/* * Copyright (c) 1996, 2019, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package sun.security.x509; import java.io.*; import java.security.spec.AlgorithmParameterSpec; import java.security.spec.InvalidParameterSpecException; import java.security.spec.MGF1ParameterSpec; import java.security.spec.PSSParameterSpec; import java.util.*; import java.security.*; import sun.security.rsa.PSSParameters; import sun.security.util.*; /** * This class identifies algorithms, such as cryptographic transforms, each * of which may be associated with parameters. Instances of this base class * are used when this runtime environment has no special knowledge of the * algorithm type, and may also be used in other cases. Equivalence is * defined according to OID and (where relevant) parameters. * *

Subclasses may be used, for example when the algorithm ID has * associated parameters which some code (e.g. code using public keys) needs * to have parsed. Two examples of such algorithms are Diffie-Hellman key * exchange, and the Digital Signature Standard Algorithm (DSS/DSA). * *

The OID constants defined in this class correspond to some widely * used algorithms, for which conventional string names have been defined. * This class is not a general repository for OIDs, or for such string names. * Note that the mappings between algorithm IDs and algorithm names is * not one-to-one. * * * @author David Brownell * @author Amit Kapoor * @author Hemma Prafullchandra */ public class AlgorithmId implements Serializable, DerEncoder { /** use serialVersionUID from JDK 1.1. for interoperability */ private static final long serialVersionUID = 7205873507486557157L; /** * The object identitifer being used for this algorithm. */ private ObjectIdentifier algid; // The (parsed) parameters private AlgorithmParameters algParams; private boolean constructedFromDer = true; /** * Parameters for this algorithm. These are stored in unparsed * DER-encoded form; subclasses can be made to automaticaly parse * them so there is fast access to these parameters. */ protected DerValue params; /** * Constructs an algorithm ID which will be initialized * separately, for example by deserialization. * @deprecated use one of the other constructors. */ @Deprecated public AlgorithmId() { } /** * Constructs a parameterless algorithm ID. * * @param oid the identifier for the algorithm */ public AlgorithmId(ObjectIdentifier oid) { algid = oid; } /** * Constructs an algorithm ID with algorithm parameters. * * @param oid the identifier for the algorithm. * @param algparams the associated algorithm parameters. */ public AlgorithmId(ObjectIdentifier oid, AlgorithmParameters algparams) { algid = oid; algParams = algparams; constructedFromDer = false; } private AlgorithmId(ObjectIdentifier oid, DerValue params) throws IOException { this.algid = oid; this.params = params; if (this.params != null) { decodeParams(); } } protected void decodeParams() throws IOException { String algidString = algid.toString(); try { algParams = AlgorithmParameters.getInstance(algidString); } catch (NoSuchAlgorithmException e) { /* * This algorithm parameter type is not supported, so we cannot * parse the parameters. */ algParams = null; return; } // Decode (parse) the parameters algParams.init(params.toByteArray()); } /** * Marshal a DER-encoded "AlgorithmID" sequence on the DER stream. */ public final void encode(DerOutputStream out) throws IOException { derEncode(out); } /** * DER encode this object onto an output stream. * Implements the DerEncoder interface. * * @param out * the output stream on which to write the DER encoding. * * @exception IOException on encoding error. */ public void derEncode (OutputStream out) throws IOException { DerOutputStream bytes = new DerOutputStream(); DerOutputStream tmp = new DerOutputStream(); bytes.putOID(algid); // Setup params from algParams since no DER encoding is given if (constructedFromDer == false) { if (algParams != null) { params = new DerValue(algParams.getEncoded()); } else { params = null; } } if (params == null) { // Changes backed out for compatibility with Solaris // Several AlgorithmId should omit the whole parameter part when // it's NULL. They are --- // rfc3370 2.1: Implementations SHOULD generate SHA-1 // AlgorithmIdentifiers with absent parameters. // rfc3447 C1: When id-sha1, id-sha224, id-sha256, id-sha384 and // id-sha512 are used in an AlgorithmIdentifier the parameters // (which are optional) SHOULD be omitted. // rfc3279 2.3.2: The id-dsa algorithm syntax includes optional // domain parameters... When omitted, the parameters component // MUST be omitted entirely // rfc3370 3.1: When the id-dsa-with-sha1 algorithm identifier // is used, the AlgorithmIdentifier parameters field MUST be absent. /*if ( algid.equals((Object)SHA_oid) || algid.equals((Object)SHA224_oid) || algid.equals((Object)SHA256_oid) || algid.equals((Object)SHA384_oid) || algid.equals((Object)SHA512_oid) || algid.equals((Object)SHA512_224_oid) || algid.equals((Object)SHA512_256_oid) || algid.equals((Object)DSA_oid) || algid.equals((Object)sha1WithDSA_oid)) { ; // no parameter part encoded } else { bytes.putNull(); }*/ if (algid.equals(RSASSA_PSS_oid)) { // RFC 4055 3.3: when an RSASSA-PSS key does not require // parameter validation, field is absent. } else { bytes.putNull(); } } else { bytes.putDerValue(params); } tmp.write(DerValue.tag_Sequence, bytes); out.write(tmp.toByteArray()); } /** * Returns the DER-encoded X.509 AlgorithmId as a byte array. */ public final byte[] encode() throws IOException { DerOutputStream out = new DerOutputStream(); derEncode(out); return out.toByteArray(); } /** * Returns the ISO OID for this algorithm. This is usually converted * to a string and used as part of an algorithm name, for example * "OID.1.3.14.3.2.13" style notation. Use the getName * call when you do not need to ensure cross-system portability * of algorithm names, or need a user friendly name. */ public final ObjectIdentifier getOID () { return algid; } /** * Returns a name for the algorithm which may be more intelligible * to humans than the algorithm's OID, but which won't necessarily * be comprehensible on other systems. For example, this might * return a name such as "MD5withRSA" for a signature algorithm on * some systems. It also returns names like "OID.1.2.3.4", when * no particular name for the algorithm is known. */ public String getName() { String algName = nameTable.get(algid); if (algName != null) { return algName; } if ((params != null) && algid.equals((Object)specifiedWithECDSA_oid)) { try { AlgorithmId paramsId = AlgorithmId.parse(new DerValue(getEncodedParams())); String paramsName = paramsId.getName(); algName = makeSigAlg(paramsName, "EC"); } catch (IOException e) { // ignore } } return (algName == null) ? algid.toString() : algName; } public AlgorithmParameters getParameters() { return algParams; } /** * Returns the DER encoded parameter, which can then be * used to initialize java.security.AlgorithmParamters. * * @return DER encoded parameters, or null not present. */ public byte[] getEncodedParams() throws IOException { return (params == null) ? null : params.toByteArray(); } /** * Returns true iff the argument indicates the same algorithm * with the same parameters. */ public boolean equals(AlgorithmId other) { boolean paramsEqual = (params == null ? other.params == null : params.equals(other.params)); return (algid.equals((Object)other.algid) && paramsEqual); } /** * Compares this AlgorithmID to another. If algorithm parameters are * available, they are compared. Otherwise, just the object IDs * for the algorithm are compared. * * @param other preferably an AlgorithmId, else an ObjectIdentifier */ public boolean equals(Object other) { if (this == other) { return true; } if (other instanceof AlgorithmId) { return equals((AlgorithmId) other); } else if (other instanceof ObjectIdentifier) { return equals((ObjectIdentifier) other); } else { return false; } } /** * Compares two algorithm IDs for equality. Returns true iff * they are the same algorithm, ignoring algorithm parameters. */ public final boolean equals(ObjectIdentifier id) { return algid.equals((Object)id); } /** * Returns a hashcode for this AlgorithmId. * * @return a hashcode for this AlgorithmId. */ public int hashCode() { StringBuilder sbuf = new StringBuilder(); sbuf.append(algid.toString()); sbuf.append(paramsToString()); return sbuf.toString().hashCode(); } /** * Provides a human-readable description of the algorithm parameters. * This may be redefined by subclasses which parse those parameters. */ protected String paramsToString() { if (params == null) { return ""; } else if (algParams != null) { return algParams.toString(); } else { return ", params unparsed"; } } /** * Returns a string describing the algorithm and its parameters. */ public String toString() { return getName() + paramsToString(); } /** * Parse (unmarshal) an ID from a DER sequence input value. This form * parsing might be used when expanding a value which has already been * partially unmarshaled as a set or sequence member. * * @exception IOException on error. * @param val the input value, which contains the algid and, if * there are any parameters, those parameters. * @return an ID for the algorithm. If the system is configured * appropriately, this may be an instance of a class * with some kind of special support for this algorithm. * In that case, you may "narrow" the type of the ID. */ public static AlgorithmId parse(DerValue val) throws IOException { if (val.tag != DerValue.tag_Sequence) { throw new IOException("algid parse error, not a sequence"); } /* * Get the algorithm ID and any parameters. */ ObjectIdentifier algid; DerValue params; DerInputStream in = val.toDerInputStream(); algid = in.getOID(); if (in.available() == 0) { params = null; } else { params = in.getDerValue(); if (params.tag == DerValue.tag_Null) { if (params.length() != 0) { throw new IOException("invalid NULL"); } params = null; } if (in.available() != 0) { throw new IOException("Invalid AlgorithmIdentifier: extra data"); } } return new AlgorithmId(algid, params); } /** * Returns one of the algorithm IDs most commonly associated * with this algorithm name. * * @param algname the name being used * @deprecated use the short get form of this method. * @exception NoSuchAlgorithmException on error. */ @Deprecated public static AlgorithmId getAlgorithmId(String algname) throws NoSuchAlgorithmException { return get(algname); } /** * Returns one of the algorithm IDs most commonly associated * with this algorithm name. * * @param algname the name being used * @exception NoSuchAlgorithmException on error. */ public static AlgorithmId get(String algname) throws NoSuchAlgorithmException { ObjectIdentifier oid; try { oid = algOID(algname); } catch (IOException ioe) { throw new NoSuchAlgorithmException ("Invalid ObjectIdentifier " + algname); } if (oid == null) { throw new NoSuchAlgorithmException ("unrecognized algorithm name: " + algname); } return new AlgorithmId(oid); } /** * Returns one of the algorithm IDs most commonly associated * with this algorithm parameters. * * @param algparams the associated algorithm parameters. * @exception NoSuchAlgorithmException on error. */ public static AlgorithmId get(AlgorithmParameters algparams) throws NoSuchAlgorithmException { ObjectIdentifier oid; String algname = algparams.getAlgorithm(); try { oid = algOID(algname); } catch (IOException ioe) { throw new NoSuchAlgorithmException ("Invalid ObjectIdentifier " + algname); } if (oid == null) { throw new NoSuchAlgorithmException ("unrecognized algorithm name: " + algname); } return new AlgorithmId(oid, algparams); } /* * Translates from some common algorithm names to the * OID with which they're usually associated ... this mapping * is the reverse of the one below, except in those cases * where synonyms are supported or where a given algorithm * is commonly associated with multiple OIDs. * * XXX This method needs to be enhanced so that we can also pass the * scope of the algorithm name to it, e.g., the algorithm name "DSA" * may have a different OID when used as a "Signature" algorithm than when * used as a "KeyPairGenerator" algorithm. */ private static ObjectIdentifier algOID(String name) throws IOException { // See if algname is in printable OID ("dot-dot") notation if (name.indexOf('.') != -1) { if (name.startsWith("OID.")) { return new ObjectIdentifier(name.substring("OID.".length())); } else { return new ObjectIdentifier(name); } } // Digesting algorithms if (name.equalsIgnoreCase("MD5")) { return AlgorithmId.MD5_oid; } if (name.equalsIgnoreCase("MD2")) { return AlgorithmId.MD2_oid; } if (name.equalsIgnoreCase("SHA") || name.equalsIgnoreCase("SHA1") || name.equalsIgnoreCase("SHA-1")) { return AlgorithmId.SHA_oid; } if (name.equalsIgnoreCase("SHA-256") || name.equalsIgnoreCase("SHA256")) { return AlgorithmId.SHA256_oid; } if (name.equalsIgnoreCase("SHA-384") || name.equalsIgnoreCase("SHA384")) { return AlgorithmId.SHA384_oid; } if (name.equalsIgnoreCase("SHA-512") || name.equalsIgnoreCase("SHA512")) { return AlgorithmId.SHA512_oid; } if (name.equalsIgnoreCase("SHA-224") || name.equalsIgnoreCase("SHA224")) { return AlgorithmId.SHA224_oid; } if (name.equalsIgnoreCase("SHA-512/224") || name.equalsIgnoreCase("SHA512/224")) { return AlgorithmId.SHA512_224_oid; } if (name.equalsIgnoreCase("SHA-512/256") || name.equalsIgnoreCase("SHA512/256")) { return AlgorithmId.SHA512_256_oid; } // Various public key algorithms if (name.equalsIgnoreCase("RSA")) { return AlgorithmId.RSAEncryption_oid; } if (name.equalsIgnoreCase("RSASSA-PSS")) { return AlgorithmId.RSASSA_PSS_oid; } if (name.equalsIgnoreCase("RSAES-OAEP")) { return AlgorithmId.RSAES_OAEP_oid; } if (name.equalsIgnoreCase("Diffie-Hellman") || name.equalsIgnoreCase("DH")) { return AlgorithmId.DH_oid; } if (name.equalsIgnoreCase("DSA")) { return AlgorithmId.DSA_oid; } if (name.equalsIgnoreCase("EC")) { return EC_oid; } if (name.equalsIgnoreCase("ECDH")) { return AlgorithmId.ECDH_oid; } // Secret key algorithms if (name.equalsIgnoreCase("AES")) { return AlgorithmId.AES_oid; } // Common signature types if (name.equalsIgnoreCase("MD5withRSA") || name.equalsIgnoreCase("MD5/RSA")) { return AlgorithmId.md5WithRSAEncryption_oid; } if (name.equalsIgnoreCase("MD2withRSA") || name.equalsIgnoreCase("MD2/RSA")) { return AlgorithmId.md2WithRSAEncryption_oid; } if (name.equalsIgnoreCase("SHAwithDSA") || name.equalsIgnoreCase("SHA1withDSA") || name.equalsIgnoreCase("SHA/DSA") || name.equalsIgnoreCase("SHA1/DSA") || name.equalsIgnoreCase("DSAWithSHA1") || name.equalsIgnoreCase("DSS") || name.equalsIgnoreCase("SHA-1/DSA")) { return AlgorithmId.sha1WithDSA_oid; } if (name.equalsIgnoreCase("SHA224WithDSA")) { return AlgorithmId.sha224WithDSA_oid; } if (name.equalsIgnoreCase("SHA256WithDSA")) { return AlgorithmId.sha256WithDSA_oid; } if (name.equalsIgnoreCase("SHA1WithRSA") || name.equalsIgnoreCase("SHA1/RSA")) { return AlgorithmId.sha1WithRSAEncryption_oid; } if (name.equalsIgnoreCase("SHA1withECDSA") || name.equalsIgnoreCase("ECDSA")) { return AlgorithmId.sha1WithECDSA_oid; } if (name.equalsIgnoreCase("SHA224withECDSA")) { return AlgorithmId.sha224WithECDSA_oid; } if (name.equalsIgnoreCase("SHA256withECDSA")) { return AlgorithmId.sha256WithECDSA_oid; } if (name.equalsIgnoreCase("SHA384withECDSA")) { return AlgorithmId.sha384WithECDSA_oid; } if (name.equalsIgnoreCase("SHA512withECDSA")) { return AlgorithmId.sha512WithECDSA_oid; } return oidTable().get(name.toUpperCase(Locale.ENGLISH)); } private static ObjectIdentifier oid(int ... values) { return ObjectIdentifier.newInternal(values); } private static volatile Map oidTable; private static final Map nameTable; /** Returns the oidTable, lazily initializing it on first access. */ private static Map oidTable() throws IOException { // Double checked locking; safe because oidTable is volatile Map tab; if ((tab = oidTable) == null) { synchronized (AlgorithmId.class) { if ((tab = oidTable) == null) oidTable = tab = computeOidTable(); } } return tab; } /** Collects the algorithm names from the installed providers. */ private static HashMap computeOidTable() throws IOException { HashMap tab = new HashMap<>(); for (Provider provider : Security.getProviders()) { for (Object key : provider.keySet()) { String alias = (String)key; String upperCaseAlias = alias.toUpperCase(Locale.ENGLISH); int index; if (upperCaseAlias.startsWith("ALG.ALIAS") && (index=upperCaseAlias.indexOf("OID.", 0)) != -1) { index += "OID.".length(); if (index == alias.length()) { // invalid alias entry break; } String oidString = alias.substring(index); String stdAlgName = provider.getProperty(alias); if (stdAlgName != null) { stdAlgName = stdAlgName.toUpperCase(Locale.ENGLISH); } if (stdAlgName != null && tab.get(stdAlgName) == null) { tab.put(stdAlgName, new ObjectIdentifier(oidString)); } } } } return tab; } /*****************************************************************/ /* * HASHING ALGORITHMS */ /** * Algorithm ID for the MD2 Message Digest Algorthm, from RFC 1319. * OID = 1.2.840.113549.2.2 */ public static final ObjectIdentifier MD2_oid = ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 2, 2}); /** * Algorithm ID for the MD5 Message Digest Algorthm, from RFC 1321. * OID = 1.2.840.113549.2.5 */ public static final ObjectIdentifier MD5_oid = ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 2, 5}); /** * Algorithm ID for the SHA1 Message Digest Algorithm, from FIPS 180-1. * This is sometimes called "SHA", though that is often confusing since * many people refer to FIPS 180 (which has an error) as defining SHA. * OID = 1.3.14.3.2.26. Old SHA-0 OID: 1.3.14.3.2.18. */ public static final ObjectIdentifier SHA_oid = ObjectIdentifier.newInternal(new int[] {1, 3, 14, 3, 2, 26}); public static final ObjectIdentifier SHA224_oid = ObjectIdentifier.newInternal(new int[] {2, 16, 840, 1, 101, 3, 4, 2, 4}); public static final ObjectIdentifier SHA256_oid = ObjectIdentifier.newInternal(new int[] {2, 16, 840, 1, 101, 3, 4, 2, 1}); public static final ObjectIdentifier SHA384_oid = ObjectIdentifier.newInternal(new int[] {2, 16, 840, 1, 101, 3, 4, 2, 2}); public static final ObjectIdentifier SHA512_oid = ObjectIdentifier.newInternal(new int[] {2, 16, 840, 1, 101, 3, 4, 2, 3}); public static final ObjectIdentifier SHA512_224_oid = ObjectIdentifier.newInternal(new int[] {2, 16, 840, 1, 101, 3, 4, 2, 5}); public static final ObjectIdentifier SHA512_256_oid = ObjectIdentifier.newInternal(new int[] {2, 16, 840, 1, 101, 3, 4, 2, 6}); /* * COMMON PUBLIC KEY TYPES */ private static final int[] DH_data = { 1, 2, 840, 113549, 1, 3, 1 }; private static final int[] DH_PKIX_data = { 1, 2, 840, 10046, 2, 1 }; private static final int[] DSA_OIW_data = { 1, 3, 14, 3, 2, 12 }; private static final int[] DSA_PKIX_data = { 1, 2, 840, 10040, 4, 1 }; private static final int[] RSA_data = { 2, 5, 8, 1, 1 }; public static final ObjectIdentifier DH_oid; public static final ObjectIdentifier DH_PKIX_oid; public static final ObjectIdentifier DSA_oid; public static final ObjectIdentifier DSA_OIW_oid; public static final ObjectIdentifier EC_oid = oid(1, 2, 840, 10045, 2, 1); public static final ObjectIdentifier ECDH_oid = oid(1, 3, 132, 1, 12); public static final ObjectIdentifier RSA_oid; public static final ObjectIdentifier RSAEncryption_oid = oid(1, 2, 840, 113549, 1, 1, 1); public static final ObjectIdentifier RSAES_OAEP_oid = oid(1, 2, 840, 113549, 1, 1, 7); public static final ObjectIdentifier mgf1_oid = oid(1, 2, 840, 113549, 1, 1, 8); public static final ObjectIdentifier RSASSA_PSS_oid = oid(1, 2, 840, 113549, 1, 1, 10); /* * COMMON SECRET KEY TYPES */ public static final ObjectIdentifier AES_oid = oid(2, 16, 840, 1, 101, 3, 4, 1); /* * COMMON SIGNATURE ALGORITHMS */ private static final int[] md2WithRSAEncryption_data = { 1, 2, 840, 113549, 1, 1, 2 }; private static final int[] md5WithRSAEncryption_data = { 1, 2, 840, 113549, 1, 1, 4 }; private static final int[] sha1WithRSAEncryption_data = { 1, 2, 840, 113549, 1, 1, 5 }; private static final int[] sha1WithRSAEncryption_OIW_data = { 1, 3, 14, 3, 2, 29 }; private static final int[] sha224WithRSAEncryption_data = { 1, 2, 840, 113549, 1, 1, 14 }; private static final int[] sha256WithRSAEncryption_data = { 1, 2, 840, 113549, 1, 1, 11 }; private static final int[] sha384WithRSAEncryption_data = { 1, 2, 840, 113549, 1, 1, 12 }; private static final int[] sha512WithRSAEncryption_data = { 1, 2, 840, 113549, 1, 1, 13 }; private static final int[] shaWithDSA_OIW_data = { 1, 3, 14, 3, 2, 13 }; private static final int[] sha1WithDSA_OIW_data = { 1, 3, 14, 3, 2, 27 }; private static final int[] dsaWithSHA1_PKIX_data = { 1, 2, 840, 10040, 4, 3 }; public static final ObjectIdentifier md2WithRSAEncryption_oid; public static final ObjectIdentifier md5WithRSAEncryption_oid; public static final ObjectIdentifier sha1WithRSAEncryption_oid; public static final ObjectIdentifier sha1WithRSAEncryption_OIW_oid; public static final ObjectIdentifier sha224WithRSAEncryption_oid; public static final ObjectIdentifier sha256WithRSAEncryption_oid; public static final ObjectIdentifier sha384WithRSAEncryption_oid; public static final ObjectIdentifier sha512WithRSAEncryption_oid; public static final ObjectIdentifier sha512_224WithRSAEncryption_oid = oid(1, 2, 840, 113549, 1, 1, 15); public static final ObjectIdentifier sha512_256WithRSAEncryption_oid = oid(1, 2, 840, 113549, 1, 1, 16);; public static final ObjectIdentifier shaWithDSA_OIW_oid; public static final ObjectIdentifier sha1WithDSA_OIW_oid; public static final ObjectIdentifier sha1WithDSA_oid; public static final ObjectIdentifier sha224WithDSA_oid = oid(2, 16, 840, 1, 101, 3, 4, 3, 1); public static final ObjectIdentifier sha256WithDSA_oid = oid(2, 16, 840, 1, 101, 3, 4, 3, 2); public static final ObjectIdentifier sha1WithECDSA_oid = oid(1, 2, 840, 10045, 4, 1); public static final ObjectIdentifier sha224WithECDSA_oid = oid(1, 2, 840, 10045, 4, 3, 1); public static final ObjectIdentifier sha256WithECDSA_oid = oid(1, 2, 840, 10045, 4, 3, 2); public static final ObjectIdentifier sha384WithECDSA_oid = oid(1, 2, 840, 10045, 4, 3, 3); public static final ObjectIdentifier sha512WithECDSA_oid = oid(1, 2, 840, 10045, 4, 3, 4); public static final ObjectIdentifier specifiedWithECDSA_oid = oid(1, 2, 840, 10045, 4, 3); /** * Algorithm ID for the PBE encryption algorithms from PKCS#5 and * PKCS#12. */ public static final ObjectIdentifier pbeWithMD5AndDES_oid = ObjectIdentifier.newInternal(new int[]{1, 2, 840, 113549, 1, 5, 3}); public static final ObjectIdentifier pbeWithMD5AndRC2_oid = ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 1, 5, 6}); public static final ObjectIdentifier pbeWithSHA1AndDES_oid = ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 1, 5, 10}); public static final ObjectIdentifier pbeWithSHA1AndRC2_oid = ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 1, 5, 11}); public static ObjectIdentifier pbeWithSHA1AndDESede_oid = ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 1, 12, 1, 3}); public static ObjectIdentifier pbeWithSHA1AndRC2_40_oid = ObjectIdentifier.newInternal(new int[] {1, 2, 840, 113549, 1, 12, 1, 6}); static { /* * Note the preferred OIDs are named simply with no "OIW" or * "PKIX" in them, even though they may point to data from these * specs; e.g. SHA_oid, DH_oid, DSA_oid, SHA1WithDSA_oid... */ /** * Algorithm ID for Diffie Hellman Key agreement, from PKCS #3. * Parameters include public values P and G, and may optionally specify * the length of the private key X. Alternatively, algorithm parameters * may be derived from another source such as a Certificate Authority's * certificate. * OID = 1.2.840.113549.1.3.1 */ DH_oid = ObjectIdentifier.newInternal(DH_data); /** * Algorithm ID for the Diffie Hellman Key Agreement (DH), from RFC 3279. * Parameters may include public values P and G. * OID = 1.2.840.10046.2.1 */ DH_PKIX_oid = ObjectIdentifier.newInternal(DH_PKIX_data); /** * Algorithm ID for the Digital Signing Algorithm (DSA), from the * NIST OIW Stable Agreements part 12. * Parameters may include public values P, Q, and G; or these may be * derived from * another source such as a Certificate Authority's certificate. * OID = 1.3.14.3.2.12 */ DSA_OIW_oid = ObjectIdentifier.newInternal(DSA_OIW_data); /** * Algorithm ID for the Digital Signing Algorithm (DSA), from RFC 3279. * Parameters may include public values P, Q, and G; or these may be * derived from another source such as a Certificate Authority's * certificate. * OID = 1.2.840.10040.4.1 */ DSA_oid = ObjectIdentifier.newInternal(DSA_PKIX_data); /** * Algorithm ID for RSA keys used for any purpose, as defined in X.509. * The algorithm parameter is a single value, the number of bits in the * public modulus. * OID = 2.5.8.1.1 */ RSA_oid = ObjectIdentifier.newInternal(RSA_data); /** * Identifies a signing algorithm where an MD2 digest is encrypted * using an RSA private key; defined in PKCS #1. Use of this * signing algorithm is discouraged due to MD2 vulnerabilities. * OID = 1.2.840.113549.1.1.2 */ md2WithRSAEncryption_oid = ObjectIdentifier.newInternal(md2WithRSAEncryption_data); /** * Identifies a signing algorithm where an MD5 digest is * encrypted using an RSA private key; defined in PKCS #1. * OID = 1.2.840.113549.1.1.4 */ md5WithRSAEncryption_oid = ObjectIdentifier.newInternal(md5WithRSAEncryption_data); /** * Identifies a signing algorithm where a SHA1 digest is * encrypted using an RSA private key; defined by RSA DSI. * OID = 1.2.840.113549.1.1.5 */ sha1WithRSAEncryption_oid = ObjectIdentifier.newInternal(sha1WithRSAEncryption_data); /** * Identifies a signing algorithm where a SHA1 digest is * encrypted using an RSA private key; defined in NIST OIW. * OID = 1.3.14.3.2.29 */ sha1WithRSAEncryption_OIW_oid = ObjectIdentifier.newInternal(sha1WithRSAEncryption_OIW_data); /** * Identifies a signing algorithm where a SHA224 digest is * encrypted using an RSA private key; defined by PKCS #1. * OID = 1.2.840.113549.1.1.14 */ sha224WithRSAEncryption_oid = ObjectIdentifier.newInternal(sha224WithRSAEncryption_data); /** * Identifies a signing algorithm where a SHA256 digest is * encrypted using an RSA private key; defined by PKCS #1. * OID = 1.2.840.113549.1.1.11 */ sha256WithRSAEncryption_oid = ObjectIdentifier.newInternal(sha256WithRSAEncryption_data); /** * Identifies a signing algorithm where a SHA384 digest is * encrypted using an RSA private key; defined by PKCS #1. * OID = 1.2.840.113549.1.1.12 */ sha384WithRSAEncryption_oid = ObjectIdentifier.newInternal(sha384WithRSAEncryption_data); /** * Identifies a signing algorithm where a SHA512 digest is * encrypted using an RSA private key; defined by PKCS #1. * OID = 1.2.840.113549.1.1.13 */ sha512WithRSAEncryption_oid = ObjectIdentifier.newInternal(sha512WithRSAEncryption_data); /** * Identifies the FIPS 186 "Digital Signature Standard" (DSS), where a * SHA digest is signed using the Digital Signing Algorithm (DSA). * This should not be used. * OID = 1.3.14.3.2.13 */ shaWithDSA_OIW_oid = ObjectIdentifier.newInternal(shaWithDSA_OIW_data); /** * Identifies the FIPS 186 "Digital Signature Standard" (DSS), where a * SHA1 digest is signed using the Digital Signing Algorithm (DSA). * OID = 1.3.14.3.2.27 */ sha1WithDSA_OIW_oid = ObjectIdentifier.newInternal(sha1WithDSA_OIW_data); /** * Identifies the FIPS 186 "Digital Signature Standard" (DSS), where a * SHA1 digest is signed using the Digital Signing Algorithm (DSA). * OID = 1.2.840.10040.4.3 */ sha1WithDSA_oid = ObjectIdentifier.newInternal(dsaWithSHA1_PKIX_data); nameTable = new HashMap<>(); nameTable.put(MD5_oid, "MD5"); nameTable.put(MD2_oid, "MD2"); nameTable.put(SHA_oid, "SHA-1"); nameTable.put(SHA224_oid, "SHA-224"); nameTable.put(SHA256_oid, "SHA-256"); nameTable.put(SHA384_oid, "SHA-384"); nameTable.put(SHA512_oid, "SHA-512"); nameTable.put(SHA512_224_oid, "SHA-512/224"); nameTable.put(SHA512_256_oid, "SHA-512/256"); nameTable.put(RSAEncryption_oid, "RSA"); nameTable.put(RSA_oid, "RSA"); nameTable.put(DH_oid, "Diffie-Hellman"); nameTable.put(DH_PKIX_oid, "Diffie-Hellman"); nameTable.put(DSA_oid, "DSA"); nameTable.put(DSA_OIW_oid, "DSA"); nameTable.put(EC_oid, "EC"); nameTable.put(ECDH_oid, "ECDH"); nameTable.put(AES_oid, "AES"); nameTable.put(sha1WithECDSA_oid, "SHA1withECDSA"); nameTable.put(sha224WithECDSA_oid, "SHA224withECDSA"); nameTable.put(sha256WithECDSA_oid, "SHA256withECDSA"); nameTable.put(sha384WithECDSA_oid, "SHA384withECDSA"); nameTable.put(sha512WithECDSA_oid, "SHA512withECDSA"); nameTable.put(md5WithRSAEncryption_oid, "MD5withRSA"); nameTable.put(md2WithRSAEncryption_oid, "MD2withRSA"); nameTable.put(sha1WithDSA_oid, "SHA1withDSA"); nameTable.put(sha1WithDSA_OIW_oid, "SHA1withDSA"); nameTable.put(shaWithDSA_OIW_oid, "SHA1withDSA"); nameTable.put(sha224WithDSA_oid, "SHA224withDSA"); nameTable.put(sha256WithDSA_oid, "SHA256withDSA"); nameTable.put(sha1WithRSAEncryption_oid, "SHA1withRSA"); nameTable.put(sha1WithRSAEncryption_OIW_oid, "SHA1withRSA"); nameTable.put(sha224WithRSAEncryption_oid, "SHA224withRSA"); nameTable.put(sha256WithRSAEncryption_oid, "SHA256withRSA"); nameTable.put(sha384WithRSAEncryption_oid, "SHA384withRSA"); nameTable.put(sha512WithRSAEncryption_oid, "SHA512withRSA"); nameTable.put(sha512_224WithRSAEncryption_oid, "SHA512/224withRSA"); nameTable.put(sha512_256WithRSAEncryption_oid, "SHA512/256withRSA"); nameTable.put(RSASSA_PSS_oid, "RSASSA-PSS"); nameTable.put(RSAES_OAEP_oid, "RSAES-OAEP"); nameTable.put(pbeWithMD5AndDES_oid, "PBEWithMD5AndDES"); nameTable.put(pbeWithMD5AndRC2_oid, "PBEWithMD5AndRC2"); nameTable.put(pbeWithSHA1AndDES_oid, "PBEWithSHA1AndDES"); nameTable.put(pbeWithSHA1AndRC2_oid, "PBEWithSHA1AndRC2"); nameTable.put(pbeWithSHA1AndDESede_oid, "PBEWithSHA1AndDESede"); nameTable.put(pbeWithSHA1AndRC2_40_oid, "PBEWithSHA1AndRC2_40"); } /** * Creates a signature algorithm name from a digest algorithm * name and a encryption algorithm name. */ public static String makeSigAlg(String digAlg, String encAlg) { digAlg = digAlg.replace("-", ""); if (encAlg.equalsIgnoreCase("EC")) encAlg = "ECDSA"; return digAlg + "with" + encAlg; } /** * Extracts the encryption algorithm name from a signature * algorithm name. */ public static String getEncAlgFromSigAlg(String signatureAlgorithm) { signatureAlgorithm = signatureAlgorithm.toUpperCase(Locale.ENGLISH); int with = signatureAlgorithm.indexOf("WITH"); String keyAlgorithm = null; if (with > 0) { int and = signatureAlgorithm.indexOf("AND", with + 4); if (and > 0) { keyAlgorithm = signatureAlgorithm.substring(with + 4, and); } else { keyAlgorithm = signatureAlgorithm.substring(with + 4); } if (keyAlgorithm.equalsIgnoreCase("ECDSA")) { keyAlgorithm = "EC"; } } return keyAlgorithm; } /** * Extracts the digest algorithm name from a signature * algorithm name. */ public static String getDigAlgFromSigAlg(String signatureAlgorithm) { signatureAlgorithm = signatureAlgorithm.toUpperCase(Locale.ENGLISH); int with = signatureAlgorithm.indexOf("WITH"); if (with > 0) { return signatureAlgorithm.substring(0, with); } return null; } /** * Checks if a signature algorithm matches a key algorithm, i.e. a * signature can be initialized with a key. * * @param kAlg must not be null * @param sAlg must not be null * @throws IllegalArgumentException if they do not match */ public static void checkKeyAndSigAlgMatch(String kAlg, String sAlg) { String sAlgUp = sAlg.toUpperCase(Locale.US); if ((sAlgUp.endsWith("WITHRSA") && !kAlg.equalsIgnoreCase("RSA")) || (sAlgUp.endsWith("WITHECDSA") && !kAlg.equalsIgnoreCase("EC")) || (sAlgUp.endsWith("WITHDSA") && !kAlg.equalsIgnoreCase("DSA"))) { throw new IllegalArgumentException( "key algorithm not compatible with signature algorithm"); } } /** * Returns the default signature algorithm for a private key. The digest * part might evolve with time. Remember to update the spec of * {@link jdk.security.jarsigner.JarSigner.Builder#getDefaultSignatureAlgorithm(PrivateKey)} * if updated. * * @param k cannot be null * @return the default alg, might be null if unsupported */ public static String getDefaultSigAlgForKey(PrivateKey k) { switch (k.getAlgorithm().toUpperCase(Locale.ENGLISH)) { case "EC": return ecStrength(KeyUtil.getKeySize(k)) + "withECDSA"; case "DSA": return ifcFfcStrength(KeyUtil.getKeySize(k)) + "withDSA"; case "RSA": return ifcFfcStrength(KeyUtil.getKeySize(k)) + "withRSA"; default: return null; } } // Most commonly used PSSParameterSpec and AlgorithmId private static class PSSParamsHolder { final static PSSParameterSpec PSS_256_SPEC = new PSSParameterSpec( "SHA-256", "MGF1", new MGF1ParameterSpec("SHA-256"), 32, PSSParameterSpec.TRAILER_FIELD_BC); final static PSSParameterSpec PSS_384_SPEC = new PSSParameterSpec( "SHA-384", "MGF1", new MGF1ParameterSpec("SHA-384"), 48, PSSParameterSpec.TRAILER_FIELD_BC); final static PSSParameterSpec PSS_512_SPEC = new PSSParameterSpec( "SHA-512", "MGF1", new MGF1ParameterSpec("SHA-512"), 64, PSSParameterSpec.TRAILER_FIELD_BC); final static AlgorithmId PSS_256_ID; final static AlgorithmId PSS_384_ID; final static AlgorithmId PSS_512_ID; static { try { PSS_256_ID = new AlgorithmId(RSASSA_PSS_oid, new DerValue(PSSParameters.getEncoded(PSS_256_SPEC))); PSS_384_ID = new AlgorithmId(RSASSA_PSS_oid, new DerValue(PSSParameters.getEncoded(PSS_384_SPEC))); PSS_512_ID = new AlgorithmId(RSASSA_PSS_oid, new DerValue(PSSParameters.getEncoded(PSS_512_SPEC))); } catch (IOException e) { throw new AssertionError("Should not happen", e); } } } public static AlgorithmId getWithParameterSpec(String algName, AlgorithmParameterSpec spec) throws NoSuchAlgorithmException { if (spec == null) { return AlgorithmId.get(algName); } else if (spec == PSSParamsHolder.PSS_256_SPEC) { return PSSParamsHolder.PSS_256_ID; } else if (spec == PSSParamsHolder.PSS_384_SPEC) { return PSSParamsHolder.PSS_384_ID; } else if (spec == PSSParamsHolder.PSS_512_SPEC) { return PSSParamsHolder.PSS_512_ID; } else { try { AlgorithmParameters result = AlgorithmParameters.getInstance(algName); result.init(spec); return get(result); } catch (InvalidParameterSpecException | NoSuchAlgorithmException e) { throw new ProviderException(e); } } } public static PSSParameterSpec getDefaultAlgorithmParameterSpec( String sigAlg, PrivateKey k) { if (sigAlg.equalsIgnoreCase("RSASSA-PSS")) { switch (ifcFfcStrength(KeyUtil.getKeySize(k))) { case "SHA256": return PSSParamsHolder.PSS_256_SPEC; case "SHA384": return PSSParamsHolder.PSS_384_SPEC; case "SHA512": return PSSParamsHolder.PSS_512_SPEC; default: throw new AssertionError("Should not happen"); } } else { return null; } } // Values from SP800-57 part 1 rev 4 tables 2 and 3 private static String ecStrength (int bitLength) { if (bitLength >= 512) { // 256 bits of strength return "SHA512"; } else if (bitLength >= 384) { // 192 bits of strength return "SHA384"; } else { // 128 bits of strength and less return "SHA256"; } } // Same values for RSA and DSA private static String ifcFfcStrength (int bitLength) { if (bitLength > 7680) { // 256 bits return "SHA512"; } else if (bitLength > 3072) { // 192 bits return "SHA384"; } else { // 128 bits and less return "SHA256"; } } }