1 /*
   2  * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/bytecodeInterpreterProfiling.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/methodCounters.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/objArrayOop.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiThreadState.hpp"
  42 #include "runtime/atomic.inline.hpp"
  43 #include "runtime/biasedLocking.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/handles.inline.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/orderAccess.inline.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/threadCritical.hpp"
  50 #include "utilities/exceptions.hpp"
  51 
  52 // no precompiled headers
  53 #ifdef CC_INTERP
  54 
  55 /*
  56  * USELABELS - If using GCC, then use labels for the opcode dispatching
  57  * rather -then a switch statement. This improves performance because it
  58  * gives us the opportunity to have the instructions that calculate the
  59  * next opcode to jump to be intermixed with the rest of the instructions
  60  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  61  */
  62 #undef USELABELS
  63 #ifdef __GNUC__
  64 /*
  65    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  66    don't use the computed goto approach.
  67 */
  68 #ifndef ASSERT
  69 #define USELABELS
  70 #endif
  71 #endif
  72 
  73 #undef CASE
  74 #ifdef USELABELS
  75 #define CASE(opcode) opc ## opcode
  76 #define DEFAULT opc_default
  77 #else
  78 #define CASE(opcode) case Bytecodes:: opcode
  79 #define DEFAULT default
  80 #endif
  81 
  82 /*
  83  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
  84  * opcode before going back to the top of the while loop, rather then having
  85  * the top of the while loop handle it. This provides a better opportunity
  86  * for instruction scheduling. Some compilers just do this prefetch
  87  * automatically. Some actually end up with worse performance if you
  88  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
  89  */
  90 #undef PREFETCH_OPCCODE
  91 #define PREFETCH_OPCCODE
  92 
  93 /*
  94   Interpreter safepoint: it is expected that the interpreter will have no live
  95   handles of its own creation live at an interpreter safepoint. Therefore we
  96   run a HandleMarkCleaner and trash all handles allocated in the call chain
  97   since the JavaCalls::call_helper invocation that initiated the chain.
  98   There really shouldn't be any handles remaining to trash but this is cheap
  99   in relation to a safepoint.
 100 */
 101 #define SAFEPOINT                                                                 \
 102     if ( SafepointSynchronize::is_synchronizing()) {                              \
 103         {                                                                         \
 104           /* zap freed handles rather than GC'ing them */                         \
 105           HandleMarkCleaner __hmc(THREAD);                                        \
 106         }                                                                         \
 107         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 108     }
 109 
 110 /*
 111  * VM_JAVA_ERROR - Macro for throwing a java exception from
 112  * the interpreter loop. Should really be a CALL_VM but there
 113  * is no entry point to do the transition to vm so we just
 114  * do it by hand here.
 115  */
 116 #define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                             \
 117     DECACHE_STATE();                                                              \
 118     SET_LAST_JAVA_FRAME();                                                        \
 119     {                                                                             \
 120        InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI());          \
 121        ThreadInVMfromJava trans(THREAD);                                          \
 122        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 123     }                                                                             \
 124     RESET_LAST_JAVA_FRAME();                                                      \
 125     CACHE_STATE();
 126 
 127 // Normal throw of a java error.
 128 #define VM_JAVA_ERROR(name, msg, note_a_trap)                                     \
 129     VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                                 \
 130     goto handle_exception;
 131 
 132 #ifdef PRODUCT
 133 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 134 #else
 135 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 136 {                                                                                                    \
 137     BytecodeCounter::_counter_value++;                                                               \
 138     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 139     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 140     if (TraceBytecodes) {                                                                            \
 141       CALL_VM((void)SharedRuntime::trace_bytecode(THREAD, 0,               \
 142                                    topOfStack[Interpreter::expr_index_at(1)],   \
 143                                    topOfStack[Interpreter::expr_index_at(2)]),  \
 144                                    handle_exception);                      \
 145     }                                                                      \
 146 }
 147 #endif
 148 
 149 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 150 #ifdef VM_JVMTI
 151 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 152    incremented. JvmtiExport::at_single_stepping_point() may cause a
 153    breakpoint opcode to get inserted at the current PC to allow the
 154    debugger to coalesce single-step events.
 155 
 156    As a result if we call at_single_stepping_point() we refetch opcode
 157    to get the current opcode. This will override any other prefetching
 158    that might have occurred.
 159 */
 160 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 161 {                                                                                \
 162       if (_jvmti_interp_events) {                                                \
 163         if (JvmtiExport::should_post_single_step()) {                            \
 164           DECACHE_STATE();                                                       \
 165           SET_LAST_JAVA_FRAME();                                                 \
 166           ThreadInVMfromJava trans(THREAD);                                      \
 167           JvmtiExport::at_single_stepping_point(THREAD,                          \
 168                                           istate->method(),                      \
 169                                           pc);                                   \
 170           RESET_LAST_JAVA_FRAME();                                               \
 171           CACHE_STATE();                                                         \
 172           if (THREAD->pop_frame_pending() &&                                     \
 173               !THREAD->pop_frame_in_process()) {                                 \
 174             goto handle_Pop_Frame;                                               \
 175           }                                                                      \
 176           if (THREAD->jvmti_thread_state() &&                                    \
 177               THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 178             goto handle_Early_Return;                                            \
 179           }                                                                      \
 180           opcode = *pc;                                                          \
 181         }                                                                        \
 182       }                                                                          \
 183 }
 184 #else
 185 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 186 #endif
 187 
 188 /*
 189  * CONTINUE - Macro for executing the next opcode.
 190  */
 191 #undef CONTINUE
 192 #ifdef USELABELS
 193 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 194 // initialization (which is is the initialization of the table pointer...)
 195 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 196 #define CONTINUE {                              \
 197         opcode = *pc;                           \
 198         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 199         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 200         DISPATCH(opcode);                       \
 201     }
 202 #else
 203 #ifdef PREFETCH_OPCCODE
 204 #define CONTINUE {                              \
 205         opcode = *pc;                           \
 206         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 207         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 208         continue;                               \
 209     }
 210 #else
 211 #define CONTINUE {                              \
 212         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 213         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 214         continue;                               \
 215     }
 216 #endif
 217 #endif
 218 
 219 
 220 #define UPDATE_PC(opsize) {pc += opsize; }
 221 /*
 222  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 223  */
 224 #undef UPDATE_PC_AND_TOS
 225 #define UPDATE_PC_AND_TOS(opsize, stack) \
 226     {pc += opsize; MORE_STACK(stack); }
 227 
 228 /*
 229  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 230  * and executing the next opcode. It's somewhat similar to the combination
 231  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 232  */
 233 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 234 #ifdef USELABELS
 235 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 236         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 237         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 238         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 239         DISPATCH(opcode);                                       \
 240     }
 241 
 242 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 243         pc += opsize; opcode = *pc;                             \
 244         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 245         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 246         DISPATCH(opcode);                                       \
 247     }
 248 #else
 249 #ifdef PREFETCH_OPCCODE
 250 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 251         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 252         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 253         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 254         goto do_continue;                                       \
 255     }
 256 
 257 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 258         pc += opsize; opcode = *pc;                             \
 259         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 260         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 261         goto do_continue;                                       \
 262     }
 263 #else
 264 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 265         pc += opsize; MORE_STACK(stack);                \
 266         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 267         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 268         goto do_continue;                               \
 269     }
 270 
 271 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 272         pc += opsize;                                   \
 273         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 274         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 275         goto do_continue;                               \
 276     }
 277 #endif /* PREFETCH_OPCCODE */
 278 #endif /* USELABELS */
 279 
 280 // About to call a new method, update the save the adjusted pc and return to frame manager
 281 #define UPDATE_PC_AND_RETURN(opsize)  \
 282    DECACHE_TOS();                     \
 283    istate->set_bcp(pc+opsize);        \
 284    return;
 285 
 286 
 287 #define METHOD istate->method()
 288 #define GET_METHOD_COUNTERS(res)    \
 289   res = METHOD->method_counters();  \
 290   if (res == NULL) {                \
 291     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 292   }
 293 
 294 #define OSR_REQUEST(res, branch_pc) \
 295             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 296 /*
 297  * For those opcodes that need to have a GC point on a backwards branch
 298  */
 299 
 300 // Backedge counting is kind of strange. The asm interpreter will increment
 301 // the backedge counter as a separate counter but it does it's comparisons
 302 // to the sum (scaled) of invocation counter and backedge count to make
 303 // a decision. Seems kind of odd to sum them together like that
 304 
 305 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 306 
 307 
 308 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 309     if ((skip) <= 0) {                                                                              \
 310       MethodCounters* mcs;                                                                          \
 311       GET_METHOD_COUNTERS(mcs);                                                                     \
 312       if (UseLoopCounter) {                                                                         \
 313         bool do_OSR = UseOnStackReplacement;                                                        \
 314         mcs->backedge_counter()->increment();                                                       \
 315         if (ProfileInterpreter) {                                                                   \
 316           BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);                                   \
 317           /* Check for overflow against MDO count. */                                               \
 318           do_OSR = do_OSR                                                                           \
 319             && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
 320             /* When ProfileInterpreter is on, the backedge_count comes     */                       \
 321             /* from the methodDataOop, which value does not get reset on   */                       \
 322             /* the call to frequency_counter_overflow(). To avoid          */                       \
 323             /* excessive calls to the overflow routine while the method is */                       \
 324             /* being compiled, add a second test to make sure the overflow */                       \
 325             /* function is called only once every overflow_frequency.      */                       \
 326             && (!(mdo_last_branch_taken_count & 1023));                                             \
 327         } else {                                                                                    \
 328           /* check for overflow of backedge counter */                                              \
 329           do_OSR = do_OSR                                                                           \
 330             && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter());         \
 331         }                                                                                           \
 332         if (do_OSR) {                                                                               \
 333           nmethod* osr_nmethod;                                                                     \
 334           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 335           if (osr_nmethod != NULL && osr_nmethod->is_in_use()) {                                    \
 336             intptr_t* buf;                                                                          \
 337             /* Call OSR migration with last java frame only, no checks. */                          \
 338             CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
 339             istate->set_msg(do_osr);                                                                \
 340             istate->set_osr_buf((address)buf);                                                      \
 341             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 342             return;                                                                                 \
 343           }                                                                                         \
 344         }                                                                                           \
 345       }  /* UseCompiler ... */                                                                      \
 346       SAFEPOINT;                                                                                    \
 347     }
 348 
 349 /*
 350  * For those opcodes that need to have a GC point on a backwards branch
 351  */
 352 
 353 /*
 354  * Macros for caching and flushing the interpreter state. Some local
 355  * variables need to be flushed out to the frame before we do certain
 356  * things (like pushing frames or becomming gc safe) and some need to
 357  * be recached later (like after popping a frame). We could use one
 358  * macro to cache or decache everything, but this would be less then
 359  * optimal because we don't always need to cache or decache everything
 360  * because some things we know are already cached or decached.
 361  */
 362 #undef DECACHE_TOS
 363 #undef CACHE_TOS
 364 #undef CACHE_PREV_TOS
 365 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 366 
 367 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 368 
 369 #undef DECACHE_PC
 370 #undef CACHE_PC
 371 #define DECACHE_PC()    istate->set_bcp(pc);
 372 #define CACHE_PC()      pc = istate->bcp();
 373 #define CACHE_CP()      cp = istate->constants();
 374 #define CACHE_LOCALS()  locals = istate->locals();
 375 #undef CACHE_FRAME
 376 #define CACHE_FRAME()
 377 
 378 // BCI() returns the current bytecode-index.
 379 #undef  BCI
 380 #define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
 381 
 382 /*
 383  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 384  * passed is a null ref.
 385  * On some architectures/platforms it should be possible to do this implicitly
 386  */
 387 #undef CHECK_NULL
 388 #define CHECK_NULL(obj_)                                                                         \
 389         if ((obj_) == NULL) {                                                                    \
 390           VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL, note_nullCheck_trap); \
 391         }                                                                                        \
 392         VERIFY_OOP(obj_)
 393 
 394 #define VMdoubleConstZero() 0.0
 395 #define VMdoubleConstOne() 1.0
 396 #define VMlongConstZero() (max_jlong-max_jlong)
 397 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 398 
 399 /*
 400  * Alignment
 401  */
 402 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 403 
 404 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 405 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 406 
 407 // Reload interpreter state after calling the VM or a possible GC
 408 #define CACHE_STATE()   \
 409         CACHE_TOS();    \
 410         CACHE_PC();     \
 411         CACHE_CP();     \
 412         CACHE_LOCALS();
 413 
 414 // Call the VM with last java frame only.
 415 #define CALL_VM_NAKED_LJF(func)                                    \
 416         DECACHE_STATE();                                           \
 417         SET_LAST_JAVA_FRAME();                                     \
 418         func;                                                      \
 419         RESET_LAST_JAVA_FRAME();                                   \
 420         CACHE_STATE();
 421 
 422 // Call the VM. Don't check for pending exceptions.
 423 #define CALL_VM_NOCHECK(func)                                      \
 424         CALL_VM_NAKED_LJF(func)                                    \
 425         if (THREAD->pop_frame_pending() &&                         \
 426             !THREAD->pop_frame_in_process()) {                     \
 427           goto handle_Pop_Frame;                                   \
 428         }                                                          \
 429         if (THREAD->jvmti_thread_state() &&                        \
 430             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 431           goto handle_Early_Return;                                \
 432         }
 433 
 434 // Call the VM and check for pending exceptions
 435 #define CALL_VM(func, label) {                                     \
 436           CALL_VM_NOCHECK(func);                                   \
 437           if (THREAD->has_pending_exception()) goto label;         \
 438         }
 439 
 440 /*
 441  * BytecodeInterpreter::run(interpreterState istate)
 442  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 443  *
 444  * The real deal. This is where byte codes actually get interpreted.
 445  * Basically it's a big while loop that iterates until we return from
 446  * the method passed in.
 447  *
 448  * The runWithChecks is used if JVMTI is enabled.
 449  *
 450  */
 451 #if defined(VM_JVMTI)
 452 void
 453 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 454 #else
 455 void
 456 BytecodeInterpreter::run(interpreterState istate) {
 457 #endif
 458 
 459   // In order to simplify some tests based on switches set at runtime
 460   // we invoke the interpreter a single time after switches are enabled
 461   // and set simpler to to test variables rather than method calls or complex
 462   // boolean expressions.
 463 
 464   static int initialized = 0;
 465   static int checkit = 0;
 466   static intptr_t* c_addr = NULL;
 467   static intptr_t  c_value;
 468 
 469   if (checkit && *c_addr != c_value) {
 470     os::breakpoint();
 471   }
 472 #ifdef VM_JVMTI
 473   static bool _jvmti_interp_events = 0;
 474 #endif
 475 
 476   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 477 
 478 #ifdef ASSERT
 479   if (istate->_msg != initialize) {
 480     assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 481 #ifndef SHARK
 482     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 483 #endif // !SHARK
 484   }
 485   // Verify linkages.
 486   interpreterState l = istate;
 487   do {
 488     assert(l == l->_self_link, "bad link");
 489     l = l->_prev_link;
 490   } while (l != NULL);
 491   // Screwups with stack management usually cause us to overwrite istate
 492   // save a copy so we can verify it.
 493   interpreterState orig = istate;
 494 #endif
 495 
 496   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 497   register address          pc = istate->bcp();
 498   register jubyte opcode;
 499   register intptr_t*        locals = istate->locals();
 500   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 501 #ifdef LOTS_OF_REGS
 502   register JavaThread*      THREAD = istate->thread();
 503 #else
 504 #undef THREAD
 505 #define THREAD istate->thread()
 506 #endif
 507 
 508 #ifdef USELABELS
 509   const static void* const opclabels_data[256] = {
 510 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 511 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 512 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 513 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 514 
 515 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 516 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 517 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 518 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 519 
 520 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 521 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 522 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 523 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 524 
 525 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 526 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 527 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 528 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 529 
 530 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 531 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 532 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 533 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 534 
 535 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 536 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 537 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 538 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 539 
 540 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 541 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 542 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 543 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 544 
 545 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 546 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 547 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 548 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 549 
 550 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 551 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 552 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 553 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 554 
 555 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 556 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 557 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 558 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 559 
 560 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 561 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 562 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 563 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 564 
 565 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 566 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 567 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 568 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 569 
 570 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 571 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 572 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 573 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 574 
 575 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 576 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 577 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 578 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 579 
 580 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 581 /* 0xE4 */ &&opc_default,     &&opc_fast_aldc,      &&opc_fast_aldc_w,     &&opc_return_register_finalizer,
 582 /* 0xE8 */ &&opc_invokehandle,&&opc_default,        &&opc_default,         &&opc_default,
 583 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 584 
 585 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 586 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 587 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 588 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 589   };
 590   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 591 #endif /* USELABELS */
 592 
 593 #ifdef ASSERT
 594   // this will trigger a VERIFY_OOP on entry
 595   if (istate->msg() != initialize && ! METHOD->is_static()) {
 596     oop rcvr = LOCALS_OBJECT(0);
 597     VERIFY_OOP(rcvr);
 598   }
 599 #endif
 600 // #define HACK
 601 #ifdef HACK
 602   bool interesting = false;
 603 #endif // HACK
 604 
 605   /* QQQ this should be a stack method so we don't know actual direction */
 606   guarantee(istate->msg() == initialize ||
 607          topOfStack >= istate->stack_limit() &&
 608          topOfStack < istate->stack_base(),
 609          "Stack top out of range");
 610 
 611 #ifdef CC_INTERP_PROFILE
 612   // MethodData's last branch taken count.
 613   uint mdo_last_branch_taken_count = 0;
 614 #else
 615   const uint mdo_last_branch_taken_count = 0;
 616 #endif
 617 
 618   switch (istate->msg()) {
 619     case initialize: {
 620       if (initialized++) ShouldNotReachHere(); // Only one initialize call.
 621       _compiling = (UseCompiler || CountCompiledCalls);
 622 #ifdef VM_JVMTI
 623       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 624 #endif
 625       return;
 626     }
 627     break;
 628     case method_entry: {
 629       THREAD->set_do_not_unlock();
 630       // count invocations
 631       assert(initialized, "Interpreter not initialized");
 632       if (_compiling) {
 633         MethodCounters* mcs;
 634         GET_METHOD_COUNTERS(mcs);
 635 #if defined(COMPILER2) || INCLUDE_JVMCI
 636         if (ProfileInterpreter) {
 637           METHOD->increment_interpreter_invocation_count(THREAD);
 638         }
 639 #endif
 640         mcs->invocation_counter()->increment();
 641         if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
 642           CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 643           // We no longer retry on a counter overflow.
 644         }
 645         // Get or create profile data. Check for pending (async) exceptions.
 646         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 647         SAFEPOINT;
 648       }
 649 
 650       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 651         // initialize
 652         os::breakpoint();
 653       }
 654 
 655 #ifdef HACK
 656       {
 657         ResourceMark rm;
 658         char *method_name = istate->method()->name_and_sig_as_C_string();
 659         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 660           tty->print_cr("entering: depth %d bci: %d",
 661                          (istate->_stack_base - istate->_stack),
 662                          istate->_bcp - istate->_method->code_base());
 663           interesting = true;
 664         }
 665       }
 666 #endif // HACK
 667 
 668       // Lock method if synchronized.
 669       if (METHOD->is_synchronized()) {
 670         // oop rcvr = locals[0].j.r;
 671         oop rcvr;
 672         if (METHOD->is_static()) {
 673           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 674         } else {
 675           rcvr = LOCALS_OBJECT(0);
 676           VERIFY_OOP(rcvr);
 677         }
 678         // The initial monitor is ours for the taking.
 679         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 680         BasicObjectLock* mon = &istate->monitor_base()[-1];
 681         mon->set_obj(rcvr);
 682         bool success = false;
 683         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 684         markOop mark = rcvr->mark();
 685         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 686         // Implies UseBiasedLocking.
 687         if (mark->has_bias_pattern()) {
 688           uintptr_t thread_ident;
 689           uintptr_t anticipated_bias_locking_value;
 690           thread_ident = (uintptr_t)istate->thread();
 691           anticipated_bias_locking_value =
 692             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 693             ~((uintptr_t) markOopDesc::age_mask_in_place);
 694 
 695           if (anticipated_bias_locking_value == 0) {
 696             // Already biased towards this thread, nothing to do.
 697             if (PrintBiasedLockingStatistics) {
 698               (* BiasedLocking::biased_lock_entry_count_addr())++;
 699             }
 700             success = true;
 701           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 702             // Try to revoke bias.
 703             markOop header = rcvr->klass()->prototype_header();
 704             if (hash != markOopDesc::no_hash) {
 705               header = header->copy_set_hash(hash);
 706             }
 707             if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
 708               if (PrintBiasedLockingStatistics)
 709                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 710             }
 711           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 712             // Try to rebias.
 713             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 714             if (hash != markOopDesc::no_hash) {
 715               new_header = new_header->copy_set_hash(hash);
 716             }
 717             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
 718               if (PrintBiasedLockingStatistics) {
 719                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 720               }
 721             } else {
 722               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 723             }
 724             success = true;
 725           } else {
 726             // Try to bias towards thread in case object is anonymously biased.
 727             markOop header = (markOop) ((uintptr_t) mark &
 728                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 729                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 730             if (hash != markOopDesc::no_hash) {
 731               header = header->copy_set_hash(hash);
 732             }
 733             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 734             // Debugging hint.
 735             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 736             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
 737               if (PrintBiasedLockingStatistics) {
 738                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 739               }
 740             } else {
 741               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 742             }
 743             success = true;
 744           }
 745         }
 746 
 747         // Traditional lightweight locking.
 748         if (!success) {
 749           markOop displaced = rcvr->mark()->set_unlocked();
 750           mon->lock()->set_displaced_header(displaced);
 751           bool call_vm = UseHeavyMonitors;
 752           if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 753             // Is it simple recursive case?
 754             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 755               mon->lock()->set_displaced_header(NULL);
 756             } else {
 757               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 758             }
 759           }
 760         }
 761       }
 762       THREAD->clr_do_not_unlock();
 763 
 764       // Notify jvmti
 765 #ifdef VM_JVMTI
 766       if (_jvmti_interp_events) {
 767         // Whenever JVMTI puts a thread in interp_only_mode, method
 768         // entry/exit events are sent for that thread to track stack depth.
 769         if (THREAD->is_interp_only_mode()) {
 770           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 771                   handle_exception);
 772         }
 773       }
 774 #endif /* VM_JVMTI */
 775 
 776       goto run;
 777     }
 778 
 779     case popping_frame: {
 780       // returned from a java call to pop the frame, restart the call
 781       // clear the message so we don't confuse ourselves later
 782       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 783       istate->set_msg(no_request);
 784       if (_compiling) {
 785         // Set MDX back to the ProfileData of the invoke bytecode that will be
 786         // restarted.
 787         SET_MDX(NULL);
 788         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 789       }
 790       THREAD->clr_pop_frame_in_process();
 791       goto run;
 792     }
 793 
 794     case method_resume: {
 795       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 796         // resume
 797         os::breakpoint();
 798       }
 799 #ifdef HACK
 800       {
 801         ResourceMark rm;
 802         char *method_name = istate->method()->name_and_sig_as_C_string();
 803         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 804           tty->print_cr("resume: depth %d bci: %d",
 805                          (istate->_stack_base - istate->_stack) ,
 806                          istate->_bcp - istate->_method->code_base());
 807           interesting = true;
 808         }
 809       }
 810 #endif // HACK
 811       // returned from a java call, continue executing.
 812       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 813         goto handle_Pop_Frame;
 814       }
 815       if (THREAD->jvmti_thread_state() &&
 816           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 817         goto handle_Early_Return;
 818       }
 819 
 820       if (THREAD->has_pending_exception()) goto handle_exception;
 821       // Update the pc by the saved amount of the invoke bytecode size
 822       UPDATE_PC(istate->bcp_advance());
 823 
 824       if (_compiling) {
 825         // Get or create profile data. Check for pending (async) exceptions.
 826         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 827       }
 828       goto run;
 829     }
 830 
 831     case deopt_resume2: {
 832       // Returned from an opcode that will reexecute. Deopt was
 833       // a result of a PopFrame request.
 834       //
 835 
 836       if (_compiling) {
 837         // Get or create profile data. Check for pending (async) exceptions.
 838         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 839       }
 840       goto run;
 841     }
 842 
 843     case deopt_resume: {
 844       // Returned from an opcode that has completed. The stack has
 845       // the result all we need to do is skip across the bytecode
 846       // and continue (assuming there is no exception pending)
 847       //
 848       // compute continuation length
 849       //
 850       // Note: it is possible to deopt at a return_register_finalizer opcode
 851       // because this requires entering the vm to do the registering. While the
 852       // opcode is complete we can't advance because there are no more opcodes
 853       // much like trying to deopt at a poll return. In that has we simply
 854       // get out of here
 855       //
 856       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 857         // this will do the right thing even if an exception is pending.
 858         goto handle_return;
 859       }
 860       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 861       if (THREAD->has_pending_exception()) goto handle_exception;
 862 
 863       if (_compiling) {
 864         // Get or create profile data. Check for pending (async) exceptions.
 865         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 866       }
 867       goto run;
 868     }
 869     case got_monitors: {
 870       // continue locking now that we have a monitor to use
 871       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 872       oop lockee = STACK_OBJECT(-1);
 873       VERIFY_OOP(lockee);
 874       // derefing's lockee ought to provoke implicit null check
 875       // find a free monitor
 876       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 877       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 878       entry->set_obj(lockee);
 879       bool success = false;
 880       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 881 
 882       markOop mark = lockee->mark();
 883       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 884       // implies UseBiasedLocking
 885       if (mark->has_bias_pattern()) {
 886         uintptr_t thread_ident;
 887         uintptr_t anticipated_bias_locking_value;
 888         thread_ident = (uintptr_t)istate->thread();
 889         anticipated_bias_locking_value =
 890           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 891           ~((uintptr_t) markOopDesc::age_mask_in_place);
 892 
 893         if  (anticipated_bias_locking_value == 0) {
 894           // already biased towards this thread, nothing to do
 895           if (PrintBiasedLockingStatistics) {
 896             (* BiasedLocking::biased_lock_entry_count_addr())++;
 897           }
 898           success = true;
 899         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 900           // try revoke bias
 901           markOop header = lockee->klass()->prototype_header();
 902           if (hash != markOopDesc::no_hash) {
 903             header = header->copy_set_hash(hash);
 904           }
 905           if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
 906             if (PrintBiasedLockingStatistics) {
 907               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 908             }
 909           }
 910         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 911           // try rebias
 912           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 913           if (hash != markOopDesc::no_hash) {
 914                 new_header = new_header->copy_set_hash(hash);
 915           }
 916           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
 917             if (PrintBiasedLockingStatistics) {
 918               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 919             }
 920           } else {
 921             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 922           }
 923           success = true;
 924         } else {
 925           // try to bias towards thread in case object is anonymously biased
 926           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 927                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 928           if (hash != markOopDesc::no_hash) {
 929             header = header->copy_set_hash(hash);
 930           }
 931           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 932           // debugging hint
 933           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 934           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
 935             if (PrintBiasedLockingStatistics) {
 936               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 937             }
 938           } else {
 939             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 940           }
 941           success = true;
 942         }
 943       }
 944 
 945       // traditional lightweight locking
 946       if (!success) {
 947         markOop displaced = lockee->mark()->set_unlocked();
 948         entry->lock()->set_displaced_header(displaced);
 949         bool call_vm = UseHeavyMonitors;
 950         if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 951           // Is it simple recursive case?
 952           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 953             entry->lock()->set_displaced_header(NULL);
 954           } else {
 955             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 956           }
 957         }
 958       }
 959       UPDATE_PC_AND_TOS(1, -1);
 960       goto run;
 961     }
 962     default: {
 963       fatal("Unexpected message from frame manager");
 964     }
 965   }
 966 
 967 run:
 968 
 969   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 970   DEBUGGER_SINGLE_STEP_NOTIFY();
 971 #ifdef PREFETCH_OPCCODE
 972   opcode = *pc;  /* prefetch first opcode */
 973 #endif
 974 
 975 #ifndef USELABELS
 976   while (1)
 977 #endif
 978   {
 979 #ifndef PREFETCH_OPCCODE
 980       opcode = *pc;
 981 #endif
 982       // Seems like this happens twice per opcode. At worst this is only
 983       // need at entry to the loop.
 984       // DEBUGGER_SINGLE_STEP_NOTIFY();
 985       /* Using this labels avoids double breakpoints when quickening and
 986        * when returing from transition frames.
 987        */
 988   opcode_switch:
 989       assert(istate == orig, "Corrupted istate");
 990       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 991       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 992       assert(topOfStack < istate->stack_base(), "Stack underrun");
 993 
 994 #ifdef USELABELS
 995       DISPATCH(opcode);
 996 #else
 997       switch (opcode)
 998 #endif
 999       {
1000       CASE(_nop):
1001           UPDATE_PC_AND_CONTINUE(1);
1002 
1003           /* Push miscellaneous constants onto the stack. */
1004 
1005       CASE(_aconst_null):
1006           SET_STACK_OBJECT(NULL, 0);
1007           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1008 
1009 #undef  OPC_CONST_n
1010 #define OPC_CONST_n(opcode, const_type, value)                          \
1011       CASE(opcode):                                                     \
1012           SET_STACK_ ## const_type(value, 0);                           \
1013           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1014 
1015           OPC_CONST_n(_iconst_m1,   INT,       -1);
1016           OPC_CONST_n(_iconst_0,    INT,        0);
1017           OPC_CONST_n(_iconst_1,    INT,        1);
1018           OPC_CONST_n(_iconst_2,    INT,        2);
1019           OPC_CONST_n(_iconst_3,    INT,        3);
1020           OPC_CONST_n(_iconst_4,    INT,        4);
1021           OPC_CONST_n(_iconst_5,    INT,        5);
1022           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1023           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1024           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1025 
1026 #undef  OPC_CONST2_n
1027 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1028       CASE(_##opcname):                                                 \
1029       {                                                                 \
1030           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1031           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1032       }
1033          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1034          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1035          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1036          OPC_CONST2_n(lconst_1, One,  long, LONG);
1037 
1038          /* Load constant from constant pool: */
1039 
1040           /* Push a 1-byte signed integer value onto the stack. */
1041       CASE(_bipush):
1042           SET_STACK_INT((jbyte)(pc[1]), 0);
1043           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1044 
1045           /* Push a 2-byte signed integer constant onto the stack. */
1046       CASE(_sipush):
1047           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1048           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1049 
1050           /* load from local variable */
1051 
1052       CASE(_aload):
1053           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1054           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1055           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1056 
1057       CASE(_iload):
1058       CASE(_fload):
1059           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1060           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1061 
1062       CASE(_lload):
1063           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1064           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1065 
1066       CASE(_dload):
1067           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1068           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1069 
1070 #undef  OPC_LOAD_n
1071 #define OPC_LOAD_n(num)                                                 \
1072       CASE(_aload_##num):                                               \
1073           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1074           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1075           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1076                                                                         \
1077       CASE(_iload_##num):                                               \
1078       CASE(_fload_##num):                                               \
1079           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1080           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1081                                                                         \
1082       CASE(_lload_##num):                                               \
1083           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1084           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1085       CASE(_dload_##num):                                               \
1086           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1087           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1088 
1089           OPC_LOAD_n(0);
1090           OPC_LOAD_n(1);
1091           OPC_LOAD_n(2);
1092           OPC_LOAD_n(3);
1093 
1094           /* store to a local variable */
1095 
1096       CASE(_astore):
1097           astore(topOfStack, -1, locals, pc[1]);
1098           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1099 
1100       CASE(_istore):
1101       CASE(_fstore):
1102           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1103           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1104 
1105       CASE(_lstore):
1106           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1107           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1108 
1109       CASE(_dstore):
1110           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1111           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1112 
1113       CASE(_wide): {
1114           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1115 
1116           opcode = pc[1];
1117 
1118           // Wide and it's sub-bytecode are counted as separate instructions. If we
1119           // don't account for this here, the bytecode trace skips the next bytecode.
1120           DO_UPDATE_INSTRUCTION_COUNT(opcode);
1121 
1122           switch(opcode) {
1123               case Bytecodes::_aload:
1124                   VERIFY_OOP(LOCALS_OBJECT(reg));
1125                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1126                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1127 
1128               case Bytecodes::_iload:
1129               case Bytecodes::_fload:
1130                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1131                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1132 
1133               case Bytecodes::_lload:
1134                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1135                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1136 
1137               case Bytecodes::_dload:
1138                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1139                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1140 
1141               case Bytecodes::_astore:
1142                   astore(topOfStack, -1, locals, reg);
1143                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1144 
1145               case Bytecodes::_istore:
1146               case Bytecodes::_fstore:
1147                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1148                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1149 
1150               case Bytecodes::_lstore:
1151                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1152                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1153 
1154               case Bytecodes::_dstore:
1155                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1156                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1157 
1158               case Bytecodes::_iinc: {
1159                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1160                   // Be nice to see what this generates.... QQQ
1161                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1162                   UPDATE_PC_AND_CONTINUE(6);
1163               }
1164               case Bytecodes::_ret:
1165                   // Profile ret.
1166                   BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1167                   // Now, update the pc.
1168                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1169                   UPDATE_PC_AND_CONTINUE(0);
1170               default:
1171                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1172           }
1173       }
1174 
1175 
1176 #undef  OPC_STORE_n
1177 #define OPC_STORE_n(num)                                                \
1178       CASE(_astore_##num):                                              \
1179           astore(topOfStack, -1, locals, num);                          \
1180           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1181       CASE(_istore_##num):                                              \
1182       CASE(_fstore_##num):                                              \
1183           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1184           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1185 
1186           OPC_STORE_n(0);
1187           OPC_STORE_n(1);
1188           OPC_STORE_n(2);
1189           OPC_STORE_n(3);
1190 
1191 #undef  OPC_DSTORE_n
1192 #define OPC_DSTORE_n(num)                                               \
1193       CASE(_dstore_##num):                                              \
1194           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1195           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1196       CASE(_lstore_##num):                                              \
1197           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1198           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1199 
1200           OPC_DSTORE_n(0);
1201           OPC_DSTORE_n(1);
1202           OPC_DSTORE_n(2);
1203           OPC_DSTORE_n(3);
1204 
1205           /* stack pop, dup, and insert opcodes */
1206 
1207 
1208       CASE(_pop):                /* Discard the top item on the stack */
1209           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1210 
1211 
1212       CASE(_pop2):               /* Discard the top 2 items on the stack */
1213           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1214 
1215 
1216       CASE(_dup):               /* Duplicate the top item on the stack */
1217           dup(topOfStack);
1218           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1219 
1220       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1221           dup2(topOfStack);
1222           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1223 
1224       CASE(_dup_x1):    /* insert top word two down */
1225           dup_x1(topOfStack);
1226           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1227 
1228       CASE(_dup_x2):    /* insert top word three down  */
1229           dup_x2(topOfStack);
1230           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1231 
1232       CASE(_dup2_x1):   /* insert top 2 slots three down */
1233           dup2_x1(topOfStack);
1234           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1235 
1236       CASE(_dup2_x2):   /* insert top 2 slots four down */
1237           dup2_x2(topOfStack);
1238           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1239 
1240       CASE(_swap): {        /* swap top two elements on the stack */
1241           swap(topOfStack);
1242           UPDATE_PC_AND_CONTINUE(1);
1243       }
1244 
1245           /* Perform various binary integer operations */
1246 
1247 #undef  OPC_INT_BINARY
1248 #define OPC_INT_BINARY(opcname, opname, test)                           \
1249       CASE(_i##opcname):                                                \
1250           if (test && (STACK_INT(-1) == 0)) {                           \
1251               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1252                             "/ by zero", note_div0Check_trap);          \
1253           }                                                             \
1254           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1255                                       STACK_INT(-1)),                   \
1256                                       -2);                              \
1257           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1258       CASE(_l##opcname):                                                \
1259       {                                                                 \
1260           if (test) {                                                   \
1261             jlong l1 = STACK_LONG(-1);                                  \
1262             if (VMlongEqz(l1)) {                                        \
1263               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1264                             "/ by long zero", note_div0Check_trap);     \
1265             }                                                           \
1266           }                                                             \
1267           /* First long at (-1,-2) next long at (-3,-4) */              \
1268           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1269                                         STACK_LONG(-1)),                \
1270                                         -3);                            \
1271           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1272       }
1273 
1274       OPC_INT_BINARY(add, Add, 0);
1275       OPC_INT_BINARY(sub, Sub, 0);
1276       OPC_INT_BINARY(mul, Mul, 0);
1277       OPC_INT_BINARY(and, And, 0);
1278       OPC_INT_BINARY(or,  Or,  0);
1279       OPC_INT_BINARY(xor, Xor, 0);
1280       OPC_INT_BINARY(div, Div, 1);
1281       OPC_INT_BINARY(rem, Rem, 1);
1282 
1283 
1284       /* Perform various binary floating number operations */
1285       /* On some machine/platforms/compilers div zero check can be implicit */
1286 
1287 #undef  OPC_FLOAT_BINARY
1288 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1289       CASE(_d##opcname): {                                                 \
1290           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1291                                             STACK_DOUBLE(-1)),             \
1292                                             -3);                           \
1293           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1294       }                                                                    \
1295       CASE(_f##opcname):                                                   \
1296           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1297                                           STACK_FLOAT(-1)),                \
1298                                           -2);                             \
1299           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1300 
1301 
1302      OPC_FLOAT_BINARY(add, Add);
1303      OPC_FLOAT_BINARY(sub, Sub);
1304      OPC_FLOAT_BINARY(mul, Mul);
1305      OPC_FLOAT_BINARY(div, Div);
1306      OPC_FLOAT_BINARY(rem, Rem);
1307 
1308       /* Shift operations
1309        * Shift left int and long: ishl, lshl
1310        * Logical shift right int and long w/zero extension: iushr, lushr
1311        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1312        */
1313 
1314 #undef  OPC_SHIFT_BINARY
1315 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1316       CASE(_i##opcname):                                                \
1317          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1318                                      STACK_INT(-1)),                    \
1319                                      -2);                               \
1320          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1321       CASE(_l##opcname):                                                \
1322       {                                                                 \
1323          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1324                                        STACK_INT(-1)),                  \
1325                                        -2);                             \
1326          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1327       }
1328 
1329       OPC_SHIFT_BINARY(shl, Shl);
1330       OPC_SHIFT_BINARY(shr, Shr);
1331       OPC_SHIFT_BINARY(ushr, Ushr);
1332 
1333      /* Increment local variable by constant */
1334       CASE(_iinc):
1335       {
1336           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1337           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1338           UPDATE_PC_AND_CONTINUE(3);
1339       }
1340 
1341      /* negate the value on the top of the stack */
1342 
1343       CASE(_ineg):
1344          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1345          UPDATE_PC_AND_CONTINUE(1);
1346 
1347       CASE(_fneg):
1348          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1349          UPDATE_PC_AND_CONTINUE(1);
1350 
1351       CASE(_lneg):
1352       {
1353          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1354          UPDATE_PC_AND_CONTINUE(1);
1355       }
1356 
1357       CASE(_dneg):
1358       {
1359          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1360          UPDATE_PC_AND_CONTINUE(1);
1361       }
1362 
1363       /* Conversion operations */
1364 
1365       CASE(_i2f):       /* convert top of stack int to float */
1366          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1367          UPDATE_PC_AND_CONTINUE(1);
1368 
1369       CASE(_i2l):       /* convert top of stack int to long */
1370       {
1371           // this is ugly QQQ
1372           jlong r = VMint2Long(STACK_INT(-1));
1373           MORE_STACK(-1); // Pop
1374           SET_STACK_LONG(r, 1);
1375 
1376           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1377       }
1378 
1379       CASE(_i2d):       /* convert top of stack int to double */
1380       {
1381           // this is ugly QQQ (why cast to jlong?? )
1382           jdouble r = (jlong)STACK_INT(-1);
1383           MORE_STACK(-1); // Pop
1384           SET_STACK_DOUBLE(r, 1);
1385 
1386           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1387       }
1388 
1389       CASE(_l2i):       /* convert top of stack long to int */
1390       {
1391           jint r = VMlong2Int(STACK_LONG(-1));
1392           MORE_STACK(-2); // Pop
1393           SET_STACK_INT(r, 0);
1394           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1395       }
1396 
1397       CASE(_l2f):   /* convert top of stack long to float */
1398       {
1399           jlong r = STACK_LONG(-1);
1400           MORE_STACK(-2); // Pop
1401           SET_STACK_FLOAT(VMlong2Float(r), 0);
1402           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1403       }
1404 
1405       CASE(_l2d):       /* convert top of stack long to double */
1406       {
1407           jlong r = STACK_LONG(-1);
1408           MORE_STACK(-2); // Pop
1409           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1410           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1411       }
1412 
1413       CASE(_f2i):  /* Convert top of stack float to int */
1414           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1415           UPDATE_PC_AND_CONTINUE(1);
1416 
1417       CASE(_f2l):  /* convert top of stack float to long */
1418       {
1419           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1420           MORE_STACK(-1); // POP
1421           SET_STACK_LONG(r, 1);
1422           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1423       }
1424 
1425       CASE(_f2d):  /* convert top of stack float to double */
1426       {
1427           jfloat f;
1428           jdouble r;
1429           f = STACK_FLOAT(-1);
1430           r = (jdouble) f;
1431           MORE_STACK(-1); // POP
1432           SET_STACK_DOUBLE(r, 1);
1433           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1434       }
1435 
1436       CASE(_d2i): /* convert top of stack double to int */
1437       {
1438           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1439           MORE_STACK(-2);
1440           SET_STACK_INT(r1, 0);
1441           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1442       }
1443 
1444       CASE(_d2f): /* convert top of stack double to float */
1445       {
1446           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1447           MORE_STACK(-2);
1448           SET_STACK_FLOAT(r1, 0);
1449           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1450       }
1451 
1452       CASE(_d2l): /* convert top of stack double to long */
1453       {
1454           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1455           MORE_STACK(-2);
1456           SET_STACK_LONG(r1, 1);
1457           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1458       }
1459 
1460       CASE(_i2b):
1461           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1462           UPDATE_PC_AND_CONTINUE(1);
1463 
1464       CASE(_i2c):
1465           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1466           UPDATE_PC_AND_CONTINUE(1);
1467 
1468       CASE(_i2s):
1469           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1470           UPDATE_PC_AND_CONTINUE(1);
1471 
1472       /* comparison operators */
1473 
1474 
1475 #define COMPARISON_OP(name, comparison)                                      \
1476       CASE(_if_icmp##name): {                                                \
1477           const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1));         \
1478           int skip = cmp                                                     \
1479                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1480           address branch_pc = pc;                                            \
1481           /* Profile branch. */                                              \
1482           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1483           UPDATE_PC_AND_TOS(skip, -2);                                       \
1484           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1485           CONTINUE;                                                          \
1486       }                                                                      \
1487       CASE(_if##name): {                                                     \
1488           const bool cmp = (STACK_INT(-1) comparison 0);                     \
1489           int skip = cmp                                                     \
1490                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1491           address branch_pc = pc;                                            \
1492           /* Profile branch. */                                              \
1493           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1494           UPDATE_PC_AND_TOS(skip, -1);                                       \
1495           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1496           CONTINUE;                                                          \
1497       }
1498 
1499 #define COMPARISON_OP2(name, comparison)                                     \
1500       COMPARISON_OP(name, comparison)                                        \
1501       CASE(_if_acmp##name): {                                                \
1502           const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1));   \
1503           int skip = cmp                                                     \
1504                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1505           address branch_pc = pc;                                            \
1506           /* Profile branch. */                                              \
1507           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1508           UPDATE_PC_AND_TOS(skip, -2);                                       \
1509           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1510           CONTINUE;                                                          \
1511       }
1512 
1513 #define NULL_COMPARISON_NOT_OP(name)                                         \
1514       CASE(_if##name): {                                                     \
1515           const bool cmp = (!(STACK_OBJECT(-1) == NULL));                    \
1516           int skip = cmp                                                     \
1517                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1518           address branch_pc = pc;                                            \
1519           /* Profile branch. */                                              \
1520           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1521           UPDATE_PC_AND_TOS(skip, -1);                                       \
1522           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1523           CONTINUE;                                                          \
1524       }
1525 
1526 #define NULL_COMPARISON_OP(name)                                             \
1527       CASE(_if##name): {                                                     \
1528           const bool cmp = ((STACK_OBJECT(-1) == NULL));                     \
1529           int skip = cmp                                                     \
1530                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1531           address branch_pc = pc;                                            \
1532           /* Profile branch. */                                              \
1533           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1534           UPDATE_PC_AND_TOS(skip, -1);                                       \
1535           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1536           CONTINUE;                                                          \
1537       }
1538       COMPARISON_OP(lt, <);
1539       COMPARISON_OP(gt, >);
1540       COMPARISON_OP(le, <=);
1541       COMPARISON_OP(ge, >=);
1542       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1543       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1544       NULL_COMPARISON_OP(null);
1545       NULL_COMPARISON_NOT_OP(nonnull);
1546 
1547       /* Goto pc at specified offset in switch table. */
1548 
1549       CASE(_tableswitch): {
1550           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1551           int32_t  key  = STACK_INT(-1);
1552           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1553           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1554           int32_t  skip;
1555           key -= low;
1556           if (((uint32_t) key > (uint32_t)(high - low))) {
1557             key = -1;
1558             skip = Bytes::get_Java_u4((address)&lpc[0]);
1559           } else {
1560             skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1561           }
1562           // Profile switch.
1563           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1564           // Does this really need a full backedge check (osr)?
1565           address branch_pc = pc;
1566           UPDATE_PC_AND_TOS(skip, -1);
1567           DO_BACKEDGE_CHECKS(skip, branch_pc);
1568           CONTINUE;
1569       }
1570 
1571       /* Goto pc whose table entry matches specified key. */
1572 
1573       CASE(_lookupswitch): {
1574           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1575           int32_t  key  = STACK_INT(-1);
1576           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1577           // Remember index.
1578           int      index = -1;
1579           int      newindex = 0;
1580           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1581           while (--npairs >= 0) {
1582             lpc += 2;
1583             if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1584               skip = Bytes::get_Java_u4((address)&lpc[1]);
1585               index = newindex;
1586               break;
1587             }
1588             newindex += 1;
1589           }
1590           // Profile switch.
1591           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1592           address branch_pc = pc;
1593           UPDATE_PC_AND_TOS(skip, -1);
1594           DO_BACKEDGE_CHECKS(skip, branch_pc);
1595           CONTINUE;
1596       }
1597 
1598       CASE(_fcmpl):
1599       CASE(_fcmpg):
1600       {
1601           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1602                                         STACK_FLOAT(-1),
1603                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1604                         -2);
1605           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1606       }
1607 
1608       CASE(_dcmpl):
1609       CASE(_dcmpg):
1610       {
1611           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1612                                   STACK_DOUBLE(-1),
1613                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1614           MORE_STACK(-4); // Pop
1615           SET_STACK_INT(r, 0);
1616           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1617       }
1618 
1619       CASE(_lcmp):
1620       {
1621           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1622           MORE_STACK(-4);
1623           SET_STACK_INT(r, 0);
1624           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1625       }
1626 
1627 
1628       /* Return from a method */
1629 
1630       CASE(_areturn):
1631       CASE(_ireturn):
1632       CASE(_freturn):
1633       {
1634           // Allow a safepoint before returning to frame manager.
1635           SAFEPOINT;
1636 
1637           goto handle_return;
1638       }
1639 
1640       CASE(_lreturn):
1641       CASE(_dreturn):
1642       {
1643           // Allow a safepoint before returning to frame manager.
1644           SAFEPOINT;
1645           goto handle_return;
1646       }
1647 
1648       CASE(_return_register_finalizer): {
1649 
1650           oop rcvr = LOCALS_OBJECT(0);
1651           VERIFY_OOP(rcvr);
1652           if (rcvr->klass()->has_finalizer()) {
1653             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1654           }
1655           goto handle_return;
1656       }
1657       CASE(_return): {
1658 
1659           // Allow a safepoint before returning to frame manager.
1660           SAFEPOINT;
1661           goto handle_return;
1662       }
1663 
1664       /* Array access byte-codes */
1665 
1666       /* Every array access byte-code starts out like this */
1667 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1668 #define ARRAY_INTRO(arrayOff)                                                  \
1669       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1670       jint     index  = STACK_INT(arrayOff + 1);                               \
1671       char message[jintAsStringSize];                                          \
1672       CHECK_NULL(arrObj);                                                      \
1673       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1674           sprintf(message, "%d", index);                                       \
1675           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1676                         message, note_rangeCheck_trap);                        \
1677       }
1678 
1679       /* 32-bit loads. These handle conversion from < 32-bit types */
1680 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1681       {                                                                               \
1682           ARRAY_INTRO(-2);                                                            \
1683           (void)extra;                                                                \
1684           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1685                            -2);                                                       \
1686           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1687       }
1688 
1689       /* 64-bit loads */
1690 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1691       {                                                                                    \
1692           ARRAY_INTRO(-2);                                                                 \
1693           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1694           (void)extra;                                                                     \
1695           UPDATE_PC_AND_CONTINUE(1);                                                       \
1696       }
1697 
1698       CASE(_iaload):
1699           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1700       CASE(_faload):
1701           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1702       CASE(_aaload): {
1703           ARRAY_INTRO(-2);
1704           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1705           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1706       }
1707       CASE(_baload):
1708           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1709       CASE(_caload):
1710           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1711       CASE(_saload):
1712           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1713       CASE(_laload):
1714           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1715       CASE(_daload):
1716           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1717 
1718       /* 32-bit stores. These handle conversion to < 32-bit types */
1719 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1720       {                                                                              \
1721           ARRAY_INTRO(-3);                                                           \
1722           (void)extra;                                                               \
1723           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1724           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1725       }
1726 
1727       /* 64-bit stores */
1728 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1729       {                                                                              \
1730           ARRAY_INTRO(-4);                                                           \
1731           (void)extra;                                                               \
1732           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1733           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1734       }
1735 
1736       CASE(_iastore):
1737           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1738       CASE(_fastore):
1739           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1740       /*
1741        * This one looks different because of the assignability check
1742        */
1743       CASE(_aastore): {
1744           oop rhsObject = STACK_OBJECT(-1);
1745           VERIFY_OOP(rhsObject);
1746           ARRAY_INTRO( -3);
1747           // arrObj, index are set
1748           if (rhsObject != NULL) {
1749             /* Check assignability of rhsObject into arrObj */
1750             Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1751             Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1752             //
1753             // Check for compatibilty. This check must not GC!!
1754             // Seems way more expensive now that we must dispatch
1755             //
1756             if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1757               // Decrement counter if subtype check failed.
1758               BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1759               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1760             }
1761             // Profile checkcast with null_seen and receiver.
1762             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1763           } else {
1764             // Profile checkcast with null_seen and receiver.
1765             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1766           }
1767           ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1768           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1769       }
1770       CASE(_bastore):
1771           ARRAY_STOREFROM32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1772       CASE(_castore):
1773           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1774       CASE(_sastore):
1775           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1776       CASE(_lastore):
1777           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1778       CASE(_dastore):
1779           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1780 
1781       CASE(_arraylength):
1782       {
1783           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1784           CHECK_NULL(ary);
1785           SET_STACK_INT(ary->length(), -1);
1786           UPDATE_PC_AND_CONTINUE(1);
1787       }
1788 
1789       /* monitorenter and monitorexit for locking/unlocking an object */
1790 
1791       CASE(_monitorenter): {
1792         oop lockee = STACK_OBJECT(-1);
1793         // derefing's lockee ought to provoke implicit null check
1794         CHECK_NULL(lockee);
1795         // find a free monitor or one already allocated for this object
1796         // if we find a matching object then we need a new monitor
1797         // since this is recursive enter
1798         BasicObjectLock* limit = istate->monitor_base();
1799         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1800         BasicObjectLock* entry = NULL;
1801         while (most_recent != limit ) {
1802           if (most_recent->obj() == NULL) entry = most_recent;
1803           else if (most_recent->obj() == lockee) break;
1804           most_recent++;
1805         }
1806         if (entry != NULL) {
1807           entry->set_obj(lockee);
1808           int success = false;
1809           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1810 
1811           markOop mark = lockee->mark();
1812           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1813           // implies UseBiasedLocking
1814           if (mark->has_bias_pattern()) {
1815             uintptr_t thread_ident;
1816             uintptr_t anticipated_bias_locking_value;
1817             thread_ident = (uintptr_t)istate->thread();
1818             anticipated_bias_locking_value =
1819               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1820               ~((uintptr_t) markOopDesc::age_mask_in_place);
1821 
1822             if  (anticipated_bias_locking_value == 0) {
1823               // already biased towards this thread, nothing to do
1824               if (PrintBiasedLockingStatistics) {
1825                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1826               }
1827               success = true;
1828             }
1829             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1830               // try revoke bias
1831               markOop header = lockee->klass()->prototype_header();
1832               if (hash != markOopDesc::no_hash) {
1833                 header = header->copy_set_hash(hash);
1834               }
1835               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1836                 if (PrintBiasedLockingStatistics)
1837                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1838               }
1839             }
1840             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1841               // try rebias
1842               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1843               if (hash != markOopDesc::no_hash) {
1844                 new_header = new_header->copy_set_hash(hash);
1845               }
1846               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1847                 if (PrintBiasedLockingStatistics)
1848                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1849               }
1850               else {
1851                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1852               }
1853               success = true;
1854             }
1855             else {
1856               // try to bias towards thread in case object is anonymously biased
1857               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1858                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1859                                                               epoch_mask_in_place));
1860               if (hash != markOopDesc::no_hash) {
1861                 header = header->copy_set_hash(hash);
1862               }
1863               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1864               // debugging hint
1865               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1866               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1867                 if (PrintBiasedLockingStatistics)
1868                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1869               }
1870               else {
1871                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1872               }
1873               success = true;
1874             }
1875           }
1876 
1877           // traditional lightweight locking
1878           if (!success) {
1879             markOop displaced = lockee->mark()->set_unlocked();
1880             entry->lock()->set_displaced_header(displaced);
1881             bool call_vm = UseHeavyMonitors;
1882             if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1883               // Is it simple recursive case?
1884               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1885                 entry->lock()->set_displaced_header(NULL);
1886               } else {
1887                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1888               }
1889             }
1890           }
1891           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1892         } else {
1893           istate->set_msg(more_monitors);
1894           UPDATE_PC_AND_RETURN(0); // Re-execute
1895         }
1896       }
1897 
1898       CASE(_monitorexit): {
1899         oop lockee = STACK_OBJECT(-1);
1900         CHECK_NULL(lockee);
1901         // derefing's lockee ought to provoke implicit null check
1902         // find our monitor slot
1903         BasicObjectLock* limit = istate->monitor_base();
1904         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1905         while (most_recent != limit ) {
1906           if ((most_recent)->obj() == lockee) {
1907             BasicLock* lock = most_recent->lock();
1908             markOop header = lock->displaced_header();
1909             most_recent->set_obj(NULL);
1910             if (!lockee->mark()->has_bias_pattern()) {
1911               bool call_vm = UseHeavyMonitors;
1912               // If it isn't recursive we either must swap old header or call the runtime
1913               if (header != NULL || call_vm) {
1914                 if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1915                   // restore object for the slow case
1916                   most_recent->set_obj(lockee);
1917                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1918                 }
1919               }
1920             }
1921             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1922           }
1923           most_recent++;
1924         }
1925         // Need to throw illegal monitor state exception
1926         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1927         ShouldNotReachHere();
1928       }
1929 
1930       /* All of the non-quick opcodes. */
1931 
1932       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1933        *  constant pool index in the instruction.
1934        */
1935       CASE(_getfield):
1936       CASE(_getstatic):
1937         {
1938           u2 index;
1939           ConstantPoolCacheEntry* cache;
1940           index = Bytes::get_native_u2(pc+1);
1941 
1942           // QQQ Need to make this as inlined as possible. Probably need to
1943           // split all the bytecode cases out so c++ compiler has a chance
1944           // for constant prop to fold everything possible away.
1945 
1946           cache = cp->entry_at(index);
1947           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1948             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
1949                     handle_exception);
1950             cache = cp->entry_at(index);
1951           }
1952 
1953 #ifdef VM_JVMTI
1954           if (_jvmti_interp_events) {
1955             int *count_addr;
1956             oop obj;
1957             // Check to see if a field modification watch has been set
1958             // before we take the time to call into the VM.
1959             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1960             if ( *count_addr > 0 ) {
1961               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1962                 obj = (oop)NULL;
1963               } else {
1964                 obj = (oop) STACK_OBJECT(-1);
1965                 VERIFY_OOP(obj);
1966               }
1967               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1968                                           obj,
1969                                           cache),
1970                                           handle_exception);
1971             }
1972           }
1973 #endif /* VM_JVMTI */
1974 
1975           oop obj;
1976           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1977             Klass* k = cache->f1_as_klass();
1978             obj = k->java_mirror();
1979             MORE_STACK(1);  // Assume single slot push
1980           } else {
1981             obj = (oop) STACK_OBJECT(-1);
1982             CHECK_NULL(obj);
1983           }
1984 
1985           //
1986           // Now store the result on the stack
1987           //
1988           TosState tos_type = cache->flag_state();
1989           int field_offset = cache->f2_as_index();
1990           if (cache->is_volatile()) {
1991             if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
1992               OrderAccess::fence();
1993             }
1994             if (tos_type == atos) {
1995               VERIFY_OOP(obj->obj_field_acquire(field_offset));
1996               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
1997             } else if (tos_type == itos) {
1998               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1999             } else if (tos_type == ltos) {
2000               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
2001               MORE_STACK(1);
2002             } else if (tos_type == btos) {
2003               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
2004             } else if (tos_type == ctos) {
2005               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
2006             } else if (tos_type == stos) {
2007               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
2008             } else if (tos_type == ftos) {
2009               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
2010             } else {
2011               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
2012               MORE_STACK(1);
2013             }
2014           } else {
2015             if (tos_type == atos) {
2016               VERIFY_OOP(obj->obj_field(field_offset));
2017               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2018             } else if (tos_type == itos) {
2019               SET_STACK_INT(obj->int_field(field_offset), -1);
2020             } else if (tos_type == ltos) {
2021               SET_STACK_LONG(obj->long_field(field_offset), 0);
2022               MORE_STACK(1);
2023             } else if (tos_type == btos) {
2024               SET_STACK_INT(obj->byte_field(field_offset), -1);
2025             } else if (tos_type == ctos) {
2026               SET_STACK_INT(obj->char_field(field_offset), -1);
2027             } else if (tos_type == stos) {
2028               SET_STACK_INT(obj->short_field(field_offset), -1);
2029             } else if (tos_type == ftos) {
2030               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2031             } else {
2032               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2033               MORE_STACK(1);
2034             }
2035           }
2036 
2037           UPDATE_PC_AND_CONTINUE(3);
2038          }
2039 
2040       CASE(_putfield):
2041       CASE(_putstatic):
2042         {
2043           u2 index = Bytes::get_native_u2(pc+1);
2044           ConstantPoolCacheEntry* cache = cp->entry_at(index);
2045           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2046             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2047                     handle_exception);
2048             cache = cp->entry_at(index);
2049           }
2050 
2051 #ifdef VM_JVMTI
2052           if (_jvmti_interp_events) {
2053             int *count_addr;
2054             oop obj;
2055             // Check to see if a field modification watch has been set
2056             // before we take the time to call into the VM.
2057             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2058             if ( *count_addr > 0 ) {
2059               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2060                 obj = (oop)NULL;
2061               }
2062               else {
2063                 if (cache->is_long() || cache->is_double()) {
2064                   obj = (oop) STACK_OBJECT(-3);
2065                 } else {
2066                   obj = (oop) STACK_OBJECT(-2);
2067                 }
2068                 VERIFY_OOP(obj);
2069               }
2070 
2071               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2072                                           obj,
2073                                           cache,
2074                                           (jvalue *)STACK_SLOT(-1)),
2075                                           handle_exception);
2076             }
2077           }
2078 #endif /* VM_JVMTI */
2079 
2080           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2081           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2082 
2083           oop obj;
2084           int count;
2085           TosState tos_type = cache->flag_state();
2086 
2087           count = -1;
2088           if (tos_type == ltos || tos_type == dtos) {
2089             --count;
2090           }
2091           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2092             Klass* k = cache->f1_as_klass();
2093             obj = k->java_mirror();
2094           } else {
2095             --count;
2096             obj = (oop) STACK_OBJECT(count);
2097             CHECK_NULL(obj);
2098           }
2099 
2100           //
2101           // Now store the result
2102           //
2103           int field_offset = cache->f2_as_index();
2104           if (cache->is_volatile()) {
2105             if (tos_type == itos) {
2106               obj->release_int_field_put(field_offset, STACK_INT(-1));
2107             } else if (tos_type == atos) {
2108               VERIFY_OOP(STACK_OBJECT(-1));
2109               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2110             } else if (tos_type == btos) {
2111               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2112             } else if (tos_type == ltos) {
2113               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2114             } else if (tos_type == ctos) {
2115               obj->release_char_field_put(field_offset, STACK_INT(-1));
2116             } else if (tos_type == stos) {
2117               obj->release_short_field_put(field_offset, STACK_INT(-1));
2118             } else if (tos_type == ftos) {
2119               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2120             } else {
2121               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2122             }
2123             OrderAccess::storeload();
2124           } else {
2125             if (tos_type == itos) {
2126               obj->int_field_put(field_offset, STACK_INT(-1));
2127             } else if (tos_type == atos) {
2128               VERIFY_OOP(STACK_OBJECT(-1));
2129               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2130             } else if (tos_type == btos) {
2131               obj->byte_field_put(field_offset, STACK_INT(-1));
2132             } else if (tos_type == ltos) {
2133               obj->long_field_put(field_offset, STACK_LONG(-1));
2134             } else if (tos_type == ctos) {
2135               obj->char_field_put(field_offset, STACK_INT(-1));
2136             } else if (tos_type == stos) {
2137               obj->short_field_put(field_offset, STACK_INT(-1));
2138             } else if (tos_type == ftos) {
2139               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2140             } else {
2141               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2142             }
2143           }
2144 
2145           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2146         }
2147 
2148       CASE(_new): {
2149         u2 index = Bytes::get_Java_u2(pc+1);
2150         ConstantPool* constants = istate->method()->constants();
2151         if (!constants->tag_at(index).is_unresolved_klass()) {
2152           // Make sure klass is initialized and doesn't have a finalizer
2153           Klass* entry = constants->slot_at(index).get_klass();
2154           InstanceKlass* ik = InstanceKlass::cast(entry);
2155           if (ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2156             size_t obj_size = ik->size_helper();
2157             oop result = NULL;
2158             // If the TLAB isn't pre-zeroed then we'll have to do it
2159             bool need_zero = !ZeroTLAB;
2160             if (UseTLAB) {
2161               result = (oop) THREAD->tlab().allocate(obj_size);
2162             }
2163             // Disable non-TLAB-based fast-path, because profiling requires that all
2164             // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2165             // returns NULL.
2166 #ifndef CC_INTERP_PROFILE
2167             if (result == NULL) {
2168               need_zero = true;
2169               // Try allocate in shared eden
2170             retry:
2171               HeapWord* compare_to = *Universe::heap()->top_addr();
2172               HeapWord* new_top = compare_to + obj_size;
2173               if (new_top <= *Universe::heap()->end_addr()) {
2174                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2175                   goto retry;
2176                 }
2177                 result = (oop) compare_to;
2178               }
2179             }
2180 #endif
2181             if (result != NULL) {
2182               // Initialize object (if nonzero size and need) and then the header
2183               if (need_zero ) {
2184                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2185                 obj_size -= sizeof(oopDesc) / oopSize;
2186                 if (obj_size > 0 ) {
2187                   memset(to_zero, 0, obj_size * HeapWordSize);
2188                 }
2189               }
2190               if (UseBiasedLocking) {
2191                 result->set_mark(ik->prototype_header());
2192               } else {
2193                 result->set_mark(markOopDesc::prototype());
2194               }
2195               result->set_klass_gap(0);
2196               result->set_klass(ik);
2197               // Must prevent reordering of stores for object initialization
2198               // with stores that publish the new object.
2199               OrderAccess::storestore();
2200               SET_STACK_OBJECT(result, 0);
2201               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2202             }
2203           }
2204         }
2205         // Slow case allocation
2206         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2207                 handle_exception);
2208         // Must prevent reordering of stores for object initialization
2209         // with stores that publish the new object.
2210         OrderAccess::storestore();
2211         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2212         THREAD->set_vm_result(NULL);
2213         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2214       }
2215       CASE(_anewarray): {
2216         u2 index = Bytes::get_Java_u2(pc+1);
2217         jint size = STACK_INT(-1);
2218         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2219                 handle_exception);
2220         // Must prevent reordering of stores for object initialization
2221         // with stores that publish the new object.
2222         OrderAccess::storestore();
2223         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2224         THREAD->set_vm_result(NULL);
2225         UPDATE_PC_AND_CONTINUE(3);
2226       }
2227       CASE(_multianewarray): {
2228         jint dims = *(pc+3);
2229         jint size = STACK_INT(-1);
2230         // stack grows down, dimensions are up!
2231         jint *dimarray =
2232                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2233                                       Interpreter::stackElementWords-1];
2234         //adjust pointer to start of stack element
2235         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2236                 handle_exception);
2237         // Must prevent reordering of stores for object initialization
2238         // with stores that publish the new object.
2239         OrderAccess::storestore();
2240         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2241         THREAD->set_vm_result(NULL);
2242         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2243       }
2244       CASE(_checkcast):
2245           if (STACK_OBJECT(-1) != NULL) {
2246             VERIFY_OOP(STACK_OBJECT(-1));
2247             u2 index = Bytes::get_Java_u2(pc+1);
2248             // Constant pool may have actual klass or unresolved klass. If it is
2249             // unresolved we must resolve it.
2250             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2251               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2252             }
2253             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2254             Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2255             //
2256             // Check for compatibilty. This check must not GC!!
2257             // Seems way more expensive now that we must dispatch.
2258             //
2259             if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2260               // Decrement counter at checkcast.
2261               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2262               ResourceMark rm(THREAD);
2263               const char* objName = objKlass->external_name();
2264               const char* klassName = klassOf->external_name();
2265               char* message = SharedRuntime::generate_class_cast_message(
2266                 objName, klassName);
2267               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2268             }
2269             // Profile checkcast with null_seen and receiver.
2270             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2271           } else {
2272             // Profile checkcast with null_seen and receiver.
2273             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2274           }
2275           UPDATE_PC_AND_CONTINUE(3);
2276 
2277       CASE(_instanceof):
2278           if (STACK_OBJECT(-1) == NULL) {
2279             SET_STACK_INT(0, -1);
2280             // Profile instanceof with null_seen and receiver.
2281             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2282           } else {
2283             VERIFY_OOP(STACK_OBJECT(-1));
2284             u2 index = Bytes::get_Java_u2(pc+1);
2285             // Constant pool may have actual klass or unresolved klass. If it is
2286             // unresolved we must resolve it.
2287             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2288               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2289             }
2290             Klass* klassOf = (Klass*) METHOD->constants()->slot_at(index).get_klass();
2291             Klass* objKlass = STACK_OBJECT(-1)->klass();
2292             //
2293             // Check for compatibilty. This check must not GC!!
2294             // Seems way more expensive now that we must dispatch.
2295             //
2296             if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2297               SET_STACK_INT(1, -1);
2298             } else {
2299               SET_STACK_INT(0, -1);
2300               // Decrement counter at checkcast.
2301               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2302             }
2303             // Profile instanceof with null_seen and receiver.
2304             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2305           }
2306           UPDATE_PC_AND_CONTINUE(3);
2307 
2308       CASE(_ldc_w):
2309       CASE(_ldc):
2310         {
2311           u2 index;
2312           bool wide = false;
2313           int incr = 2; // frequent case
2314           if (opcode == Bytecodes::_ldc) {
2315             index = pc[1];
2316           } else {
2317             index = Bytes::get_Java_u2(pc+1);
2318             incr = 3;
2319             wide = true;
2320           }
2321 
2322           ConstantPool* constants = METHOD->constants();
2323           switch (constants->tag_at(index).value()) {
2324           case JVM_CONSTANT_Integer:
2325             SET_STACK_INT(constants->int_at(index), 0);
2326             break;
2327 
2328           case JVM_CONSTANT_Float:
2329             SET_STACK_FLOAT(constants->float_at(index), 0);
2330             break;
2331 
2332           case JVM_CONSTANT_String:
2333             {
2334               oop result = constants->resolved_references()->obj_at(index);
2335               if (result == NULL) {
2336                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2337                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2338                 THREAD->set_vm_result(NULL);
2339               } else {
2340                 VERIFY_OOP(result);
2341                 SET_STACK_OBJECT(result, 0);
2342               }
2343             break;
2344             }
2345 
2346           case JVM_CONSTANT_Class:
2347             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2348             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2349             break;
2350 
2351           case JVM_CONSTANT_UnresolvedClass:
2352           case JVM_CONSTANT_UnresolvedClassInError:
2353             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2354             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2355             THREAD->set_vm_result(NULL);
2356             break;
2357 
2358           default:  ShouldNotReachHere();
2359           }
2360           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2361         }
2362 
2363       CASE(_ldc2_w):
2364         {
2365           u2 index = Bytes::get_Java_u2(pc+1);
2366 
2367           ConstantPool* constants = METHOD->constants();
2368           switch (constants->tag_at(index).value()) {
2369 
2370           case JVM_CONSTANT_Long:
2371              SET_STACK_LONG(constants->long_at(index), 1);
2372             break;
2373 
2374           case JVM_CONSTANT_Double:
2375              SET_STACK_DOUBLE(constants->double_at(index), 1);
2376             break;
2377           default:  ShouldNotReachHere();
2378           }
2379           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2380         }
2381 
2382       CASE(_fast_aldc_w):
2383       CASE(_fast_aldc): {
2384         u2 index;
2385         int incr;
2386         if (opcode == Bytecodes::_fast_aldc) {
2387           index = pc[1];
2388           incr = 2;
2389         } else {
2390           index = Bytes::get_native_u2(pc+1);
2391           incr = 3;
2392         }
2393 
2394         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2395         // This kind of CP cache entry does not need to match the flags byte, because
2396         // there is a 1-1 relation between bytecode type and CP entry type.
2397         ConstantPool* constants = METHOD->constants();
2398         oop result = constants->resolved_references()->obj_at(index);
2399         if (result == NULL) {
2400           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2401                   handle_exception);
2402           result = THREAD->vm_result();
2403         }
2404 
2405         VERIFY_OOP(result);
2406         SET_STACK_OBJECT(result, 0);
2407         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2408       }
2409 
2410       CASE(_invokedynamic): {
2411 
2412         u4 index = Bytes::get_native_u4(pc+1);
2413         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2414 
2415         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2416         // This kind of CP cache entry does not need to match the flags byte, because
2417         // there is a 1-1 relation between bytecode type and CP entry type.
2418         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2419           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2420                   handle_exception);
2421           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2422         }
2423 
2424         Method* method = cache->f1_as_method();
2425         if (VerifyOops) method->verify();
2426 
2427         if (cache->has_appendix()) {
2428           ConstantPool* constants = METHOD->constants();
2429           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2430           MORE_STACK(1);
2431         }
2432 
2433         istate->set_msg(call_method);
2434         istate->set_callee(method);
2435         istate->set_callee_entry_point(method->from_interpreted_entry());
2436         istate->set_bcp_advance(5);
2437 
2438         // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2439         BI_PROFILE_UPDATE_CALL();
2440 
2441         UPDATE_PC_AND_RETURN(0); // I'll be back...
2442       }
2443 
2444       CASE(_invokehandle): {
2445 
2446         u2 index = Bytes::get_native_u2(pc+1);
2447         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2448 
2449         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2450           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2451                   handle_exception);
2452           cache = cp->entry_at(index);
2453         }
2454 
2455         Method* method = cache->f1_as_method();
2456         if (VerifyOops) method->verify();
2457 
2458         if (cache->has_appendix()) {
2459           ConstantPool* constants = METHOD->constants();
2460           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2461           MORE_STACK(1);
2462         }
2463 
2464         istate->set_msg(call_method);
2465         istate->set_callee(method);
2466         istate->set_callee_entry_point(method->from_interpreted_entry());
2467         istate->set_bcp_advance(3);
2468 
2469         // Invokehandle has got a call counter, just like a final call -> increment!
2470         BI_PROFILE_UPDATE_FINALCALL();
2471 
2472         UPDATE_PC_AND_RETURN(0); // I'll be back...
2473       }
2474 
2475       CASE(_invokeinterface): {
2476         u2 index = Bytes::get_native_u2(pc+1);
2477 
2478         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2479         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2480 
2481         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2482         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2483           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2484                   handle_exception);
2485           cache = cp->entry_at(index);
2486         }
2487 
2488         istate->set_msg(call_method);
2489 
2490         // Special case of invokeinterface called for virtual method of
2491         // java.lang.Object.  See cpCacheOop.cpp for details.
2492         // This code isn't produced by javac, but could be produced by
2493         // another compliant java compiler.
2494         if (cache->is_forced_virtual()) {
2495           Method* callee;
2496           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2497           if (cache->is_vfinal()) {
2498             callee = cache->f2_as_vfinal_method();
2499             // Profile 'special case of invokeinterface' final call.
2500             BI_PROFILE_UPDATE_FINALCALL();
2501           } else {
2502             // Get receiver.
2503             int parms = cache->parameter_size();
2504             // Same comments as invokevirtual apply here.
2505             oop rcvr = STACK_OBJECT(-parms);
2506             VERIFY_OOP(rcvr);
2507             Klass* rcvrKlass = rcvr->klass();
2508             callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2509             // Profile 'special case of invokeinterface' virtual call.
2510             BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2511           }
2512           istate->set_callee(callee);
2513           istate->set_callee_entry_point(callee->from_interpreted_entry());
2514 #ifdef VM_JVMTI
2515           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2516             istate->set_callee_entry_point(callee->interpreter_entry());
2517           }
2518 #endif /* VM_JVMTI */
2519           istate->set_bcp_advance(5);
2520           UPDATE_PC_AND_RETURN(0); // I'll be back...
2521         }
2522 
2523         // this could definitely be cleaned up QQQ
2524         Method* callee;
2525         Klass* iclass = cache->f1_as_klass();
2526         // InstanceKlass* interface = (InstanceKlass*) iclass;
2527         // get receiver
2528         int parms = cache->parameter_size();
2529         oop rcvr = STACK_OBJECT(-parms);
2530         CHECK_NULL(rcvr);
2531         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2532         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2533         int i;
2534         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2535           if (ki->interface_klass() == iclass) break;
2536         }
2537         // If the interface isn't found, this class doesn't implement this
2538         // interface.  The link resolver checks this but only for the first
2539         // time this interface is called.
2540         if (i == int2->itable_length()) {
2541           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2542         }
2543         int mindex = cache->f2_as_index();
2544         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2545         callee = im[mindex].method();
2546         if (callee == NULL) {
2547           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "", note_no_trap);
2548         }
2549 
2550         // Profile virtual call.
2551         BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2552 
2553         istate->set_callee(callee);
2554         istate->set_callee_entry_point(callee->from_interpreted_entry());
2555 #ifdef VM_JVMTI
2556         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2557           istate->set_callee_entry_point(callee->interpreter_entry());
2558         }
2559 #endif /* VM_JVMTI */
2560         istate->set_bcp_advance(5);
2561         UPDATE_PC_AND_RETURN(0); // I'll be back...
2562       }
2563 
2564       CASE(_invokevirtual):
2565       CASE(_invokespecial):
2566       CASE(_invokestatic): {
2567         u2 index = Bytes::get_native_u2(pc+1);
2568 
2569         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2570         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2571         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2572 
2573         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2574           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2575                   handle_exception);
2576           cache = cp->entry_at(index);
2577         }
2578 
2579         istate->set_msg(call_method);
2580         {
2581           Method* callee;
2582           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2583             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2584             if (cache->is_vfinal()) {
2585               callee = cache->f2_as_vfinal_method();
2586               // Profile final call.
2587               BI_PROFILE_UPDATE_FINALCALL();
2588             } else {
2589               // get receiver
2590               int parms = cache->parameter_size();
2591               // this works but needs a resourcemark and seems to create a vtable on every call:
2592               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2593               //
2594               // this fails with an assert
2595               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2596               // but this works
2597               oop rcvr = STACK_OBJECT(-parms);
2598               VERIFY_OOP(rcvr);
2599               Klass* rcvrKlass = rcvr->klass();
2600               /*
2601                 Executing this code in java.lang.String:
2602                     public String(char value[]) {
2603                           this.count = value.length;
2604                           this.value = (char[])value.clone();
2605                      }
2606 
2607                  a find on rcvr->klass() reports:
2608                  {type array char}{type array class}
2609                   - klass: {other class}
2610 
2611                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2612                   because rcvr->klass()->is_instance_klass() == 0
2613                   However it seems to have a vtable in the right location. Huh?
2614                   Because vtables have the same offset for ArrayKlass and InstanceKlass.
2615               */
2616               callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2617               // Profile virtual call.
2618               BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2619             }
2620           } else {
2621             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2622               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2623             }
2624             callee = cache->f1_as_method();
2625 
2626             // Profile call.
2627             BI_PROFILE_UPDATE_CALL();
2628           }
2629 
2630           istate->set_callee(callee);
2631           istate->set_callee_entry_point(callee->from_interpreted_entry());
2632 #ifdef VM_JVMTI
2633           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2634             istate->set_callee_entry_point(callee->interpreter_entry());
2635           }
2636 #endif /* VM_JVMTI */
2637           istate->set_bcp_advance(3);
2638           UPDATE_PC_AND_RETURN(0); // I'll be back...
2639         }
2640       }
2641 
2642       /* Allocate memory for a new java object. */
2643 
2644       CASE(_newarray): {
2645         BasicType atype = (BasicType) *(pc+1);
2646         jint size = STACK_INT(-1);
2647         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2648                 handle_exception);
2649         // Must prevent reordering of stores for object initialization
2650         // with stores that publish the new object.
2651         OrderAccess::storestore();
2652         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2653         THREAD->set_vm_result(NULL);
2654 
2655         UPDATE_PC_AND_CONTINUE(2);
2656       }
2657 
2658       /* Throw an exception. */
2659 
2660       CASE(_athrow): {
2661           oop except_oop = STACK_OBJECT(-1);
2662           CHECK_NULL(except_oop);
2663           // set pending_exception so we use common code
2664           THREAD->set_pending_exception(except_oop, NULL, 0);
2665           goto handle_exception;
2666       }
2667 
2668       /* goto and jsr. They are exactly the same except jsr pushes
2669        * the address of the next instruction first.
2670        */
2671 
2672       CASE(_jsr): {
2673           /* push bytecode index on stack */
2674           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2675           MORE_STACK(1);
2676           /* FALL THROUGH */
2677       }
2678 
2679       CASE(_goto):
2680       {
2681           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2682           // Profile jump.
2683           BI_PROFILE_UPDATE_JUMP();
2684           address branch_pc = pc;
2685           UPDATE_PC(offset);
2686           DO_BACKEDGE_CHECKS(offset, branch_pc);
2687           CONTINUE;
2688       }
2689 
2690       CASE(_jsr_w): {
2691           /* push return address on the stack */
2692           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2693           MORE_STACK(1);
2694           /* FALL THROUGH */
2695       }
2696 
2697       CASE(_goto_w):
2698       {
2699           int32_t offset = Bytes::get_Java_u4(pc + 1);
2700           // Profile jump.
2701           BI_PROFILE_UPDATE_JUMP();
2702           address branch_pc = pc;
2703           UPDATE_PC(offset);
2704           DO_BACKEDGE_CHECKS(offset, branch_pc);
2705           CONTINUE;
2706       }
2707 
2708       /* return from a jsr or jsr_w */
2709 
2710       CASE(_ret): {
2711           // Profile ret.
2712           BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2713           // Now, update the pc.
2714           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2715           UPDATE_PC_AND_CONTINUE(0);
2716       }
2717 
2718       /* debugger breakpoint */
2719 
2720       CASE(_breakpoint): {
2721           Bytecodes::Code original_bytecode;
2722           DECACHE_STATE();
2723           SET_LAST_JAVA_FRAME();
2724           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2725                               METHOD, pc);
2726           RESET_LAST_JAVA_FRAME();
2727           CACHE_STATE();
2728           if (THREAD->has_pending_exception()) goto handle_exception;
2729             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2730                                                     handle_exception);
2731 
2732           opcode = (jubyte)original_bytecode;
2733           goto opcode_switch;
2734       }
2735 
2736       DEFAULT:
2737           fatal("Unimplemented opcode %d = %s", opcode,
2738                 Bytecodes::name((Bytecodes::Code)opcode));
2739           goto finish;
2740 
2741       } /* switch(opc) */
2742 
2743 
2744 #ifdef USELABELS
2745     check_for_exception:
2746 #endif
2747     {
2748       if (!THREAD->has_pending_exception()) {
2749         CONTINUE;
2750       }
2751       /* We will be gcsafe soon, so flush our state. */
2752       DECACHE_PC();
2753       goto handle_exception;
2754     }
2755   do_continue: ;
2756 
2757   } /* while (1) interpreter loop */
2758 
2759 
2760   // An exception exists in the thread state see whether this activation can handle it
2761   handle_exception: {
2762 
2763     HandleMarkCleaner __hmc(THREAD);
2764     Handle except_oop(THREAD, THREAD->pending_exception());
2765     // Prevent any subsequent HandleMarkCleaner in the VM
2766     // from freeing the except_oop handle.
2767     HandleMark __hm(THREAD);
2768 
2769     THREAD->clear_pending_exception();
2770     assert(except_oop(), "No exception to process");
2771     intptr_t continuation_bci;
2772     // expression stack is emptied
2773     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2774     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2775             handle_exception);
2776 
2777     except_oop = THREAD->vm_result();
2778     THREAD->set_vm_result(NULL);
2779     if (continuation_bci >= 0) {
2780       // Place exception on top of stack
2781       SET_STACK_OBJECT(except_oop(), 0);
2782       MORE_STACK(1);
2783       pc = METHOD->code_base() + continuation_bci;
2784       if (log_is_enabled(Info, exceptions)) {
2785         ResourceMark rm(THREAD);
2786         stringStream tempst;
2787         tempst.print("interpreter method <%s>\n"
2788                      " at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2789                      METHOD->print_value_string(),
2790                      (int)(istate->bcp() - METHOD->code_base()),
2791                      (int)continuation_bci, p2i(THREAD));
2792         Exceptions::log_exception(except_oop, tempst);
2793       }
2794       // for AbortVMOnException flag
2795       Exceptions::debug_check_abort(except_oop);
2796 
2797       // Update profiling data.
2798       BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2799       goto run;
2800     }
2801     if (log_is_enabled(Info, exceptions)) {
2802       ResourceMark rm;
2803       stringStream tempst;
2804       tempst.print("interpreter method <%s>\n"
2805              " at bci %d, unwinding for thread " INTPTR_FORMAT,
2806              METHOD->print_value_string(),
2807              (int)(istate->bcp() - METHOD->code_base()),
2808              p2i(THREAD));
2809       Exceptions::log_exception(except_oop, tempst);
2810     }
2811     // for AbortVMOnException flag
2812     Exceptions::debug_check_abort(except_oop);
2813 
2814     // No handler in this activation, unwind and try again
2815     THREAD->set_pending_exception(except_oop(), NULL, 0);
2816     goto handle_return;
2817   }  // handle_exception:
2818 
2819   // Return from an interpreter invocation with the result of the interpretation
2820   // on the top of the Java Stack (or a pending exception)
2821 
2822   handle_Pop_Frame: {
2823 
2824     // We don't really do anything special here except we must be aware
2825     // that we can get here without ever locking the method (if sync).
2826     // Also we skip the notification of the exit.
2827 
2828     istate->set_msg(popping_frame);
2829     // Clear pending so while the pop is in process
2830     // we don't start another one if a call_vm is done.
2831     THREAD->clr_pop_frame_pending();
2832     // Let interpreter (only) see the we're in the process of popping a frame
2833     THREAD->set_pop_frame_in_process();
2834 
2835     goto handle_return;
2836 
2837   } // handle_Pop_Frame
2838 
2839   // ForceEarlyReturn ends a method, and returns to the caller with a return value
2840   // given by the invoker of the early return.
2841   handle_Early_Return: {
2842 
2843     istate->set_msg(early_return);
2844 
2845     // Clear expression stack.
2846     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2847 
2848     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2849 
2850     // Push the value to be returned.
2851     switch (istate->method()->result_type()) {
2852       case T_BOOLEAN:
2853       case T_SHORT:
2854       case T_BYTE:
2855       case T_CHAR:
2856       case T_INT:
2857         SET_STACK_INT(ts->earlyret_value().i, 0);
2858         MORE_STACK(1);
2859         break;
2860       case T_LONG:
2861         SET_STACK_LONG(ts->earlyret_value().j, 1);
2862         MORE_STACK(2);
2863         break;
2864       case T_FLOAT:
2865         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2866         MORE_STACK(1);
2867         break;
2868       case T_DOUBLE:
2869         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2870         MORE_STACK(2);
2871         break;
2872       case T_ARRAY:
2873       case T_OBJECT:
2874         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2875         MORE_STACK(1);
2876         break;
2877     }
2878 
2879     ts->clr_earlyret_value();
2880     ts->set_earlyret_oop(NULL);
2881     ts->clr_earlyret_pending();
2882 
2883     // Fall through to handle_return.
2884 
2885   } // handle_Early_Return
2886 
2887   handle_return: {
2888     // A storestore barrier is required to order initialization of
2889     // final fields with publishing the reference to the object that
2890     // holds the field. Without the barrier the value of final fields
2891     // can be observed to change.
2892     OrderAccess::storestore();
2893 
2894     DECACHE_STATE();
2895 
2896     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2897     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2898     Handle original_exception(THREAD, THREAD->pending_exception());
2899     Handle illegal_state_oop(THREAD, NULL);
2900 
2901     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2902     // in any following VM entries from freeing our live handles, but illegal_state_oop
2903     // isn't really allocated yet and so doesn't become live until later and
2904     // in unpredicatable places. Instead we must protect the places where we enter the
2905     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2906     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2907     // unfortunately isn't possible.
2908 
2909     THREAD->clear_pending_exception();
2910 
2911     //
2912     // As far as we are concerned we have returned. If we have a pending exception
2913     // that will be returned as this invocation's result. However if we get any
2914     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2915     // will be our final result (i.e. monitor exception trumps a pending exception).
2916     //
2917 
2918     // If we never locked the method (or really passed the point where we would have),
2919     // there is no need to unlock it (or look for other monitors), since that
2920     // could not have happened.
2921 
2922     if (THREAD->do_not_unlock()) {
2923 
2924       // Never locked, reset the flag now because obviously any caller must
2925       // have passed their point of locking for us to have gotten here.
2926 
2927       THREAD->clr_do_not_unlock();
2928     } else {
2929       // At this point we consider that we have returned. We now check that the
2930       // locks were properly block structured. If we find that they were not
2931       // used properly we will return with an illegal monitor exception.
2932       // The exception is checked by the caller not the callee since this
2933       // checking is considered to be part of the invocation and therefore
2934       // in the callers scope (JVM spec 8.13).
2935       //
2936       // Another weird thing to watch for is if the method was locked
2937       // recursively and then not exited properly. This means we must
2938       // examine all the entries in reverse time(and stack) order and
2939       // unlock as we find them. If we find the method monitor before
2940       // we are at the initial entry then we should throw an exception.
2941       // It is not clear the template based interpreter does this
2942       // correctly
2943 
2944       BasicObjectLock* base = istate->monitor_base();
2945       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2946       bool method_unlock_needed = METHOD->is_synchronized();
2947       // We know the initial monitor was used for the method don't check that
2948       // slot in the loop
2949       if (method_unlock_needed) base--;
2950 
2951       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2952       while (end < base) {
2953         oop lockee = end->obj();
2954         if (lockee != NULL) {
2955           BasicLock* lock = end->lock();
2956           markOop header = lock->displaced_header();
2957           end->set_obj(NULL);
2958 
2959           if (!lockee->mark()->has_bias_pattern()) {
2960             // If it isn't recursive we either must swap old header or call the runtime
2961             if (header != NULL) {
2962               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2963                 // restore object for the slow case
2964                 end->set_obj(lockee);
2965                 {
2966                   // Prevent any HandleMarkCleaner from freeing our live handles
2967                   HandleMark __hm(THREAD);
2968                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2969                 }
2970               }
2971             }
2972           }
2973           // One error is plenty
2974           if (illegal_state_oop() == NULL && !suppress_error) {
2975             {
2976               // Prevent any HandleMarkCleaner from freeing our live handles
2977               HandleMark __hm(THREAD);
2978               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2979             }
2980             assert(THREAD->has_pending_exception(), "Lost our exception!");
2981             illegal_state_oop = THREAD->pending_exception();
2982             THREAD->clear_pending_exception();
2983           }
2984         }
2985         end++;
2986       }
2987       // Unlock the method if needed
2988       if (method_unlock_needed) {
2989         if (base->obj() == NULL) {
2990           // The method is already unlocked this is not good.
2991           if (illegal_state_oop() == NULL && !suppress_error) {
2992             {
2993               // Prevent any HandleMarkCleaner from freeing our live handles
2994               HandleMark __hm(THREAD);
2995               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2996             }
2997             assert(THREAD->has_pending_exception(), "Lost our exception!");
2998             illegal_state_oop = THREAD->pending_exception();
2999             THREAD->clear_pending_exception();
3000           }
3001         } else {
3002           //
3003           // The initial monitor is always used for the method
3004           // However if that slot is no longer the oop for the method it was unlocked
3005           // and reused by something that wasn't unlocked!
3006           //
3007           // deopt can come in with rcvr dead because c2 knows
3008           // its value is preserved in the monitor. So we can't use locals[0] at all
3009           // and must use first monitor slot.
3010           //
3011           oop rcvr = base->obj();
3012           if (rcvr == NULL) {
3013             if (!suppress_error) {
3014               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3015               illegal_state_oop = THREAD->pending_exception();
3016               THREAD->clear_pending_exception();
3017             }
3018           } else if (UseHeavyMonitors) {
3019             {
3020               // Prevent any HandleMarkCleaner from freeing our live handles.
3021               HandleMark __hm(THREAD);
3022               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3023             }
3024             if (THREAD->has_pending_exception()) {
3025               if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3026               THREAD->clear_pending_exception();
3027             }
3028           } else {
3029             BasicLock* lock = base->lock();
3030             markOop header = lock->displaced_header();
3031             base->set_obj(NULL);
3032 
3033             if (!rcvr->mark()->has_bias_pattern()) {
3034               base->set_obj(NULL);
3035               // If it isn't recursive we either must swap old header or call the runtime
3036               if (header != NULL) {
3037                 if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
3038                   // restore object for the slow case
3039                   base->set_obj(rcvr);
3040                   {
3041                     // Prevent any HandleMarkCleaner from freeing our live handles
3042                     HandleMark __hm(THREAD);
3043                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3044                   }
3045                   if (THREAD->has_pending_exception()) {
3046                     if (!suppress_error) illegal_state_oop = THREAD->pending_exception();
3047                     THREAD->clear_pending_exception();
3048                   }
3049                 }
3050               }
3051             }
3052           }
3053         }
3054       }
3055     }
3056     // Clear the do_not_unlock flag now.
3057     THREAD->clr_do_not_unlock();
3058 
3059     //
3060     // Notify jvmti/jvmdi
3061     //
3062     // NOTE: we do not notify a method_exit if we have a pending exception,
3063     // including an exception we generate for unlocking checks.  In the former
3064     // case, JVMDI has already been notified by our call for the exception handler
3065     // and in both cases as far as JVMDI is concerned we have already returned.
3066     // If we notify it again JVMDI will be all confused about how many frames
3067     // are still on the stack (4340444).
3068     //
3069     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3070     // method_exit events whenever we leave an activation unless it was done
3071     // for popframe. This is nothing like jvmdi. However we are passing the
3072     // tests at the moment (apparently because they are jvmdi based) so rather
3073     // than change this code and possibly fail tests we will leave it alone
3074     // (with this note) in anticipation of changing the vm and the tests
3075     // simultaneously.
3076 
3077 
3078     //
3079     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3080 
3081 
3082 
3083 #ifdef VM_JVMTI
3084       if (_jvmti_interp_events) {
3085         // Whenever JVMTI puts a thread in interp_only_mode, method
3086         // entry/exit events are sent for that thread to track stack depth.
3087         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3088           {
3089             // Prevent any HandleMarkCleaner from freeing our live handles
3090             HandleMark __hm(THREAD);
3091             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3092           }
3093         }
3094       }
3095 #endif /* VM_JVMTI */
3096 
3097     //
3098     // See if we are returning any exception
3099     // A pending exception that was pending prior to a possible popping frame
3100     // overrides the popping frame.
3101     //
3102     assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3103     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3104       // Inform the frame manager we have no result.
3105       istate->set_msg(throwing_exception);
3106       if (illegal_state_oop() != NULL)
3107         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3108       else
3109         THREAD->set_pending_exception(original_exception(), NULL, 0);
3110       UPDATE_PC_AND_RETURN(0);
3111     }
3112 
3113     if (istate->msg() == popping_frame) {
3114       // Make it simpler on the assembly code and set the message for the frame pop.
3115       // returns
3116       if (istate->prev() == NULL) {
3117         // We must be returning to a deoptimized frame (because popframe only happens between
3118         // two interpreted frames). We need to save the current arguments in C heap so that
3119         // the deoptimized frame when it restarts can copy the arguments to its expression
3120         // stack and re-execute the call. We also have to notify deoptimization that this
3121         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3122         // java expression stack. Yuck.
3123         //
3124         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3125                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3126         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3127       }
3128     } else {
3129       istate->set_msg(return_from_method);
3130     }
3131 
3132     // Normal return
3133     // Advance the pc and return to frame manager
3134     UPDATE_PC_AND_RETURN(1);
3135   } /* handle_return: */
3136 
3137 // This is really a fatal error return
3138 
3139 finish:
3140   DECACHE_TOS();
3141   DECACHE_PC();
3142 
3143   return;
3144 }
3145 
3146 /*
3147  * All the code following this point is only produced once and is not present
3148  * in the JVMTI version of the interpreter
3149 */
3150 
3151 #ifndef VM_JVMTI
3152 
3153 // This constructor should only be used to contruct the object to signal
3154 // interpreter initialization. All other instances should be created by
3155 // the frame manager.
3156 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3157   if (msg != initialize) ShouldNotReachHere();
3158   _msg = msg;
3159   _self_link = this;
3160   _prev_link = NULL;
3161 }
3162 
3163 // Inline static functions for Java Stack and Local manipulation
3164 
3165 // The implementations are platform dependent. We have to worry about alignment
3166 // issues on some machines which can change on the same platform depending on
3167 // whether it is an LP64 machine also.
3168 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3169   return (address) tos[Interpreter::expr_index_at(-offset)];
3170 }
3171 
3172 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3173   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3174 }
3175 
3176 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3177   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3178 }
3179 
3180 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3181   return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3182 }
3183 
3184 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3185   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3186 }
3187 
3188 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3189   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3190 }
3191 
3192 // only used for value types
3193 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3194                                                         int offset) {
3195   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3196 }
3197 
3198 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3199                                                        int offset) {
3200   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3201 }
3202 
3203 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3204                                                          int offset) {
3205   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3206 }
3207 
3208 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3209                                                           int offset) {
3210   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3211 }
3212 
3213 // needs to be platform dep for the 32 bit platforms.
3214 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3215                                                           int offset) {
3216   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3217 }
3218 
3219 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3220                                               address addr, int offset) {
3221   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3222                         ((VMJavaVal64*)addr)->d);
3223 }
3224 
3225 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3226                                                         int offset) {
3227   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3228   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3229 }
3230 
3231 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3232                                             address addr, int offset) {
3233   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3234   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3235                         ((VMJavaVal64*)addr)->l;
3236 }
3237 
3238 // Locals
3239 
3240 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3241   return (address)locals[Interpreter::local_index_at(-offset)];
3242 }
3243 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3244   return (jint)locals[Interpreter::local_index_at(-offset)];
3245 }
3246 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3247   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3248 }
3249 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3250   return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3251 }
3252 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3253   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3254 }
3255 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3256   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3257 }
3258 
3259 // Returns the address of locals value.
3260 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3261   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3262 }
3263 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3264   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3265 }
3266 
3267 // Used for local value or returnAddress
3268 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3269                                    address value, int offset) {
3270   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3271 }
3272 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3273                                    jint value, int offset) {
3274   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3275 }
3276 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3277                                    jfloat value, int offset) {
3278   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3279 }
3280 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3281                                    oop value, int offset) {
3282   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3283 }
3284 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3285                                    jdouble value, int offset) {
3286   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3287 }
3288 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3289                                    jlong value, int offset) {
3290   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3291 }
3292 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3293                                    address addr, int offset) {
3294   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3295 }
3296 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3297                                    address addr, int offset) {
3298   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3299 }
3300 
3301 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3302                           intptr_t* locals, int locals_offset) {
3303   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3304   locals[Interpreter::local_index_at(-locals_offset)] = value;
3305 }
3306 
3307 
3308 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3309                                    int to_offset) {
3310   tos[Interpreter::expr_index_at(-to_offset)] =
3311                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3312 }
3313 
3314 void BytecodeInterpreter::dup(intptr_t *tos) {
3315   copy_stack_slot(tos, -1, 0);
3316 }
3317 void BytecodeInterpreter::dup2(intptr_t *tos) {
3318   copy_stack_slot(tos, -2, 0);
3319   copy_stack_slot(tos, -1, 1);
3320 }
3321 
3322 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3323   /* insert top word two down */
3324   copy_stack_slot(tos, -1, 0);
3325   copy_stack_slot(tos, -2, -1);
3326   copy_stack_slot(tos, 0, -2);
3327 }
3328 
3329 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3330   /* insert top word three down  */
3331   copy_stack_slot(tos, -1, 0);
3332   copy_stack_slot(tos, -2, -1);
3333   copy_stack_slot(tos, -3, -2);
3334   copy_stack_slot(tos, 0, -3);
3335 }
3336 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3337   /* insert top 2 slots three down */
3338   copy_stack_slot(tos, -1, 1);
3339   copy_stack_slot(tos, -2, 0);
3340   copy_stack_slot(tos, -3, -1);
3341   copy_stack_slot(tos, 1, -2);
3342   copy_stack_slot(tos, 0, -3);
3343 }
3344 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3345   /* insert top 2 slots four down */
3346   copy_stack_slot(tos, -1, 1);
3347   copy_stack_slot(tos, -2, 0);
3348   copy_stack_slot(tos, -3, -1);
3349   copy_stack_slot(tos, -4, -2);
3350   copy_stack_slot(tos, 1, -3);
3351   copy_stack_slot(tos, 0, -4);
3352 }
3353 
3354 
3355 void BytecodeInterpreter::swap(intptr_t *tos) {
3356   // swap top two elements
3357   intptr_t val = tos[Interpreter::expr_index_at(1)];
3358   // Copy -2 entry to -1
3359   copy_stack_slot(tos, -2, -1);
3360   // Store saved -1 entry into -2
3361   tos[Interpreter::expr_index_at(2)] = val;
3362 }
3363 // --------------------------------------------------------------------------------
3364 // Non-product code
3365 #ifndef PRODUCT
3366 
3367 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3368   switch (msg) {
3369      case BytecodeInterpreter::no_request:  return("no_request");
3370      case BytecodeInterpreter::initialize:  return("initialize");
3371      // status message to C++ interpreter
3372      case BytecodeInterpreter::method_entry:  return("method_entry");
3373      case BytecodeInterpreter::method_resume:  return("method_resume");
3374      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3375      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3376      // requests to frame manager from C++ interpreter
3377      case BytecodeInterpreter::call_method:  return("call_method");
3378      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3379      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3380      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3381      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3382      case BytecodeInterpreter::do_osr:  return("do_osr");
3383      // deopt
3384      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3385      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3386      default: return("BAD MSG");
3387   }
3388 }
3389 void
3390 BytecodeInterpreter::print() {
3391   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3392   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3393   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3394   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3395   {
3396     ResourceMark rm;
3397     char *method_name = _method->name_and_sig_as_C_string();
3398     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3399   }
3400   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3401   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3402   tty->print_cr("msg: %s", C_msg(this->_msg));
3403   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3404   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3405   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3406   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3407   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3408   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3409   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3410   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3411   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3412   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3413 #ifdef SPARC
3414   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3415   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3416   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3417   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3418 #endif
3419 #if !defined(ZERO) && defined(PPC)
3420   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3421 #endif // !ZERO
3422   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3423 }
3424 
3425 extern "C" {
3426   void PI(uintptr_t arg) {
3427     ((BytecodeInterpreter*)arg)->print();
3428   }
3429 }
3430 #endif // PRODUCT
3431 
3432 #endif // JVMTI
3433 #endif // CC_INTERP