1 /*
   2  * Copyright (c) 2002, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 package sun.jvm.hotspot.utilities;
  26 
  27 import java.io.*;
  28 import java.util.*;
  29 import sun.jvm.hotspot.debugger.*;
  30 import sun.jvm.hotspot.classfile.*;
  31 import sun.jvm.hotspot.gc.shared.*;
  32 import sun.jvm.hotspot.memory.*;
  33 import sun.jvm.hotspot.oops.*;
  34 import sun.jvm.hotspot.runtime.*;
  35 import sun.jvm.hotspot.utilities.*;
  36 
  37 /** For a set of known roots, descends recursively into the object
  38     graph, for each object recording those objects (and their fields)
  39     which point to it. NOTE: currently only a subset of the roots
  40     known to the VM is exposed to the SA: objects on the stack, static
  41     fields in classes, and JNI handles. These should be most of the
  42     user-level roots keeping objects alive. */
  43 
  44 public class ReversePtrsAnalysis {
  45   // Used for debugging this code
  46   private static final boolean DEBUG = false;
  47 
  48   public ReversePtrsAnalysis() {
  49   }
  50 
  51   /** Sets an optional progress thunk */
  52   public void setHeapProgressThunk(HeapProgressThunk thunk) {
  53     progressThunk = thunk;
  54   }
  55 
  56 
  57   /** Runs the analysis algorithm */
  58   public void run() {
  59     if (VM.getVM().getRevPtrs() != null) {
  60       return; // Assume already done
  61     }
  62 
  63     VM vm = VM.getVM();
  64     rp = new ReversePtrs();
  65     vm.setRevPtrs(rp);
  66     Universe universe = vm.getUniverse();
  67     CollectedHeap collHeap = universe.heap();
  68     usedSize = collHeap.used();
  69     visitedSize = 0;
  70 
  71     // Note that an experiment to iterate the heap linearly rather
  72     // than in recursive-descent order has been done. It turns out
  73     // that the recursive-descent algorithm is nearly twice as fast
  74     // due to the fact that it scans only live objects and (currently)
  75     // only a fraction of the perm gen, namely the static fields
  76     // contained in instanceKlasses. (Iterating the heap linearly
  77     // would also change the semantics of the result so that
  78     // ReversePtrs.get() would return a non-null value even for dead
  79     // objects.) Nonetheless, the reverse pointer computation is still
  80     // quite slow and optimization in field iteration of objects
  81     // should be done.
  82 
  83     if (progressThunk != null) {
  84       // Get it started
  85       progressThunk.heapIterationFractionUpdate(0);
  86     }
  87 
  88     // Allocate mark bits for heap
  89     markBits = new MarkBits(collHeap);
  90 
  91     // Get a hold of the object heap
  92     heap = vm.getObjectHeap();
  93 
  94     // Do each thread's roots
  95     for (JavaThread thread = VM.getVM().getThreads().first();
  96          thread != null;
  97          thread = thread.next()) {
  98       ByteArrayOutputStream bos = new ByteArrayOutputStream();
  99       thread.printThreadIDOn(new PrintStream(bos));
 100       String threadDesc =
 101         " in thread \"" + thread.getThreadName() +
 102         "\" (id " + bos.toString() + ")";
 103       doStack(thread,
 104               new RootVisitor("Stack root" + threadDesc));
 105       doJNIHandleBlock(thread.activeHandles(),
 106                        new RootVisitor("JNI handle root" + threadDesc));
 107     }
 108 
 109     // Do global JNI handles
 110     JNIHandles handles = VM.getVM().getJNIHandles();
 111     doJNIHandleBlock(handles.globalHandles(),
 112                      new RootVisitor("Global JNI handle root"));
 113     doJNIHandleBlock(handles.weakGlobalHandles(),
 114                      new RootVisitor("Weak global JNI handle root"));
 115 
 116     // Do Java-level static fields
 117     ClassLoaderDataGraph cldg = VM.getVM().getClassLoaderDataGraph();
 118     cldg.classesDo(new ClassLoaderDataGraph.ClassVisitor() {
 119 
 120             public void visit(Klass k) {
 121                 if (k instanceof InstanceKlass) {
 122                     final InstanceKlass ik = (InstanceKlass)k;
 123             ik.iterateStaticFields(
 124                new DefaultOopVisitor() {
 125                    public void doOop(OopField field, boolean isVMField) {
 126                      Oop next = field.getValue(getObj());
 127                                                    NamedFieldIdentifier nfi = new NamedFieldIdentifier("Static field \"" +
 128                                                 field.getID().getName() +
 129                                                 "\" in class \"" +
 130                                                                                                        ik.getName().asString() + "\"");
 131                                                    LivenessPathElement lp = new LivenessPathElement(null, nfi);
 132                      rp.put(lp, next);
 133                      try {
 134                        markAndTraverse(next);
 135                      } catch (AddressException e) {
 136                        System.err.print("RevPtrs analysis: WARNING: AddressException at 0x" +
 137                                         Long.toHexString(e.getAddress()) +
 138                                         " while traversing static fields of InstanceKlass ");
 139                        ik.printValueOn(System.err);
 140                        System.err.println();
 141                      } catch (UnknownOopException e) {
 142                        System.err.println("RevPtrs analysis: WARNING: UnknownOopException while " +
 143                                           "traversing static fields of InstanceKlass ");
 144                        ik.printValueOn(System.err);
 145                        System.err.println();
 146                      }
 147                    }
 148                  });
 149           }
 150         }
 151       });
 152 
 153     if (progressThunk != null) {
 154       progressThunk.heapIterationComplete();
 155     }
 156 
 157     // Clear out markBits
 158     markBits = null;
 159   }
 160 
 161 
 162   //---------------------------------------------------------------------------
 163   // Internals only below this point
 164   //
 165   private HeapProgressThunk   progressThunk;
 166   private long                usedSize;
 167   private long                visitedSize;
 168   private double              lastNotificationFraction;
 169   private static final double MINIMUM_NOTIFICATION_FRACTION = 0.01;
 170   private ObjectHeap          heap;
 171   private MarkBits            markBits;
 172   private int                 depth; // Debugging only
 173   private ReversePtrs         rp;
 174 
 175   private void markAndTraverse(OopHandle handle) {
 176     try {
 177       markAndTraverse(heap.newOop(handle));
 178     } catch (AddressException e) {
 179       System.err.println("RevPtrs analysis: WARNING: AddressException at 0x" +
 180                          Long.toHexString(e.getAddress()) +
 181                          " while traversing oop at " + handle);
 182     } catch (UnknownOopException e) {
 183       System.err.println("RevPtrs analysis: WARNING: UnknownOopException for " +
 184                          "oop at " + handle);
 185     }
 186   }
 187 
 188   private void printHeader() {
 189     for (int i = 0; i < depth; i++) {
 190       System.err.print(" ");
 191     }
 192   }
 193 
 194   private void markAndTraverse(final Oop obj) {
 195 
 196     // End of path
 197     if (obj == null) {
 198       return;
 199     }
 200 
 201     // Visited object
 202     if (!markBits.mark(obj)) {
 203       return;
 204     }
 205 
 206     // Root of work list for objects to be visited.  A simple
 207     // stack for saving new objects to be analyzed.
 208 
 209     final Stack workList = new Stack();
 210 
 211     // Next object to be visited.
 212     Oop next = obj;
 213 
 214     try {
 215       // Node in the list currently being visited.
 216 
 217       while (true) {
 218         final Oop currObj = next;
 219 
 220         // For the progress meter
 221         if (progressThunk != null) {
 222           visitedSize += currObj.getObjectSize();
 223           double curFrac = (double) visitedSize / (double) usedSize;
 224           if (curFrac >
 225               lastNotificationFraction + MINIMUM_NOTIFICATION_FRACTION) {
 226             progressThunk.heapIterationFractionUpdate(curFrac);
 227             lastNotificationFraction = curFrac;
 228           }
 229         }
 230 
 231         if (DEBUG) {
 232           ++depth;
 233           printHeader();
 234           System.err.println("ReversePtrs.markAndTraverse(" +
 235               currObj.getHandle() + ")");
 236         }
 237 
 238         // Iterate over the references in the object.  Do the
 239         // reverse pointer analysis for each reference.
 240         // Add the reference to the work-list so that its
 241         // references will be visited.
 242         currObj.iterate(new DefaultOopVisitor() {
 243           public void doOop(OopField field, boolean isVMField) {
 244             // "field" refers to a reference in currObj
 245             Oop next = field.getValue(currObj);
 246             rp.put(new LivenessPathElement(currObj, field.getID()), next);
 247             if ((next != null) && markBits.mark(next)) {
 248               workList.push(next);
 249             }
 250           }
 251         }, false);
 252 
 253         if (DEBUG) {
 254           --depth;
 255         }
 256 
 257         // Get the next object to visit.
 258         next = (Oop) workList.pop();
 259       }
 260     } catch (EmptyStackException e) {
 261       // Done
 262     } catch (NullPointerException e) {
 263       System.err.println("ReversePtrs: WARNING: " + e +
 264         " during traversal");
 265     } catch (Exception e) {
 266       System.err.println("ReversePtrs: WARNING: " + e +
 267         " during traversal");
 268     }
 269   }
 270 
 271 
 272   class RootVisitor implements AddressVisitor {
 273     RootVisitor(String baseRootDescription) {
 274       this.baseRootDescription = baseRootDescription;
 275     }
 276 
 277     public void visitAddress(Address addr) {
 278       Oop next = heap.newOop(addr.getOopHandleAt(0));
 279       LivenessPathElement lp = new LivenessPathElement(null,
 280                                         new NamedFieldIdentifier(baseRootDescription +
 281                                                                  " @ " + addr));
 282       rp.put(lp, next);
 283       markAndTraverse(next);
 284     }
 285 
 286     public void visitCompOopAddress(Address addr) {
 287       Oop next = heap.newOop(addr.getCompOopHandleAt(0));
 288       LivenessPathElement lp = new LivenessPathElement(null,
 289                                         new NamedFieldIdentifier(baseRootDescription +
 290                                                                  " @ " + addr));
 291       rp.put(lp, next);
 292       markAndTraverse(next);
 293     }
 294 
 295     private String baseRootDescription;
 296   }
 297 
 298   // Traverse the roots on a given thread's stack
 299   private void doStack(JavaThread thread, AddressVisitor oopVisitor) {
 300     for (StackFrameStream fst = new StackFrameStream(thread); !fst.isDone(); fst.next()) {
 301       fst.getCurrent().oopsDo(oopVisitor, fst.getRegisterMap());
 302     }
 303   }
 304 
 305   // Traverse a JNIHandleBlock
 306   private void doJNIHandleBlock(JNIHandleBlock handles, AddressVisitor oopVisitor) {
 307     handles.oopsDo(oopVisitor);
 308   }
 309 }