1 /*
   2  * Copyright (c) 2010, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package javafx.scene;
  27 
  28 import com.sun.javafx.scene.traversal.ParentTraversalEngine;
  29 import javafx.beans.property.ObjectProperty;
  30 import javafx.beans.property.ReadOnlyBooleanProperty;
  31 import javafx.beans.property.ReadOnlyBooleanWrapper;
  32 import javafx.beans.property.SimpleObjectProperty;
  33 import javafx.beans.value.WritableValue;
  34 import javafx.collections.FXCollections;
  35 import javafx.collections.ListChangeListener.Change;
  36 import javafx.collections.ObservableList;
  37 import java.util.ArrayList;
  38 import java.util.HashSet;
  39 import java.util.List;
  40 import java.util.Set;
  41 
  42 import com.sun.javafx.util.TempState;
  43 import com.sun.javafx.util.Utils;
  44 import com.sun.javafx.collections.TrackableObservableList;
  45 import com.sun.javafx.collections.VetoableListDecorator;
  46 import com.sun.javafx.collections.annotations.ReturnsUnmodifiableCollection;
  47 import javafx.css.Selector;
  48 import com.sun.javafx.css.StyleManager;
  49 import com.sun.javafx.geom.BaseBounds;
  50 import com.sun.javafx.geom.PickRay;
  51 import com.sun.javafx.geom.Point2D;
  52 import com.sun.javafx.geom.RectBounds;
  53 import com.sun.javafx.geom.transform.BaseTransform;
  54 import com.sun.javafx.geom.transform.NoninvertibleTransformException;
  55 import com.sun.javafx.jmx.MXNodeAlgorithm;
  56 import com.sun.javafx.jmx.MXNodeAlgorithmContext;
  57 import com.sun.javafx.scene.CssFlags;
  58 import com.sun.javafx.scene.DirtyBits;
  59 import com.sun.javafx.scene.input.PickResultChooser;
  60 import com.sun.javafx.sg.prism.NGGroup;
  61 import com.sun.javafx.sg.prism.NGNode;
  62 import com.sun.javafx.tk.Toolkit;
  63 import com.sun.javafx.scene.LayoutFlags;
  64 import javafx.stage.Window;
  65 
  66 /**
  67  * The base class for all nodes that have children in the scene graph.
  68  * <p>
  69  * This class handles all hierarchical scene graph operations, including adding/removing
  70  * child nodes, marking branches dirty for layout and rendering, picking,
  71  * bounds calculations, and executing the layout pass on each pulse.
  72  * <p>
  73  * There are two direct concrete Parent subclasses
  74  * <ul>
  75  * <li>{@link Group} effects and transforms to be applied to a collection of child nodes.</li>
  76  * <li>{@link javafx.scene.layout.Region} class for nodes that can be styled with CSS and layout children. </li>
  77  * </ul>
  78  *
  79  * @since JavaFX 2.0
  80  */
  81 public abstract class Parent extends Node {
  82     // package private for testing
  83     static final int DIRTY_CHILDREN_THRESHOLD = 10;
  84 
  85     // If set to true, generate a warning message whenever adding a node to a
  86     // parent if it is currently a child of another parent.
  87     private static final boolean warnOnAutoMove = PropertyHelper.getBooleanProperty("javafx.sg.warn");
  88 
  89     /**
  90      * Threshold when it's worth to populate list of removed children.
  91      */
  92     private static final int REMOVED_CHILDREN_THRESHOLD = 20;
  93 
  94     /**
  95      * Do not populate list of removed children when its number exceeds threshold,
  96      * but mark whole parent dirty.
  97      */
  98     private boolean removedChildrenOptimizationDisabled = false;
  99 
 100     /**
 101      * @treatAsPrivate implementation detail
 102      * @deprecated This is an internal API that is not intended for use and will be removed in the next version
 103      */
 104     @Deprecated
 105     @Override public void impl_updatePeer() {
 106         super.impl_updatePeer();
 107         final NGGroup peer = impl_getPeer();
 108 
 109         if (Utils.assertionEnabled()) {
 110             List<NGNode> pgnodes = peer.getChildren();
 111             if (pgnodes.size() != pgChildrenSize) {
 112                 java.lang.System.err.println("*** pgnodes.size() [" + pgnodes.size() + "] != pgChildrenSize [" + pgChildrenSize + "]");
 113             }
 114         }
 115 
 116         if (impl_isDirty(DirtyBits.PARENT_CHILDREN)) {
 117             // Whether a permutation, or children having been added or
 118             // removed, we'll want to clear out the PG side starting
 119             // from startIdx. We know that everything up to but not
 120             // including startIdx is identical between the FX and PG
 121             // sides, so we only need to update the remaining portion.
 122             peer.clearFrom(startIdx);
 123             for (int idx = startIdx; idx < children.size(); idx++) {
 124                 peer.add(idx, children.get(idx).impl_getPeer());
 125             }
 126             if (removedChildrenOptimizationDisabled) {
 127                 peer.markDirty();
 128                 removedChildrenOptimizationDisabled = false;
 129             } else {
 130                 if (removed != null && !removed.isEmpty()) {
 131                     for(int i = 0; i < removed.size(); i++) {
 132                         peer.addToRemoved(removed.get(i).impl_getPeer());
 133                     }
 134                 }
 135             }
 136             if (removed != null) {
 137                 removed.clear();
 138             }
 139             pgChildrenSize = children.size();
 140             startIdx = pgChildrenSize;
 141         }
 142 
 143         if (Utils.assertionEnabled()) validatePG();
 144     }
 145 
 146 
 147     /***********************************************************************
 148      *                        Scenegraph Structure                         *
 149      *                                                                     *
 150      *  Functions and variables related to the scenegraph structure,       *
 151      *  modifying the structure, and walking the structure.                *
 152      *                                                                     *
 153      **********************************************************************/
 154 
 155     // Used to check for duplicate nodes
 156     private final Set<Node> childSet = new HashSet<Node>();
 157 
 158     // starting child index from which we need to send the children to the PGGroup
 159     private int startIdx = 0;
 160 
 161     // double of children in the PGGroup as of the last update
 162     private int pgChildrenSize = 0;
 163 
 164     void validatePG() {
 165         boolean assertionFailed = false;
 166         final NGGroup peer = impl_getPeer();
 167         List<NGNode> pgnodes = peer.getChildren();
 168         if (pgnodes.size() != children.size()) {
 169             java.lang.System.err.println("*** pgnodes.size validatePG() [" + pgnodes.size() + "] != children.size() [" + children.size() + "]");
 170             assertionFailed = true;
 171         } else {
 172             for (int idx = 0; idx < children.size(); idx++) {
 173                 Node n = children.get(idx);
 174                 if (n.getParent() != this) {
 175                     java.lang.System.err.println("*** this=" + this + " validatePG children[" + idx + "].parent= " + n.getParent());
 176                     assertionFailed = true;
 177                 }
 178                 if (n.impl_getPeer() != pgnodes.get(idx)) {
 179                     java.lang.System.err.println("*** pgnodes[" + idx + "] validatePG != children[" + idx + "]");
 180                     assertionFailed = true;
 181                 }
 182             }
 183         }
 184         if (assertionFailed) {
 185             throw new java.lang.AssertionError("validation of PGGroup children failed");
 186         }
 187 
 188     }
 189 
 190     void printSeq(String prefix, List<Node> nodes) {
 191         String str = prefix;
 192         for (Node nn : nodes) {
 193             str += nn + " ";
 194         }
 195         System.out.println(str);
 196     }
 197 
 198     // Variable used to indicate that the change to the children ObservableList is
 199     // a simple permutation as the result of a toFront or toBack operation.
 200     // We can avoid almost all of the processing of the on replace trigger in
 201     // this case.
 202     private boolean childrenTriggerPermutation = false;
 203 
 204     //accumulates all removed nodes between pulses, for dirty area calculation.
 205     private List<Node> removed;
 206 
 207     /**
 208      * A ObservableList of child {@code Node}s.
 209      * <p>
 210      * See the class documentation for {@link Node} for scene graph structure
 211      * restrictions on setting a {@link Parent}'s children ObservableList.
 212      * If these restrictions are violated by a change to the children ObservableList,
 213      * the change is ignored and the previous value of the child ObservableList is
 214      * restored.
 215      *
 216      * {@code <p>Throws AssignToBoundException} if the same node
 217      * appears in two different bound ObservableList.
 218      *
 219      * @defaultValue empty
 220      */
 221 
 222     // set to true if either childRemoved or childAdded returns
 223     // true. These functions will indicate whether the geom
 224     // bounds for the parent have changed
 225     private boolean geomChanged;
 226     private boolean childSetModified;
 227     private final ObservableList<Node> children = new VetoableListDecorator<Node>(new TrackableObservableList<Node>() {
 228 
 229 
 230         protected void onChanged(Change<Node> c) {
 231             // proceed with updating the scene graph
 232             unmodifiableManagedChildren = null;
 233             boolean relayout = false;
 234             if (childSetModified) {
 235                 while (c.next()) {
 236                     int from = c.getFrom();
 237                     int to = c.getTo();
 238                     for (int i = from; i < to; ++i) {
 239                         Node n = children.get(i);
 240                         if (n.getParent() != null && n.getParent() != Parent.this) {
 241                             if (warnOnAutoMove) {
 242                                 java.lang.System.err.println("WARNING added to a new parent without first removing it from its current");
 243                                 java.lang.System.err.println("    parent. It will be automatically removed from its current parent.");
 244                                 java.lang.System.err.println("    node=" + n + " oldparent= " + n.getParent() + " newparent=" + this);
 245                             }
 246                             n.getParent().children.remove(n);
 247                             if (warnOnAutoMove) {
 248                                 Thread.dumpStack();
 249                             }
 250                         }
 251                     }
 252 
 253                     List<Node> removed = c.getRemoved();
 254                     int removedSize = removed.size();
 255                     for (int i = 0; i < removedSize; ++i) {
 256                         final Node n = removed.get(i);
 257                         if (n.isManaged()) {
 258                             relayout = true;
 259                         }
 260                     }
 261 
 262                     // update the parent and scene for each new node
 263                     for (int i = from; i < to; ++i) {
 264                         Node node = children.get(i);
 265                         if (node.isManaged() || (node instanceof Parent && ((Parent) node).layoutFlag != LayoutFlags.CLEAN)) {
 266                             relayout = true;
 267                         }
 268                         node.setParent(Parent.this);
 269                         node.setScenes(getScene(), getSubScene());
 270                         // assert !node.boundsChanged;
 271                         if (node.isVisible()) {
 272                             geomChanged = true;
 273                             childIncluded(node);
 274                         }
 275                     }
 276                 }
 277 
 278                 // check to see if the number of children exceeds
 279                 // DIRTY_CHILDREN_THRESHOLD and dirtyChildren is null.
 280                 // If so, then we need to create dirtyChildren and
 281                 // populate it.
 282                 if (dirtyChildren == null && children.size() > DIRTY_CHILDREN_THRESHOLD) {
 283                     dirtyChildren
 284                             = new ArrayList<Node>(2 * DIRTY_CHILDREN_THRESHOLD);
 285                     // only bother populating children if geom has
 286                     // changed, otherwise there is no need
 287                     if (dirtyChildrenCount > 0) {
 288                         int size = children.size();
 289                         for (int i = 0; i < size; ++i) {
 290                             Node ch = children.get(i);
 291                             if (ch.isVisible() && ch.boundsChanged) {
 292                                 dirtyChildren.add(ch);
 293                             }
 294                         }
 295                     }
 296                 }
 297             } else {
 298                 // If childSet was not modified, we still need to check whether the permutation
 299                 // did change the layout
 300                 layout_loop:while (c.next()) {
 301                     List<Node> removed = c.getRemoved();
 302                     for (int i = 0, removedSize = removed.size(); i < removedSize; ++i) {
 303                         if (removed.get(i).isManaged()) {
 304                             relayout = true;
 305                             break layout_loop;
 306                         }
 307                     }
 308 
 309                     for (int i = c.getFrom(), to = c.getTo(); i < to; ++i) {
 310                         if (children.get(i).isManaged()) {
 311                             relayout = true;
 312                             break layout_loop;
 313                         }
 314                     }
 315                 }
 316             }
 317 
 318 
 319             //
 320             // Note that the styles of a child do not affect the parent or
 321             // its siblings. Thus, it is only necessary to reapply css to
 322             // the Node just added and not to this parent and all of its
 323             // children. So the following call to impl_reapplyCSS was moved
 324             // to Node.parentProperty. The original comment and code were
 325             // purposely left here as documentation should there be any
 326             // question about how the code used to work and why the change
 327             // was made.
 328             //
 329             // if children have changed then I need to reapply
 330             // CSS from this node on down
 331 //                impl_reapplyCSS();
 332             //
 333 
 334             // request layout if a Group subclass has overridden doLayout OR
 335             // if one of the new children needs layout, in which case need to ensure
 336             // the needsLayout flag is set all the way to the root so the next layout
 337             // pass will reach the child.
 338             if (relayout) {
 339                 requestLayout();
 340             }
 341 
 342             if (geomChanged) {
 343                 impl_geomChanged();
 344             }
 345 
 346             // Note the starting index at which we need to update the
 347             // PGGroup on the next update, and mark the children dirty
 348             c.reset();
 349             c.next();
 350             if (startIdx > c.getFrom()) {
 351                 startIdx = c.getFrom();
 352             }
 353 
 354             impl_markDirty(DirtyBits.PARENT_CHILDREN);
 355             // Force synchronization to include the handling of invisible node
 356             // so that removed list will get cleanup to prevent memory leak.
 357             impl_markDirty(DirtyBits.NODE_FORCE_SYNC);
 358         }
 359 
 360     }) {
 361         @Override
 362         protected void onProposedChange(final List<Node> newNodes, int[] toBeRemoved) {
 363             final Scene scene = getScene();
 364             if (scene != null) {
 365                 Window w = scene.getWindow();
 366                 if (w != null && w.impl_getPeer() != null) {
 367                     Toolkit.getToolkit().checkFxUserThread();
 368                 }
 369             }
 370             geomChanged = false;
 371 
 372             long newLength = children.size() + newNodes.size();
 373             int removedLength = 0;
 374             for (int i = 0; i < toBeRemoved.length; i += 2) {
 375                 removedLength += toBeRemoved[i + 1] - toBeRemoved[i];
 376             }
 377             newLength -= removedLength;
 378 
 379             // If the childrenTriggerPermutation flag is set, then we know it
 380             // is a simple permutation and no further checking is needed.
 381             if (childrenTriggerPermutation) {
 382                 childSetModified = false;
 383                 return;
 384             }
 385 
 386             // If the childrenTriggerPermutation flag is not set, then we will
 387             // check to see whether any element in the ObservableList has changed,
 388             // or whether the new ObservableList is a permutation on the existing
 389             // ObservableList. Note that even if the childrenModified flag is false,
 390             // we still have to check for duplicates. If it is a simple
 391             // permutation, we can avoid checking for cycles or other parents.
 392             childSetModified = true;
 393             if (newLength == childSet.size()) {
 394                 childSetModified = false;
 395                 for (int i = newNodes.size() - 1; i >= 0; --i ) {
 396                     Node n = newNodes.get(i);
 397                     if (!childSet.contains(n)) {
 398                         childSetModified = true;
 399                         break;
 400                     }
 401                 }
 402             }
 403 
 404             // Enforce scene graph invariants, and check for structural errors.
 405             //
 406             // 1. If a child has been added to this parent more than once,
 407             // then it is an error
 408             //
 409             // 2. If a child is a target of a clip, then it is an error.
 410             //
 411             // 3. If a node would cause a cycle, then it is an error.
 412             //
 413             // 4. If a node is null
 414             //
 415             // Note that if a node is the child of another parent, we will
 416             // implicitly remove the node from its former Parent after first
 417             // checking for errors.
 418 
 419             // iterate over the nodes that were removed and remove them from
 420             // the hash set.
 421             for (int i = 0; i < toBeRemoved.length; i += 2) {
 422                 for (int j = toBeRemoved[i]; j < toBeRemoved[i + 1]; j++) {
 423                     childSet.remove(children.get(j));
 424                 }
 425             }
 426 
 427             try {
 428                 if (childSetModified) {
 429                     // check individual children before duplication test
 430                     // if done in this order, the exception is more specific
 431                     for (int i = newNodes.size() - 1; i >= 0; --i ) {
 432                         Node node = newNodes.get(i);
 433                         if (node == null) {
 434                             throw new NullPointerException(
 435                                     constructExceptionMessage(
 436                                         "child node is null", null));
 437                         }
 438                         if (node.getClipParent() != null) {
 439                             throw new IllegalArgumentException(
 440                                     constructExceptionMessage(
 441                                         "node already used as a clip", node));
 442                         }
 443                         if (wouldCreateCycle(Parent.this, node)) {
 444                             throw new IllegalArgumentException(
 445                                     constructExceptionMessage(
 446                                         "cycle detected", node));
 447                         }
 448                     }
 449                 }
 450 
 451                 childSet.addAll(newNodes);
 452                 if (childSet.size() != newLength) {
 453                     throw new IllegalArgumentException(
 454                             constructExceptionMessage(
 455                                 "duplicate children added", null));
 456                 }
 457             } catch (RuntimeException e) {
 458                 //Return children to it's original state
 459                 childSet.clear();
 460                 childSet.addAll(children);
 461 
 462                 // rethrow
 463                 throw e;
 464             }
 465 
 466             // Done with error checking
 467 
 468             if (!childSetModified) {
 469                 return;
 470             }
 471 
 472             // iterate over the nodes that were removed and clear their
 473             // parent and scene. Add to them also to removed list for further
 474             // dirty regions calculation.
 475             if (removed == null) {
 476                 removed = new ArrayList<Node>();
 477             }
 478             if (removed.size() + removedLength > REMOVED_CHILDREN_THRESHOLD || !impl_isTreeVisible()) {
 479                 //do not populate too many children in removed list
 480                 removedChildrenOptimizationDisabled = true;
 481             }
 482             for (int i = 0; i < toBeRemoved.length; i += 2) {
 483                 for (int j = toBeRemoved[i]; j < toBeRemoved[i + 1]; j++) {
 484                     Node old = children.get(j);
 485                     final Scene oldScene = old.getScene();
 486                     if (oldScene != null) {
 487                         oldScene.generateMouseExited(old);
 488                     }
 489                     if (dirtyChildren != null) {
 490                         dirtyChildren.remove(old);
 491                     }
 492                     if (old.isVisible()) {
 493                         geomChanged = true;
 494                         childExcluded(old);
 495                     }
 496                     if (old.getParent() == Parent.this) {
 497                         old.setParent(null);
 498                         old.setScenes(null, null);
 499                     }
 500                     // Do not add parent with null scene to the removed list.
 501                     // It will not be processed in the list and its memory
 502                     // will not be freed.
 503                     if (scene != null && !removedChildrenOptimizationDisabled) {
 504                         removed.add(old);
 505                     }
 506                 }
 507             }
 508         }
 509 
 510         private String constructExceptionMessage(
 511                 String cause, Node offendingNode) {
 512             final StringBuilder sb = new StringBuilder("Children: ");
 513             sb.append(cause);
 514             sb.append(": parent = ").append(Parent.this);
 515             if (offendingNode != null) {
 516                 sb.append(", node = ").append(offendingNode);
 517             }
 518 
 519             return sb.toString();
 520         }
 521     };
 522 
 523     /**
 524      * A constant reference to an unmodifiable view of the children, such that every time
 525      * we ask for an unmodifiable list of children, we don't actually create a new
 526      * collection and return it. The memory overhead is pretty lightweight compared
 527      * to all the garbage we would otherwise generate.
 528      */
 529     private final ObservableList<Node> unmodifiableChildren =
 530             FXCollections.unmodifiableObservableList(children);
 531 
 532     /**
 533      * A cached reference to the unmodifiable managed children of this Parent. This is
 534      * created whenever first asked for, and thrown away whenever children are added
 535      * or removed or when their managed state changes. This could be written
 536      * differently, such that this list is essentially a filtered copy of the
 537      * main children, but that additional overhead might not be worth it.
 538      */
 539     private List<Node> unmodifiableManagedChildren = null;
 540 
 541     /**
 542      * Gets the list of children of this {@code Parent}.
 543      *
 544      * <p>
 545      * See the class documentation for {@link Node} for scene graph structure
 546      * restrictions on setting a {@link Parent}'s children list.
 547      * If these restrictions are violated by a change to the list of children,
 548      * the change is ignored and the previous value of the children list is
 549      * restored. An {@link IllegalArgumentException} is thrown in this case.
 550      *
 551      * <p>
 552      * If this {@link Parent} node is attached to a {@link Scene} attached to a {@link Window}
 553      * that is showning ({@link javafx.stage.Window#isShowing()}), then its
 554      * list of children must only be modified on the JavaFX Application Thread.
 555      * An {@link IllegalStateException} is thrown if this restriction is
 556      * violated.
 557      *
 558      * <p>
 559      * Note to subclasses: if you override this method, you must return from
 560      * your implementation the result of calling this super method. The actual
 561      * list instance returned from any getChildren() implementation must be
 562      * the list owned and managed by this Parent. The only typical purpose
 563      * for overriding this method is to promote the method to be public.
 564      *
 565      * @return the list of children of this {@code Parent}.
 566      */
 567     protected ObservableList<Node> getChildren() {
 568         return children;
 569     }
 570 
 571     /**
 572      * Gets the list of children of this {@code Parent} as a read-only
 573      * list.
 574      *
 575      * @return read-only access to this parent's children ObservableList
 576      */
 577     @ReturnsUnmodifiableCollection
 578     public ObservableList<Node> getChildrenUnmodifiable() {
 579         return unmodifiableChildren;
 580     }
 581 
 582     /**
 583      * Gets the list of all managed children of this {@code Parent}.
 584      *
 585      * @param <E> the type of the children nodes
 586      * @return list of all managed children in this parent
 587      */
 588     @ReturnsUnmodifiableCollection
 589     protected <E extends Node> List<E> getManagedChildren() {
 590         if (unmodifiableManagedChildren == null) {
 591             unmodifiableManagedChildren = new ArrayList<Node>();
 592             for (int i=0, max=children.size(); i<max; i++) {
 593                 Node e = children.get(i);
 594                 if (e.isManaged()) {
 595                     unmodifiableManagedChildren.add(e);
 596                 }
 597             }
 598         }
 599         return (List<E>)unmodifiableManagedChildren;
 600     }
 601 
 602     /**
 603      * Called by Node whenever its managed state may have changed, this
 604      * method will cause the view of managed children to be updated
 605      * such that it properly includes or excludes this child.
 606      */
 607     final void managedChildChanged() {
 608         requestLayout();
 609         unmodifiableManagedChildren = null;
 610     }
 611 
 612     // implementation of Node.toFront function
 613     final void impl_toFront(Node node) {
 614         if (Utils.assertionEnabled()) {
 615             if (!childSet.contains(node)) {
 616                 throw new java.lang.AssertionError(
 617                         "specified node is not in the list of children");
 618             }
 619         }
 620 
 621         if (children.get(children.size() - 1) != node) {
 622             childrenTriggerPermutation = true;
 623             try {
 624                 children.remove(node);
 625                 children.add(node);
 626             } finally {
 627                 childrenTriggerPermutation = false;
 628             }
 629         }
 630     }
 631 
 632     // implementation of Node.toBack function
 633     final void impl_toBack(Node node) {
 634         if (Utils.assertionEnabled()) {
 635             if (!childSet.contains(node)) {
 636                 throw new java.lang.AssertionError(
 637                         "specified node is not in the list of children");
 638             }
 639         }
 640 
 641         if (children.get(0) != node) {
 642             childrenTriggerPermutation = true;
 643             try {
 644                 children.remove(node);
 645                 children.add(0, node);
 646             } finally {
 647                 childrenTriggerPermutation = false;
 648             }
 649         }
 650     }
 651 
 652     // This method is to do cleanup on parent when it is removed from a scene 
 653     private void nullSceneCleanup() {
 654         if (removed != null) {
 655             removed.clear();
 656         }
 657     }
 658 
 659     @Override
 660     void scenesChanged(final Scene newScene, final SubScene newSubScene,
 661                        final Scene oldScene, final SubScene oldSubScene) {
 662 
 663         if (oldScene != null && newScene == null) {
 664             // RT-34863 - clean up CSS cache when Parent is removed from scene-graph
 665             StyleManager.getInstance().forget(this);
 666             nullSceneCleanup();
 667         }
 668 
 669         for (int i=0; i<children.size(); i++) {
 670             children.get(i).setScenes(newScene, newSubScene);
 671         }
 672 
 673         final boolean awaitingLayout = layoutFlag != LayoutFlags.CLEAN;
 674 
 675         sceneRoot = (newSubScene != null && newSubScene.getRoot() == this) ||
 676                     (newScene != null && newScene.getRoot() == this);
 677         layoutRoot = !isManaged() || sceneRoot;
 678 
 679 
 680         if (awaitingLayout) {
 681             // If this node is dirty and the new scene or subScene is not null
 682             // then add this node to the new scene's dirty list
 683             if (newScene != null && layoutRoot) {
 684                 if (newSubScene != null) {
 685                     newSubScene.setDirtyLayout(this);
 686                 }
 687             }
 688         }
 689     }
 690 
 691     @Override
 692     void setDerivedDepthTest(boolean value) {
 693         super.setDerivedDepthTest(value);
 694 
 695         for (int i=0, max=children.size(); i<max; i++) {
 696             final Node node = children.get(i);
 697             node.computeDerivedDepthTest();
 698         }
 699     }
 700 
 701     /**
 702      * @treatAsPrivate implementation detail
 703      * @deprecated This is an internal API that is not intended for use and will be removed in the next version
 704      */
 705     @Deprecated
 706     @Override protected void impl_pickNodeLocal(PickRay pickRay, PickResultChooser result) {
 707 
 708         double boundsDistance = impl_intersectsBounds(pickRay);
 709 
 710         if (!Double.isNaN(boundsDistance)) {
 711             for (int i = children.size()-1; i >= 0; i--) {
 712                 children.get(i).impl_pickNode(pickRay, result);
 713                 if (result.isClosed()) {
 714                     return;
 715                 }
 716             }
 717 
 718             if (isPickOnBounds()) {
 719                 result.offer(this, boundsDistance, PickResultChooser.computePoint(pickRay, boundsDistance));
 720             }
 721         }
 722     }
 723 
 724     @Override boolean isConnected() {
 725         return super.isConnected() || sceneRoot;
 726     }
 727 
 728     @Override public Node lookup(String selector) {
 729         Node n = super.lookup(selector);
 730         if (n == null) {
 731             for (int i=0, max=children.size(); i<max; i++) {
 732                 final Node node = children.get(i);
 733                 n = node.lookup(selector);
 734                 if (n != null) return n;
 735             }
 736         }
 737         return n;
 738     }
 739 
 740     /**
 741      * Please Note: This method should never create the results set,
 742      * let the Node class implementation do this!
 743      */
 744     @Override List<Node> lookupAll(Selector selector, List<Node> results) {
 745         results = super.lookupAll(selector, results);
 746         for (int i=0, max=children.size(); i<max; i++) {
 747             final Node node = children.get(i);
 748             results = node.lookupAll(selector, results);
 749         }
 750         return results;
 751     }
 752 
 753     /** @treatAsPrivate implementation detail */
 754     private javafx.beans.property.ObjectProperty<ParentTraversalEngine> impl_traversalEngine;
 755 
 756     /**
 757      * @treatAsPrivate implementation detail
 758      * @deprecated This is an internal API that is not intended for use and will be removed in the next version
 759      */
 760     // SB-dependency: RT-21209 has been filed to track this
 761     @Deprecated
 762     public final void setImpl_traversalEngine(ParentTraversalEngine value) {
 763         impl_traversalEngineProperty().set(value);
 764     }
 765 
 766     /**
 767      * @treatAsPrivate implementation detail
 768      * @deprecated This is an internal API that is not intended for use and will be removed in the next version
 769      */
 770     @Deprecated
 771     public final ParentTraversalEngine getImpl_traversalEngine() {
 772         return impl_traversalEngine == null ? null : impl_traversalEngine.get();
 773     }
 774 
 775     /**
 776      * @treatAsPrivate implementation detail
 777      * @deprecated This is an internal API that is not intended for use and will be removed in the next version
 778      */
 779     @Deprecated
 780     public final ObjectProperty<ParentTraversalEngine> impl_traversalEngineProperty() {
 781         if (impl_traversalEngine == null) {
 782             impl_traversalEngine =
 783                     new SimpleObjectProperty<>(
 784                             this, "impl_traversalEngine");
 785         }
 786         return impl_traversalEngine;
 787     }
 788 
 789     /***********************************************************************
 790      *                               Layout                                *
 791      *                                                                     *
 792      *  Functions and variables related to the layout scheme used by       *
 793      *  JavaFX. Includes both public and private API.                      *
 794      *                                                                     *
 795      **********************************************************************/
 796     /**
 797      * Indicates that this Node and its subnodes requires a layout pass on
 798      * the next pulse.
 799      */
 800     private ReadOnlyBooleanWrapper needsLayout;
 801     LayoutFlags layoutFlag = LayoutFlags.CLEAN;
 802 
 803     protected final void setNeedsLayout(boolean value) {
 804         if (value) {
 805             markDirtyLayout(true);
 806         } else if (layoutFlag == LayoutFlags.NEEDS_LAYOUT) {
 807             boolean hasBranch = false;
 808             for (int i = 0, max = children.size(); i < max; i++) {
 809                 final Node child = children.get(i);
 810                 if (child instanceof Parent) {
 811                     if (((Parent)child).layoutFlag != LayoutFlags.CLEAN) {
 812                         hasBranch = true;
 813                         break;
 814                     }
 815 
 816                 }
 817             }
 818             setLayoutFlag(hasBranch ? LayoutFlags.DIRTY_BRANCH : LayoutFlags.CLEAN);
 819         }
 820     }
 821 
 822     public final boolean isNeedsLayout() {
 823         return layoutFlag == LayoutFlags.NEEDS_LAYOUT;
 824     }
 825 
 826     public final ReadOnlyBooleanProperty needsLayoutProperty() {
 827         if (needsLayout == null) {
 828             needsLayout = new ReadOnlyBooleanWrapper(this, "needsLayout", layoutFlag == LayoutFlags.NEEDS_LAYOUT);
 829         }
 830         return needsLayout;
 831     }
 832 
 833     /**
 834      * This package levelis used only by Node. It is set to true while
 835      * the layout() function is processing and set to false on the conclusion.
 836      * It is used by the Node to decide whether to perform CSS updates
 837      * synchronously or asynchronously.
 838      */
 839     boolean performingLayout = false;
 840 
 841     private boolean sizeCacheClear = true;
 842     private double prefWidthCache = -1;
 843     private double prefHeightCache = -1;
 844     private double minWidthCache = -1;
 845     private double minHeightCache = -1;
 846 
 847     void setLayoutFlag(LayoutFlags flag) {
 848         if (needsLayout != null) {
 849             needsLayout.set(flag == LayoutFlags.NEEDS_LAYOUT);
 850         }
 851         layoutFlag = flag;
 852     }
 853 
 854     private void markDirtyLayout(boolean local) {
 855         setLayoutFlag(LayoutFlags.NEEDS_LAYOUT);
 856         if (local || layoutRoot) {
 857             if (sceneRoot) {
 858                 Toolkit.getToolkit().requestNextPulse();
 859                 if (getSubScene() != null) {
 860                     getSubScene().setDirtyLayout(this);
 861                 }
 862             } else {
 863                 markDirtyLayoutBranch();
 864             }
 865         } else {
 866             requestParentLayout();
 867         }
 868     }
 869 
 870     /**
 871      * Requests a layout pass to be performed before the next scene is
 872      * rendered. This is batched up asynchronously to happen once per
 873      * "pulse", or frame of animation.
 874      * <p>
 875      * If this parent is either a layout root or unmanaged, then it will be
 876      * added directly to the scene's dirty layout list, otherwise requestParentLayout
 877      * will be invoked.
 878      * @since JavaFX 8.0
 879      */
 880     public void requestLayout() {
 881         clearSizeCache();
 882         markDirtyLayout(false);
 883     }
 884 
 885     /**
 886      * Requests a layout pass of the parent to be performed before the next scene is
 887      * rendered. This is batched up asynchronously to happen once per
 888      * "pulse", or frame of animation.
 889      * <p>
 890      * This may be used when the current parent have changed it's min/max/preferred width/height,
 891      * but doesn't know yet if the change will lead to it's actual size change. This will be determined
 892      * when it's parent recomputes the layout with the new hints.
 893      */
 894     protected final void requestParentLayout() {
 895         if (!layoutRoot) {
 896             final Parent parent = getParent();
 897             if (parent != null && !parent.performingLayout) {
 898                 parent.requestLayout();
 899             }
 900         }
 901 
 902     }
 903 
 904     void clearSizeCache() {
 905         if (sizeCacheClear) {
 906             return;
 907         }
 908         sizeCacheClear = true;
 909         prefWidthCache = -1;
 910         prefHeightCache = -1;
 911         minWidthCache = -1;
 912         minHeightCache = -1;
 913     }
 914 
 915     @Override public double prefWidth(double height) {
 916         if (height == -1) {
 917             if (prefWidthCache == -1) {
 918                 prefWidthCache = computePrefWidth(-1);
 919                 if (Double.isNaN(prefWidthCache) || prefWidthCache < 0) prefWidthCache = 0;
 920                 sizeCacheClear = false;
 921             }
 922             return prefWidthCache;
 923         } else {
 924             double result = computePrefWidth(height);
 925             return Double.isNaN(result) || result < 0 ? 0 : result;
 926         }
 927     }
 928 
 929     @Override public double prefHeight(double width) {
 930         if (width == -1) {
 931             if (prefHeightCache == -1) {
 932                 prefHeightCache = computePrefHeight(-1);
 933                 if (Double.isNaN(prefHeightCache) || prefHeightCache < 0) prefHeightCache = 0;
 934                 sizeCacheClear = false;
 935             }
 936             return prefHeightCache;
 937         } else {
 938             double result = computePrefHeight(width);
 939             return Double.isNaN(result) || result < 0 ? 0 : result;
 940         }
 941     }
 942 
 943     @Override public double minWidth(double height) {
 944         if (height == -1) {
 945             if (minWidthCache == -1) {
 946                 minWidthCache = computeMinWidth(-1);
 947                 if (Double.isNaN(minWidthCache) || minWidthCache < 0) minWidthCache = 0;
 948                 sizeCacheClear = false;
 949             }
 950             return minWidthCache;
 951         } else {
 952             double result = computeMinWidth(height);
 953             return Double.isNaN(result) || result < 0 ? 0 : result;
 954         }
 955     }
 956 
 957     @Override public double minHeight(double width) {
 958         if (width == -1) {
 959             if (minHeightCache == -1) {
 960                 minHeightCache = computeMinHeight(-1);
 961                 if (Double.isNaN(minHeightCache) || minHeightCache < 0) minHeightCache = 0;
 962                 sizeCacheClear = false;
 963             }
 964             return minHeightCache;
 965         } else {
 966             double result = computeMinHeight(width);
 967             return Double.isNaN(result) || result < 0 ? 0 : result;
 968         }
 969     }
 970 
 971     // PENDING_DOC_REVIEW
 972     /**
 973      * Calculates the preferred width of this {@code Parent}. The default
 974      * implementation calculates this width as the width of the area occupied
 975      * by its managed children when they are positioned at their
 976      * current positions at their preferred widths.
 977      *
 978      * @param height the height that should be used if preferred width depends
 979      *      on it
 980      * @return the calculated preferred width
 981      */
 982     protected double computePrefWidth(double height) {
 983         double minX = 0;
 984         double maxX = 0;
 985         for (int i=0, max=children.size(); i<max; i++) {
 986             Node node = children.get(i);
 987             if (node.isManaged()) {
 988                 final double x = node.getLayoutBounds().getMinX() + node.getLayoutX();
 989                 minX = Math.min(minX, x);
 990                 maxX = Math.max(maxX, x + boundedSize(node.prefWidth(-1), node.minWidth(-1), node.maxWidth(-1)));
 991             }
 992         }
 993         return maxX - minX;
 994     }
 995 
 996     // PENDING_DOC_REVIEW
 997     /**
 998      * Calculates the preferred height of this {@code Parent}. The default
 999      * implementation calculates this height as the height of the area occupied
1000      * by its managed children when they are positioned at their current
1001      * positions at their preferred heights.
1002      *
1003      * @param width the width that should be used if preferred height depends
1004      *      on it
1005      * @return the calculated preferred height
1006      */
1007     protected double computePrefHeight(double width) {
1008         double minY = 0;
1009         double maxY = 0;
1010         for (int i=0, max=children.size(); i<max; i++) {
1011             Node node = children.get(i);
1012             if (node.isManaged()) {
1013                 final double y = node.getLayoutBounds().getMinY() + node.getLayoutY();
1014                 minY = Math.min(minY, y);
1015                 maxY = Math.max(maxY, y + boundedSize(node.prefHeight(-1), node.minHeight(-1), node.maxHeight(-1)));
1016             }
1017         }
1018         return maxY - minY;
1019     }
1020 
1021     /**
1022      * Calculates the minimum width of this {@code Parent}. The default
1023      * implementation simply returns the pref width.
1024      *
1025      * @param height the height that should be used if min width depends
1026      *      on it
1027      * @return the calculated min width
1028      * @since JavaFX 2.1
1029      */
1030     protected double computeMinWidth(double height) {
1031         return prefWidth(height);
1032     }
1033 
1034     // PENDING_DOC_REVIEW
1035     /**
1036      * Calculates the min height of this {@code Parent}. The default
1037      * implementation simply returns the pref height;
1038      *
1039      * @param width the width that should be used if min height depends
1040      *      on it
1041      * @return the calculated min height
1042      * @since JavaFX 2.1
1043      */
1044     protected double computeMinHeight(double width) {
1045         return prefHeight(width);
1046     }
1047 
1048     /**
1049      * Calculates the baseline offset based on the first managed child. If there
1050      * is no such child, returns {@link Node#getBaselineOffset()}.
1051      *
1052      * @return baseline offset
1053      */
1054     @Override public double getBaselineOffset() {
1055         for (int i=0, max=children.size(); i<max; i++) {
1056             final Node child = children.get(i);
1057             if (child.isManaged()) {
1058                 double offset = child.getBaselineOffset();
1059                 if (offset == BASELINE_OFFSET_SAME_AS_HEIGHT) {
1060                     continue;
1061                 }
1062                 return child.getLayoutBounds().getMinY() + child.getLayoutY() + offset;
1063             }
1064         }
1065         return super.getBaselineOffset();
1066     }
1067 
1068     /**
1069      * Executes a top-down layout pass on the scene graph under this parent.
1070      * 
1071      * Calling this method while the Parent is doing layout is a no-op.
1072      */
1073     public final void layout() {
1074         switch(layoutFlag) {
1075             case CLEAN:
1076                 break;
1077             case NEEDS_LAYOUT:
1078                 if (performingLayout) {
1079                     /* This code is here mainly to avoid infinite loops as layout() is public and the call might be (indirectly) invoked accidentally
1080                      * while doing the layout.
1081                      * One example might be an invocation from Group layout bounds recalculation
1082                      *  (e.g. during the localToScene/localToParent calculation).
1083                      * The layout bounds will thus return layout bounds that are "old" (i.e. before the layout changes, that are just being done), 
1084                      * which is likely what the code would expect.
1085                      * The changes will invalidate the layout bounds again however, so the layout bounds query after layout pass will return correct answer.
1086                      */
1087                     break;
1088                 }
1089                 performingLayout = true;
1090                 layoutChildren();
1091                 // Intended fall-through
1092             case DIRTY_BRANCH:
1093                 for (int i = 0, max = children.size(); i < max; i++) {
1094                     final Node child = children.get(i);
1095                     if (child instanceof Parent) {
1096                         ((Parent)child).layout();
1097                     } else if (child instanceof SubScene) {
1098                         ((SubScene)child).layoutPass();
1099                     }
1100                 }
1101                 setLayoutFlag(LayoutFlags.CLEAN);
1102                 performingLayout = false;
1103                 break;
1104         }
1105     }
1106 
1107     /**
1108      * Invoked during the layout pass to layout the children in this
1109      * {@code Parent}. By default it will only set the size of managed,
1110      * resizable content to their preferred sizes and does not do any node
1111      * positioning.
1112      * <p>
1113      * Subclasses should override this function to layout content as needed.
1114      */
1115     protected void layoutChildren() {
1116         for (int i=0, max=children.size(); i<max; i++) {
1117             final Node node = children.get(i);
1118             if (node.isResizable() && node.isManaged()) {
1119                 node.autosize();
1120             }
1121         }
1122     }
1123 
1124     /**
1125      * This field is managed by the Scene, and set on any node which is the
1126      * root of a Scene.
1127      */
1128     private boolean sceneRoot = false;
1129 
1130     /**
1131      * Keeps track of whether this node is a layout root. This is updated
1132      * whenever the sceneRoot field changes, or whenever the managed
1133      * property changes.
1134      */
1135     boolean layoutRoot = false;
1136     @Override final void notifyManagedChanged() {
1137         layoutRoot = !isManaged() || sceneRoot;
1138     }
1139 
1140     final boolean isSceneRoot() {
1141         return sceneRoot;
1142     }
1143 
1144     /***********************************************************************
1145      *                                                                     *
1146      *                         Stylesheet Handling                         *
1147      *                                                                     *
1148      **********************************************************************/
1149 
1150 
1151     /**
1152      * A ObservableList of string URLs linking to the stylesheets to use with this scene's
1153      * contents. For additional information about using CSS with the
1154      * scene graph, see the <a href="doc-files/cssref.html">CSS Reference
1155      * Guide</a>.
1156      */
1157     private final ObservableList<String> stylesheets = new TrackableObservableList<String>() {
1158         @Override
1159         protected void onChanged(Change<String> c) {
1160             final Scene scene = getScene();
1161             if (scene != null) {
1162 
1163                 // Notify the StyleManager if stylesheets change. This Parent's
1164                 // styleManager will get recreated in impl_processCSS.
1165                 StyleManager.getInstance().stylesheetsChanged(Parent.this, c);
1166 
1167                 // RT-9784 - if stylesheet is removed, reset styled properties to
1168                 // their initial value.
1169                 c.reset();
1170                 while(c.next()) {
1171                     if (c.wasRemoved() == false) {
1172                         continue;
1173                     }
1174                     break; // no point in resetting more than once...
1175                 }
1176 
1177                 impl_reapplyCSS();
1178             }
1179         }
1180     };
1181 
1182     /**
1183      * Gets an observable list of string URLs linking to the stylesheets to use
1184      * with this Parent's contents. See {@link Scene#getStylesheets()} for details.
1185      * <p>For additional information about using CSS
1186      * with the scene graph, see the <a href="doc-files/cssref.html">CSS Reference
1187      * Guide</a>.</p>
1188      *
1189      * @return the list of stylesheets to use with this Parent
1190      * @since JavaFX 2.1
1191      */
1192     public final ObservableList<String> getStylesheets() { return stylesheets; }
1193 
1194     /**
1195      * This method recurses up the parent chain until parent is null. As the
1196      * stack unwinds, if the Parent has stylesheets, they are added to the
1197      * list.
1198      *
1199      * It is possible to override this method to stop the recursion. This allows
1200      * a Parent to have a set of stylesheets distinct from its Parent.
1201      *
1202      * @treatAsPrivate implementation detail
1203      * @deprecated This is an internal API that is not intended for use and will be removed in the next version
1204      */
1205     @Deprecated // SB-dependency: RT-21247 has been filed to track this
1206     public /* Do not make this final! */ List<String> impl_getAllParentStylesheets() {
1207 
1208         List<String> list = null;
1209         final Parent myParent = getParent();
1210         if (myParent != null) {
1211 
1212             //
1213             // recurse so that stylesheets of Parents closest to the root are
1214             // added to the list first. The ensures that declarations for
1215             // stylesheets further down the tree (closer to the leaf) have
1216             // a higer ordinal in the cascade.
1217             //
1218             list = myParent.impl_getAllParentStylesheets();
1219         }
1220 
1221         if (stylesheets != null && stylesheets.isEmpty() == false) {
1222             if (list == null) {
1223                 list = new ArrayList<String>(stylesheets.size());
1224             }
1225             for (int n=0,nMax=stylesheets.size(); n<nMax; n++) {
1226                 list.add(stylesheets.get(n));
1227             }
1228         }
1229 
1230         return list;
1231 
1232     }
1233 
1234     /**
1235      * @treatAsPrivate implementation detail
1236      * @deprecated This is an internal API that is not intended for use and will be removed in the next version
1237      */
1238     @Deprecated
1239     @Override protected void impl_processCSS(WritableValue<Boolean> unused) {
1240 
1241         // Nothing to do...
1242         if (cssFlag == CssFlags.CLEAN) return;
1243 
1244         // RT-29254 - If DIRTY_BRANCH, pass control to Node#processCSS. This avoids calling impl_processCSS on
1245         // this node and all of its children when css doesn't need updated, recalculated, or reapplied.
1246         if (cssFlag == CssFlags.DIRTY_BRANCH) {
1247             super.processCSS();
1248             return;
1249         }
1250 
1251         // Let the super implementation handle CSS for this node
1252         super.impl_processCSS(unused);
1253 
1254         // avoid the following call to children.toArray if there are no children
1255         if (children.isEmpty()) return;
1256 
1257         //
1258         // RT-33103
1259         //
1260         // It is possible for a child to be removed from children in the middle of
1261         // the following loop. Iterating over the children may result in an IndexOutOfBoundsException.
1262         // So a copy is made and the copy is iterated over.
1263         //
1264         // Note that we don't want the fail-fast feature of an iterator, not to mention the general iterator overhead.
1265         //
1266         final Node[] childArray = children.toArray(new Node[children.size()]);
1267 
1268         // For each child, process CSS
1269         for (int i=0; i<childArray.length; i++) {
1270 
1271             final Node child = childArray[i];
1272 
1273             //  If a child no longer has this as its parent, then it is skipped.
1274             final Parent childParent = child.getParent();
1275             if (childParent == null || childParent != this) continue;
1276 
1277             // If the parent styles are being updated, recalculated or
1278             // reapplied, then make sure the children get the same treatment.
1279             // Unless the child is already more dirty than this parent (RT-29074).
1280             if(CssFlags.UPDATE.compareTo(child.cssFlag) > 0) {
1281                 child.cssFlag = CssFlags.UPDATE;
1282             }
1283             child.impl_processCSS(unused);
1284         }
1285     }
1286 
1287     /***********************************************************************
1288      *                               Misc                                  *
1289      *                                                                     *
1290      *  Initialization and other functions                                 *
1291      *                                                                     *
1292      **********************************************************************/
1293 
1294 
1295     /**
1296      * Constructs a new {@code Parent}.
1297      */
1298     protected Parent() {
1299         layoutFlag = LayoutFlags.NEEDS_LAYOUT;
1300         setAccessibleRole(AccessibleRole.PARENT);
1301     }
1302 
1303     /**
1304      * @treatAsPrivate implementation detail
1305      * @deprecated This is an internal API that is not intended for use and will be removed in the next version
1306      */
1307     @Deprecated
1308     @Override protected NGNode impl_createPeer() {
1309         return new NGGroup();
1310     }
1311 
1312     @Override
1313     void nodeResolvedOrientationChanged() {
1314         for (int i = 0, max = children.size(); i < max; ++i) {
1315             children.get(i).parentResolvedOrientationInvalidated();
1316         }
1317     }
1318 
1319     /***************************************************************************
1320      *                                                                         *
1321      *                         Bounds Computations                             *
1322      *                                                                         *
1323      *  This code originated in GroupBoundsHelper (part of javafx-sg-common)   *
1324      *  but has been ported here to the FX side since we cannot rely on the PG *
1325      *  side for computing the bounds (due to the decoupling of the two        *
1326      *  scenegraphs for threading and other purposes).                         *
1327      *                                                                         *
1328      *  Unfortunately, we cannot simply reuse GroupBoundsHelper without some  *
1329      *  major (and hacky) modification due to the fact that GroupBoundsHelper  *
1330      *  relies on PG state and we need to do similar things here that rely on  *
1331      *  core scenegraph state. Unfortunately, that means we made a port.       *
1332      *                                                                         *
1333      **************************************************************************/
1334 
1335     private BaseBounds tmp = new RectBounds();
1336 
1337     /**
1338      * The cached bounds for the Group. If the cachedBounds are invalid
1339      * then we have no history of what the bounds are, or were.
1340      */
1341     private BaseBounds cachedBounds = new RectBounds();
1342 
1343     /**
1344      * Indicates that the cachedBounds is invalid (or old) and need to be recomputed.
1345      * If cachedBoundsInvalid is true and dirtyChildrenCount is non-zero,
1346      * then when we recompute the cachedBounds we can consider the
1347      * values in cachedBounds to represent the last valid bounds for the group.
1348      * This is useful for several fast paths.
1349      */
1350     private boolean cachedBoundsInvalid;
1351 
1352     /**
1353      * The number of dirty children which bounds haven't been incorporated
1354      * into the cached bounds yet. Can be used even when dirtyChildren is null.
1355      */
1356     private int dirtyChildrenCount;
1357 
1358     /**
1359      * This set is used to track all of the children of this group which are
1360      * dirty. It is only used in cases where the number of children is > some
1361      * value (currently 10). For very wide trees, this can provide a very
1362      * important speed boost. For the sake of memory consumption, this is
1363      * null unless the number of children ever crosses the threshold where
1364      * it will be activated.
1365      */
1366     private ArrayList<Node> dirtyChildren;
1367 
1368     private Node top;
1369     private Node left;
1370     private Node bottom;
1371     private Node right;
1372     private Node near;
1373     private Node far;
1374 
1375     /**
1376      * @treatAsPrivate implementation detail
1377      * @deprecated This is an internal API that is not intended for use and will be removed in the next version
1378      */
1379     @Deprecated
1380     @Override public BaseBounds impl_computeGeomBounds(BaseBounds bounds, BaseTransform tx) {
1381         // If we have no children, our bounds are invalid
1382         if (children.isEmpty()) {
1383             return bounds.makeEmpty();
1384         }
1385 
1386         if (tx.isTranslateOrIdentity()) {
1387             // this is a transform which is only doing translations, or nothing
1388             // at all (no scales, rotates, or shears)
1389             // so in this case we can easily use the cached bounds
1390             if (cachedBoundsInvalid) {
1391                 recomputeBounds();
1392 
1393                 if (dirtyChildren != null) {
1394                     dirtyChildren.clear();
1395                 }
1396                 cachedBoundsInvalid = false;
1397                 dirtyChildrenCount = 0;
1398             }
1399             if (!tx.isIdentity()) {
1400                 bounds = bounds.deriveWithNewBounds((float)(cachedBounds.getMinX() + tx.getMxt()),
1401                                  (float)(cachedBounds.getMinY() + tx.getMyt()),
1402                                  (float)(cachedBounds.getMinZ() + tx.getMzt()),
1403                                  (float)(cachedBounds.getMaxX() + tx.getMxt()),
1404                                  (float)(cachedBounds.getMaxY() + tx.getMyt()),
1405                                  (float)(cachedBounds.getMaxZ() + tx.getMzt()));
1406             } else {
1407                 bounds = bounds.deriveWithNewBounds(cachedBounds);
1408             }
1409 
1410             return bounds;
1411         } else {
1412             // there is a scale, shear, or rotation happening, so need to
1413             // do the full transform!
1414             double minX = Double.MAX_VALUE, minY = Double.MAX_VALUE, minZ = Double.MAX_VALUE;
1415             double maxX = Double.MIN_VALUE, maxY = Double.MIN_VALUE, maxZ = Double.MIN_VALUE;
1416             boolean first = true;
1417             for (int i=0, max=children.size(); i<max; i++) {
1418                 final Node node = children.get(i);
1419                 if (node.isVisible()) {
1420                     bounds = getChildTransformedBounds(node, tx, bounds);
1421                     // if the bounds of the child are invalid, we don't want
1422                     // to use those in the remaining computations.
1423                     if (bounds.isEmpty()) continue;
1424                     if (first) {
1425                         minX = bounds.getMinX();
1426                         minY = bounds.getMinY();
1427                         minZ = bounds.getMinZ();
1428                         maxX = bounds.getMaxX();
1429                         maxY = bounds.getMaxY();
1430                         maxZ = bounds.getMaxZ();
1431                         first = false;
1432                     } else {
1433                         minX = Math.min(bounds.getMinX(), minX);
1434                         minY = Math.min(bounds.getMinY(), minY);
1435                         minZ = Math.min(bounds.getMinZ(), minZ);
1436                         maxX = Math.max(bounds.getMaxX(), maxX);
1437                         maxY = Math.max(bounds.getMaxY(), maxY);
1438                         maxZ = Math.max(bounds.getMaxZ(), maxZ);
1439                     }
1440                 }
1441             }
1442             // if "first" is still true, then we didn't have any children with
1443             // non-empty bounds and thus we must return an empty bounds,
1444             // otherwise we have non-empty bounds so go for it.
1445             if (first)
1446                 bounds.makeEmpty();
1447             else
1448                 bounds = bounds.deriveWithNewBounds((float)minX, (float)minY, (float)minZ,
1449                         (float)maxX, (float)maxY, (float)maxZ);
1450 
1451             return bounds;
1452         }
1453     }
1454 
1455     private void setChildDirty(final Node node, final boolean dirty) {
1456         if (node.boundsChanged == dirty) {
1457             return;
1458         }
1459 
1460         node.boundsChanged = dirty;
1461         if (dirty) {
1462             if (dirtyChildren != null) {
1463                 dirtyChildren.add(node);
1464             }
1465             ++dirtyChildrenCount;
1466         } else {
1467             if (dirtyChildren != null) {
1468                 dirtyChildren.remove(node);
1469             }
1470             --dirtyChildrenCount;
1471         }
1472     }
1473 
1474     private void childIncluded(final Node node) {
1475         // assert node.isVisible();
1476         cachedBoundsInvalid = true;
1477         setChildDirty(node, true);
1478     }
1479 
1480     // This is called when either the child is actually removed, OR IF IT IS
1481     // TOGGLED TO BE INVISIBLE. This is because in both cases it needs to be
1482     // cleared from the state which manages bounds.
1483     private void childExcluded(final Node node) {
1484         if (node == left) {
1485             left = null;
1486             cachedBoundsInvalid = true;
1487         }
1488         if (node == top) {
1489             top = null;
1490             cachedBoundsInvalid = true;
1491         }
1492         if (node == near) {
1493             near = null;
1494             cachedBoundsInvalid = true;
1495         }
1496         if (node == right) {
1497             right = null;
1498             cachedBoundsInvalid = true;
1499         }
1500         if (node == bottom) {
1501             bottom = null;
1502             cachedBoundsInvalid = true;
1503         }
1504         if (node == far) {
1505             far = null;
1506             cachedBoundsInvalid = true;
1507         }
1508 
1509         setChildDirty(node, false);
1510     }
1511 
1512     /**
1513      * Recomputes the bounds from scratch and saves the cached bounds.
1514      */
1515     private void recomputeBounds() {
1516         // fast path for case of no children
1517         if (children.isEmpty()) {
1518             cachedBounds.makeEmpty();
1519             return;
1520         }
1521 
1522         // fast path for case of 1 child
1523         if (children.size() == 1) {
1524             Node node = children.get(0);
1525             node.boundsChanged = false;
1526             if (node.isVisible()) {
1527                 cachedBounds = getChildTransformedBounds(node, BaseTransform.IDENTITY_TRANSFORM, cachedBounds);
1528                 top = left = bottom = right = near = far = node;
1529             } else {
1530                 cachedBounds.makeEmpty();
1531                 // no need to null edge nodes here, it was done in childExcluded
1532                 // top = left = bottom = right = near = far = null;
1533             }
1534             return;
1535         }
1536 
1537         if ((dirtyChildrenCount == 0) ||
1538                 !updateCachedBounds(dirtyChildren != null
1539                                         ? dirtyChildren : children,
1540                                     dirtyChildrenCount)) {
1541             // failed to update cached bounds, recreate them
1542             createCachedBounds(children);
1543         }
1544     }
1545 
1546     private final int LEFT_INVALID = 1;
1547     private final int TOP_INVALID = 1 << 1;
1548     private final int NEAR_INVALID = 1 << 2;
1549     private final int RIGHT_INVALID = 1 << 3;
1550     private final int BOTTOM_INVALID = 1 << 4;
1551     private final int FAR_INVALID = 1 << 5;
1552 
1553     private boolean updateCachedBounds(final List<Node> dirtyNodes,
1554                                        int remainingDirtyNodes) {
1555         // fast path for untransformed bounds calculation
1556         if (cachedBounds.isEmpty()) {
1557             createCachedBounds(dirtyNodes);
1558             return true;
1559         }
1560 
1561         int invalidEdges = 0;
1562 
1563         if ((left == null) || left.boundsChanged) {
1564             invalidEdges |= LEFT_INVALID;
1565         }
1566         if ((top == null) || top.boundsChanged) {
1567             invalidEdges |= TOP_INVALID;
1568         }
1569         if ((near == null) || near.boundsChanged) {
1570             invalidEdges |= NEAR_INVALID;
1571         }
1572         if ((right == null) || right.boundsChanged) {
1573             invalidEdges |= RIGHT_INVALID;
1574         }
1575         if ((bottom == null) || bottom.boundsChanged) {
1576             invalidEdges |= BOTTOM_INVALID;
1577         }
1578         if ((far == null) || far.boundsChanged) {
1579             invalidEdges |= FAR_INVALID;
1580         }
1581 
1582         // These indicate the bounds of the Group as computed by this
1583         // function
1584         float minX = cachedBounds.getMinX();
1585         float minY = cachedBounds.getMinY();
1586         float minZ = cachedBounds.getMinZ();
1587         float maxX = cachedBounds.getMaxX();
1588         float maxY = cachedBounds.getMaxY();
1589         float maxZ = cachedBounds.getMaxZ();
1590 
1591         // this checks the newly added nodes first, so if dirtyNodes is the
1592         // whole children list, we can end early
1593         for (int i = dirtyNodes.size() - 1; remainingDirtyNodes > 0; --i) {
1594             final Node node = dirtyNodes.get(i);
1595             if (node.boundsChanged) {
1596                 // assert node.isVisible();
1597                 node.boundsChanged = false;
1598                 --remainingDirtyNodes;
1599                 tmp = getChildTransformedBounds(node, BaseTransform.IDENTITY_TRANSFORM, tmp);
1600                 if (!tmp.isEmpty()) {
1601                     float tmpx = tmp.getMinX();
1602                     float tmpy = tmp.getMinY();
1603                     float tmpz = tmp.getMinZ();
1604                     float tmpx2 = tmp.getMaxX();
1605                     float tmpy2 = tmp.getMaxY();
1606                     float tmpz2 = tmp.getMaxZ();
1607 
1608                     // If this node forms an edge, then we will set it to be the
1609                     // node for this edge and update the min/max values
1610                     if (tmpx <= minX) {
1611                         minX = tmpx;
1612                         left = node;
1613                         invalidEdges &= ~LEFT_INVALID;
1614                     }
1615                     if (tmpy <= minY) {
1616                         minY = tmpy;
1617                         top = node;
1618                         invalidEdges &= ~TOP_INVALID;
1619                     }
1620                     if (tmpz <= minZ) {
1621                         minZ = tmpz;
1622                         near = node;
1623                         invalidEdges &= ~NEAR_INVALID;
1624                     }
1625                     if (tmpx2 >= maxX) {
1626                         maxX = tmpx2;
1627                         right = node;
1628                         invalidEdges &= ~RIGHT_INVALID;
1629                     }
1630                     if (tmpy2 >= maxY) {
1631                         maxY = tmpy2;
1632                         bottom = node;
1633                         invalidEdges &= ~BOTTOM_INVALID;
1634                     }
1635                     if (tmpz2 >= maxZ) {
1636                         maxZ = tmpz2;
1637                         far = node;
1638                         invalidEdges &= ~FAR_INVALID;
1639                     }
1640                 }
1641             }
1642         }
1643 
1644         if (invalidEdges != 0) {
1645             // failed to validate some edges
1646             return false;
1647         }
1648 
1649         cachedBounds = cachedBounds.deriveWithNewBounds(minX, minY, minZ,
1650                                                         maxX, maxY, maxZ);
1651         return true;
1652     }
1653 
1654     private void createCachedBounds(final List<Node> fromNodes) {
1655         // These indicate the bounds of the Group as computed by this function
1656         float minX, minY, minZ;
1657         float maxX, maxY, maxZ;
1658 
1659         final int nodeCount = fromNodes.size();
1660         int i;
1661 
1662         // handle first visible non-empty node
1663         for (i = 0; i < nodeCount; ++i) {
1664             final Node node = fromNodes.get(i);
1665             node.boundsChanged = false;
1666             if (node.isVisible()) {
1667                 tmp = node.getTransformedBounds(
1668                                tmp, BaseTransform.IDENTITY_TRANSFORM);
1669                 if (!tmp.isEmpty()) {
1670                     left = top = near = right = bottom = far = node;
1671                     break;
1672                 }
1673             }
1674         }
1675 
1676         if (i == nodeCount) {
1677             left = top = near = right = bottom = far = null;
1678             cachedBounds.makeEmpty();
1679             return;
1680         }
1681 
1682         minX = tmp.getMinX();
1683         minY = tmp.getMinY();
1684         minZ = tmp.getMinZ();
1685         maxX = tmp.getMaxX();
1686         maxY = tmp.getMaxY();
1687         maxZ = tmp.getMaxZ();
1688 
1689         // handle remaining visible non-empty nodes
1690         for (++i; i < nodeCount; ++i) {
1691             final Node node = fromNodes.get(i);
1692             node.boundsChanged = false;
1693             if (node.isVisible()) {
1694                 tmp = node.getTransformedBounds(
1695                                tmp, BaseTransform.IDENTITY_TRANSFORM);
1696                 if (!tmp.isEmpty()) {
1697                     final float tmpx = tmp.getMinX();
1698                     final float tmpy = tmp.getMinY();
1699                     final float tmpz = tmp.getMinZ();
1700                     final float tmpx2 = tmp.getMaxX();
1701                     final float tmpy2 = tmp.getMaxY();
1702                     final float tmpz2 = tmp.getMaxZ();
1703 
1704                     if (tmpx < minX) { minX = tmpx; left = node; }
1705                     if (tmpy < minY) { minY = tmpy; top = node; }
1706                     if (tmpz < minZ) { minZ = tmpz; near = node; }
1707                     if (tmpx2 > maxX) { maxX = tmpx2; right = node; }
1708                     if (tmpy2 > maxY) { maxY = tmpy2; bottom = node; }
1709                     if (tmpz2 > maxZ) { maxZ = tmpz2; far = node; }
1710                 }
1711             }
1712         }
1713 
1714         cachedBounds = cachedBounds.deriveWithNewBounds(minX, minY, minZ,
1715                                                         maxX, maxY, maxZ);
1716     }
1717 
1718     @Override protected void updateBounds() {
1719         for (int i=0, max=children.size(); i<max; i++) {
1720             children.get(i).updateBounds();
1721         }
1722         super.updateBounds();
1723     }
1724 
1725     // Note: this marks the currently processed child in terms of transformed bounds. In rare situations like
1726     // in RT-37879, it might happen that the child bounds will be marked as invalid. Due to optimizations,
1727     // the invalidation must *always* be propagated to the parent, because the parent with some transformation
1728     // calls child's getTransformedBounds non-idenitity transform and the child's transformed bounds are thus not validated.
1729     // This does not apply to the call itself however, because the call will yield the correct result even if something
1730     // was invalidated during the computation. We can safely ignore such invalidations from that Node in this case
1731     private Node currentlyProcessedChild;
1732 
1733     private BaseBounds getChildTransformedBounds(Node node, BaseTransform tx, BaseBounds bounds) {
1734         currentlyProcessedChild = node;
1735         bounds = node.getTransformedBounds(bounds, tx);
1736         currentlyProcessedChild = null;
1737         return bounds;
1738     }
1739 
1740     /**
1741      * Called by Node whenever its bounds have changed.
1742      */
1743     void childBoundsChanged(Node node) {
1744         // See comment above at "currentlyProcessedChild" field
1745         if (node == currentlyProcessedChild) {
1746             return;
1747         }
1748 
1749         cachedBoundsInvalid = true;
1750 
1751         // mark the node such that the parent knows that the child's bounds
1752         // are not in sync with this parent. In this way, when the bounds
1753         // need to be computed, we'll come back and figure out the new bounds
1754         // for all the children which have boundsChanged set to true
1755         setChildDirty(node, true);
1756 
1757         // go ahead and indicate that the geom has changed for this parent,
1758         // even though once we figure it all out it may be that the bounds
1759         // have not changed
1760         impl_geomChanged();
1761     }
1762 
1763     /**
1764      * Called by node whenever the visibility of the node changes.
1765      */
1766     void childVisibilityChanged(Node node) {
1767         if (node.isVisible()) {
1768             childIncluded(node);
1769         } else {
1770             childExcluded(node);
1771         }
1772 
1773         impl_geomChanged();
1774     }
1775 
1776     /**
1777      * @treatAsPrivate implementation detail
1778      * @deprecated This is an internal API that is not intended for use and will be removed in the next version
1779      */
1780     @Deprecated
1781     @Override
1782     protected boolean impl_computeContains(double localX, double localY) {
1783         final Point2D tempPt = TempState.getInstance().point;
1784         for (int i=0, max=children.size(); i<max; i++) {
1785             final Node node = children.get(i);
1786             tempPt.x = (float)localX;
1787             tempPt.y = (float)localY;
1788             try {
1789                 node.parentToLocal(tempPt);
1790             } catch (NoninvertibleTransformException e) {
1791                 continue;
1792             }
1793             if (node.contains(tempPt.x, tempPt.y)) {
1794                 return true;
1795             }
1796         }
1797         return false;
1798     }
1799 
1800     /**
1801      * @treatAsPrivate implementation detail
1802      * @deprecated This is an internal API that is not intended for use and will be removed in the next version
1803      */
1804     @Deprecated
1805     public Object impl_processMXNode(MXNodeAlgorithm alg, MXNodeAlgorithmContext ctx) {
1806         return alg.processContainerNode(this, ctx);
1807     }
1808 
1809     @Override
1810     public Object queryAccessibleAttribute(AccessibleAttribute attribute, Object... parameters) {
1811         switch (attribute) {
1812             case CHILDREN: return getChildrenUnmodifiable();
1813             default: return super.queryAccessibleAttribute(attribute, parameters);
1814         }
1815     }
1816 
1817     void releaseAccessible() {
1818         for (int i=0, max=children.size(); i<max; i++) {
1819             final Node node = children.get(i);
1820             node.releaseAccessible();
1821         }
1822         super.releaseAccessible();
1823     }
1824        
1825     /**
1826      * Note: The only user of this method is in unit test: Parent_structure_sync_Test.
1827      */
1828     List<Node> test_getRemoved() {
1829         return removed;
1830     }
1831 }