604 if (result) {
1605 tkr.record((address)addr, bytes);
1606 }
1607 } else {
1608 result = pd_unmap_memory(addr, bytes);
1609 }
1610 return result;
1611 }
1612
1613 void os::free_memory(char *addr, size_t bytes, size_t alignment_hint) {
1614 pd_free_memory(addr, bytes, alignment_hint);
1615 }
1616
1617 void os::realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
1618 pd_realign_memory(addr, bytes, alignment_hint);
1619 }
1620
1621 #ifndef TARGET_OS_FAMILY_windows
1622 /* try to switch state from state "from" to state "to"
1623 * returns the state set after the method is complete
1624 */
1625 os::SuspendResume::State os::SuspendResume::switch_state(os::SuspendResume::State from,
1626 os::SuspendResume::State to)
1627 {
1628 os::SuspendResume::State result =
1629 (os::SuspendResume::State) Atomic::cmpxchg((jint) to, (jint *) &_state, (jint) from);
1630 if (result == from) {
1631 // success
1632 return to;
1633 }
1634 return result;
1635 }
1636 #endif
1637
1638 /////////////// Unit tests ///////////////
1639
1640 #ifndef PRODUCT
1641
1642 #define assert_eq(a,b) assert(a == b, err_msg(SIZE_FORMAT " != " SIZE_FORMAT, a, b))
1643
1644 class TestOS : AllStatic {
1645 static size_t small_page_size() {
1646 return os::vm_page_size();
1647 }
1648
1649 static size_t large_page_size() {
1650 const size_t large_page_size_example = 4 * M;
1651 return os::page_size_for_region(large_page_size_example, 1);
1652 }
1653
1654 static void test_page_size_for_region() {
1655 if (UseLargePages) {
1656 const size_t small_page = small_page_size();
1657 const size_t large_page = large_page_size();
1658
1659 if (large_page > small_page) {
1660 size_t num_small_pages_in_large = large_page / small_page;
1661 size_t page = os::page_size_for_region(large_page, num_small_pages_in_large);
1662
1663 assert_eq(page, small_page);
1664 }
1665 }
1666 }
1667
1668 static void test_page_size_for_region_alignment() {
1669 if (UseLargePages) {
1670 const size_t small_page = small_page_size();
1671 const size_t large_page = large_page_size();
1672 if (large_page > small_page) {
1673 const size_t unaligned_region = large_page + 17;
1674 size_t page = os::page_size_for_region(unaligned_region, 1);
1675 assert_eq(page, small_page);
1676
1677 const size_t num_pages = 5;
1678 const size_t aligned_region = large_page * num_pages;
1679 page = os::page_size_for_region(aligned_region, num_pages);
1680 assert_eq(page, large_page);
1681 }
1682 }
1683 }
1684
1685 public:
1686 static void run_tests() {
1687 test_page_size_for_region();
1688 test_page_size_for_region_alignment();
1689 }
1690 };
1691
1692 void TestOS_test() {
1693 TestOS::run_tests();
1694 }
1695
1696 #endif // PRODUCT
--- EOF ---