1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_bsd.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "os_share_bsd.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/extendedPC.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/javaCalls.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "utilities/events.hpp"
  53 #include "utilities/vmError.hpp"
  54 
  55 // put OS-includes here
  56 # include <sys/types.h>
  57 # include <sys/mman.h>
  58 # include <pthread.h>
  59 # include <signal.h>
  60 # include <errno.h>
  61 # include <dlfcn.h>
  62 # include <stdlib.h>
  63 # include <stdio.h>
  64 # include <unistd.h>
  65 # include <sys/resource.h>
  66 # include <pthread.h>
  67 # include <sys/stat.h>
  68 # include <sys/time.h>
  69 # include <sys/utsname.h>
  70 # include <sys/socket.h>
  71 # include <sys/wait.h>
  72 # include <pwd.h>
  73 # include <poll.h>
  74 #ifndef __OpenBSD__
  75 # include <ucontext.h>
  76 #endif
  77 
  78 #if !defined(__APPLE__) && !defined(__NetBSD__)
  79 # include <pthread_np.h>
  80 #endif
  81 
  82 // needed by current_stack_region() workaround for Mavericks
  83 #if defined(__APPLE__)
  84 # include <errno.h>
  85 # include <sys/types.h>
  86 # include <sys/sysctl.h>
  87 # define DEFAULT_MAIN_THREAD_STACK_PAGES 2048
  88 # define OS_X_10_9_0_KERNEL_MAJOR_VERSION 13
  89 #endif
  90 
  91 #ifdef AMD64
  92 #define SPELL_REG_SP "rsp"
  93 #define SPELL_REG_FP "rbp"
  94 #else
  95 #define SPELL_REG_SP "esp"
  96 #define SPELL_REG_FP "ebp"
  97 #endif // AMD64
  98 
  99 #ifdef __FreeBSD__
 100 # define context_trapno uc_mcontext.mc_trapno
 101 # ifdef AMD64
 102 #  define context_pc uc_mcontext.mc_rip
 103 #  define context_sp uc_mcontext.mc_rsp
 104 #  define context_fp uc_mcontext.mc_rbp
 105 #  define context_rip uc_mcontext.mc_rip
 106 #  define context_rsp uc_mcontext.mc_rsp
 107 #  define context_rbp uc_mcontext.mc_rbp
 108 #  define context_rax uc_mcontext.mc_rax
 109 #  define context_rbx uc_mcontext.mc_rbx
 110 #  define context_rcx uc_mcontext.mc_rcx
 111 #  define context_rdx uc_mcontext.mc_rdx
 112 #  define context_rsi uc_mcontext.mc_rsi
 113 #  define context_rdi uc_mcontext.mc_rdi
 114 #  define context_r8  uc_mcontext.mc_r8
 115 #  define context_r9  uc_mcontext.mc_r9
 116 #  define context_r10 uc_mcontext.mc_r10
 117 #  define context_r11 uc_mcontext.mc_r11
 118 #  define context_r12 uc_mcontext.mc_r12
 119 #  define context_r13 uc_mcontext.mc_r13
 120 #  define context_r14 uc_mcontext.mc_r14
 121 #  define context_r15 uc_mcontext.mc_r15
 122 #  define context_flags uc_mcontext.mc_flags
 123 #  define context_err uc_mcontext.mc_err
 124 # else
 125 #  define context_pc uc_mcontext.mc_eip
 126 #  define context_sp uc_mcontext.mc_esp
 127 #  define context_fp uc_mcontext.mc_ebp
 128 #  define context_eip uc_mcontext.mc_eip
 129 #  define context_esp uc_mcontext.mc_esp
 130 #  define context_eax uc_mcontext.mc_eax
 131 #  define context_ebx uc_mcontext.mc_ebx
 132 #  define context_ecx uc_mcontext.mc_ecx
 133 #  define context_edx uc_mcontext.mc_edx
 134 #  define context_ebp uc_mcontext.mc_ebp
 135 #  define context_esi uc_mcontext.mc_esi
 136 #  define context_edi uc_mcontext.mc_edi
 137 #  define context_eflags uc_mcontext.mc_eflags
 138 #  define context_trapno uc_mcontext.mc_trapno
 139 # endif
 140 #endif
 141 
 142 #ifdef __APPLE__
 143 # if __DARWIN_UNIX03 && (MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_5)
 144   // 10.5 UNIX03 member name prefixes
 145   #define DU3_PREFIX(s, m) __ ## s.__ ## m
 146 # else
 147   #define DU3_PREFIX(s, m) s ## . ## m
 148 # endif
 149 
 150 # ifdef AMD64
 151 #  define context_pc context_rip
 152 #  define context_sp context_rsp
 153 #  define context_fp context_rbp
 154 #  define context_rip uc_mcontext->DU3_PREFIX(ss,rip)
 155 #  define context_rsp uc_mcontext->DU3_PREFIX(ss,rsp)
 156 #  define context_rax uc_mcontext->DU3_PREFIX(ss,rax)
 157 #  define context_rbx uc_mcontext->DU3_PREFIX(ss,rbx)
 158 #  define context_rcx uc_mcontext->DU3_PREFIX(ss,rcx)
 159 #  define context_rdx uc_mcontext->DU3_PREFIX(ss,rdx)
 160 #  define context_rbp uc_mcontext->DU3_PREFIX(ss,rbp)
 161 #  define context_rsi uc_mcontext->DU3_PREFIX(ss,rsi)
 162 #  define context_rdi uc_mcontext->DU3_PREFIX(ss,rdi)
 163 #  define context_r8  uc_mcontext->DU3_PREFIX(ss,r8)
 164 #  define context_r9  uc_mcontext->DU3_PREFIX(ss,r9)
 165 #  define context_r10 uc_mcontext->DU3_PREFIX(ss,r10)
 166 #  define context_r11 uc_mcontext->DU3_PREFIX(ss,r11)
 167 #  define context_r12 uc_mcontext->DU3_PREFIX(ss,r12)
 168 #  define context_r13 uc_mcontext->DU3_PREFIX(ss,r13)
 169 #  define context_r14 uc_mcontext->DU3_PREFIX(ss,r14)
 170 #  define context_r15 uc_mcontext->DU3_PREFIX(ss,r15)
 171 #  define context_flags uc_mcontext->DU3_PREFIX(ss,rflags)
 172 #  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
 173 #  define context_err uc_mcontext->DU3_PREFIX(es,err)
 174 # else
 175 #  define context_pc context_eip
 176 #  define context_sp context_esp
 177 #  define context_fp context_ebp
 178 #  define context_eip uc_mcontext->DU3_PREFIX(ss,eip)
 179 #  define context_esp uc_mcontext->DU3_PREFIX(ss,esp)
 180 #  define context_eax uc_mcontext->DU3_PREFIX(ss,eax)
 181 #  define context_ebx uc_mcontext->DU3_PREFIX(ss,ebx)
 182 #  define context_ecx uc_mcontext->DU3_PREFIX(ss,ecx)
 183 #  define context_edx uc_mcontext->DU3_PREFIX(ss,edx)
 184 #  define context_ebp uc_mcontext->DU3_PREFIX(ss,ebp)
 185 #  define context_esi uc_mcontext->DU3_PREFIX(ss,esi)
 186 #  define context_edi uc_mcontext->DU3_PREFIX(ss,edi)
 187 #  define context_eflags uc_mcontext->DU3_PREFIX(ss,eflags)
 188 #  define context_trapno uc_mcontext->DU3_PREFIX(es,trapno)
 189 # endif
 190 #endif
 191 
 192 #ifdef __OpenBSD__
 193 # define context_trapno sc_trapno
 194 # ifdef AMD64
 195 #  define context_pc sc_rip
 196 #  define context_sp sc_rsp
 197 #  define context_fp sc_rbp
 198 #  define context_rip sc_rip
 199 #  define context_rsp sc_rsp
 200 #  define context_rbp sc_rbp
 201 #  define context_rax sc_rax
 202 #  define context_rbx sc_rbx
 203 #  define context_rcx sc_rcx
 204 #  define context_rdx sc_rdx
 205 #  define context_rsi sc_rsi
 206 #  define context_rdi sc_rdi
 207 #  define context_r8  sc_r8
 208 #  define context_r9  sc_r9
 209 #  define context_r10 sc_r10
 210 #  define context_r11 sc_r11
 211 #  define context_r12 sc_r12
 212 #  define context_r13 sc_r13
 213 #  define context_r14 sc_r14
 214 #  define context_r15 sc_r15
 215 #  define context_flags sc_rflags
 216 #  define context_err sc_err
 217 # else
 218 #  define context_pc sc_eip
 219 #  define context_sp sc_esp
 220 #  define context_fp sc_ebp
 221 #  define context_eip sc_eip
 222 #  define context_esp sc_esp
 223 #  define context_eax sc_eax
 224 #  define context_ebx sc_ebx
 225 #  define context_ecx sc_ecx
 226 #  define context_edx sc_edx
 227 #  define context_ebp sc_ebp
 228 #  define context_esi sc_esi
 229 #  define context_edi sc_edi
 230 #  define context_eflags sc_eflags
 231 #  define context_trapno sc_trapno
 232 # endif
 233 #endif
 234 
 235 #ifdef __NetBSD__
 236 # define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
 237 # ifdef AMD64
 238 #  define __register_t __greg_t
 239 #  define context_pc uc_mcontext.__gregs[_REG_RIP]
 240 #  define context_sp uc_mcontext.__gregs[_REG_URSP]
 241 #  define context_fp uc_mcontext.__gregs[_REG_RBP]
 242 #  define context_rip uc_mcontext.__gregs[_REG_RIP]
 243 #  define context_rsp uc_mcontext.__gregs[_REG_URSP]
 244 #  define context_rax uc_mcontext.__gregs[_REG_RAX]
 245 #  define context_rbx uc_mcontext.__gregs[_REG_RBX]
 246 #  define context_rcx uc_mcontext.__gregs[_REG_RCX]
 247 #  define context_rdx uc_mcontext.__gregs[_REG_RDX]
 248 #  define context_rbp uc_mcontext.__gregs[_REG_RBP]
 249 #  define context_rsi uc_mcontext.__gregs[_REG_RSI]
 250 #  define context_rdi uc_mcontext.__gregs[_REG_RDI]
 251 #  define context_r8  uc_mcontext.__gregs[_REG_R8]
 252 #  define context_r9  uc_mcontext.__gregs[_REG_R9]
 253 #  define context_r10 uc_mcontext.__gregs[_REG_R10]
 254 #  define context_r11 uc_mcontext.__gregs[_REG_R11]
 255 #  define context_r12 uc_mcontext.__gregs[_REG_R12]
 256 #  define context_r13 uc_mcontext.__gregs[_REG_R13]
 257 #  define context_r14 uc_mcontext.__gregs[_REG_R14]
 258 #  define context_r15 uc_mcontext.__gregs[_REG_R15]
 259 #  define context_flags uc_mcontext.__gregs[_REG_RFL]
 260 #  define context_err uc_mcontext.__gregs[_REG_ERR]
 261 # else
 262 #  define context_pc uc_mcontext.__gregs[_REG_EIP]
 263 #  define context_sp uc_mcontext.__gregs[_REG_UESP]
 264 #  define context_fp uc_mcontext.__gregs[_REG_EBP]
 265 #  define context_eip uc_mcontext.__gregs[_REG_EIP]
 266 #  define context_esp uc_mcontext.__gregs[_REG_UESP]
 267 #  define context_eax uc_mcontext.__gregs[_REG_EAX]
 268 #  define context_ebx uc_mcontext.__gregs[_REG_EBX]
 269 #  define context_ecx uc_mcontext.__gregs[_REG_ECX]
 270 #  define context_edx uc_mcontext.__gregs[_REG_EDX]
 271 #  define context_ebp uc_mcontext.__gregs[_REG_EBP]
 272 #  define context_esi uc_mcontext.__gregs[_REG_ESI]
 273 #  define context_edi uc_mcontext.__gregs[_REG_EDI]
 274 #  define context_eflags uc_mcontext.__gregs[_REG_EFL]
 275 #  define context_trapno uc_mcontext.__gregs[_REG_TRAPNO]
 276 # endif
 277 #endif
 278 
 279 address os::current_stack_pointer() {
 280 #if defined(__clang__) || defined(__llvm__)
 281   register void *esp;
 282   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
 283   return (address) esp;
 284 #elif defined(SPARC_WORKS)
 285   register void *esp;
 286   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
 287   return (address) ((char*)esp + sizeof(long)*2);
 288 #else
 289   register void *esp __asm__ (SPELL_REG_SP);
 290   return (address) esp;
 291 #endif
 292 }
 293 
 294 char* os::non_memory_address_word() {
 295   // Must never look like an address returned by reserve_memory,
 296   // even in its subfields (as defined by the CPU immediate fields,
 297   // if the CPU splits constants across multiple instructions).
 298 
 299   return (char*) -1;
 300 }
 301 
 302 void os::initialize_thread(Thread* thr) {
 303 // Nothing to do.
 304 }
 305 
 306 address os::Bsd::ucontext_get_pc(const ucontext_t * uc) {
 307   return (address)uc->context_pc;
 308 }
 309 
 310 void os::Bsd::ucontext_set_pc(ucontext_t * uc, address pc) {
 311   uc->context_pc = (intptr_t)pc ;
 312 }
 313 
 314 intptr_t* os::Bsd::ucontext_get_sp(const ucontext_t * uc) {
 315   return (intptr_t*)uc->context_sp;
 316 }
 317 
 318 intptr_t* os::Bsd::ucontext_get_fp(const ucontext_t * uc) {
 319   return (intptr_t*)uc->context_fp;
 320 }
 321 
 322 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 323 // is currently interrupted by SIGPROF.
 324 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 325 // frames. Currently we don't do that on Bsd, so it's the same as
 326 // os::fetch_frame_from_context().
 327 // This method is also used for stack overflow signal handling.
 328 ExtendedPC os::Bsd::fetch_frame_from_ucontext(Thread* thread,
 329   const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 330 
 331   assert(thread != NULL, "just checking");
 332   assert(ret_sp != NULL, "just checking");
 333   assert(ret_fp != NULL, "just checking");
 334 
 335   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 336 }
 337 
 338 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 339                     intptr_t** ret_sp, intptr_t** ret_fp) {
 340 
 341   ExtendedPC  epc;
 342   const ucontext_t* uc = (const ucontext_t*)ucVoid;
 343 
 344   if (uc != NULL) {
 345     epc = ExtendedPC(os::Bsd::ucontext_get_pc(uc));
 346     if (ret_sp) *ret_sp = os::Bsd::ucontext_get_sp(uc);
 347     if (ret_fp) *ret_fp = os::Bsd::ucontext_get_fp(uc);
 348   } else {
 349     // construct empty ExtendedPC for return value checking
 350     epc = ExtendedPC(NULL);
 351     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 352     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 353   }
 354 
 355   return epc;
 356 }
 357 
 358 frame os::fetch_frame_from_context(const void* ucVoid) {
 359   intptr_t* sp;
 360   intptr_t* fp;
 361   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 362   return frame(sp, fp, epc.pc());
 363 }
 364 
 365 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
 366   intptr_t* sp;
 367   intptr_t* fp;
 368   ExtendedPC epc = os::Bsd::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
 369   return frame(sp, fp, epc.pc());
 370 }
 371 
 372 bool os::Bsd::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 373   address pc = (address) os::Bsd::ucontext_get_pc(uc);
 374   if (Interpreter::contains(pc)) {
 375     // interpreter performs stack banging after the fixed frame header has
 376     // been generated while the compilers perform it before. To maintain
 377     // semantic consistency between interpreted and compiled frames, the
 378     // method returns the Java sender of the current frame.
 379     *fr = os::fetch_frame_from_ucontext(thread, uc);
 380     if (!fr->is_first_java_frame()) {
 381       assert(fr->safe_for_sender(thread), "Safety check");
 382       *fr = fr->java_sender();
 383     }
 384   } else {
 385     // more complex code with compiled code
 386     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 387     CodeBlob* cb = CodeCache::find_blob(pc);
 388     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 389       // Not sure where the pc points to, fallback to default
 390       // stack overflow handling
 391       return false;
 392     } else {
 393       *fr = os::fetch_frame_from_ucontext(thread, uc);
 394       // in compiled code, the stack banging is performed just after the return pc
 395       // has been pushed on the stack
 396       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
 397       if (!fr->is_java_frame()) {
 398         assert(fr->safe_for_sender(thread), "Safety check");
 399         *fr = fr->java_sender();
 400       }
 401     }
 402   }
 403   assert(fr->is_java_frame(), "Safety check");
 404   return true;
 405 }
 406 
 407 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 408 // turned off by -fomit-frame-pointer,
 409 frame os::get_sender_for_C_frame(frame* fr) {
 410   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 411 }
 412 
 413 intptr_t* _get_previous_fp() {
 414 #if defined(SPARC_WORKS) || defined(__clang__) || defined(__llvm__)
 415   register intptr_t **ebp;
 416   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 417 #else
 418   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 419 #endif
 420   return (intptr_t*) *ebp;   // we want what it points to.
 421 }
 422 
 423 
 424 frame os::current_frame() {
 425   intptr_t* fp = _get_previous_fp();
 426   frame myframe((intptr_t*)os::current_stack_pointer(),
 427                 (intptr_t*)fp,
 428                 CAST_FROM_FN_PTR(address, os::current_frame));
 429   if (os::is_first_C_frame(&myframe)) {
 430     // stack is not walkable
 431     return frame();
 432   } else {
 433     return os::get_sender_for_C_frame(&myframe);
 434   }
 435 }
 436 
 437 // Utility functions
 438 
 439 // From IA32 System Programming Guide
 440 enum {
 441   trap_page_fault = 0xE
 442 };
 443 
 444 extern "C" JNIEXPORT int
 445 JVM_handle_bsd_signal(int sig,
 446                         siginfo_t* info,
 447                         void* ucVoid,
 448                         int abort_if_unrecognized) {
 449   ucontext_t* uc = (ucontext_t*) ucVoid;
 450 
 451   Thread* t = Thread::current_or_null_safe();
 452 
 453   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 454   // (no destructors can be run)
 455   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 456 
 457   SignalHandlerMark shm(t);
 458 
 459   // Note: it's not uncommon that JNI code uses signal/sigset to install
 460   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 461   // or have a SIGILL handler when detecting CPU type). When that happens,
 462   // JVM_handle_bsd_signal() might be invoked with junk info/ucVoid. To
 463   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 464   // that do not require siginfo/ucontext first.
 465 
 466   if (sig == SIGPIPE || sig == SIGXFSZ) {
 467     // allow chained handler to go first
 468     if (os::Bsd::chained_handler(sig, info, ucVoid)) {
 469       return true;
 470     } else {
 471       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
 472       return true;
 473     }
 474   }
 475 
 476   JavaThread* thread = NULL;
 477   VMThread* vmthread = NULL;
 478   if (os::Bsd::signal_handlers_are_installed) {
 479     if (t != NULL ){
 480       if(t->is_Java_thread()) {
 481         thread = (JavaThread*)t;
 482       }
 483       else if(t->is_VM_thread()){
 484         vmthread = (VMThread *)t;
 485       }
 486     }
 487   }
 488 /*
 489   NOTE: does not seem to work on bsd.
 490   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 491     // can't decode this kind of signal
 492     info = NULL;
 493   } else {
 494     assert(sig == info->si_signo, "bad siginfo");
 495   }
 496 */
 497   // decide if this trap can be handled by a stub
 498   address stub = NULL;
 499 
 500   address pc          = NULL;
 501 
 502   //%note os_trap_1
 503   if (info != NULL && uc != NULL && thread != NULL) {
 504     pc = (address) os::Bsd::ucontext_get_pc(uc);
 505 
 506     if (StubRoutines::is_safefetch_fault(pc)) {
 507       os::Bsd::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 508       return 1;
 509     }
 510 
 511     // Handle ALL stack overflow variations here
 512     if (sig == SIGSEGV || sig == SIGBUS) {
 513       address addr = (address) info->si_addr;
 514 
 515       // check if fault address is within thread stack
 516       if (thread->on_local_stack(addr)) {
 517         // stack overflow
 518         if (thread->in_stack_yellow_reserved_zone(addr)) {
 519           if (thread->thread_state() == _thread_in_Java) {
 520             if (thread->in_stack_reserved_zone(addr)) {
 521               frame fr;
 522               if (os::Bsd::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 523                 assert(fr.is_java_frame(), "Must be a Java frame");
 524                 frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 525                 if (activation.sp() != NULL) {
 526                   thread->disable_stack_reserved_zone();
 527                   if (activation.is_interpreted_frame()) {
 528                     thread->set_reserved_stack_activation((address)(
 529                       activation.fp() + frame::interpreter_frame_initial_sp_offset));
 530                   } else {
 531                     thread->set_reserved_stack_activation((address)activation.unextended_sp());
 532                   }
 533                   return 1;
 534                 }
 535               }
 536             }
 537             // Throw a stack overflow exception.  Guard pages will be reenabled
 538             // while unwinding the stack.
 539             thread->disable_stack_yellow_reserved_zone();
 540             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 541           } else {
 542             // Thread was in the vm or native code.  Return and try to finish.
 543             thread->disable_stack_yellow_reserved_zone();
 544             return 1;
 545           }
 546         } else if (thread->in_stack_red_zone(addr)) {
 547           // Fatal red zone violation.  Disable the guard pages and fall through
 548           // to handle_unexpected_exception way down below.
 549           thread->disable_stack_red_zone();
 550           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 551         }
 552       }
 553     }
 554 
 555     if ((sig == SIGSEGV || sig == SIGBUS) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 556       // Verify that OS save/restore AVX registers.
 557       stub = VM_Version::cpuinfo_cont_addr();
 558     }
 559 
 560     // We test if stub is already set (by the stack overflow code
 561     // above) so it is not overwritten by the code that follows. This
 562     // check is not required on other platforms, because on other
 563     // platforms we check for SIGSEGV only or SIGBUS only, where here
 564     // we have to check for both SIGSEGV and SIGBUS.
 565     if (thread->thread_state() == _thread_in_Java && stub == NULL) {
 566       // Java thread running in Java code => find exception handler if any
 567       // a fault inside compiled code, the interpreter, or a stub
 568 
 569       if ((sig == SIGSEGV || sig == SIGBUS) && os::is_poll_address((address)info->si_addr)) {
 570         stub = SharedRuntime::get_poll_stub(pc);
 571 #if defined(__APPLE__)
 572       // 32-bit Darwin reports a SIGBUS for nearly all memory access exceptions.
 573       // 64-bit Darwin may also use a SIGBUS (seen with compressed oops).
 574       // Catching SIGBUS here prevents the implicit SIGBUS NULL check below from
 575       // being called, so only do so if the implicit NULL check is not necessary.
 576       } else if (sig == SIGBUS && MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 577 #else
 578       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 579 #endif
 580         // BugId 4454115: A read from a MappedByteBuffer can fault
 581         // here if the underlying file has been truncated.
 582         // Do not crash the VM in such a case.
 583         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 584         CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
 585         if (nm != NULL && nm->has_unsafe_access()) {
 586           address next_pc = Assembler::locate_next_instruction(pc);
 587           stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 588         }
 589       }
 590       else
 591 
 592 #ifdef AMD64
 593       if (sig == SIGFPE  &&
 594           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 595         stub =
 596           SharedRuntime::
 597           continuation_for_implicit_exception(thread,
 598                                               pc,
 599                                               SharedRuntime::
 600                                               IMPLICIT_DIVIDE_BY_ZERO);
 601 #ifdef __APPLE__
 602       } else if (sig == SIGFPE && info->si_code == FPE_NOOP) {
 603         int op = pc[0];
 604 
 605         // Skip REX
 606         if ((pc[0] & 0xf0) == 0x40) {
 607           op = pc[1];
 608         } else {
 609           op = pc[0];
 610         }
 611 
 612         // Check for IDIV
 613         if (op == 0xF7) {
 614           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime:: IMPLICIT_DIVIDE_BY_ZERO);
 615         } else {
 616           // TODO: handle more cases if we are using other x86 instructions
 617           //   that can generate SIGFPE signal.
 618           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 619           fatal("please update this code.");
 620         }
 621 #endif /* __APPLE__ */
 622 
 623 #else
 624       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 625         // HACK: si_code does not work on bsd 2.2.12-20!!!
 626         int op = pc[0];
 627         if (op == 0xDB) {
 628           // FIST
 629           // TODO: The encoding of D2I in i486.ad can cause an exception
 630           // prior to the fist instruction if there was an invalid operation
 631           // pending. We want to dismiss that exception. From the win_32
 632           // side it also seems that if it really was the fist causing
 633           // the exception that we do the d2i by hand with different
 634           // rounding. Seems kind of weird.
 635           // NOTE: that we take the exception at the NEXT floating point instruction.
 636           assert(pc[0] == 0xDB, "not a FIST opcode");
 637           assert(pc[1] == 0x14, "not a FIST opcode");
 638           assert(pc[2] == 0x24, "not a FIST opcode");
 639           return true;
 640         } else if (op == 0xF7) {
 641           // IDIV
 642           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 643         } else {
 644           // TODO: handle more cases if we are using other x86 instructions
 645           //   that can generate SIGFPE signal on bsd.
 646           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 647           fatal("please update this code.");
 648         }
 649 #endif // AMD64
 650       } else if ((sig == SIGSEGV || sig == SIGBUS) &&
 651                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 652           // Determination of interpreter/vtable stub/compiled code null exception
 653           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 654       }
 655     } else if (thread->thread_state() == _thread_in_vm &&
 656                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 657                thread->doing_unsafe_access()) {
 658         address next_pc = Assembler::locate_next_instruction(pc);
 659         stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 660     }
 661 
 662     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 663     // and the heap gets shrunk before the field access.
 664     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 665       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 666       if (addr != (address)-1) {
 667         stub = addr;
 668       }
 669     }
 670 
 671     // Check to see if we caught the safepoint code in the
 672     // process of write protecting the memory serialization page.
 673     // It write enables the page immediately after protecting it
 674     // so we can just return to retry the write.
 675     if ((sig == SIGSEGV || sig == SIGBUS) &&
 676         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 677       // Block current thread until the memory serialize page permission restored.
 678       os::block_on_serialize_page_trap();
 679       return true;
 680     }
 681   }
 682 
 683 #ifndef AMD64
 684   // Execution protection violation
 685   //
 686   // This should be kept as the last step in the triage.  We don't
 687   // have a dedicated trap number for a no-execute fault, so be
 688   // conservative and allow other handlers the first shot.
 689   //
 690   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 691   // this si_code is so generic that it is almost meaningless; and
 692   // the si_code for this condition may change in the future.
 693   // Furthermore, a false-positive should be harmless.
 694   if (UnguardOnExecutionViolation > 0 &&
 695       (sig == SIGSEGV || sig == SIGBUS) &&
 696       uc->context_trapno == trap_page_fault) {
 697     int page_size = os::vm_page_size();
 698     address addr = (address) info->si_addr;
 699     address pc = os::Bsd::ucontext_get_pc(uc);
 700     // Make sure the pc and the faulting address are sane.
 701     //
 702     // If an instruction spans a page boundary, and the page containing
 703     // the beginning of the instruction is executable but the following
 704     // page is not, the pc and the faulting address might be slightly
 705     // different - we still want to unguard the 2nd page in this case.
 706     //
 707     // 15 bytes seems to be a (very) safe value for max instruction size.
 708     bool pc_is_near_addr =
 709       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 710     bool instr_spans_page_boundary =
 711       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 712                        (intptr_t) page_size) > 0);
 713 
 714     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 715       static volatile address last_addr =
 716         (address) os::non_memory_address_word();
 717 
 718       // In conservative mode, don't unguard unless the address is in the VM
 719       if (addr != last_addr &&
 720           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 721 
 722         // Set memory to RWX and retry
 723         address page_start =
 724           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 725         bool res = os::protect_memory((char*) page_start, page_size,
 726                                       os::MEM_PROT_RWX);
 727 
 728         log_debug(os)("Execution protection violation "
 729                       "at " INTPTR_FORMAT
 730                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
 731                       p2i(page_start), (res ? "success" : "failed"), errno);
 732         stub = pc;
 733 
 734         // Set last_addr so if we fault again at the same address, we don't end
 735         // up in an endless loop.
 736         //
 737         // There are two potential complications here.  Two threads trapping at
 738         // the same address at the same time could cause one of the threads to
 739         // think it already unguarded, and abort the VM.  Likely very rare.
 740         //
 741         // The other race involves two threads alternately trapping at
 742         // different addresses and failing to unguard the page, resulting in
 743         // an endless loop.  This condition is probably even more unlikely than
 744         // the first.
 745         //
 746         // Although both cases could be avoided by using locks or thread local
 747         // last_addr, these solutions are unnecessary complication: this
 748         // handler is a best-effort safety net, not a complete solution.  It is
 749         // disabled by default and should only be used as a workaround in case
 750         // we missed any no-execute-unsafe VM code.
 751 
 752         last_addr = addr;
 753       }
 754     }
 755   }
 756 #endif // !AMD64
 757 
 758   if (stub != NULL) {
 759     // save all thread context in case we need to restore it
 760     if (thread != NULL) thread->set_saved_exception_pc(pc);
 761 
 762     os::Bsd::ucontext_set_pc(uc, stub);
 763     return true;
 764   }
 765 
 766   // signal-chaining
 767   if (os::Bsd::chained_handler(sig, info, ucVoid)) {
 768      return true;
 769   }
 770 
 771   if (!abort_if_unrecognized) {
 772     // caller wants another chance, so give it to him
 773     return false;
 774   }
 775 
 776   if (pc == NULL && uc != NULL) {
 777     pc = os::Bsd::ucontext_get_pc(uc);
 778   }
 779 
 780   // unmask current signal
 781   sigset_t newset;
 782   sigemptyset(&newset);
 783   sigaddset(&newset, sig);
 784   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 785 
 786   VMError::report_and_die(t, sig, pc, info, ucVoid);
 787 
 788   ShouldNotReachHere();
 789   return false;
 790 }
 791 
 792 // From solaris_i486.s ported to bsd_i486.s
 793 extern "C" void fixcw();
 794 
 795 void os::Bsd::init_thread_fpu_state(void) {
 796 #ifndef AMD64
 797   // Set fpu to 53 bit precision. This happens too early to use a stub.
 798   fixcw();
 799 #endif // !AMD64
 800 }
 801 
 802 
 803 // Check that the bsd kernel version is 2.4 or higher since earlier
 804 // versions do not support SSE without patches.
 805 bool os::supports_sse() {
 806   return true;
 807 }
 808 
 809 bool os::is_allocatable(size_t bytes) {
 810 #ifdef AMD64
 811   // unused on amd64?
 812   return true;
 813 #else
 814 
 815   if (bytes < 2 * G) {
 816     return true;
 817   }
 818 
 819   char* addr = reserve_memory(bytes, NULL);
 820 
 821   if (addr != NULL) {
 822     release_memory(addr, bytes);
 823   }
 824 
 825   return addr != NULL;
 826 #endif // AMD64
 827 }
 828 
 829 ////////////////////////////////////////////////////////////////////////////////
 830 // thread stack
 831 
 832 #ifdef AMD64
 833 size_t os::Bsd::min_stack_allowed  = 64 * K;
 834 #else
 835 size_t os::Bsd::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
 836 
 837 #ifdef __GNUC__
 838 #define GET_GS() ({int gs; __asm__ volatile("movw %%gs, %w0":"=q"(gs)); gs&0xffff;})
 839 #endif
 840 
 841 #endif // AMD64
 842 
 843 // return default stack size for thr_type
 844 size_t os::Bsd::default_stack_size(os::ThreadType thr_type) {
 845   // default stack size (compiler thread needs larger stack)
 846 #ifdef AMD64
 847   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 848 #else
 849   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 850 #endif // AMD64
 851   return s;
 852 }
 853 
 854 size_t os::Bsd::default_guard_size(os::ThreadType thr_type) {
 855   // Creating guard page is very expensive. Java thread has HotSpot
 856   // guard page, only enable glibc guard page for non-Java threads.
 857   return (thr_type == java_thread ? 0 : page_size());
 858 }
 859 
 860 // Java thread:
 861 //
 862 //   Low memory addresses
 863 //    +------------------------+
 864 //    |                        |\  JavaThread created by VM does not have glibc
 865 //    |    glibc guard page    | - guard, attached Java thread usually has
 866 //    |                        |/  1 page glibc guard.
 867 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 868 //    |                        |\
 869 //    |  HotSpot Guard Pages   | - red and yellow pages
 870 //    |                        |/
 871 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 872 //    |                        |\
 873 //    |      Normal Stack      | -
 874 //    |                        |/
 875 // P2 +------------------------+ Thread::stack_base()
 876 //
 877 // Non-Java thread:
 878 //
 879 //   Low memory addresses
 880 //    +------------------------+
 881 //    |                        |\
 882 //    |  glibc guard page      | - usually 1 page
 883 //    |                        |/
 884 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 885 //    |                        |\
 886 //    |      Normal Stack      | -
 887 //    |                        |/
 888 // P2 +------------------------+ Thread::stack_base()
 889 //
 890 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 891 //    pthread_attr_getstack()
 892 
 893 static void current_stack_region(address * bottom, size_t * size) {
 894 #ifdef __APPLE__
 895   pthread_t self = pthread_self();
 896   void *stacktop = pthread_get_stackaddr_np(self);
 897   *size = pthread_get_stacksize_np(self);
 898   // workaround for OS X 10.9.0 (Mavericks)
 899   // pthread_get_stacksize_np returns 128 pages even though the actual size is 2048 pages
 900   if (pthread_main_np() == 1) {
 901     if ((*size) < (DEFAULT_MAIN_THREAD_STACK_PAGES * (size_t)getpagesize())) {
 902       char kern_osrelease[256];
 903       size_t kern_osrelease_size = sizeof(kern_osrelease);
 904       int ret = sysctlbyname("kern.osrelease", kern_osrelease, &kern_osrelease_size, NULL, 0);
 905       if (ret == 0) {
 906         // get the major number, atoi will ignore the minor amd micro portions of the version string
 907         if (atoi(kern_osrelease) >= OS_X_10_9_0_KERNEL_MAJOR_VERSION) {
 908           *size = (DEFAULT_MAIN_THREAD_STACK_PAGES*getpagesize());
 909         }
 910       }
 911     }
 912   }
 913   *bottom = (address) stacktop - *size;
 914 #elif defined(__OpenBSD__)
 915   stack_t ss;
 916   int rslt = pthread_stackseg_np(pthread_self(), &ss);
 917 
 918   if (rslt != 0)
 919     fatal("pthread_stackseg_np failed with err = %d", rslt);
 920 
 921   *bottom = (address)((char *)ss.ss_sp - ss.ss_size);
 922   *size   = ss.ss_size;
 923 #else
 924   pthread_attr_t attr;
 925 
 926   int rslt = pthread_attr_init(&attr);
 927 
 928   // JVM needs to know exact stack location, abort if it fails
 929   if (rslt != 0)
 930     fatal("pthread_attr_init failed with err = %d", rslt);
 931 
 932   rslt = pthread_attr_get_np(pthread_self(), &attr);
 933 
 934   if (rslt != 0)
 935     fatal("pthread_attr_get_np failed with err = %d", rslt);
 936 
 937   if (pthread_attr_getstackaddr(&attr, (void **)bottom) != 0 ||
 938     pthread_attr_getstacksize(&attr, size) != 0) {
 939     fatal("Can not locate current stack attributes!");
 940   }
 941 
 942   pthread_attr_destroy(&attr);
 943 #endif
 944   assert(os::current_stack_pointer() >= *bottom &&
 945          os::current_stack_pointer() < *bottom + *size, "just checking");
 946 }
 947 
 948 address os::current_stack_base() {
 949   address bottom;
 950   size_t size;
 951   current_stack_region(&bottom, &size);
 952   return (bottom + size);
 953 }
 954 
 955 size_t os::current_stack_size() {
 956   // stack size includes normal stack and HotSpot guard pages
 957   address bottom;
 958   size_t size;
 959   current_stack_region(&bottom, &size);
 960   return size;
 961 }
 962 
 963 /////////////////////////////////////////////////////////////////////////////
 964 // helper functions for fatal error handler
 965 
 966 void os::print_context(outputStream *st, const void *context) {
 967   if (context == NULL) return;
 968 
 969   const ucontext_t *uc = (const ucontext_t*)context;
 970   st->print_cr("Registers:");
 971 #ifdef AMD64
 972   st->print(  "RAX=" INTPTR_FORMAT, uc->context_rax);
 973   st->print(", RBX=" INTPTR_FORMAT, uc->context_rbx);
 974   st->print(", RCX=" INTPTR_FORMAT, uc->context_rcx);
 975   st->print(", RDX=" INTPTR_FORMAT, uc->context_rdx);
 976   st->cr();
 977   st->print(  "RSP=" INTPTR_FORMAT, uc->context_rsp);
 978   st->print(", RBP=" INTPTR_FORMAT, uc->context_rbp);
 979   st->print(", RSI=" INTPTR_FORMAT, uc->context_rsi);
 980   st->print(", RDI=" INTPTR_FORMAT, uc->context_rdi);
 981   st->cr();
 982   st->print(  "R8 =" INTPTR_FORMAT, uc->context_r8);
 983   st->print(", R9 =" INTPTR_FORMAT, uc->context_r9);
 984   st->print(", R10=" INTPTR_FORMAT, uc->context_r10);
 985   st->print(", R11=" INTPTR_FORMAT, uc->context_r11);
 986   st->cr();
 987   st->print(  "R12=" INTPTR_FORMAT, uc->context_r12);
 988   st->print(", R13=" INTPTR_FORMAT, uc->context_r13);
 989   st->print(", R14=" INTPTR_FORMAT, uc->context_r14);
 990   st->print(", R15=" INTPTR_FORMAT, uc->context_r15);
 991   st->cr();
 992   st->print(  "RIP=" INTPTR_FORMAT, uc->context_rip);
 993   st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_flags);
 994   st->print(", ERR=" INTPTR_FORMAT, uc->context_err);
 995   st->cr();
 996   st->print("  TRAPNO=" INTPTR_FORMAT, uc->context_trapno);
 997 #else
 998   st->print(  "EAX=" INTPTR_FORMAT, uc->context_eax);
 999   st->print(", EBX=" INTPTR_FORMAT, uc->context_ebx);
1000   st->print(", ECX=" INTPTR_FORMAT, uc->context_ecx);
1001   st->print(", EDX=" INTPTR_FORMAT, uc->context_edx);
1002   st->cr();
1003   st->print(  "ESP=" INTPTR_FORMAT, uc->context_esp);
1004   st->print(", EBP=" INTPTR_FORMAT, uc->context_ebp);
1005   st->print(", ESI=" INTPTR_FORMAT, uc->context_esi);
1006   st->print(", EDI=" INTPTR_FORMAT, uc->context_edi);
1007   st->cr();
1008   st->print(  "EIP=" INTPTR_FORMAT, uc->context_eip);
1009   st->print(", EFLAGS=" INTPTR_FORMAT, uc->context_eflags);
1010 #endif // AMD64
1011   st->cr();
1012   st->cr();
1013 
1014   intptr_t *sp = (intptr_t *)os::Bsd::ucontext_get_sp(uc);
1015   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
1016   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
1017   st->cr();
1018 
1019   // Note: it may be unsafe to inspect memory near pc. For example, pc may
1020   // point to garbage if entry point in an nmethod is corrupted. Leave
1021   // this at the end, and hope for the best.
1022   address pc = os::Bsd::ucontext_get_pc(uc);
1023   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
1024   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
1025 }
1026 
1027 void os::print_register_info(outputStream *st, const void *context) {
1028   if (context == NULL) return;
1029 
1030   const ucontext_t *uc = (const ucontext_t*)context;
1031 
1032   st->print_cr("Register to memory mapping:");
1033   st->cr();
1034 
1035   // this is horrendously verbose but the layout of the registers in the
1036   // context does not match how we defined our abstract Register set, so
1037   // we can't just iterate through the gregs area
1038 
1039   // this is only for the "general purpose" registers
1040 
1041 #ifdef AMD64
1042   st->print("RAX="); print_location(st, uc->context_rax);
1043   st->print("RBX="); print_location(st, uc->context_rbx);
1044   st->print("RCX="); print_location(st, uc->context_rcx);
1045   st->print("RDX="); print_location(st, uc->context_rdx);
1046   st->print("RSP="); print_location(st, uc->context_rsp);
1047   st->print("RBP="); print_location(st, uc->context_rbp);
1048   st->print("RSI="); print_location(st, uc->context_rsi);
1049   st->print("RDI="); print_location(st, uc->context_rdi);
1050   st->print("R8 ="); print_location(st, uc->context_r8);
1051   st->print("R9 ="); print_location(st, uc->context_r9);
1052   st->print("R10="); print_location(st, uc->context_r10);
1053   st->print("R11="); print_location(st, uc->context_r11);
1054   st->print("R12="); print_location(st, uc->context_r12);
1055   st->print("R13="); print_location(st, uc->context_r13);
1056   st->print("R14="); print_location(st, uc->context_r14);
1057   st->print("R15="); print_location(st, uc->context_r15);
1058 #else
1059   st->print("EAX="); print_location(st, uc->context_eax);
1060   st->print("EBX="); print_location(st, uc->context_ebx);
1061   st->print("ECX="); print_location(st, uc->context_ecx);
1062   st->print("EDX="); print_location(st, uc->context_edx);
1063   st->print("ESP="); print_location(st, uc->context_esp);
1064   st->print("EBP="); print_location(st, uc->context_ebp);
1065   st->print("ESI="); print_location(st, uc->context_esi);
1066   st->print("EDI="); print_location(st, uc->context_edi);
1067 #endif // AMD64
1068 
1069   st->cr();
1070 }
1071 
1072 void os::setup_fpu() {
1073 #ifndef AMD64
1074   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
1075   __asm__ volatile (  "fldcw (%0)" :
1076                       : "r" (fpu_cntrl) : "memory");
1077 #endif // !AMD64
1078 }
1079 
1080 #ifndef PRODUCT
1081 void os::verify_stack_alignment() {
1082 }
1083 #endif
1084 
1085 int os::extra_bang_size_in_bytes() {
1086   // JDK-8050147 requires the full cache line bang for x86.
1087   return VM_Version::L1_line_size();
1088 }