1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package jdk.internal.misc;
  27 
  28 import jdk.internal.HotSpotIntrinsicCandidate;
  29 import jdk.internal.ref.Cleaner;
  30 import jdk.internal.vm.annotation.ForceInline;
  31 import sun.nio.ch.DirectBuffer;
  32 
  33 import java.lang.reflect.Field;
  34 import java.nio.ByteBuffer;
  35 import java.security.ProtectionDomain;
  36 
  37 
  38 /**
  39  * A collection of methods for performing low-level, unsafe operations.
  40  * Although the class and all methods are public, use of this class is
  41  * limited because only trusted code can obtain instances of it.
  42  *
  43  * <em>Note:</em> It is the resposibility of the caller to make sure
  44  * arguments are checked before methods of this class are
  45  * called. While some rudimentary checks are performed on the input,
  46  * the checks are best effort and when performance is an overriding
  47  * priority, as when methods of this class are optimized by the
  48  * runtime compiler, some or all checks (if any) may be elided. Hence,
  49  * the caller must not rely on the checks and corresponding
  50  * exceptions!
  51  *
  52  * @author John R. Rose
  53  * @see #getUnsafe
  54  */
  55 
  56 public final class Unsafe {
  57 
  58     private static native void registerNatives();
  59     static {
  60         registerNatives();
  61     }
  62 
  63     private Unsafe() {}
  64 
  65     private static final Unsafe theUnsafe = new Unsafe();
  66 
  67     /**
  68      * Provides the caller with the capability of performing unsafe
  69      * operations.
  70      *
  71      * <p>The returned {@code Unsafe} object should be carefully guarded
  72      * by the caller, since it can be used to read and write data at arbitrary
  73      * memory addresses.  It must never be passed to untrusted code.
  74      *
  75      * <p>Most methods in this class are very low-level, and correspond to a
  76      * small number of hardware instructions (on typical machines).  Compilers
  77      * are encouraged to optimize these methods accordingly.
  78      *
  79      * <p>Here is a suggested idiom for using unsafe operations:
  80      *
  81      * <pre> {@code
  82      * class MyTrustedClass {
  83      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  84      *   ...
  85      *   private long myCountAddress = ...;
  86      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  87      * }}</pre>
  88      *
  89      * (It may assist compilers to make the local variable {@code final}.)
  90      */
  91     public static Unsafe getUnsafe() {
  92         return theUnsafe;
  93     }
  94 
  95     /// peek and poke operations
  96     /// (compilers should optimize these to memory ops)
  97 
  98     // These work on object fields in the Java heap.
  99     // They will not work on elements of packed arrays.
 100 
 101     /**
 102      * Fetches a value from a given Java variable.
 103      * More specifically, fetches a field or array element within the given
 104      * object {@code o} at the given offset, or (if {@code o} is null)
 105      * from the memory address whose numerical value is the given offset.
 106      * <p>
 107      * The results are undefined unless one of the following cases is true:
 108      * <ul>
 109      * <li>The offset was obtained from {@link #objectFieldOffset} on
 110      * the {@link java.lang.reflect.Field} of some Java field and the object
 111      * referred to by {@code o} is of a class compatible with that
 112      * field's class.
 113      *
 114      * <li>The offset and object reference {@code o} (either null or
 115      * non-null) were both obtained via {@link #staticFieldOffset}
 116      * and {@link #staticFieldBase} (respectively) from the
 117      * reflective {@link Field} representation of some Java field.
 118      *
 119      * <li>The object referred to by {@code o} is an array, and the offset
 120      * is an integer of the form {@code B+N*S}, where {@code N} is
 121      * a valid index into the array, and {@code B} and {@code S} are
 122      * the values obtained by {@link #arrayBaseOffset} and {@link
 123      * #arrayIndexScale} (respectively) from the array's class.  The value
 124      * referred to is the {@code N}<em>th</em> element of the array.
 125      *
 126      * </ul>
 127      * <p>
 128      * If one of the above cases is true, the call references a specific Java
 129      * variable (field or array element).  However, the results are undefined
 130      * if that variable is not in fact of the type returned by this method.
 131      * <p>
 132      * This method refers to a variable by means of two parameters, and so
 133      * it provides (in effect) a <em>double-register</em> addressing mode
 134      * for Java variables.  When the object reference is null, this method
 135      * uses its offset as an absolute address.  This is similar in operation
 136      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 137      * <em>single-register</em> addressing mode for non-Java variables.
 138      * However, because Java variables may have a different layout in memory
 139      * from non-Java variables, programmers should not assume that these
 140      * two addressing modes are ever equivalent.  Also, programmers should
 141      * remember that offsets from the double-register addressing mode cannot
 142      * be portably confused with longs used in the single-register addressing
 143      * mode.
 144      *
 145      * @param o Java heap object in which the variable resides, if any, else
 146      *        null
 147      * @param offset indication of where the variable resides in a Java heap
 148      *        object, if any, else a memory address locating the variable
 149      *        statically
 150      * @return the value fetched from the indicated Java variable
 151      * @throws RuntimeException No defined exceptions are thrown, not even
 152      *         {@link NullPointerException}
 153      */
 154     @HotSpotIntrinsicCandidate
 155     public native int getInt(Object o, long offset);
 156 
 157     /**
 158      * Stores a value into a given Java variable.
 159      * <p>
 160      * The first two parameters are interpreted exactly as with
 161      * {@link #getInt(Object, long)} to refer to a specific
 162      * Java variable (field or array element).  The given value
 163      * is stored into that variable.
 164      * <p>
 165      * The variable must be of the same type as the method
 166      * parameter {@code x}.
 167      *
 168      * @param o Java heap object in which the variable resides, if any, else
 169      *        null
 170      * @param offset indication of where the variable resides in a Java heap
 171      *        object, if any, else a memory address locating the variable
 172      *        statically
 173      * @param x the value to store into the indicated Java variable
 174      * @throws RuntimeException No defined exceptions are thrown, not even
 175      *         {@link NullPointerException}
 176      */
 177     @HotSpotIntrinsicCandidate
 178     public native void putInt(Object o, long offset, int x);
 179 
 180     /**
 181      * Fetches a reference value from a given Java variable.
 182      * @see #getInt(Object, long)
 183      */
 184     @HotSpotIntrinsicCandidate
 185     public native Object getObject(Object o, long offset);
 186 
 187     /**
 188      * Stores a reference value into a given Java variable.
 189      * <p>
 190      * Unless the reference {@code x} being stored is either null
 191      * or matches the field type, the results are undefined.
 192      * If the reference {@code o} is non-null, card marks or
 193      * other store barriers for that object (if the VM requires them)
 194      * are updated.
 195      * @see #putInt(Object, long, int)
 196      */
 197     @HotSpotIntrinsicCandidate
 198     public native void putObject(Object o, long offset, Object x);
 199 
 200     /** @see #getInt(Object, long) */
 201     @HotSpotIntrinsicCandidate
 202     public native boolean getBoolean(Object o, long offset);
 203 
 204     /** @see #putInt(Object, long, int) */
 205     @HotSpotIntrinsicCandidate
 206     public native void    putBoolean(Object o, long offset, boolean x);
 207 
 208     /** @see #getInt(Object, long) */
 209     @HotSpotIntrinsicCandidate
 210     public native byte    getByte(Object o, long offset);
 211 
 212     /** @see #putInt(Object, long, int) */
 213     @HotSpotIntrinsicCandidate
 214     public native void    putByte(Object o, long offset, byte x);
 215 
 216     /** @see #getInt(Object, long) */
 217     @HotSpotIntrinsicCandidate
 218     public native short   getShort(Object o, long offset);
 219 
 220     /** @see #putInt(Object, long, int) */
 221     @HotSpotIntrinsicCandidate
 222     public native void    putShort(Object o, long offset, short x);
 223 
 224     /** @see #getInt(Object, long) */
 225     @HotSpotIntrinsicCandidate
 226     public native char    getChar(Object o, long offset);
 227 
 228     /** @see #putInt(Object, long, int) */
 229     @HotSpotIntrinsicCandidate
 230     public native void    putChar(Object o, long offset, char x);
 231 
 232     /** @see #getInt(Object, long) */
 233     @HotSpotIntrinsicCandidate
 234     public native long    getLong(Object o, long offset);
 235 
 236     /** @see #putInt(Object, long, int) */
 237     @HotSpotIntrinsicCandidate
 238     public native void    putLong(Object o, long offset, long x);
 239 
 240     /** @see #getInt(Object, long) */
 241     @HotSpotIntrinsicCandidate
 242     public native float   getFloat(Object o, long offset);
 243 
 244     /** @see #putInt(Object, long, int) */
 245     @HotSpotIntrinsicCandidate
 246     public native void    putFloat(Object o, long offset, float x);
 247 
 248     /** @see #getInt(Object, long) */
 249     @HotSpotIntrinsicCandidate
 250     public native double  getDouble(Object o, long offset);
 251 
 252     /** @see #putInt(Object, long, int) */
 253     @HotSpotIntrinsicCandidate
 254     public native void    putDouble(Object o, long offset, double x);
 255 
 256     /**
 257      * Fetches a native pointer from a given memory address.  If the address is
 258      * zero, or does not point into a block obtained from {@link
 259      * #allocateMemory}, the results are undefined.
 260      *
 261      * <p>If the native pointer is less than 64 bits wide, it is extended as
 262      * an unsigned number to a Java long.  The pointer may be indexed by any
 263      * given byte offset, simply by adding that offset (as a simple integer) to
 264      * the long representing the pointer.  The number of bytes actually read
 265      * from the target address may be determined by consulting {@link
 266      * #addressSize}.
 267      *
 268      * @see #allocateMemory
 269      * @see #getInt(Object, long)
 270      */
 271     @ForceInline
 272     public long getAddress(Object o, long offset) {
 273         if (ADDRESS_SIZE == 4) {
 274             return Integer.toUnsignedLong(getInt(o, offset));
 275         } else {
 276             return getLong(o, offset);
 277         }
 278     }
 279 
 280     /**
 281      * Stores a native pointer into a given memory address.  If the address is
 282      * zero, or does not point into a block obtained from {@link
 283      * #allocateMemory}, the results are undefined.
 284      *
 285      * <p>The number of bytes actually written at the target address may be
 286      * determined by consulting {@link #addressSize}.
 287      *
 288      * @see #allocateMemory
 289      * @see #putInt(Object, long, int)
 290      */
 291     @ForceInline
 292     public void putAddress(Object o, long offset, long x) {
 293         if (ADDRESS_SIZE == 4) {
 294             putInt(o, offset, (int)x);
 295         } else {
 296             putLong(o, offset, x);
 297         }
 298     }
 299 
 300     // These read VM internal data.
 301 
 302     /**
 303      * Fetches an uncompressed reference value from a given native variable
 304      * ignoring the VM's compressed references mode.
 305      *
 306      * @param address a memory address locating the variable
 307      * @return the value fetched from the indicated native variable
 308      */
 309     public native Object getUncompressedObject(long address);
 310 
 311     // These work on values in the C heap.
 312 
 313     /**
 314      * Fetches a value from a given memory address.  If the address is zero, or
 315      * does not point into a block obtained from {@link #allocateMemory}, the
 316      * results are undefined.
 317      *
 318      * @see #allocateMemory
 319      */
 320     @ForceInline
 321     public byte getByte(long address) {
 322         return getByte(null, address);
 323     }
 324 
 325     /**
 326      * Stores a value into a given memory address.  If the address is zero, or
 327      * does not point into a block obtained from {@link #allocateMemory}, the
 328      * results are undefined.
 329      *
 330      * @see #getByte(long)
 331      */
 332     @ForceInline
 333     public void putByte(long address, byte x) {
 334         putByte(null, address, x);
 335     }
 336 
 337     /** @see #getByte(long) */
 338     @ForceInline
 339     public short getShort(long address) {
 340         return getShort(null, address);
 341     }
 342 
 343     /** @see #putByte(long, byte) */
 344     @ForceInline
 345     public void putShort(long address, short x) {
 346         putShort(null, address, x);
 347     }
 348 
 349     /** @see #getByte(long) */
 350     @ForceInline
 351     public char getChar(long address) {
 352         return getChar(null, address);
 353     }
 354 
 355     /** @see #putByte(long, byte) */
 356     @ForceInline
 357     public void putChar(long address, char x) {
 358         putChar(null, address, x);
 359     }
 360 
 361     /** @see #getByte(long) */
 362     @ForceInline
 363     public int getInt(long address) {
 364         return getInt(null, address);
 365     }
 366 
 367     /** @see #putByte(long, byte) */
 368     @ForceInline
 369     public void putInt(long address, int x) {
 370         putInt(null, address, x);
 371     }
 372 
 373     /** @see #getByte(long) */
 374     @ForceInline
 375     public long getLong(long address) {
 376         return getLong(null, address);
 377     }
 378 
 379     /** @see #putByte(long, byte) */
 380     @ForceInline
 381     public void putLong(long address, long x) {
 382         putLong(null, address, x);
 383     }
 384 
 385     /** @see #getByte(long) */
 386     @ForceInline
 387     public float getFloat(long address) {
 388         return getFloat(null, address);
 389     }
 390 
 391     /** @see #putByte(long, byte) */
 392     @ForceInline
 393     public void putFloat(long address, float x) {
 394         putFloat(null, address, x);
 395     }
 396 
 397     /** @see #getByte(long) */
 398     @ForceInline
 399     public double getDouble(long address) {
 400         return getDouble(null, address);
 401     }
 402 
 403     /** @see #putByte(long, byte) */
 404     @ForceInline
 405     public void putDouble(long address, double x) {
 406         putDouble(null, address, x);
 407     }
 408 
 409     /** @see #getAddress(Object, long) */
 410     @ForceInline
 411     public long getAddress(long address) {
 412         return getAddress(null, address);
 413     }
 414 
 415     /** @see #putAddress(Object, long, long) */
 416     @ForceInline
 417     public void putAddress(long address, long x) {
 418         putAddress(null, address, x);
 419     }
 420 
 421 
 422 
 423     /// helper methods for validating various types of objects/values
 424 
 425     /**
 426      * Create an exception reflecting that some of the input was invalid
 427      *
 428      * <em>Note:</em> It is the resposibility of the caller to make
 429      * sure arguments are checked before the methods are called. While
 430      * some rudimentary checks are performed on the input, the checks
 431      * are best effort and when performance is an overriding priority,
 432      * as when methods of this class are optimized by the runtime
 433      * compiler, some or all checks (if any) may be elided. Hence, the
 434      * caller must not rely on the checks and corresponding
 435      * exceptions!
 436      *
 437      * @return an exception object
 438      */
 439     private RuntimeException invalidInput() {
 440         return new IllegalArgumentException();
 441     }
 442 
 443     /**
 444      * Check if a value is 32-bit clean (32 MSB are all zero)
 445      *
 446      * @param value the 64-bit value to check
 447      *
 448      * @return true if the value is 32-bit clean
 449      */
 450     private boolean is32BitClean(long value) {
 451         return value >>> 32 == 0;
 452     }
 453 
 454     /**
 455      * Check the validity of a size (the equivalent of a size_t)
 456      *
 457      * @throws RuntimeException if the size is invalid
 458      *         (<em>Note:</em> after optimization, invalid inputs may
 459      *         go undetected, which will lead to unpredictable
 460      *         behavior)
 461      */
 462     private void checkSize(long size) {
 463         if (ADDRESS_SIZE == 4) {
 464             // Note: this will also check for negative sizes
 465             if (!is32BitClean(size)) {
 466                 throw invalidInput();
 467             }
 468         } else if (size < 0) {
 469             throw invalidInput();
 470         }
 471     }
 472 
 473     /**
 474      * Check the validity of a native address (the equivalent of void*)
 475      *
 476      * @throws RuntimeException if the address is invalid
 477      *         (<em>Note:</em> after optimization, invalid inputs may
 478      *         go undetected, which will lead to unpredictable
 479      *         behavior)
 480      */
 481     private void checkNativeAddress(long address) {
 482         if (ADDRESS_SIZE == 4) {
 483             // Accept both zero and sign extended pointers. A valid
 484             // pointer will, after the +1 below, either have produced
 485             // the value 0x0 or 0x1. Masking off the low bit allows
 486             // for testing against 0.
 487             if ((((address >> 32) + 1) & ~1) != 0) {
 488                 throw invalidInput();
 489             }
 490         }
 491     }
 492 
 493     /**
 494      * Check the validity of an offset, relative to a base object
 495      *
 496      * @param o the base object
 497      * @param offset the offset to check
 498      *
 499      * @throws RuntimeException if the size is invalid
 500      *         (<em>Note:</em> after optimization, invalid inputs may
 501      *         go undetected, which will lead to unpredictable
 502      *         behavior)
 503      */
 504     private void checkOffset(Object o, long offset) {
 505         if (ADDRESS_SIZE == 4) {
 506             // Note: this will also check for negative offsets
 507             if (!is32BitClean(offset)) {
 508                 throw invalidInput();
 509             }
 510         } else if (offset < 0) {
 511             throw invalidInput();
 512         }
 513     }
 514 
 515     /**
 516      * Check the validity of a double-register pointer
 517      *
 518      * Note: This code deliberately does *not* check for NPE for (at
 519      * least) three reasons:
 520      *
 521      * 1) NPE is not just NULL/0 - there is a range of values all
 522      * resulting in an NPE, which is not trivial to check for
 523      *
 524      * 2) It is the responsibility of the callers of Unsafe methods
 525      * to verify the input, so throwing an exception here is not really
 526      * useful - passing in a NULL pointer is a critical error and the
 527      * must not expect an exception to be thrown anyway.
 528      *
 529      * 3) the actual operations will detect NULL pointers anyway by
 530      * means of traps and signals (like SIGSEGV).
 531      *
 532      * @param o Java heap object, or null
 533      * @param offset indication of where the variable resides in a Java heap
 534      *        object, if any, else a memory address locating the variable
 535      *        statically
 536      *
 537      * @throws RuntimeException if the pointer is invalid
 538      *         (<em>Note:</em> after optimization, invalid inputs may
 539      *         go undetected, which will lead to unpredictable
 540      *         behavior)
 541      */
 542     private void checkPointer(Object o, long offset) {
 543         if (o == null) {
 544             checkNativeAddress(offset);
 545         } else {
 546             checkOffset(o, offset);
 547         }
 548     }
 549 
 550     /**
 551      * Check if a type is a primitive array type
 552      *
 553      * @param c the type to check
 554      *
 555      * @return true if the type is a primitive array type
 556      */
 557     private void checkPrimitiveArray(Class<?> c) {
 558         Class<?> componentType = c.getComponentType();
 559         if (componentType == null || !componentType.isPrimitive()) {
 560             throw invalidInput();
 561         }
 562     }
 563 
 564     /**
 565      * Check that a pointer is a valid primitive array type pointer
 566      *
 567      * Note: pointers off-heap are considered to be primitive arrays
 568      *
 569      * @throws RuntimeException if the pointer is invalid
 570      *         (<em>Note:</em> after optimization, invalid inputs may
 571      *         go undetected, which will lead to unpredictable
 572      *         behavior)
 573      */
 574     private void checkPrimitivePointer(Object o, long offset) {
 575         checkPointer(o, offset);
 576 
 577         if (o != null) {
 578             // If on heap, it it must be a primitive array
 579             checkPrimitiveArray(o.getClass());
 580         }
 581     }
 582 
 583 
 584     /// wrappers for malloc, realloc, free:
 585 
 586     /**
 587      * Allocates a new block of native memory, of the given size in bytes.  The
 588      * contents of the memory are uninitialized; they will generally be
 589      * garbage.  The resulting native pointer will never be zero, and will be
 590      * aligned for all value types.  Dispose of this memory by calling {@link
 591      * #freeMemory}, or resize it with {@link #reallocateMemory}.
 592      *
 593      * <em>Note:</em> It is the resposibility of the caller to make
 594      * sure arguments are checked before the methods are called. While
 595      * some rudimentary checks are performed on the input, the checks
 596      * are best effort and when performance is an overriding priority,
 597      * as when methods of this class are optimized by the runtime
 598      * compiler, some or all checks (if any) may be elided. Hence, the
 599      * caller must not rely on the checks and corresponding
 600      * exceptions!
 601      *
 602      * @throws RuntimeException if the size is negative or too large
 603      *         for the native size_t type
 604      *
 605      * @throws OutOfMemoryError if the allocation is refused by the system
 606      *
 607      * @see #getByte(long)
 608      * @see #putByte(long, byte)
 609      */
 610     public long allocateMemory(long bytes) {
 611         allocateMemoryChecks(bytes);
 612 
 613         if (bytes == 0) {
 614             return 0;
 615         }
 616 
 617         long p = allocateMemory0(bytes);
 618         if (p == 0) {
 619             throw new OutOfMemoryError();
 620         }
 621 
 622         return p;
 623     }
 624 
 625     /**
 626      * Validate the arguments to allocateMemory
 627      *
 628      * @throws RuntimeException if the arguments are invalid
 629      *         (<em>Note:</em> after optimization, invalid inputs may
 630      *         go undetected, which will lead to unpredictable
 631      *         behavior)
 632      */
 633     private void allocateMemoryChecks(long bytes) {
 634         checkSize(bytes);
 635     }
 636 
 637     /**
 638      * Resizes a new block of native memory, to the given size in bytes.  The
 639      * contents of the new block past the size of the old block are
 640      * uninitialized; they will generally be garbage.  The resulting native
 641      * pointer will be zero if and only if the requested size is zero.  The
 642      * resulting native pointer will be aligned for all value types.  Dispose
 643      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 644      * #reallocateMemory}.  The address passed to this method may be null, in
 645      * which case an allocation will be performed.
 646      *
 647      * <em>Note:</em> It is the resposibility of the caller to make
 648      * sure arguments are checked before the methods are called. While
 649      * some rudimentary checks are performed on the input, the checks
 650      * are best effort and when performance is an overriding priority,
 651      * as when methods of this class are optimized by the runtime
 652      * compiler, some or all checks (if any) may be elided. Hence, the
 653      * caller must not rely on the checks and corresponding
 654      * exceptions!
 655      *
 656      * @throws RuntimeException if the size is negative or too large
 657      *         for the native size_t type
 658      *
 659      * @throws OutOfMemoryError if the allocation is refused by the system
 660      *
 661      * @see #allocateMemory
 662      */
 663     public long reallocateMemory(long address, long bytes) {
 664         reallocateMemoryChecks(address, bytes);
 665 
 666         if (bytes == 0) {
 667             freeMemory(address);
 668             return 0;
 669         }
 670 
 671         long p = (address == 0) ? allocateMemory0(bytes) : reallocateMemory0(address, bytes);
 672         if (p == 0) {
 673             throw new OutOfMemoryError();
 674         }
 675 
 676         return p;
 677     }
 678 
 679     /**
 680      * Validate the arguments to reallocateMemory
 681      *
 682      * @throws RuntimeException if the arguments are invalid
 683      *         (<em>Note:</em> after optimization, invalid inputs may
 684      *         go undetected, which will lead to unpredictable
 685      *         behavior)
 686      */
 687     private void reallocateMemoryChecks(long address, long bytes) {
 688         checkPointer(null, address);
 689         checkSize(bytes);
 690     }
 691 
 692     /**
 693      * Sets all bytes in a given block of memory to a fixed value
 694      * (usually zero).
 695      *
 696      * <p>This method determines a block's base address by means of two parameters,
 697      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 698      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 699      * the offset supplies an absolute base address.
 700      *
 701      * <p>The stores are in coherent (atomic) units of a size determined
 702      * by the address and length parameters.  If the effective address and
 703      * length are all even modulo 8, the stores take place in 'long' units.
 704      * If the effective address and length are (resp.) even modulo 4 or 2,
 705      * the stores take place in units of 'int' or 'short'.
 706      *
 707      * <em>Note:</em> It is the resposibility of the caller to make
 708      * sure arguments are checked before the methods are called. While
 709      * some rudimentary checks are performed on the input, the checks
 710      * are best effort and when performance is an overriding priority,
 711      * as when methods of this class are optimized by the runtime
 712      * compiler, some or all checks (if any) may be elided. Hence, the
 713      * caller must not rely on the checks and corresponding
 714      * exceptions!
 715      *
 716      * @throws RuntimeException if any of the arguments is invalid
 717      *
 718      * @since 1.7
 719      */
 720     public void setMemory(Object o, long offset, long bytes, byte value) {
 721         setMemoryChecks(o, offset, bytes, value);
 722 
 723         if (bytes == 0) {
 724             return;
 725         }
 726 
 727         setMemory0(o, offset, bytes, value);
 728     }
 729 
 730     /**
 731      * Sets all bytes in a given block of memory to a fixed value
 732      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 733      * as discussed in {@link #getInt(Object,long)}.
 734      *
 735      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 736      */
 737     public void setMemory(long address, long bytes, byte value) {
 738         setMemory(null, address, bytes, value);
 739     }
 740 
 741     /**
 742      * Validate the arguments to setMemory
 743      *
 744      * @throws RuntimeException if the arguments are invalid
 745      *         (<em>Note:</em> after optimization, invalid inputs may
 746      *         go undetected, which will lead to unpredictable
 747      *         behavior)
 748      */
 749     private void setMemoryChecks(Object o, long offset, long bytes, byte value) {
 750         checkPrimitivePointer(o, offset);
 751         checkSize(bytes);
 752     }
 753 
 754     /**
 755      * Sets all bytes in a given block of memory to a copy of another
 756      * block.
 757      *
 758      * <p>This method determines each block's base address by means of two parameters,
 759      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 760      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 761      * the offset supplies an absolute base address.
 762      *
 763      * <p>The transfers are in coherent (atomic) units of a size determined
 764      * by the address and length parameters.  If the effective addresses and
 765      * length are all even modulo 8, the transfer takes place in 'long' units.
 766      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 767      * the transfer takes place in units of 'int' or 'short'.
 768      *
 769      * <em>Note:</em> It is the resposibility of the caller to make
 770      * sure arguments are checked before the methods are called. While
 771      * some rudimentary checks are performed on the input, the checks
 772      * are best effort and when performance is an overriding priority,
 773      * as when methods of this class are optimized by the runtime
 774      * compiler, some or all checks (if any) may be elided. Hence, the
 775      * caller must not rely on the checks and corresponding
 776      * exceptions!
 777      *
 778      * @throws RuntimeException if any of the arguments is invalid
 779      *
 780      * @since 1.7
 781      */
 782     public void copyMemory(Object srcBase, long srcOffset,
 783                            Object destBase, long destOffset,
 784                            long bytes) {
 785         copyMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes);
 786 
 787         if (bytes == 0) {
 788             return;
 789         }
 790 
 791         copyMemory0(srcBase, srcOffset, destBase, destOffset, bytes);
 792     }
 793 
 794     /**
 795      * Sets all bytes in a given block of memory to a copy of another
 796      * block.  This provides a <em>single-register</em> addressing mode,
 797      * as discussed in {@link #getInt(Object,long)}.
 798      *
 799      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 800      */
 801     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 802         copyMemory(null, srcAddress, null, destAddress, bytes);
 803     }
 804 
 805     /**
 806      * Validate the arguments to copyMemory
 807      *
 808      * @throws RuntimeException if any of the arguments is invalid
 809      *         (<em>Note:</em> after optimization, invalid inputs may
 810      *         go undetected, which will lead to unpredictable
 811      *         behavior)
 812      */
 813     private void copyMemoryChecks(Object srcBase, long srcOffset,
 814                                   Object destBase, long destOffset,
 815                                   long bytes) {
 816         checkSize(bytes);
 817         checkPrimitivePointer(srcBase, srcOffset);
 818         checkPrimitivePointer(destBase, destOffset);
 819     }
 820 
 821     /**
 822      * Copies all elements from one block of memory to another block,
 823      * *unconditionally* byte swapping the elements on the fly.
 824      *
 825      * <p>This method determines each block's base address by means of two parameters,
 826      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 827      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 828      * the offset supplies an absolute base address.
 829      *
 830      * <em>Note:</em> It is the resposibility of the caller to make
 831      * sure arguments are checked before the methods are called. While
 832      * some rudimentary checks are performed on the input, the checks
 833      * are best effort and when performance is an overriding priority,
 834      * as when methods of this class are optimized by the runtime
 835      * compiler, some or all checks (if any) may be elided. Hence, the
 836      * caller must not rely on the checks and corresponding
 837      * exceptions!
 838      *
 839      * @throws RuntimeException if any of the arguments is invalid
 840      *
 841      * @since 9
 842      */
 843     public void copySwapMemory(Object srcBase, long srcOffset,
 844                                Object destBase, long destOffset,
 845                                long bytes, long elemSize) {
 846         copySwapMemoryChecks(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 847 
 848         if (bytes == 0) {
 849             return;
 850         }
 851 
 852         copySwapMemory0(srcBase, srcOffset, destBase, destOffset, bytes, elemSize);
 853     }
 854 
 855     private void copySwapMemoryChecks(Object srcBase, long srcOffset,
 856                                       Object destBase, long destOffset,
 857                                       long bytes, long elemSize) {
 858         checkSize(bytes);
 859 
 860         if (elemSize != 2 && elemSize != 4 && elemSize != 8) {
 861             throw invalidInput();
 862         }
 863         if (bytes % elemSize != 0) {
 864             throw invalidInput();
 865         }
 866 
 867         checkPrimitivePointer(srcBase, srcOffset);
 868         checkPrimitivePointer(destBase, destOffset);
 869     }
 870 
 871    /**
 872      * Copies all elements from one block of memory to another block, byte swapping the
 873      * elements on the fly.
 874      *
 875      * This provides a <em>single-register</em> addressing mode, as
 876      * discussed in {@link #getInt(Object,long)}.
 877      *
 878      * Equivalent to {@code copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize)}.
 879      */
 880     public void copySwapMemory(long srcAddress, long destAddress, long bytes, long elemSize) {
 881         copySwapMemory(null, srcAddress, null, destAddress, bytes, elemSize);
 882     }
 883 
 884     /**
 885      * Disposes of a block of native memory, as obtained from {@link
 886      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
 887      * this method may be null, in which case no action is taken.
 888      *
 889      * <em>Note:</em> It is the resposibility of the caller to make
 890      * sure arguments are checked before the methods are called. While
 891      * some rudimentary checks are performed on the input, the checks
 892      * are best effort and when performance is an overriding priority,
 893      * as when methods of this class are optimized by the runtime
 894      * compiler, some or all checks (if any) may be elided. Hence, the
 895      * caller must not rely on the checks and corresponding
 896      * exceptions!
 897      *
 898      * @throws RuntimeException if any of the arguments is invalid
 899      *
 900      * @see #allocateMemory
 901      */
 902     public void freeMemory(long address) {
 903         freeMemoryChecks(address);
 904 
 905         if (address == 0) {
 906             return;
 907         }
 908 
 909         freeMemory0(address);
 910     }
 911 
 912     /**
 913      * Validate the arguments to freeMemory
 914      *
 915      * @throws RuntimeException if the arguments are invalid
 916      *         (<em>Note:</em> after optimization, invalid inputs may
 917      *         go undetected, which will lead to unpredictable
 918      *         behavior)
 919      */
 920     private void freeMemoryChecks(long address) {
 921         checkPointer(null, address);
 922     }
 923 
 924     /// random queries
 925 
 926     /**
 927      * This constant differs from all results that will ever be returned from
 928      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
 929      * or {@link #arrayBaseOffset}.
 930      */
 931     public static final int INVALID_FIELD_OFFSET = -1;
 932 
 933     /**
 934      * Reports the location of a given field in the storage allocation of its
 935      * class.  Do not expect to perform any sort of arithmetic on this offset;
 936      * it is just a cookie which is passed to the unsafe heap memory accessors.
 937      *
 938      * <p>Any given field will always have the same offset and base, and no
 939      * two distinct fields of the same class will ever have the same offset
 940      * and base.
 941      *
 942      * <p>As of 1.4.1, offsets for fields are represented as long values,
 943      * although the Sun JVM does not use the most significant 32 bits.
 944      * However, JVM implementations which store static fields at absolute
 945      * addresses can use long offsets and null base pointers to express
 946      * the field locations in a form usable by {@link #getInt(Object,long)}.
 947      * Therefore, code which will be ported to such JVMs on 64-bit platforms
 948      * must preserve all bits of static field offsets.
 949      * @see #getInt(Object, long)
 950      */
 951     public long objectFieldOffset(Field f) {
 952         if (f == null) {
 953             throw new NullPointerException();
 954         }
 955 
 956         return objectFieldOffset0(f);
 957     }
 958 
 959     /**
 960      * Reports the location of a given static field, in conjunction with {@link
 961      * #staticFieldBase}.
 962      * <p>Do not expect to perform any sort of arithmetic on this offset;
 963      * it is just a cookie which is passed to the unsafe heap memory accessors.
 964      *
 965      * <p>Any given field will always have the same offset, and no two distinct
 966      * fields of the same class will ever have the same offset.
 967      *
 968      * <p>As of 1.4.1, offsets for fields are represented as long values,
 969      * although the Sun JVM does not use the most significant 32 bits.
 970      * It is hard to imagine a JVM technology which needs more than
 971      * a few bits to encode an offset within a non-array object,
 972      * However, for consistency with other methods in this class,
 973      * this method reports its result as a long value.
 974      * @see #getInt(Object, long)
 975      */
 976     public long staticFieldOffset(Field f) {
 977         if (f == null) {
 978             throw new NullPointerException();
 979         }
 980 
 981         return staticFieldOffset0(f);
 982     }
 983 
 984     /**
 985      * Reports the location of a given static field, in conjunction with {@link
 986      * #staticFieldOffset}.
 987      * <p>Fetch the base "Object", if any, with which static fields of the
 988      * given class can be accessed via methods like {@link #getInt(Object,
 989      * long)}.  This value may be null.  This value may refer to an object
 990      * which is a "cookie", not guaranteed to be a real Object, and it should
 991      * not be used in any way except as argument to the get and put routines in
 992      * this class.
 993      */
 994     public Object staticFieldBase(Field f) {
 995         if (f == null) {
 996             throw new NullPointerException();
 997         }
 998 
 999         return staticFieldBase0(f);
1000     }
1001 
1002     /**
1003      * Detects if the given class may need to be initialized. This is often
1004      * needed in conjunction with obtaining the static field base of a
1005      * class.
1006      * @return false only if a call to {@code ensureClassInitialized} would have no effect
1007      */
1008     public boolean shouldBeInitialized(Class<?> c) {
1009         if (c == null) {
1010             throw new NullPointerException();
1011         }
1012 
1013         return shouldBeInitialized0(c);
1014     }
1015 
1016     /**
1017      * Ensures the given class has been initialized. This is often
1018      * needed in conjunction with obtaining the static field base of a
1019      * class.
1020      */
1021     public void ensureClassInitialized(Class<?> c) {
1022         if (c == null) {
1023             throw new NullPointerException();
1024         }
1025 
1026         ensureClassInitialized0(c);
1027     }
1028 
1029     /**
1030      * Reports the offset of the first element in the storage allocation of a
1031      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
1032      * for the same class, you may use that scale factor, together with this
1033      * base offset, to form new offsets to access elements of arrays of the
1034      * given class.
1035      *
1036      * @see #getInt(Object, long)
1037      * @see #putInt(Object, long, int)
1038      */
1039     public int arrayBaseOffset(Class<?> arrayClass) {
1040         if (arrayClass == null) {
1041             throw new NullPointerException();
1042         }
1043 
1044         return arrayBaseOffset0(arrayClass);
1045     }
1046 
1047 
1048     /** The value of {@code arrayBaseOffset(boolean[].class)} */
1049     public static final int ARRAY_BOOLEAN_BASE_OFFSET
1050             = theUnsafe.arrayBaseOffset(boolean[].class);
1051 
1052     /** The value of {@code arrayBaseOffset(byte[].class)} */
1053     public static final int ARRAY_BYTE_BASE_OFFSET
1054             = theUnsafe.arrayBaseOffset(byte[].class);
1055 
1056     /** The value of {@code arrayBaseOffset(short[].class)} */
1057     public static final int ARRAY_SHORT_BASE_OFFSET
1058             = theUnsafe.arrayBaseOffset(short[].class);
1059 
1060     /** The value of {@code arrayBaseOffset(char[].class)} */
1061     public static final int ARRAY_CHAR_BASE_OFFSET
1062             = theUnsafe.arrayBaseOffset(char[].class);
1063 
1064     /** The value of {@code arrayBaseOffset(int[].class)} */
1065     public static final int ARRAY_INT_BASE_OFFSET
1066             = theUnsafe.arrayBaseOffset(int[].class);
1067 
1068     /** The value of {@code arrayBaseOffset(long[].class)} */
1069     public static final int ARRAY_LONG_BASE_OFFSET
1070             = theUnsafe.arrayBaseOffset(long[].class);
1071 
1072     /** The value of {@code arrayBaseOffset(float[].class)} */
1073     public static final int ARRAY_FLOAT_BASE_OFFSET
1074             = theUnsafe.arrayBaseOffset(float[].class);
1075 
1076     /** The value of {@code arrayBaseOffset(double[].class)} */
1077     public static final int ARRAY_DOUBLE_BASE_OFFSET
1078             = theUnsafe.arrayBaseOffset(double[].class);
1079 
1080     /** The value of {@code arrayBaseOffset(Object[].class)} */
1081     public static final int ARRAY_OBJECT_BASE_OFFSET
1082             = theUnsafe.arrayBaseOffset(Object[].class);
1083 
1084     /**
1085      * Reports the scale factor for addressing elements in the storage
1086      * allocation of a given array class.  However, arrays of "narrow" types
1087      * will generally not work properly with accessors like {@link
1088      * #getByte(Object, long)}, so the scale factor for such classes is reported
1089      * as zero.
1090      *
1091      * @see #arrayBaseOffset
1092      * @see #getInt(Object, long)
1093      * @see #putInt(Object, long, int)
1094      */
1095     public int arrayIndexScale(Class<?> arrayClass) {
1096         if (arrayClass == null) {
1097             throw new NullPointerException();
1098         }
1099 
1100         return arrayIndexScale0(arrayClass);
1101     }
1102 
1103 
1104     /** The value of {@code arrayIndexScale(boolean[].class)} */
1105     public static final int ARRAY_BOOLEAN_INDEX_SCALE
1106             = theUnsafe.arrayIndexScale(boolean[].class);
1107 
1108     /** The value of {@code arrayIndexScale(byte[].class)} */
1109     public static final int ARRAY_BYTE_INDEX_SCALE
1110             = theUnsafe.arrayIndexScale(byte[].class);
1111 
1112     /** The value of {@code arrayIndexScale(short[].class)} */
1113     public static final int ARRAY_SHORT_INDEX_SCALE
1114             = theUnsafe.arrayIndexScale(short[].class);
1115 
1116     /** The value of {@code arrayIndexScale(char[].class)} */
1117     public static final int ARRAY_CHAR_INDEX_SCALE
1118             = theUnsafe.arrayIndexScale(char[].class);
1119 
1120     /** The value of {@code arrayIndexScale(int[].class)} */
1121     public static final int ARRAY_INT_INDEX_SCALE
1122             = theUnsafe.arrayIndexScale(int[].class);
1123 
1124     /** The value of {@code arrayIndexScale(long[].class)} */
1125     public static final int ARRAY_LONG_INDEX_SCALE
1126             = theUnsafe.arrayIndexScale(long[].class);
1127 
1128     /** The value of {@code arrayIndexScale(float[].class)} */
1129     public static final int ARRAY_FLOAT_INDEX_SCALE
1130             = theUnsafe.arrayIndexScale(float[].class);
1131 
1132     /** The value of {@code arrayIndexScale(double[].class)} */
1133     public static final int ARRAY_DOUBLE_INDEX_SCALE
1134             = theUnsafe.arrayIndexScale(double[].class);
1135 
1136     /** The value of {@code arrayIndexScale(Object[].class)} */
1137     public static final int ARRAY_OBJECT_INDEX_SCALE
1138             = theUnsafe.arrayIndexScale(Object[].class);
1139 
1140     /**
1141      * Reports the size in bytes of a native pointer, as stored via {@link
1142      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
1143      * other primitive types (as stored in native memory blocks) is determined
1144      * fully by their information content.
1145      */
1146     public int addressSize() {
1147         return ADDRESS_SIZE;
1148     }
1149 
1150     /** The value of {@code addressSize()} */
1151     public static final int ADDRESS_SIZE = theUnsafe.addressSize0();
1152 
1153     /**
1154      * Reports the size in bytes of a native memory page (whatever that is).
1155      * This value will always be a power of two.
1156      */
1157     public native int pageSize();
1158 
1159 
1160     /// random trusted operations from JNI:
1161 
1162     /**
1163      * Tells the VM to define a class, without security checks.  By default, the
1164      * class loader and protection domain come from the caller's class.
1165      */
1166     public Class<?> defineClass(String name, byte[] b, int off, int len,
1167                                 ClassLoader loader,
1168                                 ProtectionDomain protectionDomain) {
1169         if (b == null) {
1170             throw new NullPointerException();
1171         }
1172         if (len < 0) {
1173             throw new ArrayIndexOutOfBoundsException();
1174         }
1175 
1176         return defineClass0(name, b, off, len, loader, protectionDomain);
1177     }
1178 
1179     public native Class<?> defineClass0(String name, byte[] b, int off, int len,
1180                                         ClassLoader loader,
1181                                         ProtectionDomain protectionDomain);
1182 
1183     /**
1184      * Defines a class but does not make it known to the class loader or system dictionary.
1185      * <p>
1186      * For each CP entry, the corresponding CP patch must either be null or have
1187      * the a format that matches its tag:
1188      * <ul>
1189      * <li>Integer, Long, Float, Double: the corresponding wrapper object type from java.lang
1190      * <li>Utf8: a string (must have suitable syntax if used as signature or name)
1191      * <li>Class: any java.lang.Class object
1192      * <li>String: any object (not just a java.lang.String)
1193      * <li>InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments
1194      * </ul>
1195      * @param hostClass context for linkage, access control, protection domain, and class loader
1196      * @param data      bytes of a class file
1197      * @param cpPatches where non-null entries exist, they replace corresponding CP entries in data
1198      */
1199     public Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches) {
1200         if (hostClass == null || data == null) {
1201             throw new NullPointerException();
1202         }
1203         if (hostClass.isArray() || hostClass.isPrimitive()) {
1204             throw new IllegalArgumentException();
1205         }
1206 
1207         return defineAnonymousClass0(hostClass, data, cpPatches);
1208     }
1209 
1210     /**
1211      * Allocates an instance but does not run any constructor.
1212      * Initializes the class if it has not yet been.
1213      */
1214     @HotSpotIntrinsicCandidate
1215     public native Object allocateInstance(Class<?> cls)
1216         throws InstantiationException;
1217 
1218     /**
1219      * Allocates an array of a given type, but does not do zeroing.
1220      * <p>
1221      * This method should only be used in the very rare cases where a high-performance code
1222      * overwrites the destination array completely, and compilers cannot assist in zeroing elimination.
1223      * In an overwhelming majority of cases, a normal Java allocation should be used instead.
1224      * <p>
1225      * Users of this method are <b>required</b> to overwrite the initial (garbage) array contents
1226      * before allowing untrusted code, or code in other threads, to observe the reference
1227      * to the newly allocated array. In addition, the publication of the array reference must be
1228      * safe according to the Java Memory Model requirements.
1229      * <p>
1230      * The safest approach to deal with an uninitialized array is to keep the reference to it in local
1231      * variable at least until the initialization is complete, and then publish it <b>once</b>, either
1232      * by writing it to a <em>volatile</em> field, or storing it into a <em>final</em> field in constructor,
1233      * or issuing a {@link #storeFence} before publishing the reference.
1234      * <p>
1235      * @implnote This method can only allocate primitive arrays, to avoid garbage reference
1236      * elements that could break heap integrity.
1237      *
1238      * @param componentType array component type to allocate
1239      * @param length array size to allocate
1240      * @throws IllegalArgumentException if component type is null, or not a primitive class;
1241      *                                  or the length is negative
1242      */
1243     public Object allocateUninitializedArray(Class<?> componentType, int length) {
1244        if (componentType == null) {
1245            throw new IllegalArgumentException("Component type is null");
1246        }
1247        if (!componentType.isPrimitive()) {
1248            throw new IllegalArgumentException("Component type is not primitive");
1249        }
1250        if (length < 0) {
1251            throw new IllegalArgumentException("Negative length");
1252        }
1253        return allocateUninitializedArray0(componentType, length);
1254     }
1255 
1256     @HotSpotIntrinsicCandidate
1257     private Object allocateUninitializedArray0(Class<?> componentType, int length) {
1258        // These fallbacks provide zeroed arrays, but intrinsic is not required to
1259        // return the zeroed arrays.
1260        if (componentType == byte.class)    return new byte[length];
1261        if (componentType == boolean.class) return new boolean[length];
1262        if (componentType == short.class)   return new short[length];
1263        if (componentType == char.class)    return new char[length];
1264        if (componentType == int.class)     return new int[length];
1265        if (componentType == float.class)   return new float[length];
1266        if (componentType == long.class)    return new long[length];
1267        if (componentType == double.class)  return new double[length];
1268        return null;
1269     }
1270 
1271     /** Throws the exception without telling the verifier. */
1272     public native void throwException(Throwable ee);
1273 
1274     /**
1275      * Atomically updates Java variable to {@code x} if it is currently
1276      * holding {@code expected}.
1277      *
1278      * <p>This operation has memory semantics of a {@code volatile} read
1279      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1280      *
1281      * @return {@code true} if successful
1282      */
1283     @HotSpotIntrinsicCandidate
1284     public final native boolean compareAndSwapObject(Object o, long offset,
1285                                                      Object expected,
1286                                                      Object x);
1287 
1288     @HotSpotIntrinsicCandidate
1289     public final native Object compareAndExchangeObjectVolatile(Object o, long offset,
1290                                                                 Object expected,
1291                                                                 Object x);
1292 
1293     @HotSpotIntrinsicCandidate
1294     public final Object compareAndExchangeObjectAcquire(Object o, long offset,
1295                                                                Object expected,
1296                                                                Object x) {
1297         return compareAndExchangeObjectVolatile(o, offset, expected, x);
1298     }
1299 
1300     @HotSpotIntrinsicCandidate
1301     public final Object compareAndExchangeObjectRelease(Object o, long offset,
1302                                                                Object expected,
1303                                                                Object x) {
1304         return compareAndExchangeObjectVolatile(o, offset, expected, x);
1305     }
1306 
1307     @HotSpotIntrinsicCandidate
1308     public final boolean weakCompareAndSwapObject(Object o, long offset,
1309                                                          Object expected,
1310                                                          Object x) {
1311         return compareAndSwapObject(o, offset, expected, x);
1312     }
1313 
1314     @HotSpotIntrinsicCandidate
1315     public final boolean weakCompareAndSwapObjectAcquire(Object o, long offset,
1316                                                                 Object expected,
1317                                                                 Object x) {
1318         return compareAndSwapObject(o, offset, expected, x);
1319     }
1320 
1321     @HotSpotIntrinsicCandidate
1322     public final boolean weakCompareAndSwapObjectRelease(Object o, long offset,
1323                                                                 Object expected,
1324                                                                 Object x) {
1325         return compareAndSwapObject(o, offset, expected, x);
1326     }
1327 
1328     @HotSpotIntrinsicCandidate
1329     public final boolean weakCompareAndSwapObjectVolatile(Object o, long offset,
1330                                                                 Object expected,
1331                                                                 Object x) {
1332         return compareAndSwapObject(o, offset, expected, x);
1333     }
1334 
1335     /**
1336      * Atomically updates Java variable to {@code x} if it is currently
1337      * holding {@code expected}.
1338      *
1339      * <p>This operation has memory semantics of a {@code volatile} read
1340      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1341      *
1342      * @return {@code true} if successful
1343      */
1344     @HotSpotIntrinsicCandidate
1345     public final native boolean compareAndSwapInt(Object o, long offset,
1346                                                   int expected,
1347                                                   int x);
1348 
1349     @HotSpotIntrinsicCandidate
1350     public final native int compareAndExchangeIntVolatile(Object o, long offset,
1351                                                           int expected,
1352                                                           int x);
1353 
1354     @HotSpotIntrinsicCandidate
1355     public final int compareAndExchangeIntAcquire(Object o, long offset,
1356                                                          int expected,
1357                                                          int x) {
1358         return compareAndExchangeIntVolatile(o, offset, expected, x);
1359     }
1360 
1361     @HotSpotIntrinsicCandidate
1362     public final int compareAndExchangeIntRelease(Object o, long offset,
1363                                                          int expected,
1364                                                          int x) {
1365         return compareAndExchangeIntVolatile(o, offset, expected, x);
1366     }
1367 
1368     @HotSpotIntrinsicCandidate
1369     public final boolean weakCompareAndSwapInt(Object o, long offset,
1370                                                       int expected,
1371                                                       int x) {
1372         return compareAndSwapInt(o, offset, expected, x);
1373     }
1374 
1375     @HotSpotIntrinsicCandidate
1376     public final boolean weakCompareAndSwapIntAcquire(Object o, long offset,
1377                                                              int expected,
1378                                                              int x) {
1379         return compareAndSwapInt(o, offset, expected, x);
1380     }
1381 
1382     @HotSpotIntrinsicCandidate
1383     public final boolean weakCompareAndSwapIntRelease(Object o, long offset,
1384                                                              int expected,
1385                                                              int x) {
1386         return compareAndSwapInt(o, offset, expected, x);
1387     }
1388 
1389     @HotSpotIntrinsicCandidate
1390     public final boolean weakCompareAndSwapIntVolatile(Object o, long offset,
1391                                                              int expected,
1392                                                              int x) {
1393         return compareAndSwapInt(o, offset, expected, x);
1394     }
1395 
1396     @HotSpotIntrinsicCandidate
1397     public final byte compareAndExchangeByteVolatile(Object o, long offset,
1398                                                      byte expected,
1399                                                      byte x) {
1400         long wordOffset = offset & ~3;
1401         int shift = (int) (offset & 3) << 3;
1402         if (BE) {
1403             shift = 24 - shift;
1404         }
1405         int mask           = 0xFF << shift;
1406         int maskedExpected = (expected & 0xFF) << shift;
1407         int maskedX        = (x & 0xFF) << shift;
1408         int fullWord;
1409         do {
1410             fullWord = getIntVolatile(o, wordOffset);
1411             if ((fullWord & mask) != maskedExpected)
1412                 return (byte) ((fullWord & mask) >> shift);
1413         } while (!weakCompareAndSwapIntVolatile(o, wordOffset,
1414                                                 fullWord, (fullWord & ~mask) | maskedX));
1415         return expected;
1416     }
1417 
1418     @HotSpotIntrinsicCandidate
1419     public final boolean compareAndSwapByte(Object o, long offset,
1420                                             byte expected,
1421                                             byte x) {
1422         return compareAndExchangeByteVolatile(o, offset, expected, x) == expected;
1423     }
1424 
1425     @HotSpotIntrinsicCandidate
1426     public final boolean weakCompareAndSwapByteVolatile(Object o, long offset,
1427                                                         byte expected,
1428                                                         byte x) {
1429         return compareAndSwapByte(o, offset, expected, x);
1430     }
1431 
1432     @HotSpotIntrinsicCandidate
1433     public final boolean weakCompareAndSwapByteAcquire(Object o, long offset,
1434                                                        byte expected,
1435                                                        byte x) {
1436         return weakCompareAndSwapByteVolatile(o, offset, expected, x);
1437     }
1438 
1439     @HotSpotIntrinsicCandidate
1440     public final boolean weakCompareAndSwapByteRelease(Object o, long offset,
1441                                                        byte expected,
1442                                                        byte x) {
1443         return weakCompareAndSwapByteVolatile(o, offset, expected, x);
1444     }
1445 
1446     @HotSpotIntrinsicCandidate
1447     public final boolean weakCompareAndSwapByte(Object o, long offset,
1448                                                         byte expected,
1449                                                         byte x) {
1450         return weakCompareAndSwapByteVolatile(o, offset, expected, x);
1451     }
1452 
1453     @HotSpotIntrinsicCandidate
1454     public final byte compareAndExchangeByteAcquire(Object o, long offset,
1455                                                     byte expected,
1456                                                     byte x) {
1457         return compareAndExchangeByteVolatile(o, offset, expected, x);
1458     }
1459 
1460     @HotSpotIntrinsicCandidate
1461     public final byte compareAndExchangeByteRelease(Object o, long offset,
1462                                                     byte expected,
1463                                                     byte x) {
1464         return compareAndExchangeByteVolatile(o, offset, expected, x);
1465     }
1466 
1467     @HotSpotIntrinsicCandidate
1468     public final short compareAndExchangeShortVolatile(Object o, long offset,
1469                                              short expected,
1470                                              short x) {
1471         if ((offset & 3) == 3) {
1472             throw new IllegalArgumentException("Update spans the word, not supported");
1473         }
1474         long wordOffset = offset & ~3;
1475         int shift = (int) (offset & 3) << 3;
1476         if (BE) {
1477             shift = 16 - shift;
1478         }
1479         int mask           = 0xFFFF << shift;
1480         int maskedExpected = (expected & 0xFFFF) << shift;
1481         int maskedX        = (x & 0xFFFF) << shift;
1482         int fullWord;
1483         do {
1484             fullWord = getIntVolatile(o, wordOffset);
1485             if ((fullWord & mask) != maskedExpected) {
1486                 return (short) ((fullWord & mask) >> shift);
1487             }
1488         } while (!weakCompareAndSwapIntVolatile(o, wordOffset,
1489                                                 fullWord, (fullWord & ~mask) | maskedX));
1490         return expected;
1491     }
1492 
1493     @HotSpotIntrinsicCandidate
1494     public final boolean compareAndSwapShort(Object o, long offset,
1495                                              short expected,
1496                                              short x) {
1497         return compareAndExchangeShortVolatile(o, offset, expected, x) == expected;
1498     }
1499 
1500     @HotSpotIntrinsicCandidate
1501     public final boolean weakCompareAndSwapShortVolatile(Object o, long offset,
1502                                                          short expected,
1503                                                          short x) {
1504         return compareAndSwapShort(o, offset, expected, x);
1505     }
1506 
1507     @HotSpotIntrinsicCandidate
1508     public final boolean weakCompareAndSwapShortAcquire(Object o, long offset,
1509                                                         short expected,
1510                                                         short x) {
1511         return weakCompareAndSwapShortVolatile(o, offset, expected, x);
1512     }
1513 
1514     @HotSpotIntrinsicCandidate
1515     public final boolean weakCompareAndSwapShortRelease(Object o, long offset,
1516                                                         short expected,
1517                                                         short x) {
1518         return weakCompareAndSwapShortVolatile(o, offset, expected, x);
1519     }
1520 
1521     @HotSpotIntrinsicCandidate
1522     public final boolean weakCompareAndSwapShort(Object o, long offset,
1523                                                  short expected,
1524                                                  short x) {
1525         return weakCompareAndSwapShortVolatile(o, offset, expected, x);
1526     }
1527 
1528 
1529     @HotSpotIntrinsicCandidate
1530     public final short compareAndExchangeShortAcquire(Object o, long offset,
1531                                                      short expected,
1532                                                      short x) {
1533         return compareAndExchangeShortVolatile(o, offset, expected, x);
1534     }
1535 
1536     @HotSpotIntrinsicCandidate
1537     public final short compareAndExchangeShortRelease(Object o, long offset,
1538                                                     short expected,
1539                                                     short x) {
1540         return compareAndExchangeShortVolatile(o, offset, expected, x);
1541     }
1542 
1543     @ForceInline
1544     private char s2c(short s) {
1545         return (char) s;
1546     }
1547 
1548     @ForceInline
1549     private short c2s(char s) {
1550         return (short) s;
1551     }
1552 
1553     @ForceInline
1554     public final boolean compareAndSwapChar(Object o, long offset,
1555                                             char expected,
1556                                             char x) {
1557         return compareAndSwapShort(o, offset, c2s(expected), c2s(x));
1558     }
1559 
1560     @ForceInline
1561     public final char compareAndExchangeCharVolatile(Object o, long offset,
1562                                             char expected,
1563                                             char x) {
1564         return s2c(compareAndExchangeShortVolatile(o, offset, c2s(expected), c2s(x)));
1565     }
1566 
1567     @ForceInline
1568     public final char compareAndExchangeCharAcquire(Object o, long offset,
1569                                             char expected,
1570                                             char x) {
1571         return s2c(compareAndExchangeShortAcquire(o, offset, c2s(expected), c2s(x)));
1572     }
1573 
1574     @ForceInline
1575     public final char compareAndExchangeCharRelease(Object o, long offset,
1576                                             char expected,
1577                                             char x) {
1578         return s2c(compareAndExchangeShortRelease(o, offset, c2s(expected), c2s(x)));
1579     }
1580 
1581     @ForceInline
1582     public final boolean weakCompareAndSwapCharVolatile(Object o, long offset,
1583                                             char expected,
1584                                             char x) {
1585         return weakCompareAndSwapShortVolatile(o, offset, c2s(expected), c2s(x));
1586     }
1587 
1588     @ForceInline
1589     public final boolean weakCompareAndSwapCharAcquire(Object o, long offset,
1590                                             char expected,
1591                                             char x) {
1592         return weakCompareAndSwapShortAcquire(o, offset, c2s(expected), c2s(x));
1593     }
1594 
1595     @ForceInline
1596     public final boolean weakCompareAndSwapCharRelease(Object o, long offset,
1597                                             char expected,
1598                                             char x) {
1599         return weakCompareAndSwapShortRelease(o, offset, c2s(expected), c2s(x));
1600     }
1601 
1602     @ForceInline
1603     public final boolean weakCompareAndSwapChar(Object o, long offset,
1604                                             char expected,
1605                                             char x) {
1606         return weakCompareAndSwapShort(o, offset, c2s(expected), c2s(x));
1607     }
1608 
1609     /**
1610      * The JVM converts integral values to boolean values using two
1611      * different conventions, byte testing against zero and truncation
1612      * to least-significant bit.
1613      *
1614      * <p>The JNI documents specify that, at least for returning
1615      * values from native methods, a Java boolean value is converted
1616      * to the value-set 0..1 by first truncating to a byte (0..255 or
1617      * maybe -128..127) and then testing against zero. Thus, Java
1618      * booleans in non-Java data structures are by convention
1619      * represented as 8-bit containers containing either zero (for
1620      * false) or any non-zero value (for true).
1621      *
1622      * <p>Java booleans in the heap are also stored in bytes, but are
1623      * strongly normalized to the value-set 0..1 (i.e., they are
1624      * truncated to the least-significant bit).
1625      *
1626      * <p>The main reason for having different conventions for
1627      * conversion is performance: Truncation to the least-significant
1628      * bit can be usually implemented with fewer (machine)
1629      * instructions than byte testing against zero.
1630      *
1631      * <p>A number of Unsafe methods load boolean values from the heap
1632      * as bytes. Unsafe converts those values according to the JNI
1633      * rules (i.e, using the "testing against zero" convention). The
1634      * method {@code byte2bool} implements that conversion.
1635      *
1636      * @param b the byte to be converted to boolean
1637      * @return the result of the conversion
1638      */
1639     @ForceInline
1640     private boolean byte2bool(byte b) {
1641         return b != 0;
1642     }
1643 
1644     /**
1645      * Convert a boolean value to a byte. The return value is strongly
1646      * normalized to the value-set 0..1 (i.e., the value is truncated
1647      * to the least-significant bit). See {@link #byte2bool(byte)} for
1648      * more details on conversion conventions.
1649      *
1650      * @param b the boolean to be converted to byte (and then normalized)
1651      * @return the result of the conversion
1652      */
1653     @ForceInline
1654     private byte bool2byte(boolean b) {
1655         return b ? (byte)1 : (byte)0;
1656     }
1657 
1658     @ForceInline
1659     public final boolean compareAndSwapBoolean(Object o, long offset,
1660                                                boolean expected,
1661                                                boolean x) {
1662         return compareAndSwapByte(o, offset, bool2byte(expected), bool2byte(x));
1663     }
1664 
1665     @ForceInline
1666     public final boolean compareAndExchangeBooleanVolatile(Object o, long offset,
1667                                                         boolean expected,
1668                                                         boolean x) {
1669         return byte2bool(compareAndExchangeByteVolatile(o, offset, bool2byte(expected), bool2byte(x)));
1670     }
1671 
1672     @ForceInline
1673     public final boolean compareAndExchangeBooleanAcquire(Object o, long offset,
1674                                                     boolean expected,
1675                                                     boolean x) {
1676         return byte2bool(compareAndExchangeByteAcquire(o, offset, bool2byte(expected), bool2byte(x)));
1677     }
1678 
1679     @ForceInline
1680     public final boolean compareAndExchangeBooleanRelease(Object o, long offset,
1681                                                        boolean expected,
1682                                                        boolean x) {
1683         return byte2bool(compareAndExchangeByteRelease(o, offset, bool2byte(expected), bool2byte(x)));
1684     }
1685 
1686     @ForceInline
1687     public final boolean weakCompareAndSwapBooleanVolatile(Object o, long offset,
1688                                                            boolean expected,
1689                                                            boolean x) {
1690         return weakCompareAndSwapByteVolatile(o, offset, bool2byte(expected), bool2byte(x));
1691     }
1692 
1693     @ForceInline
1694     public final boolean weakCompareAndSwapBooleanAcquire(Object o, long offset,
1695                                                           boolean expected,
1696                                                           boolean x) {
1697         return weakCompareAndSwapByteAcquire(o, offset, bool2byte(expected), bool2byte(x));
1698     }
1699 
1700     @ForceInline
1701     public final boolean weakCompareAndSwapBooleanRelease(Object o, long offset,
1702                                                           boolean expected,
1703                                                           boolean x) {
1704         return weakCompareAndSwapByteRelease(o, offset, bool2byte(expected), bool2byte(x));
1705     }
1706 
1707     @ForceInline
1708     public final boolean weakCompareAndSwapBoolean(Object o, long offset,
1709                                                    boolean expected,
1710                                                    boolean x) {
1711         return weakCompareAndSwapByte(o, offset, bool2byte(expected), bool2byte(x));
1712     }
1713 
1714     /**
1715      * Atomically updates Java variable to {@code x} if it is currently
1716      * holding {@code expected}.
1717      *
1718      * <p>This operation has memory semantics of a {@code volatile} read
1719      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1720      *
1721      * @return {@code true} if successful
1722      */
1723     @ForceInline
1724     public final boolean compareAndSwapFloat(Object o, long offset,
1725                                              float expected,
1726                                              float x) {
1727         return compareAndSwapInt(o, offset,
1728                                  Float.floatToRawIntBits(expected),
1729                                  Float.floatToRawIntBits(x));
1730     }
1731 
1732     @ForceInline
1733     public final float compareAndExchangeFloatVolatile(Object o, long offset,
1734                                                        float expected,
1735                                                        float x) {
1736         int w = compareAndExchangeIntVolatile(o, offset,
1737                                               Float.floatToRawIntBits(expected),
1738                                               Float.floatToRawIntBits(x));
1739         return Float.intBitsToFloat(w);
1740     }
1741 
1742     @ForceInline
1743     public final float compareAndExchangeFloatAcquire(Object o, long offset,
1744                                                   float expected,
1745                                                   float x) {
1746         int w = compareAndExchangeIntAcquire(o, offset,
1747                                              Float.floatToRawIntBits(expected),
1748                                              Float.floatToRawIntBits(x));
1749         return Float.intBitsToFloat(w);
1750     }
1751 
1752     @ForceInline
1753     public final float compareAndExchangeFloatRelease(Object o, long offset,
1754                                                   float expected,
1755                                                   float x) {
1756         int w = compareAndExchangeIntRelease(o, offset,
1757                                              Float.floatToRawIntBits(expected),
1758                                              Float.floatToRawIntBits(x));
1759         return Float.intBitsToFloat(w);
1760     }
1761 
1762     @ForceInline
1763     public final boolean weakCompareAndSwapFloat(Object o, long offset,
1764                                                float expected,
1765                                                float x) {
1766         return weakCompareAndSwapInt(o, offset,
1767                                      Float.floatToRawIntBits(expected),
1768                                      Float.floatToRawIntBits(x));
1769     }
1770 
1771     @ForceInline
1772     public final boolean weakCompareAndSwapFloatAcquire(Object o, long offset,
1773                                                       float expected,
1774                                                       float x) {
1775         return weakCompareAndSwapIntAcquire(o, offset,
1776                                             Float.floatToRawIntBits(expected),
1777                                             Float.floatToRawIntBits(x));
1778     }
1779 
1780     @ForceInline
1781     public final boolean weakCompareAndSwapFloatRelease(Object o, long offset,
1782                                                       float expected,
1783                                                       float x) {
1784         return weakCompareAndSwapIntRelease(o, offset,
1785                                             Float.floatToRawIntBits(expected),
1786                                             Float.floatToRawIntBits(x));
1787     }
1788 
1789     @ForceInline
1790     public final boolean weakCompareAndSwapFloatVolatile(Object o, long offset,
1791                                                        float expected,
1792                                                        float x) {
1793         return weakCompareAndSwapIntVolatile(o, offset,
1794                                              Float.floatToRawIntBits(expected),
1795                                              Float.floatToRawIntBits(x));
1796     }
1797 
1798     /**
1799      * Atomically updates Java variable to {@code x} if it is currently
1800      * holding {@code expected}.
1801      *
1802      * <p>This operation has memory semantics of a {@code volatile} read
1803      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1804      *
1805      * @return {@code true} if successful
1806      */
1807     @ForceInline
1808     public final boolean compareAndSwapDouble(Object o, long offset,
1809                                               double expected,
1810                                               double x) {
1811         return compareAndSwapLong(o, offset,
1812                                   Double.doubleToRawLongBits(expected),
1813                                   Double.doubleToRawLongBits(x));
1814     }
1815 
1816     @ForceInline
1817     public final double compareAndExchangeDoubleVolatile(Object o, long offset,
1818                                                          double expected,
1819                                                          double x) {
1820         long w = compareAndExchangeLongVolatile(o, offset,
1821                                                 Double.doubleToRawLongBits(expected),
1822                                                 Double.doubleToRawLongBits(x));
1823         return Double.longBitsToDouble(w);
1824     }
1825 
1826     @ForceInline
1827     public final double compareAndExchangeDoubleAcquire(Object o, long offset,
1828                                                         double expected,
1829                                                         double x) {
1830         long w = compareAndExchangeLongAcquire(o, offset,
1831                                                Double.doubleToRawLongBits(expected),
1832                                                Double.doubleToRawLongBits(x));
1833         return Double.longBitsToDouble(w);
1834     }
1835 
1836     @ForceInline
1837     public final double compareAndExchangeDoubleRelease(Object o, long offset,
1838                                                         double expected,
1839                                                         double x) {
1840         long w = compareAndExchangeLongRelease(o, offset,
1841                                                Double.doubleToRawLongBits(expected),
1842                                                Double.doubleToRawLongBits(x));
1843         return Double.longBitsToDouble(w);
1844     }
1845 
1846     @ForceInline
1847     public final boolean weakCompareAndSwapDouble(Object o, long offset,
1848                                                   double expected,
1849                                                   double x) {
1850         return weakCompareAndSwapLong(o, offset,
1851                                      Double.doubleToRawLongBits(expected),
1852                                      Double.doubleToRawLongBits(x));
1853     }
1854 
1855     @ForceInline
1856     public final boolean weakCompareAndSwapDoubleAcquire(Object o, long offset,
1857                                                          double expected,
1858                                                          double x) {
1859         return weakCompareAndSwapLongAcquire(o, offset,
1860                                              Double.doubleToRawLongBits(expected),
1861                                              Double.doubleToRawLongBits(x));
1862     }
1863 
1864     @ForceInline
1865     public final boolean weakCompareAndSwapDoubleRelease(Object o, long offset,
1866                                                          double expected,
1867                                                          double x) {
1868         return weakCompareAndSwapLongRelease(o, offset,
1869                                              Double.doubleToRawLongBits(expected),
1870                                              Double.doubleToRawLongBits(x));
1871     }
1872 
1873     @ForceInline
1874     public final boolean weakCompareAndSwapDoubleVolatile(Object o, long offset,
1875                                                           double expected,
1876                                                           double x) {
1877         return weakCompareAndSwapLongVolatile(o, offset,
1878                                               Double.doubleToRawLongBits(expected),
1879                                               Double.doubleToRawLongBits(x));
1880     }
1881 
1882     /**
1883      * Atomically updates Java variable to {@code x} if it is currently
1884      * holding {@code expected}.
1885      *
1886      * <p>This operation has memory semantics of a {@code volatile} read
1887      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
1888      *
1889      * @return {@code true} if successful
1890      */
1891     @HotSpotIntrinsicCandidate
1892     public final native boolean compareAndSwapLong(Object o, long offset,
1893                                                    long expected,
1894                                                    long x);
1895 
1896     @HotSpotIntrinsicCandidate
1897     public final native long compareAndExchangeLongVolatile(Object o, long offset,
1898                                                             long expected,
1899                                                             long x);
1900 
1901     @HotSpotIntrinsicCandidate
1902     public final long compareAndExchangeLongAcquire(Object o, long offset,
1903                                                            long expected,
1904                                                            long x) {
1905         return compareAndExchangeLongVolatile(o, offset, expected, x);
1906     }
1907 
1908     @HotSpotIntrinsicCandidate
1909     public final long compareAndExchangeLongRelease(Object o, long offset,
1910                                                            long expected,
1911                                                            long x) {
1912         return compareAndExchangeLongVolatile(o, offset, expected, x);
1913     }
1914 
1915     @HotSpotIntrinsicCandidate
1916     public final boolean weakCompareAndSwapLong(Object o, long offset,
1917                                                        long expected,
1918                                                        long x) {
1919         return compareAndSwapLong(o, offset, expected, x);
1920     }
1921 
1922     @HotSpotIntrinsicCandidate
1923     public final boolean weakCompareAndSwapLongAcquire(Object o, long offset,
1924                                                               long expected,
1925                                                               long x) {
1926         return compareAndSwapLong(o, offset, expected, x);
1927     }
1928 
1929     @HotSpotIntrinsicCandidate
1930     public final boolean weakCompareAndSwapLongRelease(Object o, long offset,
1931                                                               long expected,
1932                                                               long x) {
1933         return compareAndSwapLong(o, offset, expected, x);
1934     }
1935 
1936     @HotSpotIntrinsicCandidate
1937     public final boolean weakCompareAndSwapLongVolatile(Object o, long offset,
1938                                                               long expected,
1939                                                               long x) {
1940         return compareAndSwapLong(o, offset, expected, x);
1941     }
1942 
1943     /**
1944      * Fetches a reference value from a given Java variable, with volatile
1945      * load semantics. Otherwise identical to {@link #getObject(Object, long)}
1946      */
1947     @HotSpotIntrinsicCandidate
1948     public native Object getObjectVolatile(Object o, long offset);
1949 
1950     /**
1951      * Stores a reference value into a given Java variable, with
1952      * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)}
1953      */
1954     @HotSpotIntrinsicCandidate
1955     public native void    putObjectVolatile(Object o, long offset, Object x);
1956 
1957     /** Volatile version of {@link #getInt(Object, long)}  */
1958     @HotSpotIntrinsicCandidate
1959     public native int     getIntVolatile(Object o, long offset);
1960 
1961     /** Volatile version of {@link #putInt(Object, long, int)}  */
1962     @HotSpotIntrinsicCandidate
1963     public native void    putIntVolatile(Object o, long offset, int x);
1964 
1965     /** Volatile version of {@link #getBoolean(Object, long)}  */
1966     @HotSpotIntrinsicCandidate
1967     public native boolean getBooleanVolatile(Object o, long offset);
1968 
1969     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
1970     @HotSpotIntrinsicCandidate
1971     public native void    putBooleanVolatile(Object o, long offset, boolean x);
1972 
1973     /** Volatile version of {@link #getByte(Object, long)}  */
1974     @HotSpotIntrinsicCandidate
1975     public native byte    getByteVolatile(Object o, long offset);
1976 
1977     /** Volatile version of {@link #putByte(Object, long, byte)}  */
1978     @HotSpotIntrinsicCandidate
1979     public native void    putByteVolatile(Object o, long offset, byte x);
1980 
1981     /** Volatile version of {@link #getShort(Object, long)}  */
1982     @HotSpotIntrinsicCandidate
1983     public native short   getShortVolatile(Object o, long offset);
1984 
1985     /** Volatile version of {@link #putShort(Object, long, short)}  */
1986     @HotSpotIntrinsicCandidate
1987     public native void    putShortVolatile(Object o, long offset, short x);
1988 
1989     /** Volatile version of {@link #getChar(Object, long)}  */
1990     @HotSpotIntrinsicCandidate
1991     public native char    getCharVolatile(Object o, long offset);
1992 
1993     /** Volatile version of {@link #putChar(Object, long, char)}  */
1994     @HotSpotIntrinsicCandidate
1995     public native void    putCharVolatile(Object o, long offset, char x);
1996 
1997     /** Volatile version of {@link #getLong(Object, long)}  */
1998     @HotSpotIntrinsicCandidate
1999     public native long    getLongVolatile(Object o, long offset);
2000 
2001     /** Volatile version of {@link #putLong(Object, long, long)}  */
2002     @HotSpotIntrinsicCandidate
2003     public native void    putLongVolatile(Object o, long offset, long x);
2004 
2005     /** Volatile version of {@link #getFloat(Object, long)}  */
2006     @HotSpotIntrinsicCandidate
2007     public native float   getFloatVolatile(Object o, long offset);
2008 
2009     /** Volatile version of {@link #putFloat(Object, long, float)}  */
2010     @HotSpotIntrinsicCandidate
2011     public native void    putFloatVolatile(Object o, long offset, float x);
2012 
2013     /** Volatile version of {@link #getDouble(Object, long)}  */
2014     @HotSpotIntrinsicCandidate
2015     public native double  getDoubleVolatile(Object o, long offset);
2016 
2017     /** Volatile version of {@link #putDouble(Object, long, double)}  */
2018     @HotSpotIntrinsicCandidate
2019     public native void    putDoubleVolatile(Object o, long offset, double x);
2020 
2021 
2022 
2023     /** Acquire version of {@link #getObjectVolatile(Object, long)} */
2024     @HotSpotIntrinsicCandidate
2025     public final Object getObjectAcquire(Object o, long offset) {
2026         return getObjectVolatile(o, offset);
2027     }
2028 
2029     /** Acquire version of {@link #getBooleanVolatile(Object, long)} */
2030     @HotSpotIntrinsicCandidate
2031     public final boolean getBooleanAcquire(Object o, long offset) {
2032         return getBooleanVolatile(o, offset);
2033     }
2034 
2035     /** Acquire version of {@link #getByteVolatile(Object, long)} */
2036     @HotSpotIntrinsicCandidate
2037     public final byte getByteAcquire(Object o, long offset) {
2038         return getByteVolatile(o, offset);
2039     }
2040 
2041     /** Acquire version of {@link #getShortVolatile(Object, long)} */
2042     @HotSpotIntrinsicCandidate
2043     public final short getShortAcquire(Object o, long offset) {
2044         return getShortVolatile(o, offset);
2045     }
2046 
2047     /** Acquire version of {@link #getCharVolatile(Object, long)} */
2048     @HotSpotIntrinsicCandidate
2049     public final char getCharAcquire(Object o, long offset) {
2050         return getCharVolatile(o, offset);
2051     }
2052 
2053     /** Acquire version of {@link #getIntVolatile(Object, long)} */
2054     @HotSpotIntrinsicCandidate
2055     public final int getIntAcquire(Object o, long offset) {
2056         return getIntVolatile(o, offset);
2057     }
2058 
2059     /** Acquire version of {@link #getFloatVolatile(Object, long)} */
2060     @HotSpotIntrinsicCandidate
2061     public final float getFloatAcquire(Object o, long offset) {
2062         return getFloatVolatile(o, offset);
2063     }
2064 
2065     /** Acquire version of {@link #getLongVolatile(Object, long)} */
2066     @HotSpotIntrinsicCandidate
2067     public final long getLongAcquire(Object o, long offset) {
2068         return getLongVolatile(o, offset);
2069     }
2070 
2071     /** Acquire version of {@link #getDoubleVolatile(Object, long)} */
2072     @HotSpotIntrinsicCandidate
2073     public final double getDoubleAcquire(Object o, long offset) {
2074         return getDoubleVolatile(o, offset);
2075     }
2076 
2077     /*
2078       * Versions of {@link #putObjectVolatile(Object, long, Object)}
2079       * that do not guarantee immediate visibility of the store to
2080       * other threads. This method is generally only useful if the
2081       * underlying field is a Java volatile (or if an array cell, one
2082       * that is otherwise only accessed using volatile accesses).
2083       *
2084       * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
2085       */
2086 
2087     /** Release version of {@link #putObjectVolatile(Object, long, Object)} */
2088     @HotSpotIntrinsicCandidate
2089     public final void putObjectRelease(Object o, long offset, Object x) {
2090         putObjectVolatile(o, offset, x);
2091     }
2092 
2093     /** Release version of {@link #putBooleanVolatile(Object, long, boolean)} */
2094     @HotSpotIntrinsicCandidate
2095     public final void putBooleanRelease(Object o, long offset, boolean x) {
2096         putBooleanVolatile(o, offset, x);
2097     }
2098 
2099     /** Release version of {@link #putByteVolatile(Object, long, byte)} */
2100     @HotSpotIntrinsicCandidate
2101     public final void putByteRelease(Object o, long offset, byte x) {
2102         putByteVolatile(o, offset, x);
2103     }
2104 
2105     /** Release version of {@link #putShortVolatile(Object, long, short)} */
2106     @HotSpotIntrinsicCandidate
2107     public final void putShortRelease(Object o, long offset, short x) {
2108         putShortVolatile(o, offset, x);
2109     }
2110 
2111     /** Release version of {@link #putCharVolatile(Object, long, char)} */
2112     @HotSpotIntrinsicCandidate
2113     public final void putCharRelease(Object o, long offset, char x) {
2114         putCharVolatile(o, offset, x);
2115     }
2116 
2117     /** Release version of {@link #putIntVolatile(Object, long, int)} */
2118     @HotSpotIntrinsicCandidate
2119     public final void putIntRelease(Object o, long offset, int x) {
2120         putIntVolatile(o, offset, x);
2121     }
2122 
2123     /** Release version of {@link #putFloatVolatile(Object, long, float)} */
2124     @HotSpotIntrinsicCandidate
2125     public final void putFloatRelease(Object o, long offset, float x) {
2126         putFloatVolatile(o, offset, x);
2127     }
2128 
2129     /** Release version of {@link #putLongVolatile(Object, long, long)} */
2130     @HotSpotIntrinsicCandidate
2131     public final void putLongRelease(Object o, long offset, long x) {
2132         putLongVolatile(o, offset, x);
2133     }
2134 
2135     /** Release version of {@link #putDoubleVolatile(Object, long, double)} */
2136     @HotSpotIntrinsicCandidate
2137     public final void putDoubleRelease(Object o, long offset, double x) {
2138         putDoubleVolatile(o, offset, x);
2139     }
2140 
2141     // ------------------------------ Opaque --------------------------------------
2142 
2143     /** Opaque version of {@link #getObjectVolatile(Object, long)} */
2144     @HotSpotIntrinsicCandidate
2145     public final Object getObjectOpaque(Object o, long offset) {
2146         return getObjectVolatile(o, offset);
2147     }
2148 
2149     /** Opaque version of {@link #getBooleanVolatile(Object, long)} */
2150     @HotSpotIntrinsicCandidate
2151     public final boolean getBooleanOpaque(Object o, long offset) {
2152         return getBooleanVolatile(o, offset);
2153     }
2154 
2155     /** Opaque version of {@link #getByteVolatile(Object, long)} */
2156     @HotSpotIntrinsicCandidate
2157     public final byte getByteOpaque(Object o, long offset) {
2158         return getByteVolatile(o, offset);
2159     }
2160 
2161     /** Opaque version of {@link #getShortVolatile(Object, long)} */
2162     @HotSpotIntrinsicCandidate
2163     public final short getShortOpaque(Object o, long offset) {
2164         return getShortVolatile(o, offset);
2165     }
2166 
2167     /** Opaque version of {@link #getCharVolatile(Object, long)} */
2168     @HotSpotIntrinsicCandidate
2169     public final char getCharOpaque(Object o, long offset) {
2170         return getCharVolatile(o, offset);
2171     }
2172 
2173     /** Opaque version of {@link #getIntVolatile(Object, long)} */
2174     @HotSpotIntrinsicCandidate
2175     public final int getIntOpaque(Object o, long offset) {
2176         return getIntVolatile(o, offset);
2177     }
2178 
2179     /** Opaque version of {@link #getFloatVolatile(Object, long)} */
2180     @HotSpotIntrinsicCandidate
2181     public final float getFloatOpaque(Object o, long offset) {
2182         return getFloatVolatile(o, offset);
2183     }
2184 
2185     /** Opaque version of {@link #getLongVolatile(Object, long)} */
2186     @HotSpotIntrinsicCandidate
2187     public final long getLongOpaque(Object o, long offset) {
2188         return getLongVolatile(o, offset);
2189     }
2190 
2191     /** Opaque version of {@link #getDoubleVolatile(Object, long)} */
2192     @HotSpotIntrinsicCandidate
2193     public final double getDoubleOpaque(Object o, long offset) {
2194         return getDoubleVolatile(o, offset);
2195     }
2196 
2197     /** Opaque version of {@link #putObjectVolatile(Object, long, Object)} */
2198     @HotSpotIntrinsicCandidate
2199     public final void putObjectOpaque(Object o, long offset, Object x) {
2200         putObjectVolatile(o, offset, x);
2201     }
2202 
2203     /** Opaque version of {@link #putBooleanVolatile(Object, long, boolean)} */
2204     @HotSpotIntrinsicCandidate
2205     public final void putBooleanOpaque(Object o, long offset, boolean x) {
2206         putBooleanVolatile(o, offset, x);
2207     }
2208 
2209     /** Opaque version of {@link #putByteVolatile(Object, long, byte)} */
2210     @HotSpotIntrinsicCandidate
2211     public final void putByteOpaque(Object o, long offset, byte x) {
2212         putByteVolatile(o, offset, x);
2213     }
2214 
2215     /** Opaque version of {@link #putShortVolatile(Object, long, short)} */
2216     @HotSpotIntrinsicCandidate
2217     public final void putShortOpaque(Object o, long offset, short x) {
2218         putShortVolatile(o, offset, x);
2219     }
2220 
2221     /** Opaque version of {@link #putCharVolatile(Object, long, char)} */
2222     @HotSpotIntrinsicCandidate
2223     public final void putCharOpaque(Object o, long offset, char x) {
2224         putCharVolatile(o, offset, x);
2225     }
2226 
2227     /** Opaque version of {@link #putIntVolatile(Object, long, int)} */
2228     @HotSpotIntrinsicCandidate
2229     public final void putIntOpaque(Object o, long offset, int x) {
2230         putIntVolatile(o, offset, x);
2231     }
2232 
2233     /** Opaque version of {@link #putFloatVolatile(Object, long, float)} */
2234     @HotSpotIntrinsicCandidate
2235     public final void putFloatOpaque(Object o, long offset, float x) {
2236         putFloatVolatile(o, offset, x);
2237     }
2238 
2239     /** Opaque version of {@link #putLongVolatile(Object, long, long)} */
2240     @HotSpotIntrinsicCandidate
2241     public final void putLongOpaque(Object o, long offset, long x) {
2242         putLongVolatile(o, offset, x);
2243     }
2244 
2245     /** Opaque version of {@link #putDoubleVolatile(Object, long, double)} */
2246     @HotSpotIntrinsicCandidate
2247     public final void putDoubleOpaque(Object o, long offset, double x) {
2248         putDoubleVolatile(o, offset, x);
2249     }
2250 
2251     /**
2252      * Unblocks the given thread blocked on {@code park}, or, if it is
2253      * not blocked, causes the subsequent call to {@code park} not to
2254      * block.  Note: this operation is "unsafe" solely because the
2255      * caller must somehow ensure that the thread has not been
2256      * destroyed. Nothing special is usually required to ensure this
2257      * when called from Java (in which there will ordinarily be a live
2258      * reference to the thread) but this is not nearly-automatically
2259      * so when calling from native code.
2260      *
2261      * @param thread the thread to unpark.
2262      */
2263     @HotSpotIntrinsicCandidate
2264     public native void unpark(Object thread);
2265 
2266     /**
2267      * Blocks current thread, returning when a balancing
2268      * {@code unpark} occurs, or a balancing {@code unpark} has
2269      * already occurred, or the thread is interrupted, or, if not
2270      * absolute and time is not zero, the given time nanoseconds have
2271      * elapsed, or if absolute, the given deadline in milliseconds
2272      * since Epoch has passed, or spuriously (i.e., returning for no
2273      * "reason"). Note: This operation is in the Unsafe class only
2274      * because {@code unpark} is, so it would be strange to place it
2275      * elsewhere.
2276      */
2277     @HotSpotIntrinsicCandidate
2278     public native void park(boolean isAbsolute, long time);
2279 
2280     /**
2281      * Gets the load average in the system run queue assigned
2282      * to the available processors averaged over various periods of time.
2283      * This method retrieves the given {@code nelem} samples and
2284      * assigns to the elements of the given {@code loadavg} array.
2285      * The system imposes a maximum of 3 samples, representing
2286      * averages over the last 1,  5,  and  15 minutes, respectively.
2287      *
2288      * @param loadavg an array of double of size nelems
2289      * @param nelems the number of samples to be retrieved and
2290      *        must be 1 to 3.
2291      *
2292      * @return the number of samples actually retrieved; or -1
2293      *         if the load average is unobtainable.
2294      */
2295     public int getLoadAverage(double[] loadavg, int nelems) {
2296         if (nelems < 0 || nelems > 3 || nelems > loadavg.length) {
2297             throw new ArrayIndexOutOfBoundsException();
2298         }
2299 
2300         return getLoadAverage0(loadavg, nelems);
2301     }
2302 
2303     // The following contain CAS-based Java implementations used on
2304     // platforms not supporting native instructions
2305 
2306     /**
2307      * Atomically adds the given value to the current value of a field
2308      * or array element within the given object {@code o}
2309      * at the given {@code offset}.
2310      *
2311      * @param o object/array to update the field/element in
2312      * @param offset field/element offset
2313      * @param delta the value to add
2314      * @return the previous value
2315      * @since 1.8
2316      */
2317     @HotSpotIntrinsicCandidate
2318     public final int getAndAddInt(Object o, long offset, int delta) {
2319         int v;
2320         do {
2321             v = getIntVolatile(o, offset);
2322         } while (!weakCompareAndSwapIntVolatile(o, offset, v, v + delta));
2323         return v;
2324     }
2325 
2326     @ForceInline
2327     public final int getAndAddIntRelease(Object o, long offset, int delta) {
2328         int v;
2329         do {
2330             v = getInt(o, offset);
2331         } while (!weakCompareAndSwapIntRelease(o, offset, v, v + delta));
2332         return v;
2333     }
2334 
2335     @ForceInline
2336     public final int getAndAddIntAcquire(Object o, long offset, int delta) {
2337         int v;
2338         do {
2339             v = getIntAcquire(o, offset);
2340         } while (!weakCompareAndSwapIntAcquire(o, offset, v, v + delta));
2341         return v;
2342     }
2343 
2344     /**
2345      * Atomically adds the given value to the current value of a field
2346      * or array element within the given object {@code o}
2347      * at the given {@code offset}.
2348      *
2349      * @param o object/array to update the field/element in
2350      * @param offset field/element offset
2351      * @param delta the value to add
2352      * @return the previous value
2353      * @since 1.8
2354      */
2355     @HotSpotIntrinsicCandidate
2356     public final long getAndAddLong(Object o, long offset, long delta) {
2357         long v;
2358         do {
2359             v = getLongVolatile(o, offset);
2360         } while (!weakCompareAndSwapLongVolatile(o, offset, v, v + delta));
2361         return v;
2362     }
2363 
2364     @ForceInline
2365     public final long getAndAddLongRelease(Object o, long offset, long delta) {
2366         long v;
2367         do {
2368             v = getLong(o, offset);
2369         } while (!weakCompareAndSwapLongRelease(o, offset, v, v + delta));
2370         return v;
2371     }
2372 
2373     @ForceInline
2374     public final long getAndAddLongAcquire(Object o, long offset, long delta) {
2375         long v;
2376         do {
2377             v = getLongAcquire(o, offset);
2378         } while (!weakCompareAndSwapLongAcquire(o, offset, v, v + delta));
2379         return v;
2380     }
2381 
2382     @HotSpotIntrinsicCandidate
2383     public final byte getAndAddByte(Object o, long offset, byte delta) {
2384         byte v;
2385         do {
2386             v = getByteVolatile(o, offset);
2387         } while (!weakCompareAndSwapByteVolatile(o, offset, v, (byte) (v + delta)));
2388         return v;
2389     }
2390 
2391     @ForceInline
2392     public final byte getAndAddByteRelease(Object o, long offset, byte delta) {
2393         byte v;
2394         do {
2395             v = getByte(o, offset);
2396         } while (!weakCompareAndSwapByteRelease(o, offset, v, (byte) (v + delta)));
2397         return v;
2398     }
2399 
2400     @ForceInline
2401     public final byte getAndAddByteAcquire(Object o, long offset, byte delta) {
2402         byte v;
2403         do {
2404             v = getByteAcquire(o, offset);
2405         } while (!weakCompareAndSwapByteAcquire(o, offset, v, (byte) (v + delta)));
2406         return v;
2407     }
2408 
2409     @HotSpotIntrinsicCandidate
2410     public final short getAndAddShort(Object o, long offset, short delta) {
2411         short v;
2412         do {
2413             v = getShortVolatile(o, offset);
2414         } while (!weakCompareAndSwapShortVolatile(o, offset, v, (short) (v + delta)));
2415         return v;
2416     }
2417 
2418     @ForceInline
2419     public final short getAndAddShortRelease(Object o, long offset, short delta) {
2420         short v;
2421         do {
2422             v = getShort(o, offset);
2423         } while (!weakCompareAndSwapShortRelease(o, offset, v, (short) (v + delta)));
2424         return v;
2425     }
2426 
2427     @ForceInline
2428     public final short getAndAddShortAcquire(Object o, long offset, short delta) {
2429         short v;
2430         do {
2431             v = getShortAcquire(o, offset);
2432         } while (!weakCompareAndSwapShortAcquire(o, offset, v, (short) (v + delta)));
2433         return v;
2434     }
2435 
2436     @ForceInline
2437     public final char getAndAddChar(Object o, long offset, char delta) {
2438         return (char) getAndAddShort(o, offset, (short) delta);
2439     }
2440 
2441     @ForceInline
2442     public final char getAndAddCharRelease(Object o, long offset, char delta) {
2443         return (char) getAndAddShortRelease(o, offset, (short) delta);
2444     }
2445 
2446     @ForceInline
2447     public final char getAndAddCharAcquire(Object o, long offset, char delta) {
2448         return (char) getAndAddShortAcquire(o, offset, (short) delta);
2449     }
2450 
2451     @ForceInline
2452     public final float getAndAddFloat(Object o, long offset, float delta) {
2453         int expectedBits;
2454         float v;
2455         do {
2456             // Load and CAS with the raw bits to avoid issues with NaNs and
2457             // possible bit conversion from signaling NaNs to quiet NaNs that
2458             // may result in the loop not terminating.
2459             expectedBits = getIntVolatile(o, offset);
2460             v = Float.intBitsToFloat(expectedBits);
2461         } while (!weakCompareAndSwapIntVolatile(o, offset,
2462                                                 expectedBits, Float.floatToRawIntBits(v + delta)));
2463         return v;
2464     }
2465 
2466     @ForceInline
2467     public final float getAndAddFloatRelease(Object o, long offset, float delta) {
2468         int expectedBits;
2469         float v;
2470         do {
2471             // Load and CAS with the raw bits to avoid issues with NaNs and
2472             // possible bit conversion from signaling NaNs to quiet NaNs that
2473             // may result in the loop not terminating.
2474             expectedBits = getInt(o, offset);
2475             v = Float.intBitsToFloat(expectedBits);
2476         } while (!weakCompareAndSwapIntRelease(o, offset,
2477                                                expectedBits, Float.floatToRawIntBits(v + delta)));
2478         return v;
2479     }
2480 
2481     @ForceInline
2482     public final float getAndAddFloatAcquire(Object o, long offset, float delta) {
2483         int expectedBits;
2484         float v;
2485         do {
2486             // Load and CAS with the raw bits to avoid issues with NaNs and
2487             // possible bit conversion from signaling NaNs to quiet NaNs that
2488             // may result in the loop not terminating.
2489             expectedBits = getIntAcquire(o, offset);
2490             v = Float.intBitsToFloat(expectedBits);
2491         } while (!weakCompareAndSwapIntAcquire(o, offset,
2492                                                expectedBits, Float.floatToRawIntBits(v + delta)));
2493         return v;
2494     }
2495 
2496     @ForceInline
2497     public final double getAndAddDouble(Object o, long offset, double delta) {
2498         long expectedBits;
2499         double v;
2500         do {
2501             // Load and CAS with the raw bits to avoid issues with NaNs and
2502             // possible bit conversion from signaling NaNs to quiet NaNs that
2503             // may result in the loop not terminating.
2504             expectedBits = getLongVolatile(o, offset);
2505             v = Double.longBitsToDouble(expectedBits);
2506         } while (!weakCompareAndSwapLongVolatile(o, offset,
2507                                                  expectedBits, Double.doubleToRawLongBits(v + delta)));
2508         return v;
2509     }
2510 
2511     @ForceInline
2512     public final double getAndAddDoubleRelease(Object o, long offset, double delta) {
2513         long expectedBits;
2514         double v;
2515         do {
2516             // Load and CAS with the raw bits to avoid issues with NaNs and
2517             // possible bit conversion from signaling NaNs to quiet NaNs that
2518             // may result in the loop not terminating.
2519             expectedBits = getLong(o, offset);
2520             v = Double.longBitsToDouble(expectedBits);
2521         } while (!weakCompareAndSwapLongRelease(o, offset,
2522                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
2523         return v;
2524     }
2525 
2526     @ForceInline
2527     public final double getAndAddDoubleAcquire(Object o, long offset, double delta) {
2528         long expectedBits;
2529         double v;
2530         do {
2531             // Load and CAS with the raw bits to avoid issues with NaNs and
2532             // possible bit conversion from signaling NaNs to quiet NaNs that
2533             // may result in the loop not terminating.
2534             expectedBits = getLongAcquire(o, offset);
2535             v = Double.longBitsToDouble(expectedBits);
2536         } while (!weakCompareAndSwapLongAcquire(o, offset,
2537                                                 expectedBits, Double.doubleToRawLongBits(v + delta)));
2538         return v;
2539     }
2540 
2541     /**
2542      * Atomically exchanges the given value with the current value of
2543      * a field or array element within the given object {@code o}
2544      * at the given {@code offset}.
2545      *
2546      * @param o object/array to update the field/element in
2547      * @param offset field/element offset
2548      * @param newValue new value
2549      * @return the previous value
2550      * @since 1.8
2551      */
2552     @HotSpotIntrinsicCandidate
2553     public final int getAndSetInt(Object o, long offset, int newValue) {
2554         int v;
2555         do {
2556             v = getIntVolatile(o, offset);
2557         } while (!weakCompareAndSwapIntVolatile(o, offset, v, newValue));
2558         return v;
2559     }
2560 
2561     @ForceInline
2562     public final int getAndSetIntRelease(Object o, long offset, int newValue) {
2563         int v;
2564         do {
2565             v = getInt(o, offset);
2566         } while (!weakCompareAndSwapIntRelease(o, offset, v, newValue));
2567         return v;
2568     }
2569 
2570     @ForceInline
2571     public final int getAndSetIntAcquire(Object o, long offset, int newValue) {
2572         int v;
2573         do {
2574             v = getIntAcquire(o, offset);
2575         } while (!weakCompareAndSwapIntAcquire(o, offset, v, newValue));
2576         return v;
2577     }
2578 
2579     /**
2580      * Atomically exchanges the given value with the current value of
2581      * a field or array element within the given object {@code o}
2582      * at the given {@code offset}.
2583      *
2584      * @param o object/array to update the field/element in
2585      * @param offset field/element offset
2586      * @param newValue new value
2587      * @return the previous value
2588      * @since 1.8
2589      */
2590     @HotSpotIntrinsicCandidate
2591     public final long getAndSetLong(Object o, long offset, long newValue) {
2592         long v;
2593         do {
2594             v = getLongVolatile(o, offset);
2595         } while (!weakCompareAndSwapLongVolatile(o, offset, v, newValue));
2596         return v;
2597     }
2598 
2599     @ForceInline
2600     public final long getAndSetLongRelease(Object o, long offset, long newValue) {
2601         long v;
2602         do {
2603             v = getLong(o, offset);
2604         } while (!weakCompareAndSwapLongRelease(o, offset, v, newValue));
2605         return v;
2606     }
2607 
2608     @ForceInline
2609     public final long getAndSetLongAcquire(Object o, long offset, long newValue) {
2610         long v;
2611         do {
2612             v = getLongAcquire(o, offset);
2613         } while (!weakCompareAndSwapLongAcquire(o, offset, v, newValue));
2614         return v;
2615     }
2616 
2617     /**
2618      * Atomically exchanges the given reference value with the current
2619      * reference value of a field or array element within the given
2620      * object {@code o} at the given {@code offset}.
2621      *
2622      * @param o object/array to update the field/element in
2623      * @param offset field/element offset
2624      * @param newValue new value
2625      * @return the previous value
2626      * @since 1.8
2627      */
2628     @HotSpotIntrinsicCandidate
2629     public final Object getAndSetObject(Object o, long offset, Object newValue) {
2630         Object v;
2631         do {
2632             v = getObjectVolatile(o, offset);
2633         } while (!weakCompareAndSwapObjectVolatile(o, offset, v, newValue));
2634         return v;
2635     }
2636 
2637     @ForceInline
2638     public final Object getAndSetObjectRelease(Object o, long offset, Object newValue) {
2639         Object v;
2640         do {
2641             v = getObject(o, offset);
2642         } while (!weakCompareAndSwapObjectRelease(o, offset, v, newValue));
2643         return v;
2644     }
2645 
2646     @ForceInline
2647     public final Object getAndSetObjectAcquire(Object o, long offset, Object newValue) {
2648         Object v;
2649         do {
2650             v = getObjectAcquire(o, offset);
2651         } while (!weakCompareAndSwapObjectAcquire(o, offset, v, newValue));
2652         return v;
2653     }
2654 
2655     @HotSpotIntrinsicCandidate
2656     public final byte getAndSetByte(Object o, long offset, byte newValue) {
2657         byte v;
2658         do {
2659             v = getByteVolatile(o, offset);
2660         } while (!weakCompareAndSwapByteVolatile(o, offset, v, newValue));
2661         return v;
2662     }
2663 
2664     @ForceInline
2665     public final byte getAndSetByteRelease(Object o, long offset, byte newValue) {
2666         byte v;
2667         do {
2668             v = getByte(o, offset);
2669         } while (!weakCompareAndSwapByteRelease(o, offset, v, newValue));
2670         return v;
2671     }
2672 
2673     @ForceInline
2674     public final byte getAndSetByteAcquire(Object o, long offset, byte newValue) {
2675         byte v;
2676         do {
2677             v = getByteAcquire(o, offset);
2678         } while (!weakCompareAndSwapByteAcquire(o, offset, v, newValue));
2679         return v;
2680     }
2681 
2682     @ForceInline
2683     public final boolean getAndSetBoolean(Object o, long offset, boolean newValue) {
2684         return byte2bool(getAndSetByte(o, offset, bool2byte(newValue)));
2685     }
2686 
2687     @ForceInline
2688     public final boolean getAndSetBooleanRelease(Object o, long offset, boolean newValue) {
2689         return byte2bool(getAndSetByteRelease(o, offset, bool2byte(newValue)));
2690     }
2691 
2692     @ForceInline
2693     public final boolean getAndSetBooleanAcquire(Object o, long offset, boolean newValue) {
2694         return byte2bool(getAndSetByteAcquire(o, offset, bool2byte(newValue)));
2695     }
2696 
2697     @HotSpotIntrinsicCandidate
2698     public final short getAndSetShort(Object o, long offset, short newValue) {
2699         short v;
2700         do {
2701             v = getShortVolatile(o, offset);
2702         } while (!weakCompareAndSwapShortVolatile(o, offset, v, newValue));
2703         return v;
2704     }
2705 
2706     @ForceInline
2707     public final short getAndSetShortRelease(Object o, long offset, short newValue) {
2708         short v;
2709         do {
2710             v = getShort(o, offset);
2711         } while (!weakCompareAndSwapShortRelease(o, offset, v, newValue));
2712         return v;
2713     }
2714 
2715     @ForceInline
2716     public final short getAndSetShortAcquire(Object o, long offset, short newValue) {
2717         short v;
2718         do {
2719             v = getShortAcquire(o, offset);
2720         } while (!weakCompareAndSwapShortAcquire(o, offset, v, newValue));
2721         return v;
2722     }
2723 
2724     @ForceInline
2725     public final char getAndSetChar(Object o, long offset, char newValue) {
2726         return s2c(getAndSetShort(o, offset, c2s(newValue)));
2727     }
2728 
2729     @ForceInline
2730     public final char getAndSetCharRelease(Object o, long offset, char newValue) {
2731         return s2c(getAndSetShortRelease(o, offset, c2s(newValue)));
2732     }
2733 
2734     @ForceInline
2735     public final char getAndSetCharAcquire(Object o, long offset, char newValue) {
2736         return s2c(getAndSetShortAcquire(o, offset, c2s(newValue)));
2737     }
2738 
2739     @ForceInline
2740     public final float getAndSetFloat(Object o, long offset, float newValue) {
2741         int v = getAndSetInt(o, offset, Float.floatToRawIntBits(newValue));
2742         return Float.intBitsToFloat(v);
2743     }
2744 
2745     @ForceInline
2746     public final float getAndSetFloatRelease(Object o, long offset, float newValue) {
2747         int v = getAndSetIntRelease(o, offset, Float.floatToRawIntBits(newValue));
2748         return Float.intBitsToFloat(v);
2749     }
2750 
2751     @ForceInline
2752     public final float getAndSetFloatAcquire(Object o, long offset, float newValue) {
2753         int v = getAndSetIntAcquire(o, offset, Float.floatToRawIntBits(newValue));
2754         return Float.intBitsToFloat(v);
2755     }
2756 
2757     @ForceInline
2758     public final double getAndSetDouble(Object o, long offset, double newValue) {
2759         long v = getAndSetLong(o, offset, Double.doubleToRawLongBits(newValue));
2760         return Double.longBitsToDouble(v);
2761     }
2762 
2763     @ForceInline
2764     public final double getAndSetDoubleRelease(Object o, long offset, double newValue) {
2765         long v = getAndSetLongRelease(o, offset, Double.doubleToRawLongBits(newValue));
2766         return Double.longBitsToDouble(v);
2767     }
2768 
2769     @ForceInline
2770     public final double getAndSetDoubleAcquire(Object o, long offset, double newValue) {
2771         long v = getAndSetLongAcquire(o, offset, Double.doubleToRawLongBits(newValue));
2772         return Double.longBitsToDouble(v);
2773     }
2774 
2775 
2776     // The following contain CAS-based Java implementations used on
2777     // platforms not supporting native instructions
2778 
2779     @ForceInline
2780     public final boolean getAndBitwiseOrBoolean(Object o, long offset, boolean mask) {
2781         return byte2bool(getAndBitwiseOrByte(o, offset, bool2byte(mask)));
2782     }
2783 
2784     @ForceInline
2785     public final boolean getAndBitwiseOrBooleanRelease(Object o, long offset, boolean mask) {
2786         return byte2bool(getAndBitwiseOrByteRelease(o, offset, bool2byte(mask)));
2787     }
2788 
2789     @ForceInline
2790     public final boolean getAndBitwiseOrBooleanAcquire(Object o, long offset, boolean mask) {
2791         return byte2bool(getAndBitwiseOrByteAcquire(o, offset, bool2byte(mask)));
2792     }
2793 
2794     @ForceInline
2795     public final boolean getAndBitwiseAndBoolean(Object o, long offset, boolean mask) {
2796         return byte2bool(getAndBitwiseAndByte(o, offset, bool2byte(mask)));
2797     }
2798 
2799     @ForceInline
2800     public final boolean getAndBitwiseAndBooleanRelease(Object o, long offset, boolean mask) {
2801         return byte2bool(getAndBitwiseAndByteRelease(o, offset, bool2byte(mask)));
2802     }
2803 
2804     @ForceInline
2805     public final boolean getAndBitwiseAndBooleanAcquire(Object o, long offset, boolean mask) {
2806         return byte2bool(getAndBitwiseAndByteAcquire(o, offset, bool2byte(mask)));
2807     }
2808 
2809     @ForceInline
2810     public final boolean getAndBitwiseXorBoolean(Object o, long offset, boolean mask) {
2811         return byte2bool(getAndBitwiseXorByte(o, offset, bool2byte(mask)));
2812     }
2813 
2814     @ForceInline
2815     public final boolean getAndBitwiseXorBooleanRelease(Object o, long offset, boolean mask) {
2816         return byte2bool(getAndBitwiseXorByteRelease(o, offset, bool2byte(mask)));
2817     }
2818 
2819     @ForceInline
2820     public final boolean getAndBitwiseXorBooleanAcquire(Object o, long offset, boolean mask) {
2821         return byte2bool(getAndBitwiseXorByteAcquire(o, offset, bool2byte(mask)));
2822     }
2823 
2824 
2825     @ForceInline
2826     public final byte getAndBitwiseOrByte(Object o, long offset, byte mask) {
2827         byte current;
2828         do {
2829             current = getByteVolatile(o, offset);
2830         } while (!weakCompareAndSwapByteVolatile(o, offset,
2831                                                   current, (byte) (current | mask)));
2832         return current;
2833     }
2834 
2835     @ForceInline
2836     public final byte getAndBitwiseOrByteRelease(Object o, long offset, byte mask) {
2837         byte current;
2838         do {
2839             current = getByte(o, offset);
2840         } while (!weakCompareAndSwapByteRelease(o, offset,
2841                                                  current, (byte) (current | mask)));
2842         return current;
2843     }
2844 
2845     @ForceInline
2846     public final byte getAndBitwiseOrByteAcquire(Object o, long offset, byte mask) {
2847         byte current;
2848         do {
2849             // Plain read, the value is a hint, the acquire CAS does the work
2850             current = getByte(o, offset);
2851         } while (!weakCompareAndSwapByteAcquire(o, offset,
2852                                                  current, (byte) (current | mask)));
2853         return current;
2854     }
2855 
2856     @ForceInline
2857     public final byte getAndBitwiseAndByte(Object o, long offset, byte mask) {
2858         byte current;
2859         do {
2860             current = getByteVolatile(o, offset);
2861         } while (!weakCompareAndSwapByteVolatile(o, offset,
2862                                                   current, (byte) (current & mask)));
2863         return current;
2864     }
2865 
2866     @ForceInline
2867     public final byte getAndBitwiseAndByteRelease(Object o, long offset, byte mask) {
2868         byte current;
2869         do {
2870             current = getByte(o, offset);
2871         } while (!weakCompareAndSwapByteRelease(o, offset,
2872                                                  current, (byte) (current & mask)));
2873         return current;
2874     }
2875 
2876     @ForceInline
2877     public final byte getAndBitwiseAndByteAcquire(Object o, long offset, byte mask) {
2878         byte current;
2879         do {
2880             // Plain read, the value is a hint, the acquire CAS does the work
2881             current = getByte(o, offset);
2882         } while (!weakCompareAndSwapByteAcquire(o, offset,
2883                                                  current, (byte) (current & mask)));
2884         return current;
2885     }
2886 
2887     @ForceInline
2888     public final byte getAndBitwiseXorByte(Object o, long offset, byte mask) {
2889         byte current;
2890         do {
2891             current = getByteVolatile(o, offset);
2892         } while (!weakCompareAndSwapByteVolatile(o, offset,
2893                                                   current, (byte) (current ^ mask)));
2894         return current;
2895     }
2896 
2897     @ForceInline
2898     public final byte getAndBitwiseXorByteRelease(Object o, long offset, byte mask) {
2899         byte current;
2900         do {
2901             current = getByte(o, offset);
2902         } while (!weakCompareAndSwapByteRelease(o, offset,
2903                                                  current, (byte) (current ^ mask)));
2904         return current;
2905     }
2906 
2907     @ForceInline
2908     public final byte getAndBitwiseXorByteAcquire(Object o, long offset, byte mask) {
2909         byte current;
2910         do {
2911             // Plain read, the value is a hint, the acquire CAS does the work
2912             current = getByte(o, offset);
2913         } while (!weakCompareAndSwapByteAcquire(o, offset,
2914                                                  current, (byte) (current ^ mask)));
2915         return current;
2916     }
2917 
2918 
2919     @ForceInline
2920     public final char getAndBitwiseOrChar(Object o, long offset, char mask) {
2921         return s2c(getAndBitwiseOrShort(o, offset, c2s(mask)));
2922     }
2923 
2924     @ForceInline
2925     public final char getAndBitwiseOrCharRelease(Object o, long offset, char mask) {
2926         return s2c(getAndBitwiseOrShortRelease(o, offset, c2s(mask)));
2927     }
2928 
2929     @ForceInline
2930     public final char getAndBitwiseOrCharAcquire(Object o, long offset, char mask) {
2931         return s2c(getAndBitwiseOrShortAcquire(o, offset, c2s(mask)));
2932     }
2933 
2934     @ForceInline
2935     public final char getAndBitwiseAndChar(Object o, long offset, char mask) {
2936         return s2c(getAndBitwiseAndShort(o, offset, c2s(mask)));
2937     }
2938 
2939     @ForceInline
2940     public final char getAndBitwiseAndCharRelease(Object o, long offset, char mask) {
2941         return s2c(getAndBitwiseAndShortRelease(o, offset, c2s(mask)));
2942     }
2943 
2944     @ForceInline
2945     public final char getAndBitwiseAndCharAcquire(Object o, long offset, char mask) {
2946         return s2c(getAndBitwiseAndShortAcquire(o, offset, c2s(mask)));
2947     }
2948 
2949     @ForceInline
2950     public final char getAndBitwiseXorChar(Object o, long offset, char mask) {
2951         return s2c(getAndBitwiseXorShort(o, offset, c2s(mask)));
2952     }
2953 
2954     @ForceInline
2955     public final char getAndBitwiseXorCharRelease(Object o, long offset, char mask) {
2956         return s2c(getAndBitwiseXorShortRelease(o, offset, c2s(mask)));
2957     }
2958 
2959     @ForceInline
2960     public final char getAndBitwiseXorCharAcquire(Object o, long offset, char mask) {
2961         return s2c(getAndBitwiseXorShortAcquire(o, offset, c2s(mask)));
2962     }
2963 
2964 
2965     @ForceInline
2966     public final short getAndBitwiseOrShort(Object o, long offset, short mask) {
2967         short current;
2968         do {
2969             current = getShortVolatile(o, offset);
2970         } while (!weakCompareAndSwapShortVolatile(o, offset,
2971                                                 current, (short) (current | mask)));
2972         return current;
2973     }
2974 
2975     @ForceInline
2976     public final short getAndBitwiseOrShortRelease(Object o, long offset, short mask) {
2977         short current;
2978         do {
2979             current = getShort(o, offset);
2980         } while (!weakCompareAndSwapShortRelease(o, offset,
2981                                                current, (short) (current | mask)));
2982         return current;
2983     }
2984 
2985     @ForceInline
2986     public final short getAndBitwiseOrShortAcquire(Object o, long offset, short mask) {
2987         short current;
2988         do {
2989             // Plain read, the value is a hint, the acquire CAS does the work
2990             current = getShort(o, offset);
2991         } while (!weakCompareAndSwapShortAcquire(o, offset,
2992                                                current, (short) (current | mask)));
2993         return current;
2994     }
2995 
2996     @ForceInline
2997     public final short getAndBitwiseAndShort(Object o, long offset, short mask) {
2998         short current;
2999         do {
3000             current = getShortVolatile(o, offset);
3001         } while (!weakCompareAndSwapShortVolatile(o, offset,
3002                                                 current, (short) (current & mask)));
3003         return current;
3004     }
3005 
3006     @ForceInline
3007     public final short getAndBitwiseAndShortRelease(Object o, long offset, short mask) {
3008         short current;
3009         do {
3010             current = getShort(o, offset);
3011         } while (!weakCompareAndSwapShortRelease(o, offset,
3012                                                current, (short) (current & mask)));
3013         return current;
3014     }
3015 
3016     @ForceInline
3017     public final short getAndBitwiseAndShortAcquire(Object o, long offset, short mask) {
3018         short current;
3019         do {
3020             // Plain read, the value is a hint, the acquire CAS does the work
3021             current = getShort(o, offset);
3022         } while (!weakCompareAndSwapShortAcquire(o, offset,
3023                                                current, (short) (current & mask)));
3024         return current;
3025     }
3026 
3027     @ForceInline
3028     public final short getAndBitwiseXorShort(Object o, long offset, short mask) {
3029         short current;
3030         do {
3031             current = getShortVolatile(o, offset);
3032         } while (!weakCompareAndSwapShortVolatile(o, offset,
3033                                                 current, (short) (current ^ mask)));
3034         return current;
3035     }
3036 
3037     @ForceInline
3038     public final short getAndBitwiseXorShortRelease(Object o, long offset, short mask) {
3039         short current;
3040         do {
3041             current = getShort(o, offset);
3042         } while (!weakCompareAndSwapShortRelease(o, offset,
3043                                                current, (short) (current ^ mask)));
3044         return current;
3045     }
3046 
3047     @ForceInline
3048     public final short getAndBitwiseXorShortAcquire(Object o, long offset, short mask) {
3049         short current;
3050         do {
3051             // Plain read, the value is a hint, the acquire CAS does the work
3052             current = getShort(o, offset);
3053         } while (!weakCompareAndSwapShortAcquire(o, offset,
3054                                                current, (short) (current ^ mask)));
3055         return current;
3056     }
3057 
3058 
3059     @ForceInline
3060     public final int getAndBitwiseOrInt(Object o, long offset, int mask) {
3061         int current;
3062         do {
3063             current = getIntVolatile(o, offset);
3064         } while (!weakCompareAndSwapIntVolatile(o, offset,
3065                                                 current, current | mask));
3066         return current;
3067     }
3068 
3069     @ForceInline
3070     public final int getAndBitwiseOrIntRelease(Object o, long offset, int mask) {
3071         int current;
3072         do {
3073             current = getInt(o, offset);
3074         } while (!weakCompareAndSwapIntRelease(o, offset,
3075                                                current, current | mask));
3076         return current;
3077     }
3078 
3079     @ForceInline
3080     public final int getAndBitwiseOrIntAcquire(Object o, long offset, int mask) {
3081         int current;
3082         do {
3083             // Plain read, the value is a hint, the acquire CAS does the work
3084             current = getInt(o, offset);
3085         } while (!weakCompareAndSwapIntAcquire(o, offset,
3086                                                current, current | mask));
3087         return current;
3088     }
3089 
3090     /**
3091      * Atomically replaces the current value of a field or array element within
3092      * the given object with the result of bitwise AND between the current value
3093      * and mask.
3094      *
3095      * @param o object/array to update the field/element in
3096      * @param offset field/element offset
3097      * @param mask the mask value
3098      * @return the previous value
3099      * @since 1.9
3100      */
3101     @ForceInline
3102     public final int getAndBitwiseAndInt(Object o, long offset, int mask) {
3103         int current;
3104         do {
3105             current = getIntVolatile(o, offset);
3106         } while (!weakCompareAndSwapIntVolatile(o, offset,
3107                                                 current, current & mask));
3108         return current;
3109     }
3110 
3111     @ForceInline
3112     public final int getAndBitwiseAndIntRelease(Object o, long offset, int mask) {
3113         int current;
3114         do {
3115             current = getInt(o, offset);
3116         } while (!weakCompareAndSwapIntRelease(o, offset,
3117                                                current, current & mask));
3118         return current;
3119     }
3120 
3121     @ForceInline
3122     public final int getAndBitwiseAndIntAcquire(Object o, long offset, int mask) {
3123         int current;
3124         do {
3125             // Plain read, the value is a hint, the acquire CAS does the work
3126             current = getInt(o, offset);
3127         } while (!weakCompareAndSwapIntAcquire(o, offset,
3128                                                current, current & mask));
3129         return current;
3130     }
3131 
3132     @ForceInline
3133     public final int getAndBitwiseXorInt(Object o, long offset, int mask) {
3134         int current;
3135         do {
3136             current = getIntVolatile(o, offset);
3137         } while (!weakCompareAndSwapIntVolatile(o, offset,
3138                                                 current, current ^ mask));
3139         return current;
3140     }
3141 
3142     @ForceInline
3143     public final int getAndBitwiseXorIntRelease(Object o, long offset, int mask) {
3144         int current;
3145         do {
3146             current = getInt(o, offset);
3147         } while (!weakCompareAndSwapIntRelease(o, offset,
3148                                                current, current ^ mask));
3149         return current;
3150     }
3151 
3152     @ForceInline
3153     public final int getAndBitwiseXorIntAcquire(Object o, long offset, int mask) {
3154         int current;
3155         do {
3156             // Plain read, the value is a hint, the acquire CAS does the work
3157             current = getInt(o, offset);
3158         } while (!weakCompareAndSwapIntAcquire(o, offset,
3159                                                current, current ^ mask));
3160         return current;
3161     }
3162 
3163 
3164     @ForceInline
3165     public final long getAndBitwiseOrLong(Object o, long offset, long mask) {
3166         long current;
3167         do {
3168             current = getLongVolatile(o, offset);
3169         } while (!weakCompareAndSwapLongVolatile(o, offset,
3170                                                 current, current | mask));
3171         return current;
3172     }
3173 
3174     @ForceInline
3175     public final long getAndBitwiseOrLongRelease(Object o, long offset, long mask) {
3176         long current;
3177         do {
3178             current = getLong(o, offset);
3179         } while (!weakCompareAndSwapLongRelease(o, offset,
3180                                                current, current | mask));
3181         return current;
3182     }
3183 
3184     @ForceInline
3185     public final long getAndBitwiseOrLongAcquire(Object o, long offset, long mask) {
3186         long current;
3187         do {
3188             // Plain read, the value is a hint, the acquire CAS does the work
3189             current = getLong(o, offset);
3190         } while (!weakCompareAndSwapLongAcquire(o, offset,
3191                                                current, current | mask));
3192         return current;
3193     }
3194 
3195     @ForceInline
3196     public final long getAndBitwiseAndLong(Object o, long offset, long mask) {
3197         long current;
3198         do {
3199             current = getLongVolatile(o, offset);
3200         } while (!weakCompareAndSwapLongVolatile(o, offset,
3201                                                 current, current & mask));
3202         return current;
3203     }
3204 
3205     @ForceInline
3206     public final long getAndBitwiseAndLongRelease(Object o, long offset, long mask) {
3207         long current;
3208         do {
3209             current = getLong(o, offset);
3210         } while (!weakCompareAndSwapLongRelease(o, offset,
3211                                                current, current & mask));
3212         return current;
3213     }
3214 
3215     @ForceInline
3216     public final long getAndBitwiseAndLongAcquire(Object o, long offset, long mask) {
3217         long current;
3218         do {
3219             // Plain read, the value is a hint, the acquire CAS does the work
3220             current = getLong(o, offset);
3221         } while (!weakCompareAndSwapLongAcquire(o, offset,
3222                                                current, current & mask));
3223         return current;
3224     }
3225 
3226     @ForceInline
3227     public final long getAndBitwiseXorLong(Object o, long offset, long mask) {
3228         long current;
3229         do {
3230             current = getLongVolatile(o, offset);
3231         } while (!weakCompareAndSwapLongVolatile(o, offset,
3232                                                 current, current ^ mask));
3233         return current;
3234     }
3235 
3236     @ForceInline
3237     public final long getAndBitwiseXorLongRelease(Object o, long offset, long mask) {
3238         long current;
3239         do {
3240             current = getLong(o, offset);
3241         } while (!weakCompareAndSwapLongRelease(o, offset,
3242                                                current, current ^ mask));
3243         return current;
3244     }
3245 
3246     @ForceInline
3247     public final long getAndBitwiseXorLongAcquire(Object o, long offset, long mask) {
3248         long current;
3249         do {
3250             // Plain read, the value is a hint, the acquire CAS does the work
3251             current = getLong(o, offset);
3252         } while (!weakCompareAndSwapLongAcquire(o, offset,
3253                                                current, current ^ mask));
3254         return current;
3255     }
3256 
3257     /**
3258      * Deallocates the underlying memory, if any, associated with the given
3259      * direct byte buffer.
3260      *
3261      * @param directBuffer a direct byte buffer
3262      * @throws NullPointerException if {@code directBuffer} is null
3263      * @throws IllegalArgumentException if {@code directBuffer} is non-direct
3264      * @since 9
3265      */
3266     public void deallocate(ByteBuffer directBuffer) {
3267         if (!directBuffer.isDirect())
3268             throw new IllegalArgumentException("buffer is non-direct");
3269 
3270         Cleaner cleaner = ((DirectBuffer)directBuffer).cleaner();
3271         if (cleaner != null) {
3272             cleaner.clean();
3273         }
3274     }
3275 
3276 
3277 
3278     /**
3279      * Ensures that loads before the fence will not be reordered with loads and
3280      * stores after the fence; a "LoadLoad plus LoadStore barrier".
3281      *
3282      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
3283      * (an "acquire fence").
3284      *
3285      * A pure LoadLoad fence is not provided, since the addition of LoadStore
3286      * is almost always desired, and most current hardware instructions that
3287      * provide a LoadLoad barrier also provide a LoadStore barrier for free.
3288      * @since 1.8
3289      */
3290     @HotSpotIntrinsicCandidate
3291     public native void loadFence();
3292 
3293     /**
3294      * Ensures that loads and stores before the fence will not be reordered with
3295      * stores after the fence; a "StoreStore plus LoadStore barrier".
3296      *
3297      * Corresponds to C11 atomic_thread_fence(memory_order_release)
3298      * (a "release fence").
3299      *
3300      * A pure StoreStore fence is not provided, since the addition of LoadStore
3301      * is almost always desired, and most current hardware instructions that
3302      * provide a StoreStore barrier also provide a LoadStore barrier for free.
3303      * @since 1.8
3304      */
3305     @HotSpotIntrinsicCandidate
3306     public native void storeFence();
3307 
3308     /**
3309      * Ensures that loads and stores before the fence will not be reordered
3310      * with loads and stores after the fence.  Implies the effects of both
3311      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
3312      * barrier.
3313      *
3314      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
3315      * @since 1.8
3316      */
3317     @HotSpotIntrinsicCandidate
3318     public native void fullFence();
3319 
3320     /**
3321      * Ensures that loads before the fence will not be reordered with
3322      * loads after the fence.
3323      */
3324     public final void loadLoadFence() {
3325         loadFence();
3326     }
3327 
3328     /**
3329      * Ensures that stores before the fence will not be reordered with
3330      * stores after the fence.
3331      */
3332     public final void storeStoreFence() {
3333         storeFence();
3334     }
3335 
3336 
3337     /**
3338      * Throws IllegalAccessError; for use by the VM for access control
3339      * error support.
3340      * @since 1.8
3341      */
3342     private static void throwIllegalAccessError() {
3343         throw new IllegalAccessError();
3344     }
3345 
3346     /**
3347      * @return Returns true if the native byte ordering of this
3348      * platform is big-endian, false if it is little-endian.
3349      */
3350     public final boolean isBigEndian() { return BE; }
3351 
3352     /**
3353      * @return Returns true if this platform is capable of performing
3354      * accesses at addresses which are not aligned for the type of the
3355      * primitive type being accessed, false otherwise.
3356      */
3357     public final boolean unalignedAccess() { return unalignedAccess; }
3358 
3359     /**
3360      * Fetches a value at some byte offset into a given Java object.
3361      * More specifically, fetches a value within the given object
3362      * <code>o</code> at the given offset, or (if <code>o</code> is
3363      * null) from the memory address whose numerical value is the
3364      * given offset.  <p>
3365      *
3366      * The specification of this method is the same as {@link
3367      * #getLong(Object, long)} except that the offset does not need to
3368      * have been obtained from {@link #objectFieldOffset} on the
3369      * {@link java.lang.reflect.Field} of some Java field.  The value
3370      * in memory is raw data, and need not correspond to any Java
3371      * variable.  Unless <code>o</code> is null, the value accessed
3372      * must be entirely within the allocated object.  The endianness
3373      * of the value in memory is the endianness of the native platform.
3374      *
3375      * <p> The read will be atomic with respect to the largest power
3376      * of two that divides the GCD of the offset and the storage size.
3377      * For example, getLongUnaligned will make atomic reads of 2-, 4-,
3378      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
3379      * respectively.  There are no other guarantees of atomicity.
3380      * <p>
3381      * 8-byte atomicity is only guaranteed on platforms on which
3382      * support atomic accesses to longs.
3383      *
3384      * @param o Java heap object in which the value resides, if any, else
3385      *        null
3386      * @param offset The offset in bytes from the start of the object
3387      * @return the value fetched from the indicated object
3388      * @throws RuntimeException No defined exceptions are thrown, not even
3389      *         {@link NullPointerException}
3390      * @since 9
3391      */
3392     @HotSpotIntrinsicCandidate
3393     public final long getLongUnaligned(Object o, long offset) {
3394         if ((offset & 7) == 0) {
3395             return getLong(o, offset);
3396         } else if ((offset & 3) == 0) {
3397             return makeLong(getInt(o, offset),
3398                             getInt(o, offset + 4));
3399         } else if ((offset & 1) == 0) {
3400             return makeLong(getShort(o, offset),
3401                             getShort(o, offset + 2),
3402                             getShort(o, offset + 4),
3403                             getShort(o, offset + 6));
3404         } else {
3405             return makeLong(getByte(o, offset),
3406                             getByte(o, offset + 1),
3407                             getByte(o, offset + 2),
3408                             getByte(o, offset + 3),
3409                             getByte(o, offset + 4),
3410                             getByte(o, offset + 5),
3411                             getByte(o, offset + 6),
3412                             getByte(o, offset + 7));
3413         }
3414     }
3415     /**
3416      * As {@link #getLongUnaligned(Object, long)} but with an
3417      * additional argument which specifies the endianness of the value
3418      * as stored in memory.
3419      *
3420      * @param o Java heap object in which the variable resides
3421      * @param offset The offset in bytes from the start of the object
3422      * @param bigEndian The endianness of the value
3423      * @return the value fetched from the indicated object
3424      * @since 9
3425      */
3426     public final long getLongUnaligned(Object o, long offset, boolean bigEndian) {
3427         return convEndian(bigEndian, getLongUnaligned(o, offset));
3428     }
3429 
3430     /** @see #getLongUnaligned(Object, long) */
3431     @HotSpotIntrinsicCandidate
3432     public final int getIntUnaligned(Object o, long offset) {
3433         if ((offset & 3) == 0) {
3434             return getInt(o, offset);
3435         } else if ((offset & 1) == 0) {
3436             return makeInt(getShort(o, offset),
3437                            getShort(o, offset + 2));
3438         } else {
3439             return makeInt(getByte(o, offset),
3440                            getByte(o, offset + 1),
3441                            getByte(o, offset + 2),
3442                            getByte(o, offset + 3));
3443         }
3444     }
3445     /** @see #getLongUnaligned(Object, long, boolean) */
3446     public final int getIntUnaligned(Object o, long offset, boolean bigEndian) {
3447         return convEndian(bigEndian, getIntUnaligned(o, offset));
3448     }
3449 
3450     /** @see #getLongUnaligned(Object, long) */
3451     @HotSpotIntrinsicCandidate
3452     public final short getShortUnaligned(Object o, long offset) {
3453         if ((offset & 1) == 0) {
3454             return getShort(o, offset);
3455         } else {
3456             return makeShort(getByte(o, offset),
3457                              getByte(o, offset + 1));
3458         }
3459     }
3460     /** @see #getLongUnaligned(Object, long, boolean) */
3461     public final short getShortUnaligned(Object o, long offset, boolean bigEndian) {
3462         return convEndian(bigEndian, getShortUnaligned(o, offset));
3463     }
3464 
3465     /** @see #getLongUnaligned(Object, long) */
3466     @HotSpotIntrinsicCandidate
3467     public final char getCharUnaligned(Object o, long offset) {
3468         if ((offset & 1) == 0) {
3469             return getChar(o, offset);
3470         } else {
3471             return (char)makeShort(getByte(o, offset),
3472                                    getByte(o, offset + 1));
3473         }
3474     }
3475 
3476     /** @see #getLongUnaligned(Object, long, boolean) */
3477     public final char getCharUnaligned(Object o, long offset, boolean bigEndian) {
3478         return convEndian(bigEndian, getCharUnaligned(o, offset));
3479     }
3480 
3481     /**
3482      * Stores a value at some byte offset into a given Java object.
3483      * <p>
3484      * The specification of this method is the same as {@link
3485      * #getLong(Object, long)} except that the offset does not need to
3486      * have been obtained from {@link #objectFieldOffset} on the
3487      * {@link java.lang.reflect.Field} of some Java field.  The value
3488      * in memory is raw data, and need not correspond to any Java
3489      * variable.  The endianness of the value in memory is the
3490      * endianness of the native platform.
3491      * <p>
3492      * The write will be atomic with respect to the largest power of
3493      * two that divides the GCD of the offset and the storage size.
3494      * For example, putLongUnaligned will make atomic writes of 2-, 4-,
3495      * or 8-byte storage units if the offset is zero mod 2, 4, or 8,
3496      * respectively.  There are no other guarantees of atomicity.
3497      * <p>
3498      * 8-byte atomicity is only guaranteed on platforms on which
3499      * support atomic accesses to longs.
3500      *
3501      * @param o Java heap object in which the value resides, if any, else
3502      *        null
3503      * @param offset The offset in bytes from the start of the object
3504      * @param x the value to store
3505      * @throws RuntimeException No defined exceptions are thrown, not even
3506      *         {@link NullPointerException}
3507      * @since 9
3508      */
3509     @HotSpotIntrinsicCandidate
3510     public final void putLongUnaligned(Object o, long offset, long x) {
3511         if ((offset & 7) == 0) {
3512             putLong(o, offset, x);
3513         } else if ((offset & 3) == 0) {
3514             putLongParts(o, offset,
3515                          (int)(x >> 0),
3516                          (int)(x >>> 32));
3517         } else if ((offset & 1) == 0) {
3518             putLongParts(o, offset,
3519                          (short)(x >>> 0),
3520                          (short)(x >>> 16),
3521                          (short)(x >>> 32),
3522                          (short)(x >>> 48));
3523         } else {
3524             putLongParts(o, offset,
3525                          (byte)(x >>> 0),
3526                          (byte)(x >>> 8),
3527                          (byte)(x >>> 16),
3528                          (byte)(x >>> 24),
3529                          (byte)(x >>> 32),
3530                          (byte)(x >>> 40),
3531                          (byte)(x >>> 48),
3532                          (byte)(x >>> 56));
3533         }
3534     }
3535 
3536     /**
3537      * As {@link #putLongUnaligned(Object, long, long)} but with an additional
3538      * argument which specifies the endianness of the value as stored in memory.
3539      * @param o Java heap object in which the value resides
3540      * @param offset The offset in bytes from the start of the object
3541      * @param x the value to store
3542      * @param bigEndian The endianness of the value
3543      * @throws RuntimeException No defined exceptions are thrown, not even
3544      *         {@link NullPointerException}
3545      * @since 9
3546      */
3547     public final void putLongUnaligned(Object o, long offset, long x, boolean bigEndian) {
3548         putLongUnaligned(o, offset, convEndian(bigEndian, x));
3549     }
3550 
3551     /** @see #putLongUnaligned(Object, long, long) */
3552     @HotSpotIntrinsicCandidate
3553     public final void putIntUnaligned(Object o, long offset, int x) {
3554         if ((offset & 3) == 0) {
3555             putInt(o, offset, x);
3556         } else if ((offset & 1) == 0) {
3557             putIntParts(o, offset,
3558                         (short)(x >> 0),
3559                         (short)(x >>> 16));
3560         } else {
3561             putIntParts(o, offset,
3562                         (byte)(x >>> 0),
3563                         (byte)(x >>> 8),
3564                         (byte)(x >>> 16),
3565                         (byte)(x >>> 24));
3566         }
3567     }
3568     /** @see #putLongUnaligned(Object, long, long, boolean) */
3569     public final void putIntUnaligned(Object o, long offset, int x, boolean bigEndian) {
3570         putIntUnaligned(o, offset, convEndian(bigEndian, x));
3571     }
3572 
3573     /** @see #putLongUnaligned(Object, long, long) */
3574     @HotSpotIntrinsicCandidate
3575     public final void putShortUnaligned(Object o, long offset, short x) {
3576         if ((offset & 1) == 0) {
3577             putShort(o, offset, x);
3578         } else {
3579             putShortParts(o, offset,
3580                           (byte)(x >>> 0),
3581                           (byte)(x >>> 8));
3582         }
3583     }
3584     /** @see #putLongUnaligned(Object, long, long, boolean) */
3585     public final void putShortUnaligned(Object o, long offset, short x, boolean bigEndian) {
3586         putShortUnaligned(o, offset, convEndian(bigEndian, x));
3587     }
3588 
3589     /** @see #putLongUnaligned(Object, long, long) */
3590     @HotSpotIntrinsicCandidate
3591     public final void putCharUnaligned(Object o, long offset, char x) {
3592         putShortUnaligned(o, offset, (short)x);
3593     }
3594     /** @see #putLongUnaligned(Object, long, long, boolean) */
3595     public final void putCharUnaligned(Object o, long offset, char x, boolean bigEndian) {
3596         putCharUnaligned(o, offset, convEndian(bigEndian, x));
3597     }
3598 
3599     // JVM interface methods
3600     // BE is true iff the native endianness of this platform is big.
3601     private static final boolean BE = theUnsafe.isBigEndian0();
3602 
3603     // unalignedAccess is true iff this platform can perform unaligned accesses.
3604     private static final boolean unalignedAccess = theUnsafe.unalignedAccess0();
3605 
3606     private static int pickPos(int top, int pos) { return BE ? top - pos : pos; }
3607 
3608     // These methods construct integers from bytes.  The byte ordering
3609     // is the native endianness of this platform.
3610     private static long makeLong(byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
3611         return ((toUnsignedLong(i0) << pickPos(56, 0))
3612               | (toUnsignedLong(i1) << pickPos(56, 8))
3613               | (toUnsignedLong(i2) << pickPos(56, 16))
3614               | (toUnsignedLong(i3) << pickPos(56, 24))
3615               | (toUnsignedLong(i4) << pickPos(56, 32))
3616               | (toUnsignedLong(i5) << pickPos(56, 40))
3617               | (toUnsignedLong(i6) << pickPos(56, 48))
3618               | (toUnsignedLong(i7) << pickPos(56, 56)));
3619     }
3620     private static long makeLong(short i0, short i1, short i2, short i3) {
3621         return ((toUnsignedLong(i0) << pickPos(48, 0))
3622               | (toUnsignedLong(i1) << pickPos(48, 16))
3623               | (toUnsignedLong(i2) << pickPos(48, 32))
3624               | (toUnsignedLong(i3) << pickPos(48, 48)));
3625     }
3626     private static long makeLong(int i0, int i1) {
3627         return (toUnsignedLong(i0) << pickPos(32, 0))
3628              | (toUnsignedLong(i1) << pickPos(32, 32));
3629     }
3630     private static int makeInt(short i0, short i1) {
3631         return (toUnsignedInt(i0) << pickPos(16, 0))
3632              | (toUnsignedInt(i1) << pickPos(16, 16));
3633     }
3634     private static int makeInt(byte i0, byte i1, byte i2, byte i3) {
3635         return ((toUnsignedInt(i0) << pickPos(24, 0))
3636               | (toUnsignedInt(i1) << pickPos(24, 8))
3637               | (toUnsignedInt(i2) << pickPos(24, 16))
3638               | (toUnsignedInt(i3) << pickPos(24, 24)));
3639     }
3640     private static short makeShort(byte i0, byte i1) {
3641         return (short)((toUnsignedInt(i0) << pickPos(8, 0))
3642                      | (toUnsignedInt(i1) << pickPos(8, 8)));
3643     }
3644 
3645     private static byte  pick(byte  le, byte  be) { return BE ? be : le; }
3646     private static short pick(short le, short be) { return BE ? be : le; }
3647     private static int   pick(int   le, int   be) { return BE ? be : le; }
3648 
3649     // These methods write integers to memory from smaller parts
3650     // provided by their caller.  The ordering in which these parts
3651     // are written is the native endianness of this platform.
3652     private void putLongParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3, byte i4, byte i5, byte i6, byte i7) {
3653         putByte(o, offset + 0, pick(i0, i7));
3654         putByte(o, offset + 1, pick(i1, i6));
3655         putByte(o, offset + 2, pick(i2, i5));
3656         putByte(o, offset + 3, pick(i3, i4));
3657         putByte(o, offset + 4, pick(i4, i3));
3658         putByte(o, offset + 5, pick(i5, i2));
3659         putByte(o, offset + 6, pick(i6, i1));
3660         putByte(o, offset + 7, pick(i7, i0));
3661     }
3662     private void putLongParts(Object o, long offset, short i0, short i1, short i2, short i3) {
3663         putShort(o, offset + 0, pick(i0, i3));
3664         putShort(o, offset + 2, pick(i1, i2));
3665         putShort(o, offset + 4, pick(i2, i1));
3666         putShort(o, offset + 6, pick(i3, i0));
3667     }
3668     private void putLongParts(Object o, long offset, int i0, int i1) {
3669         putInt(o, offset + 0, pick(i0, i1));
3670         putInt(o, offset + 4, pick(i1, i0));
3671     }
3672     private void putIntParts(Object o, long offset, short i0, short i1) {
3673         putShort(o, offset + 0, pick(i0, i1));
3674         putShort(o, offset + 2, pick(i1, i0));
3675     }
3676     private void putIntParts(Object o, long offset, byte i0, byte i1, byte i2, byte i3) {
3677         putByte(o, offset + 0, pick(i0, i3));
3678         putByte(o, offset + 1, pick(i1, i2));
3679         putByte(o, offset + 2, pick(i2, i1));
3680         putByte(o, offset + 3, pick(i3, i0));
3681     }
3682     private void putShortParts(Object o, long offset, byte i0, byte i1) {
3683         putByte(o, offset + 0, pick(i0, i1));
3684         putByte(o, offset + 1, pick(i1, i0));
3685     }
3686 
3687     // Zero-extend an integer
3688     private static int toUnsignedInt(byte n)    { return n & 0xff; }
3689     private static int toUnsignedInt(short n)   { return n & 0xffff; }
3690     private static long toUnsignedLong(byte n)  { return n & 0xffl; }
3691     private static long toUnsignedLong(short n) { return n & 0xffffl; }
3692     private static long toUnsignedLong(int n)   { return n & 0xffffffffl; }
3693 
3694     // Maybe byte-reverse an integer
3695     private static char convEndian(boolean big, char n)   { return big == BE ? n : Character.reverseBytes(n); }
3696     private static short convEndian(boolean big, short n) { return big == BE ? n : Short.reverseBytes(n)    ; }
3697     private static int convEndian(boolean big, int n)     { return big == BE ? n : Integer.reverseBytes(n)  ; }
3698     private static long convEndian(boolean big, long n)   { return big == BE ? n : Long.reverseBytes(n)     ; }
3699 
3700 
3701 
3702     private native long allocateMemory0(long bytes);
3703     private native long reallocateMemory0(long address, long bytes);
3704     private native void freeMemory0(long address);
3705     private native void setMemory0(Object o, long offset, long bytes, byte value);
3706     @HotSpotIntrinsicCandidate
3707     private native void copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
3708     private native void copySwapMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes, long elemSize);
3709     private native long objectFieldOffset0(Field f);
3710     private native long staticFieldOffset0(Field f);
3711     private native Object staticFieldBase0(Field f);
3712     private native boolean shouldBeInitialized0(Class<?> c);
3713     private native void ensureClassInitialized0(Class<?> c);
3714     private native int arrayBaseOffset0(Class<?> arrayClass);
3715     private native int arrayIndexScale0(Class<?> arrayClass);
3716     private native int addressSize0();
3717     private native Class<?> defineAnonymousClass0(Class<?> hostClass, byte[] data, Object[] cpPatches);
3718     private native int getLoadAverage0(double[] loadavg, int nelems);
3719     private native boolean unalignedAccess0();
3720     private native boolean isBigEndian0();
3721 }