1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "gc/cms/cmsHeap.inline.hpp"
  28 #include "gc/cms/compactibleFreeListSpace.hpp"
  29 #include "gc/cms/concurrentMarkSweepGeneration.hpp"
  30 #include "gc/cms/parNewGeneration.inline.hpp"
  31 #include "gc/cms/parOopClosures.inline.hpp"
  32 #include "gc/serial/defNewGeneration.inline.hpp"
  33 #include "gc/shared/adaptiveSizePolicy.hpp"
  34 #include "gc/shared/ageTable.inline.hpp"
  35 #include "gc/shared/copyFailedInfo.hpp"
  36 #include "gc/shared/gcHeapSummary.hpp"
  37 #include "gc/shared/gcTimer.hpp"
  38 #include "gc/shared/gcTrace.hpp"
  39 #include "gc/shared/gcTraceTime.inline.hpp"
  40 #include "gc/shared/genOopClosures.inline.hpp"
  41 #include "gc/shared/generation.hpp"
  42 #include "gc/shared/plab.inline.hpp"
  43 #include "gc/shared/preservedMarks.inline.hpp"
  44 #include "gc/shared/referencePolicy.hpp"
  45 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  46 #include "gc/shared/space.hpp"
  47 #include "gc/shared/spaceDecorator.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/taskqueue.inline.hpp"
  50 #include "gc/shared/weakProcessor.hpp"
  51 #include "gc/shared/workgroup.hpp"
  52 #include "logging/log.hpp"
  53 #include "logging/logStream.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "oops/access.inline.hpp"
  56 #include "oops/compressedOops.inline.hpp"
  57 #include "oops/objArrayOop.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "runtime/atomic.hpp"
  60 #include "runtime/handles.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/thread.inline.hpp"
  64 #include "utilities/copy.hpp"
  65 #include "utilities/globalDefinitions.hpp"
  66 #include "utilities/stack.inline.hpp"
  67 
  68 ParScanThreadState::ParScanThreadState(Space* to_space_,
  69                                        ParNewGeneration* young_gen_,
  70                                        Generation* old_gen_,
  71                                        int thread_num_,
  72                                        ObjToScanQueueSet* work_queue_set_,
  73                                        Stack<oop, mtGC>* overflow_stacks_,
  74                                        PreservedMarks* preserved_marks_,
  75                                        size_t desired_plab_sz_,
  76                                        ParallelTaskTerminator& term_) :
  77   _to_space(to_space_),
  78   _old_gen(old_gen_),
  79   _young_gen(young_gen_),
  80   _thread_num(thread_num_),
  81   _work_queue(work_queue_set_->queue(thread_num_)),
  82   _to_space_full(false),
  83   _overflow_stack(overflow_stacks_ ? overflow_stacks_ + thread_num_ : NULL),
  84   _preserved_marks(preserved_marks_),
  85   _ageTable(false), // false ==> not the global age table, no perf data.
  86   _to_space_alloc_buffer(desired_plab_sz_),
  87   _to_space_closure(young_gen_, this),
  88   _old_gen_closure(young_gen_, this),
  89   _to_space_root_closure(young_gen_, this),
  90   _old_gen_root_closure(young_gen_, this),
  91   _older_gen_closure(young_gen_, this),
  92   _evacuate_followers(this, &_to_space_closure, &_old_gen_closure,
  93                       &_to_space_root_closure, young_gen_, &_old_gen_root_closure,
  94                       work_queue_set_, &term_),
  95   _is_alive_closure(young_gen_),
  96   _scan_weak_ref_closure(young_gen_, this),
  97   _keep_alive_closure(&_scan_weak_ref_closure),
  98   _strong_roots_time(0.0),
  99   _term_time(0.0)
 100 {
 101   #if TASKQUEUE_STATS
 102   _term_attempts = 0;
 103   _overflow_refills = 0;
 104   _overflow_refill_objs = 0;
 105   #endif // TASKQUEUE_STATS
 106 
 107   _survivor_chunk_array = (ChunkArray*) old_gen()->get_data_recorder(thread_num());
 108   _hash_seed = 17;  // Might want to take time-based random value.
 109   _start = os::elapsedTime();
 110   _old_gen_closure.set_generation(old_gen_);
 111   _old_gen_root_closure.set_generation(old_gen_);
 112 }
 113 
 114 void ParScanThreadState::record_survivor_plab(HeapWord* plab_start,
 115                                               size_t plab_word_size) {
 116   ChunkArray* sca = survivor_chunk_array();
 117   if (sca != NULL) {
 118     // A non-null SCA implies that we want the PLAB data recorded.
 119     sca->record_sample(plab_start, plab_word_size);
 120   }
 121 }
 122 
 123 bool ParScanThreadState::should_be_partially_scanned(oop new_obj, oop old_obj) const {
 124   return new_obj->is_objArray() &&
 125          arrayOop(new_obj)->length() > ParGCArrayScanChunk &&
 126          new_obj != old_obj;
 127 }
 128 
 129 void ParScanThreadState::scan_partial_array_and_push_remainder(oop old) {
 130   assert(old->is_objArray(), "must be obj array");
 131   assert(old->is_forwarded(), "must be forwarded");
 132   assert(CMSHeap::heap()->is_in_reserved(old), "must be in heap.");
 133   assert(!old_gen()->is_in(old), "must be in young generation.");
 134 
 135   objArrayOop obj = objArrayOop(old->forwardee());
 136   // Process ParGCArrayScanChunk elements now
 137   // and push the remainder back onto queue
 138   int start     = arrayOop(old)->length();
 139   int end       = obj->length();
 140   int remainder = end - start;
 141   assert(start <= end, "just checking");
 142   if (remainder > 2 * ParGCArrayScanChunk) {
 143     // Test above combines last partial chunk with a full chunk
 144     end = start + ParGCArrayScanChunk;
 145     arrayOop(old)->set_length(end);
 146     // Push remainder.
 147     bool ok = work_queue()->push(old);
 148     assert(ok, "just popped, push must be okay");
 149   } else {
 150     // Restore length so that it can be used if there
 151     // is a promotion failure and forwarding pointers
 152     // must be removed.
 153     arrayOop(old)->set_length(end);
 154   }
 155 
 156   // process our set of indices (include header in first chunk)
 157   // should make sure end is even (aligned to HeapWord in case of compressed oops)
 158   if ((HeapWord *)obj < young_old_boundary()) {
 159     // object is in to_space
 160     obj->oop_iterate_range(&_to_space_closure, start, end);
 161   } else {
 162     // object is in old generation
 163     obj->oop_iterate_range(&_old_gen_closure, start, end);
 164   }
 165 }
 166 
 167 void ParScanThreadState::trim_queues(int max_size) {
 168   ObjToScanQueue* queue = work_queue();
 169   do {
 170     while (queue->size() > (juint)max_size) {
 171       oop obj_to_scan;
 172       if (queue->pop_local(obj_to_scan)) {
 173         if ((HeapWord *)obj_to_scan < young_old_boundary()) {
 174           if (obj_to_scan->is_objArray() &&
 175               obj_to_scan->is_forwarded() &&
 176               obj_to_scan->forwardee() != obj_to_scan) {
 177             scan_partial_array_and_push_remainder(obj_to_scan);
 178           } else {
 179             // object is in to_space
 180             obj_to_scan->oop_iterate(&_to_space_closure);
 181           }
 182         } else {
 183           // object is in old generation
 184           obj_to_scan->oop_iterate(&_old_gen_closure);
 185         }
 186       }
 187     }
 188     // For the  case of compressed oops, we have a private, non-shared
 189     // overflow stack, so we eagerly drain it so as to more evenly
 190     // distribute load early. Note: this may be good to do in
 191     // general rather than delay for the final stealing phase.
 192     // If applicable, we'll transfer a set of objects over to our
 193     // work queue, allowing them to be stolen and draining our
 194     // private overflow stack.
 195   } while (ParGCTrimOverflow && young_gen()->take_from_overflow_list(this));
 196 }
 197 
 198 bool ParScanThreadState::take_from_overflow_stack() {
 199   assert(ParGCUseLocalOverflow, "Else should not call");
 200   assert(young_gen()->overflow_list() == NULL, "Error");
 201   ObjToScanQueue* queue = work_queue();
 202   Stack<oop, mtGC>* const of_stack = overflow_stack();
 203   const size_t num_overflow_elems = of_stack->size();
 204   const size_t space_available = queue->max_elems() - queue->size();
 205   const size_t num_take_elems = MIN3(space_available / 4,
 206                                      (size_t)ParGCDesiredObjsFromOverflowList,
 207                                      num_overflow_elems);
 208   // Transfer the most recent num_take_elems from the overflow
 209   // stack to our work queue.
 210   for (size_t i = 0; i != num_take_elems; i++) {
 211     oop cur = of_stack->pop();
 212     oop obj_to_push = cur->forwardee();
 213     assert(CMSHeap::heap()->is_in_reserved(cur), "Should be in heap");
 214     assert(!old_gen()->is_in_reserved(cur), "Should be in young gen");
 215     assert(CMSHeap::heap()->is_in_reserved(obj_to_push), "Should be in heap");
 216     if (should_be_partially_scanned(obj_to_push, cur)) {
 217       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
 218       obj_to_push = cur;
 219     }
 220     bool ok = queue->push(obj_to_push);
 221     assert(ok, "Should have succeeded");
 222   }
 223   assert(young_gen()->overflow_list() == NULL, "Error");
 224   return num_take_elems > 0;  // was something transferred?
 225 }
 226 
 227 void ParScanThreadState::push_on_overflow_stack(oop p) {
 228   assert(ParGCUseLocalOverflow, "Else should not call");
 229   overflow_stack()->push(p);
 230   assert(young_gen()->overflow_list() == NULL, "Error");
 231 }
 232 
 233 HeapWord* ParScanThreadState::alloc_in_to_space_slow(size_t word_sz) {
 234   // If the object is small enough, try to reallocate the buffer.
 235   HeapWord* obj = NULL;
 236   if (!_to_space_full) {
 237     PLAB* const plab = to_space_alloc_buffer();
 238     Space* const sp  = to_space();
 239     if (word_sz * 100 < ParallelGCBufferWastePct * plab->word_sz()) {
 240       // Is small enough; abandon this buffer and start a new one.
 241       plab->retire();
 242       // The minimum size has to be twice SurvivorAlignmentInBytes to
 243       // allow for padding used in the alignment of 1 word.  A padding
 244       // of 1 is too small for a filler word so the padding size will
 245       // be increased by SurvivorAlignmentInBytes.
 246       size_t min_usable_size = 2 * static_cast<size_t>(SurvivorAlignmentInBytes >> LogHeapWordSize);
 247       size_t buf_size = MAX2(plab->word_sz(), min_usable_size);
 248       HeapWord* buf_space = sp->par_allocate(buf_size);
 249       if (buf_space == NULL) {
 250         const size_t min_bytes = MAX2(PLAB::min_size(), min_usable_size) << LogHeapWordSize;
 251         size_t free_bytes = sp->free();
 252         while(buf_space == NULL && free_bytes >= min_bytes) {
 253           buf_size = free_bytes >> LogHeapWordSize;
 254           assert(buf_size == (size_t)align_object_size(buf_size), "Invariant");
 255           buf_space  = sp->par_allocate(buf_size);
 256           free_bytes = sp->free();
 257         }
 258       }
 259       if (buf_space != NULL) {
 260         plab->set_buf(buf_space, buf_size);
 261         record_survivor_plab(buf_space, buf_size);
 262         obj = plab->allocate_aligned(word_sz, SurvivorAlignmentInBytes);
 263         // Note that we cannot compare buf_size < word_sz below
 264         // because of AlignmentReserve (see PLAB::allocate()).
 265         assert(obj != NULL || plab->words_remaining() < word_sz,
 266                "Else should have been able to allocate requested object size "
 267                SIZE_FORMAT ", PLAB size " SIZE_FORMAT ", SurvivorAlignmentInBytes "
 268                SIZE_FORMAT ", words_remaining " SIZE_FORMAT,
 269                word_sz, buf_size, SurvivorAlignmentInBytes, plab->words_remaining());
 270         // It's conceivable that we may be able to use the
 271         // buffer we just grabbed for subsequent small requests
 272         // even if not for this one.
 273       } else {
 274         // We're used up.
 275         _to_space_full = true;
 276       }
 277     } else {
 278       // Too large; allocate the object individually.
 279       obj = sp->par_allocate(word_sz);
 280     }
 281   }
 282   return obj;
 283 }
 284 
 285 void ParScanThreadState::undo_alloc_in_to_space(HeapWord* obj, size_t word_sz) {
 286   to_space_alloc_buffer()->undo_allocation(obj, word_sz);
 287 }
 288 
 289 void ParScanThreadState::print_promotion_failure_size() {
 290   if (_promotion_failed_info.has_failed()) {
 291     log_trace(gc, promotion)(" (%d: promotion failure size = " SIZE_FORMAT ") ",
 292                              _thread_num, _promotion_failed_info.first_size());
 293   }
 294 }
 295 
 296 class ParScanThreadStateSet: StackObj {
 297 public:
 298   // Initializes states for the specified number of threads;
 299   ParScanThreadStateSet(int                     num_threads,
 300                         Space&                  to_space,
 301                         ParNewGeneration&       young_gen,
 302                         Generation&             old_gen,
 303                         ObjToScanQueueSet&      queue_set,
 304                         Stack<oop, mtGC>*       overflow_stacks_,
 305                         PreservedMarksSet&      preserved_marks_set,
 306                         size_t                  desired_plab_sz,
 307                         ParallelTaskTerminator& term);
 308 
 309   ~ParScanThreadStateSet() { TASKQUEUE_STATS_ONLY(reset_stats()); }
 310 
 311   inline ParScanThreadState& thread_state(int i);
 312 
 313   void trace_promotion_failed(const YoungGCTracer* gc_tracer);
 314   void reset(uint active_workers, bool promotion_failed);
 315   void flush();
 316 
 317   #if TASKQUEUE_STATS
 318   static void
 319     print_termination_stats_hdr(outputStream* const st);
 320   void print_termination_stats();
 321   static void
 322     print_taskqueue_stats_hdr(outputStream* const st);
 323   void print_taskqueue_stats();
 324   void reset_stats();
 325   #endif // TASKQUEUE_STATS
 326 
 327 private:
 328   ParallelTaskTerminator& _term;
 329   ParNewGeneration&       _young_gen;
 330   Generation&             _old_gen;
 331   ParScanThreadState*     _per_thread_states;
 332   const int               _num_threads;
 333  public:
 334   bool is_valid(int id) const { return id < _num_threads; }
 335   ParallelTaskTerminator* terminator() { return &_term; }
 336 };
 337 
 338 ParScanThreadStateSet::ParScanThreadStateSet(int num_threads,
 339                                              Space& to_space,
 340                                              ParNewGeneration& young_gen,
 341                                              Generation& old_gen,
 342                                              ObjToScanQueueSet& queue_set,
 343                                              Stack<oop, mtGC>* overflow_stacks,
 344                                              PreservedMarksSet& preserved_marks_set,
 345                                              size_t desired_plab_sz,
 346                                              ParallelTaskTerminator& term)
 347   : _young_gen(young_gen),
 348     _old_gen(old_gen),
 349     _term(term),
 350     _per_thread_states(NEW_RESOURCE_ARRAY(ParScanThreadState, num_threads)),
 351     _num_threads(num_threads)
 352 {
 353   assert(num_threads > 0, "sanity check!");
 354   assert(ParGCUseLocalOverflow == (overflow_stacks != NULL),
 355          "overflow_stack allocation mismatch");
 356   // Initialize states.
 357   for (int i = 0; i < num_threads; ++i) {
 358     new(_per_thread_states + i)
 359       ParScanThreadState(&to_space, &young_gen, &old_gen, i, &queue_set,
 360                          overflow_stacks, preserved_marks_set.get(i),
 361                          desired_plab_sz, term);
 362   }
 363 }
 364 
 365 inline ParScanThreadState& ParScanThreadStateSet::thread_state(int i) {
 366   assert(i >= 0 && i < _num_threads, "sanity check!");
 367   return _per_thread_states[i];
 368 }
 369 
 370 void ParScanThreadStateSet::trace_promotion_failed(const YoungGCTracer* gc_tracer) {
 371   for (int i = 0; i < _num_threads; ++i) {
 372     if (thread_state(i).promotion_failed()) {
 373       gc_tracer->report_promotion_failed(thread_state(i).promotion_failed_info());
 374       thread_state(i).promotion_failed_info().reset();
 375     }
 376   }
 377 }
 378 
 379 void ParScanThreadStateSet::reset(uint active_threads, bool promotion_failed) {
 380   _term.reset_for_reuse(active_threads);
 381   if (promotion_failed) {
 382     for (int i = 0; i < _num_threads; ++i) {
 383       thread_state(i).print_promotion_failure_size();
 384     }
 385   }
 386 }
 387 
 388 #if TASKQUEUE_STATS
 389 void ParScanThreadState::reset_stats() {
 390   taskqueue_stats().reset();
 391   _term_attempts = 0;
 392   _overflow_refills = 0;
 393   _overflow_refill_objs = 0;
 394 }
 395 
 396 void ParScanThreadStateSet::reset_stats() {
 397   for (int i = 0; i < _num_threads; ++i) {
 398     thread_state(i).reset_stats();
 399   }
 400 }
 401 
 402 void ParScanThreadStateSet::print_termination_stats_hdr(outputStream* const st) {
 403   st->print_raw_cr("GC Termination Stats");
 404   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------");
 405   st->print_raw_cr("thr     ms        ms       %       ms       %   attempts");
 406   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------");
 407 }
 408 
 409 void ParScanThreadStateSet::print_termination_stats() {
 410   Log(gc, task, stats) log;
 411   if (!log.is_debug()) {
 412     return;
 413   }
 414 
 415   ResourceMark rm;
 416   LogStream ls(log.debug());
 417   outputStream* st = &ls;
 418 
 419   print_termination_stats_hdr(st);
 420 
 421   for (int i = 0; i < _num_threads; ++i) {
 422     const ParScanThreadState & pss = thread_state(i);
 423     const double elapsed_ms = pss.elapsed_time() * 1000.0;
 424     const double s_roots_ms = pss.strong_roots_time() * 1000.0;
 425     const double term_ms = pss.term_time() * 1000.0;
 426     st->print_cr("%3d %9.2f %9.2f %6.2f %9.2f %6.2f " SIZE_FORMAT_W(8),
 427                  i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 428                  term_ms, term_ms * 100 / elapsed_ms, pss.term_attempts());
 429   }
 430 }
 431 
 432 // Print stats related to work queue activity.
 433 void ParScanThreadStateSet::print_taskqueue_stats_hdr(outputStream* const st) {
 434   st->print_raw_cr("GC Task Stats");
 435   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
 436   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
 437 }
 438 
 439 void ParScanThreadStateSet::print_taskqueue_stats() {
 440   if (!log_develop_is_enabled(Trace, gc, task, stats)) {
 441     return;
 442   }
 443   Log(gc, task, stats) log;
 444   ResourceMark rm;
 445   LogStream ls(log.trace());
 446   outputStream* st = &ls;
 447   print_taskqueue_stats_hdr(st);
 448 
 449   TaskQueueStats totals;
 450   for (int i = 0; i < _num_threads; ++i) {
 451     const ParScanThreadState & pss = thread_state(i);
 452     const TaskQueueStats & stats = pss.taskqueue_stats();
 453     st->print("%3d ", i); stats.print(st); st->cr();
 454     totals += stats;
 455 
 456     if (pss.overflow_refills() > 0) {
 457       st->print_cr("    " SIZE_FORMAT_W(10) " overflow refills    "
 458                    SIZE_FORMAT_W(10) " overflow objects",
 459                    pss.overflow_refills(), pss.overflow_refill_objs());
 460     }
 461   }
 462   st->print("tot "); totals.print(st); st->cr();
 463 
 464   DEBUG_ONLY(totals.verify());
 465 }
 466 #endif // TASKQUEUE_STATS
 467 
 468 void ParScanThreadStateSet::flush() {
 469   // Work in this loop should be kept as lightweight as
 470   // possible since this might otherwise become a bottleneck
 471   // to scaling. Should we add heavy-weight work into this
 472   // loop, consider parallelizing the loop into the worker threads.
 473   for (int i = 0; i < _num_threads; ++i) {
 474     ParScanThreadState& par_scan_state = thread_state(i);
 475 
 476     // Flush stats related to To-space PLAB activity and
 477     // retire the last buffer.
 478     par_scan_state.to_space_alloc_buffer()->flush_and_retire_stats(_young_gen.plab_stats());
 479 
 480     // Every thread has its own age table.  We need to merge
 481     // them all into one.
 482     AgeTable *local_table = par_scan_state.age_table();
 483     _young_gen.age_table()->merge(local_table);
 484 
 485     // Inform old gen that we're done.
 486     _old_gen.par_promote_alloc_done(i);
 487   }
 488 
 489   if (UseConcMarkSweepGC) {
 490     // We need to call this even when ResizeOldPLAB is disabled
 491     // so as to avoid breaking some asserts. While we may be able
 492     // to avoid this by reorganizing the code a bit, I am loathe
 493     // to do that unless we find cases where ergo leads to bad
 494     // performance.
 495     CompactibleFreeListSpaceLAB::compute_desired_plab_size();
 496   }
 497 }
 498 
 499 ParScanClosure::ParScanClosure(ParNewGeneration* g,
 500                                ParScanThreadState* par_scan_state) :
 501   OopsInClassLoaderDataOrGenClosure(g), _par_scan_state(par_scan_state), _g(g) {
 502   _boundary = _g->reserved().end();
 503 }
 504 
 505 void ParScanWithBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, false); }
 506 void ParScanWithBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, false); }
 507 
 508 void ParScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, false); }
 509 void ParScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, false); }
 510 
 511 void ParRootScanWithBarrierTwoGensClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, true, true); }
 512 void ParRootScanWithBarrierTwoGensClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, true, true); }
 513 
 514 void ParRootScanWithoutBarrierClosure::do_oop(oop* p)       { ParScanClosure::do_oop_work(p, false, true); }
 515 void ParRootScanWithoutBarrierClosure::do_oop(narrowOop* p) { ParScanClosure::do_oop_work(p, false, true); }
 516 
 517 ParScanWeakRefClosure::ParScanWeakRefClosure(ParNewGeneration* g,
 518                                              ParScanThreadState* par_scan_state)
 519   : ScanWeakRefClosure(g), _par_scan_state(par_scan_state)
 520 {}
 521 
 522 void ParScanWeakRefClosure::do_oop(oop* p)       { ParScanWeakRefClosure::do_oop_work(p); }
 523 void ParScanWeakRefClosure::do_oop(narrowOop* p) { ParScanWeakRefClosure::do_oop_work(p); }
 524 
 525 #ifdef WIN32
 526 #pragma warning(disable: 4786) /* identifier was truncated to '255' characters in the browser information */
 527 #endif
 528 
 529 ParEvacuateFollowersClosure::ParEvacuateFollowersClosure(
 530     ParScanThreadState* par_scan_state_,
 531     ParScanWithoutBarrierClosure* to_space_closure_,
 532     ParScanWithBarrierClosure* old_gen_closure_,
 533     ParRootScanWithoutBarrierClosure* to_space_root_closure_,
 534     ParNewGeneration* par_gen_,
 535     ParRootScanWithBarrierTwoGensClosure* old_gen_root_closure_,
 536     ObjToScanQueueSet* task_queues_,
 537     ParallelTaskTerminator* terminator_) :
 538 
 539     _par_scan_state(par_scan_state_),
 540     _to_space_closure(to_space_closure_),
 541     _old_gen_closure(old_gen_closure_),
 542     _to_space_root_closure(to_space_root_closure_),
 543     _old_gen_root_closure(old_gen_root_closure_),
 544     _par_gen(par_gen_),
 545     _task_queues(task_queues_),
 546     _terminator(terminator_)
 547 {}
 548 
 549 void ParEvacuateFollowersClosure::do_void() {
 550   ObjToScanQueue* work_q = par_scan_state()->work_queue();
 551 
 552   while (true) {
 553     // Scan to-space and old-gen objs until we run out of both.
 554     oop obj_to_scan;
 555     par_scan_state()->trim_queues(0);
 556 
 557     // We have no local work, attempt to steal from other threads.
 558 
 559     // Attempt to steal work from promoted.
 560     if (task_queues()->steal(par_scan_state()->thread_num(),
 561                              par_scan_state()->hash_seed(),
 562                              obj_to_scan)) {
 563       bool res = work_q->push(obj_to_scan);
 564       assert(res, "Empty queue should have room for a push.");
 565 
 566       // If successful, goto Start.
 567       continue;
 568 
 569       // Try global overflow list.
 570     } else if (par_gen()->take_from_overflow_list(par_scan_state())) {
 571       continue;
 572     }
 573 
 574     // Otherwise, offer termination.
 575     par_scan_state()->start_term_time();
 576     if (terminator()->offer_termination()) break;
 577     par_scan_state()->end_term_time();
 578   }
 579   assert(par_gen()->_overflow_list == NULL && par_gen()->_num_par_pushes == 0,
 580          "Broken overflow list?");
 581   // Finish the last termination pause.
 582   par_scan_state()->end_term_time();
 583 }
 584 
 585 ParNewGenTask::ParNewGenTask(ParNewGeneration* young_gen,
 586                              Generation* old_gen,
 587                              HeapWord* young_old_boundary,
 588                              ParScanThreadStateSet* state_set,
 589                              StrongRootsScope* strong_roots_scope) :
 590     AbstractGangTask("ParNewGeneration collection"),
 591     _young_gen(young_gen), _old_gen(old_gen),
 592     _young_old_boundary(young_old_boundary),
 593     _state_set(state_set),
 594     _strong_roots_scope(strong_roots_scope),
 595     _par_state_string(StringTable::weak_storage())
 596 {}
 597 
 598 void ParNewGenTask::work(uint worker_id) {
 599   CMSHeap* heap = CMSHeap::heap();
 600   // Since this is being done in a separate thread, need new resource
 601   // and handle marks.
 602   ResourceMark rm;
 603   HandleMark hm;
 604 
 605   ParScanThreadState& par_scan_state = _state_set->thread_state(worker_id);
 606   assert(_state_set->is_valid(worker_id), "Should not have been called");
 607 
 608   par_scan_state.set_young_old_boundary(_young_old_boundary);
 609 
 610   CLDScanClosure cld_scan_closure(&par_scan_state.to_space_root_closure(),
 611                                   heap->rem_set()->cld_rem_set()->accumulate_modified_oops());
 612 
 613   par_scan_state.start_strong_roots();
 614   heap->young_process_roots(_strong_roots_scope,
 615                            &par_scan_state.to_space_root_closure(),
 616                            &par_scan_state.older_gen_closure(),
 617                            &cld_scan_closure,
 618                            &_par_state_string);
 619 
 620   par_scan_state.end_strong_roots();
 621 
 622   // "evacuate followers".
 623   par_scan_state.evacuate_followers_closure().do_void();
 624 
 625   // This will collapse this worker's promoted object list that's
 626   // created during the main ParNew parallel phase of ParNew. This has
 627   // to be called after all workers have finished promoting objects
 628   // and scanning promoted objects. It should be safe calling it from
 629   // here, given that we can only reach here after all thread have
 630   // offered termination, i.e., after there is no more work to be
 631   // done. It will also disable promotion tracking for the rest of
 632   // this GC as it's not necessary to be on during reference processing.
 633   _old_gen->par_oop_since_save_marks_iterate_done((int) worker_id);
 634 }
 635 
 636 ParNewGeneration::ParNewGeneration(ReservedSpace rs, size_t initial_byte_size)
 637   : DefNewGeneration(rs, initial_byte_size, "PCopy"),
 638   _overflow_list(NULL),
 639   _is_alive_closure(this),
 640   _plab_stats("Young", YoungPLABSize, PLABWeight)
 641 {
 642   NOT_PRODUCT(_overflow_counter = ParGCWorkQueueOverflowInterval;)
 643   NOT_PRODUCT(_num_par_pushes = 0;)
 644   _task_queues = new ObjToScanQueueSet(ParallelGCThreads);
 645   guarantee(_task_queues != NULL, "task_queues allocation failure.");
 646 
 647   for (uint i = 0; i < ParallelGCThreads; i++) {
 648     ObjToScanQueue *q = new ObjToScanQueue();
 649     guarantee(q != NULL, "work_queue Allocation failure.");
 650     _task_queues->register_queue(i, q);
 651   }
 652 
 653   for (uint i = 0; i < ParallelGCThreads; i++) {
 654     _task_queues->queue(i)->initialize();
 655   }
 656 
 657   _overflow_stacks = NULL;
 658   if (ParGCUseLocalOverflow) {
 659     // typedef to workaround NEW_C_HEAP_ARRAY macro, which can not deal with ','
 660     typedef Stack<oop, mtGC> GCOopStack;
 661 
 662     _overflow_stacks = NEW_C_HEAP_ARRAY(GCOopStack, ParallelGCThreads, mtGC);
 663     for (size_t i = 0; i < ParallelGCThreads; ++i) {
 664       new (_overflow_stacks + i) Stack<oop, mtGC>();
 665     }
 666   }
 667 
 668   if (UsePerfData) {
 669     EXCEPTION_MARK;
 670     ResourceMark rm;
 671 
 672     const char* cname =
 673          PerfDataManager::counter_name(_gen_counters->name_space(), "threads");
 674     PerfDataManager::create_constant(SUN_GC, cname, PerfData::U_None,
 675                                      ParallelGCThreads, CHECK);
 676   }
 677 }
 678 
 679 // ParNewGeneration::
 680 ParKeepAliveClosure::ParKeepAliveClosure(ParScanWeakRefClosure* cl) :
 681   DefNewGeneration::KeepAliveClosure(cl), _par_cl(cl) {}
 682 
 683 template <class T>
 684 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop_work(T* p) {
 685 #ifdef ASSERT
 686   {
 687     oop obj = RawAccess<OOP_NOT_NULL>::oop_load(p);
 688     // We never expect to see a null reference being processed
 689     // as a weak reference.
 690     assert(oopDesc::is_oop(obj), "expected an oop while scanning weak refs");
 691   }
 692 #endif // ASSERT
 693 
 694   _par_cl->do_oop_nv(p);
 695 
 696   if (CMSHeap::heap()->is_in_reserved(p)) {
 697     oop obj = RawAccess<OOP_NOT_NULL>::oop_load(p);;
 698     _rs->write_ref_field_gc_par(p, obj);
 699   }
 700 }
 701 
 702 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(oop* p)       { ParKeepAliveClosure::do_oop_work(p); }
 703 void /*ParNewGeneration::*/ParKeepAliveClosure::do_oop(narrowOop* p) { ParKeepAliveClosure::do_oop_work(p); }
 704 
 705 // ParNewGeneration::
 706 KeepAliveClosure::KeepAliveClosure(ScanWeakRefClosure* cl) :
 707   DefNewGeneration::KeepAliveClosure(cl) {}
 708 
 709 template <class T>
 710 void /*ParNewGeneration::*/KeepAliveClosure::do_oop_work(T* p) {
 711 #ifdef ASSERT
 712   {
 713     oop obj = RawAccess<OOP_NOT_NULL>::oop_load(p);
 714     // We never expect to see a null reference being processed
 715     // as a weak reference.
 716     assert(oopDesc::is_oop(obj), "expected an oop while scanning weak refs");
 717   }
 718 #endif // ASSERT
 719 
 720   _cl->do_oop_nv(p);
 721 
 722   if (CMSHeap::heap()->is_in_reserved(p)) {
 723     oop obj = RawAccess<OOP_NOT_NULL>::oop_load(p);
 724     _rs->write_ref_field_gc_par(p, obj);
 725   }
 726 }
 727 
 728 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(oop* p)       { KeepAliveClosure::do_oop_work(p); }
 729 void /*ParNewGeneration::*/KeepAliveClosure::do_oop(narrowOop* p) { KeepAliveClosure::do_oop_work(p); }
 730 
 731 template <class T> void ScanClosureWithParBarrier::do_oop_work(T* p) {
 732   T heap_oop = RawAccess<>::oop_load(p);
 733   if (!CompressedOops::is_null(heap_oop)) {
 734     oop obj = CompressedOops::decode_not_null(heap_oop);
 735     if ((HeapWord*)obj < _boundary) {
 736       assert(!_g->to()->is_in_reserved(obj), "Scanning field twice?");
 737       oop new_obj = obj->is_forwarded()
 738                       ? obj->forwardee()
 739                       : _g->DefNewGeneration::copy_to_survivor_space(obj);
 740       RawAccess<OOP_NOT_NULL>::oop_store(p, new_obj);
 741     }
 742     if (_gc_barrier) {
 743       // If p points to a younger generation, mark the card.
 744       if ((HeapWord*)obj < _gen_boundary) {
 745         _rs->write_ref_field_gc_par(p, obj);
 746       }
 747     }
 748   }
 749 }
 750 
 751 void ScanClosureWithParBarrier::do_oop(oop* p)       { ScanClosureWithParBarrier::do_oop_work(p); }
 752 void ScanClosureWithParBarrier::do_oop(narrowOop* p) { ScanClosureWithParBarrier::do_oop_work(p); }
 753 
 754 class ParNewRefProcTaskProxy: public AbstractGangTask {
 755   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
 756 public:
 757   ParNewRefProcTaskProxy(ProcessTask& task,
 758                          ParNewGeneration& young_gen,
 759                          Generation& old_gen,
 760                          HeapWord* young_old_boundary,
 761                          ParScanThreadStateSet& state_set);
 762 
 763 private:
 764   virtual void work(uint worker_id);
 765 private:
 766   ParNewGeneration&      _young_gen;
 767   ProcessTask&           _task;
 768   Generation&            _old_gen;
 769   HeapWord*              _young_old_boundary;
 770   ParScanThreadStateSet& _state_set;
 771 };
 772 
 773 ParNewRefProcTaskProxy::ParNewRefProcTaskProxy(ProcessTask& task,
 774                                                ParNewGeneration& young_gen,
 775                                                Generation& old_gen,
 776                                                HeapWord* young_old_boundary,
 777                                                ParScanThreadStateSet& state_set)
 778   : AbstractGangTask("ParNewGeneration parallel reference processing"),
 779     _young_gen(young_gen),
 780     _task(task),
 781     _old_gen(old_gen),
 782     _young_old_boundary(young_old_boundary),
 783     _state_set(state_set)
 784 { }
 785 
 786 void ParNewRefProcTaskProxy::work(uint worker_id) {
 787   ResourceMark rm;
 788   HandleMark hm;
 789   ParScanThreadState& par_scan_state = _state_set.thread_state(worker_id);
 790   par_scan_state.set_young_old_boundary(_young_old_boundary);
 791   _task.work(worker_id, par_scan_state.is_alive_closure(),
 792              par_scan_state.keep_alive_closure(),
 793              par_scan_state.evacuate_followers_closure());
 794 }
 795 
 796 void ParNewRefProcTaskExecutor::execute(ProcessTask& task, uint ergo_workers) {
 797   CMSHeap* gch = CMSHeap::heap();
 798   WorkGang* workers = gch->workers();
 799   assert(workers != NULL, "Need parallel worker threads.");
 800   assert(workers->active_workers() == ergo_workers,
 801          "Ergonomically chosen workers (%u) must be equal to active workers (%u)",
 802          ergo_workers, workers->active_workers());
 803   _state_set.reset(workers->active_workers(), _young_gen.promotion_failed());
 804   ParNewRefProcTaskProxy rp_task(task, _young_gen, _old_gen,
 805                                  _young_gen.reserved().end(), _state_set);
 806   workers->run_task(&rp_task, workers->active_workers());
 807   _state_set.reset(0 /* bad value in debug if not reset */,
 808                    _young_gen.promotion_failed());
 809 }
 810 
 811 void ParNewRefProcTaskExecutor::set_single_threaded_mode() {
 812   _state_set.flush();
 813   CMSHeap* heap = CMSHeap::heap();
 814   heap->save_marks();
 815 }
 816 
 817 ScanClosureWithParBarrier::
 818 ScanClosureWithParBarrier(ParNewGeneration* g, bool gc_barrier) :
 819   OopsInClassLoaderDataOrGenClosure(g), _g(g), _boundary(g->reserved().end()), _gc_barrier(gc_barrier)
 820 { }
 821 
 822 template <typename OopClosureType1, typename OopClosureType2>
 823 EvacuateFollowersClosureGeneral<OopClosureType1, OopClosureType2>::
 824 EvacuateFollowersClosureGeneral(CMSHeap* heap,
 825                                 OopClosureType1* cur,
 826                                 OopClosureType2* older) :
 827   _heap(heap),
 828   _scan_cur_or_nonheap(cur), _scan_older(older)
 829 { }
 830 
 831 template <typename OopClosureType1, typename OopClosureType2>
 832 void EvacuateFollowersClosureGeneral<OopClosureType1, OopClosureType2>::do_void() {
 833   do {
 834     _heap->oop_since_save_marks_iterate(_scan_cur_or_nonheap,
 835                                         _scan_older);
 836   } while (!_heap->no_allocs_since_save_marks());
 837 }
 838 
 839 // A Generation that does parallel young-gen collection.
 840 
 841 void ParNewGeneration::handle_promotion_failed(CMSHeap* gch, ParScanThreadStateSet& thread_state_set) {
 842   assert(_promo_failure_scan_stack.is_empty(), "post condition");
 843   _promo_failure_scan_stack.clear(true); // Clear cached segments.
 844 
 845   remove_forwarding_pointers();
 846   log_info(gc, promotion)("Promotion failed");
 847   // All the spaces are in play for mark-sweep.
 848   swap_spaces();  // Make life simpler for CMS || rescan; see 6483690.
 849   from()->set_next_compaction_space(to());
 850   gch->set_incremental_collection_failed();
 851   // Inform the next generation that a promotion failure occurred.
 852   _old_gen->promotion_failure_occurred();
 853 
 854   // Trace promotion failure in the parallel GC threads
 855   thread_state_set.trace_promotion_failed(gc_tracer());
 856   // Single threaded code may have reported promotion failure to the global state
 857   if (_promotion_failed_info.has_failed()) {
 858     _gc_tracer.report_promotion_failed(_promotion_failed_info);
 859   }
 860   // Reset the PromotionFailureALot counters.
 861   NOT_PRODUCT(gch->reset_promotion_should_fail();)
 862 }
 863 
 864 void ParNewGeneration::collect(bool   full,
 865                                bool   clear_all_soft_refs,
 866                                size_t size,
 867                                bool   is_tlab) {
 868   assert(full || size > 0, "otherwise we don't want to collect");
 869 
 870   CMSHeap* gch = CMSHeap::heap();
 871 
 872   _gc_timer->register_gc_start();
 873 
 874   AdaptiveSizePolicy* size_policy = gch->size_policy();
 875   WorkGang* workers = gch->workers();
 876   assert(workers != NULL, "Need workgang for parallel work");
 877   uint active_workers =
 878        AdaptiveSizePolicy::calc_active_workers(workers->total_workers(),
 879                                                workers->active_workers(),
 880                                                Threads::number_of_non_daemon_threads());
 881   active_workers = workers->update_active_workers(active_workers);
 882   log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers->total_workers());
 883 
 884   _old_gen = gch->old_gen();
 885 
 886   // If the next generation is too full to accommodate worst-case promotion
 887   // from this generation, pass on collection; let the next generation
 888   // do it.
 889   if (!collection_attempt_is_safe()) {
 890     gch->set_incremental_collection_failed();  // slight lie, in that we did not even attempt one
 891     return;
 892   }
 893   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 894 
 895   _gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 896   gch->trace_heap_before_gc(gc_tracer());
 897 
 898   init_assuming_no_promotion_failure();
 899 
 900   if (UseAdaptiveSizePolicy) {
 901     set_survivor_overflow(false);
 902     size_policy->minor_collection_begin();
 903   }
 904 
 905   GCTraceTime(Trace, gc, phases) t1("ParNew", NULL, gch->gc_cause());
 906 
 907   age_table()->clear();
 908   to()->clear(SpaceDecorator::Mangle);
 909 
 910   gch->save_marks();
 911 
 912   // Set the correct parallelism (number of queues) in the reference processor
 913   ref_processor()->set_active_mt_degree(active_workers);
 914 
 915   // Need to initialize the preserved marks before the ThreadStateSet c'tor.
 916   _preserved_marks_set.init(active_workers);
 917 
 918   // Always set the terminator for the active number of workers
 919   // because only those workers go through the termination protocol.
 920   ParallelTaskTerminator _term(active_workers, task_queues());
 921   ParScanThreadStateSet thread_state_set(active_workers,
 922                                          *to(), *this, *_old_gen, *task_queues(),
 923                                          _overflow_stacks, _preserved_marks_set,
 924                                          desired_plab_sz(), _term);
 925 
 926   thread_state_set.reset(active_workers, promotion_failed());
 927 
 928   {
 929     StrongRootsScope srs(active_workers);
 930 
 931     ParNewGenTask tsk(this, _old_gen, reserved().end(), &thread_state_set, &srs);
 932     gch->rem_set()->prepare_for_younger_refs_iterate(true);
 933     // It turns out that even when we're using 1 thread, doing the work in a
 934     // separate thread causes wide variance in run times.  We can't help this
 935     // in the multi-threaded case, but we special-case n=1 here to get
 936     // repeatable measurements of the 1-thread overhead of the parallel code.
 937     // Might multiple workers ever be used?  If yes, initialization
 938     // has been done such that the single threaded path should not be used.
 939     if (workers->total_workers() > 1) {
 940       workers->run_task(&tsk);
 941     } else {
 942       tsk.work(0);
 943     }
 944   }
 945 
 946   thread_state_set.reset(0 /* Bad value in debug if not reset */,
 947                          promotion_failed());
 948 
 949   // Trace and reset failed promotion info.
 950   if (promotion_failed()) {
 951     thread_state_set.trace_promotion_failed(gc_tracer());
 952   }
 953 
 954   // Process (weak) reference objects found during scavenge.
 955   ReferenceProcessor* rp = ref_processor();
 956   IsAliveClosure is_alive(this);
 957   ScanWeakRefClosure scan_weak_ref(this);
 958   KeepAliveClosure keep_alive(&scan_weak_ref);
 959   ScanClosure               scan_without_gc_barrier(this, false);
 960   ScanClosureWithParBarrier scan_with_gc_barrier(this, true);
 961   set_promo_failure_scan_stack_closure(&scan_without_gc_barrier);
 962   EvacuateFollowersClosureGeneral<ScanClosure, ScanClosureWithParBarrier> evacuate_followers(
 963       gch, &scan_without_gc_barrier, &scan_with_gc_barrier);
 964   rp->setup_policy(clear_all_soft_refs);
 965   // Can  the mt_degree be set later (at run_task() time would be best)?
 966   rp->set_active_mt_degree(active_workers);
 967   ReferenceProcessorStats stats;
 968   ReferenceProcessorPhaseTimes pt(_gc_timer, rp->max_num_queues());
 969   if (rp->processing_is_mt()) {
 970     ParNewRefProcTaskExecutor task_executor(*this, *_old_gen, thread_state_set);
 971     stats = rp->process_discovered_references(&is_alive, &keep_alive,
 972                                               &evacuate_followers, &task_executor,
 973                                               &pt);
 974   } else {
 975     thread_state_set.flush();
 976     gch->save_marks();
 977     stats = rp->process_discovered_references(&is_alive, &keep_alive,
 978                                               &evacuate_followers, NULL,
 979                                               &pt);
 980   }
 981   _gc_tracer.report_gc_reference_stats(stats);
 982   _gc_tracer.report_tenuring_threshold(tenuring_threshold());
 983   pt.print_all_references();
 984 
 985   assert(gch->no_allocs_since_save_marks(), "evacuation should be done at this point");
 986 
 987   WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
 988 
 989   // Verify that the usage of keep_alive only forwarded
 990   // the oops and did not find anything new to copy.
 991   assert(gch->no_allocs_since_save_marks(), "unexpectedly copied objects");
 992 
 993   if (!promotion_failed()) {
 994     // Swap the survivor spaces.
 995     eden()->clear(SpaceDecorator::Mangle);
 996     from()->clear(SpaceDecorator::Mangle);
 997     if (ZapUnusedHeapArea) {
 998       // This is now done here because of the piece-meal mangling which
 999       // can check for valid mangling at intermediate points in the
1000       // collection(s).  When a young collection fails to collect
1001       // sufficient space resizing of the young generation can occur
1002       // and redistribute the spaces in the young generation.  Mangle
1003       // here so that unzapped regions don't get distributed to
1004       // other spaces.
1005       to()->mangle_unused_area();
1006     }
1007     swap_spaces();
1008 
1009     // A successful scavenge should restart the GC time limit count which is
1010     // for full GC's.
1011     size_policy->reset_gc_overhead_limit_count();
1012 
1013     assert(to()->is_empty(), "to space should be empty now");
1014 
1015     adjust_desired_tenuring_threshold();
1016   } else {
1017     handle_promotion_failed(gch, thread_state_set);
1018   }
1019   _preserved_marks_set.reclaim();
1020   // set new iteration safe limit for the survivor spaces
1021   from()->set_concurrent_iteration_safe_limit(from()->top());
1022   to()->set_concurrent_iteration_safe_limit(to()->top());
1023 
1024   plab_stats()->adjust_desired_plab_sz();
1025 
1026   TASKQUEUE_STATS_ONLY(thread_state_set.print_termination_stats());
1027   TASKQUEUE_STATS_ONLY(thread_state_set.print_taskqueue_stats());
1028 
1029   if (UseAdaptiveSizePolicy) {
1030     size_policy->minor_collection_end(gch->gc_cause());
1031     size_policy->avg_survived()->sample(from()->used());
1032   }
1033 
1034   // We need to use a monotonically non-decreasing time in ms
1035   // or we will see time-warp warnings and os::javaTimeMillis()
1036   // does not guarantee monotonicity.
1037   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1038   update_time_of_last_gc(now);
1039 
1040   rp->set_enqueuing_is_done(true);
1041   rp->verify_no_references_recorded();
1042 
1043   gch->trace_heap_after_gc(gc_tracer());
1044 
1045   _gc_timer->register_gc_end();
1046 
1047   _gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
1048 }
1049 
1050 size_t ParNewGeneration::desired_plab_sz() {
1051   return _plab_stats.desired_plab_sz(CMSHeap::heap()->workers()->active_workers());
1052 }
1053 
1054 static int sum;
1055 void ParNewGeneration::waste_some_time() {
1056   for (int i = 0; i < 100; i++) {
1057     sum += i;
1058   }
1059 }
1060 
1061 static const oop ClaimedForwardPtr = cast_to_oop<intptr_t>(0x4);
1062 
1063 // Because of concurrency, there are times where an object for which
1064 // "is_forwarded()" is true contains an "interim" forwarding pointer
1065 // value.  Such a value will soon be overwritten with a real value.
1066 // This method requires "obj" to have a forwarding pointer, and waits, if
1067 // necessary for a real one to be inserted, and returns it.
1068 
1069 oop ParNewGeneration::real_forwardee(oop obj) {
1070   oop forward_ptr = obj->forwardee();
1071   if (forward_ptr != ClaimedForwardPtr) {
1072     return forward_ptr;
1073   } else {
1074     return real_forwardee_slow(obj);
1075   }
1076 }
1077 
1078 oop ParNewGeneration::real_forwardee_slow(oop obj) {
1079   // Spin-read if it is claimed but not yet written by another thread.
1080   oop forward_ptr = obj->forwardee();
1081   while (forward_ptr == ClaimedForwardPtr) {
1082     waste_some_time();
1083     assert(obj->is_forwarded(), "precondition");
1084     forward_ptr = obj->forwardee();
1085   }
1086   return forward_ptr;
1087 }
1088 
1089 // Multiple GC threads may try to promote an object.  If the object
1090 // is successfully promoted, a forwarding pointer will be installed in
1091 // the object in the young generation.  This method claims the right
1092 // to install the forwarding pointer before it copies the object,
1093 // thus avoiding the need to undo the copy as in
1094 // copy_to_survivor_space_avoiding_with_undo.
1095 
1096 oop ParNewGeneration::copy_to_survivor_space(ParScanThreadState* par_scan_state,
1097                                              oop old,
1098                                              size_t sz,
1099                                              markOop m) {
1100   // In the sequential version, this assert also says that the object is
1101   // not forwarded.  That might not be the case here.  It is the case that
1102   // the caller observed it to be not forwarded at some time in the past.
1103   assert(is_in_reserved(old), "shouldn't be scavenging this oop");
1104 
1105   // The sequential code read "old->age()" below.  That doesn't work here,
1106   // since the age is in the mark word, and that might be overwritten with
1107   // a forwarding pointer by a parallel thread.  So we must save the mark
1108   // word in a local and then analyze it.
1109   oopDesc dummyOld;
1110   dummyOld.set_mark_raw(m);
1111   assert(!dummyOld.is_forwarded(),
1112          "should not be called with forwarding pointer mark word.");
1113 
1114   oop new_obj = NULL;
1115   oop forward_ptr;
1116 
1117   // Try allocating obj in to-space (unless too old)
1118   if (dummyOld.age() < tenuring_threshold()) {
1119     new_obj = (oop)par_scan_state->alloc_in_to_space(sz);
1120     if (new_obj == NULL) {
1121       set_survivor_overflow(true);
1122     }
1123   }
1124 
1125   if (new_obj == NULL) {
1126     // Either to-space is full or we decided to promote try allocating obj tenured
1127 
1128     // Attempt to install a null forwarding pointer (atomically),
1129     // to claim the right to install the real forwarding pointer.
1130     forward_ptr = old->forward_to_atomic(ClaimedForwardPtr);
1131     if (forward_ptr != NULL) {
1132       // someone else beat us to it.
1133         return real_forwardee(old);
1134     }
1135 
1136     if (!_promotion_failed) {
1137       new_obj = _old_gen->par_promote(par_scan_state->thread_num(),
1138                                       old, m, sz);
1139     }
1140 
1141     if (new_obj == NULL) {
1142       // promotion failed, forward to self
1143       _promotion_failed = true;
1144       new_obj = old;
1145 
1146       par_scan_state->preserved_marks()->push_if_necessary(old, m);
1147       par_scan_state->register_promotion_failure(sz);
1148     }
1149 
1150     old->forward_to(new_obj);
1151     forward_ptr = NULL;
1152   } else {
1153     // Is in to-space; do copying ourselves.
1154     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)new_obj, sz);
1155     assert(CMSHeap::heap()->is_in_reserved(new_obj), "illegal forwarding pointer value.");
1156     forward_ptr = old->forward_to_atomic(new_obj);
1157     // Restore the mark word copied above.
1158     new_obj->set_mark_raw(m);
1159     // Increment age if obj still in new generation
1160     new_obj->incr_age();
1161     par_scan_state->age_table()->add(new_obj, sz);
1162   }
1163   assert(new_obj != NULL, "just checking");
1164 
1165   // This code must come after the CAS test, or it will print incorrect
1166   // information.
1167   log_develop_trace(gc, scavenge)("{%s %s " PTR_FORMAT " -> " PTR_FORMAT " (%d)}",
1168                                   is_in_reserved(new_obj) ? "copying" : "tenuring",
1169                                   new_obj->klass()->internal_name(), p2i(old), p2i(new_obj), new_obj->size());
1170 
1171   if (forward_ptr == NULL) {
1172     oop obj_to_push = new_obj;
1173     if (par_scan_state->should_be_partially_scanned(obj_to_push, old)) {
1174       // Length field used as index of next element to be scanned.
1175       // Real length can be obtained from real_forwardee()
1176       arrayOop(old)->set_length(0);
1177       obj_to_push = old;
1178       assert(obj_to_push->is_forwarded() && obj_to_push->forwardee() != obj_to_push,
1179              "push forwarded object");
1180     }
1181     // Push it on one of the queues of to-be-scanned objects.
1182     bool simulate_overflow = false;
1183     NOT_PRODUCT(
1184       if (ParGCWorkQueueOverflowALot && should_simulate_overflow()) {
1185         // simulate a stack overflow
1186         simulate_overflow = true;
1187       }
1188     )
1189     if (simulate_overflow || !par_scan_state->work_queue()->push(obj_to_push)) {
1190       // Add stats for overflow pushes.
1191       log_develop_trace(gc)("Queue Overflow");
1192       push_on_overflow_list(old, par_scan_state);
1193       TASKQUEUE_STATS_ONLY(par_scan_state->taskqueue_stats().record_overflow(0));
1194     }
1195 
1196     return new_obj;
1197   }
1198 
1199   // Oops.  Someone beat us to it.  Undo the allocation.  Where did we
1200   // allocate it?
1201   if (is_in_reserved(new_obj)) {
1202     // Must be in to_space.
1203     assert(to()->is_in_reserved(new_obj), "Checking");
1204     if (forward_ptr == ClaimedForwardPtr) {
1205       // Wait to get the real forwarding pointer value.
1206       forward_ptr = real_forwardee(old);
1207     }
1208     par_scan_state->undo_alloc_in_to_space((HeapWord*)new_obj, sz);
1209   }
1210 
1211   return forward_ptr;
1212 }
1213 
1214 #ifndef PRODUCT
1215 // It's OK to call this multi-threaded;  the worst thing
1216 // that can happen is that we'll get a bunch of closely
1217 // spaced simulated overflows, but that's OK, in fact
1218 // probably good as it would exercise the overflow code
1219 // under contention.
1220 bool ParNewGeneration::should_simulate_overflow() {
1221   if (_overflow_counter-- <= 0) { // just being defensive
1222     _overflow_counter = ParGCWorkQueueOverflowInterval;
1223     return true;
1224   } else {
1225     return false;
1226   }
1227 }
1228 #endif
1229 
1230 // In case we are using compressed oops, we need to be careful.
1231 // If the object being pushed is an object array, then its length
1232 // field keeps track of the "grey boundary" at which the next
1233 // incremental scan will be done (see ParGCArrayScanChunk).
1234 // When using compressed oops, this length field is kept in the
1235 // lower 32 bits of the erstwhile klass word and cannot be used
1236 // for the overflow chaining pointer (OCP below). As such the OCP
1237 // would itself need to be compressed into the top 32-bits in this
1238 // case. Unfortunately, see below, in the event that we have a
1239 // promotion failure, the node to be pushed on the list can be
1240 // outside of the Java heap, so the heap-based pointer compression
1241 // would not work (we would have potential aliasing between C-heap
1242 // and Java-heap pointers). For this reason, when using compressed
1243 // oops, we simply use a worker-thread-local, non-shared overflow
1244 // list in the form of a growable array, with a slightly different
1245 // overflow stack draining strategy. If/when we start using fat
1246 // stacks here, we can go back to using (fat) pointer chains
1247 // (although some performance comparisons would be useful since
1248 // single global lists have their own performance disadvantages
1249 // as we were made painfully aware not long ago, see 6786503).
1250 #define BUSY (cast_to_oop<intptr_t>(0x1aff1aff))
1251 void ParNewGeneration::push_on_overflow_list(oop from_space_obj, ParScanThreadState* par_scan_state) {
1252   assert(is_in_reserved(from_space_obj), "Should be from this generation");
1253   if (ParGCUseLocalOverflow) {
1254     // In the case of compressed oops, we use a private, not-shared
1255     // overflow stack.
1256     par_scan_state->push_on_overflow_stack(from_space_obj);
1257   } else {
1258     assert(!UseCompressedOops, "Error");
1259     // if the object has been forwarded to itself, then we cannot
1260     // use the klass pointer for the linked list.  Instead we have
1261     // to allocate an oopDesc in the C-Heap and use that for the linked list.
1262     // XXX This is horribly inefficient when a promotion failure occurs
1263     // and should be fixed. XXX FIX ME !!!
1264 #ifndef PRODUCT
1265     Atomic::inc(&_num_par_pushes);
1266     assert(_num_par_pushes > 0, "Tautology");
1267 #endif
1268     if (from_space_obj->forwardee() == from_space_obj) {
1269       oopDesc* listhead = NEW_C_HEAP_ARRAY(oopDesc, 1, mtGC);
1270       listhead->forward_to(from_space_obj);
1271       from_space_obj = listhead;
1272     }
1273     oop observed_overflow_list = _overflow_list;
1274     oop cur_overflow_list;
1275     do {
1276       cur_overflow_list = observed_overflow_list;
1277       if (cur_overflow_list != BUSY) {
1278         from_space_obj->set_klass_to_list_ptr(cur_overflow_list);
1279       } else {
1280         from_space_obj->set_klass_to_list_ptr(NULL);
1281       }
1282       observed_overflow_list =
1283         Atomic::cmpxchg((oopDesc*)from_space_obj, &_overflow_list, (oopDesc*)cur_overflow_list);
1284     } while (cur_overflow_list != observed_overflow_list);
1285   }
1286 }
1287 
1288 bool ParNewGeneration::take_from_overflow_list(ParScanThreadState* par_scan_state) {
1289   bool res;
1290 
1291   if (ParGCUseLocalOverflow) {
1292     res = par_scan_state->take_from_overflow_stack();
1293   } else {
1294     assert(!UseCompressedOops, "Error");
1295     res = take_from_overflow_list_work(par_scan_state);
1296   }
1297   return res;
1298 }
1299 
1300 
1301 // *NOTE*: The overflow list manipulation code here and
1302 // in CMSCollector:: are very similar in shape,
1303 // except that in the CMS case we thread the objects
1304 // directly into the list via their mark word, and do
1305 // not need to deal with special cases below related
1306 // to chunking of object arrays and promotion failure
1307 // handling.
1308 // CR 6797058 has been filed to attempt consolidation of
1309 // the common code.
1310 // Because of the common code, if you make any changes in
1311 // the code below, please check the CMS version to see if
1312 // similar changes might be needed.
1313 // See CMSCollector::par_take_from_overflow_list() for
1314 // more extensive documentation comments.
1315 bool ParNewGeneration::take_from_overflow_list_work(ParScanThreadState* par_scan_state) {
1316   ObjToScanQueue* work_q = par_scan_state->work_queue();
1317   // How many to take?
1318   size_t objsFromOverflow = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
1319                                  (size_t)ParGCDesiredObjsFromOverflowList);
1320 
1321   assert(!UseCompressedOops, "Error");
1322   assert(par_scan_state->overflow_stack() == NULL, "Error");
1323   if (_overflow_list == NULL) return false;
1324 
1325   // Otherwise, there was something there; try claiming the list.
1326   oop prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
1327   // Trim off a prefix of at most objsFromOverflow items
1328   Thread* tid = Thread::current();
1329   size_t spin_count = ParallelGCThreads;
1330   size_t sleep_time_millis = MAX2((size_t)1, objsFromOverflow/100);
1331   for (size_t spin = 0; prefix == BUSY && spin < spin_count; spin++) {
1332     // someone grabbed it before we did ...
1333     // ... we spin for a short while...
1334     os::sleep(tid, sleep_time_millis, false);
1335     if (_overflow_list == NULL) {
1336       // nothing left to take
1337       return false;
1338     } else if (_overflow_list != BUSY) {
1339      // try and grab the prefix
1340      prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
1341     }
1342   }
1343   if (prefix == NULL || prefix == BUSY) {
1344      // Nothing to take or waited long enough
1345      if (prefix == NULL) {
1346        // Write back the NULL in case we overwrote it with BUSY above
1347        // and it is still the same value.
1348        (void) Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
1349      }
1350      return false;
1351   }
1352   assert(prefix != NULL && prefix != BUSY, "Error");
1353   oop cur = prefix;
1354   for (size_t i = 1; i < objsFromOverflow; ++i) {
1355     oop next = cur->list_ptr_from_klass();
1356     if (next == NULL) break;
1357     cur = next;
1358   }
1359   assert(cur != NULL, "Loop postcondition");
1360 
1361   // Reattach remaining (suffix) to overflow list
1362   oop suffix = cur->list_ptr_from_klass();
1363   if (suffix == NULL) {
1364     // Write back the NULL in lieu of the BUSY we wrote
1365     // above and it is still the same value.
1366     if (_overflow_list == BUSY) {
1367       (void) Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
1368     }
1369   } else {
1370     assert(suffix != BUSY, "Error");
1371     // suffix will be put back on global list
1372     cur->set_klass_to_list_ptr(NULL);     // break off suffix
1373     // It's possible that the list is still in the empty(busy) state
1374     // we left it in a short while ago; in that case we may be
1375     // able to place back the suffix.
1376     oop observed_overflow_list = _overflow_list;
1377     oop cur_overflow_list = observed_overflow_list;
1378     bool attached = false;
1379     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
1380       observed_overflow_list =
1381         Atomic::cmpxchg((oopDesc*)suffix, &_overflow_list, (oopDesc*)cur_overflow_list);
1382       if (cur_overflow_list == observed_overflow_list) {
1383         attached = true;
1384         break;
1385       } else cur_overflow_list = observed_overflow_list;
1386     }
1387     if (!attached) {
1388       // Too bad, someone else got in in between; we'll need to do a splice.
1389       // Find the last item of suffix list
1390       oop last = suffix;
1391       while (true) {
1392         oop next = last->list_ptr_from_klass();
1393         if (next == NULL) break;
1394         last = next;
1395       }
1396       // Atomically prepend suffix to current overflow list
1397       observed_overflow_list = _overflow_list;
1398       do {
1399         cur_overflow_list = observed_overflow_list;
1400         if (cur_overflow_list != BUSY) {
1401           // Do the splice ...
1402           last->set_klass_to_list_ptr(cur_overflow_list);
1403         } else { // cur_overflow_list == BUSY
1404           last->set_klass_to_list_ptr(NULL);
1405         }
1406         observed_overflow_list =
1407           Atomic::cmpxchg((oopDesc*)suffix, &_overflow_list, (oopDesc*)cur_overflow_list);
1408       } while (cur_overflow_list != observed_overflow_list);
1409     }
1410   }
1411 
1412   // Push objects on prefix list onto this thread's work queue
1413   assert(prefix != NULL && prefix != BUSY, "program logic");
1414   cur = prefix;
1415   ssize_t n = 0;
1416   while (cur != NULL) {
1417     oop obj_to_push = cur->forwardee();
1418     oop next        = cur->list_ptr_from_klass();
1419     cur->set_klass(obj_to_push->klass());
1420     // This may be an array object that is self-forwarded. In that case, the list pointer
1421     // space, cur, is not in the Java heap, but rather in the C-heap and should be freed.
1422     if (!is_in_reserved(cur)) {
1423       // This can become a scaling bottleneck when there is work queue overflow coincident
1424       // with promotion failure.
1425       oopDesc* f = cur;
1426       FREE_C_HEAP_ARRAY(oopDesc, f);
1427     } else if (par_scan_state->should_be_partially_scanned(obj_to_push, cur)) {
1428       assert(arrayOop(cur)->length() == 0, "entire array remaining to be scanned");
1429       obj_to_push = cur;
1430     }
1431     bool ok = work_q->push(obj_to_push);
1432     assert(ok, "Should have succeeded");
1433     cur = next;
1434     n++;
1435   }
1436   TASKQUEUE_STATS_ONLY(par_scan_state->note_overflow_refill(n));
1437 #ifndef PRODUCT
1438   assert(_num_par_pushes >= n, "Too many pops?");
1439   Atomic::sub(n, &_num_par_pushes);
1440 #endif
1441   return true;
1442 }
1443 #undef BUSY
1444 
1445 void ParNewGeneration::ref_processor_init() {
1446   if (_ref_processor == NULL) {
1447     // Allocate and initialize a reference processor
1448     _span_based_discoverer.set_span(_reserved);
1449     _ref_processor =
1450       new ReferenceProcessor(&_span_based_discoverer,    // span
1451                              ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
1452                              ParallelGCThreads,          // mt processing degree
1453                              refs_discovery_is_mt(),     // mt discovery
1454                              ParallelGCThreads,          // mt discovery degree
1455                              refs_discovery_is_atomic(), // atomic_discovery
1456                              NULL,                       // is_alive_non_header
1457                              false);                     // disable adjusting number of processing threads
1458   }
1459 }
1460 
1461 const char* ParNewGeneration::name() const {
1462   return "par new generation";
1463 }
1464 
1465 void ParNewGeneration::restore_preserved_marks() {
1466   SharedRestorePreservedMarksTaskExecutor task_executor(CMSHeap::heap()->workers());
1467   _preserved_marks_set.restore(&task_executor);
1468 }