1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2018 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "jvm.h"
  32 #include "classfile/classLoader.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/icBuffer.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "libo4.hpp"
  41 #include "libperfstat_aix.hpp"
  42 #include "libodm_aix.hpp"
  43 #include "loadlib_aix.hpp"
  44 #include "memory/allocation.inline.hpp"
  45 #include "memory/filemap.hpp"
  46 #include "misc_aix.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "os_aix.inline.hpp"
  49 #include "os_share_aix.hpp"
  50 #include "porting_aix.hpp"
  51 #include "prims/jniFastGetField.hpp"
  52 #include "prims/jvm_misc.hpp"
  53 #include "runtime/arguments.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/extendedPC.hpp"
  56 #include "runtime/globals.hpp"
  57 #include "runtime/interfaceSupport.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/mutexLocker.hpp"
  61 #include "runtime/objectMonitor.hpp"
  62 #include "runtime/orderAccess.inline.hpp"
  63 #include "runtime/os.hpp"
  64 #include "runtime/osThread.hpp"
  65 #include "runtime/perfMemory.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/statSampler.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/thread.inline.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/timer.hpp"
  72 #include "runtime/vm_version.hpp"
  73 #include "services/attachListener.hpp"
  74 #include "services/runtimeService.hpp"
  75 #include "utilities/align.hpp"
  76 #include "utilities/decoder.hpp"
  77 #include "utilities/defaultStream.hpp"
  78 #include "utilities/events.hpp"
  79 #include "utilities/growableArray.hpp"
  80 #include "utilities/vmError.hpp"
  81 
  82 // put OS-includes here (sorted alphabetically)
  83 #include <errno.h>
  84 #include <fcntl.h>
  85 #include <inttypes.h>
  86 #include <poll.h>
  87 #include <procinfo.h>
  88 #include <pthread.h>
  89 #include <pwd.h>
  90 #include <semaphore.h>
  91 #include <signal.h>
  92 #include <stdint.h>
  93 #include <stdio.h>
  94 #include <string.h>
  95 #include <unistd.h>
  96 #include <sys/ioctl.h>
  97 #include <sys/ipc.h>
  98 #include <sys/mman.h>
  99 #include <sys/resource.h>
 100 #include <sys/select.h>
 101 #include <sys/shm.h>
 102 #include <sys/socket.h>
 103 #include <sys/stat.h>
 104 #include <sys/sysinfo.h>
 105 #include <sys/systemcfg.h>
 106 #include <sys/time.h>
 107 #include <sys/times.h>
 108 #include <sys/types.h>
 109 #include <sys/utsname.h>
 110 #include <sys/vminfo.h>
 111 #include <sys/wait.h>
 112 
 113 // Missing prototypes for various system APIs.
 114 extern "C"
 115 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
 116 
 117 #if !defined(_AIXVERSION_610)
 118 extern "C" int getthrds64(pid_t, struct thrdentry64*, int, tid64_t*, int);
 119 extern "C" int getprocs64(procentry64*, int, fdsinfo*, int, pid_t*, int);
 120 extern "C" int getargs(procsinfo*, int, char*, int);
 121 #endif
 122 
 123 #define MAX_PATH (2 * K)
 124 
 125 // for timer info max values which include all bits
 126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 127 // for multipage initialization error analysis (in 'g_multipage_error')
 128 #define ERROR_MP_OS_TOO_OLD                          100
 129 #define ERROR_MP_EXTSHM_ACTIVE                       101
 130 #define ERROR_MP_VMGETINFO_FAILED                    102
 131 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 132 
 133 // excerpts from systemcfg.h that might be missing on older os levels
 134 #ifndef PV_5_Compat
 135   #define PV_5_Compat 0x0F8000   /* Power PC 5 */
 136 #endif
 137 #ifndef PV_6
 138   #define PV_6 0x100000          /* Power PC 6 */
 139 #endif
 140 #ifndef PV_6_1
 141   #define PV_6_1 0x100001        /* Power PC 6 DD1.x */
 142 #endif
 143 #ifndef PV_6_Compat
 144   #define PV_6_Compat 0x108000   /* Power PC 6 */
 145 #endif
 146 #ifndef PV_7
 147   #define PV_7 0x200000          /* Power PC 7 */
 148 #endif
 149 #ifndef PV_7_Compat
 150   #define PV_7_Compat 0x208000   /* Power PC 7 */
 151 #endif
 152 #ifndef PV_8
 153   #define PV_8 0x300000          /* Power PC 8 */
 154 #endif
 155 #ifndef PV_8_Compat
 156   #define PV_8_Compat 0x308000   /* Power PC 8 */
 157 #endif
 158 
 159 static address resolve_function_descriptor_to_code_pointer(address p);
 160 
 161 static void vmembk_print_on(outputStream* os);
 162 
 163 ////////////////////////////////////////////////////////////////////////////////
 164 // global variables (for a description see os_aix.hpp)
 165 
 166 julong    os::Aix::_physical_memory = 0;
 167 
 168 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 169 int       os::Aix::_page_size = -1;
 170 
 171 // -1 = uninitialized, 0 if AIX, 1 if OS/400 pase
 172 int       os::Aix::_on_pase = -1;
 173 
 174 // 0 = uninitialized, otherwise 32 bit number:
 175 //  0xVVRRTTSS
 176 //  VV - major version
 177 //  RR - minor version
 178 //  TT - tech level, if known, 0 otherwise
 179 //  SS - service pack, if known, 0 otherwise
 180 uint32_t  os::Aix::_os_version = 0;
 181 
 182 // -1 = uninitialized, 0 - no, 1 - yes
 183 int       os::Aix::_xpg_sus_mode = -1;
 184 
 185 // -1 = uninitialized, 0 - no, 1 - yes
 186 int       os::Aix::_extshm = -1;
 187 
 188 ////////////////////////////////////////////////////////////////////////////////
 189 // local variables
 190 
 191 static jlong    initial_time_count = 0;
 192 static int      clock_tics_per_sec = 100;
 193 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 194 static bool     check_signals      = true;
 195 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 196 static sigset_t SR_sigset;
 197 
 198 // Process break recorded at startup.
 199 static address g_brk_at_startup = NULL;
 200 
 201 // This describes the state of multipage support of the underlying
 202 // OS. Note that this is of no interest to the outsize world and
 203 // therefore should not be defined in AIX class.
 204 //
 205 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 206 // latter two (16M "large" resp. 16G "huge" pages) require special
 207 // setup and are normally not available.
 208 //
 209 // AIX supports multiple page sizes per process, for:
 210 //  - Stack (of the primordial thread, so not relevant for us)
 211 //  - Data - data, bss, heap, for us also pthread stacks
 212 //  - Text - text code
 213 //  - shared memory
 214 //
 215 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 216 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 217 //
 218 // For shared memory, page size can be set dynamically via
 219 // shmctl(). Different shared memory regions can have different page
 220 // sizes.
 221 //
 222 // More information can be found at AIBM info center:
 223 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 224 //
 225 static struct {
 226   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 227   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 228   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 229   size_t pthr_stack_pagesize; // stack page size of pthread threads
 230   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 231   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 232   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 233   int error;                  // Error describing if something went wrong at multipage init.
 234 } g_multipage_support = {
 235   (size_t) -1,
 236   (size_t) -1,
 237   (size_t) -1,
 238   (size_t) -1,
 239   (size_t) -1,
 240   false, false,
 241   0
 242 };
 243 
 244 // We must not accidentally allocate memory close to the BRK - even if
 245 // that would work - because then we prevent the BRK segment from
 246 // growing which may result in a malloc OOM even though there is
 247 // enough memory. The problem only arises if we shmat() or mmap() at
 248 // a specific wish address, e.g. to place the heap in a
 249 // compressed-oops-friendly way.
 250 static bool is_close_to_brk(address a) {
 251   assert0(g_brk_at_startup != NULL);
 252   if (a >= g_brk_at_startup &&
 253       a < (g_brk_at_startup + MaxExpectedDataSegmentSize)) {
 254     return true;
 255   }
 256   return false;
 257 }
 258 
 259 julong os::available_memory() {
 260   return Aix::available_memory();
 261 }
 262 
 263 julong os::Aix::available_memory() {
 264   // Avoid expensive API call here, as returned value will always be null.
 265   if (os::Aix::on_pase()) {
 266     return 0x0LL;
 267   }
 268   os::Aix::meminfo_t mi;
 269   if (os::Aix::get_meminfo(&mi)) {
 270     return mi.real_free;
 271   } else {
 272     return ULONG_MAX;
 273   }
 274 }
 275 
 276 julong os::physical_memory() {
 277   return Aix::physical_memory();
 278 }
 279 
 280 // Return true if user is running as root.
 281 
 282 bool os::have_special_privileges() {
 283   static bool init = false;
 284   static bool privileges = false;
 285   if (!init) {
 286     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 287     init = true;
 288   }
 289   return privileges;
 290 }
 291 
 292 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 293 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 294 static bool my_disclaim64(char* addr, size_t size) {
 295 
 296   if (size == 0) {
 297     return true;
 298   }
 299 
 300   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 301   const unsigned int maxDisclaimSize = 0x40000000;
 302 
 303   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 304   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 305 
 306   char* p = addr;
 307 
 308   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 309     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 310       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 311       return false;
 312     }
 313     p += maxDisclaimSize;
 314   }
 315 
 316   if (lastDisclaimSize > 0) {
 317     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 318       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 319       return false;
 320     }
 321   }
 322 
 323   return true;
 324 }
 325 
 326 // Cpu architecture string
 327 #if defined(PPC32)
 328 static char cpu_arch[] = "ppc";
 329 #elif defined(PPC64)
 330 static char cpu_arch[] = "ppc64";
 331 #else
 332 #error Add appropriate cpu_arch setting
 333 #endif
 334 
 335 // Wrap the function "vmgetinfo" which is not available on older OS releases.
 336 static int checked_vmgetinfo(void *out, int command, int arg) {
 337   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 338     guarantee(false, "cannot call vmgetinfo on AS/400 older than V6R1");
 339   }
 340   return ::vmgetinfo(out, command, arg);
 341 }
 342 
 343 // Given an address, returns the size of the page backing that address.
 344 size_t os::Aix::query_pagesize(void* addr) {
 345 
 346   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 347     // AS/400 older than V6R1: no vmgetinfo here, default to 4K
 348     return 4*K;
 349   }
 350 
 351   vm_page_info pi;
 352   pi.addr = (uint64_t)addr;
 353   if (checked_vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 354     return pi.pagesize;
 355   } else {
 356     assert(false, "vmgetinfo failed to retrieve page size");
 357     return 4*K;
 358   }
 359 }
 360 
 361 void os::Aix::initialize_system_info() {
 362 
 363   // Get the number of online(logical) cpus instead of configured.
 364   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 365   assert(_processor_count > 0, "_processor_count must be > 0");
 366 
 367   // Retrieve total physical storage.
 368   os::Aix::meminfo_t mi;
 369   if (!os::Aix::get_meminfo(&mi)) {
 370     assert(false, "os::Aix::get_meminfo failed.");
 371   }
 372   _physical_memory = (julong) mi.real_total;
 373 }
 374 
 375 // Helper function for tracing page sizes.
 376 static const char* describe_pagesize(size_t pagesize) {
 377   switch (pagesize) {
 378     case 4*K : return "4K";
 379     case 64*K: return "64K";
 380     case 16*M: return "16M";
 381     case 16*G: return "16G";
 382     default:
 383       assert(false, "surprise");
 384       return "??";
 385   }
 386 }
 387 
 388 // Probe OS for multipage support.
 389 // Will fill the global g_multipage_support structure.
 390 // Must be called before calling os::large_page_init().
 391 static void query_multipage_support() {
 392 
 393   guarantee(g_multipage_support.pagesize == -1,
 394             "do not call twice");
 395 
 396   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 397 
 398   // This really would surprise me.
 399   assert(g_multipage_support.pagesize == 4*K, "surprise!");
 400 
 401   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 402   // Default data page size is defined either by linker options (-bdatapsize)
 403   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 404   // default should be 4K.
 405   {
 406     void* p = ::malloc(16*M);
 407     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 408     ::free(p);
 409   }
 410 
 411   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 412   // Note that this is pure curiosity. We do not rely on default page size but set
 413   // our own page size after allocated.
 414   {
 415     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 416     guarantee(shmid != -1, "shmget failed");
 417     void* p = ::shmat(shmid, NULL, 0);
 418     ::shmctl(shmid, IPC_RMID, NULL);
 419     guarantee(p != (void*) -1, "shmat failed");
 420     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 421     ::shmdt(p);
 422   }
 423 
 424   // Before querying the stack page size, make sure we are not running as primordial
 425   // thread (because primordial thread's stack may have different page size than
 426   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 427   // number of reasons so we may just as well guarantee it here.
 428   guarantee0(!os::is_primordial_thread());
 429 
 430   // Query pthread stack page size. Should be the same as data page size because
 431   // pthread stacks are allocated from C-Heap.
 432   {
 433     int dummy = 0;
 434     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 435   }
 436 
 437   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 438   {
 439     address any_function =
 440       resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 441     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 442   }
 443 
 444   // Now probe for support of 64K pages and 16M pages.
 445 
 446   // Before OS/400 V6R1, there is no support for pages other than 4K.
 447   if (os::Aix::on_pase_V5R4_or_older()) {
 448     trcVerbose("OS/400 < V6R1 - no large page support.");
 449     g_multipage_support.error = ERROR_MP_OS_TOO_OLD;
 450     goto query_multipage_support_end;
 451   }
 452 
 453   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 454   {
 455     const int MAX_PAGE_SIZES = 4;
 456     psize_t sizes[MAX_PAGE_SIZES];
 457     const int num_psizes = checked_vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 458     if (num_psizes == -1) {
 459       trcVerbose("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)", errno);
 460       trcVerbose("disabling multipage support.");
 461       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 462       goto query_multipage_support_end;
 463     }
 464     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 465     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 466     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 467     for (int i = 0; i < num_psizes; i ++) {
 468       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 469     }
 470 
 471     // Can we use 64K, 16M pages?
 472     for (int i = 0; i < num_psizes; i ++) {
 473       const size_t pagesize = sizes[i];
 474       if (pagesize != 64*K && pagesize != 16*M) {
 475         continue;
 476       }
 477       bool can_use = false;
 478       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 479       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 480         IPC_CREAT | S_IRUSR | S_IWUSR);
 481       guarantee0(shmid != -1); // Should always work.
 482       // Try to set pagesize.
 483       struct shmid_ds shm_buf = { 0 };
 484       shm_buf.shm_pagesize = pagesize;
 485       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 486         const int en = errno;
 487         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 488         trcVerbose("shmctl(SHM_PAGESIZE) failed with errno=%n",
 489           errno);
 490       } else {
 491         // Attach and double check pageisze.
 492         void* p = ::shmat(shmid, NULL, 0);
 493         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 494         guarantee0(p != (void*) -1); // Should always work.
 495         const size_t real_pagesize = os::Aix::query_pagesize(p);
 496         if (real_pagesize != pagesize) {
 497           trcVerbose("real page size (0x%llX) differs.", real_pagesize);
 498         } else {
 499           can_use = true;
 500         }
 501         ::shmdt(p);
 502       }
 503       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 504       if (pagesize == 64*K) {
 505         g_multipage_support.can_use_64K_pages = can_use;
 506       } else if (pagesize == 16*M) {
 507         g_multipage_support.can_use_16M_pages = can_use;
 508       }
 509     }
 510 
 511   } // end: check which pages can be used for shared memory
 512 
 513 query_multipage_support_end:
 514 
 515   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s",
 516       describe_pagesize(g_multipage_support.pagesize));
 517   trcVerbose("Data page size (C-Heap, bss, etc): %s",
 518       describe_pagesize(g_multipage_support.datapsize));
 519   trcVerbose("Text page size: %s",
 520       describe_pagesize(g_multipage_support.textpsize));
 521   trcVerbose("Thread stack page size (pthread): %s",
 522       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 523   trcVerbose("Default shared memory page size: %s",
 524       describe_pagesize(g_multipage_support.shmpsize));
 525   trcVerbose("Can use 64K pages dynamically with shared meory: %s",
 526       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 527   trcVerbose("Can use 16M pages dynamically with shared memory: %s",
 528       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 529   trcVerbose("Multipage error details: %d",
 530       g_multipage_support.error);
 531 
 532   // sanity checks
 533   assert0(g_multipage_support.pagesize == 4*K);
 534   assert0(g_multipage_support.datapsize == 4*K || g_multipage_support.datapsize == 64*K);
 535   assert0(g_multipage_support.textpsize == 4*K || g_multipage_support.textpsize == 64*K);
 536   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 537   assert0(g_multipage_support.shmpsize == 4*K || g_multipage_support.shmpsize == 64*K);
 538 
 539 }
 540 
 541 void os::init_system_properties_values() {
 542 
 543 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 544 #define EXTENSIONS_DIR  "/lib/ext"
 545 
 546   // Buffer that fits several sprintfs.
 547   // Note that the space for the trailing null is provided
 548   // by the nulls included by the sizeof operator.
 549   const size_t bufsize =
 550     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 551          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 552   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 553 
 554   // sysclasspath, java_home, dll_dir
 555   {
 556     char *pslash;
 557     os::jvm_path(buf, bufsize);
 558 
 559     // Found the full path to libjvm.so.
 560     // Now cut the path to <java_home>/jre if we can.
 561     pslash = strrchr(buf, '/');
 562     if (pslash != NULL) {
 563       *pslash = '\0';            // Get rid of /libjvm.so.
 564     }
 565     pslash = strrchr(buf, '/');
 566     if (pslash != NULL) {
 567       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 568     }
 569     Arguments::set_dll_dir(buf);
 570 
 571     if (pslash != NULL) {
 572       pslash = strrchr(buf, '/');
 573       if (pslash != NULL) {
 574         *pslash = '\0';        // Get rid of /lib.
 575       }
 576     }
 577     Arguments::set_java_home(buf);
 578     set_boot_path('/', ':');
 579   }
 580 
 581   // Where to look for native libraries.
 582 
 583   // On Aix we get the user setting of LIBPATH.
 584   // Eventually, all the library path setting will be done here.
 585   // Get the user setting of LIBPATH.
 586   const char *v = ::getenv("LIBPATH");
 587   const char *v_colon = ":";
 588   if (v == NULL) { v = ""; v_colon = ""; }
 589 
 590   // Concatenate user and invariant part of ld_library_path.
 591   // That's +1 for the colon and +1 for the trailing '\0'.
 592   char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 593   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 594   Arguments::set_library_path(ld_library_path);
 595   FREE_C_HEAP_ARRAY(char, ld_library_path);
 596 
 597   // Extensions directories.
 598   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 599   Arguments::set_ext_dirs(buf);
 600 
 601   FREE_C_HEAP_ARRAY(char, buf);
 602 
 603 #undef DEFAULT_LIBPATH
 604 #undef EXTENSIONS_DIR
 605 }
 606 
 607 ////////////////////////////////////////////////////////////////////////////////
 608 // breakpoint support
 609 
 610 void os::breakpoint() {
 611   BREAKPOINT;
 612 }
 613 
 614 extern "C" void breakpoint() {
 615   // use debugger to set breakpoint here
 616 }
 617 
 618 ////////////////////////////////////////////////////////////////////////////////
 619 // signal support
 620 
 621 debug_only(static bool signal_sets_initialized = false);
 622 static sigset_t unblocked_sigs, vm_sigs;
 623 
 624 bool os::Aix::is_sig_ignored(int sig) {
 625   struct sigaction oact;
 626   sigaction(sig, (struct sigaction*)NULL, &oact);
 627   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*, oact.sa_sigaction)
 628     : CAST_FROM_FN_PTR(void*, oact.sa_handler);
 629   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 630     return true;
 631   } else {
 632     return false;
 633   }
 634 }
 635 
 636 void os::Aix::signal_sets_init() {
 637   // Should also have an assertion stating we are still single-threaded.
 638   assert(!signal_sets_initialized, "Already initialized");
 639   // Fill in signals that are necessarily unblocked for all threads in
 640   // the VM. Currently, we unblock the following signals:
 641   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 642   //                         by -Xrs (=ReduceSignalUsage));
 643   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 644   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 645   // the dispositions or masks wrt these signals.
 646   // Programs embedding the VM that want to use the above signals for their
 647   // own purposes must, at this time, use the "-Xrs" option to prevent
 648   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 649   // (See bug 4345157, and other related bugs).
 650   // In reality, though, unblocking these signals is really a nop, since
 651   // these signals are not blocked by default.
 652   sigemptyset(&unblocked_sigs);
 653   sigaddset(&unblocked_sigs, SIGILL);
 654   sigaddset(&unblocked_sigs, SIGSEGV);
 655   sigaddset(&unblocked_sigs, SIGBUS);
 656   sigaddset(&unblocked_sigs, SIGFPE);
 657   sigaddset(&unblocked_sigs, SIGTRAP);
 658   sigaddset(&unblocked_sigs, SR_signum);
 659 
 660   if (!ReduceSignalUsage) {
 661    if (!os::Aix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 662      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 663    }
 664    if (!os::Aix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 665      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 666    }
 667    if (!os::Aix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 668      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 669    }
 670   }
 671   // Fill in signals that are blocked by all but the VM thread.
 672   sigemptyset(&vm_sigs);
 673   if (!ReduceSignalUsage)
 674     sigaddset(&vm_sigs, BREAK_SIGNAL);
 675   debug_only(signal_sets_initialized = true);
 676 }
 677 
 678 // These are signals that are unblocked while a thread is running Java.
 679 // (For some reason, they get blocked by default.)
 680 sigset_t* os::Aix::unblocked_signals() {
 681   assert(signal_sets_initialized, "Not initialized");
 682   return &unblocked_sigs;
 683 }
 684 
 685 // These are the signals that are blocked while a (non-VM) thread is
 686 // running Java. Only the VM thread handles these signals.
 687 sigset_t* os::Aix::vm_signals() {
 688   assert(signal_sets_initialized, "Not initialized");
 689   return &vm_sigs;
 690 }
 691 
 692 void os::Aix::hotspot_sigmask(Thread* thread) {
 693 
 694   //Save caller's signal mask before setting VM signal mask
 695   sigset_t caller_sigmask;
 696   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 697 
 698   OSThread* osthread = thread->osthread();
 699   osthread->set_caller_sigmask(caller_sigmask);
 700 
 701   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 702 
 703   if (!ReduceSignalUsage) {
 704     if (thread->is_VM_thread()) {
 705       // Only the VM thread handles BREAK_SIGNAL ...
 706       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 707     } else {
 708       // ... all other threads block BREAK_SIGNAL
 709       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 710     }
 711   }
 712 }
 713 
 714 // retrieve memory information.
 715 // Returns false if something went wrong;
 716 // content of pmi undefined in this case.
 717 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 718 
 719   assert(pmi, "get_meminfo: invalid parameter");
 720 
 721   memset(pmi, 0, sizeof(meminfo_t));
 722 
 723   if (os::Aix::on_pase()) {
 724     // On PASE, use the libo4 porting library.
 725 
 726     unsigned long long virt_total = 0;
 727     unsigned long long real_total = 0;
 728     unsigned long long real_free = 0;
 729     unsigned long long pgsp_total = 0;
 730     unsigned long long pgsp_free = 0;
 731     if (libo4::get_memory_info(&virt_total, &real_total, &real_free, &pgsp_total, &pgsp_free)) {
 732       pmi->virt_total = virt_total;
 733       pmi->real_total = real_total;
 734       pmi->real_free = real_free;
 735       pmi->pgsp_total = pgsp_total;
 736       pmi->pgsp_free = pgsp_free;
 737       return true;
 738     }
 739     return false;
 740 
 741   } else {
 742 
 743     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 744     // See:
 745     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 746     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 747     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 748     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 749 
 750     perfstat_memory_total_t psmt;
 751     memset (&psmt, '\0', sizeof(psmt));
 752     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 753     if (rc == -1) {
 754       trcVerbose("perfstat_memory_total() failed (errno=%d)", errno);
 755       assert(0, "perfstat_memory_total() failed");
 756       return false;
 757     }
 758 
 759     assert(rc == 1, "perfstat_memory_total() - weird return code");
 760 
 761     // excerpt from
 762     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 763     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 764     // The fields of perfstat_memory_total_t:
 765     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 766     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 767     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 768     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 769     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 770 
 771     pmi->virt_total = psmt.virt_total * 4096;
 772     pmi->real_total = psmt.real_total * 4096;
 773     pmi->real_free = psmt.real_free * 4096;
 774     pmi->pgsp_total = psmt.pgsp_total * 4096;
 775     pmi->pgsp_free = psmt.pgsp_free * 4096;
 776 
 777     return true;
 778 
 779   }
 780 } // end os::Aix::get_meminfo
 781 
 782 //////////////////////////////////////////////////////////////////////////////
 783 // create new thread
 784 
 785 // Thread start routine for all newly created threads
 786 static void *thread_native_entry(Thread *thread) {
 787 
 788   // find out my own stack dimensions
 789   {
 790     // actually, this should do exactly the same as thread->record_stack_base_and_size...
 791     thread->set_stack_base(os::current_stack_base());
 792     thread->set_stack_size(os::current_stack_size());
 793   }
 794 
 795   const pthread_t pthread_id = ::pthread_self();
 796   const tid_t kernel_thread_id = ::thread_self();
 797 
 798   LogTarget(Info, os, thread) lt;
 799   if (lt.is_enabled()) {
 800     address low_address = thread->stack_end();
 801     address high_address = thread->stack_base();
 802     lt.print("Thread is alive (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT
 803              ", stack [" PTR_FORMAT " - " PTR_FORMAT " (" SIZE_FORMAT "k using %uk pages)).",
 804              os::current_thread_id(), (uintx) kernel_thread_id, low_address, high_address,
 805              (high_address - low_address) / K, os::Aix::query_pagesize(low_address) / K);
 806   }
 807 
 808   // Normally, pthread stacks on AIX live in the data segment (are allocated with malloc()
 809   // by the pthread library). In rare cases, this may not be the case, e.g. when third-party
 810   // tools hook pthread_create(). In this case, we may run into problems establishing
 811   // guard pages on those stacks, because the stacks may reside in memory which is not
 812   // protectable (shmated).
 813   if (thread->stack_base() > ::sbrk(0)) {
 814     log_warning(os, thread)("Thread stack not in data segment.");
 815   }
 816 
 817   // Try to randomize the cache line index of hot stack frames.
 818   // This helps when threads of the same stack traces evict each other's
 819   // cache lines. The threads can be either from the same JVM instance, or
 820   // from different JVM instances. The benefit is especially true for
 821   // processors with hyperthreading technology.
 822 
 823   static int counter = 0;
 824   int pid = os::current_process_id();
 825   alloca(((pid ^ counter++) & 7) * 128);
 826 
 827   thread->initialize_thread_current();
 828 
 829   OSThread* osthread = thread->osthread();
 830 
 831   // Thread_id is pthread id.
 832   osthread->set_thread_id(pthread_id);
 833 
 834   // .. but keep kernel thread id too for diagnostics
 835   osthread->set_kernel_thread_id(kernel_thread_id);
 836 
 837   // Initialize signal mask for this thread.
 838   os::Aix::hotspot_sigmask(thread);
 839 
 840   // Initialize floating point control register.
 841   os::Aix::init_thread_fpu_state();
 842 
 843   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 844 
 845   // Call one more level start routine.
 846   thread->run();
 847 
 848   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 849     os::current_thread_id(), (uintx) kernel_thread_id);
 850 
 851   // If a thread has not deleted itself ("delete this") as part of its
 852   // termination sequence, we have to ensure thread-local-storage is
 853   // cleared before we actually terminate. No threads should ever be
 854   // deleted asynchronously with respect to their termination.
 855   if (Thread::current_or_null_safe() != NULL) {
 856     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 857     thread->clear_thread_current();
 858   }
 859 
 860   return 0;
 861 }
 862 
 863 bool os::create_thread(Thread* thread, ThreadType thr_type,
 864                        size_t req_stack_size) {
 865 
 866   assert(thread->osthread() == NULL, "caller responsible");
 867 
 868   // Allocate the OSThread object.
 869   OSThread* osthread = new OSThread(NULL, NULL);
 870   if (osthread == NULL) {
 871     return false;
 872   }
 873 
 874   // Set the correct thread state.
 875   osthread->set_thread_type(thr_type);
 876 
 877   // Initial state is ALLOCATED but not INITIALIZED
 878   osthread->set_state(ALLOCATED);
 879 
 880   thread->set_osthread(osthread);
 881 
 882   // Init thread attributes.
 883   pthread_attr_t attr;
 884   pthread_attr_init(&attr);
 885   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 886 
 887   // Make sure we run in 1:1 kernel-user-thread mode.
 888   if (os::Aix::on_aix()) {
 889     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 890     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 891   }
 892 
 893   // Start in suspended state, and in os::thread_start, wake the thread up.
 894   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 895 
 896   // Calculate stack size if it's not specified by caller.
 897   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 898 
 899   // JDK-8187028: It was observed that on some configurations (4K backed thread stacks)
 900   // the real thread stack size may be smaller than the requested stack size, by as much as 64K.
 901   // This very much looks like a pthread lib error. As a workaround, increase the stack size
 902   // by 64K for small thread stacks (arbitrarily choosen to be < 4MB)
 903   if (stack_size < 4096 * K) {
 904     stack_size += 64 * K;
 905   }
 906 
 907   // On Aix, pthread_attr_setstacksize fails with huge values and leaves the
 908   // thread size in attr unchanged. If this is the minimal stack size as set
 909   // by pthread_attr_init this leads to crashes after thread creation. E.g. the
 910   // guard pages might not fit on the tiny stack created.
 911   int ret = pthread_attr_setstacksize(&attr, stack_size);
 912   if (ret != 0) {
 913     log_warning(os, thread)("The thread stack size specified is invalid: " SIZE_FORMAT "k",
 914                             stack_size / K);
 915   }
 916 
 917   // Save some cycles and a page by disabling OS guard pages where we have our own
 918   // VM guard pages (in java threads). For other threads, keep system default guard
 919   // pages in place.
 920   if (thr_type == java_thread || thr_type == compiler_thread) {
 921     ret = pthread_attr_setguardsize(&attr, 0);
 922   }
 923 
 924   pthread_t tid = 0;
 925   if (ret == 0) {
 926     ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 927   }
 928 
 929   if (ret == 0) {
 930     char buf[64];
 931     log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 932       (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 933   } else {
 934     char buf[64];
 935     log_warning(os, thread)("Failed to start thread - pthread_create failed (%d=%s) for attributes: %s.",
 936       ret, os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 937   }
 938 
 939   pthread_attr_destroy(&attr);
 940 
 941   if (ret != 0) {
 942     // Need to clean up stuff we've allocated so far.
 943     thread->set_osthread(NULL);
 944     delete osthread;
 945     return false;
 946   }
 947 
 948   // OSThread::thread_id is the pthread id.
 949   osthread->set_thread_id(tid);
 950 
 951   return true;
 952 }
 953 
 954 /////////////////////////////////////////////////////////////////////////////
 955 // attach existing thread
 956 
 957 // bootstrap the main thread
 958 bool os::create_main_thread(JavaThread* thread) {
 959   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
 960   return create_attached_thread(thread);
 961 }
 962 
 963 bool os::create_attached_thread(JavaThread* thread) {
 964 #ifdef ASSERT
 965     thread->verify_not_published();
 966 #endif
 967 
 968   // Allocate the OSThread object
 969   OSThread* osthread = new OSThread(NULL, NULL);
 970 
 971   if (osthread == NULL) {
 972     return false;
 973   }
 974 
 975   const pthread_t pthread_id = ::pthread_self();
 976   const tid_t kernel_thread_id = ::thread_self();
 977 
 978   // OSThread::thread_id is the pthread id.
 979   osthread->set_thread_id(pthread_id);
 980 
 981   // .. but keep kernel thread id too for diagnostics
 982   osthread->set_kernel_thread_id(kernel_thread_id);
 983 
 984   // initialize floating point control register
 985   os::Aix::init_thread_fpu_state();
 986 
 987   // Initial thread state is RUNNABLE
 988   osthread->set_state(RUNNABLE);
 989 
 990   thread->set_osthread(osthread);
 991 
 992   if (UseNUMA) {
 993     int lgrp_id = os::numa_get_group_id();
 994     if (lgrp_id != -1) {
 995       thread->set_lgrp_id(lgrp_id);
 996     }
 997   }
 998 
 999   // initialize signal mask for this thread
1000   // and save the caller's signal mask
1001   os::Aix::hotspot_sigmask(thread);
1002 
1003   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
1004     os::current_thread_id(), (uintx) kernel_thread_id);
1005 
1006   return true;
1007 }
1008 
1009 void os::pd_start_thread(Thread* thread) {
1010   int status = pthread_continue_np(thread->osthread()->pthread_id());
1011   assert(status == 0, "thr_continue failed");
1012 }
1013 
1014 // Free OS resources related to the OSThread
1015 void os::free_thread(OSThread* osthread) {
1016   assert(osthread != NULL, "osthread not set");
1017 
1018   // We are told to free resources of the argument thread,
1019   // but we can only really operate on the current thread.
1020   assert(Thread::current()->osthread() == osthread,
1021          "os::free_thread but not current thread");
1022 
1023   // Restore caller's signal mask
1024   sigset_t sigmask = osthread->caller_sigmask();
1025   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1026 
1027   delete osthread;
1028 }
1029 
1030 ////////////////////////////////////////////////////////////////////////////////
1031 // time support
1032 
1033 // Time since start-up in seconds to a fine granularity.
1034 // Used by VMSelfDestructTimer and the MemProfiler.
1035 double os::elapsedTime() {
1036   return (double)(os::elapsed_counter()) * 0.000001;
1037 }
1038 
1039 jlong os::elapsed_counter() {
1040   timeval time;
1041   int status = gettimeofday(&time, NULL);
1042   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1043 }
1044 
1045 jlong os::elapsed_frequency() {
1046   return (1000 * 1000);
1047 }
1048 
1049 bool os::supports_vtime() { return true; }
1050 bool os::enable_vtime()   { return false; }
1051 bool os::vtime_enabled()  { return false; }
1052 
1053 double os::elapsedVTime() {
1054   struct rusage usage;
1055   int retval = getrusage(RUSAGE_THREAD, &usage);
1056   if (retval == 0) {
1057     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1058   } else {
1059     // better than nothing, but not much
1060     return elapsedTime();
1061   }
1062 }
1063 
1064 jlong os::javaTimeMillis() {
1065   timeval time;
1066   int status = gettimeofday(&time, NULL);
1067   assert(status != -1, "aix error at gettimeofday()");
1068   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1069 }
1070 
1071 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1072   timeval time;
1073   int status = gettimeofday(&time, NULL);
1074   assert(status != -1, "aix error at gettimeofday()");
1075   seconds = jlong(time.tv_sec);
1076   nanos = jlong(time.tv_usec) * 1000;
1077 }
1078 
1079 jlong os::javaTimeNanos() {
1080   if (os::Aix::on_pase()) {
1081 
1082     timeval time;
1083     int status = gettimeofday(&time, NULL);
1084     assert(status != -1, "PASE error at gettimeofday()");
1085     jlong usecs = jlong((unsigned long long) time.tv_sec * (1000 * 1000) + time.tv_usec);
1086     return 1000 * usecs;
1087 
1088   } else {
1089     // On AIX use the precision of processors real time clock
1090     // or time base registers.
1091     timebasestruct_t time;
1092     int rc;
1093 
1094     // If the CPU has a time register, it will be used and
1095     // we have to convert to real time first. After convertion we have following data:
1096     // time.tb_high [seconds since 00:00:00 UTC on 1.1.1970]
1097     // time.tb_low  [nanoseconds after the last full second above]
1098     // We better use mread_real_time here instead of read_real_time
1099     // to ensure that we will get a monotonic increasing time.
1100     if (mread_real_time(&time, TIMEBASE_SZ) != RTC_POWER) {
1101       rc = time_base_to_time(&time, TIMEBASE_SZ);
1102       assert(rc != -1, "aix error at time_base_to_time()");
1103     }
1104     return jlong(time.tb_high) * (1000 * 1000 * 1000) + jlong(time.tb_low);
1105   }
1106 }
1107 
1108 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1109   info_ptr->max_value = ALL_64_BITS;
1110   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1111   info_ptr->may_skip_backward = false;
1112   info_ptr->may_skip_forward = false;
1113   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1114 }
1115 
1116 // Return the real, user, and system times in seconds from an
1117 // arbitrary fixed point in the past.
1118 bool os::getTimesSecs(double* process_real_time,
1119                       double* process_user_time,
1120                       double* process_system_time) {
1121   struct tms ticks;
1122   clock_t real_ticks = times(&ticks);
1123 
1124   if (real_ticks == (clock_t) (-1)) {
1125     return false;
1126   } else {
1127     double ticks_per_second = (double) clock_tics_per_sec;
1128     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1129     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1130     *process_real_time = ((double) real_ticks) / ticks_per_second;
1131 
1132     return true;
1133   }
1134 }
1135 
1136 char * os::local_time_string(char *buf, size_t buflen) {
1137   struct tm t;
1138   time_t long_time;
1139   time(&long_time);
1140   localtime_r(&long_time, &t);
1141   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1142                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1143                t.tm_hour, t.tm_min, t.tm_sec);
1144   return buf;
1145 }
1146 
1147 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1148   return localtime_r(clock, res);
1149 }
1150 
1151 ////////////////////////////////////////////////////////////////////////////////
1152 // runtime exit support
1153 
1154 // Note: os::shutdown() might be called very early during initialization, or
1155 // called from signal handler. Before adding something to os::shutdown(), make
1156 // sure it is async-safe and can handle partially initialized VM.
1157 void os::shutdown() {
1158 
1159   // allow PerfMemory to attempt cleanup of any persistent resources
1160   perfMemory_exit();
1161 
1162   // needs to remove object in file system
1163   AttachListener::abort();
1164 
1165   // flush buffered output, finish log files
1166   ostream_abort();
1167 
1168   // Check for abort hook
1169   abort_hook_t abort_hook = Arguments::abort_hook();
1170   if (abort_hook != NULL) {
1171     abort_hook();
1172   }
1173 }
1174 
1175 // Note: os::abort() might be called very early during initialization, or
1176 // called from signal handler. Before adding something to os::abort(), make
1177 // sure it is async-safe and can handle partially initialized VM.
1178 void os::abort(bool dump_core, void* siginfo, const void* context) {
1179   os::shutdown();
1180   if (dump_core) {
1181 #ifndef PRODUCT
1182     fdStream out(defaultStream::output_fd());
1183     out.print_raw("Current thread is ");
1184     char buf[16];
1185     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1186     out.print_raw_cr(buf);
1187     out.print_raw_cr("Dumping core ...");
1188 #endif
1189     ::abort(); // dump core
1190   }
1191 
1192   ::exit(1);
1193 }
1194 
1195 // Die immediately, no exit hook, no abort hook, no cleanup.
1196 void os::die() {
1197   ::abort();
1198 }
1199 
1200 // This method is a copy of JDK's sysGetLastErrorString
1201 // from src/solaris/hpi/src/system_md.c
1202 
1203 size_t os::lasterror(char *buf, size_t len) {
1204   if (errno == 0) return 0;
1205 
1206   const char *s = os::strerror(errno);
1207   size_t n = ::strlen(s);
1208   if (n >= len) {
1209     n = len - 1;
1210   }
1211   ::strncpy(buf, s, n);
1212   buf[n] = '\0';
1213   return n;
1214 }
1215 
1216 intx os::current_thread_id() {
1217   return (intx)pthread_self();
1218 }
1219 
1220 int os::current_process_id() {
1221   return getpid();
1222 }
1223 
1224 // DLL functions
1225 
1226 const char* os::dll_file_extension() { return ".so"; }
1227 
1228 // This must be hard coded because it's the system's temporary
1229 // directory not the java application's temp directory, ala java.io.tmpdir.
1230 const char* os::get_temp_directory() { return "/tmp"; }
1231 
1232 // Check if addr is inside libjvm.so.
1233 bool os::address_is_in_vm(address addr) {
1234 
1235   // Input could be a real pc or a function pointer literal. The latter
1236   // would be a function descriptor residing in the data segment of a module.
1237   loaded_module_t lm;
1238   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL) {
1239     return lm.is_in_vm;
1240   } else if (LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
1241     return lm.is_in_vm;
1242   } else {
1243     return false;
1244   }
1245 
1246 }
1247 
1248 // Resolve an AIX function descriptor literal to a code pointer.
1249 // If the input is a valid code pointer to a text segment of a loaded module,
1250 //   it is returned unchanged.
1251 // If the input is a valid AIX function descriptor, it is resolved to the
1252 //   code entry point.
1253 // If the input is neither a valid function descriptor nor a valid code pointer,
1254 //   NULL is returned.
1255 static address resolve_function_descriptor_to_code_pointer(address p) {
1256 
1257   if (LoadedLibraries::find_for_text_address(p, NULL) != NULL) {
1258     // It is a real code pointer.
1259     return p;
1260   } else if (LoadedLibraries::find_for_data_address(p, NULL) != NULL) {
1261     // Pointer to data segment, potential function descriptor.
1262     address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1263     if (LoadedLibraries::find_for_text_address(code_entry, NULL) != NULL) {
1264       // It is a function descriptor.
1265       return code_entry;
1266     }
1267   }
1268 
1269   return NULL;
1270 }
1271 
1272 bool os::dll_address_to_function_name(address addr, char *buf,
1273                                       int buflen, int *offset,
1274                                       bool demangle) {
1275   if (offset) {
1276     *offset = -1;
1277   }
1278   // Buf is not optional, but offset is optional.
1279   assert(buf != NULL, "sanity check");
1280   buf[0] = '\0';
1281 
1282   // Resolve function ptr literals first.
1283   addr = resolve_function_descriptor_to_code_pointer(addr);
1284   if (!addr) {
1285     return false;
1286   }
1287 
1288   return AixSymbols::get_function_name(addr, buf, buflen, offset, NULL, demangle);
1289 }
1290 
1291 bool os::dll_address_to_library_name(address addr, char* buf,
1292                                      int buflen, int* offset) {
1293   if (offset) {
1294     *offset = -1;
1295   }
1296   // Buf is not optional, but offset is optional.
1297   assert(buf != NULL, "sanity check");
1298   buf[0] = '\0';
1299 
1300   // Resolve function ptr literals first.
1301   addr = resolve_function_descriptor_to_code_pointer(addr);
1302   if (!addr) {
1303     return false;
1304   }
1305 
1306   return AixSymbols::get_module_name(addr, buf, buflen);
1307 }
1308 
1309 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1310 // for the same architecture as Hotspot is running on.
1311 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1312 
1313   if (ebuf && ebuflen > 0) {
1314     ebuf[0] = '\0';
1315     ebuf[ebuflen - 1] = '\0';
1316   }
1317 
1318   if (!filename || strlen(filename) == 0) {
1319     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1320     return NULL;
1321   }
1322 
1323   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1324   void * result= ::dlopen(filename, RTLD_LAZY);
1325   if (result != NULL) {
1326     // Reload dll cache. Don't do this in signal handling.
1327     LoadedLibraries::reload();
1328     return result;
1329   } else {
1330     // error analysis when dlopen fails
1331     const char* const error_report = ::dlerror();
1332     if (error_report && ebuf && ebuflen > 0) {
1333       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1334                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1335     }
1336   }
1337   return NULL;
1338 }
1339 
1340 void* os::dll_lookup(void* handle, const char* name) {
1341   void* res = dlsym(handle, name);
1342   return res;
1343 }
1344 
1345 void* os::get_default_process_handle() {
1346   return (void*)::dlopen(NULL, RTLD_LAZY);
1347 }
1348 
1349 void os::print_dll_info(outputStream *st) {
1350   st->print_cr("Dynamic libraries:");
1351   LoadedLibraries::print(st);
1352 }
1353 
1354 void os::get_summary_os_info(char* buf, size_t buflen) {
1355   // There might be something more readable than uname results for AIX.
1356   struct utsname name;
1357   uname(&name);
1358   snprintf(buf, buflen, "%s %s", name.release, name.version);
1359 }
1360 
1361 void os::print_os_info(outputStream* st) {
1362   st->print("OS:");
1363 
1364   st->print("uname:");
1365   struct utsname name;
1366   uname(&name);
1367   st->print(name.sysname); st->print(" ");
1368   st->print(name.nodename); st->print(" ");
1369   st->print(name.release); st->print(" ");
1370   st->print(name.version); st->print(" ");
1371   st->print(name.machine);
1372   st->cr();
1373 
1374   uint32_t ver = os::Aix::os_version();
1375   st->print_cr("AIX kernel version %u.%u.%u.%u",
1376                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1377 
1378   os::Posix::print_rlimit_info(st);
1379 
1380   // load average
1381   st->print("load average:");
1382   double loadavg[3] = {-1.L, -1.L, -1.L};
1383   os::loadavg(loadavg, 3);
1384   st->print("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1385   st->cr();
1386 
1387   // print wpar info
1388   libperfstat::wparinfo_t wi;
1389   if (libperfstat::get_wparinfo(&wi)) {
1390     st->print_cr("wpar info");
1391     st->print_cr("name: %s", wi.name);
1392     st->print_cr("id:   %d", wi.wpar_id);
1393     st->print_cr("type: %s", (wi.app_wpar ? "application" : "system"));
1394   }
1395 
1396   // print partition info
1397   libperfstat::partitioninfo_t pi;
1398   if (libperfstat::get_partitioninfo(&pi)) {
1399     st->print_cr("partition info");
1400     st->print_cr(" name: %s", pi.name);
1401   }
1402 
1403 }
1404 
1405 void os::print_memory_info(outputStream* st) {
1406 
1407   st->print_cr("Memory:");
1408 
1409   st->print_cr("  Base page size (sysconf _SC_PAGESIZE):  %s",
1410     describe_pagesize(g_multipage_support.pagesize));
1411   st->print_cr("  Data page size (C-Heap, bss, etc):      %s",
1412     describe_pagesize(g_multipage_support.datapsize));
1413   st->print_cr("  Text page size:                         %s",
1414     describe_pagesize(g_multipage_support.textpsize));
1415   st->print_cr("  Thread stack page size (pthread):       %s",
1416     describe_pagesize(g_multipage_support.pthr_stack_pagesize));
1417   st->print_cr("  Default shared memory page size:        %s",
1418     describe_pagesize(g_multipage_support.shmpsize));
1419   st->print_cr("  Can use 64K pages dynamically with shared meory:  %s",
1420     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1421   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1422     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1423   st->print_cr("  Multipage error: %d",
1424     g_multipage_support.error);
1425   st->cr();
1426   st->print_cr("  os::vm_page_size:       %s", describe_pagesize(os::vm_page_size()));
1427 
1428   // print out LDR_CNTRL because it affects the default page sizes
1429   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1430   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1431 
1432   // Print out EXTSHM because it is an unsupported setting.
1433   const char* const extshm = ::getenv("EXTSHM");
1434   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1435   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1436     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1437   }
1438 
1439   // Print out AIXTHREAD_GUARDPAGES because it affects the size of pthread stacks.
1440   const char* const aixthread_guardpages = ::getenv("AIXTHREAD_GUARDPAGES");
1441   st->print_cr("  AIXTHREAD_GUARDPAGES=%s.",
1442       aixthread_guardpages ? aixthread_guardpages : "<unset>");
1443 
1444   os::Aix::meminfo_t mi;
1445   if (os::Aix::get_meminfo(&mi)) {
1446     char buffer[256];
1447     if (os::Aix::on_aix()) {
1448       st->print_cr("physical total : " SIZE_FORMAT, mi.real_total);
1449       st->print_cr("physical free  : " SIZE_FORMAT, mi.real_free);
1450       st->print_cr("swap total     : " SIZE_FORMAT, mi.pgsp_total);
1451       st->print_cr("swap free      : " SIZE_FORMAT, mi.pgsp_free);
1452     } else {
1453       // PASE - Numbers are result of QWCRSSTS; they mean:
1454       // real_total: Sum of all system pools
1455       // real_free: always 0
1456       // pgsp_total: we take the size of the system ASP
1457       // pgsp_free: size of system ASP times percentage of system ASP unused
1458       st->print_cr("physical total     : " SIZE_FORMAT, mi.real_total);
1459       st->print_cr("system asp total   : " SIZE_FORMAT, mi.pgsp_total);
1460       st->print_cr("%% system asp used : " SIZE_FORMAT,
1461         mi.pgsp_total ? (100.0f * (mi.pgsp_total - mi.pgsp_free) / mi.pgsp_total) : -1.0f);
1462     }
1463     st->print_raw(buffer);
1464   }
1465   st->cr();
1466 
1467   // Print segments allocated with os::reserve_memory.
1468   st->print_cr("internal virtual memory regions used by vm:");
1469   vmembk_print_on(st);
1470 }
1471 
1472 // Get a string for the cpuinfo that is a summary of the cpu type
1473 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1474   // read _system_configuration.version
1475   switch (_system_configuration.version) {
1476   case PV_8:
1477     strncpy(buf, "Power PC 8", buflen);
1478     break;
1479   case PV_7:
1480     strncpy(buf, "Power PC 7", buflen);
1481     break;
1482   case PV_6_1:
1483     strncpy(buf, "Power PC 6 DD1.x", buflen);
1484     break;
1485   case PV_6:
1486     strncpy(buf, "Power PC 6", buflen);
1487     break;
1488   case PV_5:
1489     strncpy(buf, "Power PC 5", buflen);
1490     break;
1491   case PV_5_2:
1492     strncpy(buf, "Power PC 5_2", buflen);
1493     break;
1494   case PV_5_3:
1495     strncpy(buf, "Power PC 5_3", buflen);
1496     break;
1497   case PV_5_Compat:
1498     strncpy(buf, "PV_5_Compat", buflen);
1499     break;
1500   case PV_6_Compat:
1501     strncpy(buf, "PV_6_Compat", buflen);
1502     break;
1503   case PV_7_Compat:
1504     strncpy(buf, "PV_7_Compat", buflen);
1505     break;
1506   case PV_8_Compat:
1507     strncpy(buf, "PV_8_Compat", buflen);
1508     break;
1509   default:
1510     strncpy(buf, "unknown", buflen);
1511   }
1512 }
1513 
1514 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1515   // Nothing to do beyond of what os::print_cpu_info() does.
1516 }
1517 
1518 static void print_signal_handler(outputStream* st, int sig,
1519                                  char* buf, size_t buflen);
1520 
1521 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1522   st->print_cr("Signal Handlers:");
1523   print_signal_handler(st, SIGSEGV, buf, buflen);
1524   print_signal_handler(st, SIGBUS , buf, buflen);
1525   print_signal_handler(st, SIGFPE , buf, buflen);
1526   print_signal_handler(st, SIGPIPE, buf, buflen);
1527   print_signal_handler(st, SIGXFSZ, buf, buflen);
1528   print_signal_handler(st, SIGILL , buf, buflen);
1529   print_signal_handler(st, SR_signum, buf, buflen);
1530   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1531   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1532   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1533   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1534   print_signal_handler(st, SIGTRAP, buf, buflen);
1535   // We also want to know if someone else adds a SIGDANGER handler because
1536   // that will interfere with OOM killling.
1537   print_signal_handler(st, SIGDANGER, buf, buflen);
1538 }
1539 
1540 static char saved_jvm_path[MAXPATHLEN] = {0};
1541 
1542 // Find the full path to the current module, libjvm.so.
1543 void os::jvm_path(char *buf, jint buflen) {
1544   // Error checking.
1545   if (buflen < MAXPATHLEN) {
1546     assert(false, "must use a large-enough buffer");
1547     buf[0] = '\0';
1548     return;
1549   }
1550   // Lazy resolve the path to current module.
1551   if (saved_jvm_path[0] != 0) {
1552     strcpy(buf, saved_jvm_path);
1553     return;
1554   }
1555 
1556   Dl_info dlinfo;
1557   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1558   assert(ret != 0, "cannot locate libjvm");
1559   char* rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1560   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1561 
1562   if (Arguments::sun_java_launcher_is_altjvm()) {
1563     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1564     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
1565     // If "/jre/lib/" appears at the right place in the string, then
1566     // assume we are installed in a JDK and we're done. Otherwise, check
1567     // for a JAVA_HOME environment variable and fix up the path so it
1568     // looks like libjvm.so is installed there (append a fake suffix
1569     // hotspot/libjvm.so).
1570     const char *p = buf + strlen(buf) - 1;
1571     for (int count = 0; p > buf && count < 4; ++count) {
1572       for (--p; p > buf && *p != '/'; --p)
1573         /* empty */ ;
1574     }
1575 
1576     if (strncmp(p, "/jre/lib/", 9) != 0) {
1577       // Look for JAVA_HOME in the environment.
1578       char* java_home_var = ::getenv("JAVA_HOME");
1579       if (java_home_var != NULL && java_home_var[0] != 0) {
1580         char* jrelib_p;
1581         int len;
1582 
1583         // Check the current module name "libjvm.so".
1584         p = strrchr(buf, '/');
1585         if (p == NULL) {
1586           return;
1587         }
1588         assert(strstr(p, "/libjvm") == p, "invalid library name");
1589 
1590         rp = os::Posix::realpath(java_home_var, buf, buflen);
1591         if (rp == NULL) {
1592           return;
1593         }
1594 
1595         // determine if this is a legacy image or modules image
1596         // modules image doesn't have "jre" subdirectory
1597         len = strlen(buf);
1598         assert(len < buflen, "Ran out of buffer room");
1599         jrelib_p = buf + len;
1600         snprintf(jrelib_p, buflen-len, "/jre/lib");
1601         if (0 != access(buf, F_OK)) {
1602           snprintf(jrelib_p, buflen-len, "/lib");
1603         }
1604 
1605         if (0 == access(buf, F_OK)) {
1606           // Use current module name "libjvm.so"
1607           len = strlen(buf);
1608           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1609         } else {
1610           // Go back to path of .so
1611           rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1612           if (rp == NULL) {
1613             return;
1614           }
1615         }
1616       }
1617     }
1618   }
1619 
1620   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1621   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1622 }
1623 
1624 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1625   // no prefix required, not even "_"
1626 }
1627 
1628 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1629   // no suffix required
1630 }
1631 
1632 ////////////////////////////////////////////////////////////////////////////////
1633 // sun.misc.Signal support
1634 
1635 static volatile jint sigint_count = 0;
1636 
1637 static void
1638 UserHandler(int sig, void *siginfo, void *context) {
1639   // 4511530 - sem_post is serialized and handled by the manager thread. When
1640   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1641   // don't want to flood the manager thread with sem_post requests.
1642   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1643     return;
1644 
1645   // Ctrl-C is pressed during error reporting, likely because the error
1646   // handler fails to abort. Let VM die immediately.
1647   if (sig == SIGINT && VMError::is_error_reported()) {
1648     os::die();
1649   }
1650 
1651   os::signal_notify(sig);
1652 }
1653 
1654 void* os::user_handler() {
1655   return CAST_FROM_FN_PTR(void*, UserHandler);
1656 }
1657 
1658 extern "C" {
1659   typedef void (*sa_handler_t)(int);
1660   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1661 }
1662 
1663 void* os::signal(int signal_number, void* handler) {
1664   struct sigaction sigAct, oldSigAct;
1665 
1666   sigfillset(&(sigAct.sa_mask));
1667 
1668   // Do not block out synchronous signals in the signal handler.
1669   // Blocking synchronous signals only makes sense if you can really
1670   // be sure that those signals won't happen during signal handling,
1671   // when the blocking applies. Normal signal handlers are lean and
1672   // do not cause signals. But our signal handlers tend to be "risky"
1673   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1674   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1675   // by a SIGILL, which was blocked due to the signal mask. The process
1676   // just hung forever. Better to crash from a secondary signal than to hang.
1677   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1678   sigdelset(&(sigAct.sa_mask), SIGBUS);
1679   sigdelset(&(sigAct.sa_mask), SIGILL);
1680   sigdelset(&(sigAct.sa_mask), SIGFPE);
1681   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1682 
1683   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1684 
1685   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1686 
1687   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1688     // -1 means registration failed
1689     return (void *)-1;
1690   }
1691 
1692   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1693 }
1694 
1695 void os::signal_raise(int signal_number) {
1696   ::raise(signal_number);
1697 }
1698 
1699 //
1700 // The following code is moved from os.cpp for making this
1701 // code platform specific, which it is by its very nature.
1702 //
1703 
1704 // Will be modified when max signal is changed to be dynamic
1705 int os::sigexitnum_pd() {
1706   return NSIG;
1707 }
1708 
1709 // a counter for each possible signal value
1710 static volatile jint pending_signals[NSIG+1] = { 0 };
1711 
1712 // Wrapper functions for: sem_init(), sem_post(), sem_wait()
1713 // On AIX, we use sem_init(), sem_post(), sem_wait()
1714 // On Pase, we need to use msem_lock() and msem_unlock(), because Posix Semaphores
1715 // do not seem to work at all on PASE (unimplemented, will cause SIGILL).
1716 // Note that just using msem_.. APIs for both PASE and AIX is not an option either, as
1717 // on AIX, msem_..() calls are suspected of causing problems.
1718 static sem_t sig_sem;
1719 static msemaphore* p_sig_msem = 0;
1720 
1721 static void local_sem_init() {
1722   if (os::Aix::on_aix()) {
1723     int rc = ::sem_init(&sig_sem, 0, 0);
1724     guarantee(rc != -1, "sem_init failed");
1725   } else {
1726     // Memory semaphores must live in shared mem.
1727     guarantee0(p_sig_msem == NULL);
1728     p_sig_msem = (msemaphore*)os::reserve_memory(sizeof(msemaphore), NULL);
1729     guarantee(p_sig_msem, "Cannot allocate memory for memory semaphore");
1730     guarantee(::msem_init(p_sig_msem, 0) == p_sig_msem, "msem_init failed");
1731   }
1732 }
1733 
1734 static void local_sem_post() {
1735   static bool warn_only_once = false;
1736   if (os::Aix::on_aix()) {
1737     int rc = ::sem_post(&sig_sem);
1738     if (rc == -1 && !warn_only_once) {
1739       trcVerbose("sem_post failed (errno = %d, %s)", errno, os::errno_name(errno));
1740       warn_only_once = true;
1741     }
1742   } else {
1743     guarantee0(p_sig_msem != NULL);
1744     int rc = ::msem_unlock(p_sig_msem, 0);
1745     if (rc == -1 && !warn_only_once) {
1746       trcVerbose("msem_unlock failed (errno = %d, %s)", errno, os::errno_name(errno));
1747       warn_only_once = true;
1748     }
1749   }
1750 }
1751 
1752 static void local_sem_wait() {
1753   static bool warn_only_once = false;
1754   if (os::Aix::on_aix()) {
1755     int rc = ::sem_wait(&sig_sem);
1756     if (rc == -1 && !warn_only_once) {
1757       trcVerbose("sem_wait failed (errno = %d, %s)", errno, os::errno_name(errno));
1758       warn_only_once = true;
1759     }
1760   } else {
1761     guarantee0(p_sig_msem != NULL); // must init before use
1762     int rc = ::msem_lock(p_sig_msem, 0);
1763     if (rc == -1 && !warn_only_once) {
1764       trcVerbose("msem_lock failed (errno = %d, %s)", errno, os::errno_name(errno));
1765       warn_only_once = true;
1766     }
1767   }
1768 }
1769 
1770 void os::signal_init_pd() {
1771   // Initialize signal structures
1772   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1773 
1774   // Initialize signal semaphore
1775   local_sem_init();
1776 }
1777 
1778 void os::signal_notify(int sig) {
1779   Atomic::inc(&pending_signals[sig]);
1780   local_sem_post();
1781 }
1782 
1783 static int check_pending_signals() {
1784   Atomic::store(0, &sigint_count);
1785   for (;;) {
1786     for (int i = 0; i < NSIG + 1; i++) {
1787       jint n = pending_signals[i];
1788       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1789         return i;
1790       }
1791     }
1792     JavaThread *thread = JavaThread::current();
1793     ThreadBlockInVM tbivm(thread);
1794 
1795     bool threadIsSuspended;
1796     do {
1797       thread->set_suspend_equivalent();
1798       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1799 
1800       local_sem_wait();
1801 
1802       // were we externally suspended while we were waiting?
1803       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1804       if (threadIsSuspended) {
1805         //
1806         // The semaphore has been incremented, but while we were waiting
1807         // another thread suspended us. We don't want to continue running
1808         // while suspended because that would surprise the thread that
1809         // suspended us.
1810         //
1811 
1812         local_sem_post();
1813 
1814         thread->java_suspend_self();
1815       }
1816     } while (threadIsSuspended);
1817   }
1818 }
1819 
1820 int os::signal_wait() {
1821   return check_pending_signals();
1822 }
1823 
1824 ////////////////////////////////////////////////////////////////////////////////
1825 // Virtual Memory
1826 
1827 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1828 
1829 #define VMEM_MAPPED  1
1830 #define VMEM_SHMATED 2
1831 
1832 struct vmembk_t {
1833   int type;         // 1 - mmap, 2 - shmat
1834   char* addr;
1835   size_t size;      // Real size, may be larger than usersize.
1836   size_t pagesize;  // page size of area
1837   vmembk_t* next;
1838 
1839   bool contains_addr(char* p) const {
1840     return p >= addr && p < (addr + size);
1841   }
1842 
1843   bool contains_range(char* p, size_t s) const {
1844     return contains_addr(p) && contains_addr(p + s - 1);
1845   }
1846 
1847   void print_on(outputStream* os) const {
1848     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1849       " bytes, %d %s pages), %s",
1850       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1851       (type == VMEM_SHMATED ? "shmat" : "mmap")
1852     );
1853   }
1854 
1855   // Check that range is a sub range of memory block (or equal to memory block);
1856   // also check that range is fully page aligned to the page size if the block.
1857   void assert_is_valid_subrange(char* p, size_t s) const {
1858     if (!contains_range(p, s)) {
1859       trcVerbose("[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1860               "range of [" PTR_FORMAT " - " PTR_FORMAT "].",
1861               p, p + s, addr, addr + size);
1862       guarantee0(false);
1863     }
1864     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1865       trcVerbose("range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1866               " aligned to pagesize (%lu)", p, p + s, (unsigned long) pagesize);
1867       guarantee0(false);
1868     }
1869   }
1870 };
1871 
1872 static struct {
1873   vmembk_t* first;
1874   MiscUtils::CritSect cs;
1875 } vmem;
1876 
1877 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1878   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1879   assert0(p);
1880   if (p) {
1881     MiscUtils::AutoCritSect lck(&vmem.cs);
1882     p->addr = addr; p->size = size;
1883     p->pagesize = pagesize;
1884     p->type = type;
1885     p->next = vmem.first;
1886     vmem.first = p;
1887   }
1888 }
1889 
1890 static vmembk_t* vmembk_find(char* addr) {
1891   MiscUtils::AutoCritSect lck(&vmem.cs);
1892   for (vmembk_t* p = vmem.first; p; p = p->next) {
1893     if (p->addr <= addr && (p->addr + p->size) > addr) {
1894       return p;
1895     }
1896   }
1897   return NULL;
1898 }
1899 
1900 static void vmembk_remove(vmembk_t* p0) {
1901   MiscUtils::AutoCritSect lck(&vmem.cs);
1902   assert0(p0);
1903   assert0(vmem.first); // List should not be empty.
1904   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1905     if (*pp == p0) {
1906       *pp = p0->next;
1907       ::free(p0);
1908       return;
1909     }
1910   }
1911   assert0(false); // Not found?
1912 }
1913 
1914 static void vmembk_print_on(outputStream* os) {
1915   MiscUtils::AutoCritSect lck(&vmem.cs);
1916   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1917     vmi->print_on(os);
1918     os->cr();
1919   }
1920 }
1921 
1922 // Reserve and attach a section of System V memory.
1923 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1924 // address. Failing that, it will attach the memory anywhere.
1925 // If <requested_addr> is NULL, function will attach the memory anywhere.
1926 //
1927 // <alignment_hint> is being ignored by this function. It is very probable however that the
1928 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1929 // Should this be not enogh, we can put more work into it.
1930 static char* reserve_shmated_memory (
1931   size_t bytes,
1932   char* requested_addr,
1933   size_t alignment_hint) {
1934 
1935   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1936     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1937     bytes, requested_addr, alignment_hint);
1938 
1939   // Either give me wish address or wish alignment but not both.
1940   assert0(!(requested_addr != NULL && alignment_hint != 0));
1941 
1942   // We must prevent anyone from attaching too close to the
1943   // BRK because that may cause malloc OOM.
1944   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
1945     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
1946       "Will attach anywhere.", requested_addr);
1947     // Act like the OS refused to attach there.
1948     requested_addr = NULL;
1949   }
1950 
1951   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
1952   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
1953   if (os::Aix::on_pase_V5R4_or_older()) {
1954     ShouldNotReachHere();
1955   }
1956 
1957   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
1958   const size_t size = align_up(bytes, 64*K);
1959 
1960   // Reserve the shared segment.
1961   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
1962   if (shmid == -1) {
1963     trcVerbose("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
1964     return NULL;
1965   }
1966 
1967   // Important note:
1968   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
1969   // We must right after attaching it remove it from the system. System V shm segments are global and
1970   // survive the process.
1971   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
1972 
1973   struct shmid_ds shmbuf;
1974   memset(&shmbuf, 0, sizeof(shmbuf));
1975   shmbuf.shm_pagesize = 64*K;
1976   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
1977     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
1978                size / (64*K), errno);
1979     // I want to know if this ever happens.
1980     assert(false, "failed to set page size for shmat");
1981   }
1982 
1983   // Now attach the shared segment.
1984   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
1985   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
1986   // were not a segment boundary.
1987   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
1988   const int errno_shmat = errno;
1989 
1990   // (A) Right after shmat and before handing shmat errors delete the shm segment.
1991   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
1992     trcVerbose("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
1993     assert(false, "failed to remove shared memory segment!");
1994   }
1995 
1996   // Handle shmat error. If we failed to attach, just return.
1997   if (addr == (char*)-1) {
1998     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", requested_addr, errno_shmat);
1999     return NULL;
2000   }
2001 
2002   // Just for info: query the real page size. In case setting the page size did not
2003   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
2004   const size_t real_pagesize = os::Aix::query_pagesize(addr);
2005   if (real_pagesize != shmbuf.shm_pagesize) {
2006     trcVerbose("pagesize is, surprisingly, %h.", real_pagesize);
2007   }
2008 
2009   if (addr) {
2010     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
2011       addr, addr + size - 1, size, size/real_pagesize, describe_pagesize(real_pagesize));
2012   } else {
2013     if (requested_addr != NULL) {
2014       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, requested_addr);
2015     } else {
2016       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
2017     }
2018   }
2019 
2020   // book-keeping
2021   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
2022   assert0(is_aligned_to(addr, os::vm_page_size()));
2023 
2024   return addr;
2025 }
2026 
2027 static bool release_shmated_memory(char* addr, size_t size) {
2028 
2029   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2030     addr, addr + size - 1);
2031 
2032   bool rc = false;
2033 
2034   // TODO: is there a way to verify shm size without doing bookkeeping?
2035   if (::shmdt(addr) != 0) {
2036     trcVerbose("error (%d).", errno);
2037   } else {
2038     trcVerbose("ok.");
2039     rc = true;
2040   }
2041   return rc;
2042 }
2043 
2044 static bool uncommit_shmated_memory(char* addr, size_t size) {
2045   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2046     addr, addr + size - 1);
2047 
2048   const bool rc = my_disclaim64(addr, size);
2049 
2050   if (!rc) {
2051     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", addr, size);
2052     return false;
2053   }
2054   return true;
2055 }
2056 
2057 ////////////////////////////////  mmap-based routines /////////////////////////////////
2058 
2059 // Reserve memory via mmap.
2060 // If <requested_addr> is given, an attempt is made to attach at the given address.
2061 // Failing that, memory is allocated at any address.
2062 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2063 // allocate at an address aligned with the given alignment. Failing that, memory
2064 // is aligned anywhere.
2065 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2066   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2067     "alignment_hint " UINTX_FORMAT "...",
2068     bytes, requested_addr, alignment_hint);
2069 
2070   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2071   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2072     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", requested_addr);
2073     return NULL;
2074   }
2075 
2076   // We must prevent anyone from attaching too close to the
2077   // BRK because that may cause malloc OOM.
2078   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2079     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2080       "Will attach anywhere.", requested_addr);
2081     // Act like the OS refused to attach there.
2082     requested_addr = NULL;
2083   }
2084 
2085   // Specify one or the other but not both.
2086   assert0(!(requested_addr != NULL && alignment_hint > 0));
2087 
2088   // In 64K mode, we claim the global page size (os::vm_page_size())
2089   // is 64K. This is one of the few points where that illusion may
2090   // break, because mmap() will always return memory aligned to 4K. So
2091   // we must ensure we only ever return memory aligned to 64k.
2092   if (alignment_hint) {
2093     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2094   } else {
2095     alignment_hint = os::vm_page_size();
2096   }
2097 
2098   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2099   const size_t size = align_up(bytes, os::vm_page_size());
2100 
2101   // alignment: Allocate memory large enough to include an aligned range of the right size and
2102   // cut off the leading and trailing waste pages.
2103   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2104   const size_t extra_size = size + alignment_hint;
2105 
2106   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2107   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2108   int flags = MAP_ANONYMOUS | MAP_SHARED;
2109 
2110   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2111   // it means if wishaddress is given but MAP_FIXED is not set.
2112   //
2113   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2114   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2115   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2116   // get clobbered.
2117   if (requested_addr != NULL) {
2118     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2119       flags |= MAP_FIXED;
2120     }
2121   }
2122 
2123   char* addr = (char*)::mmap(requested_addr, extra_size,
2124       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2125 
2126   if (addr == MAP_FAILED) {
2127     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", requested_addr, size, errno);
2128     return NULL;
2129   }
2130 
2131   // Handle alignment.
2132   char* const addr_aligned = align_up(addr, alignment_hint);
2133   const size_t waste_pre = addr_aligned - addr;
2134   char* const addr_aligned_end = addr_aligned + size;
2135   const size_t waste_post = extra_size - waste_pre - size;
2136   if (waste_pre > 0) {
2137     ::munmap(addr, waste_pre);
2138   }
2139   if (waste_post > 0) {
2140     ::munmap(addr_aligned_end, waste_post);
2141   }
2142   addr = addr_aligned;
2143 
2144   if (addr) {
2145     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2146       addr, addr + bytes, bytes);
2147   } else {
2148     if (requested_addr != NULL) {
2149       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, requested_addr);
2150     } else {
2151       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2152     }
2153   }
2154 
2155   // bookkeeping
2156   vmembk_add(addr, size, 4*K, VMEM_MAPPED);
2157 
2158   // Test alignment, see above.
2159   assert0(is_aligned_to(addr, os::vm_page_size()));
2160 
2161   return addr;
2162 }
2163 
2164 static bool release_mmaped_memory(char* addr, size_t size) {
2165   assert0(is_aligned_to(addr, os::vm_page_size()));
2166   assert0(is_aligned_to(size, os::vm_page_size()));
2167 
2168   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2169     addr, addr + size - 1);
2170   bool rc = false;
2171 
2172   if (::munmap(addr, size) != 0) {
2173     trcVerbose("failed (%d)\n", errno);
2174     rc = false;
2175   } else {
2176     trcVerbose("ok.");
2177     rc = true;
2178   }
2179 
2180   return rc;
2181 }
2182 
2183 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2184 
2185   assert0(is_aligned_to(addr, os::vm_page_size()));
2186   assert0(is_aligned_to(size, os::vm_page_size()));
2187 
2188   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2189     addr, addr + size - 1);
2190   bool rc = false;
2191 
2192   // Uncommit mmap memory with msync MS_INVALIDATE.
2193   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2194     trcVerbose("failed (%d)\n", errno);
2195     rc = false;
2196   } else {
2197     trcVerbose("ok.");
2198     rc = true;
2199   }
2200 
2201   return rc;
2202 }
2203 
2204 int os::vm_page_size() {
2205   // Seems redundant as all get out.
2206   assert(os::Aix::page_size() != -1, "must call os::init");
2207   return os::Aix::page_size();
2208 }
2209 
2210 // Aix allocates memory by pages.
2211 int os::vm_allocation_granularity() {
2212   assert(os::Aix::page_size() != -1, "must call os::init");
2213   return os::Aix::page_size();
2214 }
2215 
2216 #ifdef PRODUCT
2217 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2218                                     int err) {
2219   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2220           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2221           os::errno_name(err), err);
2222 }
2223 #endif
2224 
2225 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2226                                   const char* mesg) {
2227   assert(mesg != NULL, "mesg must be specified");
2228   if (!pd_commit_memory(addr, size, exec)) {
2229     // Add extra info in product mode for vm_exit_out_of_memory():
2230     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2231     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2232   }
2233 }
2234 
2235 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2236 
2237   assert(is_aligned_to(addr, os::vm_page_size()),
2238     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2239     p2i(addr), os::vm_page_size());
2240   assert(is_aligned_to(size, os::vm_page_size()),
2241     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2242     size, os::vm_page_size());
2243 
2244   vmembk_t* const vmi = vmembk_find(addr);
2245   guarantee0(vmi);
2246   vmi->assert_is_valid_subrange(addr, size);
2247 
2248   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", addr, addr + size - 1);
2249 
2250   if (UseExplicitCommit) {
2251     // AIX commits memory on touch. So, touch all pages to be committed.
2252     for (char* p = addr; p < (addr + size); p += 4*K) {
2253       *p = '\0';
2254     }
2255   }
2256 
2257   return true;
2258 }
2259 
2260 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2261   return pd_commit_memory(addr, size, exec);
2262 }
2263 
2264 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2265                                   size_t alignment_hint, bool exec,
2266                                   const char* mesg) {
2267   // Alignment_hint is ignored on this OS.
2268   pd_commit_memory_or_exit(addr, size, exec, mesg);
2269 }
2270 
2271 bool os::pd_uncommit_memory(char* addr, size_t size) {
2272   assert(is_aligned_to(addr, os::vm_page_size()),
2273     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2274     p2i(addr), os::vm_page_size());
2275   assert(is_aligned_to(size, os::vm_page_size()),
2276     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2277     size, os::vm_page_size());
2278 
2279   // Dynamically do different things for mmap/shmat.
2280   const vmembk_t* const vmi = vmembk_find(addr);
2281   guarantee0(vmi);
2282   vmi->assert_is_valid_subrange(addr, size);
2283 
2284   if (vmi->type == VMEM_SHMATED) {
2285     return uncommit_shmated_memory(addr, size);
2286   } else {
2287     return uncommit_mmaped_memory(addr, size);
2288   }
2289 }
2290 
2291 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2292   // Do not call this; no need to commit stack pages on AIX.
2293   ShouldNotReachHere();
2294   return true;
2295 }
2296 
2297 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2298   // Do not call this; no need to commit stack pages on AIX.
2299   ShouldNotReachHere();
2300   return true;
2301 }
2302 
2303 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2304 }
2305 
2306 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2307 }
2308 
2309 void os::numa_make_global(char *addr, size_t bytes) {
2310 }
2311 
2312 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2313 }
2314 
2315 bool os::numa_topology_changed() {
2316   return false;
2317 }
2318 
2319 size_t os::numa_get_groups_num() {
2320   return 1;
2321 }
2322 
2323 int os::numa_get_group_id() {
2324   return 0;
2325 }
2326 
2327 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2328   if (size > 0) {
2329     ids[0] = 0;
2330     return 1;
2331   }
2332   return 0;
2333 }
2334 
2335 bool os::get_page_info(char *start, page_info* info) {
2336   return false;
2337 }
2338 
2339 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2340   return end;
2341 }
2342 
2343 // Reserves and attaches a shared memory segment.
2344 // Will assert if a wish address is given and could not be obtained.
2345 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2346 
2347   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2348   // thereby clobbering old mappings at that place. That is probably
2349   // not intended, never used and almost certainly an error were it
2350   // ever be used this way (to try attaching at a specified address
2351   // without clobbering old mappings an alternate API exists,
2352   // os::attempt_reserve_memory_at()).
2353   // Instead of mimicking the dangerous coding of the other platforms, here I
2354   // just ignore the request address (release) or assert(debug).
2355   assert0(requested_addr == NULL);
2356 
2357   // Always round to os::vm_page_size(), which may be larger than 4K.
2358   bytes = align_up(bytes, os::vm_page_size());
2359   const size_t alignment_hint0 =
2360     alignment_hint ? align_up(alignment_hint, os::vm_page_size()) : 0;
2361 
2362   // In 4K mode always use mmap.
2363   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2364   if (os::vm_page_size() == 4*K) {
2365     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2366   } else {
2367     if (bytes >= Use64KPagesThreshold) {
2368       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2369     } else {
2370       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2371     }
2372   }
2373 }
2374 
2375 bool os::pd_release_memory(char* addr, size_t size) {
2376 
2377   // Dynamically do different things for mmap/shmat.
2378   vmembk_t* const vmi = vmembk_find(addr);
2379   guarantee0(vmi);
2380 
2381   // Always round to os::vm_page_size(), which may be larger than 4K.
2382   size = align_up(size, os::vm_page_size());
2383   addr = align_up(addr, os::vm_page_size());
2384 
2385   bool rc = false;
2386   bool remove_bookkeeping = false;
2387   if (vmi->type == VMEM_SHMATED) {
2388     // For shmatted memory, we do:
2389     // - If user wants to release the whole range, release the memory (shmdt).
2390     // - If user only wants to release a partial range, uncommit (disclaim) that
2391     //   range. That way, at least, we do not use memory anymore (bust still page
2392     //   table space).
2393     vmi->assert_is_valid_subrange(addr, size);
2394     if (addr == vmi->addr && size == vmi->size) {
2395       rc = release_shmated_memory(addr, size);
2396       remove_bookkeeping = true;
2397     } else {
2398       rc = uncommit_shmated_memory(addr, size);
2399     }
2400   } else {
2401     // User may unmap partial regions but region has to be fully contained.
2402 #ifdef ASSERT
2403     vmi->assert_is_valid_subrange(addr, size);
2404 #endif
2405     rc = release_mmaped_memory(addr, size);
2406     remove_bookkeeping = true;
2407   }
2408 
2409   // update bookkeeping
2410   if (rc && remove_bookkeeping) {
2411     vmembk_remove(vmi);
2412   }
2413 
2414   return rc;
2415 }
2416 
2417 static bool checked_mprotect(char* addr, size_t size, int prot) {
2418 
2419   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2420   // not tell me if protection failed when trying to protect an un-protectable range.
2421   //
2422   // This means if the memory was allocated using shmget/shmat, protection wont work
2423   // but mprotect will still return 0:
2424   //
2425   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2426 
2427   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2428 
2429   if (!rc) {
2430     const char* const s_errno = os::errno_name(errno);
2431     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2432     return false;
2433   }
2434 
2435   // mprotect success check
2436   //
2437   // Mprotect said it changed the protection but can I believe it?
2438   //
2439   // To be sure I need to check the protection afterwards. Try to
2440   // read from protected memory and check whether that causes a segfault.
2441   //
2442   if (!os::Aix::xpg_sus_mode()) {
2443 
2444     if (CanUseSafeFetch32()) {
2445 
2446       const bool read_protected =
2447         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2448          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2449 
2450       if (prot & PROT_READ) {
2451         rc = !read_protected;
2452       } else {
2453         rc = read_protected;
2454       }
2455 
2456       if (!rc) {
2457         if (os::Aix::on_pase()) {
2458           // There is an issue on older PASE systems where mprotect() will return success but the
2459           // memory will not be protected.
2460           // This has nothing to do with the problem of using mproect() on SPEC1170 incompatible
2461           // machines; we only see it rarely, when using mprotect() to protect the guard page of
2462           // a stack. It is an OS error.
2463           //
2464           // A valid strategy is just to try again. This usually works. :-/
2465 
2466           ::usleep(1000);
2467           if (::mprotect(addr, size, prot) == 0) {
2468             const bool read_protected_2 =
2469               (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2470               SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2471             rc = true;
2472           }
2473         }
2474       }
2475     }
2476   }
2477 
2478   assert(rc == true, "mprotect failed.");
2479 
2480   return rc;
2481 }
2482 
2483 // Set protections specified
2484 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2485   unsigned int p = 0;
2486   switch (prot) {
2487   case MEM_PROT_NONE: p = PROT_NONE; break;
2488   case MEM_PROT_READ: p = PROT_READ; break;
2489   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2490   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2491   default:
2492     ShouldNotReachHere();
2493   }
2494   // is_committed is unused.
2495   return checked_mprotect(addr, size, p);
2496 }
2497 
2498 bool os::guard_memory(char* addr, size_t size) {
2499   return checked_mprotect(addr, size, PROT_NONE);
2500 }
2501 
2502 bool os::unguard_memory(char* addr, size_t size) {
2503   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2504 }
2505 
2506 // Large page support
2507 
2508 static size_t _large_page_size = 0;
2509 
2510 // Enable large page support if OS allows that.
2511 void os::large_page_init() {
2512   return; // Nothing to do. See query_multipage_support and friends.
2513 }
2514 
2515 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2516   // reserve_memory_special() is used to allocate large paged memory. On AIX, we implement
2517   // 64k paged memory reservation using the normal memory allocation paths (os::reserve_memory()),
2518   // so this is not needed.
2519   assert(false, "should not be called on AIX");
2520   return NULL;
2521 }
2522 
2523 bool os::release_memory_special(char* base, size_t bytes) {
2524   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2525   Unimplemented();
2526   return false;
2527 }
2528 
2529 size_t os::large_page_size() {
2530   return _large_page_size;
2531 }
2532 
2533 bool os::can_commit_large_page_memory() {
2534   // Does not matter, we do not support huge pages.
2535   return false;
2536 }
2537 
2538 bool os::can_execute_large_page_memory() {
2539   // Does not matter, we do not support huge pages.
2540   return false;
2541 }
2542 
2543 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2544   assert(file_desc >= 0, "file_desc is not valid");
2545   char* result = NULL;
2546 
2547   // Always round to os::vm_page_size(), which may be larger than 4K.
2548   bytes = align_up(bytes, os::vm_page_size());
2549   result = reserve_mmaped_memory(bytes, requested_addr, 0);
2550 
2551   if (result != NULL) {
2552     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2553       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2554     }
2555   }
2556   return result;
2557 }
2558 
2559 // Reserve memory at an arbitrary address, only if that area is
2560 // available (and not reserved for something else).
2561 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2562   char* addr = NULL;
2563 
2564   // Always round to os::vm_page_size(), which may be larger than 4K.
2565   bytes = align_up(bytes, os::vm_page_size());
2566 
2567   // In 4K mode always use mmap.
2568   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2569   if (os::vm_page_size() == 4*K) {
2570     return reserve_mmaped_memory(bytes, requested_addr, 0);
2571   } else {
2572     if (bytes >= Use64KPagesThreshold) {
2573       return reserve_shmated_memory(bytes, requested_addr, 0);
2574     } else {
2575       return reserve_mmaped_memory(bytes, requested_addr, 0);
2576     }
2577   }
2578 
2579   return addr;
2580 }
2581 
2582 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2583   return ::read(fd, buf, nBytes);
2584 }
2585 
2586 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2587   return ::pread(fd, buf, nBytes, offset);
2588 }
2589 
2590 void os::naked_short_sleep(jlong ms) {
2591   struct timespec req;
2592 
2593   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2594   req.tv_sec = 0;
2595   if (ms > 0) {
2596     req.tv_nsec = (ms % 1000) * 1000000;
2597   }
2598   else {
2599     req.tv_nsec = 1;
2600   }
2601 
2602   nanosleep(&req, NULL);
2603 
2604   return;
2605 }
2606 
2607 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2608 void os::infinite_sleep() {
2609   while (true) {    // sleep forever ...
2610     ::sleep(100);   // ... 100 seconds at a time
2611   }
2612 }
2613 
2614 // Used to convert frequent JVM_Yield() to nops
2615 bool os::dont_yield() {
2616   return DontYieldALot;
2617 }
2618 
2619 void os::naked_yield() {
2620   sched_yield();
2621 }
2622 
2623 ////////////////////////////////////////////////////////////////////////////////
2624 // thread priority support
2625 
2626 // From AIX manpage to pthread_setschedparam
2627 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2628 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2629 //
2630 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2631 // range from 40 to 80, where 40 is the least favored priority and 80
2632 // is the most favored."
2633 //
2634 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2635 // scheduling there; however, this still leaves iSeries.)
2636 //
2637 // We use the same values for AIX and PASE.
2638 int os::java_to_os_priority[CriticalPriority + 1] = {
2639   54,             // 0 Entry should never be used
2640 
2641   55,             // 1 MinPriority
2642   55,             // 2
2643   56,             // 3
2644 
2645   56,             // 4
2646   57,             // 5 NormPriority
2647   57,             // 6
2648 
2649   58,             // 7
2650   58,             // 8
2651   59,             // 9 NearMaxPriority
2652 
2653   60,             // 10 MaxPriority
2654 
2655   60              // 11 CriticalPriority
2656 };
2657 
2658 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2659   if (!UseThreadPriorities) return OS_OK;
2660   pthread_t thr = thread->osthread()->pthread_id();
2661   int policy = SCHED_OTHER;
2662   struct sched_param param;
2663   param.sched_priority = newpri;
2664   int ret = pthread_setschedparam(thr, policy, &param);
2665 
2666   if (ret != 0) {
2667     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2668         (int)thr, newpri, ret, os::errno_name(ret));
2669   }
2670   return (ret == 0) ? OS_OK : OS_ERR;
2671 }
2672 
2673 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2674   if (!UseThreadPriorities) {
2675     *priority_ptr = java_to_os_priority[NormPriority];
2676     return OS_OK;
2677   }
2678   pthread_t thr = thread->osthread()->pthread_id();
2679   int policy = SCHED_OTHER;
2680   struct sched_param param;
2681   int ret = pthread_getschedparam(thr, &policy, &param);
2682   *priority_ptr = param.sched_priority;
2683 
2684   return (ret == 0) ? OS_OK : OS_ERR;
2685 }
2686 
2687 // Hint to the underlying OS that a task switch would not be good.
2688 // Void return because it's a hint and can fail.
2689 void os::hint_no_preempt() {}
2690 
2691 ////////////////////////////////////////////////////////////////////////////////
2692 // suspend/resume support
2693 
2694 //  The low-level signal-based suspend/resume support is a remnant from the
2695 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2696 //  within hotspot. Currently used by JFR's OSThreadSampler
2697 //
2698 //  The remaining code is greatly simplified from the more general suspension
2699 //  code that used to be used.
2700 //
2701 //  The protocol is quite simple:
2702 //  - suspend:
2703 //      - sends a signal to the target thread
2704 //      - polls the suspend state of the osthread using a yield loop
2705 //      - target thread signal handler (SR_handler) sets suspend state
2706 //        and blocks in sigsuspend until continued
2707 //  - resume:
2708 //      - sets target osthread state to continue
2709 //      - sends signal to end the sigsuspend loop in the SR_handler
2710 //
2711 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2712 //  but is checked for NULL in SR_handler as a thread termination indicator.
2713 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
2714 //
2715 //  Note that resume_clear_context() and suspend_save_context() are needed
2716 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
2717 //  which in part is used by:
2718 //    - Forte Analyzer: AsyncGetCallTrace()
2719 //    - StackBanging: get_frame_at_stack_banging_point()
2720 
2721 static void resume_clear_context(OSThread *osthread) {
2722   osthread->set_ucontext(NULL);
2723   osthread->set_siginfo(NULL);
2724 }
2725 
2726 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2727   osthread->set_ucontext(context);
2728   osthread->set_siginfo(siginfo);
2729 }
2730 
2731 //
2732 // Handler function invoked when a thread's execution is suspended or
2733 // resumed. We have to be careful that only async-safe functions are
2734 // called here (Note: most pthread functions are not async safe and
2735 // should be avoided.)
2736 //
2737 // Note: sigwait() is a more natural fit than sigsuspend() from an
2738 // interface point of view, but sigwait() prevents the signal hander
2739 // from being run. libpthread would get very confused by not having
2740 // its signal handlers run and prevents sigwait()'s use with the
2741 // mutex granting granting signal.
2742 //
2743 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2744 //
2745 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2746   // Save and restore errno to avoid confusing native code with EINTR
2747   // after sigsuspend.
2748   int old_errno = errno;
2749 
2750   Thread* thread = Thread::current_or_null_safe();
2751   assert(thread != NULL, "Missing current thread in SR_handler");
2752 
2753   // On some systems we have seen signal delivery get "stuck" until the signal
2754   // mask is changed as part of thread termination. Check that the current thread
2755   // has not already terminated (via SR_lock()) - else the following assertion
2756   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2757   // destructor has completed.
2758 
2759   if (thread->SR_lock() == NULL) {
2760     return;
2761   }
2762 
2763   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2764 
2765   OSThread* osthread = thread->osthread();
2766 
2767   os::SuspendResume::State current = osthread->sr.state();
2768   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2769     suspend_save_context(osthread, siginfo, context);
2770 
2771     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2772     os::SuspendResume::State state = osthread->sr.suspended();
2773     if (state == os::SuspendResume::SR_SUSPENDED) {
2774       sigset_t suspend_set;  // signals for sigsuspend()
2775 
2776       // get current set of blocked signals and unblock resume signal
2777       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2778       sigdelset(&suspend_set, SR_signum);
2779 
2780       // wait here until we are resumed
2781       while (1) {
2782         sigsuspend(&suspend_set);
2783 
2784         os::SuspendResume::State result = osthread->sr.running();
2785         if (result == os::SuspendResume::SR_RUNNING) {
2786           break;
2787         }
2788       }
2789 
2790     } else if (state == os::SuspendResume::SR_RUNNING) {
2791       // request was cancelled, continue
2792     } else {
2793       ShouldNotReachHere();
2794     }
2795 
2796     resume_clear_context(osthread);
2797   } else if (current == os::SuspendResume::SR_RUNNING) {
2798     // request was cancelled, continue
2799   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2800     // ignore
2801   } else {
2802     ShouldNotReachHere();
2803   }
2804 
2805   errno = old_errno;
2806 }
2807 
2808 static int SR_initialize() {
2809   struct sigaction act;
2810   char *s;
2811   // Get signal number to use for suspend/resume
2812   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2813     int sig = ::strtol(s, 0, 10);
2814     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2815         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2816       SR_signum = sig;
2817     } else {
2818       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2819               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2820     }
2821   }
2822 
2823   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2824         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2825 
2826   sigemptyset(&SR_sigset);
2827   sigaddset(&SR_sigset, SR_signum);
2828 
2829   // Set up signal handler for suspend/resume.
2830   act.sa_flags = SA_RESTART|SA_SIGINFO;
2831   act.sa_handler = (void (*)(int)) SR_handler;
2832 
2833   // SR_signum is blocked by default.
2834   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2835 
2836   if (sigaction(SR_signum, &act, 0) == -1) {
2837     return -1;
2838   }
2839 
2840   // Save signal flag
2841   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2842   return 0;
2843 }
2844 
2845 static int SR_finalize() {
2846   return 0;
2847 }
2848 
2849 static int sr_notify(OSThread* osthread) {
2850   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2851   assert_status(status == 0, status, "pthread_kill");
2852   return status;
2853 }
2854 
2855 // "Randomly" selected value for how long we want to spin
2856 // before bailing out on suspending a thread, also how often
2857 // we send a signal to a thread we want to resume
2858 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2859 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2860 
2861 // returns true on success and false on error - really an error is fatal
2862 // but this seems the normal response to library errors
2863 static bool do_suspend(OSThread* osthread) {
2864   assert(osthread->sr.is_running(), "thread should be running");
2865   // mark as suspended and send signal
2866 
2867   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2868     // failed to switch, state wasn't running?
2869     ShouldNotReachHere();
2870     return false;
2871   }
2872 
2873   if (sr_notify(osthread) != 0) {
2874     // try to cancel, switch to running
2875 
2876     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2877     if (result == os::SuspendResume::SR_RUNNING) {
2878       // cancelled
2879       return false;
2880     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2881       // somehow managed to suspend
2882       return true;
2883     } else {
2884       ShouldNotReachHere();
2885       return false;
2886     }
2887   }
2888 
2889   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2890 
2891   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2892     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2893       os::naked_yield();
2894     }
2895 
2896     // timeout, try to cancel the request
2897     if (n >= RANDOMLY_LARGE_INTEGER) {
2898       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2899       if (cancelled == os::SuspendResume::SR_RUNNING) {
2900         return false;
2901       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2902         return true;
2903       } else {
2904         ShouldNotReachHere();
2905         return false;
2906       }
2907     }
2908   }
2909 
2910   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2911   return true;
2912 }
2913 
2914 static void do_resume(OSThread* osthread) {
2915   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2916 
2917   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2918     // failed to switch to WAKEUP_REQUEST
2919     ShouldNotReachHere();
2920     return;
2921   }
2922 
2923   while (!osthread->sr.is_running()) {
2924     if (sr_notify(osthread) == 0) {
2925       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2926         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2927           os::naked_yield();
2928         }
2929       }
2930     } else {
2931       ShouldNotReachHere();
2932     }
2933   }
2934 
2935   guarantee(osthread->sr.is_running(), "Must be running!");
2936 }
2937 
2938 ///////////////////////////////////////////////////////////////////////////////////
2939 // signal handling (except suspend/resume)
2940 
2941 // This routine may be used by user applications as a "hook" to catch signals.
2942 // The user-defined signal handler must pass unrecognized signals to this
2943 // routine, and if it returns true (non-zero), then the signal handler must
2944 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2945 // routine will never retun false (zero), but instead will execute a VM panic
2946 // routine kill the process.
2947 //
2948 // If this routine returns false, it is OK to call it again. This allows
2949 // the user-defined signal handler to perform checks either before or after
2950 // the VM performs its own checks. Naturally, the user code would be making
2951 // a serious error if it tried to handle an exception (such as a null check
2952 // or breakpoint) that the VM was generating for its own correct operation.
2953 //
2954 // This routine may recognize any of the following kinds of signals:
2955 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2956 // It should be consulted by handlers for any of those signals.
2957 //
2958 // The caller of this routine must pass in the three arguments supplied
2959 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2960 // field of the structure passed to sigaction(). This routine assumes that
2961 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2962 //
2963 // Note that the VM will print warnings if it detects conflicting signal
2964 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2965 //
2966 extern "C" JNIEXPORT int
2967 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
2968 
2969 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
2970 // to be the thing to call; documentation is not terribly clear about whether
2971 // pthread_sigmask also works, and if it does, whether it does the same.
2972 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
2973   const int rc = ::pthread_sigmask(how, set, oset);
2974   // return value semantics differ slightly for error case:
2975   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
2976   // (so, pthread_sigmask is more theadsafe for error handling)
2977   // But success is always 0.
2978   return rc == 0 ? true : false;
2979 }
2980 
2981 // Function to unblock all signals which are, according
2982 // to POSIX, typical program error signals. If they happen while being blocked,
2983 // they typically will bring down the process immediately.
2984 bool unblock_program_error_signals() {
2985   sigset_t set;
2986   ::sigemptyset(&set);
2987   ::sigaddset(&set, SIGILL);
2988   ::sigaddset(&set, SIGBUS);
2989   ::sigaddset(&set, SIGFPE);
2990   ::sigaddset(&set, SIGSEGV);
2991   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
2992 }
2993 
2994 // Renamed from 'signalHandler' to avoid collision with other shared libs.
2995 void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
2996   assert(info != NULL && uc != NULL, "it must be old kernel");
2997 
2998   // Never leave program error signals blocked;
2999   // on all our platforms they would bring down the process immediately when
3000   // getting raised while being blocked.
3001   unblock_program_error_signals();
3002 
3003   int orig_errno = errno;  // Preserve errno value over signal handler.
3004   JVM_handle_aix_signal(sig, info, uc, true);
3005   errno = orig_errno;
3006 }
3007 
3008 // This boolean allows users to forward their own non-matching signals
3009 // to JVM_handle_aix_signal, harmlessly.
3010 bool os::Aix::signal_handlers_are_installed = false;
3011 
3012 // For signal-chaining
3013 struct sigaction sigact[NSIG];
3014 sigset_t sigs;
3015 bool os::Aix::libjsig_is_loaded = false;
3016 typedef struct sigaction *(*get_signal_t)(int);
3017 get_signal_t os::Aix::get_signal_action = NULL;
3018 
3019 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
3020   struct sigaction *actp = NULL;
3021 
3022   if (libjsig_is_loaded) {
3023     // Retrieve the old signal handler from libjsig
3024     actp = (*get_signal_action)(sig);
3025   }
3026   if (actp == NULL) {
3027     // Retrieve the preinstalled signal handler from jvm
3028     actp = get_preinstalled_handler(sig);
3029   }
3030 
3031   return actp;
3032 }
3033 
3034 static bool call_chained_handler(struct sigaction *actp, int sig,
3035                                  siginfo_t *siginfo, void *context) {
3036   // Call the old signal handler
3037   if (actp->sa_handler == SIG_DFL) {
3038     // It's more reasonable to let jvm treat it as an unexpected exception
3039     // instead of taking the default action.
3040     return false;
3041   } else if (actp->sa_handler != SIG_IGN) {
3042     if ((actp->sa_flags & SA_NODEFER) == 0) {
3043       // automaticlly block the signal
3044       sigaddset(&(actp->sa_mask), sig);
3045     }
3046 
3047     sa_handler_t hand = NULL;
3048     sa_sigaction_t sa = NULL;
3049     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3050     // retrieve the chained handler
3051     if (siginfo_flag_set) {
3052       sa = actp->sa_sigaction;
3053     } else {
3054       hand = actp->sa_handler;
3055     }
3056 
3057     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3058       actp->sa_handler = SIG_DFL;
3059     }
3060 
3061     // try to honor the signal mask
3062     sigset_t oset;
3063     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3064 
3065     // call into the chained handler
3066     if (siginfo_flag_set) {
3067       (*sa)(sig, siginfo, context);
3068     } else {
3069       (*hand)(sig);
3070     }
3071 
3072     // restore the signal mask
3073     pthread_sigmask(SIG_SETMASK, &oset, 0);
3074   }
3075   // Tell jvm's signal handler the signal is taken care of.
3076   return true;
3077 }
3078 
3079 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3080   bool chained = false;
3081   // signal-chaining
3082   if (UseSignalChaining) {
3083     struct sigaction *actp = get_chained_signal_action(sig);
3084     if (actp != NULL) {
3085       chained = call_chained_handler(actp, sig, siginfo, context);
3086     }
3087   }
3088   return chained;
3089 }
3090 
3091 struct sigaction* os::Aix::get_preinstalled_handler(int sig) {
3092   if (sigismember(&sigs, sig)) {
3093     return &sigact[sig];
3094   }
3095   return NULL;
3096 }
3097 
3098 void os::Aix::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3099   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3100   sigact[sig] = oldAct;
3101   sigaddset(&sigs, sig);
3102 }
3103 
3104 // for diagnostic
3105 int sigflags[NSIG];
3106 
3107 int os::Aix::get_our_sigflags(int sig) {
3108   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3109   return sigflags[sig];
3110 }
3111 
3112 void os::Aix::set_our_sigflags(int sig, int flags) {
3113   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3114   if (sig > 0 && sig < NSIG) {
3115     sigflags[sig] = flags;
3116   }
3117 }
3118 
3119 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3120   // Check for overwrite.
3121   struct sigaction oldAct;
3122   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3123 
3124   void* oldhand = oldAct.sa_sigaction
3125     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3126     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3127   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3128       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3129       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3130     if (AllowUserSignalHandlers || !set_installed) {
3131       // Do not overwrite; user takes responsibility to forward to us.
3132       return;
3133     } else if (UseSignalChaining) {
3134       // save the old handler in jvm
3135       save_preinstalled_handler(sig, oldAct);
3136       // libjsig also interposes the sigaction() call below and saves the
3137       // old sigaction on it own.
3138     } else {
3139       fatal("Encountered unexpected pre-existing sigaction handler "
3140             "%#lx for signal %d.", (long)oldhand, sig);
3141     }
3142   }
3143 
3144   struct sigaction sigAct;
3145   sigfillset(&(sigAct.sa_mask));
3146   if (!set_installed) {
3147     sigAct.sa_handler = SIG_DFL;
3148     sigAct.sa_flags = SA_RESTART;
3149   } else {
3150     sigAct.sa_sigaction = javaSignalHandler;
3151     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3152   }
3153   // Save flags, which are set by ours
3154   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3155   sigflags[sig] = sigAct.sa_flags;
3156 
3157   int ret = sigaction(sig, &sigAct, &oldAct);
3158   assert(ret == 0, "check");
3159 
3160   void* oldhand2 = oldAct.sa_sigaction
3161                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3162                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3163   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3164 }
3165 
3166 // install signal handlers for signals that HotSpot needs to
3167 // handle in order to support Java-level exception handling.
3168 void os::Aix::install_signal_handlers() {
3169   if (!signal_handlers_are_installed) {
3170     signal_handlers_are_installed = true;
3171 
3172     // signal-chaining
3173     typedef void (*signal_setting_t)();
3174     signal_setting_t begin_signal_setting = NULL;
3175     signal_setting_t end_signal_setting = NULL;
3176     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3177                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3178     if (begin_signal_setting != NULL) {
3179       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3180                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3181       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3182                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3183       libjsig_is_loaded = true;
3184       assert(UseSignalChaining, "should enable signal-chaining");
3185     }
3186     if (libjsig_is_loaded) {
3187       // Tell libjsig jvm is setting signal handlers.
3188       (*begin_signal_setting)();
3189     }
3190 
3191     ::sigemptyset(&sigs);
3192     set_signal_handler(SIGSEGV, true);
3193     set_signal_handler(SIGPIPE, true);
3194     set_signal_handler(SIGBUS, true);
3195     set_signal_handler(SIGILL, true);
3196     set_signal_handler(SIGFPE, true);
3197     set_signal_handler(SIGTRAP, true);
3198     set_signal_handler(SIGXFSZ, true);
3199 
3200     if (libjsig_is_loaded) {
3201       // Tell libjsig jvm finishes setting signal handlers.
3202       (*end_signal_setting)();
3203     }
3204 
3205     // We don't activate signal checker if libjsig is in place, we trust ourselves
3206     // and if UserSignalHandler is installed all bets are off.
3207     // Log that signal checking is off only if -verbose:jni is specified.
3208     if (CheckJNICalls) {
3209       if (libjsig_is_loaded) {
3210         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3211         check_signals = false;
3212       }
3213       if (AllowUserSignalHandlers) {
3214         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3215         check_signals = false;
3216       }
3217       // Need to initialize check_signal_done.
3218       ::sigemptyset(&check_signal_done);
3219     }
3220   }
3221 }
3222 
3223 static const char* get_signal_handler_name(address handler,
3224                                            char* buf, int buflen) {
3225   int offset;
3226   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3227   if (found) {
3228     // skip directory names
3229     const char *p1, *p2;
3230     p1 = buf;
3231     size_t len = strlen(os::file_separator());
3232     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3233     // The way os::dll_address_to_library_name is implemented on Aix
3234     // right now, it always returns -1 for the offset which is not
3235     // terribly informative.
3236     // Will fix that. For now, omit the offset.
3237     jio_snprintf(buf, buflen, "%s", p1);
3238   } else {
3239     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3240   }
3241   return buf;
3242 }
3243 
3244 static void print_signal_handler(outputStream* st, int sig,
3245                                  char* buf, size_t buflen) {
3246   struct sigaction sa;
3247   sigaction(sig, NULL, &sa);
3248 
3249   st->print("%s: ", os::exception_name(sig, buf, buflen));
3250 
3251   address handler = (sa.sa_flags & SA_SIGINFO)
3252     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3253     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3254 
3255   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3256     st->print("SIG_DFL");
3257   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3258     st->print("SIG_IGN");
3259   } else {
3260     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3261   }
3262 
3263   // Print readable mask.
3264   st->print(", sa_mask[0]=");
3265   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3266 
3267   address rh = VMError::get_resetted_sighandler(sig);
3268   // May be, handler was resetted by VMError?
3269   if (rh != NULL) {
3270     handler = rh;
3271     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3272   }
3273 
3274   // Print textual representation of sa_flags.
3275   st->print(", sa_flags=");
3276   os::Posix::print_sa_flags(st, sa.sa_flags);
3277 
3278   // Check: is it our handler?
3279   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3280       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3281     // It is our signal handler.
3282     // Check for flags, reset system-used one!
3283     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3284       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3285                 os::Aix::get_our_sigflags(sig));
3286     }
3287   }
3288   st->cr();
3289 }
3290 
3291 #define DO_SIGNAL_CHECK(sig) \
3292   if (!sigismember(&check_signal_done, sig)) \
3293     os::Aix::check_signal_handler(sig)
3294 
3295 // This method is a periodic task to check for misbehaving JNI applications
3296 // under CheckJNI, we can add any periodic checks here
3297 
3298 void os::run_periodic_checks() {
3299 
3300   if (check_signals == false) return;
3301 
3302   // SEGV and BUS if overridden could potentially prevent
3303   // generation of hs*.log in the event of a crash, debugging
3304   // such a case can be very challenging, so we absolutely
3305   // check the following for a good measure:
3306   DO_SIGNAL_CHECK(SIGSEGV);
3307   DO_SIGNAL_CHECK(SIGILL);
3308   DO_SIGNAL_CHECK(SIGFPE);
3309   DO_SIGNAL_CHECK(SIGBUS);
3310   DO_SIGNAL_CHECK(SIGPIPE);
3311   DO_SIGNAL_CHECK(SIGXFSZ);
3312   if (UseSIGTRAP) {
3313     DO_SIGNAL_CHECK(SIGTRAP);
3314   }
3315 
3316   // ReduceSignalUsage allows the user to override these handlers
3317   // see comments at the very top and jvm_md.h
3318   if (!ReduceSignalUsage) {
3319     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3320     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3321     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3322     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3323   }
3324 
3325   DO_SIGNAL_CHECK(SR_signum);
3326 }
3327 
3328 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3329 
3330 static os_sigaction_t os_sigaction = NULL;
3331 
3332 void os::Aix::check_signal_handler(int sig) {
3333   char buf[O_BUFLEN];
3334   address jvmHandler = NULL;
3335 
3336   struct sigaction act;
3337   if (os_sigaction == NULL) {
3338     // only trust the default sigaction, in case it has been interposed
3339     os_sigaction = CAST_TO_FN_PTR(os_sigaction_t, dlsym(RTLD_DEFAULT, "sigaction"));
3340     if (os_sigaction == NULL) return;
3341   }
3342 
3343   os_sigaction(sig, (struct sigaction*)NULL, &act);
3344 
3345   address thisHandler = (act.sa_flags & SA_SIGINFO)
3346     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3347     : CAST_FROM_FN_PTR(address, act.sa_handler);
3348 
3349   switch(sig) {
3350   case SIGSEGV:
3351   case SIGBUS:
3352   case SIGFPE:
3353   case SIGPIPE:
3354   case SIGILL:
3355   case SIGXFSZ:
3356     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3357     break;
3358 
3359   case SHUTDOWN1_SIGNAL:
3360   case SHUTDOWN2_SIGNAL:
3361   case SHUTDOWN3_SIGNAL:
3362   case BREAK_SIGNAL:
3363     jvmHandler = (address)user_handler();
3364     break;
3365 
3366   default:
3367     if (sig == SR_signum) {
3368       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3369     } else {
3370       return;
3371     }
3372     break;
3373   }
3374 
3375   if (thisHandler != jvmHandler) {
3376     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3377     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3378     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3379     // No need to check this sig any longer
3380     sigaddset(&check_signal_done, sig);
3381     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3382     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3383       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3384                     exception_name(sig, buf, O_BUFLEN));
3385     }
3386   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3387     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3388     tty->print("expected:");
3389     os::Posix::print_sa_flags(tty, os::Aix::get_our_sigflags(sig));
3390     tty->cr();
3391     tty->print("  found:");
3392     os::Posix::print_sa_flags(tty, act.sa_flags);
3393     tty->cr();
3394     // No need to check this sig any longer
3395     sigaddset(&check_signal_done, sig);
3396   }
3397 
3398   // Dump all the signal
3399   if (sigismember(&check_signal_done, sig)) {
3400     print_signal_handlers(tty, buf, O_BUFLEN);
3401   }
3402 }
3403 
3404 // To install functions for atexit system call
3405 extern "C" {
3406   static void perfMemory_exit_helper() {
3407     perfMemory_exit();
3408   }
3409 }
3410 
3411 // This is called _before_ the most of global arguments have been parsed.
3412 void os::init(void) {
3413   // This is basic, we want to know if that ever changes.
3414   // (Shared memory boundary is supposed to be a 256M aligned.)
3415   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3416 
3417   // Record process break at startup.
3418   g_brk_at_startup = (address) ::sbrk(0);
3419   assert(g_brk_at_startup != (address) -1, "sbrk failed");
3420 
3421   // First off, we need to know whether we run on AIX or PASE, and
3422   // the OS level we run on.
3423   os::Aix::initialize_os_info();
3424 
3425   // Scan environment (SPEC1170 behaviour, etc).
3426   os::Aix::scan_environment();
3427 
3428   // Probe multipage support.
3429   query_multipage_support();
3430 
3431   // Act like we only have one page size by eliminating corner cases which
3432   // we did not support very well anyway.
3433   // We have two input conditions:
3434   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3435   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3436   //    setting.
3437   //    Data segment page size is important for us because it defines the thread stack page
3438   //    size, which is needed for guard page handling, stack banging etc.
3439   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3440   //    and should be allocated with 64k pages.
3441   //
3442   // So, we do the following:
3443   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3444   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3445   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3446   // 64k          no              --- AIX 5.2 ? ---
3447   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3448 
3449   // We explicitly leave no option to change page size, because only upgrading would work,
3450   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3451 
3452   if (g_multipage_support.datapsize == 4*K) {
3453     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3454     if (g_multipage_support.can_use_64K_pages) {
3455       // .. but we are able to use 64K pages dynamically.
3456       // This would be typical for java launchers which are not linked
3457       // with datapsize=64K (like, any other launcher but our own).
3458       //
3459       // In this case it would be smart to allocate the java heap with 64K
3460       // to get the performance benefit, and to fake 64k pages for the
3461       // data segment (when dealing with thread stacks).
3462       //
3463       // However, leave a possibility to downgrade to 4K, using
3464       // -XX:-Use64KPages.
3465       if (Use64KPages) {
3466         trcVerbose("64K page mode (faked for data segment)");
3467         Aix::_page_size = 64*K;
3468       } else {
3469         trcVerbose("4K page mode (Use64KPages=off)");
3470         Aix::_page_size = 4*K;
3471       }
3472     } else {
3473       // .. and not able to allocate 64k pages dynamically. Here, just
3474       // fall back to 4K paged mode and use mmap for everything.
3475       trcVerbose("4K page mode");
3476       Aix::_page_size = 4*K;
3477       FLAG_SET_ERGO(bool, Use64KPages, false);
3478     }
3479   } else {
3480     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3481     // This normally means that we can allocate 64k pages dynamically.
3482     // (There is one special case where this may be false: EXTSHM=on.
3483     // but we decided to not support that mode).
3484     assert0(g_multipage_support.can_use_64K_pages);
3485     Aix::_page_size = 64*K;
3486     trcVerbose("64K page mode");
3487     FLAG_SET_ERGO(bool, Use64KPages, true);
3488   }
3489 
3490   // For now UseLargePages is just ignored.
3491   FLAG_SET_ERGO(bool, UseLargePages, false);
3492   _page_sizes[0] = 0;
3493 
3494   // debug trace
3495   trcVerbose("os::vm_page_size %s", describe_pagesize(os::vm_page_size()));
3496 
3497   // Next, we need to initialize libo4 and libperfstat libraries.
3498   if (os::Aix::on_pase()) {
3499     os::Aix::initialize_libo4();
3500   } else {
3501     os::Aix::initialize_libperfstat();
3502   }
3503 
3504   // Reset the perfstat information provided by ODM.
3505   if (os::Aix::on_aix()) {
3506     libperfstat::perfstat_reset();
3507   }
3508 
3509   // Now initialze basic system properties. Note that for some of the values we
3510   // need libperfstat etc.
3511   os::Aix::initialize_system_info();
3512 
3513   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3514 
3515   init_random(1234567);
3516 
3517   // _main_thread points to the thread that created/loaded the JVM.
3518   Aix::_main_thread = pthread_self();
3519 
3520   initial_time_count = os::elapsed_counter();
3521 
3522   os::Posix::init();
3523 }
3524 
3525 // This is called _after_ the global arguments have been parsed.
3526 jint os::init_2(void) {
3527 
3528   os::Posix::init_2();
3529 
3530   if (os::Aix::on_pase()) {
3531     trcVerbose("Running on PASE.");
3532   } else {
3533     trcVerbose("Running on AIX (not PASE).");
3534   }
3535 
3536   trcVerbose("processor count: %d", os::_processor_count);
3537   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3538 
3539   // Initially build up the loaded dll map.
3540   LoadedLibraries::reload();
3541   if (Verbose) {
3542     trcVerbose("Loaded Libraries: ");
3543     LoadedLibraries::print(tty);
3544   }
3545 
3546   // initialize suspend/resume support - must do this before signal_sets_init()
3547   if (SR_initialize() != 0) {
3548     perror("SR_initialize failed");
3549     return JNI_ERR;
3550   }
3551 
3552   Aix::signal_sets_init();
3553   Aix::install_signal_handlers();
3554 
3555   // Check and sets minimum stack sizes against command line options
3556   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3557     return JNI_ERR;
3558   }
3559 
3560   if (UseNUMA) {
3561     UseNUMA = false;
3562     warning("NUMA optimizations are not available on this OS.");
3563   }
3564 
3565   if (MaxFDLimit) {
3566     // Set the number of file descriptors to max. print out error
3567     // if getrlimit/setrlimit fails but continue regardless.
3568     struct rlimit nbr_files;
3569     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3570     if (status != 0) {
3571       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3572     } else {
3573       nbr_files.rlim_cur = nbr_files.rlim_max;
3574       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3575       if (status != 0) {
3576         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3577       }
3578     }
3579   }
3580 
3581   if (PerfAllowAtExitRegistration) {
3582     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3583     // At exit functions can be delayed until process exit time, which
3584     // can be problematic for embedded VM situations. Embedded VMs should
3585     // call DestroyJavaVM() to assure that VM resources are released.
3586 
3587     // Note: perfMemory_exit_helper atexit function may be removed in
3588     // the future if the appropriate cleanup code can be added to the
3589     // VM_Exit VMOperation's doit method.
3590     if (atexit(perfMemory_exit_helper) != 0) {
3591       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3592     }
3593   }
3594 
3595   return JNI_OK;
3596 }
3597 
3598 // Mark the polling page as unreadable
3599 void os::make_polling_page_unreadable(void) {
3600   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3601     fatal("Could not disable polling page");
3602   }
3603 };
3604 
3605 // Mark the polling page as readable
3606 void os::make_polling_page_readable(void) {
3607   // Changed according to os_linux.cpp.
3608   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3609     fatal("Could not enable polling page at " PTR_FORMAT, _polling_page);
3610   }
3611 };
3612 
3613 int os::active_processor_count() {
3614   // User has overridden the number of active processors
3615   if (ActiveProcessorCount > 0) {
3616     log_trace(os)("active_processor_count: "
3617                   "active processor count set by user : %d",
3618                   ActiveProcessorCount);
3619     return ActiveProcessorCount;
3620   }
3621 
3622   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3623   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3624   return online_cpus;
3625 }
3626 
3627 void os::set_native_thread_name(const char *name) {
3628   // Not yet implemented.
3629   return;
3630 }
3631 
3632 bool os::distribute_processes(uint length, uint* distribution) {
3633   // Not yet implemented.
3634   return false;
3635 }
3636 
3637 bool os::bind_to_processor(uint processor_id) {
3638   // Not yet implemented.
3639   return false;
3640 }
3641 
3642 void os::SuspendedThreadTask::internal_do_task() {
3643   if (do_suspend(_thread->osthread())) {
3644     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3645     do_task(context);
3646     do_resume(_thread->osthread());
3647   }
3648 }
3649 
3650 ////////////////////////////////////////////////////////////////////////////////
3651 // debug support
3652 
3653 bool os::find(address addr, outputStream* st) {
3654 
3655   st->print(PTR_FORMAT ": ", addr);
3656 
3657   loaded_module_t lm;
3658   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL ||
3659       LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
3660     st->print_cr("%s", lm.path);
3661     return true;
3662   }
3663 
3664   return false;
3665 }
3666 
3667 ////////////////////////////////////////////////////////////////////////////////
3668 // misc
3669 
3670 // This does not do anything on Aix. This is basically a hook for being
3671 // able to use structured exception handling (thread-local exception filters)
3672 // on, e.g., Win32.
3673 void
3674 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
3675                          JavaCallArguments* args, Thread* thread) {
3676   f(value, method, args, thread);
3677 }
3678 
3679 void os::print_statistics() {
3680 }
3681 
3682 bool os::message_box(const char* title, const char* message) {
3683   int i;
3684   fdStream err(defaultStream::error_fd());
3685   for (i = 0; i < 78; i++) err.print_raw("=");
3686   err.cr();
3687   err.print_raw_cr(title);
3688   for (i = 0; i < 78; i++) err.print_raw("-");
3689   err.cr();
3690   err.print_raw_cr(message);
3691   for (i = 0; i < 78; i++) err.print_raw("=");
3692   err.cr();
3693 
3694   char buf[16];
3695   // Prevent process from exiting upon "read error" without consuming all CPU
3696   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3697 
3698   return buf[0] == 'y' || buf[0] == 'Y';
3699 }
3700 
3701 int os::stat(const char *path, struct stat *sbuf) {
3702   char pathbuf[MAX_PATH];
3703   if (strlen(path) > MAX_PATH - 1) {
3704     errno = ENAMETOOLONG;
3705     return -1;
3706   }
3707   os::native_path(strcpy(pathbuf, path));
3708   return ::stat(pathbuf, sbuf);
3709 }
3710 
3711 // Is a (classpath) directory empty?
3712 bool os::dir_is_empty(const char* path) {
3713   DIR *dir = NULL;
3714   struct dirent *ptr;
3715 
3716   dir = opendir(path);
3717   if (dir == NULL) return true;
3718 
3719   /* Scan the directory */
3720   bool result = true;
3721   char buf[sizeof(struct dirent) + MAX_PATH];
3722   while (result && (ptr = ::readdir(dir)) != NULL) {
3723     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3724       result = false;
3725     }
3726   }
3727   closedir(dir);
3728   return result;
3729 }
3730 
3731 // This code originates from JDK's sysOpen and open64_w
3732 // from src/solaris/hpi/src/system_md.c
3733 
3734 int os::open(const char *path, int oflag, int mode) {
3735 
3736   if (strlen(path) > MAX_PATH - 1) {
3737     errno = ENAMETOOLONG;
3738     return -1;
3739   }
3740   int fd;
3741 
3742   fd = ::open64(path, oflag, mode);
3743   if (fd == -1) return -1;
3744 
3745   // If the open succeeded, the file might still be a directory.
3746   {
3747     struct stat64 buf64;
3748     int ret = ::fstat64(fd, &buf64);
3749     int st_mode = buf64.st_mode;
3750 
3751     if (ret != -1) {
3752       if ((st_mode & S_IFMT) == S_IFDIR) {
3753         errno = EISDIR;
3754         ::close(fd);
3755         return -1;
3756       }
3757     } else {
3758       ::close(fd);
3759       return -1;
3760     }
3761   }
3762 
3763   // All file descriptors that are opened in the JVM and not
3764   // specifically destined for a subprocess should have the
3765   // close-on-exec flag set. If we don't set it, then careless 3rd
3766   // party native code might fork and exec without closing all
3767   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3768   // UNIXProcess.c), and this in turn might:
3769   //
3770   // - cause end-of-file to fail to be detected on some file
3771   //   descriptors, resulting in mysterious hangs, or
3772   //
3773   // - might cause an fopen in the subprocess to fail on a system
3774   //   suffering from bug 1085341.
3775   //
3776   // (Yes, the default setting of the close-on-exec flag is a Unix
3777   // design flaw.)
3778   //
3779   // See:
3780   // 1085341: 32-bit stdio routines should support file descriptors >255
3781   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3782   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3783 #ifdef FD_CLOEXEC
3784   {
3785     int flags = ::fcntl(fd, F_GETFD);
3786     if (flags != -1)
3787       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3788   }
3789 #endif
3790 
3791   return fd;
3792 }
3793 
3794 // create binary file, rewriting existing file if required
3795 int os::create_binary_file(const char* path, bool rewrite_existing) {
3796   int oflags = O_WRONLY | O_CREAT;
3797   if (!rewrite_existing) {
3798     oflags |= O_EXCL;
3799   }
3800   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3801 }
3802 
3803 // return current position of file pointer
3804 jlong os::current_file_offset(int fd) {
3805   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3806 }
3807 
3808 // move file pointer to the specified offset
3809 jlong os::seek_to_file_offset(int fd, jlong offset) {
3810   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3811 }
3812 
3813 // This code originates from JDK's sysAvailable
3814 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3815 
3816 int os::available(int fd, jlong *bytes) {
3817   jlong cur, end;
3818   int mode;
3819   struct stat64 buf64;
3820 
3821   if (::fstat64(fd, &buf64) >= 0) {
3822     mode = buf64.st_mode;
3823     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3824       int n;
3825       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3826         *bytes = n;
3827         return 1;
3828       }
3829     }
3830   }
3831   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3832     return 0;
3833   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3834     return 0;
3835   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3836     return 0;
3837   }
3838   *bytes = end - cur;
3839   return 1;
3840 }
3841 
3842 // Map a block of memory.
3843 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3844                         char *addr, size_t bytes, bool read_only,
3845                         bool allow_exec) {
3846   int prot;
3847   int flags = MAP_PRIVATE;
3848 
3849   if (read_only) {
3850     prot = PROT_READ;
3851     flags = MAP_SHARED;
3852   } else {
3853     prot = PROT_READ | PROT_WRITE;
3854     flags = MAP_PRIVATE;
3855   }
3856 
3857   if (allow_exec) {
3858     prot |= PROT_EXEC;
3859   }
3860 
3861   if (addr != NULL) {
3862     flags |= MAP_FIXED;
3863   }
3864 
3865   // Allow anonymous mappings if 'fd' is -1.
3866   if (fd == -1) {
3867     flags |= MAP_ANONYMOUS;
3868   }
3869 
3870   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
3871                                      fd, file_offset);
3872   if (mapped_address == MAP_FAILED) {
3873     return NULL;
3874   }
3875   return mapped_address;
3876 }
3877 
3878 // Remap a block of memory.
3879 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3880                           char *addr, size_t bytes, bool read_only,
3881                           bool allow_exec) {
3882   // same as map_memory() on this OS
3883   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3884                         allow_exec);
3885 }
3886 
3887 // Unmap a block of memory.
3888 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3889   return munmap(addr, bytes) == 0;
3890 }
3891 
3892 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3893 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3894 // of a thread.
3895 //
3896 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3897 // the fast estimate available on the platform.
3898 
3899 jlong os::current_thread_cpu_time() {
3900   // return user + sys since the cost is the same
3901   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
3902   assert(n >= 0, "negative CPU time");
3903   return n;
3904 }
3905 
3906 jlong os::thread_cpu_time(Thread* thread) {
3907   // consistent with what current_thread_cpu_time() returns
3908   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
3909   assert(n >= 0, "negative CPU time");
3910   return n;
3911 }
3912 
3913 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3914   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3915   assert(n >= 0, "negative CPU time");
3916   return n;
3917 }
3918 
3919 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
3920   bool error = false;
3921 
3922   jlong sys_time = 0;
3923   jlong user_time = 0;
3924 
3925   // Reimplemented using getthrds64().
3926   //
3927   // Works like this:
3928   // For the thread in question, get the kernel thread id. Then get the
3929   // kernel thread statistics using that id.
3930   //
3931   // This only works of course when no pthread scheduling is used,
3932   // i.e. there is a 1:1 relationship to kernel threads.
3933   // On AIX, see AIXTHREAD_SCOPE variable.
3934 
3935   pthread_t pthtid = thread->osthread()->pthread_id();
3936 
3937   // retrieve kernel thread id for the pthread:
3938   tid64_t tid = 0;
3939   struct __pthrdsinfo pinfo;
3940   // I just love those otherworldly IBM APIs which force me to hand down
3941   // dummy buffers for stuff I dont care for...
3942   char dummy[1];
3943   int dummy_size = sizeof(dummy);
3944   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
3945                           dummy, &dummy_size) == 0) {
3946     tid = pinfo.__pi_tid;
3947   } else {
3948     tty->print_cr("pthread_getthrds_np failed.");
3949     error = true;
3950   }
3951 
3952   // retrieve kernel timing info for that kernel thread
3953   if (!error) {
3954     struct thrdentry64 thrdentry;
3955     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
3956       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
3957       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
3958     } else {
3959       tty->print_cr("pthread_getthrds_np failed.");
3960       error = true;
3961     }
3962   }
3963 
3964   if (p_sys_time) {
3965     *p_sys_time = sys_time;
3966   }
3967 
3968   if (p_user_time) {
3969     *p_user_time = user_time;
3970   }
3971 
3972   if (error) {
3973     return false;
3974   }
3975 
3976   return true;
3977 }
3978 
3979 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3980   jlong sys_time;
3981   jlong user_time;
3982 
3983   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
3984     return -1;
3985   }
3986 
3987   return user_sys_cpu_time ? sys_time + user_time : user_time;
3988 }
3989 
3990 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3991   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3992   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3993   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3994   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3995 }
3996 
3997 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3998   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3999   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4000   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4001   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4002 }
4003 
4004 bool os::is_thread_cpu_time_supported() {
4005   return true;
4006 }
4007 
4008 // System loadavg support. Returns -1 if load average cannot be obtained.
4009 // For now just return the system wide load average (no processor sets).
4010 int os::loadavg(double values[], int nelem) {
4011 
4012   guarantee(nelem >= 0 && nelem <= 3, "argument error");
4013   guarantee(values, "argument error");
4014 
4015   if (os::Aix::on_pase()) {
4016 
4017     // AS/400 PASE: use libo4 porting library
4018     double v[3] = { 0.0, 0.0, 0.0 };
4019 
4020     if (libo4::get_load_avg(v, v + 1, v + 2)) {
4021       for (int i = 0; i < nelem; i ++) {
4022         values[i] = v[i];
4023       }
4024       return nelem;
4025     } else {
4026       return -1;
4027     }
4028 
4029   } else {
4030 
4031     // AIX: use libperfstat
4032     libperfstat::cpuinfo_t ci;
4033     if (libperfstat::get_cpuinfo(&ci)) {
4034       for (int i = 0; i < nelem; i++) {
4035         values[i] = ci.loadavg[i];
4036       }
4037     } else {
4038       return -1;
4039     }
4040     return nelem;
4041   }
4042 }
4043 
4044 void os::pause() {
4045   char filename[MAX_PATH];
4046   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4047     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4048   } else {
4049     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4050   }
4051 
4052   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4053   if (fd != -1) {
4054     struct stat buf;
4055     ::close(fd);
4056     while (::stat(filename, &buf) == 0) {
4057       (void)::poll(NULL, 0, 100);
4058     }
4059   } else {
4060     trcVerbose("Could not open pause file '%s', continuing immediately.", filename);
4061   }
4062 }
4063 
4064 bool os::is_primordial_thread(void) {
4065   if (pthread_self() == (pthread_t)1) {
4066     return true;
4067   } else {
4068     return false;
4069   }
4070 }
4071 
4072 // OS recognitions (PASE/AIX, OS level) call this before calling any
4073 // one of Aix::on_pase(), Aix::os_version() static
4074 void os::Aix::initialize_os_info() {
4075 
4076   assert(_on_pase == -1 && _os_version == 0, "already called.");
4077 
4078   struct utsname uts;
4079   memset(&uts, 0, sizeof(uts));
4080   strcpy(uts.sysname, "?");
4081   if (::uname(&uts) == -1) {
4082     trcVerbose("uname failed (%d)", errno);
4083     guarantee(0, "Could not determine whether we run on AIX or PASE");
4084   } else {
4085     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4086                "node \"%s\" machine \"%s\"\n",
4087                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4088     const int major = atoi(uts.version);
4089     assert(major > 0, "invalid OS version");
4090     const int minor = atoi(uts.release);
4091     assert(minor > 0, "invalid OS release");
4092     _os_version = (major << 24) | (minor << 16);
4093     char ver_str[20] = {0};
4094     char *name_str = "unknown OS";
4095     if (strcmp(uts.sysname, "OS400") == 0) {
4096       // We run on AS/400 PASE. We do not support versions older than V5R4M0.
4097       _on_pase = 1;
4098       if (os_version_short() < 0x0504) {
4099         trcVerbose("OS/400 releases older than V5R4M0 not supported.");
4100         assert(false, "OS/400 release too old.");
4101       }
4102       name_str = "OS/400 (pase)";
4103       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u", major, minor);
4104     } else if (strcmp(uts.sysname, "AIX") == 0) {
4105       // We run on AIX. We do not support versions older than AIX 5.3.
4106       _on_pase = 0;
4107       // Determine detailed AIX version: Version, Release, Modification, Fix Level.
4108       odmWrapper::determine_os_kernel_version(&_os_version);
4109       if (os_version_short() < 0x0503) {
4110         trcVerbose("AIX release older than AIX 5.3 not supported.");
4111         assert(false, "AIX release too old.");
4112       }
4113       name_str = "AIX";
4114       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u.%u.%u",
4115                    major, minor, (_os_version >> 8) & 0xFF, _os_version & 0xFF);
4116     } else {
4117       assert(false, name_str);
4118     }
4119     trcVerbose("We run on %s %s", name_str, ver_str);
4120   }
4121 
4122   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4123 } // end: os::Aix::initialize_os_info()
4124 
4125 // Scan environment for important settings which might effect the VM.
4126 // Trace out settings. Warn about invalid settings and/or correct them.
4127 //
4128 // Must run after os::Aix::initialue_os_info().
4129 void os::Aix::scan_environment() {
4130 
4131   char* p;
4132   int rc;
4133 
4134   // Warn explicity if EXTSHM=ON is used. That switch changes how
4135   // System V shared memory behaves. One effect is that page size of
4136   // shared memory cannot be change dynamically, effectivly preventing
4137   // large pages from working.
4138   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4139   // recommendation is (in OSS notes) to switch it off.
4140   p = ::getenv("EXTSHM");
4141   trcVerbose("EXTSHM=%s.", p ? p : "<unset>");
4142   if (p && strcasecmp(p, "ON") == 0) {
4143     _extshm = 1;
4144     trcVerbose("*** Unsupported mode! Please remove EXTSHM from your environment! ***");
4145     if (!AllowExtshm) {
4146       // We allow under certain conditions the user to continue. However, we want this
4147       // to be a fatal error by default. On certain AIX systems, leaving EXTSHM=ON means
4148       // that the VM is not able to allocate 64k pages for the heap.
4149       // We do not want to run with reduced performance.
4150       vm_exit_during_initialization("EXTSHM is ON. Please remove EXTSHM from your environment.");
4151     }
4152   } else {
4153     _extshm = 0;
4154   }
4155 
4156   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4157   // Not tested, not supported.
4158   //
4159   // Note that it might be worth the trouble to test and to require it, if only to
4160   // get useful return codes for mprotect.
4161   //
4162   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4163   // exec() ? before loading the libjvm ? ....)
4164   p = ::getenv("XPG_SUS_ENV");
4165   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4166   if (p && strcmp(p, "ON") == 0) {
4167     _xpg_sus_mode = 1;
4168     trcVerbose("Unsupported setting: XPG_SUS_ENV=ON");
4169     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4170     // clobber address ranges. If we ever want to support that, we have to do some
4171     // testing first.
4172     guarantee(false, "XPG_SUS_ENV=ON not supported");
4173   } else {
4174     _xpg_sus_mode = 0;
4175   }
4176 
4177   if (os::Aix::on_pase()) {
4178     p = ::getenv("QIBM_MULTI_THREADED");
4179     trcVerbose("QIBM_MULTI_THREADED=%s.", p ? p : "<unset>");
4180   }
4181 
4182   p = ::getenv("LDR_CNTRL");
4183   trcVerbose("LDR_CNTRL=%s.", p ? p : "<unset>");
4184   if (os::Aix::on_pase() && os::Aix::os_version_short() == 0x0701) {
4185     if (p && ::strstr(p, "TEXTPSIZE")) {
4186       trcVerbose("*** WARNING - LDR_CNTRL contains TEXTPSIZE. "
4187         "you may experience hangs or crashes on OS/400 V7R1.");
4188     }
4189   }
4190 
4191   p = ::getenv("AIXTHREAD_GUARDPAGES");
4192   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4193 
4194 } // end: os::Aix::scan_environment()
4195 
4196 // PASE: initialize the libo4 library (PASE porting library).
4197 void os::Aix::initialize_libo4() {
4198   guarantee(os::Aix::on_pase(), "OS/400 only.");
4199   if (!libo4::init()) {
4200     trcVerbose("libo4 initialization failed.");
4201     assert(false, "libo4 initialization failed");
4202   } else {
4203     trcVerbose("libo4 initialized.");
4204   }
4205 }
4206 
4207 // AIX: initialize the libperfstat library.
4208 void os::Aix::initialize_libperfstat() {
4209   assert(os::Aix::on_aix(), "AIX only");
4210   if (!libperfstat::init()) {
4211     trcVerbose("libperfstat initialization failed.");
4212     assert(false, "libperfstat initialization failed");
4213   } else {
4214     trcVerbose("libperfstat initialized.");
4215   }
4216 }
4217 
4218 /////////////////////////////////////////////////////////////////////////////
4219 // thread stack
4220 
4221 // Get the current stack base from the OS (actually, the pthread library).
4222 // Note: usually not page aligned.
4223 address os::current_stack_base() {
4224   AixMisc::stackbounds_t bounds;
4225   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4226   guarantee(rc, "Unable to retrieve stack bounds.");
4227   return bounds.base;
4228 }
4229 
4230 // Get the current stack size from the OS (actually, the pthread library).
4231 // Returned size is such that (base - size) is always aligned to page size.
4232 size_t os::current_stack_size() {
4233   AixMisc::stackbounds_t bounds;
4234   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4235   guarantee(rc, "Unable to retrieve stack bounds.");
4236   // Align the returned stack size such that the stack low address
4237   // is aligned to page size (Note: base is usually not and we do not care).
4238   // We need to do this because caller code will assume stack low address is
4239   // page aligned and will place guard pages without checking.
4240   address low = bounds.base - bounds.size;
4241   address low_aligned = (address)align_up(low, os::vm_page_size());
4242   size_t s = bounds.base - low_aligned;
4243   return s;
4244 }
4245 
4246 extern char** environ;
4247 
4248 // Run the specified command in a separate process. Return its exit value,
4249 // or -1 on failure (e.g. can't fork a new process).
4250 // Unlike system(), this function can be called from signal handler. It
4251 // doesn't block SIGINT et al.
4252 int os::fork_and_exec(char* cmd) {
4253   char * argv[4] = {"sh", "-c", cmd, NULL};
4254 
4255   pid_t pid = fork();
4256 
4257   if (pid < 0) {
4258     // fork failed
4259     return -1;
4260 
4261   } else if (pid == 0) {
4262     // child process
4263 
4264     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4265     execve("/usr/bin/sh", argv, environ);
4266 
4267     // execve failed
4268     _exit(-1);
4269 
4270   } else {
4271     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4272     // care about the actual exit code, for now.
4273 
4274     int status;
4275 
4276     // Wait for the child process to exit. This returns immediately if
4277     // the child has already exited. */
4278     while (waitpid(pid, &status, 0) < 0) {
4279       switch (errno) {
4280         case ECHILD: return 0;
4281         case EINTR: break;
4282         default: return -1;
4283       }
4284     }
4285 
4286     if (WIFEXITED(status)) {
4287       // The child exited normally; get its exit code.
4288       return WEXITSTATUS(status);
4289     } else if (WIFSIGNALED(status)) {
4290       // The child exited because of a signal.
4291       // The best value to return is 0x80 + signal number,
4292       // because that is what all Unix shells do, and because
4293       // it allows callers to distinguish between process exit and
4294       // process death by signal.
4295       return 0x80 + WTERMSIG(status);
4296     } else {
4297       // Unknown exit code; pass it through.
4298       return status;
4299     }
4300   }
4301   return -1;
4302 }
4303 
4304 // Get the default path to the core file
4305 // Returns the length of the string
4306 int os::get_core_path(char* buffer, size_t bufferSize) {
4307   const char* p = get_current_directory(buffer, bufferSize);
4308 
4309   if (p == NULL) {
4310     assert(p != NULL, "failed to get current directory");
4311     return 0;
4312   }
4313 
4314   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4315                                                p, current_process_id());
4316 
4317   return strlen(buffer);
4318 }
4319 
4320 #ifndef PRODUCT
4321 void TestReserveMemorySpecial_test() {
4322   // No tests available for this platform
4323 }
4324 #endif
4325 
4326 bool os::start_debugging(char *buf, int buflen) {
4327   int len = (int)strlen(buf);
4328   char *p = &buf[len];
4329 
4330   jio_snprintf(p, buflen -len,
4331                  "\n\n"
4332                  "Do you want to debug the problem?\n\n"
4333                  "To debug, run 'dbx -a %d'; then switch to thread tid " INTX_FORMAT ", k-tid " INTX_FORMAT "\n"
4334                  "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
4335                  "Otherwise, press RETURN to abort...",
4336                  os::current_process_id(),
4337                  os::current_thread_id(), thread_self());
4338 
4339   bool yes = os::message_box("Unexpected Error", buf);
4340 
4341   if (yes) {
4342     // yes, user asked VM to launch debugger
4343     jio_snprintf(buf, buflen, "dbx -a %d", os::current_process_id());
4344 
4345     os::fork_and_exec(buf);
4346     yes = false;
4347   }
4348   return yes;
4349 }
4350 
4351 static inline time_t get_mtime(const char* filename) {
4352   struct stat st;
4353   int ret = os::stat(filename, &st);
4354   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
4355   return st.st_mtime;
4356 }
4357 
4358 int os::compare_file_modified_times(const char* file1, const char* file2) {
4359   time_t t1 = get_mtime(file1);
4360   time_t t2 = get_mtime(file2);
4361   return t1 - t2;
4362 }