1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/classLoader.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "classfile/moduleEntry.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "classfile/vmSymbols.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/compileTask.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/gcId.hpp"
  39 #include "gc/shared/gcLocker.inline.hpp"
  40 #include "gc/shared/workgroup.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "interpreter/oopMapCache.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "jvmtifiles/jvmtiEnv.hpp"
  46 #include "logging/log.hpp"
  47 #include "logging/logConfiguration.hpp"
  48 #include "logging/logStream.hpp"
  49 #include "memory/allocation.inline.hpp"
  50 #include "memory/metaspaceShared.hpp"
  51 #include "memory/oopFactory.hpp"
  52 #include "memory/resourceArea.hpp"
  53 #include "memory/universe.hpp"
  54 #include "oops/access.inline.hpp"
  55 #include "oops/instanceKlass.hpp"
  56 #include "oops/objArrayOop.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/symbol.hpp"
  59 #include "oops/typeArrayOop.inline.hpp"
  60 #include "oops/verifyOopClosure.hpp"
  61 #include "prims/jvm_misc.hpp"
  62 #include "prims/jvmtiExport.hpp"
  63 #include "prims/jvmtiThreadState.hpp"
  64 #include "runtime/arguments.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/biasedLocking.hpp"
  67 #include "runtime/fieldDescriptor.inline.hpp"
  68 #include "runtime/flags/jvmFlagConstraintList.hpp"
  69 #include "runtime/flags/jvmFlagRangeList.hpp"
  70 #include "runtime/flags/jvmFlagWriteableList.hpp"
  71 #include "runtime/deoptimization.hpp"
  72 #include "runtime/frame.inline.hpp"
  73 #include "runtime/handles.inline.hpp"
  74 #include "runtime/handshake.hpp"
  75 #include "runtime/init.hpp"
  76 #include "runtime/interfaceSupport.inline.hpp"
  77 #include "runtime/java.hpp"
  78 #include "runtime/javaCalls.hpp"
  79 #include "runtime/jniHandles.inline.hpp"
  80 #include "runtime/jniPeriodicChecker.hpp"
  81 #include "runtime/memprofiler.hpp"
  82 #include "runtime/mutexLocker.hpp"
  83 #include "runtime/objectMonitor.hpp"
  84 #include "runtime/orderAccess.hpp"
  85 #include "runtime/osThread.hpp"
  86 #include "runtime/prefetch.inline.hpp"
  87 #include "runtime/safepoint.hpp"
  88 #include "runtime/safepointMechanism.inline.hpp"
  89 #include "runtime/safepointVerifiers.hpp"
  90 #include "runtime/sharedRuntime.hpp"
  91 #include "runtime/statSampler.hpp"
  92 #include "runtime/stubRoutines.hpp"
  93 #include "runtime/sweeper.hpp"
  94 #include "runtime/task.hpp"
  95 #include "runtime/thread.inline.hpp"
  96 #include "runtime/threadCritical.hpp"
  97 #include "runtime/threadSMR.inline.hpp"
  98 #include "runtime/threadStatisticalInfo.hpp"
  99 #include "runtime/timer.hpp"
 100 #include "runtime/timerTrace.hpp"
 101 #include "runtime/vframe.inline.hpp"
 102 #include "runtime/vframeArray.hpp"
 103 #include "runtime/vframe_hp.hpp"
 104 #include "runtime/vmThread.hpp"
 105 #include "runtime/vmOperations.hpp"
 106 #include "runtime/vm_version.hpp"
 107 #include "services/attachListener.hpp"
 108 #include "services/management.hpp"
 109 #include "services/memTracker.hpp"
 110 #include "services/threadService.hpp"
 111 #include "utilities/align.hpp"
 112 #include "utilities/copy.hpp"
 113 #include "utilities/defaultStream.hpp"
 114 #include "utilities/dtrace.hpp"
 115 #include "utilities/events.hpp"
 116 #include "utilities/macros.hpp"
 117 #include "utilities/preserveException.hpp"
 118 #include "utilities/singleWriterSynchronizer.hpp"
 119 #include "utilities/vmError.hpp"
 120 #if INCLUDE_JVMCI
 121 #include "jvmci/jvmci.hpp"
 122 #include "jvmci/jvmciEnv.hpp"
 123 #endif
 124 #ifdef COMPILER1
 125 #include "c1/c1_Compiler.hpp"
 126 #endif
 127 #ifdef COMPILER2
 128 #include "opto/c2compiler.hpp"
 129 #include "opto/idealGraphPrinter.hpp"
 130 #endif
 131 #if INCLUDE_RTM_OPT
 132 #include "runtime/rtmLocking.hpp"
 133 #endif
 134 #if INCLUDE_JFR
 135 #include "jfr/jfr.hpp"
 136 #endif
 137 
 138 // Initialization after module runtime initialization
 139 void universe_post_module_init();  // must happen after call_initPhase2
 140 
 141 #ifdef DTRACE_ENABLED
 142 
 143 // Only bother with this argument setup if dtrace is available
 144 
 145   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 146   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 147 
 148   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 149     {                                                                      \
 150       ResourceMark rm(this);                                               \
 151       int len = 0;                                                         \
 152       const char* name = (javathread)->get_thread_name();                  \
 153       len = strlen(name);                                                  \
 154       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 155         (char *) name, len,                                                \
 156         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 157         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 158         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 159     }
 160 
 161 #else //  ndef DTRACE_ENABLED
 162 
 163   #define DTRACE_THREAD_PROBE(probe, javathread)
 164 
 165 #endif // ndef DTRACE_ENABLED
 166 
 167 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 168 // Current thread is maintained as a thread-local variable
 169 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 170 #endif
 171 
 172 // ======= Thread ========
 173 // Support for forcing alignment of thread objects for biased locking
 174 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 175   if (UseBiasedLocking) {
 176     const int alignment = markOopDesc::biased_lock_alignment;
 177     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 178     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 179                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 180                                                          AllocFailStrategy::RETURN_NULL);
 181     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 182     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 183            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 184            "JavaThread alignment code overflowed allocated storage");
 185     if (aligned_addr != real_malloc_addr) {
 186       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                               p2i(real_malloc_addr),
 188                               p2i(aligned_addr));
 189     }
 190     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 191     return aligned_addr;
 192   } else {
 193     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 194                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 195   }
 196 }
 197 
 198 void Thread::operator delete(void* p) {
 199   if (UseBiasedLocking) {
 200     FreeHeap(((Thread*) p)->_real_malloc_address);
 201   } else {
 202     FreeHeap(p);
 203   }
 204 }
 205 
 206 void JavaThread::smr_delete() {
 207   if (_on_thread_list) {
 208     ThreadsSMRSupport::smr_delete(this);
 209   } else {
 210     delete this;
 211   }
 212 }
 213 
 214 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 215 // JavaThread
 216 
 217 DEBUG_ONLY(Thread* Thread::_starting_thread = NULL;)
 218 
 219 Thread::Thread() {
 220 
 221   DEBUG_ONLY(_run_state = PRE_CALL_RUN;)
 222 
 223   // stack and get_thread
 224   set_stack_base(NULL);
 225   set_stack_size(0);
 226   set_self_raw_id(0);
 227   set_lgrp_id(-1);
 228   DEBUG_ONLY(clear_suspendible_thread();)
 229 
 230   // allocated data structures
 231   set_osthread(NULL);
 232   set_resource_area(new (mtThread)ResourceArea());
 233   DEBUG_ONLY(_current_resource_mark = NULL;)
 234   set_handle_area(new (mtThread) HandleArea(NULL));
 235   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 236   set_active_handles(NULL);
 237   set_free_handle_block(NULL);
 238   set_last_handle_mark(NULL);
 239   DEBUG_ONLY(_missed_ic_stub_refill_verifier = NULL);
 240 
 241   // Initial value of zero ==> never claimed.
 242   _threads_do_token = 0;
 243   _threads_hazard_ptr = NULL;
 244   _threads_list_ptr = NULL;
 245   _nested_threads_hazard_ptr_cnt = 0;
 246   _rcu_counter = 0;
 247 
 248   // the handle mark links itself to last_handle_mark
 249   new HandleMark(this);
 250 
 251   // plain initialization
 252   debug_only(_owned_locks = NULL;)
 253   NOT_PRODUCT(_allow_safepoint_count = 0;)
 254   NOT_PRODUCT(_skip_gcalot = false;)
 255   _jvmti_env_iteration_count = 0;
 256   set_allocated_bytes(0);
 257   _vm_operation_started_count = 0;
 258   _vm_operation_completed_count = 0;
 259   _current_pending_monitor = NULL;
 260   _current_pending_monitor_is_from_java = true;
 261   _current_waiting_monitor = NULL;
 262   _num_nested_signal = 0;
 263   omFreeList = NULL;
 264   omFreeCount = 0;
 265   omFreeProvision = 32;
 266   omInUseList = NULL;
 267   omInUseCount = 0;
 268 
 269 #ifdef ASSERT
 270   _visited_for_critical_count = false;
 271 #endif
 272 
 273   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 274                          Monitor::_safepoint_check_sometimes);
 275   _suspend_flags = 0;
 276 
 277   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 278   _hashStateX = os::random();
 279   _hashStateY = 842502087;
 280   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 281   _hashStateW = 273326509;
 282 
 283   _OnTrap   = 0;
 284   _Stalled  = 0;
 285   _TypeTag  = 0x2BAD;
 286 
 287   // Many of the following fields are effectively final - immutable
 288   // Note that nascent threads can't use the Native Monitor-Mutex
 289   // construct until the _MutexEvent is initialized ...
 290   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 291   // we might instead use a stack of ParkEvents that we could provision on-demand.
 292   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 293   // and ::Release()
 294   _ParkEvent   = ParkEvent::Allocate(this);
 295   _SleepEvent  = ParkEvent::Allocate(this);
 296   _MuxEvent    = ParkEvent::Allocate(this);
 297 
 298 #ifdef CHECK_UNHANDLED_OOPS
 299   if (CheckUnhandledOops) {
 300     _unhandled_oops = new UnhandledOops(this);
 301   }
 302 #endif // CHECK_UNHANDLED_OOPS
 303 #ifdef ASSERT
 304   if (UseBiasedLocking) {
 305     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 306     assert(this == _real_malloc_address ||
 307            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 308            "bug in forced alignment of thread objects");
 309   }
 310 #endif // ASSERT
 311 
 312   // Notify the barrier set that a thread is being created. The initial
 313   // thread is created before the barrier set is available.  The call to
 314   // BarrierSet::on_thread_create() for this thread is therefore deferred
 315   // to BarrierSet::set_barrier_set().
 316   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 317   if (barrier_set != NULL) {
 318     barrier_set->on_thread_create(this);
 319   } else {
 320     // Only the main thread should be created before the barrier set
 321     // and that happens just before Thread::current is set. No other thread
 322     // can attach as the VM is not created yet, so they can't execute this code.
 323     // If the main thread creates other threads before the barrier set that is an error.
 324     assert(Thread::current_or_null() == NULL, "creating thread before barrier set");
 325   }
 326 }
 327 
 328 void Thread::initialize_thread_current() {
 329 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 330   assert(_thr_current == NULL, "Thread::current already initialized");
 331   _thr_current = this;
 332 #endif
 333   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 334   ThreadLocalStorage::set_thread(this);
 335   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 336 }
 337 
 338 void Thread::clear_thread_current() {
 339   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 340 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 341   _thr_current = NULL;
 342 #endif
 343   ThreadLocalStorage::set_thread(NULL);
 344 }
 345 
 346 void Thread::record_stack_base_and_size() {
 347   // Note: at this point, Thread object is not yet initialized. Do not rely on
 348   // any members being initialized. Do not rely on Thread::current() being set.
 349   // If possible, refrain from doing anything which may crash or assert since
 350   // quite probably those crash dumps will be useless.
 351   set_stack_base(os::current_stack_base());
 352   set_stack_size(os::current_stack_size());
 353 
 354 #ifdef SOLARIS
 355   if (os::is_primordial_thread()) {
 356     os::Solaris::correct_stack_boundaries_for_primordial_thread(this);
 357   }
 358 #endif
 359 
 360   // Set stack limits after thread is initialized.
 361   if (is_Java_thread()) {
 362     ((JavaThread*) this)->set_stack_overflow_limit();
 363     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 364   }
 365 }
 366 
 367 #if INCLUDE_NMT
 368 void Thread::register_thread_stack_with_NMT() {
 369   MemTracker::record_thread_stack(stack_end(), stack_size());
 370 }
 371 #endif // INCLUDE_NMT
 372 
 373 void Thread::call_run() {
 374   DEBUG_ONLY(_run_state = CALL_RUN;)
 375 
 376   // At this point, Thread object should be fully initialized and
 377   // Thread::current() should be set.
 378 
 379   assert(Thread::current_or_null() != NULL, "current thread is unset");
 380   assert(Thread::current_or_null() == this, "current thread is wrong");
 381 
 382   // Perform common initialization actions
 383 
 384   register_thread_stack_with_NMT();
 385 
 386   JFR_ONLY(Jfr::on_thread_start(this);)
 387 
 388   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 389     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 390     os::current_thread_id(), p2i(stack_base() - stack_size()),
 391     p2i(stack_base()), stack_size()/1024);
 392 
 393   // Perform <ChildClass> initialization actions
 394   DEBUG_ONLY(_run_state = PRE_RUN;)
 395   this->pre_run();
 396 
 397   // Invoke <ChildClass>::run()
 398   DEBUG_ONLY(_run_state = RUN;)
 399   this->run();
 400   // Returned from <ChildClass>::run(). Thread finished.
 401 
 402   // Perform common tear-down actions
 403 
 404   assert(Thread::current_or_null() != NULL, "current thread is unset");
 405   assert(Thread::current_or_null() == this, "current thread is wrong");
 406 
 407   // Perform <ChildClass> tear-down actions
 408   DEBUG_ONLY(_run_state = POST_RUN;)
 409   this->post_run();
 410 
 411   // Note: at this point the thread object may already have deleted itself,
 412   // so from here on do not dereference *this*. Not all thread types currently
 413   // delete themselves when they terminate. But no thread should ever be deleted
 414   // asynchronously with respect to its termination - that is what _run_state can
 415   // be used to check.
 416 
 417   assert(Thread::current_or_null() == NULL, "current thread still present");
 418 }
 419 
 420 Thread::~Thread() {
 421 
 422   // Attached threads will remain in PRE_CALL_RUN, as will threads that don't actually
 423   // get started due to errors etc. Any active thread should at least reach post_run
 424   // before it is deleted (usually in post_run()).
 425   assert(_run_state == PRE_CALL_RUN ||
 426          _run_state == POST_RUN, "Active Thread deleted before post_run(): "
 427          "_run_state=%d", (int)_run_state);
 428 
 429   // Notify the barrier set that a thread is being destroyed. Note that a barrier
 430   // set might not be available if we encountered errors during bootstrapping.
 431   BarrierSet* const barrier_set = BarrierSet::barrier_set();
 432   if (barrier_set != NULL) {
 433     barrier_set->on_thread_destroy(this);
 434   }
 435 
 436   // stack_base can be NULL if the thread is never started or exited before
 437   // record_stack_base_and_size called. Although, we would like to ensure
 438   // that all started threads do call record_stack_base_and_size(), there is
 439   // not proper way to enforce that.
 440 #if INCLUDE_NMT
 441   if (_stack_base != NULL) {
 442     MemTracker::release_thread_stack(stack_end(), stack_size());
 443 #ifdef ASSERT
 444     set_stack_base(NULL);
 445 #endif
 446   }
 447 #endif // INCLUDE_NMT
 448 
 449   // deallocate data structures
 450   delete resource_area();
 451   // since the handle marks are using the handle area, we have to deallocated the root
 452   // handle mark before deallocating the thread's handle area,
 453   assert(last_handle_mark() != NULL, "check we have an element");
 454   delete last_handle_mark();
 455   assert(last_handle_mark() == NULL, "check we have reached the end");
 456 
 457   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 458   // We NULL out the fields for good hygiene.
 459   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 460   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 461   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 462 
 463   delete handle_area();
 464   delete metadata_handles();
 465 
 466   // SR_handler uses this as a termination indicator -
 467   // needs to happen before os::free_thread()
 468   delete _SR_lock;
 469   _SR_lock = NULL;
 470 
 471   // osthread() can be NULL, if creation of thread failed.
 472   if (osthread() != NULL) os::free_thread(osthread());
 473 
 474   // Clear Thread::current if thread is deleting itself and it has not
 475   // already been done. This must be done before the memory is deallocated.
 476   // Needed to ensure JNI correctly detects non-attached threads.
 477   if (this == Thread::current_or_null()) {
 478     Thread::clear_thread_current();
 479   }
 480 
 481   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 482 }
 483 
 484 #ifdef ASSERT
 485 // A JavaThread is considered "dangling" if it is not the current
 486 // thread, has been added the Threads list, the system is not at a
 487 // safepoint and the Thread is not "protected".
 488 //
 489 void Thread::check_for_dangling_thread_pointer(Thread *thread) {
 490   assert(!thread->is_Java_thread() || Thread::current() == thread ||
 491          !((JavaThread *) thread)->on_thread_list() ||
 492          SafepointSynchronize::is_at_safepoint() ||
 493          ThreadsSMRSupport::is_a_protected_JavaThread_with_lock((JavaThread *) thread),
 494          "possibility of dangling Thread pointer");
 495 }
 496 #endif
 497 
 498 ThreadPriority Thread::get_priority(const Thread* const thread) {
 499   ThreadPriority priority;
 500   // Can return an error!
 501   (void)os::get_priority(thread, priority);
 502   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 503   return priority;
 504 }
 505 
 506 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 507   debug_only(check_for_dangling_thread_pointer(thread);)
 508   // Can return an error!
 509   (void)os::set_priority(thread, priority);
 510 }
 511 
 512 
 513 void Thread::start(Thread* thread) {
 514   // Start is different from resume in that its safety is guaranteed by context or
 515   // being called from a Java method synchronized on the Thread object.
 516   if (!DisableStartThread) {
 517     if (thread->is_Java_thread()) {
 518       // Initialize the thread state to RUNNABLE before starting this thread.
 519       // Can not set it after the thread started because we do not know the
 520       // exact thread state at that time. It could be in MONITOR_WAIT or
 521       // in SLEEPING or some other state.
 522       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 523                                           java_lang_Thread::RUNNABLE);
 524     }
 525     os::start_thread(thread);
 526   }
 527 }
 528 
 529 // Enqueue a VM_Operation to do the job for us - sometime later
 530 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 531   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 532   VMThread::execute(vm_stop);
 533 }
 534 
 535 
 536 // Check if an external suspend request has completed (or has been
 537 // cancelled). Returns true if the thread is externally suspended and
 538 // false otherwise.
 539 //
 540 // The bits parameter returns information about the code path through
 541 // the routine. Useful for debugging:
 542 //
 543 // set in is_ext_suspend_completed():
 544 // 0x00000001 - routine was entered
 545 // 0x00000010 - routine return false at end
 546 // 0x00000100 - thread exited (return false)
 547 // 0x00000200 - suspend request cancelled (return false)
 548 // 0x00000400 - thread suspended (return true)
 549 // 0x00001000 - thread is in a suspend equivalent state (return true)
 550 // 0x00002000 - thread is native and walkable (return true)
 551 // 0x00004000 - thread is native_trans and walkable (needed retry)
 552 //
 553 // set in wait_for_ext_suspend_completion():
 554 // 0x00010000 - routine was entered
 555 // 0x00020000 - suspend request cancelled before loop (return false)
 556 // 0x00040000 - thread suspended before loop (return true)
 557 // 0x00080000 - suspend request cancelled in loop (return false)
 558 // 0x00100000 - thread suspended in loop (return true)
 559 // 0x00200000 - suspend not completed during retry loop (return false)
 560 
 561 // Helper class for tracing suspend wait debug bits.
 562 //
 563 // 0x00000100 indicates that the target thread exited before it could
 564 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 565 // 0x00080000 each indicate a cancelled suspend request so they don't
 566 // count as wait failures either.
 567 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 568 
 569 class TraceSuspendDebugBits : public StackObj {
 570  private:
 571   JavaThread * jt;
 572   bool         is_wait;
 573   bool         called_by_wait;  // meaningful when !is_wait
 574   uint32_t *   bits;
 575 
 576  public:
 577   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 578                         uint32_t *_bits) {
 579     jt             = _jt;
 580     is_wait        = _is_wait;
 581     called_by_wait = _called_by_wait;
 582     bits           = _bits;
 583   }
 584 
 585   ~TraceSuspendDebugBits() {
 586     if (!is_wait) {
 587 #if 1
 588       // By default, don't trace bits for is_ext_suspend_completed() calls.
 589       // That trace is very chatty.
 590       return;
 591 #else
 592       if (!called_by_wait) {
 593         // If tracing for is_ext_suspend_completed() is enabled, then only
 594         // trace calls to it from wait_for_ext_suspend_completion()
 595         return;
 596       }
 597 #endif
 598     }
 599 
 600     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 601       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 602         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 603         ResourceMark rm;
 604 
 605         tty->print_cr(
 606                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 607                       jt->get_thread_name(), *bits);
 608 
 609         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 610       }
 611     }
 612   }
 613 };
 614 #undef DEBUG_FALSE_BITS
 615 
 616 
 617 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 618                                           uint32_t *bits) {
 619   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 620 
 621   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 622   bool do_trans_retry;           // flag to force the retry
 623 
 624   *bits |= 0x00000001;
 625 
 626   do {
 627     do_trans_retry = false;
 628 
 629     if (is_exiting()) {
 630       // Thread is in the process of exiting. This is always checked
 631       // first to reduce the risk of dereferencing a freed JavaThread.
 632       *bits |= 0x00000100;
 633       return false;
 634     }
 635 
 636     if (!is_external_suspend()) {
 637       // Suspend request is cancelled. This is always checked before
 638       // is_ext_suspended() to reduce the risk of a rogue resume
 639       // confusing the thread that made the suspend request.
 640       *bits |= 0x00000200;
 641       return false;
 642     }
 643 
 644     if (is_ext_suspended()) {
 645       // thread is suspended
 646       *bits |= 0x00000400;
 647       return true;
 648     }
 649 
 650     // Now that we no longer do hard suspends of threads running
 651     // native code, the target thread can be changing thread state
 652     // while we are in this routine:
 653     //
 654     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 655     //
 656     // We save a copy of the thread state as observed at this moment
 657     // and make our decision about suspend completeness based on the
 658     // copy. This closes the race where the thread state is seen as
 659     // _thread_in_native_trans in the if-thread_blocked check, but is
 660     // seen as _thread_blocked in if-thread_in_native_trans check.
 661     JavaThreadState save_state = thread_state();
 662 
 663     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 664       // If the thread's state is _thread_blocked and this blocking
 665       // condition is known to be equivalent to a suspend, then we can
 666       // consider the thread to be externally suspended. This means that
 667       // the code that sets _thread_blocked has been modified to do
 668       // self-suspension if the blocking condition releases. We also
 669       // used to check for CONDVAR_WAIT here, but that is now covered by
 670       // the _thread_blocked with self-suspension check.
 671       //
 672       // Return true since we wouldn't be here unless there was still an
 673       // external suspend request.
 674       *bits |= 0x00001000;
 675       return true;
 676     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 677       // Threads running native code will self-suspend on native==>VM/Java
 678       // transitions. If its stack is walkable (should always be the case
 679       // unless this function is called before the actual java_suspend()
 680       // call), then the wait is done.
 681       *bits |= 0x00002000;
 682       return true;
 683     } else if (!called_by_wait && !did_trans_retry &&
 684                save_state == _thread_in_native_trans &&
 685                frame_anchor()->walkable()) {
 686       // The thread is transitioning from thread_in_native to another
 687       // thread state. check_safepoint_and_suspend_for_native_trans()
 688       // will force the thread to self-suspend. If it hasn't gotten
 689       // there yet we may have caught the thread in-between the native
 690       // code check above and the self-suspend. Lucky us. If we were
 691       // called by wait_for_ext_suspend_completion(), then it
 692       // will be doing the retries so we don't have to.
 693       //
 694       // Since we use the saved thread state in the if-statement above,
 695       // there is a chance that the thread has already transitioned to
 696       // _thread_blocked by the time we get here. In that case, we will
 697       // make a single unnecessary pass through the logic below. This
 698       // doesn't hurt anything since we still do the trans retry.
 699 
 700       *bits |= 0x00004000;
 701 
 702       // Once the thread leaves thread_in_native_trans for another
 703       // thread state, we break out of this retry loop. We shouldn't
 704       // need this flag to prevent us from getting back here, but
 705       // sometimes paranoia is good.
 706       did_trans_retry = true;
 707 
 708       // We wait for the thread to transition to a more usable state.
 709       for (int i = 1; i <= SuspendRetryCount; i++) {
 710         // We used to do an "os::yield_all(i)" call here with the intention
 711         // that yielding would increase on each retry. However, the parameter
 712         // is ignored on Linux which means the yield didn't scale up. Waiting
 713         // on the SR_lock below provides a much more predictable scale up for
 714         // the delay. It also provides a simple/direct point to check for any
 715         // safepoint requests from the VMThread
 716 
 717         // temporarily drops SR_lock while doing wait with safepoint check
 718         // (if we're a JavaThread - the WatcherThread can also call this)
 719         // and increase delay with each retry
 720         if (Thread::current()->is_Java_thread()) {
 721           SR_lock()->wait(i * delay);
 722         } else {
 723           SR_lock()->wait_without_safepoint_check(i * delay);
 724         }
 725 
 726         // check the actual thread state instead of what we saved above
 727         if (thread_state() != _thread_in_native_trans) {
 728           // the thread has transitioned to another thread state so
 729           // try all the checks (except this one) one more time.
 730           do_trans_retry = true;
 731           break;
 732         }
 733       } // end retry loop
 734 
 735 
 736     }
 737   } while (do_trans_retry);
 738 
 739   *bits |= 0x00000010;
 740   return false;
 741 }
 742 
 743 // Wait for an external suspend request to complete (or be cancelled).
 744 // Returns true if the thread is externally suspended and false otherwise.
 745 //
 746 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 747                                                  uint32_t *bits) {
 748   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 749                              false /* !called_by_wait */, bits);
 750 
 751   // local flag copies to minimize SR_lock hold time
 752   bool is_suspended;
 753   bool pending;
 754   uint32_t reset_bits;
 755 
 756   // set a marker so is_ext_suspend_completed() knows we are the caller
 757   *bits |= 0x00010000;
 758 
 759   // We use reset_bits to reinitialize the bits value at the top of
 760   // each retry loop. This allows the caller to make use of any
 761   // unused bits for their own marking purposes.
 762   reset_bits = *bits;
 763 
 764   {
 765     MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 766     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 767                                             delay, bits);
 768     pending = is_external_suspend();
 769   }
 770   // must release SR_lock to allow suspension to complete
 771 
 772   if (!pending) {
 773     // A cancelled suspend request is the only false return from
 774     // is_ext_suspend_completed() that keeps us from entering the
 775     // retry loop.
 776     *bits |= 0x00020000;
 777     return false;
 778   }
 779 
 780   if (is_suspended) {
 781     *bits |= 0x00040000;
 782     return true;
 783   }
 784 
 785   for (int i = 1; i <= retries; i++) {
 786     *bits = reset_bits;  // reinit to only track last retry
 787 
 788     // We used to do an "os::yield_all(i)" call here with the intention
 789     // that yielding would increase on each retry. However, the parameter
 790     // is ignored on Linux which means the yield didn't scale up. Waiting
 791     // on the SR_lock below provides a much more predictable scale up for
 792     // the delay. It also provides a simple/direct point to check for any
 793     // safepoint requests from the VMThread
 794 
 795     {
 796       Thread* t = Thread::current();
 797       MonitorLocker ml(SR_lock(),
 798                        t->is_Java_thread() ? Mutex::_safepoint_check_flag : Mutex::_no_safepoint_check_flag);
 799       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 800       // can also call this)  and increase delay with each retry
 801       ml.wait(i * delay);
 802 
 803       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 804                                               delay, bits);
 805 
 806       // It is possible for the external suspend request to be cancelled
 807       // (by a resume) before the actual suspend operation is completed.
 808       // Refresh our local copy to see if we still need to wait.
 809       pending = is_external_suspend();
 810     }
 811 
 812     if (!pending) {
 813       // A cancelled suspend request is the only false return from
 814       // is_ext_suspend_completed() that keeps us from staying in the
 815       // retry loop.
 816       *bits |= 0x00080000;
 817       return false;
 818     }
 819 
 820     if (is_suspended) {
 821       *bits |= 0x00100000;
 822       return true;
 823     }
 824   } // end retry loop
 825 
 826   // thread did not suspend after all our retries
 827   *bits |= 0x00200000;
 828   return false;
 829 }
 830 
 831 // Called from API entry points which perform stack walking. If the
 832 // associated JavaThread is the current thread, then wait_for_suspend
 833 // is not used. Otherwise, it determines if we should wait for the
 834 // "other" thread to complete external suspension. (NOTE: in future
 835 // releases the suspension mechanism should be reimplemented so this
 836 // is not necessary.)
 837 //
 838 bool
 839 JavaThread::is_thread_fully_suspended(bool wait_for_suspend, uint32_t *bits) {
 840   if (this != JavaThread::current()) {
 841     // "other" threads require special handling.
 842     if (wait_for_suspend) {
 843       // We are allowed to wait for the external suspend to complete
 844       // so give the other thread a chance to get suspended.
 845       if (!wait_for_ext_suspend_completion(SuspendRetryCount,
 846                                            SuspendRetryDelay, bits)) {
 847         // Didn't make it so let the caller know.
 848         return false;
 849       }
 850     }
 851     // We aren't allowed to wait for the external suspend to complete
 852     // so if the other thread isn't externally suspended we need to
 853     // let the caller know.
 854     else if (!is_ext_suspend_completed_with_lock(bits)) {
 855       return false;
 856     }
 857   }
 858 
 859   return true;
 860 }
 861 
 862 #ifndef PRODUCT
 863 void JavaThread::record_jump(address target, address instr, const char* file,
 864                              int line) {
 865 
 866   // This should not need to be atomic as the only way for simultaneous
 867   // updates is via interrupts. Even then this should be rare or non-existent
 868   // and we don't care that much anyway.
 869 
 870   int index = _jmp_ring_index;
 871   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 872   _jmp_ring[index]._target = (intptr_t) target;
 873   _jmp_ring[index]._instruction = (intptr_t) instr;
 874   _jmp_ring[index]._file = file;
 875   _jmp_ring[index]._line = line;
 876 }
 877 #endif // PRODUCT
 878 
 879 void Thread::interrupt(Thread* thread) {
 880   debug_only(check_for_dangling_thread_pointer(thread);)
 881   os::interrupt(thread);
 882 }
 883 
 884 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 885   debug_only(check_for_dangling_thread_pointer(thread);)
 886   // Note:  If clear_interrupted==false, this simply fetches and
 887   // returns the value of the field osthread()->interrupted().
 888   return os::is_interrupted(thread, clear_interrupted);
 889 }
 890 
 891 
 892 // GC Support
 893 bool Thread::claim_par_threads_do(uintx claim_token) {
 894   uintx token = _threads_do_token;
 895   if (token != claim_token) {
 896     uintx res = Atomic::cmpxchg(claim_token, &_threads_do_token, token);
 897     if (res == token) {
 898       return true;
 899     }
 900     guarantee(res == claim_token, "invariant");
 901   }
 902   return false;
 903 }
 904 
 905 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 906   active_handles()->oops_do(f);
 907   // Do oop for ThreadShadow
 908   f->do_oop((oop*)&_pending_exception);
 909   handle_area()->oops_do(f);
 910 
 911   // We scan thread local monitor lists here, and the remaining global
 912   // monitors in ObjectSynchronizer::oops_do().
 913   ObjectSynchronizer::thread_local_used_oops_do(this, f);
 914 }
 915 
 916 void Thread::metadata_handles_do(void f(Metadata*)) {
 917   // Only walk the Handles in Thread.
 918   if (metadata_handles() != NULL) {
 919     for (int i = 0; i< metadata_handles()->length(); i++) {
 920       f(metadata_handles()->at(i));
 921     }
 922   }
 923 }
 924 
 925 void Thread::print_on(outputStream* st, bool print_extended_info) const {
 926   // get_priority assumes osthread initialized
 927   if (osthread() != NULL) {
 928     int os_prio;
 929     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 930       st->print("os_prio=%d ", os_prio);
 931     }
 932 
 933     st->print("cpu=%.2fms ",
 934               os::thread_cpu_time(const_cast<Thread*>(this), true) / 1000000.0
 935               );
 936     st->print("elapsed=%.2fs ",
 937               _statistical_info.getElapsedTime() / 1000.0
 938               );
 939     if (is_Java_thread() && (PrintExtendedThreadInfo || print_extended_info)) {
 940       size_t allocated_bytes = (size_t) const_cast<Thread*>(this)->cooked_allocated_bytes();
 941       st->print("allocated=" SIZE_FORMAT "%s ",
 942                 byte_size_in_proper_unit(allocated_bytes),
 943                 proper_unit_for_byte_size(allocated_bytes)
 944                 );
 945       st->print("defined_classes=" INT64_FORMAT " ", _statistical_info.getDefineClassCount());
 946     }
 947 
 948     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 949     osthread()->print_on(st);
 950   }
 951   ThreadsSMRSupport::print_info_on(this, st);
 952   st->print(" ");
 953   debug_only(if (WizardMode) print_owned_locks_on(st);)
 954 }
 955 
 956 void Thread::print() const { print_on(tty); }
 957 
 958 // Thread::print_on_error() is called by fatal error handler. Don't use
 959 // any lock or allocate memory.
 960 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 961   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 962 
 963   if (is_VM_thread())                 { st->print("VMThread"); }
 964   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 965   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 966   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 967   else                                { st->print("Thread"); }
 968 
 969   if (is_Named_thread()) {
 970     st->print(" \"%s\"", name());
 971   }
 972 
 973   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 974             p2i(stack_end()), p2i(stack_base()));
 975 
 976   if (osthread()) {
 977     st->print(" [id=%d]", osthread()->thread_id());
 978   }
 979 
 980   ThreadsSMRSupport::print_info_on(this, st);
 981 }
 982 
 983 void Thread::print_value_on(outputStream* st) const {
 984   if (is_Named_thread()) {
 985     st->print(" \"%s\" ", name());
 986   }
 987   st->print(INTPTR_FORMAT, p2i(this));   // print address
 988 }
 989 
 990 #ifdef ASSERT
 991 void Thread::print_owned_locks_on(outputStream* st) const {
 992   Monitor *cur = _owned_locks;
 993   if (cur == NULL) {
 994     st->print(" (no locks) ");
 995   } else {
 996     st->print_cr(" Locks owned:");
 997     while (cur) {
 998       cur->print_on(st);
 999       cur = cur->next();
1000     }
1001   }
1002 }
1003 
1004 static int ref_use_count  = 0;
1005 
1006 bool Thread::owns_locks_but_compiled_lock() const {
1007   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1008     if (cur != Compile_lock) return true;
1009   }
1010   return false;
1011 }
1012 
1013 
1014 #endif
1015 
1016 #ifndef PRODUCT
1017 
1018 // The flag: potential_vm_operation notifies if this particular safepoint state could potentially
1019 // invoke the vm-thread (e.g., an oop allocation). In that case, we also have to make sure that
1020 // no locks which allow_vm_block's are held
1021 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
1022   // Check if current thread is allowed to block at a safepoint
1023   if (!(_allow_safepoint_count == 0)) {
1024     fatal("Possible safepoint reached by thread that does not allow it");
1025   }
1026   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
1027     fatal("LEAF method calling lock?");
1028   }
1029 
1030 #ifdef ASSERT
1031   if (potential_vm_operation && is_Java_thread()
1032       && !Universe::is_bootstrapping()) {
1033     // Make sure we do not hold any locks that the VM thread also uses.
1034     // This could potentially lead to deadlocks
1035     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
1036       // Threads_lock is special, since the safepoint synchronization will not start before this is
1037       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
1038       // since it is used to transfer control between JavaThreads and the VMThread
1039       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
1040       if ((cur->allow_vm_block() &&
1041            cur != Threads_lock &&
1042            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
1043            cur != VMOperationRequest_lock &&
1044            cur != VMOperationQueue_lock) ||
1045            cur->rank() == Mutex::special) {
1046         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
1047       }
1048     }
1049   }
1050 
1051   if (GCALotAtAllSafepoints) {
1052     // We could enter a safepoint here and thus have a gc
1053     InterfaceSupport::check_gc_alot();
1054   }
1055 #endif
1056 }
1057 #endif
1058 
1059 bool Thread::is_in_stack(address adr) const {
1060   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
1061   address end = os::current_stack_pointer();
1062   // Allow non Java threads to call this without stack_base
1063   if (_stack_base == NULL) return true;
1064   if (stack_base() >= adr && adr >= end) return true;
1065 
1066   return false;
1067 }
1068 
1069 bool Thread::is_in_usable_stack(address adr) const {
1070   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
1071   size_t usable_stack_size = _stack_size - stack_guard_size;
1072 
1073   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
1074 }
1075 
1076 
1077 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
1078 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
1079 // used for compilation in the future. If that change is made, the need for these methods
1080 // should be revisited, and they should be removed if possible.
1081 
1082 bool Thread::is_lock_owned(address adr) const {
1083   return on_local_stack(adr);
1084 }
1085 
1086 bool Thread::set_as_starting_thread() {
1087   assert(_starting_thread == NULL, "already initialized: "
1088          "_starting_thread=" INTPTR_FORMAT, p2i(_starting_thread));
1089   // NOTE: this must be called inside the main thread.
1090   DEBUG_ONLY(_starting_thread = this;)
1091   return os::create_main_thread((JavaThread*)this);
1092 }
1093 
1094 static void initialize_class(Symbol* class_name, TRAPS) {
1095   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
1096   InstanceKlass::cast(klass)->initialize(CHECK);
1097 }
1098 
1099 
1100 // Creates the initial ThreadGroup
1101 static Handle create_initial_thread_group(TRAPS) {
1102   Handle system_instance = JavaCalls::construct_new_instance(
1103                             SystemDictionary::ThreadGroup_klass(),
1104                             vmSymbols::void_method_signature(),
1105                             CHECK_NH);
1106   Universe::set_system_thread_group(system_instance());
1107 
1108   Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1109   Handle main_instance = JavaCalls::construct_new_instance(
1110                             SystemDictionary::ThreadGroup_klass(),
1111                             vmSymbols::threadgroup_string_void_signature(),
1112                             system_instance,
1113                             string,
1114                             CHECK_NH);
1115   return main_instance;
1116 }
1117 
1118 // Creates the initial Thread
1119 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
1120                                  TRAPS) {
1121   InstanceKlass* ik = SystemDictionary::Thread_klass();
1122   assert(ik->is_initialized(), "must be");
1123   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
1124 
1125   // Cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1126   // constructor calls Thread.current(), which must be set here for the
1127   // initial thread.
1128   java_lang_Thread::set_thread(thread_oop(), thread);
1129   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1130   thread->set_threadObj(thread_oop());
1131 
1132   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1133 
1134   JavaValue result(T_VOID);
1135   JavaCalls::call_special(&result, thread_oop,
1136                           ik,
1137                           vmSymbols::object_initializer_name(),
1138                           vmSymbols::threadgroup_string_void_signature(),
1139                           thread_group,
1140                           string,
1141                           CHECK_NULL);
1142   return thread_oop();
1143 }
1144 
1145 char java_runtime_name[128] = "";
1146 char java_runtime_version[128] = "";
1147 
1148 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1149 static const char* get_java_runtime_name(TRAPS) {
1150   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1151                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1152   fieldDescriptor fd;
1153   bool found = k != NULL &&
1154                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1155                                                         vmSymbols::string_signature(), &fd);
1156   if (found) {
1157     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1158     if (name_oop == NULL) {
1159       return NULL;
1160     }
1161     const char* name = java_lang_String::as_utf8_string(name_oop,
1162                                                         java_runtime_name,
1163                                                         sizeof(java_runtime_name));
1164     return name;
1165   } else {
1166     return NULL;
1167   }
1168 }
1169 
1170 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1171 static const char* get_java_runtime_version(TRAPS) {
1172   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1173                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1174   fieldDescriptor fd;
1175   bool found = k != NULL &&
1176                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1177                                                         vmSymbols::string_signature(), &fd);
1178   if (found) {
1179     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1180     if (name_oop == NULL) {
1181       return NULL;
1182     }
1183     const char* name = java_lang_String::as_utf8_string(name_oop,
1184                                                         java_runtime_version,
1185                                                         sizeof(java_runtime_version));
1186     return name;
1187   } else {
1188     return NULL;
1189   }
1190 }
1191 
1192 // General purpose hook into Java code, run once when the VM is initialized.
1193 // The Java library method itself may be changed independently from the VM.
1194 static void call_postVMInitHook(TRAPS) {
1195   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1196   if (klass != NULL) {
1197     JavaValue result(T_VOID);
1198     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1199                            vmSymbols::void_method_signature(),
1200                            CHECK);
1201   }
1202 }
1203 
1204 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1205                                     bool daemon, TRAPS) {
1206   assert(thread_group.not_null(), "thread group should be specified");
1207   assert(threadObj() == NULL, "should only create Java thread object once");
1208 
1209   InstanceKlass* ik = SystemDictionary::Thread_klass();
1210   assert(ik->is_initialized(), "must be");
1211   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1212 
1213   // We are called from jni_AttachCurrentThread/jni_AttachCurrentThreadAsDaemon.
1214   // We cannot use JavaCalls::construct_new_instance because the java.lang.Thread
1215   // constructor calls Thread.current(), which must be set here.
1216   java_lang_Thread::set_thread(thread_oop(), this);
1217   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1218   set_threadObj(thread_oop());
1219 
1220   JavaValue result(T_VOID);
1221   if (thread_name != NULL) {
1222     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1223     // Thread gets assigned specified name and null target
1224     JavaCalls::call_special(&result,
1225                             thread_oop,
1226                             ik,
1227                             vmSymbols::object_initializer_name(),
1228                             vmSymbols::threadgroup_string_void_signature(),
1229                             thread_group,
1230                             name,
1231                             THREAD);
1232   } else {
1233     // Thread gets assigned name "Thread-nnn" and null target
1234     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1235     JavaCalls::call_special(&result,
1236                             thread_oop,
1237                             ik,
1238                             vmSymbols::object_initializer_name(),
1239                             vmSymbols::threadgroup_runnable_void_signature(),
1240                             thread_group,
1241                             Handle(),
1242                             THREAD);
1243   }
1244 
1245 
1246   if (daemon) {
1247     java_lang_Thread::set_daemon(thread_oop());
1248   }
1249 
1250   if (HAS_PENDING_EXCEPTION) {
1251     return;
1252   }
1253 
1254   Klass* group =  SystemDictionary::ThreadGroup_klass();
1255   Handle threadObj(THREAD, this->threadObj());
1256 
1257   JavaCalls::call_special(&result,
1258                           thread_group,
1259                           group,
1260                           vmSymbols::add_method_name(),
1261                           vmSymbols::thread_void_signature(),
1262                           threadObj,          // Arg 1
1263                           THREAD);
1264 }
1265 
1266 // List of all NonJavaThreads and safe iteration over that list.
1267 
1268 class NonJavaThread::List {
1269 public:
1270   NonJavaThread* volatile _head;
1271   SingleWriterSynchronizer _protect;
1272 
1273   List() : _head(NULL), _protect() {}
1274 };
1275 
1276 NonJavaThread::List NonJavaThread::_the_list;
1277 
1278 NonJavaThread::Iterator::Iterator() :
1279   _protect_enter(_the_list._protect.enter()),
1280   _current(OrderAccess::load_acquire(&_the_list._head))
1281 {}
1282 
1283 NonJavaThread::Iterator::~Iterator() {
1284   _the_list._protect.exit(_protect_enter);
1285 }
1286 
1287 void NonJavaThread::Iterator::step() {
1288   assert(!end(), "precondition");
1289   _current = OrderAccess::load_acquire(&_current->_next);
1290 }
1291 
1292 NonJavaThread::NonJavaThread() : Thread(), _next(NULL) {
1293   assert(BarrierSet::barrier_set() != NULL, "NonJavaThread created too soon!");
1294 }
1295 
1296 NonJavaThread::~NonJavaThread() { }
1297 
1298 void NonJavaThread::add_to_the_list() {
1299   MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1300   // Initialize BarrierSet-related data before adding to list.
1301   BarrierSet::barrier_set()->on_thread_attach(this);
1302   OrderAccess::release_store(&_next, _the_list._head);
1303   OrderAccess::release_store(&_the_list._head, this);
1304 }
1305 
1306 void NonJavaThread::remove_from_the_list() {
1307   {
1308     MutexLocker ml(NonJavaThreadsList_lock, Mutex::_no_safepoint_check_flag);
1309     // Cleanup BarrierSet-related data before removing from list.
1310     BarrierSet::barrier_set()->on_thread_detach(this);
1311     NonJavaThread* volatile* p = &_the_list._head;
1312     for (NonJavaThread* t = *p; t != NULL; p = &t->_next, t = *p) {
1313       if (t == this) {
1314         *p = _next;
1315         break;
1316       }
1317     }
1318   }
1319   // Wait for any in-progress iterators.  Concurrent synchronize is not
1320   // allowed, so do it while holding a dedicated lock.  Outside and distinct
1321   // from NJTList_lock in case an iteration attempts to lock it.
1322   MutexLocker ml(NonJavaThreadsListSync_lock, Mutex::_no_safepoint_check_flag);
1323   _the_list._protect.synchronize();
1324   _next = NULL;                 // Safe to drop the link now.
1325 }
1326 
1327 void NonJavaThread::pre_run() {
1328   add_to_the_list();
1329 
1330   // This is slightly odd in that NamedThread is a subclass, but
1331   // in fact name() is defined in Thread
1332   assert(this->name() != NULL, "thread name was not set before it was started");
1333   this->set_native_thread_name(this->name());
1334 }
1335 
1336 void NonJavaThread::post_run() {
1337   JFR_ONLY(Jfr::on_thread_exit(this);)
1338   remove_from_the_list();
1339   // Ensure thread-local-storage is cleared before termination.
1340   Thread::clear_thread_current();
1341 }
1342 
1343 // NamedThread --  non-JavaThread subclasses with multiple
1344 // uniquely named instances should derive from this.
1345 NamedThread::NamedThread() :
1346   NonJavaThread(),
1347   _name(NULL),
1348   _processed_thread(NULL),
1349   _gc_id(GCId::undefined())
1350 {}
1351 
1352 NamedThread::~NamedThread() {
1353   if (_name != NULL) {
1354     FREE_C_HEAP_ARRAY(char, _name);
1355     _name = NULL;
1356   }
1357 }
1358 
1359 void NamedThread::set_name(const char* format, ...) {
1360   guarantee(_name == NULL, "Only get to set name once.");
1361   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1362   guarantee(_name != NULL, "alloc failure");
1363   va_list ap;
1364   va_start(ap, format);
1365   jio_vsnprintf(_name, max_name_len, format, ap);
1366   va_end(ap);
1367 }
1368 
1369 void NamedThread::print_on(outputStream* st) const {
1370   st->print("\"%s\" ", name());
1371   Thread::print_on(st);
1372   st->cr();
1373 }
1374 
1375 
1376 // ======= WatcherThread ========
1377 
1378 // The watcher thread exists to simulate timer interrupts.  It should
1379 // be replaced by an abstraction over whatever native support for
1380 // timer interrupts exists on the platform.
1381 
1382 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1383 bool WatcherThread::_startable = false;
1384 volatile bool  WatcherThread::_should_terminate = false;
1385 
1386 WatcherThread::WatcherThread() : NonJavaThread() {
1387   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1388   if (os::create_thread(this, os::watcher_thread)) {
1389     _watcher_thread = this;
1390 
1391     // Set the watcher thread to the highest OS priority which should not be
1392     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1393     // is created. The only normal thread using this priority is the reference
1394     // handler thread, which runs for very short intervals only.
1395     // If the VMThread's priority is not lower than the WatcherThread profiling
1396     // will be inaccurate.
1397     os::set_priority(this, MaxPriority);
1398     if (!DisableStartThread) {
1399       os::start_thread(this);
1400     }
1401   }
1402 }
1403 
1404 int WatcherThread::sleep() const {
1405   // The WatcherThread does not participate in the safepoint protocol
1406   // for the PeriodicTask_lock because it is not a JavaThread.
1407   MonitorLocker ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1408 
1409   if (_should_terminate) {
1410     // check for termination before we do any housekeeping or wait
1411     return 0;  // we did not sleep.
1412   }
1413 
1414   // remaining will be zero if there are no tasks,
1415   // causing the WatcherThread to sleep until a task is
1416   // enrolled
1417   int remaining = PeriodicTask::time_to_wait();
1418   int time_slept = 0;
1419 
1420   // we expect this to timeout - we only ever get unparked when
1421   // we should terminate or when a new task has been enrolled
1422   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1423 
1424   jlong time_before_loop = os::javaTimeNanos();
1425 
1426   while (true) {
1427     bool timedout = ml.wait(remaining);
1428     jlong now = os::javaTimeNanos();
1429 
1430     if (remaining == 0) {
1431       // if we didn't have any tasks we could have waited for a long time
1432       // consider the time_slept zero and reset time_before_loop
1433       time_slept = 0;
1434       time_before_loop = now;
1435     } else {
1436       // need to recalculate since we might have new tasks in _tasks
1437       time_slept = (int) ((now - time_before_loop) / 1000000);
1438     }
1439 
1440     // Change to task list or spurious wakeup of some kind
1441     if (timedout || _should_terminate) {
1442       break;
1443     }
1444 
1445     remaining = PeriodicTask::time_to_wait();
1446     if (remaining == 0) {
1447       // Last task was just disenrolled so loop around and wait until
1448       // another task gets enrolled
1449       continue;
1450     }
1451 
1452     remaining -= time_slept;
1453     if (remaining <= 0) {
1454       break;
1455     }
1456   }
1457 
1458   return time_slept;
1459 }
1460 
1461 void WatcherThread::run() {
1462   assert(this == watcher_thread(), "just checking");
1463 
1464   this->set_active_handles(JNIHandleBlock::allocate_block());
1465   while (true) {
1466     assert(watcher_thread() == Thread::current(), "thread consistency check");
1467     assert(watcher_thread() == this, "thread consistency check");
1468 
1469     // Calculate how long it'll be until the next PeriodicTask work
1470     // should be done, and sleep that amount of time.
1471     int time_waited = sleep();
1472 
1473     if (VMError::is_error_reported()) {
1474       // A fatal error has happened, the error handler(VMError::report_and_die)
1475       // should abort JVM after creating an error log file. However in some
1476       // rare cases, the error handler itself might deadlock. Here periodically
1477       // check for error reporting timeouts, and if it happens, just proceed to
1478       // abort the VM.
1479 
1480       // This code is in WatcherThread because WatcherThread wakes up
1481       // periodically so the fatal error handler doesn't need to do anything;
1482       // also because the WatcherThread is less likely to crash than other
1483       // threads.
1484 
1485       for (;;) {
1486         // Note: we use naked sleep in this loop because we want to avoid using
1487         // any kind of VM infrastructure which may be broken at this point.
1488         if (VMError::check_timeout()) {
1489           // We hit error reporting timeout. Error reporting was interrupted and
1490           // will be wrapping things up now (closing files etc). Give it some more
1491           // time, then quit the VM.
1492           os::naked_short_sleep(200);
1493           // Print a message to stderr.
1494           fdStream err(defaultStream::output_fd());
1495           err.print_raw_cr("# [ timer expired, abort... ]");
1496           // skip atexit/vm_exit/vm_abort hooks
1497           os::die();
1498         }
1499 
1500         // Wait a second, then recheck for timeout.
1501         os::naked_short_sleep(999);
1502       }
1503     }
1504 
1505     if (_should_terminate) {
1506       // check for termination before posting the next tick
1507       break;
1508     }
1509 
1510     PeriodicTask::real_time_tick(time_waited);
1511   }
1512 
1513   // Signal that it is terminated
1514   {
1515     MutexLocker mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1516     _watcher_thread = NULL;
1517     Terminator_lock->notify_all();
1518   }
1519 }
1520 
1521 void WatcherThread::start() {
1522   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1523 
1524   if (watcher_thread() == NULL && _startable) {
1525     _should_terminate = false;
1526     // Create the single instance of WatcherThread
1527     new WatcherThread();
1528   }
1529 }
1530 
1531 void WatcherThread::make_startable() {
1532   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1533   _startable = true;
1534 }
1535 
1536 void WatcherThread::stop() {
1537   {
1538     // Follow normal safepoint aware lock enter protocol since the
1539     // WatcherThread is stopped by another JavaThread.
1540     MutexLocker ml(PeriodicTask_lock);
1541     _should_terminate = true;
1542 
1543     WatcherThread* watcher = watcher_thread();
1544     if (watcher != NULL) {
1545       // unpark the WatcherThread so it can see that it should terminate
1546       watcher->unpark();
1547     }
1548   }
1549 
1550   MonitorLocker mu(Terminator_lock);
1551 
1552   while (watcher_thread() != NULL) {
1553     // This wait should make safepoint checks, wait without a timeout,
1554     // and wait as a suspend-equivalent condition.
1555     mu.wait(0, Mutex::_as_suspend_equivalent_flag);
1556   }
1557 }
1558 
1559 void WatcherThread::unpark() {
1560   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1561   PeriodicTask_lock->notify();
1562 }
1563 
1564 void WatcherThread::print_on(outputStream* st) const {
1565   st->print("\"%s\" ", name());
1566   Thread::print_on(st);
1567   st->cr();
1568 }
1569 
1570 // ======= JavaThread ========
1571 
1572 #if INCLUDE_JVMCI
1573 
1574 jlong* JavaThread::_jvmci_old_thread_counters;
1575 
1576 bool jvmci_counters_include(JavaThread* thread) {
1577   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1578 }
1579 
1580 void JavaThread::collect_counters(jlong* array, int length) {
1581   assert(length == JVMCICounterSize, "wrong value");
1582   for (int i = 0; i < length; i++) {
1583     array[i] = _jvmci_old_thread_counters[i];
1584   }
1585   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1586     if (jvmci_counters_include(tp)) {
1587       for (int i = 0; i < length; i++) {
1588         array[i] += tp->_jvmci_counters[i];
1589       }
1590     }
1591   }
1592 }
1593 
1594 // Attempt to enlarge the array for per thread counters.
1595 jlong* resize_counters_array(jlong* old_counters, int current_size, int new_size) {
1596   jlong* new_counters = NEW_C_HEAP_ARRAY(jlong, new_size, mtJVMCI);
1597   if (new_counters == NULL) {
1598     return NULL;
1599   }
1600   if (old_counters == NULL) {
1601     old_counters = new_counters;
1602     memset(old_counters, 0, sizeof(jlong) * new_size);
1603   } else {
1604     for (int i = 0; i < MIN2((int) current_size, new_size); i++) {
1605       new_counters[i] = old_counters[i];
1606     }
1607     if (new_size > current_size) {
1608       memset(new_counters + current_size, 0, sizeof(jlong) * (new_size - current_size));
1609     }
1610     FREE_C_HEAP_ARRAY(jlong, old_counters);
1611   }
1612   return new_counters;
1613 }
1614 
1615 // Attempt to enlarge the array for per thread counters.
1616 bool JavaThread::resize_counters(int current_size, int new_size) {
1617   jlong* new_counters = resize_counters_array(_jvmci_counters, current_size, new_size);
1618   if (new_counters == NULL) {
1619     return false;
1620   } else {
1621     _jvmci_counters = new_counters;
1622     return true;
1623   }
1624 }
1625 
1626 class VM_JVMCIResizeCounters : public VM_Operation {
1627  private:
1628   int _new_size;
1629   bool _failed;
1630 
1631  public:
1632   VM_JVMCIResizeCounters(int new_size) : _new_size(new_size), _failed(false) { }
1633   VMOp_Type type()                  const        { return VMOp_JVMCIResizeCounters; }
1634   bool allow_nested_vm_operations() const        { return true; }
1635   void doit() {
1636     // Resize the old thread counters array
1637     jlong* new_counters = resize_counters_array(JavaThread::_jvmci_old_thread_counters, JVMCICounterSize, _new_size);
1638     if (new_counters == NULL) {
1639       _failed = true;
1640       return;
1641     } else {
1642       JavaThread::_jvmci_old_thread_counters = new_counters;
1643     }
1644 
1645     // Now resize each threads array
1646     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *tp = jtiwh.next(); ) {
1647       if (!tp->resize_counters(JVMCICounterSize, _new_size)) {
1648         _failed = true;
1649         break;
1650       }
1651     }
1652     if (!_failed) {
1653       JVMCICounterSize = _new_size;
1654     }
1655   }
1656 
1657   bool failed() { return _failed; }
1658 };
1659 
1660 bool JavaThread::resize_all_jvmci_counters(int new_size) {
1661   VM_JVMCIResizeCounters op(new_size);
1662   VMThread::execute(&op);
1663   return !op.failed();
1664 }
1665 
1666 #endif // INCLUDE_JVMCI
1667 
1668 // A JavaThread is a normal Java thread
1669 
1670 void JavaThread::initialize() {
1671   // Initialize fields
1672 
1673   set_saved_exception_pc(NULL);
1674   set_threadObj(NULL);
1675   _anchor.clear();
1676   set_entry_point(NULL);
1677   set_jni_functions(jni_functions());
1678   set_callee_target(NULL);
1679   set_vm_result(NULL);
1680   set_vm_result_2(NULL);
1681   set_vframe_array_head(NULL);
1682   set_vframe_array_last(NULL);
1683   set_deferred_locals(NULL);
1684   set_deopt_mark(NULL);
1685   set_deopt_compiled_method(NULL);
1686   clear_must_deopt_id();
1687   set_monitor_chunks(NULL);
1688   _on_thread_list = false;
1689   set_thread_state(_thread_new);
1690   _terminated = _not_terminated;
1691   _array_for_gc = NULL;
1692   _suspend_equivalent = false;
1693   _in_deopt_handler = 0;
1694   _doing_unsafe_access = false;
1695   _stack_guard_state = stack_guard_unused;
1696 #if INCLUDE_JVMCI
1697   _pending_monitorenter = false;
1698   _pending_deoptimization = -1;
1699   _pending_failed_speculation = 0;
1700   _pending_transfer_to_interpreter = false;
1701   _in_retryable_allocation = false;
1702   _jvmci._alternate_call_target = NULL;
1703   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1704   _jvmci_counters = NULL;
1705   if (JVMCICounterSize > 0) {
1706     resize_counters(0, (int) JVMCICounterSize);
1707   }
1708 #endif // INCLUDE_JVMCI
1709   _reserved_stack_activation = NULL;  // stack base not known yet
1710   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1711   _exception_pc  = 0;
1712   _exception_handler_pc = 0;
1713   _is_method_handle_return = 0;
1714   _jvmti_thread_state= NULL;
1715   _should_post_on_exceptions_flag = JNI_FALSE;
1716   _interp_only_mode    = 0;
1717   _special_runtime_exit_condition = _no_async_condition;
1718   _pending_async_exception = NULL;
1719   _thread_stat = NULL;
1720   _thread_stat = new ThreadStatistics();
1721   _blocked_on_compilation = false;
1722   _jni_active_critical = 0;
1723   _pending_jni_exception_check_fn = NULL;
1724   _do_not_unlock_if_synchronized = false;
1725   _cached_monitor_info = NULL;
1726   _parker = Parker::Allocate(this);
1727 
1728 #ifndef PRODUCT
1729   _jmp_ring_index = 0;
1730   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1731     record_jump(NULL, NULL, NULL, 0);
1732   }
1733 #endif // PRODUCT
1734 
1735   // Setup safepoint state info for this thread
1736   ThreadSafepointState::create(this);
1737 
1738   debug_only(_java_call_counter = 0);
1739 
1740   // JVMTI PopFrame support
1741   _popframe_condition = popframe_inactive;
1742   _popframe_preserved_args = NULL;
1743   _popframe_preserved_args_size = 0;
1744   _frames_to_pop_failed_realloc = 0;
1745 
1746   if (SafepointMechanism::uses_thread_local_poll()) {
1747     SafepointMechanism::initialize_header(this);
1748   }
1749 
1750   _class_to_be_initialized = NULL;
1751 
1752   pd_initialize();
1753 }
1754 
1755 JavaThread::JavaThread(bool is_attaching_via_jni) :
1756                        Thread() {
1757   initialize();
1758   if (is_attaching_via_jni) {
1759     _jni_attach_state = _attaching_via_jni;
1760   } else {
1761     _jni_attach_state = _not_attaching_via_jni;
1762   }
1763   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1764 }
1765 
1766 bool JavaThread::reguard_stack(address cur_sp) {
1767   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1768       && _stack_guard_state != stack_guard_reserved_disabled) {
1769     return true; // Stack already guarded or guard pages not needed.
1770   }
1771 
1772   if (register_stack_overflow()) {
1773     // For those architectures which have separate register and
1774     // memory stacks, we must check the register stack to see if
1775     // it has overflowed.
1776     return false;
1777   }
1778 
1779   // Java code never executes within the yellow zone: the latter is only
1780   // there to provoke an exception during stack banging.  If java code
1781   // is executing there, either StackShadowPages should be larger, or
1782   // some exception code in c1, c2 or the interpreter isn't unwinding
1783   // when it should.
1784   guarantee(cur_sp > stack_reserved_zone_base(),
1785             "not enough space to reguard - increase StackShadowPages");
1786   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1787     enable_stack_yellow_reserved_zone();
1788     if (reserved_stack_activation() != stack_base()) {
1789       set_reserved_stack_activation(stack_base());
1790     }
1791   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1792     set_reserved_stack_activation(stack_base());
1793     enable_stack_reserved_zone();
1794   }
1795   return true;
1796 }
1797 
1798 bool JavaThread::reguard_stack(void) {
1799   return reguard_stack(os::current_stack_pointer());
1800 }
1801 
1802 
1803 void JavaThread::block_if_vm_exited() {
1804   if (_terminated == _vm_exited) {
1805     // _vm_exited is set at safepoint, and Threads_lock is never released
1806     // we will block here forever
1807     Threads_lock->lock_without_safepoint_check();
1808     ShouldNotReachHere();
1809   }
1810 }
1811 
1812 
1813 // Remove this ifdef when C1 is ported to the compiler interface.
1814 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1815 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1816 
1817 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1818                        Thread() {
1819   initialize();
1820   _jni_attach_state = _not_attaching_via_jni;
1821   set_entry_point(entry_point);
1822   // Create the native thread itself.
1823   // %note runtime_23
1824   os::ThreadType thr_type = os::java_thread;
1825   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1826                                                      os::java_thread;
1827   os::create_thread(this, thr_type, stack_sz);
1828   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1829   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1830   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1831   // the exception consists of creating the exception object & initializing it, initialization
1832   // will leave the VM via a JavaCall and then all locks must be unlocked).
1833   //
1834   // The thread is still suspended when we reach here. Thread must be explicit started
1835   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1836   // by calling Threads:add. The reason why this is not done here, is because the thread
1837   // object must be fully initialized (take a look at JVM_Start)
1838 }
1839 
1840 JavaThread::~JavaThread() {
1841 
1842   // JSR166 -- return the parker to the free list
1843   Parker::Release(_parker);
1844   _parker = NULL;
1845 
1846   // Free any remaining  previous UnrollBlock
1847   vframeArray* old_array = vframe_array_last();
1848 
1849   if (old_array != NULL) {
1850     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1851     old_array->set_unroll_block(NULL);
1852     delete old_info;
1853     delete old_array;
1854   }
1855 
1856   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1857   if (deferred != NULL) {
1858     // This can only happen if thread is destroyed before deoptimization occurs.
1859     assert(deferred->length() != 0, "empty array!");
1860     do {
1861       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1862       deferred->remove_at(0);
1863       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1864       delete dlv;
1865     } while (deferred->length() != 0);
1866     delete deferred;
1867   }
1868 
1869   // All Java related clean up happens in exit
1870   ThreadSafepointState::destroy(this);
1871   if (_thread_stat != NULL) delete _thread_stat;
1872 
1873 #if INCLUDE_JVMCI
1874   if (JVMCICounterSize > 0) {
1875     if (jvmci_counters_include(this)) {
1876       for (int i = 0; i < JVMCICounterSize; i++) {
1877         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1878       }
1879     }
1880     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1881   }
1882 #endif // INCLUDE_JVMCI
1883 }
1884 
1885 
1886 // First JavaThread specific code executed by a new Java thread.
1887 void JavaThread::pre_run() {
1888   // empty - see comments in run()
1889 }
1890 
1891 // The main routine called by a new Java thread. This isn't overridden
1892 // by subclasses, instead different subclasses define a different "entry_point"
1893 // which defines the actual logic for that kind of thread.
1894 void JavaThread::run() {
1895   // initialize thread-local alloc buffer related fields
1896   this->initialize_tlab();
1897 
1898   // Used to test validity of stack trace backs.
1899   // This can't be moved into pre_run() else we invalidate
1900   // the requirement that thread_main_inner is lower on
1901   // the stack. Consequently all the initialization logic
1902   // stays here in run() rather than pre_run().
1903   this->record_base_of_stack_pointer();
1904 
1905   this->create_stack_guard_pages();
1906 
1907   this->cache_global_variables();
1908 
1909   // Thread is now sufficiently initialized to be handled by the safepoint code as being
1910   // in the VM. Change thread state from _thread_new to _thread_in_vm
1911   ThreadStateTransition::transition(this, _thread_new, _thread_in_vm);
1912   // Before a thread is on the threads list it is always safe, so after leaving the
1913   // _thread_new we should emit a instruction barrier. The distance to modified code
1914   // from here is probably far enough, but this is consistent and safe.
1915   OrderAccess::cross_modify_fence();
1916 
1917   assert(JavaThread::current() == this, "sanity check");
1918   assert(!Thread::current()->owns_locks(), "sanity check");
1919 
1920   DTRACE_THREAD_PROBE(start, this);
1921 
1922   // This operation might block. We call that after all safepoint checks for a new thread has
1923   // been completed.
1924   this->set_active_handles(JNIHandleBlock::allocate_block());
1925 
1926   if (JvmtiExport::should_post_thread_life()) {
1927     JvmtiExport::post_thread_start(this);
1928 
1929   }
1930 
1931   // We call another function to do the rest so we are sure that the stack addresses used
1932   // from there will be lower than the stack base just computed.
1933   thread_main_inner();
1934 }
1935 
1936 void JavaThread::thread_main_inner() {
1937   assert(JavaThread::current() == this, "sanity check");
1938   assert(this->threadObj() != NULL, "just checking");
1939 
1940   // Execute thread entry point unless this thread has a pending exception
1941   // or has been stopped before starting.
1942   // Note: Due to JVM_StopThread we can have pending exceptions already!
1943   if (!this->has_pending_exception() &&
1944       !java_lang_Thread::is_stillborn(this->threadObj())) {
1945     {
1946       ResourceMark rm(this);
1947       this->set_native_thread_name(this->get_thread_name());
1948     }
1949     HandleMark hm(this);
1950     this->entry_point()(this, this);
1951   }
1952 
1953   DTRACE_THREAD_PROBE(stop, this);
1954 
1955   // Cleanup is handled in post_run()
1956 }
1957 
1958 // Shared teardown for all JavaThreads
1959 void JavaThread::post_run() {
1960   this->exit(false);
1961   // Defer deletion to here to ensure 'this' is still referenceable in call_run
1962   // for any shared tear-down.
1963   this->smr_delete();
1964 }
1965 
1966 static void ensure_join(JavaThread* thread) {
1967   // We do not need to grab the Threads_lock, since we are operating on ourself.
1968   Handle threadObj(thread, thread->threadObj());
1969   assert(threadObj.not_null(), "java thread object must exist");
1970   ObjectLocker lock(threadObj, thread);
1971   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1972   thread->clear_pending_exception();
1973   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1974   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1975   // Clear the native thread instance - this makes isAlive return false and allows the join()
1976   // to complete once we've done the notify_all below
1977   java_lang_Thread::set_thread(threadObj(), NULL);
1978   lock.notify_all(thread);
1979   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1980   thread->clear_pending_exception();
1981 }
1982 
1983 static bool is_daemon(oop threadObj) {
1984   return (threadObj != NULL && java_lang_Thread::is_daemon(threadObj));
1985 }
1986 
1987 // For any new cleanup additions, please check to see if they need to be applied to
1988 // cleanup_failed_attach_current_thread as well.
1989 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1990   assert(this == JavaThread::current(), "thread consistency check");
1991 
1992   elapsedTimer _timer_exit_phase1;
1993   elapsedTimer _timer_exit_phase2;
1994   elapsedTimer _timer_exit_phase3;
1995   elapsedTimer _timer_exit_phase4;
1996 
1997   if (log_is_enabled(Debug, os, thread, timer)) {
1998     _timer_exit_phase1.start();
1999   }
2000 
2001   HandleMark hm(this);
2002   Handle uncaught_exception(this, this->pending_exception());
2003   this->clear_pending_exception();
2004   Handle threadObj(this, this->threadObj());
2005   assert(threadObj.not_null(), "Java thread object should be created");
2006 
2007   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
2008   {
2009     EXCEPTION_MARK;
2010 
2011     CLEAR_PENDING_EXCEPTION;
2012   }
2013   if (!destroy_vm) {
2014     if (uncaught_exception.not_null()) {
2015       EXCEPTION_MARK;
2016       // Call method Thread.dispatchUncaughtException().
2017       Klass* thread_klass = SystemDictionary::Thread_klass();
2018       JavaValue result(T_VOID);
2019       JavaCalls::call_virtual(&result,
2020                               threadObj, thread_klass,
2021                               vmSymbols::dispatchUncaughtException_name(),
2022                               vmSymbols::throwable_void_signature(),
2023                               uncaught_exception,
2024                               THREAD);
2025       if (HAS_PENDING_EXCEPTION) {
2026         ResourceMark rm(this);
2027         jio_fprintf(defaultStream::error_stream(),
2028                     "\nException: %s thrown from the UncaughtExceptionHandler"
2029                     " in thread \"%s\"\n",
2030                     pending_exception()->klass()->external_name(),
2031                     get_thread_name());
2032         CLEAR_PENDING_EXCEPTION;
2033       }
2034     }
2035     JFR_ONLY(Jfr::on_java_thread_dismantle(this);)
2036 
2037     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
2038     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
2039     // is deprecated anyhow.
2040     if (!is_Compiler_thread()) {
2041       int count = 3;
2042       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
2043         EXCEPTION_MARK;
2044         JavaValue result(T_VOID);
2045         Klass* thread_klass = SystemDictionary::Thread_klass();
2046         JavaCalls::call_virtual(&result,
2047                                 threadObj, thread_klass,
2048                                 vmSymbols::exit_method_name(),
2049                                 vmSymbols::void_method_signature(),
2050                                 THREAD);
2051         CLEAR_PENDING_EXCEPTION;
2052       }
2053     }
2054     // notify JVMTI
2055     if (JvmtiExport::should_post_thread_life()) {
2056       JvmtiExport::post_thread_end(this);
2057     }
2058 
2059     // We have notified the agents that we are exiting, before we go on,
2060     // we must check for a pending external suspend request and honor it
2061     // in order to not surprise the thread that made the suspend request.
2062     while (true) {
2063       {
2064         MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2065         if (!is_external_suspend()) {
2066           set_terminated(_thread_exiting);
2067           ThreadService::current_thread_exiting(this, is_daemon(threadObj()));
2068           break;
2069         }
2070         // Implied else:
2071         // Things get a little tricky here. We have a pending external
2072         // suspend request, but we are holding the SR_lock so we
2073         // can't just self-suspend. So we temporarily drop the lock
2074         // and then self-suspend.
2075       }
2076 
2077       ThreadBlockInVM tbivm(this);
2078       java_suspend_self();
2079 
2080       // We're done with this suspend request, but we have to loop around
2081       // and check again. Eventually we will get SR_lock without a pending
2082       // external suspend request and will be able to mark ourselves as
2083       // exiting.
2084     }
2085     // no more external suspends are allowed at this point
2086   } else {
2087     assert(!is_terminated() && !is_exiting(), "must not be exiting");
2088     // before_exit() has already posted JVMTI THREAD_END events
2089   }
2090 
2091   if (log_is_enabled(Debug, os, thread, timer)) {
2092     _timer_exit_phase1.stop();
2093     _timer_exit_phase2.start();
2094   }
2095 
2096   // Capture daemon status before the thread is marked as terminated.
2097   bool daemon = is_daemon(threadObj());
2098 
2099   // Notify waiters on thread object. This has to be done after exit() is called
2100   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
2101   // group should have the destroyed bit set before waiters are notified).
2102   ensure_join(this);
2103   assert(!this->has_pending_exception(), "ensure_join should have cleared");
2104 
2105   if (log_is_enabled(Debug, os, thread, timer)) {
2106     _timer_exit_phase2.stop();
2107     _timer_exit_phase3.start();
2108   }
2109   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
2110   // held by this thread must be released. The spec does not distinguish
2111   // between JNI-acquired and regular Java monitors. We can only see
2112   // regular Java monitors here if monitor enter-exit matching is broken.
2113   //
2114   // ensure_join() ignores IllegalThreadStateExceptions, and so does
2115   // ObjectSynchronizer::release_monitors_owned_by_thread().
2116   if (exit_type == jni_detach) {
2117     // Sanity check even though JNI DetachCurrentThread() would have
2118     // returned JNI_ERR if there was a Java frame. JavaThread exit
2119     // should be done executing Java code by the time we get here.
2120     assert(!this->has_last_Java_frame(),
2121            "should not have a Java frame when detaching or exiting");
2122     ObjectSynchronizer::release_monitors_owned_by_thread(this);
2123     assert(!this->has_pending_exception(), "release_monitors should have cleared");
2124   }
2125 
2126   // These things needs to be done while we are still a Java Thread. Make sure that thread
2127   // is in a consistent state, in case GC happens
2128   JFR_ONLY(Jfr::on_thread_exit(this);)
2129 
2130   if (active_handles() != NULL) {
2131     JNIHandleBlock* block = active_handles();
2132     set_active_handles(NULL);
2133     JNIHandleBlock::release_block(block);
2134   }
2135 
2136   if (free_handle_block() != NULL) {
2137     JNIHandleBlock* block = free_handle_block();
2138     set_free_handle_block(NULL);
2139     JNIHandleBlock::release_block(block);
2140   }
2141 
2142   // These have to be removed while this is still a valid thread.
2143   remove_stack_guard_pages();
2144 
2145   if (UseTLAB) {
2146     tlab().retire();
2147   }
2148 
2149   if (JvmtiEnv::environments_might_exist()) {
2150     JvmtiExport::cleanup_thread(this);
2151   }
2152 
2153   // We must flush any deferred card marks and other various GC barrier
2154   // related buffers (e.g. G1 SATB buffer and G1 dirty card queue buffer)
2155   // before removing a thread from the list of active threads.
2156   BarrierSet::barrier_set()->on_thread_detach(this);
2157 
2158   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
2159     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
2160     os::current_thread_id());
2161 
2162   if (log_is_enabled(Debug, os, thread, timer)) {
2163     _timer_exit_phase3.stop();
2164     _timer_exit_phase4.start();
2165   }
2166   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
2167   Threads::remove(this, daemon);
2168 
2169   if (log_is_enabled(Debug, os, thread, timer)) {
2170     _timer_exit_phase4.stop();
2171     ResourceMark rm(this);
2172     log_debug(os, thread, timer)("name='%s'"
2173                                  ", exit-phase1=" JLONG_FORMAT
2174                                  ", exit-phase2=" JLONG_FORMAT
2175                                  ", exit-phase3=" JLONG_FORMAT
2176                                  ", exit-phase4=" JLONG_FORMAT,
2177                                  get_thread_name(),
2178                                  _timer_exit_phase1.milliseconds(),
2179                                  _timer_exit_phase2.milliseconds(),
2180                                  _timer_exit_phase3.milliseconds(),
2181                                  _timer_exit_phase4.milliseconds());
2182   }
2183 }
2184 
2185 void JavaThread::cleanup_failed_attach_current_thread(bool is_daemon) {
2186   if (active_handles() != NULL) {
2187     JNIHandleBlock* block = active_handles();
2188     set_active_handles(NULL);
2189     JNIHandleBlock::release_block(block);
2190   }
2191 
2192   if (free_handle_block() != NULL) {
2193     JNIHandleBlock* block = free_handle_block();
2194     set_free_handle_block(NULL);
2195     JNIHandleBlock::release_block(block);
2196   }
2197 
2198   // These have to be removed while this is still a valid thread.
2199   remove_stack_guard_pages();
2200 
2201   if (UseTLAB) {
2202     tlab().retire();
2203   }
2204 
2205   BarrierSet::barrier_set()->on_thread_detach(this);
2206 
2207   Threads::remove(this, is_daemon);
2208   this->smr_delete();
2209 }
2210 
2211 JavaThread* JavaThread::active() {
2212   Thread* thread = Thread::current();
2213   if (thread->is_Java_thread()) {
2214     return (JavaThread*) thread;
2215   } else {
2216     assert(thread->is_VM_thread(), "this must be a vm thread");
2217     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2218     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2219     assert(ret->is_Java_thread(), "must be a Java thread");
2220     return ret;
2221   }
2222 }
2223 
2224 bool JavaThread::is_lock_owned(address adr) const {
2225   if (Thread::is_lock_owned(adr)) return true;
2226 
2227   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2228     if (chunk->contains(adr)) return true;
2229   }
2230 
2231   return false;
2232 }
2233 
2234 
2235 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2236   chunk->set_next(monitor_chunks());
2237   set_monitor_chunks(chunk);
2238 }
2239 
2240 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2241   guarantee(monitor_chunks() != NULL, "must be non empty");
2242   if (monitor_chunks() == chunk) {
2243     set_monitor_chunks(chunk->next());
2244   } else {
2245     MonitorChunk* prev = monitor_chunks();
2246     while (prev->next() != chunk) prev = prev->next();
2247     prev->set_next(chunk->next());
2248   }
2249 }
2250 
2251 // JVM support.
2252 
2253 // Note: this function shouldn't block if it's called in
2254 // _thread_in_native_trans state (such as from
2255 // check_special_condition_for_native_trans()).
2256 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2257 
2258   if (has_last_Java_frame() && has_async_condition()) {
2259     // If we are at a polling page safepoint (not a poll return)
2260     // then we must defer async exception because live registers
2261     // will be clobbered by the exception path. Poll return is
2262     // ok because the call we a returning from already collides
2263     // with exception handling registers and so there is no issue.
2264     // (The exception handling path kills call result registers but
2265     //  this is ok since the exception kills the result anyway).
2266 
2267     if (is_at_poll_safepoint()) {
2268       // if the code we are returning to has deoptimized we must defer
2269       // the exception otherwise live registers get clobbered on the
2270       // exception path before deoptimization is able to retrieve them.
2271       //
2272       RegisterMap map(this, false);
2273       frame caller_fr = last_frame().sender(&map);
2274       assert(caller_fr.is_compiled_frame(), "what?");
2275       if (caller_fr.is_deoptimized_frame()) {
2276         log_info(exceptions)("deferred async exception at compiled safepoint");
2277         return;
2278       }
2279     }
2280   }
2281 
2282   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2283   if (condition == _no_async_condition) {
2284     // Conditions have changed since has_special_runtime_exit_condition()
2285     // was called:
2286     // - if we were here only because of an external suspend request,
2287     //   then that was taken care of above (or cancelled) so we are done
2288     // - if we were here because of another async request, then it has
2289     //   been cleared between the has_special_runtime_exit_condition()
2290     //   and now so again we are done
2291     return;
2292   }
2293 
2294   // Check for pending async. exception
2295   if (_pending_async_exception != NULL) {
2296     // Only overwrite an already pending exception, if it is not a threadDeath.
2297     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2298 
2299       // We cannot call Exceptions::_throw(...) here because we cannot block
2300       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2301 
2302       LogTarget(Info, exceptions) lt;
2303       if (lt.is_enabled()) {
2304         ResourceMark rm;
2305         LogStream ls(lt);
2306         ls.print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2307           if (has_last_Java_frame()) {
2308             frame f = last_frame();
2309            ls.print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2310           }
2311         ls.print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2312       }
2313       _pending_async_exception = NULL;
2314       clear_has_async_exception();
2315     }
2316   }
2317 
2318   if (check_unsafe_error &&
2319       condition == _async_unsafe_access_error && !has_pending_exception()) {
2320     condition = _no_async_condition;  // done
2321     switch (thread_state()) {
2322     case _thread_in_vm: {
2323       JavaThread* THREAD = this;
2324       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2325     }
2326     case _thread_in_native: {
2327       ThreadInVMfromNative tiv(this);
2328       JavaThread* THREAD = this;
2329       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2330     }
2331     case _thread_in_Java: {
2332       ThreadInVMfromJava tiv(this);
2333       JavaThread* THREAD = this;
2334       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2335     }
2336     default:
2337       ShouldNotReachHere();
2338     }
2339   }
2340 
2341   assert(condition == _no_async_condition || has_pending_exception() ||
2342          (!check_unsafe_error && condition == _async_unsafe_access_error),
2343          "must have handled the async condition, if no exception");
2344 }
2345 
2346 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2347 
2348   // Check for pending external suspend.
2349   if (is_external_suspend_with_lock()) {
2350     frame_anchor()->make_walkable(this);
2351     java_suspend_self_with_safepoint_check();
2352   }
2353 
2354   // We might be here for reasons in addition to the self-suspend request
2355   // so check for other async requests.
2356   if (check_asyncs) {
2357     check_and_handle_async_exceptions();
2358   }
2359 
2360   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(this);)
2361 }
2362 
2363 void JavaThread::send_thread_stop(oop java_throwable)  {
2364   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2365   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2366   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2367 
2368   // Do not throw asynchronous exceptions against the compiler thread
2369   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2370   if (!can_call_java()) return;
2371 
2372   {
2373     // Actually throw the Throwable against the target Thread - however
2374     // only if there is no thread death exception installed already.
2375     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2376       // If the topmost frame is a runtime stub, then we are calling into
2377       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2378       // must deoptimize the caller before continuing, as the compiled  exception handler table
2379       // may not be valid
2380       if (has_last_Java_frame()) {
2381         frame f = last_frame();
2382         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2383           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2384           RegisterMap reg_map(this, UseBiasedLocking);
2385           frame compiled_frame = f.sender(&reg_map);
2386           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2387             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2388           }
2389         }
2390       }
2391 
2392       // Set async. pending exception in thread.
2393       set_pending_async_exception(java_throwable);
2394 
2395       if (log_is_enabled(Info, exceptions)) {
2396          ResourceMark rm;
2397         log_info(exceptions)("Pending Async. exception installed of type: %s",
2398                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2399       }
2400       // for AbortVMOnException flag
2401       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2402     }
2403   }
2404 
2405 
2406   // Interrupt thread so it will wake up from a potential wait()
2407   Thread::interrupt(this);
2408 }
2409 
2410 // External suspension mechanism.
2411 //
2412 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2413 // to any VM_locks and it is at a transition
2414 // Self-suspension will happen on the transition out of the vm.
2415 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2416 //
2417 // Guarantees on return:
2418 //   + Target thread will not execute any new bytecode (that's why we need to
2419 //     force a safepoint)
2420 //   + Target thread will not enter any new monitors
2421 //
2422 void JavaThread::java_suspend() {
2423   ThreadsListHandle tlh;
2424   if (!tlh.includes(this) || threadObj() == NULL || is_exiting()) {
2425     return;
2426   }
2427 
2428   { MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2429     if (!is_external_suspend()) {
2430       // a racing resume has cancelled us; bail out now
2431       return;
2432     }
2433 
2434     // suspend is done
2435     uint32_t debug_bits = 0;
2436     // Warning: is_ext_suspend_completed() may temporarily drop the
2437     // SR_lock to allow the thread to reach a stable thread state if
2438     // it is currently in a transient thread state.
2439     if (is_ext_suspend_completed(false /* !called_by_wait */,
2440                                  SuspendRetryDelay, &debug_bits)) {
2441       return;
2442     }
2443   }
2444 
2445   if (Thread::current() == this) {
2446     // Safely self-suspend.
2447     // If we don't do this explicitly it will implicitly happen
2448     // before we transition back to Java, and on some other thread-state
2449     // transition paths, but not as we exit a JVM TI SuspendThread call.
2450     // As SuspendThread(current) must not return (until resumed) we must
2451     // self-suspend here.
2452     ThreadBlockInVM tbivm(this);
2453     java_suspend_self();
2454   } else {
2455     VM_ThreadSuspend vm_suspend;
2456     VMThread::execute(&vm_suspend);
2457   }
2458 }
2459 
2460 // Part II of external suspension.
2461 // A JavaThread self suspends when it detects a pending external suspend
2462 // request. This is usually on transitions. It is also done in places
2463 // where continuing to the next transition would surprise the caller,
2464 // e.g., monitor entry.
2465 //
2466 // Returns the number of times that the thread self-suspended.
2467 //
2468 // Note: DO NOT call java_suspend_self() when you just want to block current
2469 //       thread. java_suspend_self() is the second stage of cooperative
2470 //       suspension for external suspend requests and should only be used
2471 //       to complete an external suspend request.
2472 //
2473 int JavaThread::java_suspend_self() {
2474   assert(thread_state() == _thread_blocked, "wrong state for java_suspend_self()");
2475   int ret = 0;
2476 
2477   // we are in the process of exiting so don't suspend
2478   if (is_exiting()) {
2479     clear_external_suspend();
2480     return ret;
2481   }
2482 
2483   assert(_anchor.walkable() ||
2484          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2485          "must have walkable stack");
2486 
2487   MonitorLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2488 
2489   assert(!this->is_ext_suspended(),
2490          "a thread trying to self-suspend should not already be suspended");
2491 
2492   if (this->is_suspend_equivalent()) {
2493     // If we are self-suspending as a result of the lifting of a
2494     // suspend equivalent condition, then the suspend_equivalent
2495     // flag is not cleared until we set the ext_suspended flag so
2496     // that wait_for_ext_suspend_completion() returns consistent
2497     // results.
2498     this->clear_suspend_equivalent();
2499   }
2500 
2501   // A racing resume may have cancelled us before we grabbed SR_lock
2502   // above. Or another external suspend request could be waiting for us
2503   // by the time we return from SR_lock()->wait(). The thread
2504   // that requested the suspension may already be trying to walk our
2505   // stack and if we return now, we can change the stack out from under
2506   // it. This would be a "bad thing (TM)" and cause the stack walker
2507   // to crash. We stay self-suspended until there are no more pending
2508   // external suspend requests.
2509   while (is_external_suspend()) {
2510     ret++;
2511     this->set_ext_suspended();
2512 
2513     // _ext_suspended flag is cleared by java_resume()
2514     while (is_ext_suspended()) {
2515       ml.wait();
2516     }
2517   }
2518   return ret;
2519 }
2520 
2521 // Helper routine to set up the correct thread state before calling java_suspend_self.
2522 // This is called when regular thread-state transition helpers can't be used because
2523 // we can be in various states, in particular _thread_in_native_trans.
2524 // Because this thread is external suspended the safepoint code will count it as at
2525 // a safepoint, regardless of what its actual current thread-state is. But
2526 // is_ext_suspend_completed() may be waiting to see a thread transition from
2527 // _thread_in_native_trans to _thread_blocked. So we set the thread state directly
2528 // to _thread_blocked. The problem with setting thread state directly is that a
2529 // safepoint could happen just after java_suspend_self() returns after being resumed,
2530 // and the VM thread will see the _thread_blocked state. So we must check for a safepoint
2531 // after restoring the state to make sure we won't leave while a safepoint is in progress.
2532 // However, not all initial-states are allowed when performing a safepoint check, as we
2533 // should never be blocking at a safepoint whilst in those states. Of these 'bad' states
2534 // only _thread_in_native is possible when executing this code (based on our two callers).
2535 // A thread that is _thread_in_native is already safepoint-safe and so it doesn't matter
2536 // whether the VMThread sees the _thread_blocked state, or the _thread_in_native state,
2537 // and so we don't need the explicit safepoint check.
2538 
2539 void JavaThread::java_suspend_self_with_safepoint_check() {
2540   assert(this == Thread::current(), "invariant");
2541   JavaThreadState state = thread_state();
2542   set_thread_state(_thread_blocked);
2543   java_suspend_self();
2544   set_thread_state_fence(state);
2545   // Since we are not using a regular thread-state transition helper here,
2546   // we must manually emit the instruction barrier after leaving a safe state.
2547   OrderAccess::cross_modify_fence();
2548   if (state != _thread_in_native) {
2549     SafepointMechanism::block_if_requested(this);
2550   }
2551 }
2552 
2553 #ifdef ASSERT
2554 // Verify the JavaThread has not yet been published in the Threads::list, and
2555 // hence doesn't need protection from concurrent access at this stage.
2556 void JavaThread::verify_not_published() {
2557   // Cannot create a ThreadsListHandle here and check !tlh.includes(this)
2558   // since an unpublished JavaThread doesn't participate in the
2559   // Thread-SMR protocol for keeping a ThreadsList alive.
2560   assert(!on_thread_list(), "JavaThread shouldn't have been published yet!");
2561 }
2562 #endif
2563 
2564 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2565 // progress or when _suspend_flags is non-zero.
2566 // Current thread needs to self-suspend if there is a suspend request and/or
2567 // block if a safepoint is in progress.
2568 // Async exception ISN'T checked.
2569 // Note only the ThreadInVMfromNative transition can call this function
2570 // directly and when thread state is _thread_in_native_trans
2571 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2572   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2573 
2574   assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2575 
2576   if (thread->is_external_suspend()) {
2577     thread->java_suspend_self_with_safepoint_check();
2578   } else {
2579     SafepointMechanism::block_if_requested(thread);
2580   }
2581 
2582   JFR_ONLY(SUSPEND_THREAD_CONDITIONAL(thread);)
2583 }
2584 
2585 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2586 // progress or when _suspend_flags is non-zero.
2587 // Current thread needs to self-suspend if there is a suspend request and/or
2588 // block if a safepoint is in progress.
2589 // Also check for pending async exception (not including unsafe access error).
2590 // Note only the native==>VM/Java barriers can call this function and when
2591 // thread state is _thread_in_native_trans.
2592 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2593   check_safepoint_and_suspend_for_native_trans(thread);
2594 
2595   if (thread->has_async_exception()) {
2596     // We are in _thread_in_native_trans state, don't handle unsafe
2597     // access error since that may block.
2598     thread->check_and_handle_async_exceptions(false);
2599   }
2600 }
2601 
2602 // This is a variant of the normal
2603 // check_special_condition_for_native_trans with slightly different
2604 // semantics for use by critical native wrappers.  It does all the
2605 // normal checks but also performs the transition back into
2606 // thread_in_Java state.  This is required so that critical natives
2607 // can potentially block and perform a GC if they are the last thread
2608 // exiting the GCLocker.
2609 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2610   check_special_condition_for_native_trans(thread);
2611 
2612   // Finish the transition
2613   thread->set_thread_state(_thread_in_Java);
2614 
2615   if (thread->do_critical_native_unlock()) {
2616     ThreadInVMfromJavaNoAsyncException tiv(thread);
2617     GCLocker::unlock_critical(thread);
2618     thread->clear_critical_native_unlock();
2619   }
2620 }
2621 
2622 // We need to guarantee the Threads_lock here, since resumes are not
2623 // allowed during safepoint synchronization
2624 // Can only resume from an external suspension
2625 void JavaThread::java_resume() {
2626   assert_locked_or_safepoint(Threads_lock);
2627 
2628   // Sanity check: thread is gone, has started exiting or the thread
2629   // was not externally suspended.
2630   ThreadsListHandle tlh;
2631   if (!tlh.includes(this) || is_exiting() || !is_external_suspend()) {
2632     return;
2633   }
2634 
2635   MutexLocker ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2636 
2637   clear_external_suspend();
2638 
2639   if (is_ext_suspended()) {
2640     clear_ext_suspended();
2641     SR_lock()->notify_all();
2642   }
2643 }
2644 
2645 size_t JavaThread::_stack_red_zone_size = 0;
2646 size_t JavaThread::_stack_yellow_zone_size = 0;
2647 size_t JavaThread::_stack_reserved_zone_size = 0;
2648 size_t JavaThread::_stack_shadow_zone_size = 0;
2649 
2650 void JavaThread::create_stack_guard_pages() {
2651   if (!os::uses_stack_guard_pages() ||
2652       _stack_guard_state != stack_guard_unused ||
2653       (DisablePrimordialThreadGuardPages && os::is_primordial_thread())) {
2654       log_info(os, thread)("Stack guard page creation for thread "
2655                            UINTX_FORMAT " disabled", os::current_thread_id());
2656     return;
2657   }
2658   address low_addr = stack_end();
2659   size_t len = stack_guard_zone_size();
2660 
2661   assert(is_aligned(low_addr, os::vm_page_size()), "Stack base should be the start of a page");
2662   assert(is_aligned(len, os::vm_page_size()), "Stack size should be a multiple of page size");
2663 
2664   int must_commit = os::must_commit_stack_guard_pages();
2665   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2666 
2667   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2668     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2669     return;
2670   }
2671 
2672   if (os::guard_memory((char *) low_addr, len)) {
2673     _stack_guard_state = stack_guard_enabled;
2674   } else {
2675     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2676       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2677     if (os::uncommit_memory((char *) low_addr, len)) {
2678       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2679     }
2680     return;
2681   }
2682 
2683   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2684     PTR_FORMAT "-" PTR_FORMAT ".",
2685     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2686 }
2687 
2688 void JavaThread::remove_stack_guard_pages() {
2689   assert(Thread::current() == this, "from different thread");
2690   if (_stack_guard_state == stack_guard_unused) return;
2691   address low_addr = stack_end();
2692   size_t len = stack_guard_zone_size();
2693 
2694   if (os::must_commit_stack_guard_pages()) {
2695     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2696       _stack_guard_state = stack_guard_unused;
2697     } else {
2698       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2699         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2700       return;
2701     }
2702   } else {
2703     if (_stack_guard_state == stack_guard_unused) return;
2704     if (os::unguard_memory((char *) low_addr, len)) {
2705       _stack_guard_state = stack_guard_unused;
2706     } else {
2707       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2708         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2709       return;
2710     }
2711   }
2712 
2713   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2714     PTR_FORMAT "-" PTR_FORMAT ".",
2715     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2716 }
2717 
2718 void JavaThread::enable_stack_reserved_zone() {
2719   assert(_stack_guard_state == stack_guard_reserved_disabled, "inconsistent state");
2720 
2721   // The base notation is from the stack's point of view, growing downward.
2722   // We need to adjust it to work correctly with guard_memory()
2723   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2724 
2725   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2726   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2727 
2728   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2729     _stack_guard_state = stack_guard_enabled;
2730   } else {
2731     warning("Attempt to guard stack reserved zone failed.");
2732   }
2733   enable_register_stack_guard();
2734 }
2735 
2736 void JavaThread::disable_stack_reserved_zone() {
2737   assert(_stack_guard_state == stack_guard_enabled, "inconsistent state");
2738 
2739   // Simply return if called for a thread that does not use guard pages.
2740   if (_stack_guard_state != stack_guard_enabled) return;
2741 
2742   // The base notation is from the stack's point of view, growing downward.
2743   // We need to adjust it to work correctly with guard_memory()
2744   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2745 
2746   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2747     _stack_guard_state = stack_guard_reserved_disabled;
2748   } else {
2749     warning("Attempt to unguard stack reserved zone failed.");
2750   }
2751   disable_register_stack_guard();
2752 }
2753 
2754 void JavaThread::enable_stack_yellow_reserved_zone() {
2755   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2756   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2757 
2758   // The base notation is from the stacks point of view, growing downward.
2759   // We need to adjust it to work correctly with guard_memory()
2760   address base = stack_red_zone_base();
2761 
2762   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2763   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2764 
2765   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2766     _stack_guard_state = stack_guard_enabled;
2767   } else {
2768     warning("Attempt to guard stack yellow zone failed.");
2769   }
2770   enable_register_stack_guard();
2771 }
2772 
2773 void JavaThread::disable_stack_yellow_reserved_zone() {
2774   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2775   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2776 
2777   // Simply return if called for a thread that does not use guard pages.
2778   if (_stack_guard_state == stack_guard_unused) return;
2779 
2780   // The base notation is from the stacks point of view, growing downward.
2781   // We need to adjust it to work correctly with guard_memory()
2782   address base = stack_red_zone_base();
2783 
2784   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2785     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2786   } else {
2787     warning("Attempt to unguard stack yellow zone failed.");
2788   }
2789   disable_register_stack_guard();
2790 }
2791 
2792 void JavaThread::enable_stack_red_zone() {
2793   // The base notation is from the stacks point of view, growing downward.
2794   // We need to adjust it to work correctly with guard_memory()
2795   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2796   address base = stack_red_zone_base() - stack_red_zone_size();
2797 
2798   guarantee(base < stack_base(), "Error calculating stack red zone");
2799   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2800 
2801   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2802     warning("Attempt to guard stack red zone failed.");
2803   }
2804 }
2805 
2806 void JavaThread::disable_stack_red_zone() {
2807   // The base notation is from the stacks point of view, growing downward.
2808   // We need to adjust it to work correctly with guard_memory()
2809   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2810   address base = stack_red_zone_base() - stack_red_zone_size();
2811   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2812     warning("Attempt to unguard stack red zone failed.");
2813   }
2814 }
2815 
2816 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2817   // ignore is there is no stack
2818   if (!has_last_Java_frame()) return;
2819   // traverse the stack frames. Starts from top frame.
2820   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2821     frame* fr = fst.current();
2822     f(fr, fst.register_map());
2823   }
2824 }
2825 
2826 
2827 #ifndef PRODUCT
2828 // Deoptimization
2829 // Function for testing deoptimization
2830 void JavaThread::deoptimize() {
2831   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2832   StackFrameStream fst(this, UseBiasedLocking);
2833   bool deopt = false;           // Dump stack only if a deopt actually happens.
2834   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2835   // Iterate over all frames in the thread and deoptimize
2836   for (; !fst.is_done(); fst.next()) {
2837     if (fst.current()->can_be_deoptimized()) {
2838 
2839       if (only_at) {
2840         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2841         // consists of comma or carriage return separated numbers so
2842         // search for the current bci in that string.
2843         address pc = fst.current()->pc();
2844         nmethod* nm =  (nmethod*) fst.current()->cb();
2845         ScopeDesc* sd = nm->scope_desc_at(pc);
2846         char buffer[8];
2847         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2848         size_t len = strlen(buffer);
2849         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2850         while (found != NULL) {
2851           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2852               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2853             // Check that the bci found is bracketed by terminators.
2854             break;
2855           }
2856           found = strstr(found + 1, buffer);
2857         }
2858         if (!found) {
2859           continue;
2860         }
2861       }
2862 
2863       if (DebugDeoptimization && !deopt) {
2864         deopt = true; // One-time only print before deopt
2865         tty->print_cr("[BEFORE Deoptimization]");
2866         trace_frames();
2867         trace_stack();
2868       }
2869       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2870     }
2871   }
2872 
2873   if (DebugDeoptimization && deopt) {
2874     tty->print_cr("[AFTER Deoptimization]");
2875     trace_frames();
2876   }
2877 }
2878 
2879 
2880 // Make zombies
2881 void JavaThread::make_zombies() {
2882   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2883     if (fst.current()->can_be_deoptimized()) {
2884       // it is a Java nmethod
2885       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2886       nm->make_not_entrant();
2887     }
2888   }
2889 }
2890 #endif // PRODUCT
2891 
2892 
2893 void JavaThread::deoptimized_wrt_marked_nmethods() {
2894   if (!has_last_Java_frame()) return;
2895   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2896   StackFrameStream fst(this, UseBiasedLocking);
2897   for (; !fst.is_done(); fst.next()) {
2898     if (fst.current()->should_be_deoptimized()) {
2899       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2900     }
2901   }
2902 }
2903 
2904 
2905 // If the caller is a NamedThread, then remember, in the current scope,
2906 // the given JavaThread in its _processed_thread field.
2907 class RememberProcessedThread: public StackObj {
2908   NamedThread* _cur_thr;
2909  public:
2910   RememberProcessedThread(JavaThread* jthr) {
2911     Thread* thread = Thread::current();
2912     if (thread->is_Named_thread()) {
2913       _cur_thr = (NamedThread *)thread;
2914       _cur_thr->set_processed_thread(jthr);
2915     } else {
2916       _cur_thr = NULL;
2917     }
2918   }
2919 
2920   ~RememberProcessedThread() {
2921     if (_cur_thr) {
2922       _cur_thr->set_processed_thread(NULL);
2923     }
2924   }
2925 };
2926 
2927 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2928   // Verify that the deferred card marks have been flushed.
2929   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2930 
2931   // Traverse the GCHandles
2932   Thread::oops_do(f, cf);
2933 
2934   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2935          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2936 
2937   if (has_last_Java_frame()) {
2938     // Record JavaThread to GC thread
2939     RememberProcessedThread rpt(this);
2940 
2941     // traverse the registered growable array
2942     if (_array_for_gc != NULL) {
2943       for (int index = 0; index < _array_for_gc->length(); index++) {
2944         f->do_oop(_array_for_gc->adr_at(index));
2945       }
2946     }
2947 
2948     // Traverse the monitor chunks
2949     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2950       chunk->oops_do(f);
2951     }
2952 
2953     // Traverse the execution stack
2954     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2955       fst.current()->oops_do(f, cf, fst.register_map());
2956     }
2957   }
2958 
2959   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2960   // If we have deferred set_locals there might be oops waiting to be
2961   // written
2962   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2963   if (list != NULL) {
2964     for (int i = 0; i < list->length(); i++) {
2965       list->at(i)->oops_do(f);
2966     }
2967   }
2968 
2969   // Traverse instance variables at the end since the GC may be moving things
2970   // around using this function
2971   f->do_oop((oop*) &_threadObj);
2972   f->do_oop((oop*) &_vm_result);
2973   f->do_oop((oop*) &_exception_oop);
2974   f->do_oop((oop*) &_pending_async_exception);
2975 
2976   if (jvmti_thread_state() != NULL) {
2977     jvmti_thread_state()->oops_do(f);
2978   }
2979 }
2980 
2981 #ifdef ASSERT
2982 void JavaThread::verify_states_for_handshake() {
2983   // This checks that the thread has a correct frame state during a handshake.
2984   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2985          (has_last_Java_frame() && java_call_counter() > 0),
2986          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2987          has_last_Java_frame(), java_call_counter());
2988 }
2989 #endif
2990 
2991 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2992   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2993          (has_last_Java_frame() && java_call_counter() > 0),
2994          "unexpected frame info: has_last_frame=%d, java_call_counter=%d",
2995          has_last_Java_frame(), java_call_counter());
2996 
2997   if (has_last_Java_frame()) {
2998     // Traverse the execution stack
2999     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3000       fst.current()->nmethods_do(cf);
3001     }
3002   }
3003 }
3004 
3005 void JavaThread::metadata_do(MetadataClosure* f) {
3006   if (has_last_Java_frame()) {
3007     // Traverse the execution stack to call f() on the methods in the stack
3008     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3009       fst.current()->metadata_do(f);
3010     }
3011   } else if (is_Compiler_thread()) {
3012     // need to walk ciMetadata in current compile tasks to keep alive.
3013     CompilerThread* ct = (CompilerThread*)this;
3014     if (ct->env() != NULL) {
3015       ct->env()->metadata_do(f);
3016     }
3017     CompileTask* task = ct->task();
3018     if (task != NULL) {
3019       task->metadata_do(f);
3020     }
3021   }
3022 }
3023 
3024 // Printing
3025 const char* _get_thread_state_name(JavaThreadState _thread_state) {
3026   switch (_thread_state) {
3027   case _thread_uninitialized:     return "_thread_uninitialized";
3028   case _thread_new:               return "_thread_new";
3029   case _thread_new_trans:         return "_thread_new_trans";
3030   case _thread_in_native:         return "_thread_in_native";
3031   case _thread_in_native_trans:   return "_thread_in_native_trans";
3032   case _thread_in_vm:             return "_thread_in_vm";
3033   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
3034   case _thread_in_Java:           return "_thread_in_Java";
3035   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
3036   case _thread_blocked:           return "_thread_blocked";
3037   case _thread_blocked_trans:     return "_thread_blocked_trans";
3038   default:                        return "unknown thread state";
3039   }
3040 }
3041 
3042 #ifndef PRODUCT
3043 void JavaThread::print_thread_state_on(outputStream *st) const {
3044   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
3045 };
3046 void JavaThread::print_thread_state() const {
3047   print_thread_state_on(tty);
3048 }
3049 #endif // PRODUCT
3050 
3051 // Called by Threads::print() for VM_PrintThreads operation
3052 void JavaThread::print_on(outputStream *st, bool print_extended_info) const {
3053   st->print_raw("\"");
3054   st->print_raw(get_thread_name());
3055   st->print_raw("\" ");
3056   oop thread_oop = threadObj();
3057   if (thread_oop != NULL) {
3058     st->print("#" INT64_FORMAT " ", (int64_t)java_lang_Thread::thread_id(thread_oop));
3059     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
3060     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
3061   }
3062   Thread::print_on(st, print_extended_info);
3063   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
3064   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
3065   if (thread_oop != NULL) {
3066     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
3067   }
3068 #ifndef PRODUCT
3069   _safepoint_state->print_on(st);
3070 #endif // PRODUCT
3071   if (is_Compiler_thread()) {
3072     CompileTask *task = ((CompilerThread*)this)->task();
3073     if (task != NULL) {
3074       st->print("   Compiling: ");
3075       task->print(st, NULL, true, false);
3076     } else {
3077       st->print("   No compile task");
3078     }
3079     st->cr();
3080   }
3081 }
3082 
3083 void JavaThread::print() const { print_on(tty); }
3084 
3085 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
3086   st->print("%s", get_thread_name_string(buf, buflen));
3087 }
3088 
3089 // Called by fatal error handler. The difference between this and
3090 // JavaThread::print() is that we can't grab lock or allocate memory.
3091 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
3092   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
3093   oop thread_obj = threadObj();
3094   if (thread_obj != NULL) {
3095     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
3096   }
3097   st->print(" [");
3098   st->print("%s", _get_thread_state_name(_thread_state));
3099   if (osthread()) {
3100     st->print(", id=%d", osthread()->thread_id());
3101   }
3102   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
3103             p2i(stack_end()), p2i(stack_base()));
3104   st->print("]");
3105 
3106   ThreadsSMRSupport::print_info_on(this, st);
3107   return;
3108 }
3109 
3110 // Verification
3111 
3112 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
3113 
3114 void JavaThread::verify() {
3115   // Verify oops in the thread.
3116   oops_do(&VerifyOopClosure::verify_oop, NULL);
3117 
3118   // Verify the stack frames.
3119   frames_do(frame_verify);
3120 }
3121 
3122 // CR 6300358 (sub-CR 2137150)
3123 // Most callers of this method assume that it can't return NULL but a
3124 // thread may not have a name whilst it is in the process of attaching to
3125 // the VM - see CR 6412693, and there are places where a JavaThread can be
3126 // seen prior to having it's threadObj set (eg JNI attaching threads and
3127 // if vm exit occurs during initialization). These cases can all be accounted
3128 // for such that this method never returns NULL.
3129 const char* JavaThread::get_thread_name() const {
3130 #ifdef ASSERT
3131   // early safepoints can hit while current thread does not yet have TLS
3132   if (!SafepointSynchronize::is_at_safepoint()) {
3133     Thread *cur = Thread::current();
3134     if (!(cur->is_Java_thread() && cur == this)) {
3135       // Current JavaThreads are allowed to get their own name without
3136       // the Threads_lock.
3137       assert_locked_or_safepoint(Threads_lock);
3138     }
3139   }
3140 #endif // ASSERT
3141   return get_thread_name_string();
3142 }
3143 
3144 // Returns a non-NULL representation of this thread's name, or a suitable
3145 // descriptive string if there is no set name
3146 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
3147   const char* name_str;
3148   oop thread_obj = threadObj();
3149   if (thread_obj != NULL) {
3150     oop name = java_lang_Thread::name(thread_obj);
3151     if (name != NULL) {
3152       if (buf == NULL) {
3153         name_str = java_lang_String::as_utf8_string(name);
3154       } else {
3155         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
3156       }
3157     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3158       name_str = "<no-name - thread is attaching>";
3159     } else {
3160       name_str = Thread::name();
3161     }
3162   } else {
3163     name_str = Thread::name();
3164   }
3165   assert(name_str != NULL, "unexpected NULL thread name");
3166   return name_str;
3167 }
3168 
3169 
3170 const char* JavaThread::get_threadgroup_name() const {
3171   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3172   oop thread_obj = threadObj();
3173   if (thread_obj != NULL) {
3174     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3175     if (thread_group != NULL) {
3176       // ThreadGroup.name can be null
3177       return java_lang_ThreadGroup::name(thread_group);
3178     }
3179   }
3180   return NULL;
3181 }
3182 
3183 const char* JavaThread::get_parent_name() const {
3184   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3185   oop thread_obj = threadObj();
3186   if (thread_obj != NULL) {
3187     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3188     if (thread_group != NULL) {
3189       oop parent = java_lang_ThreadGroup::parent(thread_group);
3190       if (parent != NULL) {
3191         // ThreadGroup.name can be null
3192         return java_lang_ThreadGroup::name(parent);
3193       }
3194     }
3195   }
3196   return NULL;
3197 }
3198 
3199 ThreadPriority JavaThread::java_priority() const {
3200   oop thr_oop = threadObj();
3201   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3202   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3203   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3204   return priority;
3205 }
3206 
3207 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3208 
3209   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3210   // Link Java Thread object <-> C++ Thread
3211 
3212   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3213   // and put it into a new Handle.  The Handle "thread_oop" can then
3214   // be used to pass the C++ thread object to other methods.
3215 
3216   // Set the Java level thread object (jthread) field of the
3217   // new thread (a JavaThread *) to C++ thread object using the
3218   // "thread_oop" handle.
3219 
3220   // Set the thread field (a JavaThread *) of the
3221   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3222 
3223   Handle thread_oop(Thread::current(),
3224                     JNIHandles::resolve_non_null(jni_thread));
3225   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3226          "must be initialized");
3227   set_threadObj(thread_oop());
3228   java_lang_Thread::set_thread(thread_oop(), this);
3229 
3230   if (prio == NoPriority) {
3231     prio = java_lang_Thread::priority(thread_oop());
3232     assert(prio != NoPriority, "A valid priority should be present");
3233   }
3234 
3235   // Push the Java priority down to the native thread; needs Threads_lock
3236   Thread::set_priority(this, prio);
3237 
3238   // Add the new thread to the Threads list and set it in motion.
3239   // We must have threads lock in order to call Threads::add.
3240   // It is crucial that we do not block before the thread is
3241   // added to the Threads list for if a GC happens, then the java_thread oop
3242   // will not be visited by GC.
3243   Threads::add(this);
3244 }
3245 
3246 oop JavaThread::current_park_blocker() {
3247   // Support for JSR-166 locks
3248   oop thread_oop = threadObj();
3249   if (thread_oop != NULL) {
3250     return java_lang_Thread::park_blocker(thread_oop);
3251   }
3252   return NULL;
3253 }
3254 
3255 
3256 void JavaThread::print_stack_on(outputStream* st) {
3257   if (!has_last_Java_frame()) return;
3258   ResourceMark rm;
3259   HandleMark   hm;
3260 
3261   RegisterMap reg_map(this);
3262   vframe* start_vf = last_java_vframe(&reg_map);
3263   int count = 0;
3264   for (vframe* f = start_vf; f != NULL; f = f->sender()) {
3265     if (f->is_java_frame()) {
3266       javaVFrame* jvf = javaVFrame::cast(f);
3267       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3268 
3269       // Print out lock information
3270       if (JavaMonitorsInStackTrace) {
3271         jvf->print_lock_info_on(st, count);
3272       }
3273     } else {
3274       // Ignore non-Java frames
3275     }
3276 
3277     // Bail-out case for too deep stacks if MaxJavaStackTraceDepth > 0
3278     count++;
3279     if (MaxJavaStackTraceDepth > 0 && MaxJavaStackTraceDepth == count) return;
3280   }
3281 }
3282 
3283 
3284 // JVMTI PopFrame support
3285 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3286   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3287   if (in_bytes(size_in_bytes) != 0) {
3288     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3289     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3290     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3291   }
3292 }
3293 
3294 void* JavaThread::popframe_preserved_args() {
3295   return _popframe_preserved_args;
3296 }
3297 
3298 ByteSize JavaThread::popframe_preserved_args_size() {
3299   return in_ByteSize(_popframe_preserved_args_size);
3300 }
3301 
3302 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3303   int sz = in_bytes(popframe_preserved_args_size());
3304   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3305   return in_WordSize(sz / wordSize);
3306 }
3307 
3308 void JavaThread::popframe_free_preserved_args() {
3309   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3310   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3311   _popframe_preserved_args = NULL;
3312   _popframe_preserved_args_size = 0;
3313 }
3314 
3315 #ifndef PRODUCT
3316 
3317 void JavaThread::trace_frames() {
3318   tty->print_cr("[Describe stack]");
3319   int frame_no = 1;
3320   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3321     tty->print("  %d. ", frame_no++);
3322     fst.current()->print_value_on(tty, this);
3323     tty->cr();
3324   }
3325 }
3326 
3327 class PrintAndVerifyOopClosure: public OopClosure {
3328  protected:
3329   template <class T> inline void do_oop_work(T* p) {
3330     oop obj = RawAccess<>::oop_load(p);
3331     if (obj == NULL) return;
3332     tty->print(INTPTR_FORMAT ": ", p2i(p));
3333     if (oopDesc::is_oop_or_null(obj)) {
3334       if (obj->is_objArray()) {
3335         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3336       } else {
3337         obj->print();
3338       }
3339     } else {
3340       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3341     }
3342     tty->cr();
3343   }
3344  public:
3345   virtual void do_oop(oop* p) { do_oop_work(p); }
3346   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3347 };
3348 
3349 
3350 static void oops_print(frame* f, const RegisterMap *map) {
3351   PrintAndVerifyOopClosure print;
3352   f->print_value();
3353   f->oops_do(&print, NULL, (RegisterMap*)map);
3354 }
3355 
3356 // Print our all the locations that contain oops and whether they are
3357 // valid or not.  This useful when trying to find the oldest frame
3358 // where an oop has gone bad since the frame walk is from youngest to
3359 // oldest.
3360 void JavaThread::trace_oops() {
3361   tty->print_cr("[Trace oops]");
3362   frames_do(oops_print);
3363 }
3364 
3365 
3366 #ifdef ASSERT
3367 // Print or validate the layout of stack frames
3368 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3369   ResourceMark rm;
3370   PRESERVE_EXCEPTION_MARK;
3371   FrameValues values;
3372   int frame_no = 0;
3373   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3374     fst.current()->describe(values, ++frame_no);
3375     if (depth == frame_no) break;
3376   }
3377   if (validate_only) {
3378     values.validate();
3379   } else {
3380     tty->print_cr("[Describe stack layout]");
3381     values.print(this);
3382   }
3383 }
3384 #endif
3385 
3386 void JavaThread::trace_stack_from(vframe* start_vf) {
3387   ResourceMark rm;
3388   int vframe_no = 1;
3389   for (vframe* f = start_vf; f; f = f->sender()) {
3390     if (f->is_java_frame()) {
3391       javaVFrame::cast(f)->print_activation(vframe_no++);
3392     } else {
3393       f->print();
3394     }
3395     if (vframe_no > StackPrintLimit) {
3396       tty->print_cr("...<more frames>...");
3397       return;
3398     }
3399   }
3400 }
3401 
3402 
3403 void JavaThread::trace_stack() {
3404   if (!has_last_Java_frame()) return;
3405   ResourceMark rm;
3406   HandleMark   hm;
3407   RegisterMap reg_map(this);
3408   trace_stack_from(last_java_vframe(&reg_map));
3409 }
3410 
3411 
3412 #endif // PRODUCT
3413 
3414 
3415 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3416   assert(reg_map != NULL, "a map must be given");
3417   frame f = last_frame();
3418   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3419     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3420   }
3421   return NULL;
3422 }
3423 
3424 
3425 Klass* JavaThread::security_get_caller_class(int depth) {
3426   vframeStream vfst(this);
3427   vfst.security_get_caller_frame(depth);
3428   if (!vfst.at_end()) {
3429     return vfst.method()->method_holder();
3430   }
3431   return NULL;
3432 }
3433 
3434 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3435   assert(thread->is_Compiler_thread(), "must be compiler thread");
3436   CompileBroker::compiler_thread_loop();
3437 }
3438 
3439 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3440   NMethodSweeper::sweeper_loop();
3441 }
3442 
3443 // Create a CompilerThread
3444 CompilerThread::CompilerThread(CompileQueue* queue,
3445                                CompilerCounters* counters)
3446                                : JavaThread(&compiler_thread_entry) {
3447   _env   = NULL;
3448   _log   = NULL;
3449   _task  = NULL;
3450   _queue = queue;
3451   _counters = counters;
3452   _buffer_blob = NULL;
3453   _compiler = NULL;
3454 
3455   // Compiler uses resource area for compilation, let's bias it to mtCompiler
3456   resource_area()->bias_to(mtCompiler);
3457 
3458 #ifndef PRODUCT
3459   _ideal_graph_printer = NULL;
3460 #endif
3461 }
3462 
3463 CompilerThread::~CompilerThread() {
3464   // Delete objects which were allocated on heap.
3465   delete _counters;
3466 }
3467 
3468 bool CompilerThread::can_call_java() const {
3469   return _compiler != NULL && _compiler->is_jvmci();
3470 }
3471 
3472 // Create sweeper thread
3473 CodeCacheSweeperThread::CodeCacheSweeperThread()
3474 : JavaThread(&sweeper_thread_entry) {
3475   _scanned_compiled_method = NULL;
3476 }
3477 
3478 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3479   JavaThread::oops_do(f, cf);
3480   if (_scanned_compiled_method != NULL && cf != NULL) {
3481     // Safepoints can occur when the sweeper is scanning an nmethod so
3482     // process it here to make sure it isn't unloaded in the middle of
3483     // a scan.
3484     cf->do_code_blob(_scanned_compiled_method);
3485   }
3486 }
3487 
3488 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3489   JavaThread::nmethods_do(cf);
3490   if (_scanned_compiled_method != NULL && cf != NULL) {
3491     // Safepoints can occur when the sweeper is scanning an nmethod so
3492     // process it here to make sure it isn't unloaded in the middle of
3493     // a scan.
3494     cf->do_code_blob(_scanned_compiled_method);
3495   }
3496 }
3497 
3498 
3499 // ======= Threads ========
3500 
3501 // The Threads class links together all active threads, and provides
3502 // operations over all threads. It is protected by the Threads_lock,
3503 // which is also used in other global contexts like safepointing.
3504 // ThreadsListHandles are used to safely perform operations on one
3505 // or more threads without the risk of the thread exiting during the
3506 // operation.
3507 //
3508 // Note: The Threads_lock is currently more widely used than we
3509 // would like. We are actively migrating Threads_lock uses to other
3510 // mechanisms in order to reduce Threads_lock contention.
3511 
3512 int         Threads::_number_of_threads = 0;
3513 int         Threads::_number_of_non_daemon_threads = 0;
3514 int         Threads::_return_code = 0;
3515 uintx       Threads::_thread_claim_token = 1; // Never zero.
3516 size_t      JavaThread::_stack_size_at_create = 0;
3517 
3518 #ifdef ASSERT
3519 bool        Threads::_vm_complete = false;
3520 #endif
3521 
3522 static inline void *prefetch_and_load_ptr(void **addr, intx prefetch_interval) {
3523   Prefetch::read((void*)addr, prefetch_interval);
3524   return *addr;
3525 }
3526 
3527 // Possibly the ugliest for loop the world has seen. C++ does not allow
3528 // multiple types in the declaration section of the for loop. In this case
3529 // we are only dealing with pointers and hence can cast them. It looks ugly
3530 // but macros are ugly and therefore it's fine to make things absurdly ugly.
3531 #define DO_JAVA_THREADS(LIST, X)                                                                                          \
3532     for (JavaThread *MACRO_scan_interval = (JavaThread*)(uintptr_t)PrefetchScanIntervalInBytes,                           \
3533              *MACRO_list = (JavaThread*)(LIST),                                                                           \
3534              **MACRO_end = ((JavaThread**)((ThreadsList*)MACRO_list)->threads()) + ((ThreadsList*)MACRO_list)->length(),  \
3535              **MACRO_current_p = (JavaThread**)((ThreadsList*)MACRO_list)->threads(),                                     \
3536              *X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval);                 \
3537          MACRO_current_p != MACRO_end;                                                                                    \
3538          MACRO_current_p++,                                                                                               \
3539              X = (JavaThread*)prefetch_and_load_ptr((void**)MACRO_current_p, (intx)MACRO_scan_interval))
3540 
3541 // All JavaThreads
3542 #define ALL_JAVA_THREADS(X) DO_JAVA_THREADS(ThreadsSMRSupport::get_java_thread_list(), X)
3543 
3544 // All NonJavaThreads (i.e., every non-JavaThread in the system).
3545 void Threads::non_java_threads_do(ThreadClosure* tc) {
3546   NoSafepointVerifier nsv(!SafepointSynchronize::is_at_safepoint(), false);
3547   for (NonJavaThread::Iterator njti; !njti.end(); njti.step()) {
3548     tc->do_thread(njti.current());
3549   }
3550 }
3551 
3552 // All JavaThreads
3553 void Threads::java_threads_do(ThreadClosure* tc) {
3554   assert_locked_or_safepoint(Threads_lock);
3555   // ALL_JAVA_THREADS iterates through all JavaThreads.
3556   ALL_JAVA_THREADS(p) {
3557     tc->do_thread(p);
3558   }
3559 }
3560 
3561 void Threads::java_threads_and_vm_thread_do(ThreadClosure* tc) {
3562   assert_locked_or_safepoint(Threads_lock);
3563   java_threads_do(tc);
3564   tc->do_thread(VMThread::vm_thread());
3565 }
3566 
3567 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system).
3568 void Threads::threads_do(ThreadClosure* tc) {
3569   assert_locked_or_safepoint(Threads_lock);
3570   java_threads_do(tc);
3571   non_java_threads_do(tc);
3572 }
3573 
3574 void Threads::possibly_parallel_threads_do(bool is_par, ThreadClosure* tc) {
3575   uintx claim_token = Threads::thread_claim_token();
3576   ALL_JAVA_THREADS(p) {
3577     if (p->claim_threads_do(is_par, claim_token)) {
3578       tc->do_thread(p);
3579     }
3580   }
3581   VMThread* vmt = VMThread::vm_thread();
3582   if (vmt->claim_threads_do(is_par, claim_token)) {
3583     tc->do_thread(vmt);
3584   }
3585 }
3586 
3587 // The system initialization in the library has three phases.
3588 //
3589 // Phase 1: java.lang.System class initialization
3590 //     java.lang.System is a primordial class loaded and initialized
3591 //     by the VM early during startup.  java.lang.System.<clinit>
3592 //     only does registerNatives and keeps the rest of the class
3593 //     initialization work later until thread initialization completes.
3594 //
3595 //     System.initPhase1 initializes the system properties, the static
3596 //     fields in, out, and err. Set up java signal handlers, OS-specific
3597 //     system settings, and thread group of the main thread.
3598 static void call_initPhase1(TRAPS) {
3599   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3600   JavaValue result(T_VOID);
3601   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3602                                          vmSymbols::void_method_signature(), CHECK);
3603 }
3604 
3605 // Phase 2. Module system initialization
3606 //     This will initialize the module system.  Only java.base classes
3607 //     can be loaded until phase 2 completes.
3608 //
3609 //     Call System.initPhase2 after the compiler initialization and jsr292
3610 //     classes get initialized because module initialization runs a lot of java
3611 //     code, that for performance reasons, should be compiled.  Also, this will
3612 //     enable the startup code to use lambda and other language features in this
3613 //     phase and onward.
3614 //
3615 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3616 static void call_initPhase2(TRAPS) {
3617   TraceTime timer("Initialize module system", TRACETIME_LOG(Info, startuptime));
3618 
3619   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3620 
3621   JavaValue result(T_INT);
3622   JavaCallArguments args;
3623   args.push_int(DisplayVMOutputToStderr);
3624   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3625   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3626                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3627   if (result.get_jint() != JNI_OK) {
3628     vm_exit_during_initialization(); // no message or exception
3629   }
3630 
3631   universe_post_module_init();
3632 }
3633 
3634 // Phase 3. final setup - set security manager, system class loader and TCCL
3635 //
3636 //     This will instantiate and set the security manager, set the system class
3637 //     loader as well as the thread context class loader.  The security manager
3638 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3639 //     other modules or the application's classpath.
3640 static void call_initPhase3(TRAPS) {
3641   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3642   JavaValue result(T_VOID);
3643   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3644                                          vmSymbols::void_method_signature(), CHECK);
3645 }
3646 
3647 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3648   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3649 
3650   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3651     create_vm_init_libraries();
3652   }
3653 
3654   initialize_class(vmSymbols::java_lang_String(), CHECK);
3655 
3656   // Inject CompactStrings value after the static initializers for String ran.
3657   java_lang_String::set_compact_strings(CompactStrings);
3658 
3659   // Initialize java_lang.System (needed before creating the thread)
3660   initialize_class(vmSymbols::java_lang_System(), CHECK);
3661   // The VM creates & returns objects of this class. Make sure it's initialized.
3662   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3663   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3664   Handle thread_group = create_initial_thread_group(CHECK);
3665   Universe::set_main_thread_group(thread_group());
3666   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3667   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3668   main_thread->set_threadObj(thread_object);
3669 
3670   // Set thread status to running since main thread has
3671   // been started and running.
3672   java_lang_Thread::set_thread_status(thread_object,
3673                                       java_lang_Thread::RUNNABLE);
3674 
3675   // The VM creates objects of this class.
3676   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3677 
3678 #ifdef ASSERT
3679   InstanceKlass *k = SystemDictionary::UnsafeConstants_klass();
3680   assert(k->is_not_initialized(), "UnsafeConstants should not already be initialized");
3681 #endif
3682 
3683   // initialize the hardware-specific constants needed by Unsafe
3684   initialize_class(vmSymbols::jdk_internal_misc_UnsafeConstants(), CHECK);
3685   jdk_internal_misc_UnsafeConstants::set_unsafe_constants();
3686 
3687   // The VM preresolves methods to these classes. Make sure that they get initialized
3688   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3689   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3690 
3691   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3692   call_initPhase1(CHECK);
3693 
3694   // get the Java runtime name after java.lang.System is initialized
3695   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3696   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3697 
3698   // an instance of OutOfMemory exception has been allocated earlier
3699   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3700   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3701   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3702   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3703   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3704   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3705   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3706   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3707 
3708   // Eager box cache initialization only if AOT is on and any library is loaded.
3709   AOTLoader::initialize_box_caches(CHECK);
3710 }
3711 
3712 void Threads::initialize_jsr292_core_classes(TRAPS) {
3713   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3714 
3715   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3716   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3717   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3718   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3719 }
3720 
3721 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3722   extern void JDK_Version_init();
3723 
3724   // Preinitialize version info.
3725   VM_Version::early_initialize();
3726 
3727   // Check version
3728   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3729 
3730   // Initialize library-based TLS
3731   ThreadLocalStorage::init();
3732 
3733   // Initialize the output stream module
3734   ostream_init();
3735 
3736   // Process java launcher properties.
3737   Arguments::process_sun_java_launcher_properties(args);
3738 
3739   // Initialize the os module
3740   os::init();
3741 
3742   // Record VM creation timing statistics
3743   TraceVmCreationTime create_vm_timer;
3744   create_vm_timer.start();
3745 
3746   // Initialize system properties.
3747   Arguments::init_system_properties();
3748 
3749   // So that JDK version can be used as a discriminator when parsing arguments
3750   JDK_Version_init();
3751 
3752   // Update/Initialize System properties after JDK version number is known
3753   Arguments::init_version_specific_system_properties();
3754 
3755   // Make sure to initialize log configuration *before* parsing arguments
3756   LogConfiguration::initialize(create_vm_timer.begin_time());
3757 
3758   // Parse arguments
3759   // Note: this internally calls os::init_container_support()
3760   jint parse_result = Arguments::parse(args);
3761   if (parse_result != JNI_OK) return parse_result;
3762 
3763   os::init_before_ergo();
3764 
3765   jint ergo_result = Arguments::apply_ergo();
3766   if (ergo_result != JNI_OK) return ergo_result;
3767 
3768   // Final check of all ranges after ergonomics which may change values.
3769   if (!JVMFlagRangeList::check_ranges()) {
3770     return JNI_EINVAL;
3771   }
3772 
3773   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3774   bool constraint_result = JVMFlagConstraintList::check_constraints(JVMFlagConstraint::AfterErgo);
3775   if (!constraint_result) {
3776     return JNI_EINVAL;
3777   }
3778 
3779   JVMFlagWriteableList::mark_startup();
3780 
3781   if (PauseAtStartup) {
3782     os::pause();
3783   }
3784 
3785   HOTSPOT_VM_INIT_BEGIN();
3786 
3787   // Timing (must come after argument parsing)
3788   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3789 
3790   // Initialize the os module after parsing the args
3791   jint os_init_2_result = os::init_2();
3792   if (os_init_2_result != JNI_OK) return os_init_2_result;
3793 
3794 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
3795   // Initialize assert poison page mechanism.
3796   if (ShowRegistersOnAssert) {
3797     initialize_assert_poison();
3798   }
3799 #endif // CAN_SHOW_REGISTERS_ON_ASSERT
3800 
3801   SafepointMechanism::initialize();
3802 
3803   jint adjust_after_os_result = Arguments::adjust_after_os();
3804   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3805 
3806   // Initialize output stream logging
3807   ostream_init_log();
3808 
3809   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3810   // Must be before create_vm_init_agents()
3811   if (Arguments::init_libraries_at_startup()) {
3812     convert_vm_init_libraries_to_agents();
3813   }
3814 
3815   // Launch -agentlib/-agentpath and converted -Xrun agents
3816   if (Arguments::init_agents_at_startup()) {
3817     create_vm_init_agents();
3818   }
3819 
3820   // Initialize Threads state
3821   _number_of_threads = 0;
3822   _number_of_non_daemon_threads = 0;
3823 
3824   // Initialize global data structures and create system classes in heap
3825   vm_init_globals();
3826 
3827 #if INCLUDE_JVMCI
3828   if (JVMCICounterSize > 0) {
3829     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtJVMCI);
3830     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3831   } else {
3832     JavaThread::_jvmci_old_thread_counters = NULL;
3833   }
3834 #endif // INCLUDE_JVMCI
3835 
3836   // Attach the main thread to this os thread
3837   JavaThread* main_thread = new JavaThread();
3838   main_thread->set_thread_state(_thread_in_vm);
3839   main_thread->initialize_thread_current();
3840   // must do this before set_active_handles
3841   main_thread->record_stack_base_and_size();
3842   main_thread->register_thread_stack_with_NMT();
3843   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3844 
3845   if (!main_thread->set_as_starting_thread()) {
3846     vm_shutdown_during_initialization(
3847                                       "Failed necessary internal allocation. Out of swap space");
3848     main_thread->smr_delete();
3849     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3850     return JNI_ENOMEM;
3851   }
3852 
3853   // Enable guard page *after* os::create_main_thread(), otherwise it would
3854   // crash Linux VM, see notes in os_linux.cpp.
3855   main_thread->create_stack_guard_pages();
3856 
3857   // Initialize Java-Level synchronization subsystem
3858   ObjectMonitor::Initialize();
3859 
3860   // Initialize global modules
3861   jint status = init_globals();
3862   if (status != JNI_OK) {
3863     main_thread->smr_delete();
3864     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3865     return status;
3866   }
3867 
3868   JFR_ONLY(Jfr::on_vm_init();)
3869 
3870   // Should be done after the heap is fully created
3871   main_thread->cache_global_variables();
3872 
3873   HandleMark hm;
3874 
3875   { MutexLocker mu(Threads_lock);
3876     Threads::add(main_thread);
3877   }
3878 
3879   // Any JVMTI raw monitors entered in onload will transition into
3880   // real raw monitor. VM is setup enough here for raw monitor enter.
3881   JvmtiExport::transition_pending_onload_raw_monitors();
3882 
3883   // Create the VMThread
3884   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3885 
3886   VMThread::create();
3887     Thread* vmthread = VMThread::vm_thread();
3888 
3889     if (!os::create_thread(vmthread, os::vm_thread)) {
3890       vm_exit_during_initialization("Cannot create VM thread. "
3891                                     "Out of system resources.");
3892     }
3893 
3894     // Wait for the VM thread to become ready, and VMThread::run to initialize
3895     // Monitors can have spurious returns, must always check another state flag
3896     {
3897       MonitorLocker ml(Notify_lock);
3898       os::start_thread(vmthread);
3899       while (vmthread->active_handles() == NULL) {
3900         ml.wait();
3901       }
3902     }
3903   }
3904 
3905   assert(Universe::is_fully_initialized(), "not initialized");
3906   if (VerifyDuringStartup) {
3907     // Make sure we're starting with a clean slate.
3908     VM_Verify verify_op;
3909     VMThread::execute(&verify_op);
3910   }
3911 
3912   // We need this to update the java.vm.info property in case any flags used
3913   // to initially define it have been changed. This is needed for both CDS and
3914   // AOT, since UseSharedSpaces and UseAOT may be changed after java.vm.info
3915   // is initially computed. See Abstract_VM_Version::vm_info_string().
3916   // This update must happen before we initialize the java classes, but
3917   // after any initialization logic that might modify the flags.
3918   Arguments::update_vm_info_property(VM_Version::vm_info_string());
3919 
3920   Thread* THREAD = Thread::current();
3921 
3922   // Always call even when there are not JVMTI environments yet, since environments
3923   // may be attached late and JVMTI must track phases of VM execution
3924   JvmtiExport::enter_early_start_phase();
3925 
3926   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3927   JvmtiExport::post_early_vm_start();
3928 
3929   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3930 
3931   quicken_jni_functions();
3932 
3933   // No more stub generation allowed after that point.
3934   StubCodeDesc::freeze();
3935 
3936   // Set flag that basic initialization has completed. Used by exceptions and various
3937   // debug stuff, that does not work until all basic classes have been initialized.
3938   set_init_completed();
3939 
3940   LogConfiguration::post_initialize();
3941   Metaspace::post_initialize();
3942 
3943   HOTSPOT_VM_INIT_END();
3944 
3945   // record VM initialization completion time
3946 #if INCLUDE_MANAGEMENT
3947   Management::record_vm_init_completed();
3948 #endif // INCLUDE_MANAGEMENT
3949 
3950   // Signal Dispatcher needs to be started before VMInit event is posted
3951   os::initialize_jdk_signal_support(CHECK_JNI_ERR);
3952 
3953   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3954   if (!DisableAttachMechanism) {
3955     AttachListener::vm_start();
3956     if (StartAttachListener || AttachListener::init_at_startup()) {
3957       AttachListener::init();
3958     }
3959   }
3960 
3961   // Launch -Xrun agents
3962   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3963   // back-end can launch with -Xdebug -Xrunjdwp.
3964   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3965     create_vm_init_libraries();
3966   }
3967 
3968   if (CleanChunkPoolAsync) {
3969     Chunk::start_chunk_pool_cleaner_task();
3970   }
3971 
3972 
3973   // initialize compiler(s)
3974 #if defined(COMPILER1) || COMPILER2_OR_JVMCI
3975 #if INCLUDE_JVMCI
3976   bool force_JVMCI_intialization = false;
3977   if (EnableJVMCI) {
3978     // Initialize JVMCI eagerly when it is explicitly requested.
3979     // Or when JVMCILibDumpJNIConfig or JVMCIPrintProperties is enabled.
3980     force_JVMCI_intialization = EagerJVMCI || JVMCIPrintProperties || JVMCILibDumpJNIConfig;
3981 
3982     if (!force_JVMCI_intialization) {
3983       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3984       // compilations via JVMCI will not actually block until JVMCI is initialized.
3985       force_JVMCI_intialization = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3986     }
3987   }
3988 #endif
3989   CompileBroker::compilation_init_phase1(CHECK_JNI_ERR);
3990   // Postpone completion of compiler initialization to after JVMCI
3991   // is initialized to avoid timeouts of blocking compilations.
3992   if (JVMCI_ONLY(!force_JVMCI_intialization) NOT_JVMCI(true)) {
3993     CompileBroker::compilation_init_phase2();
3994   }
3995 #endif
3996 
3997   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3998   // It is done after compilers are initialized, because otherwise compilations of
3999   // signature polymorphic MH intrinsics can be missed
4000   // (see SystemDictionary::find_method_handle_intrinsic).
4001   initialize_jsr292_core_classes(CHECK_JNI_ERR);
4002 
4003   // This will initialize the module system.  Only java.base classes can be
4004   // loaded until phase 2 completes
4005   call_initPhase2(CHECK_JNI_ERR);
4006 
4007   // Always call even when there are not JVMTI environments yet, since environments
4008   // may be attached late and JVMTI must track phases of VM execution
4009   JvmtiExport::enter_start_phase();
4010 
4011   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
4012   JvmtiExport::post_vm_start();
4013 
4014   // Final system initialization including security manager and system class loader
4015   call_initPhase3(CHECK_JNI_ERR);
4016 
4017   // cache the system and platform class loaders
4018   SystemDictionary::compute_java_loaders(CHECK_JNI_ERR);
4019 
4020 #if INCLUDE_CDS
4021   // capture the module path info from the ModuleEntryTable
4022   ClassLoader::initialize_module_path(THREAD);
4023 #endif
4024 
4025 #if INCLUDE_JVMCI
4026   if (force_JVMCI_intialization) {
4027     JVMCI::initialize_compiler(CHECK_JNI_ERR);
4028     CompileBroker::compilation_init_phase2();
4029   }
4030 #endif
4031 
4032   // Always call even when there are not JVMTI environments yet, since environments
4033   // may be attached late and JVMTI must track phases of VM execution
4034   JvmtiExport::enter_live_phase();
4035 
4036   // Make perfmemory accessible
4037   PerfMemory::set_accessible(true);
4038 
4039   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
4040   JvmtiExport::post_vm_initialized();
4041 
4042   JFR_ONLY(Jfr::on_vm_start();)
4043 
4044 #if INCLUDE_MANAGEMENT
4045   Management::initialize(THREAD);
4046 
4047   if (HAS_PENDING_EXCEPTION) {
4048     // management agent fails to start possibly due to
4049     // configuration problem and is responsible for printing
4050     // stack trace if appropriate. Simply exit VM.
4051     vm_exit(1);
4052   }
4053 #endif // INCLUDE_MANAGEMENT
4054 
4055   if (MemProfiling)                   MemProfiler::engage();
4056   StatSampler::engage();
4057   if (CheckJNICalls)                  JniPeriodicChecker::engage();
4058 
4059   BiasedLocking::init();
4060 
4061 #if INCLUDE_RTM_OPT
4062   RTMLockingCounters::init();
4063 #endif
4064 
4065   call_postVMInitHook(THREAD);
4066   // The Java side of PostVMInitHook.run must deal with all
4067   // exceptions and provide means of diagnosis.
4068   if (HAS_PENDING_EXCEPTION) {
4069     CLEAR_PENDING_EXCEPTION;
4070   }
4071 
4072   {
4073     MutexLocker ml(PeriodicTask_lock);
4074     // Make sure the WatcherThread can be started by WatcherThread::start()
4075     // or by dynamic enrollment.
4076     WatcherThread::make_startable();
4077     // Start up the WatcherThread if there are any periodic tasks
4078     // NOTE:  All PeriodicTasks should be registered by now. If they
4079     //   aren't, late joiners might appear to start slowly (we might
4080     //   take a while to process their first tick).
4081     if (PeriodicTask::num_tasks() > 0) {
4082       WatcherThread::start();
4083     }
4084   }
4085 
4086   create_vm_timer.end();
4087 #ifdef ASSERT
4088   _vm_complete = true;
4089 #endif
4090 
4091   if (DumpSharedSpaces) {
4092     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
4093     ShouldNotReachHere();
4094   }
4095 
4096   return JNI_OK;
4097 }
4098 
4099 // type for the Agent_OnLoad and JVM_OnLoad entry points
4100 extern "C" {
4101   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
4102 }
4103 // Find a command line agent library and return its entry point for
4104 //         -agentlib:  -agentpath:   -Xrun
4105 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
4106 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
4107                                     const char *on_load_symbols[],
4108                                     size_t num_symbol_entries) {
4109   OnLoadEntry_t on_load_entry = NULL;
4110   void *library = NULL;
4111 
4112   if (!agent->valid()) {
4113     char buffer[JVM_MAXPATHLEN];
4114     char ebuf[1024] = "";
4115     const char *name = agent->name();
4116     const char *msg = "Could not find agent library ";
4117 
4118     // First check to see if agent is statically linked into executable
4119     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
4120       library = agent->os_lib();
4121     } else if (agent->is_absolute_path()) {
4122       library = os::dll_load(name, ebuf, sizeof ebuf);
4123       if (library == NULL) {
4124         const char *sub_msg = " in absolute path, with error: ";
4125         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
4126         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4127         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4128         // If we can't find the agent, exit.
4129         vm_exit_during_initialization(buf, NULL);
4130         FREE_C_HEAP_ARRAY(char, buf);
4131       }
4132     } else {
4133       // Try to load the agent from the standard dll directory
4134       if (os::dll_locate_lib(buffer, sizeof(buffer), Arguments::get_dll_dir(),
4135                              name)) {
4136         library = os::dll_load(buffer, ebuf, sizeof ebuf);
4137       }
4138       if (library == NULL) { // Try the library path directory.
4139         if (os::dll_build_name(buffer, sizeof(buffer), name)) {
4140           library = os::dll_load(buffer, ebuf, sizeof ebuf);
4141         }
4142         if (library == NULL) {
4143           const char *sub_msg = " on the library path, with error: ";
4144           const char *sub_msg2 = "\nModule java.instrument may be missing from runtime image.";
4145 
4146           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) +
4147                        strlen(ebuf) + strlen(sub_msg2) + 1;
4148           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
4149           if (!agent->is_instrument_lib()) {
4150             jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
4151           } else {
4152             jio_snprintf(buf, len, "%s%s%s%s%s", msg, name, sub_msg, ebuf, sub_msg2);
4153           }
4154           // If we can't find the agent, exit.
4155           vm_exit_during_initialization(buf, NULL);
4156           FREE_C_HEAP_ARRAY(char, buf);
4157         }
4158       }
4159     }
4160     agent->set_os_lib(library);
4161     agent->set_valid();
4162   }
4163 
4164   // Find the OnLoad function.
4165   on_load_entry =
4166     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
4167                                                           false,
4168                                                           on_load_symbols,
4169                                                           num_symbol_entries));
4170   return on_load_entry;
4171 }
4172 
4173 // Find the JVM_OnLoad entry point
4174 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
4175   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
4176   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4177 }
4178 
4179 // Find the Agent_OnLoad entry point
4180 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
4181   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
4182   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
4183 }
4184 
4185 // For backwards compatibility with -Xrun
4186 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
4187 // treated like -agentpath:
4188 // Must be called before agent libraries are created
4189 void Threads::convert_vm_init_libraries_to_agents() {
4190   AgentLibrary* agent;
4191   AgentLibrary* next;
4192 
4193   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
4194     next = agent->next();  // cache the next agent now as this agent may get moved off this list
4195     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4196 
4197     // If there is an JVM_OnLoad function it will get called later,
4198     // otherwise see if there is an Agent_OnLoad
4199     if (on_load_entry == NULL) {
4200       on_load_entry = lookup_agent_on_load(agent);
4201       if (on_load_entry != NULL) {
4202         // switch it to the agent list -- so that Agent_OnLoad will be called,
4203         // JVM_OnLoad won't be attempted and Agent_OnUnload will
4204         Arguments::convert_library_to_agent(agent);
4205       } else {
4206         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
4207       }
4208     }
4209   }
4210 }
4211 
4212 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
4213 // Invokes Agent_OnLoad
4214 // Called very early -- before JavaThreads exist
4215 void Threads::create_vm_init_agents() {
4216   extern struct JavaVM_ main_vm;
4217   AgentLibrary* agent;
4218 
4219   JvmtiExport::enter_onload_phase();
4220 
4221   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4222     // CDS dumping does not support native JVMTI agent.
4223     // CDS dumping supports Java agent if the AllowArchivingWithJavaAgent diagnostic option is specified.
4224     if (DumpSharedSpaces || DynamicDumpSharedSpaces) {
4225       if(!agent->is_instrument_lib()) {
4226         vm_exit_during_cds_dumping("CDS dumping does not support native JVMTI agent, name", agent->name());
4227       } else if (!AllowArchivingWithJavaAgent) {
4228         vm_exit_during_cds_dumping(
4229           "Must enable AllowArchivingWithJavaAgent in order to run Java agent during CDS dumping");
4230       }
4231     }
4232 
4233     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
4234 
4235     if (on_load_entry != NULL) {
4236       // Invoke the Agent_OnLoad function
4237       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4238       if (err != JNI_OK) {
4239         vm_exit_during_initialization("agent library failed to init", agent->name());
4240       }
4241     } else {
4242       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
4243     }
4244   }
4245 
4246   JvmtiExport::enter_primordial_phase();
4247 }
4248 
4249 extern "C" {
4250   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
4251 }
4252 
4253 void Threads::shutdown_vm_agents() {
4254   // Send any Agent_OnUnload notifications
4255   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4256   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4257   extern struct JavaVM_ main_vm;
4258   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4259 
4260     // Find the Agent_OnUnload function.
4261     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4262                                                    os::find_agent_function(agent,
4263                                                    false,
4264                                                    on_unload_symbols,
4265                                                    num_symbol_entries));
4266 
4267     // Invoke the Agent_OnUnload function
4268     if (unload_entry != NULL) {
4269       JavaThread* thread = JavaThread::current();
4270       ThreadToNativeFromVM ttn(thread);
4271       HandleMark hm(thread);
4272       (*unload_entry)(&main_vm);
4273     }
4274   }
4275 }
4276 
4277 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4278 // Invokes JVM_OnLoad
4279 void Threads::create_vm_init_libraries() {
4280   extern struct JavaVM_ main_vm;
4281   AgentLibrary* agent;
4282 
4283   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4284     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4285 
4286     if (on_load_entry != NULL) {
4287       // Invoke the JVM_OnLoad function
4288       JavaThread* thread = JavaThread::current();
4289       ThreadToNativeFromVM ttn(thread);
4290       HandleMark hm(thread);
4291       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4292       if (err != JNI_OK) {
4293         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4294       }
4295     } else {
4296       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4297     }
4298   }
4299 }
4300 
4301 
4302 // Last thread running calls java.lang.Shutdown.shutdown()
4303 void JavaThread::invoke_shutdown_hooks() {
4304   HandleMark hm(this);
4305 
4306   // We could get here with a pending exception, if so clear it now.
4307   if (this->has_pending_exception()) {
4308     this->clear_pending_exception();
4309   }
4310 
4311   EXCEPTION_MARK;
4312   Klass* shutdown_klass =
4313     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4314                                       THREAD);
4315   if (shutdown_klass != NULL) {
4316     // SystemDictionary::resolve_or_null will return null if there was
4317     // an exception.  If we cannot load the Shutdown class, just don't
4318     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4319     // won't be run.  Note that if a shutdown hook was registered,
4320     // the Shutdown class would have already been loaded
4321     // (Runtime.addShutdownHook will load it).
4322     JavaValue result(T_VOID);
4323     JavaCalls::call_static(&result,
4324                            shutdown_klass,
4325                            vmSymbols::shutdown_name(),
4326                            vmSymbols::void_method_signature(),
4327                            THREAD);
4328   }
4329   CLEAR_PENDING_EXCEPTION;
4330 }
4331 
4332 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4333 // the program falls off the end of main(). Another VM exit path is through
4334 // vm_exit() when the program calls System.exit() to return a value or when
4335 // there is a serious error in VM. The two shutdown paths are not exactly
4336 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4337 // and VM_Exit op at VM level.
4338 //
4339 // Shutdown sequence:
4340 //   + Shutdown native memory tracking if it is on
4341 //   + Wait until we are the last non-daemon thread to execute
4342 //     <-- every thing is still working at this moment -->
4343 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4344 //        shutdown hooks
4345 //   + Call before_exit(), prepare for VM exit
4346 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4347 //        currently the only user of this mechanism is File.deleteOnExit())
4348 //      > stop StatSampler, watcher thread, CMS threads,
4349 //        post thread end and vm death events to JVMTI,
4350 //        stop signal thread
4351 //   + Call JavaThread::exit(), it will:
4352 //      > release JNI handle blocks, remove stack guard pages
4353 //      > remove this thread from Threads list
4354 //     <-- no more Java code from this thread after this point -->
4355 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4356 //     the compiler threads at safepoint
4357 //     <-- do not use anything that could get blocked by Safepoint -->
4358 //   + Disable tracing at JNI/JVM barriers
4359 //   + Set _vm_exited flag for threads that are still running native code
4360 //   + Call exit_globals()
4361 //      > deletes tty
4362 //      > deletes PerfMemory resources
4363 //   + Delete this thread
4364 //   + Return to caller
4365 
4366 bool Threads::destroy_vm() {
4367   JavaThread* thread = JavaThread::current();
4368 
4369 #ifdef ASSERT
4370   _vm_complete = false;
4371 #endif
4372   // Wait until we are the last non-daemon thread to execute
4373   { MonitorLocker nu(Threads_lock);
4374     while (Threads::number_of_non_daemon_threads() > 1)
4375       // This wait should make safepoint checks, wait without a timeout,
4376       // and wait as a suspend-equivalent condition.
4377       nu.wait(0, Mutex::_as_suspend_equivalent_flag);
4378   }
4379 
4380   EventShutdown e;
4381   if (e.should_commit()) {
4382     e.set_reason("No remaining non-daemon Java threads");
4383     e.commit();
4384   }
4385 
4386   // Hang forever on exit if we are reporting an error.
4387   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4388     os::infinite_sleep();
4389   }
4390   os::wait_for_keypress_at_exit();
4391 
4392   // run Java level shutdown hooks
4393   thread->invoke_shutdown_hooks();
4394 
4395   before_exit(thread);
4396 
4397   thread->exit(true);
4398 
4399   // Stop VM thread.
4400   {
4401     // 4945125 The vm thread comes to a safepoint during exit.
4402     // GC vm_operations can get caught at the safepoint, and the
4403     // heap is unparseable if they are caught. Grab the Heap_lock
4404     // to prevent this. The GC vm_operations will not be able to
4405     // queue until after the vm thread is dead. After this point,
4406     // we'll never emerge out of the safepoint before the VM exits.
4407 
4408     MutexLocker ml(Heap_lock, Mutex::_no_safepoint_check_flag);
4409 
4410     VMThread::wait_for_vm_thread_exit();
4411     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4412     VMThread::destroy();
4413   }
4414 
4415   // Now, all Java threads are gone except daemon threads. Daemon threads
4416   // running Java code or in VM are stopped by the Safepoint. However,
4417   // daemon threads executing native code are still running.  But they
4418   // will be stopped at native=>Java/VM barriers. Note that we can't
4419   // simply kill or suspend them, as it is inherently deadlock-prone.
4420 
4421   VM_Exit::set_vm_exited();
4422 
4423   // Clean up ideal graph printers after the VMThread has started
4424   // the final safepoint which will block all the Compiler threads.
4425   // Note that this Thread has already logically exited so the
4426   // clean_up() function's use of a JavaThreadIteratorWithHandle
4427   // would be a problem except set_vm_exited() has remembered the
4428   // shutdown thread which is granted a policy exception.
4429 #if defined(COMPILER2) && !defined(PRODUCT)
4430   IdealGraphPrinter::clean_up();
4431 #endif
4432 
4433   notify_vm_shutdown();
4434 
4435   // exit_globals() will delete tty
4436   exit_globals();
4437 
4438   // We are after VM_Exit::set_vm_exited() so we can't call
4439   // thread->smr_delete() or we will block on the Threads_lock.
4440   // Deleting the shutdown thread here is safe because another
4441   // JavaThread cannot have an active ThreadsListHandle for
4442   // this JavaThread.
4443   delete thread;
4444 
4445 #if INCLUDE_JVMCI
4446   if (JVMCICounterSize > 0) {
4447     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4448   }
4449 #endif
4450 
4451   LogConfiguration::finalize();
4452 
4453   return true;
4454 }
4455 
4456 
4457 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4458   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4459   return is_supported_jni_version(version);
4460 }
4461 
4462 
4463 jboolean Threads::is_supported_jni_version(jint version) {
4464   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4465   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4466   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4467   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4468   if (version == JNI_VERSION_9) return JNI_TRUE;
4469   if (version == JNI_VERSION_10) return JNI_TRUE;
4470   return JNI_FALSE;
4471 }
4472 
4473 
4474 void Threads::add(JavaThread* p, bool force_daemon) {
4475   // The threads lock must be owned at this point
4476   assert(Threads_lock->owned_by_self(), "must have threads lock");
4477 
4478   BarrierSet::barrier_set()->on_thread_attach(p);
4479 
4480   // Once a JavaThread is added to the Threads list, smr_delete() has
4481   // to be used to delete it. Otherwise we can just delete it directly.
4482   p->set_on_thread_list();
4483 
4484   _number_of_threads++;
4485   oop threadObj = p->threadObj();
4486   bool daemon = true;
4487   // Bootstrapping problem: threadObj can be null for initial
4488   // JavaThread (or for threads attached via JNI)
4489   if ((!force_daemon) && !is_daemon((threadObj))) {
4490     _number_of_non_daemon_threads++;
4491     daemon = false;
4492   }
4493 
4494   ThreadService::add_thread(p, daemon);
4495 
4496   // Maintain fast thread list
4497   ThreadsSMRSupport::add_thread(p);
4498 
4499   // Possible GC point.
4500   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4501 }
4502 
4503 void Threads::remove(JavaThread* p, bool is_daemon) {
4504 
4505   // Reclaim the ObjectMonitors from the omInUseList and omFreeList of the moribund thread.
4506   ObjectSynchronizer::omFlush(p);
4507 
4508   // Extra scope needed for Thread_lock, so we can check
4509   // that we do not remove thread without safepoint code notice
4510   { MonitorLocker ml(Threads_lock);
4511 
4512     assert(ThreadsSMRSupport::get_java_thread_list()->includes(p), "p must be present");
4513 
4514     // Maintain fast thread list
4515     ThreadsSMRSupport::remove_thread(p);
4516 
4517     _number_of_threads--;
4518     if (!is_daemon) {
4519       _number_of_non_daemon_threads--;
4520 
4521       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4522       // on destroy_vm will wake up.
4523       if (number_of_non_daemon_threads() == 1) {
4524         ml.notify_all();
4525       }
4526     }
4527     ThreadService::remove_thread(p, is_daemon);
4528 
4529     // Make sure that safepoint code disregard this thread. This is needed since
4530     // the thread might mess around with locks after this point. This can cause it
4531     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4532     // of this thread since it is removed from the queue.
4533     p->set_terminated_value();
4534   } // unlock Threads_lock
4535 
4536   // Since Events::log uses a lock, we grab it outside the Threads_lock
4537   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4538 }
4539 
4540 // Operations on the Threads list for GC.  These are not explicitly locked,
4541 // but the garbage collector must provide a safe context for them to run.
4542 // In particular, these things should never be called when the Threads_lock
4543 // is held by some other thread. (Note: the Safepoint abstraction also
4544 // uses the Threads_lock to guarantee this property. It also makes sure that
4545 // all threads gets blocked when exiting or starting).
4546 
4547 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4548   ALL_JAVA_THREADS(p) {
4549     p->oops_do(f, cf);
4550   }
4551   VMThread::vm_thread()->oops_do(f, cf);
4552 }
4553 
4554 void Threads::change_thread_claim_token() {
4555   if (++_thread_claim_token == 0) {
4556     // On overflow of the token counter, there is a risk of future
4557     // collisions between a new global token value and a stale token
4558     // for a thread, because not all iterations visit all threads.
4559     // (Though it's pretty much a theoretical concern for non-trivial
4560     // token counter sizes.)  To deal with the possibility, reset all
4561     // the thread tokens to zero on global token overflow.
4562     struct ResetClaims : public ThreadClosure {
4563       virtual void do_thread(Thread* t) {
4564         t->claim_threads_do(false, 0);
4565       }
4566     } reset_claims;
4567     Threads::threads_do(&reset_claims);
4568     // On overflow, update the global token to non-zero, to
4569     // avoid the special "never claimed" initial thread value.
4570     _thread_claim_token = 1;
4571   }
4572 }
4573 
4574 #ifdef ASSERT
4575 void assert_thread_claimed(const char* kind, Thread* t, uintx expected) {
4576   const uintx token = t->threads_do_token();
4577   assert(token == expected,
4578          "%s " PTR_FORMAT " has incorrect value " UINTX_FORMAT " != "
4579          UINTX_FORMAT, kind, p2i(t), token, expected);
4580 }
4581 
4582 void Threads::assert_all_threads_claimed() {
4583   ALL_JAVA_THREADS(p) {
4584     assert_thread_claimed("Thread", p, _thread_claim_token);
4585   }
4586   assert_thread_claimed("VMThread", VMThread::vm_thread(), _thread_claim_token);
4587 }
4588 #endif // ASSERT
4589 
4590 class ParallelOopsDoThreadClosure : public ThreadClosure {
4591 private:
4592   OopClosure* _f;
4593   CodeBlobClosure* _cf;
4594 public:
4595   ParallelOopsDoThreadClosure(OopClosure* f, CodeBlobClosure* cf) : _f(f), _cf(cf) {}
4596   void do_thread(Thread* t) {
4597     t->oops_do(_f, _cf);
4598   }
4599 };
4600 
4601 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4602   ParallelOopsDoThreadClosure tc(f, cf);
4603   possibly_parallel_threads_do(is_par, &tc);
4604 }
4605 
4606 void Threads::nmethods_do(CodeBlobClosure* cf) {
4607   ALL_JAVA_THREADS(p) {
4608     // This is used by the code cache sweeper to mark nmethods that are active
4609     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4610     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4611     if(!p->is_Code_cache_sweeper_thread()) {
4612       p->nmethods_do(cf);
4613     }
4614   }
4615 }
4616 
4617 void Threads::metadata_do(MetadataClosure* f) {
4618   ALL_JAVA_THREADS(p) {
4619     p->metadata_do(f);
4620   }
4621 }
4622 
4623 class ThreadHandlesClosure : public ThreadClosure {
4624   void (*_f)(Metadata*);
4625  public:
4626   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4627   virtual void do_thread(Thread* thread) {
4628     thread->metadata_handles_do(_f);
4629   }
4630 };
4631 
4632 void Threads::metadata_handles_do(void f(Metadata*)) {
4633   // Only walk the Handles in Thread.
4634   ThreadHandlesClosure handles_closure(f);
4635   threads_do(&handles_closure);
4636 }
4637 
4638 void Threads::deoptimized_wrt_marked_nmethods() {
4639   ALL_JAVA_THREADS(p) {
4640     p->deoptimized_wrt_marked_nmethods();
4641   }
4642 }
4643 
4644 
4645 // Get count Java threads that are waiting to enter the specified monitor.
4646 GrowableArray<JavaThread*>* Threads::get_pending_threads(ThreadsList * t_list,
4647                                                          int count,
4648                                                          address monitor) {
4649   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4650 
4651   int i = 0;
4652   DO_JAVA_THREADS(t_list, p) {
4653     if (!p->can_call_java()) continue;
4654 
4655     address pending = (address)p->current_pending_monitor();
4656     if (pending == monitor) {             // found a match
4657       if (i < count) result->append(p);   // save the first count matches
4658       i++;
4659     }
4660   }
4661 
4662   return result;
4663 }
4664 
4665 
4666 JavaThread *Threads::owning_thread_from_monitor_owner(ThreadsList * t_list,
4667                                                       address owner) {
4668   // NULL owner means not locked so we can skip the search
4669   if (owner == NULL) return NULL;
4670 
4671   DO_JAVA_THREADS(t_list, p) {
4672     // first, see if owner is the address of a Java thread
4673     if (owner == (address)p) return p;
4674   }
4675 
4676   // Cannot assert on lack of success here since this function may be
4677   // used by code that is trying to report useful problem information
4678   // like deadlock detection.
4679   if (UseHeavyMonitors) return NULL;
4680 
4681   // If we didn't find a matching Java thread and we didn't force use of
4682   // heavyweight monitors, then the owner is the stack address of the
4683   // Lock Word in the owning Java thread's stack.
4684   //
4685   JavaThread* the_owner = NULL;
4686   DO_JAVA_THREADS(t_list, q) {
4687     if (q->is_lock_owned(owner)) {
4688       the_owner = q;
4689       break;
4690     }
4691   }
4692 
4693   // cannot assert on lack of success here; see above comment
4694   return the_owner;
4695 }
4696 
4697 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4698 void Threads::print_on(outputStream* st, bool print_stacks,
4699                        bool internal_format, bool print_concurrent_locks,
4700                        bool print_extended_info) {
4701   char buf[32];
4702   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4703 
4704   st->print_cr("Full thread dump %s (%s %s):",
4705                VM_Version::vm_name(),
4706                VM_Version::vm_release(),
4707                VM_Version::vm_info_string());
4708   st->cr();
4709 
4710 #if INCLUDE_SERVICES
4711   // Dump concurrent locks
4712   ConcurrentLocksDump concurrent_locks;
4713   if (print_concurrent_locks) {
4714     concurrent_locks.dump_at_safepoint();
4715   }
4716 #endif // INCLUDE_SERVICES
4717 
4718   ThreadsSMRSupport::print_info_on(st);
4719   st->cr();
4720 
4721   ALL_JAVA_THREADS(p) {
4722     ResourceMark rm;
4723     p->print_on(st, print_extended_info);
4724     if (print_stacks) {
4725       if (internal_format) {
4726         p->trace_stack();
4727       } else {
4728         p->print_stack_on(st);
4729       }
4730     }
4731     st->cr();
4732 #if INCLUDE_SERVICES
4733     if (print_concurrent_locks) {
4734       concurrent_locks.print_locks_on(p, st);
4735     }
4736 #endif // INCLUDE_SERVICES
4737   }
4738 
4739   VMThread::vm_thread()->print_on(st);
4740   st->cr();
4741   Universe::heap()->print_gc_threads_on(st);
4742   WatcherThread* wt = WatcherThread::watcher_thread();
4743   if (wt != NULL) {
4744     wt->print_on(st);
4745     st->cr();
4746   }
4747 
4748   st->flush();
4749 }
4750 
4751 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4752                              int buflen, bool* found_current) {
4753   if (this_thread != NULL) {
4754     bool is_current = (current == this_thread);
4755     *found_current = *found_current || is_current;
4756     st->print("%s", is_current ? "=>" : "  ");
4757 
4758     st->print(PTR_FORMAT, p2i(this_thread));
4759     st->print(" ");
4760     this_thread->print_on_error(st, buf, buflen);
4761     st->cr();
4762   }
4763 }
4764 
4765 class PrintOnErrorClosure : public ThreadClosure {
4766   outputStream* _st;
4767   Thread* _current;
4768   char* _buf;
4769   int _buflen;
4770   bool* _found_current;
4771  public:
4772   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4773                       int buflen, bool* found_current) :
4774    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4775 
4776   virtual void do_thread(Thread* thread) {
4777     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4778   }
4779 };
4780 
4781 // Threads::print_on_error() is called by fatal error handler. It's possible
4782 // that VM is not at safepoint and/or current thread is inside signal handler.
4783 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4784 // memory (even in resource area), it might deadlock the error handler.
4785 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4786                              int buflen) {
4787   ThreadsSMRSupport::print_info_on(st);
4788   st->cr();
4789 
4790   bool found_current = false;
4791   st->print_cr("Java Threads: ( => current thread )");
4792   ALL_JAVA_THREADS(thread) {
4793     print_on_error(thread, st, current, buf, buflen, &found_current);
4794   }
4795   st->cr();
4796 
4797   st->print_cr("Other Threads:");
4798   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4799   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4800 
4801   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4802   Universe::heap()->gc_threads_do(&print_closure);
4803 
4804   if (!found_current) {
4805     st->cr();
4806     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4807     current->print_on_error(st, buf, buflen);
4808     st->cr();
4809   }
4810   st->cr();
4811 
4812   st->print_cr("Threads with active compile tasks:");
4813   print_threads_compiling(st, buf, buflen);
4814 }
4815 
4816 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen, bool short_form) {
4817   ALL_JAVA_THREADS(thread) {
4818     if (thread->is_Compiler_thread()) {
4819       CompilerThread* ct = (CompilerThread*) thread;
4820 
4821       // Keep task in local variable for NULL check.
4822       // ct->_task might be set to NULL by concurring compiler thread
4823       // because it completed the compilation. The task is never freed,
4824       // though, just returned to a free list.
4825       CompileTask* task = ct->task();
4826       if (task != NULL) {
4827         thread->print_name_on_error(st, buf, buflen);
4828         st->print("  ");
4829         task->print(st, NULL, short_form, true);
4830       }
4831     }
4832   }
4833 }
4834 
4835 
4836 // Internal SpinLock and Mutex
4837 // Based on ParkEvent
4838 
4839 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4840 //
4841 // We employ SpinLocks _only for low-contention, fixed-length
4842 // short-duration critical sections where we're concerned
4843 // about native mutex_t or HotSpot Mutex:: latency.
4844 // The mux construct provides a spin-then-block mutual exclusion
4845 // mechanism.
4846 //
4847 // Testing has shown that contention on the ListLock guarding gFreeList
4848 // is common.  If we implement ListLock as a simple SpinLock it's common
4849 // for the JVM to devolve to yielding with little progress.  This is true
4850 // despite the fact that the critical sections protected by ListLock are
4851 // extremely short.
4852 //
4853 // TODO-FIXME: ListLock should be of type SpinLock.
4854 // We should make this a 1st-class type, integrated into the lock
4855 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4856 // should have sufficient padding to avoid false-sharing and excessive
4857 // cache-coherency traffic.
4858 
4859 
4860 typedef volatile int SpinLockT;
4861 
4862 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4863   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4864     return;   // normal fast-path return
4865   }
4866 
4867   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4868   int ctr = 0;
4869   int Yields = 0;
4870   for (;;) {
4871     while (*adr != 0) {
4872       ++ctr;
4873       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4874         if (Yields > 5) {
4875           os::naked_short_sleep(1);
4876         } else {
4877           os::naked_yield();
4878           ++Yields;
4879         }
4880       } else {
4881         SpinPause();
4882       }
4883     }
4884     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4885   }
4886 }
4887 
4888 void Thread::SpinRelease(volatile int * adr) {
4889   assert(*adr != 0, "invariant");
4890   OrderAccess::fence();      // guarantee at least release consistency.
4891   // Roach-motel semantics.
4892   // It's safe if subsequent LDs and STs float "up" into the critical section,
4893   // but prior LDs and STs within the critical section can't be allowed
4894   // to reorder or float past the ST that releases the lock.
4895   // Loads and stores in the critical section - which appear in program
4896   // order before the store that releases the lock - must also appear
4897   // before the store that releases the lock in memory visibility order.
4898   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4899   // the ST of 0 into the lock-word which releases the lock, so fence
4900   // more than covers this on all platforms.
4901   *adr = 0;
4902 }
4903 
4904 // muxAcquire and muxRelease:
4905 //
4906 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4907 //    The LSB of the word is set IFF the lock is held.
4908 //    The remainder of the word points to the head of a singly-linked list
4909 //    of threads blocked on the lock.
4910 //
4911 // *  The current implementation of muxAcquire-muxRelease uses its own
4912 //    dedicated Thread._MuxEvent instance.  If we're interested in
4913 //    minimizing the peak number of extant ParkEvent instances then
4914 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4915 //    as certain invariants were satisfied.  Specifically, care would need
4916 //    to be taken with regards to consuming unpark() "permits".
4917 //    A safe rule of thumb is that a thread would never call muxAcquire()
4918 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4919 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4920 //    consume an unpark() permit intended for monitorenter, for instance.
4921 //    One way around this would be to widen the restricted-range semaphore
4922 //    implemented in park().  Another alternative would be to provide
4923 //    multiple instances of the PlatformEvent() for each thread.  One
4924 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4925 //
4926 // *  Usage:
4927 //    -- Only as leaf locks
4928 //    -- for short-term locking only as muxAcquire does not perform
4929 //       thread state transitions.
4930 //
4931 // Alternatives:
4932 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4933 //    but with parking or spin-then-park instead of pure spinning.
4934 // *  Use Taura-Oyama-Yonenzawa locks.
4935 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4936 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4937 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4938 //    acquiring threads use timers (ParkTimed) to detect and recover from
4939 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4940 //    boundaries by using placement-new.
4941 // *  Augment MCS with advisory back-link fields maintained with CAS().
4942 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4943 //    The validity of the backlinks must be ratified before we trust the value.
4944 //    If the backlinks are invalid the exiting thread must back-track through the
4945 //    the forward links, which are always trustworthy.
4946 // *  Add a successor indication.  The LockWord is currently encoded as
4947 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4948 //    to provide the usual futile-wakeup optimization.
4949 //    See RTStt for details.
4950 //
4951 
4952 
4953 const intptr_t LOCKBIT = 1;
4954 
4955 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4956   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
4957   if (w == 0) return;
4958   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4959     return;
4960   }
4961 
4962   ParkEvent * const Self = Thread::current()->_MuxEvent;
4963   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4964   for (;;) {
4965     int its = (os::is_MP() ? 100 : 0) + 1;
4966 
4967     // Optional spin phase: spin-then-park strategy
4968     while (--its >= 0) {
4969       w = *Lock;
4970       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4971         return;
4972       }
4973     }
4974 
4975     Self->reset();
4976     Self->OnList = intptr_t(Lock);
4977     // The following fence() isn't _strictly necessary as the subsequent
4978     // CAS() both serializes execution and ratifies the fetched *Lock value.
4979     OrderAccess::fence();
4980     for (;;) {
4981       w = *Lock;
4982       if ((w & LOCKBIT) == 0) {
4983         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
4984           Self->OnList = 0;   // hygiene - allows stronger asserts
4985           return;
4986         }
4987         continue;      // Interference -- *Lock changed -- Just retry
4988       }
4989       assert(w & LOCKBIT, "invariant");
4990       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4991       if (Atomic::cmpxchg(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4992     }
4993 
4994     while (Self->OnList != 0) {
4995       Self->park();
4996     }
4997   }
4998 }
4999 
5000 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
5001   intptr_t w = Atomic::cmpxchg(LOCKBIT, Lock, (intptr_t)0);
5002   if (w == 0) return;
5003   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5004     return;
5005   }
5006 
5007   ParkEvent * ReleaseAfter = NULL;
5008   if (ev == NULL) {
5009     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
5010   }
5011   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
5012   for (;;) {
5013     guarantee(ev->OnList == 0, "invariant");
5014     int its = (os::is_MP() ? 100 : 0) + 1;
5015 
5016     // Optional spin phase: spin-then-park strategy
5017     while (--its >= 0) {
5018       w = *Lock;
5019       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5020         if (ReleaseAfter != NULL) {
5021           ParkEvent::Release(ReleaseAfter);
5022         }
5023         return;
5024       }
5025     }
5026 
5027     ev->reset();
5028     ev->OnList = intptr_t(Lock);
5029     // The following fence() isn't _strictly necessary as the subsequent
5030     // CAS() both serializes execution and ratifies the fetched *Lock value.
5031     OrderAccess::fence();
5032     for (;;) {
5033       w = *Lock;
5034       if ((w & LOCKBIT) == 0) {
5035         if (Atomic::cmpxchg(w|LOCKBIT, Lock, w) == w) {
5036           ev->OnList = 0;
5037           // We call ::Release while holding the outer lock, thus
5038           // artificially lengthening the critical section.
5039           // Consider deferring the ::Release() until the subsequent unlock(),
5040           // after we've dropped the outer lock.
5041           if (ReleaseAfter != NULL) {
5042             ParkEvent::Release(ReleaseAfter);
5043           }
5044           return;
5045         }
5046         continue;      // Interference -- *Lock changed -- Just retry
5047       }
5048       assert(w & LOCKBIT, "invariant");
5049       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
5050       if (Atomic::cmpxchg(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
5051     }
5052 
5053     while (ev->OnList != 0) {
5054       ev->park();
5055     }
5056   }
5057 }
5058 
5059 // Release() must extract a successor from the list and then wake that thread.
5060 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
5061 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
5062 // Release() would :
5063 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
5064 // (B) Extract a successor from the private list "in-hand"
5065 // (C) attempt to CAS() the residual back into *Lock over null.
5066 //     If there were any newly arrived threads and the CAS() would fail.
5067 //     In that case Release() would detach the RATs, re-merge the list in-hand
5068 //     with the RATs and repeat as needed.  Alternately, Release() might
5069 //     detach and extract a successor, but then pass the residual list to the wakee.
5070 //     The wakee would be responsible for reattaching and remerging before it
5071 //     competed for the lock.
5072 //
5073 // Both "pop" and DMR are immune from ABA corruption -- there can be
5074 // multiple concurrent pushers, but only one popper or detacher.
5075 // This implementation pops from the head of the list.  This is unfair,
5076 // but tends to provide excellent throughput as hot threads remain hot.
5077 // (We wake recently run threads first).
5078 //
5079 // All paths through muxRelease() will execute a CAS.
5080 // Release consistency -- We depend on the CAS in muxRelease() to provide full
5081 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
5082 // executed within the critical section are complete and globally visible before the
5083 // store (CAS) to the lock-word that releases the lock becomes globally visible.
5084 void Thread::muxRelease(volatile intptr_t * Lock)  {
5085   for (;;) {
5086     const intptr_t w = Atomic::cmpxchg((intptr_t)0, Lock, LOCKBIT);
5087     assert(w & LOCKBIT, "invariant");
5088     if (w == LOCKBIT) return;
5089     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
5090     assert(List != NULL, "invariant");
5091     assert(List->OnList == intptr_t(Lock), "invariant");
5092     ParkEvent * const nxt = List->ListNext;
5093     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
5094 
5095     // The following CAS() releases the lock and pops the head element.
5096     // The CAS() also ratifies the previously fetched lock-word value.
5097     if (Atomic::cmpxchg(intptr_t(nxt), Lock, w) != w) {
5098       continue;
5099     }
5100     List->OnList = 0;
5101     OrderAccess::fence();
5102     List->unpark();
5103     return;
5104   }
5105 }
5106 
5107 
5108 void Threads::verify() {
5109   ALL_JAVA_THREADS(p) {
5110     p->verify();
5111   }
5112   VMThread* thread = VMThread::vm_thread();
5113   if (thread != NULL) thread->verify();
5114 }