1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_MEMNODE_HPP
  26 #define SHARE_VM_OPTO_MEMNODE_HPP
  27 
  28 #include "opto/multnode.hpp"
  29 #include "opto/node.hpp"
  30 #include "opto/opcodes.hpp"
  31 #include "opto/type.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 class MultiNode;
  36 class PhaseCCP;
  37 class PhaseTransform;
  38 
  39 //------------------------------MemNode----------------------------------------
  40 // Load or Store, possibly throwing a NULL pointer exception
  41 class MemNode : public Node {
  42 protected:
  43 #ifdef ASSERT
  44   const TypePtr* _adr_type;     // What kind of memory is being addressed?
  45 #endif
  46   virtual uint size_of() const; // Size is bigger (ASSERT only)
  47 public:
  48   enum { Control,               // When is it safe to do this load?
  49          Memory,                // Chunk of memory is being loaded from
  50          Address,               // Actually address, derived from base
  51          ValueIn,               // Value to store
  52          OopStore               // Preceeding oop store, only in StoreCM
  53   };
  54   typedef enum { unordered = 0,
  55                  acquire,       // Load has to acquire or be succeeded by MemBarAcquire.
  56                  release        // Store has to release or be preceded by MemBarRelease.
  57   } MemOrd;
  58 protected:
  59   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at )
  60     : Node(c0,c1,c2   ) {
  61     init_class_id(Class_Mem);
  62     debug_only(_adr_type=at; adr_type();)
  63   }
  64   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3 )
  65     : Node(c0,c1,c2,c3) {
  66     init_class_id(Class_Mem);
  67     debug_only(_adr_type=at; adr_type();)
  68   }
  69   MemNode( Node *c0, Node *c1, Node *c2, const TypePtr* at, Node *c3, Node *c4)
  70     : Node(c0,c1,c2,c3,c4) {
  71     init_class_id(Class_Mem);
  72     debug_only(_adr_type=at; adr_type();)
  73   }
  74 
  75   virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { return NULL; }
  76 
  77 public:
  78   // Helpers for the optimizer.  Documented in memnode.cpp.
  79   static bool detect_ptr_independence(Node* p1, AllocateNode* a1,
  80                                       Node* p2, AllocateNode* a2,
  81                                       PhaseTransform* phase);
  82   static bool adr_phi_is_loop_invariant(Node* adr_phi, Node* cast);
  83 
  84   static Node *optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase);
  85   static Node *optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase);
  86   // This one should probably be a phase-specific function:
  87   static bool all_controls_dominate(Node* dom, Node* sub);
  88 
  89   virtual const class TypePtr *adr_type() const;  // returns bottom_type of address
  90 
  91   // Shared code for Ideal methods:
  92   Node *Ideal_common(PhaseGVN *phase, bool can_reshape);  // Return -1 for short-circuit NULL.
  93 
  94   // Helper function for adr_type() implementations.
  95   static const TypePtr* calculate_adr_type(const Type* t, const TypePtr* cross_check = NULL);
  96 
  97   // Raw access function, to allow copying of adr_type efficiently in
  98   // product builds and retain the debug info for debug builds.
  99   const TypePtr *raw_adr_type() const {
 100 #ifdef ASSERT
 101     return _adr_type;
 102 #else
 103     return 0;
 104 #endif
 105   }
 106 
 107   // Map a load or store opcode to its corresponding store opcode.
 108   // (Return -1 if unknown.)
 109   virtual int store_Opcode() const { return -1; }
 110 
 111   // What is the type of the value in memory?  (T_VOID mean "unspecified".)
 112   virtual BasicType memory_type() const = 0;
 113   virtual int memory_size() const {
 114 #ifdef ASSERT
 115     return type2aelembytes(memory_type(), true);
 116 #else
 117     return type2aelembytes(memory_type());
 118 #endif
 119   }
 120 
 121   // Search through memory states which precede this node (load or store).
 122   // Look for an exact match for the address, with no intervening
 123   // aliased stores.
 124   Node* find_previous_store(PhaseTransform* phase);
 125 
 126   // Can this node (load or store) accurately see a stored value in
 127   // the given memory state?  (The state may or may not be in(Memory).)
 128   Node* can_see_stored_value(Node* st, PhaseTransform* phase) const;
 129 
 130 #ifndef PRODUCT
 131   static void dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st);
 132   virtual void dump_spec(outputStream *st) const;
 133 #endif
 134 };
 135 
 136 //------------------------------LoadNode---------------------------------------
 137 // Load value; requires Memory and Address
 138 class LoadNode : public MemNode {
 139 public:
 140   // Some loads (from unsafe) should be pinned: they don't depend only
 141   // on the dominating test.  The boolean field _depends_only_on_test
 142   // below records whether that node depends only on the dominating
 143   // test.
 144   // Methods used to build LoadNodes pass an argument of type enum
 145   // ControlDependency instead of a boolean because those methods
 146   // typically have multiple boolean parameters with default values:
 147   // passing the wrong boolean to one of these parameters by mistake
 148   // goes easily unnoticed. Using an enum, the compiler can check that
 149   // the type of a value and the type of the parameter match.
 150   enum ControlDependency {
 151     Pinned,
 152     DependsOnlyOnTest
 153   };
 154 private:
 155   // LoadNode::hash() doesn't take the _depends_only_on_test field
 156   // into account: If the graph already has a non-pinned LoadNode and
 157   // we add a pinned LoadNode with the same inputs, it's safe for GVN
 158   // to replace the pinned LoadNode with the non-pinned LoadNode,
 159   // otherwise it wouldn't be safe to have a non pinned LoadNode with
 160   // those inputs in the first place. If the graph already has a
 161   // pinned LoadNode and we add a non pinned LoadNode with the same
 162   // inputs, it's safe (but suboptimal) for GVN to replace the
 163   // non-pinned LoadNode by the pinned LoadNode.
 164   bool _depends_only_on_test;
 165 
 166   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 167   // loads that can be reordered, and such requiring acquire semantics to
 168   // adhere to the Java specification.  The required behaviour is stored in
 169   // this field.
 170   const MemOrd _mo;
 171 
 172 protected:
 173   virtual uint cmp(const Node &n) const;
 174   virtual uint size_of() const; // Size is bigger
 175   // Should LoadNode::Ideal() attempt to remove control edges?
 176   virtual bool can_remove_control() const;
 177   const Type* const _type;      // What kind of value is loaded?
 178 
 179   virtual Node* find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const;
 180 public:
 181 
 182   LoadNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *rt, MemOrd mo, ControlDependency control_dependency)
 183     : MemNode(c,mem,adr,at), _type(rt), _mo(mo), _depends_only_on_test(control_dependency == DependsOnlyOnTest) {
 184     init_class_id(Class_Load);
 185   }
 186   inline bool is_unordered() const { return !is_acquire(); }
 187   inline bool is_acquire() const {
 188     assert(_mo == unordered || _mo == acquire, "unexpected");
 189     return _mo == acquire;
 190   }
 191 
 192   // Polymorphic factory method:
 193    static Node* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 194                      const TypePtr* at, const Type *rt, BasicType bt,
 195                      MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 196 
 197   virtual uint hash()   const;  // Check the type
 198 
 199   // Handle algebraic identities here.  If we have an identity, return the Node
 200   // we are equivalent to.  We look for Load of a Store.
 201   virtual Node *Identity( PhaseTransform *phase );
 202 
 203   // If the load is from Field memory and the pointer is non-null, it might be possible to
 204   // zero out the control input.
 205   // If the offset is constant and the base is an object allocation,
 206   // try to hook me up to the exact initializing store.
 207   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 208 
 209   // Split instance field load through Phi.
 210   Node* split_through_phi(PhaseGVN *phase);
 211 
 212   // Recover original value from boxed values
 213   Node *eliminate_autobox(PhaseGVN *phase);
 214 
 215   // Compute a new Type for this node.  Basically we just do the pre-check,
 216   // then call the virtual add() to set the type.
 217   virtual const Type *Value( PhaseTransform *phase ) const;
 218 
 219   // Common methods for LoadKlass and LoadNKlass nodes.
 220   const Type *klass_value_common( PhaseTransform *phase ) const;
 221   Node *klass_identity_common( PhaseTransform *phase );
 222 
 223   virtual uint ideal_reg() const;
 224   virtual const Type *bottom_type() const;
 225   // Following method is copied from TypeNode:
 226   void set_type(const Type* t) {
 227     assert(t != NULL, "sanity");
 228     debug_only(uint check_hash = (VerifyHashTableKeys && _hash_lock) ? hash() : NO_HASH);
 229     *(const Type**)&_type = t;   // cast away const-ness
 230     // If this node is in the hash table, make sure it doesn't need a rehash.
 231     assert(check_hash == NO_HASH || check_hash == hash(), "type change must preserve hash code");
 232   }
 233   const Type* type() const { assert(_type != NULL, "sanity"); return _type; };
 234 
 235   // Do not match memory edge
 236   virtual uint match_edge(uint idx) const;
 237 
 238   // Map a load opcode to its corresponding store opcode.
 239   virtual int store_Opcode() const = 0;
 240 
 241   // Check if the load's memory input is a Phi node with the same control.
 242   bool is_instance_field_load_with_local_phi(Node* ctrl);
 243 
 244 #ifndef PRODUCT
 245   virtual void dump_spec(outputStream *st) const;
 246 #endif
 247 #ifdef ASSERT
 248   // Helper function to allow a raw load without control edge for some cases
 249   static bool is_immutable_value(Node* adr);
 250 #endif
 251 protected:
 252   const Type* load_array_final_field(const TypeKlassPtr *tkls,
 253                                      ciKlass* klass) const;
 254 
 255   Node* can_see_arraycopy_value(Node* st, PhaseTransform* phase) const;
 256 
 257   // depends_only_on_test is almost always true, and needs to be almost always
 258   // true to enable key hoisting & commoning optimizations.  However, for the
 259   // special case of RawPtr loads from TLS top & end, and other loads performed by
 260   // GC barriers, the control edge carries the dependence preventing hoisting past
 261   // a Safepoint instead of the memory edge.  (An unfortunate consequence of having
 262   // Safepoints not set Raw Memory; itself an unfortunate consequence of having Nodes
 263   // which produce results (new raw memory state) inside of loops preventing all
 264   // manner of other optimizations).  Basically, it's ugly but so is the alternative.
 265   // See comment in macro.cpp, around line 125 expand_allocate_common().
 266   virtual bool depends_only_on_test() const { return adr_type() != TypeRawPtr::BOTTOM && _depends_only_on_test; }
 267 };
 268 
 269 //------------------------------LoadBNode--------------------------------------
 270 // Load a byte (8bits signed) from memory
 271 class LoadBNode : public LoadNode {
 272 public:
 273   LoadBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 274     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 275   virtual int Opcode() const;
 276   virtual uint ideal_reg() const { return Op_RegI; }
 277   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 278   virtual const Type *Value(PhaseTransform *phase) const;
 279   virtual int store_Opcode() const { return Op_StoreB; }
 280   virtual BasicType memory_type() const { return T_BYTE; }
 281 };
 282 
 283 //------------------------------LoadUBNode-------------------------------------
 284 // Load a unsigned byte (8bits unsigned) from memory
 285 class LoadUBNode : public LoadNode {
 286 public:
 287   LoadUBNode(Node* c, Node* mem, Node* adr, const TypePtr* at, const TypeInt* ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 288     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 289   virtual int Opcode() const;
 290   virtual uint ideal_reg() const { return Op_RegI; }
 291   virtual Node* Ideal(PhaseGVN *phase, bool can_reshape);
 292   virtual const Type *Value(PhaseTransform *phase) const;
 293   virtual int store_Opcode() const { return Op_StoreB; }
 294   virtual BasicType memory_type() const { return T_BYTE; }
 295 };
 296 
 297 //------------------------------LoadUSNode-------------------------------------
 298 // Load an unsigned short/char (16bits unsigned) from memory
 299 class LoadUSNode : public LoadNode {
 300 public:
 301   LoadUSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 302     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 303   virtual int Opcode() const;
 304   virtual uint ideal_reg() const { return Op_RegI; }
 305   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 306   virtual const Type *Value(PhaseTransform *phase) const;
 307   virtual int store_Opcode() const { return Op_StoreC; }
 308   virtual BasicType memory_type() const { return T_CHAR; }
 309 };
 310 
 311 //------------------------------LoadSNode--------------------------------------
 312 // Load a short (16bits signed) from memory
 313 class LoadSNode : public LoadNode {
 314 public:
 315   LoadSNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 316     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 317   virtual int Opcode() const;
 318   virtual uint ideal_reg() const { return Op_RegI; }
 319   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 320   virtual const Type *Value(PhaseTransform *phase) const;
 321   virtual int store_Opcode() const { return Op_StoreC; }
 322   virtual BasicType memory_type() const { return T_SHORT; }
 323 };
 324 
 325 //------------------------------LoadINode--------------------------------------
 326 // Load an integer from memory
 327 class LoadINode : public LoadNode {
 328 public:
 329   LoadINode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeInt *ti, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 330     : LoadNode(c, mem, adr, at, ti, mo, control_dependency) {}
 331   virtual int Opcode() const;
 332   virtual uint ideal_reg() const { return Op_RegI; }
 333   virtual int store_Opcode() const { return Op_StoreI; }
 334   virtual BasicType memory_type() const { return T_INT; }
 335 };
 336 
 337 //------------------------------LoadRangeNode----------------------------------
 338 // Load an array length from the array
 339 class LoadRangeNode : public LoadINode {
 340 public:
 341   LoadRangeNode(Node *c, Node *mem, Node *adr, const TypeInt *ti = TypeInt::POS)
 342     : LoadINode(c, mem, adr, TypeAryPtr::RANGE, ti, MemNode::unordered) {}
 343   virtual int Opcode() const;
 344   virtual const Type *Value( PhaseTransform *phase ) const;
 345   virtual Node *Identity( PhaseTransform *phase );
 346   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 347 };
 348 
 349 //------------------------------LoadLNode--------------------------------------
 350 // Load a long from memory
 351 class LoadLNode : public LoadNode {
 352   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 353   virtual uint cmp( const Node &n ) const {
 354     return _require_atomic_access == ((LoadLNode&)n)._require_atomic_access
 355       && LoadNode::cmp(n);
 356   }
 357   virtual uint size_of() const { return sizeof(*this); }
 358   const bool _require_atomic_access;  // is piecewise load forbidden?
 359 
 360 public:
 361   LoadLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const TypeLong *tl,
 362             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 363     : LoadNode(c, mem, adr, at, tl, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 364   virtual int Opcode() const;
 365   virtual uint ideal_reg() const { return Op_RegL; }
 366   virtual int store_Opcode() const { return Op_StoreL; }
 367   virtual BasicType memory_type() const { return T_LONG; }
 368   bool require_atomic_access() const { return _require_atomic_access; }
 369   static LoadLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 370                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 371 #ifndef PRODUCT
 372   virtual void dump_spec(outputStream *st) const {
 373     LoadNode::dump_spec(st);
 374     if (_require_atomic_access)  st->print(" Atomic!");
 375   }
 376 #endif
 377 };
 378 
 379 //------------------------------LoadL_unalignedNode----------------------------
 380 // Load a long from unaligned memory
 381 class LoadL_unalignedNode : public LoadLNode {
 382 public:
 383   LoadL_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 384     : LoadLNode(c, mem, adr, at, TypeLong::LONG, mo, control_dependency) {}
 385   virtual int Opcode() const;
 386 };
 387 
 388 //------------------------------LoadFNode--------------------------------------
 389 // Load a float (64 bits) from memory
 390 class LoadFNode : public LoadNode {
 391 public:
 392   LoadFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 393     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 394   virtual int Opcode() const;
 395   virtual uint ideal_reg() const { return Op_RegF; }
 396   virtual int store_Opcode() const { return Op_StoreF; }
 397   virtual BasicType memory_type() const { return T_FLOAT; }
 398 };
 399 
 400 //------------------------------LoadDNode--------------------------------------
 401 // Load a double (64 bits) from memory
 402 class LoadDNode : public LoadNode {
 403   virtual uint hash() const { return LoadNode::hash() + _require_atomic_access; }
 404   virtual uint cmp( const Node &n ) const {
 405     return _require_atomic_access == ((LoadDNode&)n)._require_atomic_access
 406       && LoadNode::cmp(n);
 407   }
 408   virtual uint size_of() const { return sizeof(*this); }
 409   const bool _require_atomic_access;  // is piecewise load forbidden?
 410 
 411 public:
 412   LoadDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, const Type *t,
 413             MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest, bool require_atomic_access = false)
 414     : LoadNode(c, mem, adr, at, t, mo, control_dependency), _require_atomic_access(require_atomic_access) {}
 415   virtual int Opcode() const;
 416   virtual uint ideal_reg() const { return Op_RegD; }
 417   virtual int store_Opcode() const { return Op_StoreD; }
 418   virtual BasicType memory_type() const { return T_DOUBLE; }
 419   bool require_atomic_access() const { return _require_atomic_access; }
 420   static LoadDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type,
 421                                 const Type* rt, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest);
 422 #ifndef PRODUCT
 423   virtual void dump_spec(outputStream *st) const {
 424     LoadNode::dump_spec(st);
 425     if (_require_atomic_access)  st->print(" Atomic!");
 426   }
 427 #endif
 428 };
 429 
 430 //------------------------------LoadD_unalignedNode----------------------------
 431 // Load a double from unaligned memory
 432 class LoadD_unalignedNode : public LoadDNode {
 433 public:
 434   LoadD_unalignedNode(Node *c, Node *mem, Node *adr, const TypePtr* at, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 435     : LoadDNode(c, mem, adr, at, Type::DOUBLE, mo, control_dependency) {}
 436   virtual int Opcode() const;
 437 };
 438 
 439 //------------------------------LoadPNode--------------------------------------
 440 // Load a pointer from memory (either object or array)
 441 class LoadPNode : public LoadNode {
 442 public:
 443   LoadPNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypePtr* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 444     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 445   virtual int Opcode() const;
 446   virtual uint ideal_reg() const { return Op_RegP; }
 447   virtual int store_Opcode() const { return Op_StoreP; }
 448   virtual BasicType memory_type() const { return T_ADDRESS; }
 449 };
 450 
 451 
 452 //------------------------------LoadNNode--------------------------------------
 453 // Load a narrow oop from memory (either object or array)
 454 class LoadNNode : public LoadNode {
 455 public:
 456   LoadNNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const Type* t, MemOrd mo, ControlDependency control_dependency = DependsOnlyOnTest)
 457     : LoadNode(c, mem, adr, at, t, mo, control_dependency) {}
 458   virtual int Opcode() const;
 459   virtual uint ideal_reg() const { return Op_RegN; }
 460   virtual int store_Opcode() const { return Op_StoreN; }
 461   virtual BasicType memory_type() const { return T_NARROWOOP; }
 462 };
 463 
 464 //------------------------------LoadKlassNode----------------------------------
 465 // Load a Klass from an object
 466 class LoadKlassNode : public LoadPNode {
 467 protected:
 468   // In most cases, LoadKlassNode does not have the control input set. If the control
 469   // input is set, it must not be removed (by LoadNode::Ideal()).
 470   virtual bool can_remove_control() const;
 471 public:
 472   LoadKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeKlassPtr *tk, MemOrd mo)
 473     : LoadPNode(c, mem, adr, at, tk, mo) {}
 474   virtual int Opcode() const;
 475   virtual const Type *Value( PhaseTransform *phase ) const;
 476   virtual Node *Identity( PhaseTransform *phase );
 477   virtual bool depends_only_on_test() const { return true; }
 478 
 479   // Polymorphic factory method:
 480   static Node* make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at,
 481                     const TypeKlassPtr* tk = TypeKlassPtr::OBJECT);
 482 };
 483 
 484 //------------------------------LoadNKlassNode---------------------------------
 485 // Load a narrow Klass from an object.
 486 class LoadNKlassNode : public LoadNNode {
 487 public:
 488   LoadNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr *at, const TypeNarrowKlass *tk, MemOrd mo)
 489     : LoadNNode(c, mem, adr, at, tk, mo) {}
 490   virtual int Opcode() const;
 491   virtual uint ideal_reg() const { return Op_RegN; }
 492   virtual int store_Opcode() const { return Op_StoreNKlass; }
 493   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 494 
 495   virtual const Type *Value( PhaseTransform *phase ) const;
 496   virtual Node *Identity( PhaseTransform *phase );
 497   virtual bool depends_only_on_test() const { return true; }
 498 };
 499 
 500 
 501 //------------------------------StoreNode--------------------------------------
 502 // Store value; requires Store, Address and Value
 503 class StoreNode : public MemNode {
 504 private:
 505   // On platforms with weak memory ordering (e.g., PPC, Ia64) we distinguish
 506   // stores that can be reordered, and such requiring release semantics to
 507   // adhere to the Java specification.  The required behaviour is stored in
 508   // this field.
 509   const MemOrd _mo;
 510   // Needed for proper cloning.
 511   virtual uint size_of() const { return sizeof(*this); }
 512 protected:
 513   virtual uint cmp( const Node &n ) const;
 514   virtual bool depends_only_on_test() const { return false; }
 515 
 516   Node *Ideal_masked_input       (PhaseGVN *phase, uint mask);
 517   Node *Ideal_sign_extended_input(PhaseGVN *phase, int  num_bits);
 518 
 519 public:
 520   // We must ensure that stores of object references will be visible
 521   // only after the object's initialization. So the callers of this
 522   // procedure must indicate that the store requires `release'
 523   // semantics, if the stored value is an object reference that might
 524   // point to a new object and may become externally visible.
 525   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 526     : MemNode(c, mem, adr, at, val), _mo(mo) {
 527     init_class_id(Class_Store);
 528   }
 529   StoreNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, MemOrd mo)
 530     : MemNode(c, mem, adr, at, val, oop_store), _mo(mo) {
 531     init_class_id(Class_Store);
 532   }
 533 
 534   inline bool is_unordered() const { return !is_release(); }
 535   inline bool is_release() const {
 536     assert((_mo == unordered || _mo == release), "unexpected");
 537     return _mo == release;
 538   }
 539 
 540   // Conservatively release stores of object references in order to
 541   // ensure visibility of object initialization.
 542   static inline MemOrd release_if_reference(const BasicType t) {
 543 #ifdef AARCH64
 544     // AArch64 doesn't need a release store here because object
 545     // initialization contains the necessary barriers.
 546     return unordered;
 547 #else
 548     const MemOrd mo = (t == T_ARRAY ||
 549                        t == T_ADDRESS || // Might be the address of an object reference (`boxing').
 550                        t == T_OBJECT) ? release : unordered;
 551     return mo;
 552 #endif
 553   }
 554 
 555   // Polymorphic factory method
 556   //
 557   // We must ensure that stores of object references will be visible
 558   // only after the object's initialization. So the callers of this
 559   // procedure must indicate that the store requires `release'
 560   // semantics, if the stored value is an object reference that might
 561   // point to a new object and may become externally visible.
 562   static StoreNode* make(PhaseGVN& gvn, Node *c, Node *mem, Node *adr,
 563                          const TypePtr* at, Node *val, BasicType bt, MemOrd mo);
 564 
 565   virtual uint hash() const;    // Check the type
 566 
 567   // If the store is to Field memory and the pointer is non-null, we can
 568   // zero out the control input.
 569   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 570 
 571   // Compute a new Type for this node.  Basically we just do the pre-check,
 572   // then call the virtual add() to set the type.
 573   virtual const Type *Value( PhaseTransform *phase ) const;
 574 
 575   // Check for identity function on memory (Load then Store at same address)
 576   virtual Node *Identity( PhaseTransform *phase );
 577 
 578   // Do not match memory edge
 579   virtual uint match_edge(uint idx) const;
 580 
 581   virtual const Type *bottom_type() const;  // returns Type::MEMORY
 582 
 583   // Map a store opcode to its corresponding own opcode, trivially.
 584   virtual int store_Opcode() const { return Opcode(); }
 585 
 586   // have all possible loads of the value stored been optimized away?
 587   bool value_never_loaded(PhaseTransform *phase) const;
 588 };
 589 
 590 //------------------------------StoreBNode-------------------------------------
 591 // Store byte to memory
 592 class StoreBNode : public StoreNode {
 593 public:
 594   StoreBNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 595     : StoreNode(c, mem, adr, at, val, mo) {}
 596   virtual int Opcode() const;
 597   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 598   virtual BasicType memory_type() const { return T_BYTE; }
 599 };
 600 
 601 //------------------------------StoreCNode-------------------------------------
 602 // Store char/short to memory
 603 class StoreCNode : public StoreNode {
 604 public:
 605   StoreCNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 606     : StoreNode(c, mem, adr, at, val, mo) {}
 607   virtual int Opcode() const;
 608   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 609   virtual BasicType memory_type() const { return T_CHAR; }
 610 };
 611 
 612 //------------------------------StoreINode-------------------------------------
 613 // Store int to memory
 614 class StoreINode : public StoreNode {
 615 public:
 616   StoreINode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 617     : StoreNode(c, mem, adr, at, val, mo) {}
 618   virtual int Opcode() const;
 619   virtual BasicType memory_type() const { return T_INT; }
 620 };
 621 
 622 //------------------------------StoreLNode-------------------------------------
 623 // Store long to memory
 624 class StoreLNode : public StoreNode {
 625   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 626   virtual uint cmp( const Node &n ) const {
 627     return _require_atomic_access == ((StoreLNode&)n)._require_atomic_access
 628       && StoreNode::cmp(n);
 629   }
 630   virtual uint size_of() const { return sizeof(*this); }
 631   const bool _require_atomic_access;  // is piecewise store forbidden?
 632 
 633 public:
 634   StoreLNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo, bool require_atomic_access = false)
 635     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 636   virtual int Opcode() const;
 637   virtual BasicType memory_type() const { return T_LONG; }
 638   bool require_atomic_access() const { return _require_atomic_access; }
 639   static StoreLNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 640 #ifndef PRODUCT
 641   virtual void dump_spec(outputStream *st) const {
 642     StoreNode::dump_spec(st);
 643     if (_require_atomic_access)  st->print(" Atomic!");
 644   }
 645 #endif
 646 };
 647 
 648 //------------------------------StoreFNode-------------------------------------
 649 // Store float to memory
 650 class StoreFNode : public StoreNode {
 651 public:
 652   StoreFNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 653     : StoreNode(c, mem, adr, at, val, mo) {}
 654   virtual int Opcode() const;
 655   virtual BasicType memory_type() const { return T_FLOAT; }
 656 };
 657 
 658 //------------------------------StoreDNode-------------------------------------
 659 // Store double to memory
 660 class StoreDNode : public StoreNode {
 661   virtual uint hash() const { return StoreNode::hash() + _require_atomic_access; }
 662   virtual uint cmp( const Node &n ) const {
 663     return _require_atomic_access == ((StoreDNode&)n)._require_atomic_access
 664       && StoreNode::cmp(n);
 665   }
 666   virtual uint size_of() const { return sizeof(*this); }
 667   const bool _require_atomic_access;  // is piecewise store forbidden?
 668 public:
 669   StoreDNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val,
 670              MemOrd mo, bool require_atomic_access = false)
 671     : StoreNode(c, mem, adr, at, val, mo), _require_atomic_access(require_atomic_access) {}
 672   virtual int Opcode() const;
 673   virtual BasicType memory_type() const { return T_DOUBLE; }
 674   bool require_atomic_access() const { return _require_atomic_access; }
 675   static StoreDNode* make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo);
 676 #ifndef PRODUCT
 677   virtual void dump_spec(outputStream *st) const {
 678     StoreNode::dump_spec(st);
 679     if (_require_atomic_access)  st->print(" Atomic!");
 680   }
 681 #endif
 682 
 683 };
 684 
 685 //------------------------------StorePNode-------------------------------------
 686 // Store pointer to memory
 687 class StorePNode : public StoreNode {
 688 public:
 689   StorePNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 690     : StoreNode(c, mem, adr, at, val, mo) {}
 691   virtual int Opcode() const;
 692   virtual BasicType memory_type() const { return T_ADDRESS; }
 693 };
 694 
 695 //------------------------------StoreNNode-------------------------------------
 696 // Store narrow oop to memory
 697 class StoreNNode : public StoreNode {
 698 public:
 699   StoreNNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 700     : StoreNode(c, mem, adr, at, val, mo) {}
 701   virtual int Opcode() const;
 702   virtual BasicType memory_type() const { return T_NARROWOOP; }
 703 };
 704 
 705 //------------------------------StoreNKlassNode--------------------------------------
 706 // Store narrow klass to memory
 707 class StoreNKlassNode : public StoreNNode {
 708 public:
 709   StoreNKlassNode(Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, MemOrd mo)
 710     : StoreNNode(c, mem, adr, at, val, mo) {}
 711   virtual int Opcode() const;
 712   virtual BasicType memory_type() const { return T_NARROWKLASS; }
 713 };
 714 
 715 //------------------------------StoreCMNode-----------------------------------
 716 // Store card-mark byte to memory for CM
 717 // The last StoreCM before a SafePoint must be preserved and occur after its "oop" store
 718 // Preceeding equivalent StoreCMs may be eliminated.
 719 class StoreCMNode : public StoreNode {
 720  private:
 721   virtual uint hash() const { return StoreNode::hash() + _oop_alias_idx; }
 722   virtual uint cmp( const Node &n ) const {
 723     return _oop_alias_idx == ((StoreCMNode&)n)._oop_alias_idx
 724       && StoreNode::cmp(n);
 725   }
 726   virtual uint size_of() const { return sizeof(*this); }
 727   int _oop_alias_idx;   // The alias_idx of OopStore
 728 
 729 public:
 730   StoreCMNode( Node *c, Node *mem, Node *adr, const TypePtr* at, Node *val, Node *oop_store, int oop_alias_idx ) :
 731     StoreNode(c, mem, adr, at, val, oop_store, MemNode::release),
 732     _oop_alias_idx(oop_alias_idx) {
 733     assert(_oop_alias_idx >= Compile::AliasIdxRaw ||
 734            _oop_alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
 735            "bad oop alias idx");
 736   }
 737   virtual int Opcode() const;
 738   virtual Node *Identity( PhaseTransform *phase );
 739   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 740   virtual const Type *Value( PhaseTransform *phase ) const;
 741   virtual BasicType memory_type() const { return T_VOID; } // unspecific
 742   int oop_alias_idx() const { return _oop_alias_idx; }
 743 };
 744 
 745 //------------------------------LoadPLockedNode---------------------------------
 746 // Load-locked a pointer from memory (either object or array).
 747 // On Sparc & Intel this is implemented as a normal pointer load.
 748 // On PowerPC and friends it's a real load-locked.
 749 class LoadPLockedNode : public LoadPNode {
 750 public:
 751   LoadPLockedNode(Node *c, Node *mem, Node *adr, MemOrd mo)
 752     : LoadPNode(c, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, mo) {}
 753   virtual int Opcode() const;
 754   virtual int store_Opcode() const { return Op_StorePConditional; }
 755   virtual bool depends_only_on_test() const { return true; }
 756 };
 757 
 758 //------------------------------SCMemProjNode---------------------------------------
 759 // This class defines a projection of the memory  state of a store conditional node.
 760 // These nodes return a value, but also update memory.
 761 class SCMemProjNode : public ProjNode {
 762 public:
 763   enum {SCMEMPROJCON = (uint)-2};
 764   SCMemProjNode( Node *src) : ProjNode( src, SCMEMPROJCON) { }
 765   virtual int Opcode() const;
 766   virtual bool      is_CFG() const  { return false; }
 767   virtual const Type *bottom_type() const {return Type::MEMORY;}
 768   virtual const TypePtr *adr_type() const {
 769     Node* ctrl = in(0);
 770     if (ctrl == NULL)  return NULL; // node is dead
 771     return ctrl->in(MemNode::Memory)->adr_type();
 772   }
 773   virtual uint ideal_reg() const { return 0;} // memory projections don't have a register
 774   virtual const Type *Value( PhaseTransform *phase ) const;
 775 #ifndef PRODUCT
 776   virtual void dump_spec(outputStream *st) const {};
 777 #endif
 778 };
 779 
 780 //------------------------------LoadStoreNode---------------------------
 781 // Note: is_Mem() method returns 'true' for this class.
 782 class LoadStoreNode : public Node {
 783 private:
 784   const Type* const _type;      // What kind of value is loaded?
 785   const TypePtr* _adr_type;     // What kind of memory is being addressed?
 786   virtual uint size_of() const; // Size is bigger
 787 public:
 788   LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required );
 789   virtual bool depends_only_on_test() const { return false; }
 790   virtual uint match_edge(uint idx) const { return idx == MemNode::Address || idx == MemNode::ValueIn; }
 791 
 792   virtual const Type *bottom_type() const { return _type; }
 793   virtual uint ideal_reg() const;
 794   virtual const class TypePtr *adr_type() const { return _adr_type; }  // returns bottom_type of address
 795 
 796   bool result_not_used() const;
 797 };
 798 
 799 class LoadStoreConditionalNode : public LoadStoreNode {
 800 public:
 801   enum {
 802     ExpectedIn = MemNode::ValueIn+1 // One more input than MemNode
 803   };
 804   LoadStoreConditionalNode(Node *c, Node *mem, Node *adr, Node *val, Node *ex);
 805 };
 806 
 807 //------------------------------StorePConditionalNode---------------------------
 808 // Conditionally store pointer to memory, if no change since prior
 809 // load-locked.  Sets flags for success or failure of the store.
 810 class StorePConditionalNode : public LoadStoreConditionalNode {
 811 public:
 812   StorePConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 813   virtual int Opcode() const;
 814   // Produces flags
 815   virtual uint ideal_reg() const { return Op_RegFlags; }
 816 };
 817 
 818 //------------------------------StoreIConditionalNode---------------------------
 819 // Conditionally store int to memory, if no change since prior
 820 // load-locked.  Sets flags for success or failure of the store.
 821 class StoreIConditionalNode : public LoadStoreConditionalNode {
 822 public:
 823   StoreIConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ii ) : LoadStoreConditionalNode(c, mem, adr, val, ii) { }
 824   virtual int Opcode() const;
 825   // Produces flags
 826   virtual uint ideal_reg() const { return Op_RegFlags; }
 827 };
 828 
 829 //------------------------------StoreLConditionalNode---------------------------
 830 // Conditionally store long to memory, if no change since prior
 831 // load-locked.  Sets flags for success or failure of the store.
 832 class StoreLConditionalNode : public LoadStoreConditionalNode {
 833 public:
 834   StoreLConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ll ) : LoadStoreConditionalNode(c, mem, adr, val, ll) { }
 835   virtual int Opcode() const;
 836   // Produces flags
 837   virtual uint ideal_reg() const { return Op_RegFlags; }
 838 };
 839 
 840 
 841 //------------------------------CompareAndSwapLNode---------------------------
 842 class CompareAndSwapLNode : public LoadStoreConditionalNode {
 843 public:
 844   CompareAndSwapLNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 845   virtual int Opcode() const;
 846 };
 847 
 848 
 849 //------------------------------CompareAndSwapINode---------------------------
 850 class CompareAndSwapINode : public LoadStoreConditionalNode {
 851 public:
 852   CompareAndSwapINode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 853   virtual int Opcode() const;
 854 };
 855 
 856 
 857 //------------------------------CompareAndSwapPNode---------------------------
 858 class CompareAndSwapPNode : public LoadStoreConditionalNode {
 859 public:
 860   CompareAndSwapPNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 861   virtual int Opcode() const;
 862 };
 863 
 864 //------------------------------CompareAndSwapNNode---------------------------
 865 class CompareAndSwapNNode : public LoadStoreConditionalNode {
 866 public:
 867   CompareAndSwapNNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex) : LoadStoreConditionalNode(c, mem, adr, val, ex) { }
 868   virtual int Opcode() const;
 869 };
 870 
 871 //------------------------------GetAndAddINode---------------------------
 872 class GetAndAddINode : public LoadStoreNode {
 873 public:
 874   GetAndAddINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 875   virtual int Opcode() const;
 876 };
 877 
 878 //------------------------------GetAndAddLNode---------------------------
 879 class GetAndAddLNode : public LoadStoreNode {
 880 public:
 881   GetAndAddLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 882   virtual int Opcode() const;
 883 };
 884 
 885 
 886 //------------------------------GetAndSetINode---------------------------
 887 class GetAndSetINode : public LoadStoreNode {
 888 public:
 889   GetAndSetINode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeInt::INT, 4) { }
 890   virtual int Opcode() const;
 891 };
 892 
 893 //------------------------------GetAndSetINode---------------------------
 894 class GetAndSetLNode : public LoadStoreNode {
 895 public:
 896   GetAndSetLNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at ) : LoadStoreNode(c, mem, adr, val, at, TypeLong::LONG, 4) { }
 897   virtual int Opcode() const;
 898 };
 899 
 900 //------------------------------GetAndSetPNode---------------------------
 901 class GetAndSetPNode : public LoadStoreNode {
 902 public:
 903   GetAndSetPNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 904   virtual int Opcode() const;
 905 };
 906 
 907 //------------------------------GetAndSetNNode---------------------------
 908 class GetAndSetNNode : public LoadStoreNode {
 909 public:
 910   GetAndSetNNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* t ) : LoadStoreNode(c, mem, adr, val, at, t, 4) { }
 911   virtual int Opcode() const;
 912 };
 913 
 914 //------------------------------ClearArray-------------------------------------
 915 class ClearArrayNode: public Node {
 916 public:
 917   ClearArrayNode( Node *ctrl, Node *arymem, Node *word_cnt, Node *base )
 918     : Node(ctrl,arymem,word_cnt,base) {
 919     init_class_id(Class_ClearArray);
 920   }
 921   virtual int         Opcode() const;
 922   virtual const Type *bottom_type() const { return Type::MEMORY; }
 923   // ClearArray modifies array elements, and so affects only the
 924   // array memory addressed by the bottom_type of its base address.
 925   virtual const class TypePtr *adr_type() const;
 926   virtual Node *Identity( PhaseTransform *phase );
 927   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 928   virtual uint match_edge(uint idx) const;
 929 
 930   // Clear the given area of an object or array.
 931   // The start offset must always be aligned mod BytesPerInt.
 932   // The end offset must always be aligned mod BytesPerLong.
 933   // Return the new memory.
 934   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 935                             intptr_t start_offset,
 936                             intptr_t end_offset,
 937                             PhaseGVN* phase);
 938   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 939                             intptr_t start_offset,
 940                             Node* end_offset,
 941                             PhaseGVN* phase);
 942   static Node* clear_memory(Node* control, Node* mem, Node* dest,
 943                             Node* start_offset,
 944                             Node* end_offset,
 945                             PhaseGVN* phase);
 946   // Return allocation input memory edge if it is different instance
 947   // or itself if it is the one we are looking for.
 948   static bool step_through(Node** np, uint instance_id, PhaseTransform* phase);
 949 };
 950 
 951 //------------------------------MemBar-----------------------------------------
 952 // There are different flavors of Memory Barriers to match the Java Memory
 953 // Model.  Monitor-enter and volatile-load act as Aquires: no following ref
 954 // can be moved to before them.  We insert a MemBar-Acquire after a FastLock or
 955 // volatile-load.  Monitor-exit and volatile-store act as Release: no
 956 // preceding ref can be moved to after them.  We insert a MemBar-Release
 957 // before a FastUnlock or volatile-store.  All volatiles need to be
 958 // serialized, so we follow all volatile-stores with a MemBar-Volatile to
 959 // separate it from any following volatile-load.
 960 class MemBarNode: public MultiNode {
 961   virtual uint hash() const ;                  // { return NO_HASH; }
 962   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
 963 
 964   virtual uint size_of() const { return sizeof(*this); }
 965   // Memory type this node is serializing.  Usually either rawptr or bottom.
 966   const TypePtr* _adr_type;
 967 
 968 public:
 969   enum {
 970     Precedent = TypeFunc::Parms  // optional edge to force precedence
 971   };
 972   MemBarNode(Compile* C, int alias_idx, Node* precedent);
 973   virtual int Opcode() const = 0;
 974   virtual const class TypePtr *adr_type() const { return _adr_type; }
 975   virtual const Type *Value( PhaseTransform *phase ) const;
 976   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 977   virtual uint match_edge(uint idx) const { return 0; }
 978   virtual const Type *bottom_type() const { return TypeTuple::MEMBAR; }
 979   virtual Node *match( const ProjNode *proj, const Matcher *m );
 980   // Factory method.  Builds a wide or narrow membar.
 981   // Optional 'precedent' becomes an extra edge if not null.
 982   static MemBarNode* make(Compile* C, int opcode,
 983                           int alias_idx = Compile::AliasIdxBot,
 984                           Node* precedent = NULL);
 985 };
 986 
 987 // "Acquire" - no following ref can move before (but earlier refs can
 988 // follow, like an early Load stalled in cache).  Requires multi-cpu
 989 // visibility.  Inserted after a volatile load.
 990 class MemBarAcquireNode: public MemBarNode {
 991 public:
 992   MemBarAcquireNode(Compile* C, int alias_idx, Node* precedent)
 993     : MemBarNode(C, alias_idx, precedent) {}
 994   virtual int Opcode() const;
 995 };
 996 
 997 // "Acquire" - no following ref can move before (but earlier refs can
 998 // follow, like an early Load stalled in cache).  Requires multi-cpu
 999 // visibility.  Inserted independ of any load, as required
1000 // for intrinsic sun.misc.Unsafe.loadFence().
1001 class LoadFenceNode: public MemBarNode {
1002 public:
1003   LoadFenceNode(Compile* C, int alias_idx, Node* precedent)
1004     : MemBarNode(C, alias_idx, precedent) {}
1005   virtual int Opcode() const;
1006 };
1007 
1008 // "Release" - no earlier ref can move after (but later refs can move
1009 // up, like a speculative pipelined cache-hitting Load).  Requires
1010 // multi-cpu visibility.  Inserted before a volatile store.
1011 class MemBarReleaseNode: public MemBarNode {
1012 public:
1013   MemBarReleaseNode(Compile* C, int alias_idx, Node* precedent)
1014     : MemBarNode(C, alias_idx, precedent) {}
1015   virtual int Opcode() const;
1016 };
1017 
1018 // "Release" - no earlier ref can move after (but later refs can move
1019 // up, like a speculative pipelined cache-hitting Load).  Requires
1020 // multi-cpu visibility.  Inserted independent of any store, as required
1021 // for intrinsic sun.misc.Unsafe.storeFence().
1022 class StoreFenceNode: public MemBarNode {
1023 public:
1024   StoreFenceNode(Compile* C, int alias_idx, Node* precedent)
1025     : MemBarNode(C, alias_idx, precedent) {}
1026   virtual int Opcode() const;
1027 };
1028 
1029 // "Acquire" - no following ref can move before (but earlier refs can
1030 // follow, like an early Load stalled in cache).  Requires multi-cpu
1031 // visibility.  Inserted after a FastLock.
1032 class MemBarAcquireLockNode: public MemBarNode {
1033 public:
1034   MemBarAcquireLockNode(Compile* C, int alias_idx, Node* precedent)
1035     : MemBarNode(C, alias_idx, precedent) {}
1036   virtual int Opcode() const;
1037 };
1038 
1039 // "Release" - no earlier ref can move after (but later refs can move
1040 // up, like a speculative pipelined cache-hitting Load).  Requires
1041 // multi-cpu visibility.  Inserted before a FastUnLock.
1042 class MemBarReleaseLockNode: public MemBarNode {
1043 public:
1044   MemBarReleaseLockNode(Compile* C, int alias_idx, Node* precedent)
1045     : MemBarNode(C, alias_idx, precedent) {}
1046   virtual int Opcode() const;
1047 };
1048 
1049 class MemBarStoreStoreNode: public MemBarNode {
1050 public:
1051   MemBarStoreStoreNode(Compile* C, int alias_idx, Node* precedent)
1052     : MemBarNode(C, alias_idx, precedent) {
1053     init_class_id(Class_MemBarStoreStore);
1054   }
1055   virtual int Opcode() const;
1056 };
1057 
1058 // Ordering between a volatile store and a following volatile load.
1059 // Requires multi-CPU visibility?
1060 class MemBarVolatileNode: public MemBarNode {
1061 public:
1062   MemBarVolatileNode(Compile* C, int alias_idx, Node* precedent)
1063     : MemBarNode(C, alias_idx, precedent) {}
1064   virtual int Opcode() const;
1065 };
1066 
1067 // Ordering within the same CPU.  Used to order unsafe memory references
1068 // inside the compiler when we lack alias info.  Not needed "outside" the
1069 // compiler because the CPU does all the ordering for us.
1070 class MemBarCPUOrderNode: public MemBarNode {
1071 public:
1072   MemBarCPUOrderNode(Compile* C, int alias_idx, Node* precedent)
1073     : MemBarNode(C, alias_idx, precedent) {}
1074   virtual int Opcode() const;
1075   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1076 };
1077 
1078 // Isolation of object setup after an AllocateNode and before next safepoint.
1079 // (See comment in memnode.cpp near InitializeNode::InitializeNode for semantics.)
1080 class InitializeNode: public MemBarNode {
1081   friend class AllocateNode;
1082 
1083   enum {
1084     Incomplete    = 0,
1085     Complete      = 1,
1086     WithArraycopy = 2
1087   };
1088   int _is_complete;
1089 
1090   bool _does_not_escape;
1091 
1092 public:
1093   enum {
1094     Control    = TypeFunc::Control,
1095     Memory     = TypeFunc::Memory,     // MergeMem for states affected by this op
1096     RawAddress = TypeFunc::Parms+0,    // the newly-allocated raw address
1097     RawStores  = TypeFunc::Parms+1     // zero or more stores (or TOP)
1098   };
1099 
1100   InitializeNode(Compile* C, int adr_type, Node* rawoop);
1101   virtual int Opcode() const;
1102   virtual uint size_of() const { return sizeof(*this); }
1103   virtual uint ideal_reg() const { return 0; } // not matched in the AD file
1104   virtual const RegMask &in_RegMask(uint) const;  // mask for RawAddress
1105 
1106   // Manage incoming memory edges via a MergeMem on in(Memory):
1107   Node* memory(uint alias_idx);
1108 
1109   // The raw memory edge coming directly from the Allocation.
1110   // The contents of this memory are *always* all-zero-bits.
1111   Node* zero_memory() { return memory(Compile::AliasIdxRaw); }
1112 
1113   // Return the corresponding allocation for this initialization (or null if none).
1114   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
1115   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
1116   AllocateNode* allocation();
1117 
1118   // Anything other than zeroing in this init?
1119   bool is_non_zero();
1120 
1121   // An InitializeNode must completed before macro expansion is done.
1122   // Completion requires that the AllocateNode must be followed by
1123   // initialization of the new memory to zero, then to any initializers.
1124   bool is_complete() { return _is_complete != Incomplete; }
1125   bool is_complete_with_arraycopy() { return (_is_complete & WithArraycopy) != 0; }
1126 
1127   // Mark complete.  (Must not yet be complete.)
1128   void set_complete(PhaseGVN* phase);
1129   void set_complete_with_arraycopy() { _is_complete = Complete | WithArraycopy; }
1130 
1131   bool does_not_escape() { return _does_not_escape; }
1132   void set_does_not_escape() { _does_not_escape = true; }
1133 
1134 #ifdef ASSERT
1135   // ensure all non-degenerate stores are ordered and non-overlapping
1136   bool stores_are_sane(PhaseTransform* phase);
1137 #endif //ASSERT
1138 
1139   // See if this store can be captured; return offset where it initializes.
1140   // Return 0 if the store cannot be moved (any sort of problem).
1141   intptr_t can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape);
1142 
1143   // Capture another store; reformat it to write my internal raw memory.
1144   // Return the captured copy, else NULL if there is some sort of problem.
1145   Node* capture_store(StoreNode* st, intptr_t start, PhaseTransform* phase, bool can_reshape);
1146 
1147   // Find captured store which corresponds to the range [start..start+size).
1148   // Return my own memory projection (meaning the initial zero bits)
1149   // if there is no such store.  Return NULL if there is a problem.
1150   Node* find_captured_store(intptr_t start, int size_in_bytes, PhaseTransform* phase);
1151 
1152   // Called when the associated AllocateNode is expanded into CFG.
1153   Node* complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
1154                         intptr_t header_size, Node* size_in_bytes,
1155                         PhaseGVN* phase);
1156 
1157  private:
1158   void remove_extra_zeroes();
1159 
1160   // Find out where a captured store should be placed (or already is placed).
1161   int captured_store_insertion_point(intptr_t start, int size_in_bytes,
1162                                      PhaseTransform* phase);
1163 
1164   static intptr_t get_store_offset(Node* st, PhaseTransform* phase);
1165 
1166   Node* make_raw_address(intptr_t offset, PhaseTransform* phase);
1167 
1168   bool detect_init_independence(Node* n, int& count);
1169 
1170   void coalesce_subword_stores(intptr_t header_size, Node* size_in_bytes,
1171                                PhaseGVN* phase);
1172 
1173   intptr_t find_next_fullword_store(uint i, PhaseGVN* phase);
1174 };
1175 
1176 //------------------------------MergeMem---------------------------------------
1177 // (See comment in memnode.cpp near MergeMemNode::MergeMemNode for semantics.)
1178 class MergeMemNode: public Node {
1179   virtual uint hash() const ;                  // { return NO_HASH; }
1180   virtual uint cmp( const Node &n ) const ;    // Always fail, except on self
1181   friend class MergeMemStream;
1182   MergeMemNode(Node* def);  // clients use MergeMemNode::make
1183 
1184 public:
1185   // If the input is a whole memory state, clone it with all its slices intact.
1186   // Otherwise, make a new memory state with just that base memory input.
1187   // In either case, the result is a newly created MergeMem.
1188   static MergeMemNode* make(Node* base_memory);
1189 
1190   virtual int Opcode() const;
1191   virtual Node *Identity( PhaseTransform *phase );
1192   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1193   virtual uint ideal_reg() const { return NotAMachineReg; }
1194   virtual uint match_edge(uint idx) const { return 0; }
1195   virtual const RegMask &out_RegMask() const;
1196   virtual const Type *bottom_type() const { return Type::MEMORY; }
1197   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
1198   // sparse accessors
1199   // Fetch the previously stored "set_memory_at", or else the base memory.
1200   // (Caller should clone it if it is a phi-nest.)
1201   Node* memory_at(uint alias_idx) const;
1202   // set the memory, regardless of its previous value
1203   void set_memory_at(uint alias_idx, Node* n);
1204   // the "base" is the memory that provides the non-finite support
1205   Node* base_memory() const       { return in(Compile::AliasIdxBot); }
1206   // warning: setting the base can implicitly set any of the other slices too
1207   void set_base_memory(Node* def);
1208   // sentinel value which denotes a copy of the base memory:
1209   Node*   empty_memory() const    { return in(Compile::AliasIdxTop); }
1210   static Node* make_empty_memory(); // where the sentinel comes from
1211   bool is_empty_memory(Node* n) const { assert((n == empty_memory()) == n->is_top(), "sanity"); return n->is_top(); }
1212   // hook for the iterator, to perform any necessary setup
1213   void iteration_setup(const MergeMemNode* other = NULL);
1214   // push sentinels until I am at least as long as the other (semantic no-op)
1215   void grow_to_match(const MergeMemNode* other);
1216   bool verify_sparse() const PRODUCT_RETURN0;
1217 #ifndef PRODUCT
1218   virtual void dump_spec(outputStream *st) const;
1219 #endif
1220 };
1221 
1222 class MergeMemStream : public StackObj {
1223  private:
1224   MergeMemNode*       _mm;
1225   const MergeMemNode* _mm2;  // optional second guy, contributes non-empty iterations
1226   Node*               _mm_base;  // loop-invariant base memory of _mm
1227   int                 _idx;
1228   int                 _cnt;
1229   Node*               _mem;
1230   Node*               _mem2;
1231   int                 _cnt2;
1232 
1233   void init(MergeMemNode* mm, const MergeMemNode* mm2 = NULL) {
1234     // subsume_node will break sparseness at times, whenever a memory slice
1235     // folds down to a copy of the base ("fat") memory.  In such a case,
1236     // the raw edge will update to base, although it should be top.
1237     // This iterator will recognize either top or base_memory as an
1238     // "empty" slice.  See is_empty, is_empty2, and next below.
1239     //
1240     // The sparseness property is repaired in MergeMemNode::Ideal.
1241     // As long as access to a MergeMem goes through this iterator
1242     // or the memory_at accessor, flaws in the sparseness will
1243     // never be observed.
1244     //
1245     // Also, iteration_setup repairs sparseness.
1246     assert(mm->verify_sparse(), "please, no dups of base");
1247     assert(mm2==NULL || mm2->verify_sparse(), "please, no dups of base");
1248 
1249     _mm  = mm;
1250     _mm_base = mm->base_memory();
1251     _mm2 = mm2;
1252     _cnt = mm->req();
1253     _idx = Compile::AliasIdxBot-1; // start at the base memory
1254     _mem = NULL;
1255     _mem2 = NULL;
1256   }
1257 
1258 #ifdef ASSERT
1259   Node* check_memory() const {
1260     if (at_base_memory())
1261       return _mm->base_memory();
1262     else if ((uint)_idx < _mm->req() && !_mm->in(_idx)->is_top())
1263       return _mm->memory_at(_idx);
1264     else
1265       return _mm_base;
1266   }
1267   Node* check_memory2() const {
1268     return at_base_memory()? _mm2->base_memory(): _mm2->memory_at(_idx);
1269   }
1270 #endif
1271 
1272   static bool match_memory(Node* mem, const MergeMemNode* mm, int idx) PRODUCT_RETURN0;
1273   void assert_synch() const {
1274     assert(!_mem || _idx >= _cnt || match_memory(_mem, _mm, _idx),
1275            "no side-effects except through the stream");
1276   }
1277 
1278  public:
1279 
1280   // expected usages:
1281   // for (MergeMemStream mms(mem->is_MergeMem()); next_non_empty(); ) { ... }
1282   // for (MergeMemStream mms(mem1, mem2); next_non_empty2(); ) { ... }
1283 
1284   // iterate over one merge
1285   MergeMemStream(MergeMemNode* mm) {
1286     mm->iteration_setup();
1287     init(mm);
1288     debug_only(_cnt2 = 999);
1289   }
1290   // iterate in parallel over two merges
1291   // only iterates through non-empty elements of mm2
1292   MergeMemStream(MergeMemNode* mm, const MergeMemNode* mm2) {
1293     assert(mm2, "second argument must be a MergeMem also");
1294     ((MergeMemNode*)mm2)->iteration_setup();  // update hidden state
1295     mm->iteration_setup(mm2);
1296     init(mm, mm2);
1297     _cnt2 = mm2->req();
1298   }
1299 #ifdef ASSERT
1300   ~MergeMemStream() {
1301     assert_synch();
1302   }
1303 #endif
1304 
1305   MergeMemNode* all_memory() const {
1306     return _mm;
1307   }
1308   Node* base_memory() const {
1309     assert(_mm_base == _mm->base_memory(), "no update to base memory, please");
1310     return _mm_base;
1311   }
1312   const MergeMemNode* all_memory2() const {
1313     assert(_mm2 != NULL, "");
1314     return _mm2;
1315   }
1316   bool at_base_memory() const {
1317     return _idx == Compile::AliasIdxBot;
1318   }
1319   int alias_idx() const {
1320     assert(_mem, "must call next 1st");
1321     return _idx;
1322   }
1323 
1324   const TypePtr* adr_type() const {
1325     return Compile::current()->get_adr_type(alias_idx());
1326   }
1327 
1328   const TypePtr* adr_type(Compile* C) const {
1329     return C->get_adr_type(alias_idx());
1330   }
1331   bool is_empty() const {
1332     assert(_mem, "must call next 1st");
1333     assert(_mem->is_top() == (_mem==_mm->empty_memory()), "correct sentinel");
1334     return _mem->is_top();
1335   }
1336   bool is_empty2() const {
1337     assert(_mem2, "must call next 1st");
1338     assert(_mem2->is_top() == (_mem2==_mm2->empty_memory()), "correct sentinel");
1339     return _mem2->is_top();
1340   }
1341   Node* memory() const {
1342     assert(!is_empty(), "must not be empty");
1343     assert_synch();
1344     return _mem;
1345   }
1346   // get the current memory, regardless of empty or non-empty status
1347   Node* force_memory() const {
1348     assert(!is_empty() || !at_base_memory(), "");
1349     // Use _mm_base to defend against updates to _mem->base_memory().
1350     Node *mem = _mem->is_top() ? _mm_base : _mem;
1351     assert(mem == check_memory(), "");
1352     return mem;
1353   }
1354   Node* memory2() const {
1355     assert(_mem2 == check_memory2(), "");
1356     return _mem2;
1357   }
1358   void set_memory(Node* mem) {
1359     if (at_base_memory()) {
1360       // Note that this does not change the invariant _mm_base.
1361       _mm->set_base_memory(mem);
1362     } else {
1363       _mm->set_memory_at(_idx, mem);
1364     }
1365     _mem = mem;
1366     assert_synch();
1367   }
1368 
1369   // Recover from a side effect to the MergeMemNode.
1370   void set_memory() {
1371     _mem = _mm->in(_idx);
1372   }
1373 
1374   bool next()  { return next(false); }
1375   bool next2() { return next(true); }
1376 
1377   bool next_non_empty()  { return next_non_empty(false); }
1378   bool next_non_empty2() { return next_non_empty(true); }
1379   // next_non_empty2 can yield states where is_empty() is true
1380 
1381  private:
1382   // find the next item, which might be empty
1383   bool next(bool have_mm2) {
1384     assert((_mm2 != NULL) == have_mm2, "use other next");
1385     assert_synch();
1386     if (++_idx < _cnt) {
1387       // Note:  This iterator allows _mm to be non-sparse.
1388       // It behaves the same whether _mem is top or base_memory.
1389       _mem = _mm->in(_idx);
1390       if (have_mm2)
1391         _mem2 = _mm2->in((_idx < _cnt2) ? _idx : Compile::AliasIdxTop);
1392       return true;
1393     }
1394     return false;
1395   }
1396 
1397   // find the next non-empty item
1398   bool next_non_empty(bool have_mm2) {
1399     while (next(have_mm2)) {
1400       if (!is_empty()) {
1401         // make sure _mem2 is filled in sensibly
1402         if (have_mm2 && _mem2->is_top())  _mem2 = _mm2->base_memory();
1403         return true;
1404       } else if (have_mm2 && !is_empty2()) {
1405         return true;   // is_empty() == true
1406       }
1407     }
1408     return false;
1409   }
1410 };
1411 
1412 //------------------------------Prefetch---------------------------------------
1413 
1414 // Allocation prefetch which may fault, TLAB size have to be adjusted.
1415 class PrefetchAllocationNode : public Node {
1416 public:
1417   PrefetchAllocationNode(Node *mem, Node *adr) : Node(0,mem,adr) {}
1418   virtual int Opcode() const;
1419   virtual uint ideal_reg() const { return NotAMachineReg; }
1420   virtual uint match_edge(uint idx) const { return idx==2; }
1421   virtual const Type *bottom_type() const { return ( AllocatePrefetchStyle == 3 ) ? Type::MEMORY : Type::ABIO; }
1422 };
1423 
1424 #endif // SHARE_VM_OPTO_MEMNODE_HPP