1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.misc;
  27 
  28 import jdk.internal.vm.annotation.ForceInline;
  29 import jdk.internal.misc.VM;
  30 import jdk.internal.reflect.CallerSensitive;
  31 import jdk.internal.reflect.Reflection;
  32 
  33 import java.lang.reflect.Field;
  34 
  35 
  36 /**
  37  * A collection of methods for performing low-level, unsafe operations.
  38  * Although the class and all methods are public, use of this class is
  39  * limited because only trusted code can obtain instances of it.
  40  *
  41  * <em>Note:</em> It is the resposibility of the caller to make sure
  42  * arguments are checked before methods of this class are
  43  * called. While some rudimentary checks are performed on the input,
  44  * the checks are best effort and when performance is an overriding
  45  * priority, as when methods of this class are optimized by the
  46  * runtime compiler, some or all checks (if any) may be elided. Hence,
  47  * the caller must not rely on the checks and corresponding
  48  * exceptions!
  49  *
  50  * @author John R. Rose
  51  * @see #getUnsafe
  52  */
  53 
  54 public final class Unsafe {
  55 
  56     static {
  57         Reflection.registerMethodsToFilter(Unsafe.class, "getUnsafe");
  58     }
  59 
  60     private Unsafe() {}
  61 
  62     private static final Unsafe theUnsafe = new Unsafe();
  63     private static final jdk.internal.misc.Unsafe theInternalUnsafe = jdk.internal.misc.Unsafe.getUnsafe();
  64 
  65     /**
  66      * Provides the caller with the capability of performing unsafe
  67      * operations.
  68      *
  69      * <p>The returned {@code Unsafe} object should be carefully guarded
  70      * by the caller, since it can be used to read and write data at arbitrary
  71      * memory addresses.  It must never be passed to untrusted code.
  72      *
  73      * <p>Most methods in this class are very low-level, and correspond to a
  74      * small number of hardware instructions (on typical machines).  Compilers
  75      * are encouraged to optimize these methods accordingly.
  76      *
  77      * <p>Here is a suggested idiom for using unsafe operations:
  78      *
  79      * <pre> {@code
  80      * class MyTrustedClass {
  81      *   private static final Unsafe unsafe = Unsafe.getUnsafe();
  82      *   ...
  83      *   private long myCountAddress = ...;
  84      *   public int getCount() { return unsafe.getByte(myCountAddress); }
  85      * }}</pre>
  86      *
  87      * (It may assist compilers to make the local variable {@code final}.)
  88      *
  89      * @throws  SecurityException if the class loader of the caller
  90      *          class is not in the system domain in which all permissions
  91      *          are granted.
  92      */
  93     @CallerSensitive
  94     public static Unsafe getUnsafe() {
  95         Class<?> caller = Reflection.getCallerClass();
  96         if (!VM.isSystemDomainLoader(caller.getClassLoader()))
  97             throw new SecurityException("Unsafe");
  98         return theUnsafe;
  99     }
 100 
 101     /// peek and poke operations
 102     /// (compilers should optimize these to memory ops)
 103 
 104     // These work on object fields in the Java heap.
 105     // They will not work on elements of packed arrays.
 106 
 107     /**
 108      * Fetches a value from a given Java variable.
 109      * More specifically, fetches a field or array element within the given
 110      * object {@code o} at the given offset, or (if {@code o} is null)
 111      * from the memory address whose numerical value is the given offset.
 112      * <p>
 113      * The results are undefined unless one of the following cases is true:
 114      * <ul>
 115      * <li>The offset was obtained from {@link #objectFieldOffset} on
 116      * the {@link java.lang.reflect.Field} of some Java field and the object
 117      * referred to by {@code o} is of a class compatible with that
 118      * field's class.
 119      *
 120      * <li>The offset and object reference {@code o} (either null or
 121      * non-null) were both obtained via {@link #staticFieldOffset}
 122      * and {@link #staticFieldBase} (respectively) from the
 123      * reflective {@link Field} representation of some Java field.
 124      *
 125      * <li>The object referred to by {@code o} is an array, and the offset
 126      * is an integer of the form {@code B+N*S}, where {@code N} is
 127      * a valid index into the array, and {@code B} and {@code S} are
 128      * the values obtained by {@link #arrayBaseOffset} and {@link
 129      * #arrayIndexScale} (respectively) from the array's class.  The value
 130      * referred to is the {@code N}<em>th</em> element of the array.
 131      *
 132      * </ul>
 133      * <p>
 134      * If one of the above cases is true, the call references a specific Java
 135      * variable (field or array element).  However, the results are undefined
 136      * if that variable is not in fact of the type returned by this method.
 137      * <p>
 138      * This method refers to a variable by means of two parameters, and so
 139      * it provides (in effect) a <em>double-register</em> addressing mode
 140      * for Java variables.  When the object reference is null, this method
 141      * uses its offset as an absolute address.  This is similar in operation
 142      * to methods such as {@link #getInt(long)}, which provide (in effect) a
 143      * <em>single-register</em> addressing mode for non-Java variables.
 144      * However, because Java variables may have a different layout in memory
 145      * from non-Java variables, programmers should not assume that these
 146      * two addressing modes are ever equivalent.  Also, programmers should
 147      * remember that offsets from the double-register addressing mode cannot
 148      * be portably confused with longs used in the single-register addressing
 149      * mode.
 150      *
 151      * @param o Java heap object in which the variable resides, if any, else
 152      *        null
 153      * @param offset indication of where the variable resides in a Java heap
 154      *        object, if any, else a memory address locating the variable
 155      *        statically
 156      * @return the value fetched from the indicated Java variable
 157      * @throws RuntimeException No defined exceptions are thrown, not even
 158      *         {@link NullPointerException}
 159      */
 160     @ForceInline
 161     public int getInt(Object o, long offset) {
 162         return theInternalUnsafe.getInt(o, offset);
 163     }
 164 
 165     /**
 166      * Stores a value into a given Java variable.
 167      * <p>
 168      * The first two parameters are interpreted exactly as with
 169      * {@link #getInt(Object, long)} to refer to a specific
 170      * Java variable (field or array element).  The given value
 171      * is stored into that variable.
 172      * <p>
 173      * The variable must be of the same type as the method
 174      * parameter {@code x}.
 175      *
 176      * @param o Java heap object in which the variable resides, if any, else
 177      *        null
 178      * @param offset indication of where the variable resides in a Java heap
 179      *        object, if any, else a memory address locating the variable
 180      *        statically
 181      * @param x the value to store into the indicated Java variable
 182      * @throws RuntimeException No defined exceptions are thrown, not even
 183      *         {@link NullPointerException}
 184      */
 185     @ForceInline
 186     public void putInt(Object o, long offset, int x) {
 187         theInternalUnsafe.putInt(o, offset, x);
 188     }
 189 
 190     /**
 191      * Fetches a reference value from a given Java variable.
 192      * @see #getInt(Object, long)
 193      */
 194     @ForceInline
 195     public Object getObject(Object o, long offset) {
 196         return theInternalUnsafe.getObject(o, offset);
 197     }
 198 
 199     /**
 200      * Stores a reference value into a given Java variable.
 201      * <p>
 202      * Unless the reference {@code x} being stored is either null
 203      * or matches the field type, the results are undefined.
 204      * If the reference {@code o} is non-null, card marks or
 205      * other store barriers for that object (if the VM requires them)
 206      * are updated.
 207      * @see #putInt(Object, long, int)
 208      */
 209     @ForceInline
 210     public void putObject(Object o, long offset, Object x) {
 211         theInternalUnsafe.putObject(o, offset, x);
 212     }
 213 
 214     /** @see #getInt(Object, long) */
 215     @ForceInline
 216     public boolean getBoolean(Object o, long offset) {
 217         return theInternalUnsafe.getBoolean(o, offset);
 218     }
 219 
 220     /** @see #putInt(Object, long, int) */
 221     @ForceInline
 222     public void putBoolean(Object o, long offset, boolean x) {
 223         theInternalUnsafe.putBoolean(o, offset, x);
 224     }
 225 
 226     /** @see #getInt(Object, long) */
 227     @ForceInline
 228     public byte getByte(Object o, long offset) {
 229         return theInternalUnsafe.getByte(o, offset);
 230     }
 231 
 232     /** @see #putInt(Object, long, int) */
 233     @ForceInline
 234     public void putByte(Object o, long offset, byte x) {
 235         theInternalUnsafe.putByte(o, offset, x);
 236     }
 237 
 238     /** @see #getInt(Object, long) */
 239     @ForceInline
 240     public short getShort(Object o, long offset) {
 241         return theInternalUnsafe.getShort(o, offset);
 242     }
 243 
 244     /** @see #putInt(Object, long, int) */
 245     @ForceInline
 246     public void putShort(Object o, long offset, short x) {
 247         theInternalUnsafe.putShort(o, offset, x);
 248     }
 249 
 250     /** @see #getInt(Object, long) */
 251     @ForceInline
 252     public char getChar(Object o, long offset) {
 253         return theInternalUnsafe.getChar(o, offset);
 254     }
 255 
 256     /** @see #putInt(Object, long, int) */
 257     @ForceInline
 258     public void putChar(Object o, long offset, char x) {
 259         theInternalUnsafe.putChar(o, offset, x);
 260     }
 261 
 262     /** @see #getInt(Object, long) */
 263     @ForceInline
 264     public long getLong(Object o, long offset) {
 265         return theInternalUnsafe.getLong(o, offset);
 266     }
 267 
 268     /** @see #putInt(Object, long, int) */
 269     @ForceInline
 270     public void putLong(Object o, long offset, long x) {
 271         theInternalUnsafe.putLong(o, offset, x);
 272     }
 273 
 274     /** @see #getInt(Object, long) */
 275     @ForceInline
 276     public float getFloat(Object o, long offset) {
 277         return theInternalUnsafe.getFloat(o, offset);
 278     }
 279 
 280     /** @see #putInt(Object, long, int) */
 281     @ForceInline
 282     public void putFloat(Object o, long offset, float x) {
 283         theInternalUnsafe.putFloat(o, offset, x);
 284     }
 285 
 286     /** @see #getInt(Object, long) */
 287     @ForceInline
 288     public double getDouble(Object o, long offset) {
 289         return theInternalUnsafe.getDouble(o, offset);
 290     }
 291 
 292     /** @see #putInt(Object, long, int) */
 293     @ForceInline
 294     public void putDouble(Object o, long offset, double x) {
 295         theInternalUnsafe.putDouble(o, offset, x);
 296     }
 297 
 298     // These work on values in the C heap.
 299 
 300     /**
 301      * Fetches a value from a given memory address.  If the address is zero, or
 302      * does not point into a block obtained from {@link #allocateMemory}, the
 303      * results are undefined.
 304      *
 305      * @see #allocateMemory
 306      */
 307     @ForceInline
 308     public byte getByte(long address) {
 309         return theInternalUnsafe.getByte(address);
 310     }
 311 
 312     /**
 313      * Stores a value into a given memory address.  If the address is zero, or
 314      * does not point into a block obtained from {@link #allocateMemory}, the
 315      * results are undefined.
 316      *
 317      * @see #getByte(long)
 318      */
 319     @ForceInline
 320     public void putByte(long address, byte x) {
 321         theInternalUnsafe.putByte(address, x);
 322     }
 323 
 324     /** @see #getByte(long) */
 325     @ForceInline
 326     public short getShort(long address) {
 327         return theInternalUnsafe.getShort(address);
 328     }
 329 
 330     /** @see #putByte(long, byte) */
 331     @ForceInline
 332     public void putShort(long address, short x) {
 333         theInternalUnsafe.putShort(address, x);
 334     }
 335 
 336     /** @see #getByte(long) */
 337     @ForceInline
 338     public char getChar(long address) {
 339         return theInternalUnsafe.getChar(address);
 340     }
 341 
 342     /** @see #putByte(long, byte) */
 343     @ForceInline
 344     public void putChar(long address, char x) {
 345         theInternalUnsafe.putChar(address, x);
 346     }
 347 
 348     /** @see #getByte(long) */
 349     @ForceInline
 350     public int getInt(long address) {
 351         return theInternalUnsafe.getInt(address);
 352     }
 353 
 354     /** @see #putByte(long, byte) */
 355     @ForceInline
 356     public void putInt(long address, int x) {
 357         theInternalUnsafe.putInt(address, x);
 358     }
 359 
 360     /** @see #getByte(long) */
 361     @ForceInline
 362     public long getLong(long address) {
 363         return theInternalUnsafe.getLong(address);
 364     }
 365 
 366     /** @see #putByte(long, byte) */
 367     @ForceInline
 368     public void putLong(long address, long x) {
 369         theInternalUnsafe.putLong(address, x);
 370     }
 371 
 372     /** @see #getByte(long) */
 373     @ForceInline
 374     public float getFloat(long address) {
 375         return theInternalUnsafe.getFloat(address);
 376     }
 377 
 378     /** @see #putByte(long, byte) */
 379     @ForceInline
 380     public void putFloat(long address, float x) {
 381         theInternalUnsafe.putFloat(address, x);
 382     }
 383 
 384     /** @see #getByte(long) */
 385     @ForceInline
 386     public double getDouble(long address) {
 387         return theInternalUnsafe.getDouble(address);
 388     }
 389 
 390     /** @see #putByte(long, byte) */
 391     @ForceInline
 392     public void putDouble(long address, double x) {
 393         theInternalUnsafe.putDouble(address, x);
 394     }
 395 
 396 
 397     /**
 398      * Fetches a native pointer from a given memory address.  If the address is
 399      * zero, or does not point into a block obtained from {@link
 400      * #allocateMemory}, the results are undefined.
 401      *
 402      * <p>If the native pointer is less than 64 bits wide, it is extended as
 403      * an unsigned number to a Java long.  The pointer may be indexed by any
 404      * given byte offset, simply by adding that offset (as a simple integer) to
 405      * the long representing the pointer.  The number of bytes actually read
 406      * from the target address may be determined by consulting {@link
 407      * #addressSize}.
 408      *
 409      * @see #allocateMemory
 410      */
 411     @ForceInline
 412     public long getAddress(long address) {
 413         return theInternalUnsafe.getAddress(address);
 414     }
 415 
 416     /**
 417      * Stores a native pointer into a given memory address.  If the address is
 418      * zero, or does not point into a block obtained from {@link
 419      * #allocateMemory}, the results are undefined.
 420      *
 421      * <p>The number of bytes actually written at the target address may be
 422      * determined by consulting {@link #addressSize}.
 423      *
 424      * @see #getAddress(long)
 425      */
 426     @ForceInline
 427     public void putAddress(long address, long x) {
 428         theInternalUnsafe.putAddress(address, x);
 429     }
 430 
 431 
 432     /// wrappers for malloc, realloc, free:
 433 
 434     /**
 435      * Allocates a new block of native memory, of the given size in bytes.  The
 436      * contents of the memory are uninitialized; they will generally be
 437      * garbage.  The resulting native pointer will never be zero, and will be
 438      * aligned for all value types.  Dispose of this memory by calling {@link
 439      * #freeMemory}, or resize it with {@link #reallocateMemory}.
 440      *
 441      * <em>Note:</em> It is the resposibility of the caller to make
 442      * sure arguments are checked before the methods are called. While
 443      * some rudimentary checks are performed on the input, the checks
 444      * are best effort and when performance is an overriding priority,
 445      * as when methods of this class are optimized by the runtime
 446      * compiler, some or all checks (if any) may be elided. Hence, the
 447      * caller must not rely on the checks and corresponding
 448      * exceptions!
 449      *
 450      * @throws RuntimeException if the size is negative or too large
 451      *         for the native size_t type
 452      *
 453      * @throws OutOfMemoryError if the allocation is refused by the system
 454      *
 455      * @see #getByte(long)
 456      * @see #putByte(long, byte)
 457      */
 458     @ForceInline
 459     public long allocateMemory(long bytes) {
 460         return theInternalUnsafe.allocateMemory(bytes);
 461     }
 462 
 463     /**
 464      * Resizes a new block of native memory, to the given size in bytes.  The
 465      * contents of the new block past the size of the old block are
 466      * uninitialized; they will generally be garbage.  The resulting native
 467      * pointer will be zero if and only if the requested size is zero.  The
 468      * resulting native pointer will be aligned for all value types.  Dispose
 469      * of this memory by calling {@link #freeMemory}, or resize it with {@link
 470      * #reallocateMemory}.  The address passed to this method may be null, in
 471      * which case an allocation will be performed.
 472      *
 473      * <em>Note:</em> It is the resposibility of the caller to make
 474      * sure arguments are checked before the methods are called. While
 475      * some rudimentary checks are performed on the input, the checks
 476      * are best effort and when performance is an overriding priority,
 477      * as when methods of this class are optimized by the runtime
 478      * compiler, some or all checks (if any) may be elided. Hence, the
 479      * caller must not rely on the checks and corresponding
 480      * exceptions!
 481      *
 482      * @throws RuntimeException if the size is negative or too large
 483      *         for the native size_t type
 484      *
 485      * @throws OutOfMemoryError if the allocation is refused by the system
 486      *
 487      * @see #allocateMemory
 488      */
 489     @ForceInline
 490     public long reallocateMemory(long address, long bytes) {
 491         return theInternalUnsafe.reallocateMemory(address, bytes);
 492     }
 493 
 494     /**
 495      * Sets all bytes in a given block of memory to a fixed value
 496      * (usually zero).
 497      *
 498      * <p>This method determines a block's base address by means of two parameters,
 499      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 500      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 501      * the offset supplies an absolute base address.
 502      *
 503      * <p>The stores are in coherent (atomic) units of a size determined
 504      * by the address and length parameters.  If the effective address and
 505      * length are all even modulo 8, the stores take place in 'long' units.
 506      * If the effective address and length are (resp.) even modulo 4 or 2,
 507      * the stores take place in units of 'int' or 'short'.
 508      *
 509      * <em>Note:</em> It is the resposibility of the caller to make
 510      * sure arguments are checked before the methods are called. While
 511      * some rudimentary checks are performed on the input, the checks
 512      * are best effort and when performance is an overriding priority,
 513      * as when methods of this class are optimized by the runtime
 514      * compiler, some or all checks (if any) may be elided. Hence, the
 515      * caller must not rely on the checks and corresponding
 516      * exceptions!
 517      *
 518      * @throws RuntimeException if any of the arguments is invalid
 519      *
 520      * @since 1.7
 521      */
 522     @ForceInline
 523     public void setMemory(Object o, long offset, long bytes, byte value) {
 524         theInternalUnsafe.setMemory(o, offset, bytes, value);
 525     }
 526 
 527     /**
 528      * Sets all bytes in a given block of memory to a fixed value
 529      * (usually zero).  This provides a <em>single-register</em> addressing mode,
 530      * as discussed in {@link #getInt(Object,long)}.
 531      *
 532      * <p>Equivalent to {@code setMemory(null, address, bytes, value)}.
 533      */
 534     @ForceInline
 535     public void setMemory(long address, long bytes, byte value) {
 536         theInternalUnsafe.setMemory(address, bytes, value);
 537     }
 538 
 539     /**
 540      * Sets all bytes in a given block of memory to a copy of another
 541      * block.
 542      *
 543      * <p>This method determines each block's base address by means of two parameters,
 544      * and so it provides (in effect) a <em>double-register</em> addressing mode,
 545      * as discussed in {@link #getInt(Object,long)}.  When the object reference is null,
 546      * the offset supplies an absolute base address.
 547      *
 548      * <p>The transfers are in coherent (atomic) units of a size determined
 549      * by the address and length parameters.  If the effective addresses and
 550      * length are all even modulo 8, the transfer takes place in 'long' units.
 551      * If the effective addresses and length are (resp.) even modulo 4 or 2,
 552      * the transfer takes place in units of 'int' or 'short'.
 553      *
 554      * <em>Note:</em> It is the resposibility of the caller to make
 555      * sure arguments are checked before the methods are called. While
 556      * some rudimentary checks are performed on the input, the checks
 557      * are best effort and when performance is an overriding priority,
 558      * as when methods of this class are optimized by the runtime
 559      * compiler, some or all checks (if any) may be elided. Hence, the
 560      * caller must not rely on the checks and corresponding
 561      * exceptions!
 562      *
 563      * @throws RuntimeException if any of the arguments is invalid
 564      *
 565      * @since 1.7
 566      */
 567     @ForceInline
 568     public void copyMemory(Object srcBase, long srcOffset,
 569                            Object destBase, long destOffset,
 570                            long bytes) {
 571         theInternalUnsafe.copyMemory(srcBase, srcOffset, destBase, destOffset, bytes);
 572     }
 573 
 574     /**
 575      * Sets all bytes in a given block of memory to a copy of another
 576      * block.  This provides a <em>single-register</em> addressing mode,
 577      * as discussed in {@link #getInt(Object,long)}.
 578      *
 579      * Equivalent to {@code copyMemory(null, srcAddress, null, destAddress, bytes)}.
 580      */
 581     @ForceInline
 582     public void copyMemory(long srcAddress, long destAddress, long bytes) {
 583         theInternalUnsafe.copyMemory(srcAddress, destAddress, bytes);
 584     }
 585 
 586     /**
 587      * Disposes of a block of native memory, as obtained from {@link
 588      * #allocateMemory} or {@link #reallocateMemory}.  The address passed to
 589      * this method may be null, in which case no action is taken.
 590      *
 591      * <em>Note:</em> It is the resposibility of the caller to make
 592      * sure arguments are checked before the methods are called. While
 593      * some rudimentary checks are performed on the input, the checks
 594      * are best effort and when performance is an overriding priority,
 595      * as when methods of this class are optimized by the runtime
 596      * compiler, some or all checks (if any) may be elided. Hence, the
 597      * caller must not rely on the checks and corresponding
 598      * exceptions!
 599      *
 600      * @throws RuntimeException if any of the arguments is invalid
 601      *
 602      * @see #allocateMemory
 603      */
 604     @ForceInline
 605     public void freeMemory(long address) {
 606         theInternalUnsafe.freeMemory(address);
 607     }
 608 
 609     /// random queries
 610 
 611     /**
 612      * This constant differs from all results that will ever be returned from
 613      * {@link #staticFieldOffset}, {@link #objectFieldOffset},
 614      * or {@link #arrayBaseOffset}.
 615      */
 616     public static final int INVALID_FIELD_OFFSET = jdk.internal.misc.Unsafe.INVALID_FIELD_OFFSET;
 617 
 618     /**
 619      * Reports the location of a given field in the storage allocation of its
 620      * class.  Do not expect to perform any sort of arithmetic on this offset;
 621      * it is just a cookie which is passed to the unsafe heap memory accessors.
 622      *
 623      * <p>Any given field will always have the same offset and base, and no
 624      * two distinct fields of the same class will ever have the same offset
 625      * and base.
 626      *
 627      * <p>As of 1.4.1, offsets for fields are represented as long values,
 628      * although the Sun JVM does not use the most significant 32 bits.
 629      * However, JVM implementations which store static fields at absolute
 630      * addresses can use long offsets and null base pointers to express
 631      * the field locations in a form usable by {@link #getInt(Object,long)}.
 632      * Therefore, code which will be ported to such JVMs on 64-bit platforms
 633      * must preserve all bits of static field offsets.
 634      * @see #getInt(Object, long)
 635      */
 636     @ForceInline
 637     public long objectFieldOffset(Field f) {
 638         return theInternalUnsafe.objectFieldOffset(f);
 639     }
 640 
 641     /**
 642      * Reports the location of a given static field, in conjunction with {@link
 643      * #staticFieldBase}.
 644      * <p>Do not expect to perform any sort of arithmetic on this offset;
 645      * it is just a cookie which is passed to the unsafe heap memory accessors.
 646      *
 647      * <p>Any given field will always have the same offset, and no two distinct
 648      * fields of the same class will ever have the same offset.
 649      *
 650      * <p>As of 1.4.1, offsets for fields are represented as long values,
 651      * although the Sun JVM does not use the most significant 32 bits.
 652      * It is hard to imagine a JVM technology which needs more than
 653      * a few bits to encode an offset within a non-array object,
 654      * However, for consistency with other methods in this class,
 655      * this method reports its result as a long value.
 656      * @see #getInt(Object, long)
 657      */
 658     @ForceInline
 659     public long staticFieldOffset(Field f) {
 660         return theInternalUnsafe.staticFieldOffset(f);
 661     }
 662 
 663     /**
 664      * Reports the location of a given static field, in conjunction with {@link
 665      * #staticFieldOffset}.
 666      * <p>Fetch the base "Object", if any, with which static fields of the
 667      * given class can be accessed via methods like {@link #getInt(Object,
 668      * long)}.  This value may be null.  This value may refer to an object
 669      * which is a "cookie", not guaranteed to be a real Object, and it should
 670      * not be used in any way except as argument to the get and put routines in
 671      * this class.
 672      */
 673     @ForceInline
 674     public Object staticFieldBase(Field f) {
 675         return theInternalUnsafe.staticFieldBase(f);
 676     }
 677 
 678     /**
 679      * Detects if the given class may need to be initialized. This is often
 680      * needed in conjunction with obtaining the static field base of a
 681      * class.
 682      * @return false only if a call to {@code ensureClassInitialized} would have no effect
 683      */
 684     @ForceInline
 685     public boolean shouldBeInitialized(Class<?> c) {
 686         return theInternalUnsafe.shouldBeInitialized(c);
 687     }
 688 
 689     /**
 690      * Ensures the given class has been initialized. This is often
 691      * needed in conjunction with obtaining the static field base of a
 692      * class.
 693      */
 694     @ForceInline
 695     public void ensureClassInitialized(Class<?> c) {
 696         theInternalUnsafe.ensureClassInitialized(c);
 697     }
 698 
 699     /**
 700      * Reports the offset of the first element in the storage allocation of a
 701      * given array class.  If {@link #arrayIndexScale} returns a non-zero value
 702      * for the same class, you may use that scale factor, together with this
 703      * base offset, to form new offsets to access elements of arrays of the
 704      * given class.
 705      *
 706      * @see #getInt(Object, long)
 707      * @see #putInt(Object, long, int)
 708      */
 709     @ForceInline
 710     public int arrayBaseOffset(Class<?> arrayClass) {
 711         return theInternalUnsafe.arrayBaseOffset(arrayClass);
 712     }
 713 
 714     /** The value of {@code arrayBaseOffset(boolean[].class)} */
 715     public static final int ARRAY_BOOLEAN_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_BOOLEAN_BASE_OFFSET;
 716 
 717     /** The value of {@code arrayBaseOffset(byte[].class)} */
 718     public static final int ARRAY_BYTE_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_BYTE_BASE_OFFSET;
 719 
 720     /** The value of {@code arrayBaseOffset(short[].class)} */
 721     public static final int ARRAY_SHORT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_SHORT_BASE_OFFSET;
 722 
 723     /** The value of {@code arrayBaseOffset(char[].class)} */
 724     public static final int ARRAY_CHAR_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_CHAR_BASE_OFFSET;
 725 
 726     /** The value of {@code arrayBaseOffset(int[].class)} */
 727     public static final int ARRAY_INT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_INT_BASE_OFFSET;
 728 
 729     /** The value of {@code arrayBaseOffset(long[].class)} */
 730     public static final int ARRAY_LONG_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_LONG_BASE_OFFSET;
 731 
 732     /** The value of {@code arrayBaseOffset(float[].class)} */
 733     public static final int ARRAY_FLOAT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_FLOAT_BASE_OFFSET;
 734 
 735     /** The value of {@code arrayBaseOffset(double[].class)} */
 736     public static final int ARRAY_DOUBLE_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_DOUBLE_BASE_OFFSET;
 737 
 738     /** The value of {@code arrayBaseOffset(Object[].class)} */
 739     public static final int ARRAY_OBJECT_BASE_OFFSET = jdk.internal.misc.Unsafe.ARRAY_OBJECT_BASE_OFFSET;
 740 
 741     /**
 742      * Reports the scale factor for addressing elements in the storage
 743      * allocation of a given array class.  However, arrays of "narrow" types
 744      * will generally not work properly with accessors like {@link
 745      * #getByte(Object, long)}, so the scale factor for such classes is reported
 746      * as zero.
 747      *
 748      * @see #arrayBaseOffset
 749      * @see #getInt(Object, long)
 750      * @see #putInt(Object, long, int)
 751      */
 752     @ForceInline
 753     public int arrayIndexScale(Class<?> arrayClass) {
 754         return theInternalUnsafe.arrayIndexScale(arrayClass);
 755     }
 756 
 757     /** The value of {@code arrayIndexScale(boolean[].class)} */
 758     public static final int ARRAY_BOOLEAN_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_BOOLEAN_INDEX_SCALE;
 759 
 760     /** The value of {@code arrayIndexScale(byte[].class)} */
 761     public static final int ARRAY_BYTE_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_BYTE_INDEX_SCALE;
 762 
 763     /** The value of {@code arrayIndexScale(short[].class)} */
 764     public static final int ARRAY_SHORT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_SHORT_INDEX_SCALE;
 765 
 766     /** The value of {@code arrayIndexScale(char[].class)} */
 767     public static final int ARRAY_CHAR_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_CHAR_INDEX_SCALE;
 768 
 769     /** The value of {@code arrayIndexScale(int[].class)} */
 770     public static final int ARRAY_INT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_INT_INDEX_SCALE;
 771 
 772     /** The value of {@code arrayIndexScale(long[].class)} */
 773     public static final int ARRAY_LONG_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_LONG_INDEX_SCALE;
 774 
 775     /** The value of {@code arrayIndexScale(float[].class)} */
 776     public static final int ARRAY_FLOAT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_FLOAT_INDEX_SCALE;
 777 
 778     /** The value of {@code arrayIndexScale(double[].class)} */
 779     public static final int ARRAY_DOUBLE_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_DOUBLE_INDEX_SCALE;
 780 
 781     /** The value of {@code arrayIndexScale(Object[].class)} */
 782     public static final int ARRAY_OBJECT_INDEX_SCALE = jdk.internal.misc.Unsafe.ARRAY_OBJECT_INDEX_SCALE;
 783 
 784     /**
 785      * Reports the size in bytes of a native pointer, as stored via {@link
 786      * #putAddress}.  This value will be either 4 or 8.  Note that the sizes of
 787      * other primitive types (as stored in native memory blocks) is determined
 788      * fully by their information content.
 789      */
 790     @ForceInline
 791     public int addressSize() {
 792         return theInternalUnsafe.addressSize();
 793     }
 794 
 795     /** The value of {@code addressSize()} */
 796     public static final int ADDRESS_SIZE = theInternalUnsafe.addressSize();
 797 
 798     /**
 799      * Reports the size in bytes of a native memory page (whatever that is).
 800      * This value will always be a power of two.
 801      */
 802     @ForceInline
 803     public int pageSize() {
 804         return theInternalUnsafe.pageSize();
 805     }
 806 
 807 
 808     /// random trusted operations from JNI:
 809 
 810     /**
 811      * Defines a class but does not make it known to the class loader or system dictionary.
 812      * <p>
 813      * For each CP entry, the corresponding CP patch must either be null or have
 814      * the a format that matches its tag:
 815      * <ul>
 816      * <li>Integer, Long, Float, Double: the corresponding wrapper object type from java.lang
 817      * <li>Utf8: a string (must have suitable syntax if used as signature or name)
 818      * <li>Class: any java.lang.Class object
 819      * <li>String: any object (not just a java.lang.String)
 820      * <li>InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments
 821      * </ul>
 822      * @param hostClass context for linkage, access control, protection domain, and class loader
 823      * @param data      bytes of a class file
 824      * @param cpPatches where non-null entries exist, they replace corresponding CP entries in data
 825      */
 826     @ForceInline
 827     public Class<?> defineAnonymousClass(Class<?> hostClass, byte[] data, Object[] cpPatches) {
 828         return theInternalUnsafe.defineAnonymousClass(hostClass, data, cpPatches);
 829     }
 830 
 831     /**
 832      * Allocates an instance but does not run any constructor.
 833      * Initializes the class if it has not yet been.
 834      */
 835     @ForceInline
 836     public Object allocateInstance(Class<?> cls)
 837         throws InstantiationException {
 838         return theInternalUnsafe.allocateInstance(cls);
 839     }
 840 
 841     /** Throws the exception without telling the verifier. */
 842     @ForceInline
 843     public void throwException(Throwable ee) {
 844         theInternalUnsafe.throwException(ee);
 845     }
 846 
 847     /**
 848      * Atomically updates Java variable to {@code x} if it is currently
 849      * holding {@code expected}.
 850      *
 851      * <p>This operation has memory semantics of a {@code volatile} read
 852      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 853      *
 854      * @return {@code true} if successful
 855      */
 856     @ForceInline
 857     public final boolean compareAndSwapObject(Object o, long offset,
 858                                               Object expected,
 859                                               Object x) {
 860         return theInternalUnsafe.compareAndSetObject(o, offset, expected, x);
 861     }
 862 
 863     /**
 864      * Atomically updates Java variable to {@code x} if it is currently
 865      * holding {@code expected}.
 866      *
 867      * <p>This operation has memory semantics of a {@code volatile} read
 868      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 869      *
 870      * @return {@code true} if successful
 871      */
 872     @ForceInline
 873     public final boolean compareAndSwapInt(Object o, long offset,
 874                                            int expected,
 875                                            int x) {
 876         return theInternalUnsafe.compareAndSetInt(o, offset, expected, x);
 877     }
 878 
 879     /**
 880      * Atomically updates Java variable to {@code x} if it is currently
 881      * holding {@code expected}.
 882      *
 883      * <p>This operation has memory semantics of a {@code volatile} read
 884      * and write.  Corresponds to C11 atomic_compare_exchange_strong.
 885      *
 886      * @return {@code true} if successful
 887      */
 888     @ForceInline
 889     public final boolean compareAndSwapLong(Object o, long offset,
 890                                             long expected,
 891                                             long x) {
 892         return theInternalUnsafe.compareAndSetLong(o, offset, expected, x);
 893     }
 894 
 895     /**
 896      * Fetches a reference value from a given Java variable, with volatile
 897      * load semantics. Otherwise identical to {@link #getObject(Object, long)}
 898      */
 899     @ForceInline
 900     public Object getObjectVolatile(Object o, long offset) {
 901         return theInternalUnsafe.getObjectVolatile(o, offset);
 902     }
 903 
 904     /**
 905      * Stores a reference value into a given Java variable, with
 906      * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)}
 907      */
 908     @ForceInline
 909     public void putObjectVolatile(Object o, long offset, Object x) {
 910         theInternalUnsafe.putObjectVolatile(o, offset, x);
 911     }
 912 
 913     /** Volatile version of {@link #getInt(Object, long)}  */
 914     @ForceInline
 915     public int getIntVolatile(Object o, long offset) {
 916         return theInternalUnsafe.getIntVolatile(o, offset);
 917     }
 918 
 919     /** Volatile version of {@link #putInt(Object, long, int)}  */
 920     @ForceInline
 921     public void putIntVolatile(Object o, long offset, int x) {
 922         theInternalUnsafe.putIntVolatile(o, offset, x);
 923     }
 924 
 925     /** Volatile version of {@link #getBoolean(Object, long)}  */
 926     @ForceInline
 927     public boolean getBooleanVolatile(Object o, long offset) {
 928         return theInternalUnsafe.getBooleanVolatile(o, offset);
 929     }
 930 
 931     /** Volatile version of {@link #putBoolean(Object, long, boolean)}  */
 932     @ForceInline
 933     public void putBooleanVolatile(Object o, long offset, boolean x) {
 934         theInternalUnsafe.putBooleanVolatile(o, offset, x);
 935     }
 936 
 937     /** Volatile version of {@link #getByte(Object, long)}  */
 938     @ForceInline
 939     public byte getByteVolatile(Object o, long offset) {
 940         return theInternalUnsafe.getByteVolatile(o, offset);
 941     }
 942 
 943     /** Volatile version of {@link #putByte(Object, long, byte)}  */
 944     @ForceInline
 945     public void putByteVolatile(Object o, long offset, byte x) {
 946         theInternalUnsafe.putByteVolatile(o, offset, x);
 947     }
 948 
 949     /** Volatile version of {@link #getShort(Object, long)}  */
 950     @ForceInline
 951     public short getShortVolatile(Object o, long offset) {
 952         return theInternalUnsafe.getShortVolatile(o, offset);
 953     }
 954 
 955     /** Volatile version of {@link #putShort(Object, long, short)}  */
 956     @ForceInline
 957     public void putShortVolatile(Object o, long offset, short x) {
 958         theInternalUnsafe.putShortVolatile(o, offset, x);
 959     }
 960 
 961     /** Volatile version of {@link #getChar(Object, long)}  */
 962     @ForceInline
 963     public char getCharVolatile(Object o, long offset) {
 964         return theInternalUnsafe.getCharVolatile(o, offset);
 965     }
 966 
 967     /** Volatile version of {@link #putChar(Object, long, char)}  */
 968     @ForceInline
 969     public void putCharVolatile(Object o, long offset, char x) {
 970         theInternalUnsafe.putCharVolatile(o, offset, x);
 971     }
 972 
 973     /** Volatile version of {@link #getLong(Object, long)}  */
 974     @ForceInline
 975     public long getLongVolatile(Object o, long offset) {
 976         return theInternalUnsafe.getLongVolatile(o, offset);
 977     }
 978 
 979     /** Volatile version of {@link #putLong(Object, long, long)}  */
 980     @ForceInline
 981     public void putLongVolatile(Object o, long offset, long x) {
 982         theInternalUnsafe.putLongVolatile(o, offset, x);
 983     }
 984 
 985     /** Volatile version of {@link #getFloat(Object, long)}  */
 986     @ForceInline
 987     public float getFloatVolatile(Object o, long offset) {
 988         return theInternalUnsafe.getFloatVolatile(o, offset);
 989     }
 990 
 991     /** Volatile version of {@link #putFloat(Object, long, float)}  */
 992     @ForceInline
 993     public void putFloatVolatile(Object o, long offset, float x) {
 994         theInternalUnsafe.putFloatVolatile(o, offset, x);
 995     }
 996 
 997     /** Volatile version of {@link #getDouble(Object, long)}  */
 998     @ForceInline
 999     public double getDoubleVolatile(Object o, long offset) {
1000         return theInternalUnsafe.getDoubleVolatile(o, offset);
1001     }
1002 
1003     /** Volatile version of {@link #putDouble(Object, long, double)}  */
1004     @ForceInline
1005     public void putDoubleVolatile(Object o, long offset, double x) {
1006         theInternalUnsafe.putDoubleVolatile(o, offset, x);
1007     }
1008 
1009     /**
1010      * Version of {@link #putObjectVolatile(Object, long, Object)}
1011      * that does not guarantee immediate visibility of the store to
1012      * other threads. This method is generally only useful if the
1013      * underlying field is a Java volatile (or if an array cell, one
1014      * that is otherwise only accessed using volatile accesses).
1015      *
1016      * Corresponds to C11 atomic_store_explicit(..., memory_order_release).
1017      */
1018     @ForceInline
1019     public void putOrderedObject(Object o, long offset, Object x) {
1020         theInternalUnsafe.putObjectRelease(o, offset, x);
1021     }
1022 
1023     /** Ordered/Lazy version of {@link #putIntVolatile(Object, long, int)}  */
1024     @ForceInline
1025     public void putOrderedInt(Object o, long offset, int x) {
1026         theInternalUnsafe.putIntRelease(o, offset, x);
1027     }
1028 
1029     /** Ordered/Lazy version of {@link #putLongVolatile(Object, long, long)} */
1030     @ForceInline
1031     public void putOrderedLong(Object o, long offset, long x) {
1032         theInternalUnsafe.putLongRelease(o, offset, x);
1033     }
1034 
1035     /**
1036      * Unblocks the given thread blocked on {@code park}, or, if it is
1037      * not blocked, causes the subsequent call to {@code park} not to
1038      * block.  Note: this operation is "unsafe" solely because the
1039      * caller must somehow ensure that the thread has not been
1040      * destroyed. Nothing special is usually required to ensure this
1041      * when called from Java (in which there will ordinarily be a live
1042      * reference to the thread) but this is not nearly-automatically
1043      * so when calling from native code.
1044      *
1045      * @param thread the thread to unpark.
1046      */
1047     @ForceInline
1048     public void unpark(Object thread) {
1049         theInternalUnsafe.unpark(thread);
1050     }
1051 
1052     /**
1053      * Blocks current thread, returning when a balancing
1054      * {@code unpark} occurs, or a balancing {@code unpark} has
1055      * already occurred, or the thread is interrupted, or, if not
1056      * absolute and time is not zero, the given time nanoseconds have
1057      * elapsed, or if absolute, the given deadline in milliseconds
1058      * since Epoch has passed, or spuriously (i.e., returning for no
1059      * "reason"). Note: This operation is in the Unsafe class only
1060      * because {@code unpark} is, so it would be strange to place it
1061      * elsewhere.
1062      */
1063     @ForceInline
1064     public void park(boolean isAbsolute, long time) {
1065         theInternalUnsafe.park(isAbsolute, time);
1066     }
1067 
1068     /**
1069      * Gets the load average in the system run queue assigned
1070      * to the available processors averaged over various periods of time.
1071      * This method retrieves the given {@code nelem} samples and
1072      * assigns to the elements of the given {@code loadavg} array.
1073      * The system imposes a maximum of 3 samples, representing
1074      * averages over the last 1,  5,  and  15 minutes, respectively.
1075      *
1076      * @param loadavg an array of double of size nelems
1077      * @param nelems the number of samples to be retrieved and
1078      *        must be 1 to 3.
1079      *
1080      * @return the number of samples actually retrieved; or -1
1081      *         if the load average is unobtainable.
1082      */
1083     @ForceInline
1084     public int getLoadAverage(double[] loadavg, int nelems) {
1085         return theInternalUnsafe.getLoadAverage(loadavg, nelems);
1086     }
1087 
1088     // The following contain CAS-based Java implementations used on
1089     // platforms not supporting native instructions
1090 
1091     /**
1092      * Atomically adds the given value to the current value of a field
1093      * or array element within the given object {@code o}
1094      * at the given {@code offset}.
1095      *
1096      * @param o object/array to update the field/element in
1097      * @param offset field/element offset
1098      * @param delta the value to add
1099      * @return the previous value
1100      * @since 1.8
1101      */
1102     @ForceInline
1103     public final int getAndAddInt(Object o, long offset, int delta) {
1104         return theInternalUnsafe.getAndAddInt(o, offset, delta);
1105     }
1106 
1107     /**
1108      * Atomically adds the given value to the current value of a field
1109      * or array element within the given object {@code o}
1110      * at the given {@code offset}.
1111      *
1112      * @param o object/array to update the field/element in
1113      * @param offset field/element offset
1114      * @param delta the value to add
1115      * @return the previous value
1116      * @since 1.8
1117      */
1118     @ForceInline
1119     public final long getAndAddLong(Object o, long offset, long delta) {
1120         return theInternalUnsafe.getAndAddLong(o, offset, delta);
1121     }
1122 
1123     /**
1124      * Atomically exchanges the given value with the current value of
1125      * a field or array element within the given object {@code o}
1126      * at the given {@code offset}.
1127      *
1128      * @param o object/array to update the field/element in
1129      * @param offset field/element offset
1130      * @param newValue new value
1131      * @return the previous value
1132      * @since 1.8
1133      */
1134     @ForceInline
1135     public final int getAndSetInt(Object o, long offset, int newValue) {
1136         return theInternalUnsafe.getAndSetInt(o, offset, newValue);
1137     }
1138 
1139     /**
1140      * Atomically exchanges the given value with the current value of
1141      * a field or array element within the given object {@code o}
1142      * at the given {@code offset}.
1143      *
1144      * @param o object/array to update the field/element in
1145      * @param offset field/element offset
1146      * @param newValue new value
1147      * @return the previous value
1148      * @since 1.8
1149      */
1150     @ForceInline
1151     public final long getAndSetLong(Object o, long offset, long newValue) {
1152         return theInternalUnsafe.getAndSetLong(o, offset, newValue);
1153     }
1154 
1155     /**
1156      * Atomically exchanges the given reference value with the current
1157      * reference value of a field or array element within the given
1158      * object {@code o} at the given {@code offset}.
1159      *
1160      * @param o object/array to update the field/element in
1161      * @param offset field/element offset
1162      * @param newValue new value
1163      * @return the previous value
1164      * @since 1.8
1165      */
1166     @ForceInline
1167     public final Object getAndSetObject(Object o, long offset, Object newValue) {
1168         return theInternalUnsafe.getAndSetObject(o, offset, newValue);
1169     }
1170 
1171 
1172     /**
1173      * Ensures that loads before the fence will not be reordered with loads and
1174      * stores after the fence; a "LoadLoad plus LoadStore barrier".
1175      *
1176      * Corresponds to C11 atomic_thread_fence(memory_order_acquire)
1177      * (an "acquire fence").
1178      *
1179      * A pure LoadLoad fence is not provided, since the addition of LoadStore
1180      * is almost always desired, and most current hardware instructions that
1181      * provide a LoadLoad barrier also provide a LoadStore barrier for free.
1182      * @since 1.8
1183      */
1184     @ForceInline
1185     public void loadFence() {
1186         theInternalUnsafe.loadFence();
1187     }
1188 
1189     /**
1190      * Ensures that loads and stores before the fence will not be reordered with
1191      * stores after the fence; a "StoreStore plus LoadStore barrier".
1192      *
1193      * Corresponds to C11 atomic_thread_fence(memory_order_release)
1194      * (a "release fence").
1195      *
1196      * A pure StoreStore fence is not provided, since the addition of LoadStore
1197      * is almost always desired, and most current hardware instructions that
1198      * provide a StoreStore barrier also provide a LoadStore barrier for free.
1199      * @since 1.8
1200      */
1201     @ForceInline
1202     public void storeFence() {
1203         theInternalUnsafe.storeFence();
1204     }
1205 
1206     /**
1207      * Ensures that loads and stores before the fence will not be reordered
1208      * with loads and stores after the fence.  Implies the effects of both
1209      * loadFence() and storeFence(), and in addition, the effect of a StoreLoad
1210      * barrier.
1211      *
1212      * Corresponds to C11 atomic_thread_fence(memory_order_seq_cst).
1213      * @since 1.8
1214      */
1215     @ForceInline
1216     public void fullFence() {
1217         theInternalUnsafe.fullFence();
1218     }
1219 
1220     /**
1221      * Invokes the given direct byte buffer's cleaner, if any.
1222      *
1223      * @param directBuffer a direct byte buffer
1224      * @throws NullPointerException if {@code directBuffer} is null
1225      * @throws IllegalArgumentException if {@code directBuffer} is non-direct,
1226      * or is a {@link java.nio.Buffer#slice slice}, or is a
1227      * {@link java.nio.Buffer#duplicate duplicate}
1228      * @since 9
1229      */
1230     public void invokeCleaner(java.nio.ByteBuffer directBuffer) {
1231         if (!directBuffer.isDirect())
1232             throw new IllegalArgumentException("buffer is non-direct");
1233 
1234         theInternalUnsafe.invokeCleaner(directBuffer);
1235     }
1236 }